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Abstract

Santana, Ítalo Gomes; Vidal, Thibaut Victor Gaston (Advisor).
Exploring the frontier of Combinatorial Optimization and
Machine Learning: Applications to Vehicle Routing and
Support Vector Machines. Rio de Janeiro, 2022. 93p. Tese de
Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Combinatorial optimization (CO) is ubiquitous in myriad practical appli-
cations (e.g., production planning, scheduling, logistics, etc.). Over the years,
CO and machine learning (ML) have emerged, together, as a prospective area
of research for improving decision-making processes. There is interest to har-
ness ML algorithms to improve existing CO methods. Conversely, since many
ML tasks can be reformulated as optimization problems, there is broad interest
in leveraging state-of-the-art CO methods for them. In this thesis, we conduct
three studies that connect CO and ML around two important applications:
the capacitated vehicle routing problem (CVRP) and support vector machi-
nes with hard-margin loss (SVM-HML). Our first study proposes a strategy
to explore high-order local-search neighborhoods by pattern mining into two
state-of-the-art metaheuristics for the CVRP. In a second study, also in the
context of the CVRP, we exploit relatedness criteria for customer nodes using
predictions from graph neural networks. We show that relatedness measures
can be exploited to steer local search and extend crossover operators in a state-
of-the-art genetic algorithm. Lastly, in a third study, we propose an efficient
mixed-integer programming approach based on Combinatorial Benders cuts
and sampling strategies for optimally training the SVM-HML.

Keywords
Combinatorial optimization; Machine learning; Metaheuristics; Vehicle

routing problem; Combinatorial Benders cut.
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Resumo

Santana, Ítalo Gomes; Vidal, Thibaut Victor Gaston. Explorando
a fronteira de Otimização Combinatória e Aprendizado
de Máquina: Aplicações para Roteamento de Veículos e
Máquinas de Vetores de Suporte. Rio de Janeiro, 2022. 93p.
Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

A otimização combinatória (OC) está presente em inúmeras aplicações
práticas (por exemplo, planejamento de produção, logística, etc.). Ao longo dos
anos, OC e aprendizado de máquina (AM) surgiram, juntas, como uma área
prospectiva de pesquisa para melhorar processos de tomada de decisão. Nesse
contexto, há interesse em utilizar algoritmos de AM para melhorar métodos
de OC. Por outro lado, como muitas tarefas de AM podem ser reformuladas
como problemas de otimização, há um amplo interesse em utilizar métodos de
OC para resolver esses problemas. Nesta tese, três estudos que conectam OC
e AM em torno de duas aplicações importantes são conduzidos: o problema de
roteamento de veículos capacitado (PRVC) e máquinas de vetores de suporte
com perda em margem rígida (SVM-HML – do inglês support vector machines
with hard-margin loss). No primeiro estudo, uma estratégia para explorar
vizinhanças de busca local de alta ordem por mineração de padrões em duas
meta-heurísticas estado da arte para o PRVC é proposta. Em um segundo
estudo, também no contexto do PRVC, critérios de relacionamento para nós
de clientes baseados em saídas de redes neurais em grafos são explorados. Com
base nessas saídas, medidas de relação podem ser exploradas para orientar a
busca local e estender operadores de cruzamento em um algoritmo genético
estado da arte. Por fim, no terceiro estudo, uma abordagem eficiente de
programação inteira mista baseada em cortes combinatórios de Benders e
estratégias de amostragem são utilizadas para treinar modelos de SVM-HML
de maneira mais eficiente.

Palavras-chave
Otimização combinatória; Aprendizado de máquina; Meta-heurísticas;

Problema de roteamento de veículos; Cortes combinatórios de Benders.
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1
Introduction

Combinatorial optimization (CO) is a well-developed area that includes
a long list of real-world problems. To cite a few examples, CO applications are
seen in contexts of logistics, sales and manufacturing performance, workload
placement, staff rostering, and portfolio management, among many others.
Generally, a CO problem requires finding a combination of decisions that
optimize a given objective subject to a set of constraints. Despite their broad
presence in real-life scenarios, CO problems are usually NP-hard, and solving
them to optimality typically takes a time that grows exponentially with the
number of decisions to take.

To deal with these problems effectively, many studies focus on improving
existing algorithms by reducing solutions’ search space or making the search
process faster. Recently, there has been increasing interest in employing
machine learning (ML) techniques to improve these algorithms even further.
As a result, CO and ML areas have emerged, together, as a prospective area
of research since ML training can also benefit from CO techniques.

From the viewpoint of ML in CO, one can use ML techniques to mitigate
limitations or strengthen components of CO solvers by learning from past
decisions. In light of this, an emerging line of research embraces neural networks
(NN) as (sub)routines to solve CO problems. For example, [146] presented a
graph NN that predicts the probability of each edge participating in a high-
quality solution. All edges whose probabilities are below a threshold are then
used to prune the search space of solutions in applications for the capacitated
vehicle routing problem (CVRP) and the traveling salesperson problem (TSP).
For a complete review of studies in this viewpoint, we refer the interested reader
to the surveys of [1, 154, 155, 157].

Conversely, from the viewpoint of CO in ML, there has been broad inter-
est in leveraging CO methods to enhance ML training tasks, which are often
cast as optimization problems. These training tasks usually optimize a given
objective (e.g., minimize training error) constrained over some restrictions of
the learning problem [158]. On this subject, [98] and [108] presented various
mathematical optimization approaches for training support vector machines
with hard-margin loss (SVM-HML), an ML model that requires a solution to
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Chapter 1. Introduction 12

an NP-hard problem. The presence of CO problems in training ML models is
widespread in many surveys in the literature, such as [95, 159, 160, 158].

In this thesis, we conduct three studies that explore these viewpoints.
From the viewpoint of ML in CO, we present two studies that employ ML
techniques to enhance the overall performance of state-of-the-art metaheuris-
tics for the CVRP. From the other viewpoint, we employ efficient solution
techniques from the mathematical optimization domain to improve the train-
ing performance of SVM-HML. Each study, presented in an individual chapter,
is summarized as follows. The final remarks of this thesis are presented in the
last chapter (Chapter 5).

– In the first study, we propose a strategy to explore high-order local-
search neighborhoods by pattern mining, described in Chapter 2. We
demonstrate that this strategy complements classical search procedures
by identifying useful high-order moves, illustrated in two state-of-the-
art metaheuristics for the capacitated vehicle routing problem (CVRP).
Our approach relies on an effective recursive algorithm that optimally
rebuilds solutions from a set of route fragments and a pattern. At the
evaluation step, we extensively analyze our proposal’s ability to find new
moves and contribute to the search performance.

– In the second study, also developed in the CVRP domain, we introduce
the concept of relatedness criteria for customer nodes and their exploita-
tion of local search and crossover operators of a state-of-the-art meta-
heuristic. We demonstrate that this relatedness based on predictions of
graph neural networks (GNNs) or simply distance-based measures can
enhance state-of-the-art results. Moreover, we circumvent a limitation
in these GNNs, which are designed to predict outputs only for fixed-
size graphs, to perform on larger instances without retraining the GNN
model. We instead decompose the original instance into a sequence of
fixed-size subproblems and aggregate the resulting outputs. This tech-
nique has the benefit of only requiring a single trained GNN. The com-
plete content of this study is presented in Chapter 3.

– Finally, the third study comprises an efficient mixed-integer program-
ming approach based on Combinatorial Benders (CB) cuts and sampling
strategies for optimally training the support vector machines with hard-
margin loss (SVM-HML), an SVM variant that requires the solution to
an NP-hard problem. In this study, we demonstrate that these cuts, gen-
erated on a variant of the linear separator problem that fits in the CB
framework, lead to useful inequalities for SVM-HML. Furthermore, a sim-
ple sampling strategy is utilized to promote a better diversification in the
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pool of CB cuts by solving smaller subproblems. In the reported results,
we observed that our methodological approach significantly increased the
ability to reach optimal solutions in less computational time and smaller
optimality gaps in the same computational time than baseline results.
We detail this study in Chapter 4.
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2
PILS: Exploring high-order neighborhoods by pattern mining
and injection

2.1
Introduction

Recent research has demonstrated that discovering the structural prop-
erties of high-quality solutions, i.e., what differentiates high-quality from low-
quality solutions, can be instrumental in developing state-of-the-art heuristics
for hard combinatorial optimization problems [5, 75]. In this study, we inves-
tigate whether pattern mining, i.e., the discovery of frequently used patterns
or structures in high-quality solutions, can similarly improve the performance
of a heuristic optimization algorithm.

Pattern mining is a well-established technique to detect correlations and
substructures in datasets. It is traditionally used in market-data analysis to
identify sets of products that are frequently acquired together, and many other
applications exist, such as DNA analysis and fraud detection [2]. In all of these
cases, the extraction of patterns reveals insightful associations and can guide
strategic decisions.

We focus this study on the capacitated vehicle routing problem (CVRP).
This problem belongs to the class of optimization problems known as vehicle
routing problems. These problems seek to find least-cost delivery routes to visit
a geographically dispersed customer set, therefore generalizing the classical
traveling salesman problem (TSP) with multiple vehicles and other side
constraints [49, 55]. Almost all vehicle routing problems are NP-hard as
an extension of the classical TSP, but most are notoriously more difficult
to solve in practice. Despite 60 years of research and published research
papers numbering in the thousands, the best exact algorithms for vehicle
routing problems remain unable to consistently solve instances with around 300
customers in a reasonable amount of computation time [56, 38]. In contrast,
real-life TSP instances of a similar size generally take a few seconds to be
solved to proven optimality [76]. Due to both their computational difficulty
and practical interest, vehicle routing problems have therefore emerged as one
of the most important benchmarks for metaheuristics, designed to produce

DBD
PUC-Rio - Certificação Digital Nº 1821009/CA



Chapter 2. PILS: Exploring high-order neighborhoods by pattern mining and
injection 15

high-quality approximate solutions in a controlled time.
It is well known that high-quality solutions of a vehicle routing problem

tend to be structurally close to the global optima, with which they share a
large number of common edges [12]. Moreover, during a typical search, several
sequences of consecutive visits regularly re-appear in high-quality solutions.
A few studies have attempted to exploit such patterns heuristically, either
by guiding the search towards frequently occurring customer sequences or by
building new initial solutions from them as a starting point for the local search
operators. However, state-of-the-art heuristics for vehicle routing problems
generally rely on efficient local search operators to a far greater extent than
on iterative solution construction procedures. We therefore posit that a careful
adaptation of the local search components using a set of high-quality patterns
(i.e., customer sequences that frequently occur in high-quality solutions) could
be a promising avenue in the design of high-quality of heuristics for vehicle
routing problems. This research path, however, remains mostly unexplored.

To fill this gap, we introduce a technique to effectively exploit discovered
patterns in a local search heuristic. We have called this technique pattern in-
jection local search (PILS). PILS is a generic move generator that efficiently
finds high-order moves (i.e., moves in which more than two visits are affected
simultaneously) based on patterns frequently occurring in high-quality solu-
tions.

In a nutshell, PILS consists of two algorithmic steps: pattern collection
and pattern injection. Pattern collection is the process of collecting patterns
(i.e., sequences of consecutive visits) that frequently occur in high-quality
solutions. Then, a subset of the most frequent patterns can be introduced
in an incumbent solution in a three-step process called pattern injection.
(1) Incompatible edges (i.e., edges adjacent to nodes in the pattern, but not
occurring in the pattern itself) are disconnected. (2) The edges defined by the
pattern are reconnected. This yields a set of disconnected route fragments,
which are (3) optimally reconnected. In PILS, a pattern injection move is only
accepted if it improves the incumbent solution.

The ability of PILS to find high-order pattern injection moves can be
easily used to complement other local searches and is independent of the
metaheuristic paradigm used (e.g., population- or trajectory-based methods).
We demonstrate this generality by applying PILS in the framework of two
state-of-the-art metaheuristics for the CVRP: the hybrid genetic search of [52]
and the guided local search of [5].

In summary, the contributions of this study are threefold:
1) We introduce a new optimization technique called pattern injection
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local search (PILS) that can be used to generate high-order moves
by introducing patterns frequently discovered in high-quality solutions
in an incumbent solution. We discuss the major design decisions and
implementation strategies related to this new technique. To the best of
our knowledge, this study presents the first attempt to use pattern mining
to generate and enumerate specialized large neighborhoods.

2) As part of the PILS approach, we describe a simple algorithm to
optimally reconnect the route fragments that occur during the pattern
injection phase.

3) Finally, we conduct extensive experiments to measure the effectiveness
of PILS using two state-of-the-art metaheuristics for the CVRP. We also
evaluate how pattern frequency and quality are correlated, and measure
the sensitivity of the approach to the number of selected patterns and the
number of pattern-insertion attempts, thereby providing a deep analysis
of the role of pattern mining in local search-based metaheuristics.
The remainder of this study is organized as follows. Section 2.2 reviews

the related literature. Section 2.3 describes the PILS methodology, while Sec-
tion 2.4 discusses the integration of PILS within two state-of-the-art meta-
heuristics for the CVRP. Section 2.5 presents our computational experiments,
and Section 2.6 concludes.

2.2
Literature review

Pattern mining and metaheuristics If we (informally) define a pattern as a
set of solution characteristics, then pattern extraction and exploitation is, at
least indirectly, a founding principle of most modern metaheuristics. According
to [25], the success of crossover-based genetic algorithms is largely because
they promote the survival and propagation of high-quality building blocks.
Similarly, path relinking algorithms [41] iteratively guide the search towards
the characteristics of an elite solution, while ant colony optimization (ACO)
[18] learns and reinforces promising decisions. This modus operandi comes from
the fact that, for most combinatorial optimization problems of interest, high-
quality solutions are structurally close to the global optimum in the solution
space [12].

Other recent metaheuristics have more directly exploited pattern infor-
mation, for two general purposes: (1) information exchange and cooperation
between the various operators used in the metaheuristic, and (2) to generate
new initial solutions. [31] rely on frequent patterns to coordinate and guide
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the search of several metaheuristics. Patterns are extracted from a solution
warehouse and used to temporarily fix or prohibit edges in cooperating tabu
searches and genetic algorithms. [19] and [28] have extended this methodol-
ogy into an integrative cooperative search (ICS) for multi decision-attribute
optimization problems, relying on structural problem decompositions and in-
tegrations of partial elite solutions to form complete solutions.

While studies on pattern guidance remain few and far between, contri-
butions in which patterns are exploited to generate new initial solutions are
more widespread. Adaptive memory programming (AMP – [46]) is a method-
ological paradigm that represents this strategy well. It generalizes most of the
classical metaheuristics (tabu search, scatter search, genetic algorithms, and
ACO) within a unified framework, based on the premises that all these meth-
ods “memorize solutions or characteristics of solutions generated during the
search process” and “include a procedure that creates an initial solution with
the information stored in memory”. BoneRoute [48] successfully applies the
AMP strategy to the CVRP within a population-based approach. New partial
solutions are regularly built from solution components and completed heuris-
tically. Similarly, [43] proposes a genetic algorithm, in which new solutions
are generated via a multi-parent crossover or a construction procedure com-
bining elite patterns. Set-covering-based matheuristics [35, 45] also regularly
combine solution elements (e.g., routes, bins, clusters) into complete solutions
using integer programming solvers. Several studies have also focused on iden-
tifying frequent sequences or visits to construct new initial solutions for the
TSP, leading to methods known as backbone search [27, 44], tabu search with
vocabulary building [23], and fixed set search [26].

It is tempting to combine multiple promising solution fragments into
new solutions. However, search methods based on this principle face a major
problem: even though several individual decisions may be found in a large
number of high-quality solutions, combinations of these decisions may not. For
example, even though there may exist edges that appear in a large number
of high-quality solutions of a vehicle routing problem, this does not in any
way guarantee that any combination of these promising edges can be used to
form a high-quality feasible solution. In other words, the pattern built from
promising decisions is generally not supported in any high-quality solution. For
this reason, [11, 42] and other related studies opted to use a single — large
and supported — pattern during each solution construction.

To summarize, previous studies have, either directly or indirectly, ex-
ploited pattern mining to enhance metaheuristics. Coined parts, fragments
or backbones, these patterns capture frequent structures from elite solutions.
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To the best of our knowledge, patterns have been mainly used to guide the
search and drive solution construction rather than local improvement, a sur-
prising fact given that local searches play the most critical role in most modern
metaheuristics. We therefore aim to design new strategies to exploit pattern
information at the local search level, through specialized, enumerable moves
whose evaluation complexity remain controllable, leading to a new local search
paradigm.

The capacitated vehicle routing problem Due to its importance for trans-
portation logistics and its rich combinatorial structure, the CVRP currently
stands as one of the main benchmarks for research on combinatorial optimiza-
tion algorithms. In its canonical form, it is defined on a complete undirected
graph G = (V , E) such that V = {0, 1, . . . , n}. Vertex 0 stands for a depot
where a vehicle fleet is based, and each other vertex i ∈ {1, . . . , n} represents
a customer with demand qi. Each edge (i, j) ∈ E represents the possibility of
traveling from i to j with distance cost cij ∈ R+. The goal of the CVRP is to
design vehicle routes starting and ending at the depot, in such a way that each
customer is visited once, that the total demand transported on each route does
not exceed the vehicle capacity Q, and that the total cost measured as the sum
of the route distances is minimized [49]. Some authors assume the number of
routes is fixed to a minimum number of possible routes in a solution.

The CVRP is NP-hard as a generalization of the TSP. Despite the
considerable progress of mathematical programming techniques for NP-hard
combinatorial optimization problems, current exact methods for the CVRP
can only solve instances with a few hundred customers in a reasonable
amount of time [56, 38]. Since this size is insufficient for recent applications,
e.g., for e-commerce or mobility-on-demand, extensive research has been
conducted on metaheuristics in an attempt to generate approximate solutions
in a more controlled computational effort. Similarly, metaheuristics have
regularly appeared in the pattern recognition and machine learning domains,
for optimization tasks in clustering [66, 67, 78], feature selection [70, 68], and
a variety of other applications [69, 72, 71, 77].

All of the classical metaheuristic paradigms have been tested on the
CVRP. In the early 2000s, state-of-the-art algorithms were primarily based
on tabu search and other single-trajectory metaheuristics [65]. This status-quo
changed with the proposal of effective hybrid genetic searches (HGS) for this
problem [36, 40, 51, 52], combining the exploration abilities of crossover- and
population-based search with the improvement potential of specialized local
searches to achieve a fine balance between diversification and intensification
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[61, 60]. The algorithm of [51] has been holding the best-known results for
the CVRP for nearly a decade. Recently, two other methods have achieved
high-quality results for some instance classes: the adaptive large neighborhood
search with slack induction of [15] and the knowledge-guided local search
(KGLS) of [5]. As visible at http://vrp.galgos.inf.puc-rio.br/index.
php/en/updates, research remains very active on the topic, and new best
solutions are still regularly reported for the classical instances of [50].

2.3
Pattern Injection Local Search

Nearly all successful CVRP metaheuristics rely on some local search-
based optimization component, which is iteratively applied on multiple solu-
tions throughout the method. Given an incumbent solution s, a local search
(LS) explores a neighborhood N (s) including all solutions reachable from s

by small changes, called moves, with the goal of finding an improving neigh-
bor, which is used as a new incumbent solution. This process is repeated until
reaching a local minimum state, where no more improving neighbor exists. It
can be said that LS performs a mapping of a set of initial solutions onto a set
of local minima, which can be seen as a discrete analogy to gradient descent
in continuous space.

Neighborhood size is typically exponential in the number of vertices or
edges that are jointly modified in a move. For example, there exist Θ(k!nk)
solutions in the k-opt neighborhood, obtained by deleting k edges and recon-
necting the resulting solution fragments. For this reason, most CVRP meta-
heuristics use simple O(n2)-sized neighborhoods based on single-vertex reloca-
tions (Relocate), pairwise exchanges (Swap), or replacements of two edges
(2-opt, and 2-opt*) [60]. Due to their larger computational requirements,
higher-order neighborhoods are only rarely considered.

This is where the proposed technique PILS provides a meaningful al-
ternative. Instead of exhaustively exploring high-order k-opt neighborhoods,
it relies on the information of frequent patterns to select and consider fewer
— targeted — moves that insert a pattern in the incumbent solution and op-
timally reconstruct the remaining edges to avoid large disruptions. We now
describe the two algorithmic steps involved in this process, pattern extraction
and pattern injection, and then discuss important design choices when using
PILS.

http://vrp.galgos.inf.puc-rio.br/index.php/en/updates
http://vrp.galgos.inf.puc-rio.br/index.php/en/updates
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2.3.1
Pattern extraction

Pattern extraction, in the case of the CVRP, consists of monitoring his-
torical solutions to obtain the frequency of patterns, i.e., the appearance of se-
quences of consecutive customer visits of a certain size range {Lmin, . . . , Lmax}.
Consider a route σ = (σ1, . . . , σ|σ|) starting and ending at the depot, such
that σ1 = 0 and σ|σ| = 0. In this route, each contiguous subsequence of
(σ2, . . . , σ|σ|−1) represents a (supported) pattern, which could contain either all
the visited customers or a part thereof. Route (0, 1, 3, 5, 2, 6, 0), for example,
contains two patterns of size four: (1, 3, 5, 2) and (3, 5, 2, 6). As we will con-
duct experiments on symmetric CVRP datasets, mirrored subsequences will
be considered as identical, e.g., (1, 3, 5, 2) = (2, 5, 3, 1). In these conditions, any
route σ contains max{0, |σ| − 1 − l} patterns of size l, and any solution con-
tains O(n) patterns of a given size, such that pattern extraction can be done
by simple inspection. This process is described in Algorithm 1. The resulting
patterns and their associated frequency are stored in an associative array A.

Algorithm 1: Extraction of patterns of size l ∈ {Lmin, . . . , Lmax}
from a solution s

1 for each pattern size l ∈ {Lmin, . . . , Lmax} do
2 for each route σ of s do
3 for i ∈ {l + 1, . . . , |σ| − 1} do
4 p = (σi−l+1, . . . , σi);
5 if p ∈ A then
6 Increment the frequency of p by one unit
7 else
8 Add new pattern in p in A

Depending on the size of the problem instance and the number of so-
lutions from which patterns are extracted, the number of uniquely encoun-
tered patterns in A can be large. Since we aim to focus on a limited subset
of frequent patterns during injections, we use an additional min-heap data
structure to track the ΦFreq most frequent patterns of each given length l ∈
{Lmin, . . . , Lmax}. This data structure allows O(1) access to the root to verify if
the least frequent element of the heap needs to be replaced, and O(log(|ΦFreq|))
updates whenever the frequency of an element of the heap is incremented. It
also allows the method to efficiently iterate over the most frequent patterns
during the pattern injection phase.

Figure 2.1 illustrates the 100 and 500 most frequent patterns of size 3 and
6 for a CVRP instance with 560 delivery locations (X-n561-k42). The depot is
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located at the center of the figure. The thickness of the edges is proportional
to their occurrence frequency in the patterns. As visible in this figure, small
patterns are often contained in larger patterns. Moreover, frequent patterns
usually involve customers that are more distant from the depot, since the
number of relevant visit sequences for such customers tends to be smaller.

the edges is proportional to their occurrence frequency in the patterns. As visible in this figure, small

patterns are often contained in larger patterns. Moreover, frequent patterns usually involve customers

that are more distant from the depot, since the number of relevant visit sequences for such customers

tends to be smaller.

(a) ΦFreq = 100, l = 3 (b) ΦFreq = 500, l = 3

(c) ΦFreq = 100, l = 6 (d) ΦFreq = 500, l = 6

Figure 1: Most frequent patterns for a CVRP instance with 560 delivery locations

3.2. Pattern injection

During the injection phase, frequent patterns are tentatively inserted in the incumbent solution to

define high-order local search moves. These moves are accepted in case of improvement. A pattern p is

injected into a solution by connecting the vertices of p and rigorously removing all other interfering

10

Figure 2.1: Most frequent patterns for a CVRP instance with 560 delivery
locations

2.3.2
Pattern injection

During the injection phase, frequent patterns are tentatively inserted in
the incumbent solution to define high-order local search moves. These moves
are accepted in case of improvement. A pattern p is injected into a solution
by connecting the vertices of p and rigorously removing all other interfering
edges. This leads to a set of route fragments that need to be reconnected to
obtain a feasible solution. Given an incumbent solution s and a subset P of
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frequent patterns, neighborhood Npils(s,P) is therefore defined as the set of
all solutions obtained by:

1) selecting a pattern p ∈ P that does not currently appear in s,
2) disconnecting in s all edges adjacent to the vertices of p,
3) inserting edges to form the pattern p, and
4) optimally inserting additional edges to obtain a complete solution.

Figure 2.2 illustrates the injection process. In this example, a pattern of
size six has been selected. The pattern injection step leads to a new solution
in which eight edges (represented with dashed lines) have been replaced, i.e.,
a 8-opt move.

 

 

 

 

  

Step 1) 
Selection of 

a pattern 

Steps 2) and 3) 
Disconnection and 
pattern insertion 

 

Step 4) 
Optimal 

Completion 

 

Figure 2.2: Illustration of the pattern injection process

Let Rinit represent the set of routes containing at least one customer of
p. After Step 3, the routes in Rinit have been partitioned into fragments, which
can be classified into three sets: Rbeg contains all fragments that start with
a depot, Rmid contains all fragments without a depot (including pattern p),
and Rend includes all fragments that end with a depot. Note that some route
fragments in Rbeg ∪Rend may contain only the depot.

During Step 4, these fragments will be optimally reconnected into a set
of feasible routes via Algorithm 2. Since we work with symmetric CVRP in-
stances, fragments can potentially be reversed during this process. An efficient
algorithm for this step is critical since the number of possible recombinations
grows exponentially with the number of fragments. Therefore, our algorithm
relies on pruning techniques to detect and abort non-improving route combi-
nations as early as possible in the recursions. Rbest is a global variable that
represents the best set of reconnected routes found so far. It is initially set to
Rbest = Rinit. Variable R represents the complete routes that are currently
being built. As depicted in Line 1 of Algorithm 2, the route fragments are
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recursively concatenated (operation ⊕) as long as the collective cost of the
current fragments in Rbeg, Rmid, Rend, and R remains smaller than that of
Rbest. In this procedure, the cost of a set of routes (or route fragments) is
given by the sum of the cost of its elements: C(R) = ∑

σ∈R C(σ).

Algorithm 2: Best-Reconnect(Rbeg,Rmid,Rend,R).
1 if C(Rbeg ∪Rmid ∪Rend ∪R) < C(Rbest) then
2 if |Rbeg| = 0 then
3 Rbest = R
4 else
5 Select σbeg ∈ Rbeg

6 for σmid ∈ Rmid do
7 Best-Reconnect(Rbeg − {σbeg} ∪ {σbeg ⊕ σmid},Rmid −

{σmid},Rend,R)
8 Best-Reconnect(Rbeg − {σbeg} ∪ {σbeg ⊕

Rev(σmid)},Rmid − {σmid},Rend,R)
9 if |Rbeg| ≠ 1 or |Rmid| = 0 then

10 for σend ∈ Rend do
11 Best-Reconnect(Rbeg − {σbeg},Rmid,Rend −

{σend},R∪ {σbeg ⊕ σend})

In each recursion, one single fragment σbeg of Rbeg is tentatively concate-
nated with each fragment σ ∈ Rmid∪Rend and each reversed fragment Rev(σ)
for σ ∈ Rmid (Line 8). Each such concatenation leads to a recursive call. Dur-
ing all recursive calls, we invariably have that |Rbeg| = |Rend| = |Rinit| − |R|.
This value represents the number of routes that still need to be built. Whenever
only one route remains, we do not permit a connection to the last fragment of
Rend unless all fragments in Rmed have been exhausted (Line 9). When this
last condition occurs, the base case (Line 2) is finally attained and a possible
reconnection has been obtained. At this point, due to the filtering condition,
its cost is known to be smaller than the best known, and therefore R can be
updated (Line 3).

This algorithm can be used to penalize or prohibit capacity-constraint
violations in the routes. In the former case, a linear penalty term is added in
the cost evaluation functions. In the latter case, the recursion is stopped in case
of infeasibility (same as setting an infinite penalty). To efficiently perform the
concatenations and cost evaluations, each fragment σ within the algorithm
is characterized by a total demand Q(σ) and distance D(σ). Whenever a
concatenation operation ⊕ between fragments is performed, the associated
capacities and distances are derived for the new fragment. Equations (2-1–2-
2) compute these values by induction on the concatenation operation in O(1)
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time:

Q(σ1 ⊕ σ2) = Q(σ1) +Q(σ2) (2-1)

D(σ1 ⊕ σ2) = D(σ1) + dσ1(|σ1|)σ2(1) +D(σ2). (2-2)

Based on this information, the cost of a route or fragment of route can be
evaluated as:

C(σ) = ωQ max{Q(σ)−Q, 0}+D(σ), (2-3)
where ωQ represents the penalty factor for each unit load excess over the
vehicle capacity Q. The best solution reconnection found is applied in case of
improvement over Rinit, otherwise, the solution remains unchanged.

2.3.3
Design choices and parameters

Three main decisions need to be taken when applying PILS within a
metaheuristic: (1) which solutions are used for pattern extraction, (2) which
patterns are injected, and (3) which solutions are submitted to pattern
injection.

The success of PILS primarily depends on its ability to extract diverse
patterns from high-quality solutions. Indeed, a pool of diverse but low-quality
patterns (similar to those found in random solutions) would mainly lead to
random moves. In contrast, an overly-restricted pattern set would lead to
few possible injections and to excessive guidance towards the same solution
characteristics and a resulting loss of diversity. To achieve a meaningful trade-
off between these two extremes, our method uses pattern extraction with a
fixed probability of Pex on each local minimum produced by the metaheuristic.
This design choice, i.e., only extracting patterns from local minima, guarantees
a good correlation between pattern frequency and pattern quality while at
the same time maintaining diversity (see Section 2.5.2). Moreover, probability
Pex drives the computational effort allocated to pattern extraction without
changing the characteristics of the extracted patterns.

Regarding the selection of patterns for injection, we observe again that
a good performance comes from a trade-off between quality and diversity.
In particular, injecting all ΦFreq frequent patterns would either result in a
low diversity whenever ΦFreq is small, or into a large computational effort
whenever ΦFreq is larger. To achieve a better compromise between diversity and
computational effort, a subset ΦSize < ΦFreq of frequent patterns is selected
for injection. These patterns are randomly selected from the heap to form the
set of candidate patterns P . PILS then performs a single search loop over the
entire neighborhood Npils(P ,S) (iterating over all patterns in P) and directly
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applies every improving move. Finally, we opted to apply PILS immediately
before the local search phases in the respective metaheuristics to maximize its
impact on the search trajectory.

2.4
Application of PILS in two CVRP metaheuristics

To demonstrate the robustness and generality of PILS, we study its
application within two state-of-the-art metaheuristics for the CVRP: the
hybrid genetic search (HGS) of [51], and the knowledge-guided local search
(KGLS) of [5]. While both metaheuristics produce high-quality solutions on
classical test instances, they are also structurally very different. HGS evolves a
diversified pool of solutions using recombination and local search operations,
whereas KGLS improves a single incumbent solution in successive steps via a
sophisticated local search based on ejection chains. The following paragraphs
discuss the main components of these methods and their extension with PILS.

Proposed in [51], HGS (also called HGSADC or UHGS) combines the ex-
ploration capabilities of evolutionary algorithms, the improvement capabilities
of local searches, and advanced population-diversity management schemes into
a very effective solution method for vehicle routing problems. This metaheuris-
tic uses the classical order crossover (OX) and giant-tour solution representa-
tion of [40] to generate new solutions that are improved by local search with
the classical Relocate, Swap, 2-opt and 2-opt* neighborhoods. Population
diversity is preserved during the search via an active population management
and biased fitness function, which favors diverse and high-quality individuals,
as well as active diversification phases, which consists of reintroducing new
initial solutions in the population. Due to its simplicity and generality, HGS
emerged as the first algorithm able to produce state-of-the-art results for over
sixty vehicle routing problem variants and other permutation-based problems,
finding the best-known results for thousands of classical benchmark instances
[49]. To adapt this method, we simply include the pattern extraction step
of PILS with probability Pex = 10% after the classical local search, and the
pattern injection step before it. The structure of the resulting algorithm is
displayed in Algorithm 3.

KGLS [5] is a local-search based metaheuristic with a single solution tra-
jectory that embeds sophisticated and complementary local search operators
into a guided-local search framework [4]. The local search relies on Cross-
Exchange and Relation-Chains operators for inter-route improvement, as
well as Lin-Kernighan heuristic [7] for intra-route solution improvement. From
an initial solution obtained from a construction procedure, KGLS iteratively
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Algorithm 3: HGS with PILS
1 Generate initial population
2 while CPU time < Tmax do
3 Select P1 and P2 in the population
4 Generate offspring C by crossover of P1 and P2

5 Apply Pattern Injection on C

6 Apply Local Search on C (using Relocate, Swap, 2-opt
and 2-opt*)

7 if C is infeasible then Repair C;
8 With probability Pex, apply Pattern Extraction on C

9 Select survivors whenever maximum population size is attained
10 if Itdiv iterations without improvement then Diversify

population;

identifies and penalizes a subset of undesirable edges with large width and
length and applies the local search algorithm, which will be therefore guided
towards new solutions. Moreover, very sophisticated neighborhood restrictions
and data structures contribute to enhance the effectiveness of the local search,
resulting in a scalable algorithm that effectively solves very large CVRP in-
stances [6]. To apply PILS within KGLS, we simply include the pattern in-
jection function immediately before each local search phase with Pex = 100%
(since KGLS generates fewer local minima than HGS), and the pattern extrac-
tion function afterward, as described in Algorithm 4.

Algorithm 4: KGLS with PILS.
1 Construct an initial solution S

2 Apply Local Search on S

3 while CPU time < Tmax do
4 Penalize undesirable edges in S

5 Apply Pattern injection on S

6 Apply Local Search on S (using Cross-Exchange,
Relocation-Chains and Lin-Kernighan algorithm)

7 Apply Pattern extraction on S

2.5
Computational Experiments

The goal of our computational experiments is threefold. A first experi-
ment aims as setting the parameters of PILS and estimate the impact of PILS’
main design decisions and parameters on its performance. In a second exper-
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iment we examine the main corollary underpinning the PILS heuristic: that
pattern frequency and quality are correlated, i.e., that high-quality patterns
more frequently appear in high-quality solutions. A final experiment attempts
to evaluate the impact of different instance characteristics on the performance
of PILS and the estimate the benefits of PILS when integrated into state-of-
the-art metaheuristics in general. Each of these analyses will be covered in a
dedicated subsection.

All experiments are executed on the classical CVRP datasets of [50], con-
taining 100 benchmark instances with 100 to 1000 customer requests, different
depot configurations (R=random, C=centered, E=eccentric), customer distri-
butions (R=uniform, C=clustered, RC=mixed), and different average route
length (short routes with large customer demands relative to the vehicle ca-
pacity, or longer routes with small customer demands relative to the vehicle
capacity). We integrate PILS into the HGS and KGLS metaheuristics as spec-
ified in Section 2.4, leading to method variants called HGS-PILS and KGLS-
PILS. HGS is coded in C++ and compiled with GCC 7.2.0, whereas KGLS
uses Java 9.0.4. In all experiments, these methods are run on a single core of a
Xeon X5675 3.07 GHz with 16 GB of RAM. Source code, datasets, and detailed
experimental results are available at https://w1.cirrelt.ca/~vidalt/en/
VRP-resources.html.

2.5.1
Impact of PILS parameters

The functioning of PILS is determined by three main parameters: ΦFreq,
ΦSize, and Lmax. Parameter ΦFreq is the number of most-frequent patterns
that are monitored in the heap and therefore drives the diversity of the
search. Larger values allow tentative insertions of a more diverse set of
patterns, whereas smaller values guide the search towards fewer elite patterns.
Parameters ΦSize and Lmax control the number of patterns of each size that
are tentatively injected in each search phase and the maximum pattern size
respectively. These two parameters establish a trade-off between computational
effort and solution improvement potential. Large patterns, in particular, can
lead to higher-order PILS moves that are difficult to find otherwise, but their
injections require reconnecting a larger number of solution fragments, leading
to larger recursion depths in Algorithm 2.

We first evaluate the sensitivity of HGS-PILS and KGLS-PILS to changes
in these parameters. Starting from a baseline configuration in which ΦFreq =
5n, ΦSize = n and Lmax = 5 obtained from an initial calibration, we vary each
parameter in turn (a so-called “one factor at a time” or OFAT analysis) to

https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html
https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html
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measure its impact on HGS-PILS and KGLS-PILS. For each configuration and
problem instance, we execute the two methods five times with different random
seeds and initial solutions, setting a CPU time limit linearly proportional
to the number of customers, using 240 seconds for each 100 customers. The
average results of these configurations over all instances and runs are reported
in Table 2.1. The left part of the table describes the investigated parameter
configurations, whereas the right part of the table reports, for each of the two
methods, the average solution quality and the fraction of the total computing
time (in percent) used by PILS (extraction and injection). The quality of the
solution is reported as a gap to the optimal or best-known solution value for
this instance, computed for each instance as Gap(%) = 100(z − zbks)/zbks,
where z is the solution value obtained by the method and zbks represents the
optimal or best known solution value (BKS) for this instance in the literature.
The total computational time used by PILS is reported as TPILS(%). Good
solutions therefore correspond to gap values that are close to zero.

Table 2.1: Parameter sensitivity analysis
HGS KGLS

PILS ΦFreq ΦSize Lmax Gap(%) TPILS(%) Gap(%) TPILS(%)

ON 5n n 5 0.242 45.86 0.520 7.28
OFF – – – 0.273 – 0.555 –

ON 5n n 3 0.267 23.66 0.546 3.01
ON 5n n 4 0.248 35.18 0.536 4.93
ON 5n n 6 0.261 55.89 0.525 9.78
ON 5n n 7 0.284 64.53 0.525 12.45

ON 5n 0.2n 5 0.257 15.47 0.534 2.29
ON 5n 0.5n 5 0.246 30.45 0.522 4.25
ON 5n 1.5n 5 0.258 55.56 0.537 10.03
ON 5n 2n 5 0.258 62.23 0.534 12.61

ON 2n n 5 0.274 44.44 0.532 6.09
ON 3n n 5 0.255 44.98 0.529 6.63
ON 10n n 5 0.262 47.22 0.535 8.13
ON 20n n 5 0.270 48.56 0.527 8.96

Remarkably, the wide majority of the considered HGS-PILS configura-
tions as well as all the KGLS-PILS configurations lead to performance improve-
ments over the baseline configuration in which PILS is deactivated (second line
in Table 2.1). Some search parameters such as Lmax and ΦFreq have a larger
influence of the method performance, whereas the value of ΦSize has less im-
pact.
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Inserting too large patterns with Lmax = 7 or beyond leads to a di-
minished final solution quality, since the large number of solution fragments
needing reconnection significantly increases the share of time spent in Algo-
rithm 2. Similarly, inserting only small patterns with Lmax = 3 does not allow
to fully exploit PILS search capabilities.

The influence of ΦFreq on search performance is also visible. Small values
of this parameter should be avoided, as they lead to reduced search diversity
and worse performance, whereas large values distribute the computational
effort of PILS over too many (possibly less frequent) patterns.

Parameter ΦSize directly drives the number of tentative insertions and
the share of time spent in PILS before reaching the termination criterion.
Interestingly, HGS-PILS configurations with ΦSize = 1.5 or 2.0 spend more
than 60% of their total CPU time in PILS, but still perform better than a
simple deactivation of PILS. This means that the time spent within PILS is at
least as meaningful for the search success as the time spent in a conventional
local search, which represents most of the remaining computational effort.

Finally, we note that PILS represents a smaller proportion of KGLS-PILS
computational effort (13% at most) than that of HGS-PILS. This is due to the
fact that KGLS relies on a trajectory-based search with more sophisticated
and time-consuming local-search operators than HGS (Cross-Exchange,
Relocation Chains, and the Lin-Kernighan heuristic), such that the share
of time spent in PILS is naturally smaller. Despite this behavioral difference, it
is notable that our baseline configuration, in which ΦFreq = 5n, ΦSize = n, and
Lmax = 5, represents a good choice for both algorithms. We therefore opted to
maintain this configuration for the remainder of the study.

2.5.2
Pattern frequency versus solution quality

Our second set of experiments investigates the relation between the
frequency of the patterns and the quality of the solutions in which they appear.
For this experiment, we use a smaller subset of 10 instances with 200 to 300
delivery locations for which optimal solutions are known. We run our baseline
configuration and interrupt the search after 20% of the CPU time to analyze
the pattern pool at an early stage of the search. For each pattern size, we sort
the resulting patterns from most frequent to least frequent and distribute them
into equal-sized bins containing n patterns each. Finally, we calculate in each
bin the fraction of patterns that appear in the optimal solution. The result of
this analysis is displayed in Figure 2.3.

The results of this analysis demonstrate, for both HGS-PILS and KGLS-
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Figure 2.3: Pattern frequency and appearance in optimal solutions

PILS, that the most frequent patterns (left) have a much higher probability to
be part of optimal solutions than the less frequent ones (right). Moreover, the
probability to belong to the optimal solution decreases when the pattern size
l grows, highlighting that larger optimal patterns are generally more difficult
to identify. This behavior was expected since long patterns are much more
informative on the structure of optimal CVRP solutions and therefore likely
to be more difficult to identify.

Since frequent patterns appear more frequently in optimal solutions, we
can also examine whether they are also found in higher-quality solutions in
general. We therefore conduct an additional analysis that consist in storing,
during the search, each pattern along with the objective value of the best
solution in which it appeared. As in the previous experiment, the patterns are
sorted by frequency and grouped into equal-sized bins containing n patterns
each. Figure 2.4 reports the average quality Gap(%) of each bin over all runs
and instances.
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Figure 2.4: Pattern frequency and quality of the associated solutions
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These results confirm the positive correlation between pattern frequency
and solution quality. The most frequent patterns are, on average, found in
solutions of better quality, up to 0.30% better when comparing the solution
quality associated with the patterns of the first bin with that of the last bin
considered in the figure (fifth bin). These two experiments confirm our initial
hypothesis that pattern frequency is a good surrogate for quality, and allow
to concentrate the mining procedure on frequent patterns without a need for
other filters related to solution quality.

2.5.3
Performance impact of PILS

Our last experiment evaluates the performance impact of PILS when
applied on instances with different characteristics. Table 2.2 displays the results
of the comparison of the classical HGS with HGS-PILS and KGLS with KGLS-
PILS. For each pair of methods and each instance subset, this table displays
the average gap values of both approaches, the percentage time spent in PILS,
as well as the result of a paired-samples Wilcoxon test (at a significance level of
p = 0.05) evaluating the statistical significance of the performance difference.
The first line corresponds to the complete set of instances, whereas each other
line selects a subset of instances with different characteristics, e.g., size, depot
location, route length, and customer distribution, using the same nomenclature
as in [50].

Table 2.2: Impact of PILS on solution quality for HGS and KGLS different
subsets of instances

HGS HGS-PILS Sign. KGLS KGLS-PILS Sign.

Category # Gap(%) Gap(%) TPILS(%) Gap(%) Gap(%) TPILS(%)

All 100 0.273 0.242 45.86 ✓ 0.555 0.520 7.28 ✓

Smallest 50 0.129 0.108 45.15 ✓ 0.413 0.379 6.44 ✓

Largest 50 0.418 0.376 46.56 ✓ 0.696 0.662 8.12 ✓

Short routes 40 0.226 0.206 44.08 0.581 0.517 7.64 ✓

Long routes 40 0.337 0.280 47.94 ✓ 0.564 0.548 6.60

Depot (R) 34 0.317 0.287 46.45 0.635 0.558 7.51 ✓

Depot (E) 34 0.267 0.203 45.15 ✓ 0.487 0.468 5.92
Depot (C) 32 0.234 0.235 45.99 0.542 0.537 8.48 ✓

Customer (RC) 34 0.258 0.228 46.81 ✓ 0.553 0.515 8.13 ✓

Customer (C) 32 0.259 0.227 45.01 ✓ 0.551 0.545 6.40 ✓

Customer (R) 34 0.301 0.271 45.70 ✓ 0.560 0.503 7.26 ✓

The results in Table 2.2 show that PILS improves the overall performance
of both metaheuristics despite their structural differences (population-based
versus local search-based). The average gap of HGS over all instances decreases
by 0.031% when combined with PILS, while the average gap of KGLS decreases
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by 0.035%. Solution improvements become increasingly difficult as we approach
the optimal or best-known values, such then even a small quality improvement
of the order of 0.03% over the state-of-the-art is an important achievement.

PILS benefits the search equally on small and large instances, with
significant effects observed in both cases. It also improves the performance of
HGS for instances with long routes containing many customer visits, likely due
to the fact that it compensates for the simplicity of its intra-route neighborhood
operators. In contrast, KGLS already uses a sophisticated implementation of
Lin-Kernighan algorithm for effective intra-route optimization, but encounters
more difficulties to optimize customer allocations among different routes on
instances with short routes (i.e., larger customer demands relative to the
vehicle capacities). In this situation, we observe that PILS significantly boosts
KGLS performance with complementary moves that compensate for this
weakness.

To gain more insights into the moves that are applied by PILS, we collect
a variety of statistics about the injected patterns, as reported in Figures 2.5
to 2.8. These figures represent the proportion of applied PILS moves for each
“move order” (i.e., number of replaced edges), pattern size, and number of
involved routes, during all HGS-PILS and KGLS-PILS executions.

From these experiments, we observe that the largest and smallest pat-
terns are equally likely to be injected. The majority of PILS moves (approx-
imately 80%) modify two to five edges, but some larger moves involving up
to ten edges are also found and applied to improve the solutions. The ability
to find such high-order moves (e.g., improving 9-opt or 10-opt moves) in a
controllable amount of time is noteworthy. Finally, the proportion of time ded-
icated to PILS remains stable for all subgroups of instances, never exceeding
more than 50% of the total search effort for HGS-PILS, and 10% of the total
search effort for KGLS-PILS.

In a final analysis, Figure 2.9 shows to which extent PILS influences the
performance of the two metaheuristics over time. It reports the average Gap(%)
of HGS, HGS-PILS, KGLS and KGLS-PILS at different time steps: after 1%,
2%, 5%, 10%, 15%, 20%, 30%, 50%, 75% and 100% of the allotted time. One
would expect that PILS requires some time to learn good solution patterns and,
therefore, that it contributes to the search performance only at later stages.
Yet, in the case of HGS-PILS, our experiments do not necessarily corroborate
this initial intuition since PILS already boosts the convergence at early stages
of the search: solution-quality differences are already visible after around 10%
of the total search time. In contrast, PILS appears to impact the search
trajectory of KGLS only at later search stages. This behavior is confirmed
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Figure 2.9: Convergence of HGS, HGS-PILS, KGLS and KGLS-PILS solutions
over time

on Table 2.3 by the results of paired-samples Wilcoxon tests for the method
pairs HGS/HGS-PILS and KGLS/KGLS-PILS at the different stages of the
search. A likely cause for this observation is that KGLS performs extraction
steps only from a single incumbent solution instead of from a population, and
thus it takes more time to learn a diversified set of patterns.

Table 2.3: Impact of PILS at different stages of the search – Statistical
significance

CPU Time 1% 2% 5% 10% 15% 20% 30% 50% 75% 100%

Wilcoxon HGS p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
with HGS-PILS sign ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wilcoxon KGLS p 0.418 0.305 0.386 0.075 0.001 0.001 <0.001 <0.001 <0.001 <0.001
with KGLS-PILS sign ✓ ✓ ✓ ✓ ✓ ✓

2.6
Conclusions

In this study, we have introduced PILS: a simple and versatile strategy to
identify high-order local-search moves using frequent pattern mining. Our PILS
application to the CVRP, a notoriously difficult combinatorial optimization
problem, is built upon an effective recursive algorithm that optimally rebuilds
solutions from a set of route fragments and a pattern. We integrated PILS into
two structurally different state-of-the-art metaheuristics, one population-based
algorithm and one trajectory-based algorithm, to evaluate its ability to find
new moves and contribute to the search performance. Our experiments con-
firm that pattern frequency is positively correlated with solution quality and
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pattern appearance probability within optimal solutions. Moreover, for a fixed
computational effort, PILS significantly enhances metaheuristic performance
and compensates the weaknesses of each metaheuristic for specific instance
subgroups. It complements classical local search operators and identifies syn-
ergistic high-order moves, which would never be found otherwise.

Numerous possible future research avenues arise from this study. Firstly,
PILS can easily be extended to different combinatorial optimization problems
and to solution structures that may require more sophisticated pattern extrac-
tion strategies. Secondly, one could also attempt to learn undesirable solution
patterns to complement the information of the promising ones. Such patterns
should of course be removed from solutions rather than inserted into them.

Finally, from a more general viewpoint, PILS research occurs in a con-
text in which metaheuristic and pattern recognition research can mutually
benefit from each other. Indeed, pattern recognition models often lead to in-
tractable problems, which call for efficient heuristic solution approaches, while
metaheuristic research directly benefits from enhanced learning strategies. In-
deed, the largest part of metaheuristic research, over the past two decades,
has been dedicated to finding simple and efficient strategies to guide surrogate
(e.g., constructive or local search) heuristics towards promising search-space re-
gions, construction decisions and moves. Learning desirable solution structures
is therefore a defining task for metaheuristic search. Given the tremendous ex-
perimental and theoretical progress recently made on a variety of learning algo-
rithms (e.g., belief propagation, deep neural networks, reinforcement learning)
and their successful application to some combinatorial optimization problems
(e.g., [73, 74]), it is increasingly important to join the strengths and analysis
techniques of both fields, to progress towards a new generation of algorithms
which remain conceptually simple, amenable to analytic reasoning, and effec-
tive. We hope that this first study connecting pattern mining and local search
will encourage future work in this direction.
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3
Neural Networks for Local Search and Crossover in Vehicle
Routing: A Possible Overkill?

3.1
Introduction

Vehicle routing problems (VRP) represent one of the most studied classes
of NP-hard problems due to their practical difficulty and ubiquity in real-
life applications such as food distribution, parcel delivery, or waste collection,
among others [49, 132]. Problems in this class generally seek to plan efficient
itineraries for a fleet of vehicles to service a geographically-dispersed set of
customers. The capacitated VRP (CVRP) is the most canonical variant among
all existing routing problems. Its objective is to minimize the total distance
traveled by the vehicles to service the customers, subject to a single constraint
representing the vehicle capacities: i.e., the sum of customers’ demands over a
route should not exceed the vehicle capacity.

Over the years, there have been dramatic improvements in the heuris-
tic and exact (i.e., provably optimal) solution of VRPs. To date, the best
performing exact algorithms rely on branch-cut-and-price strategies, with tai-
lored cutting-plane algorithms and sophisticated column-generation routines
[56, 134]. With these methods, it is now possible to solve most existing in-
stances with 200 or 300 customers. However, the time for an exact solution re-
mains highly volatile at this scale, and most larger instances remain unsolved.
Consequently, extensive research has been conducted on metaheuristics for this
problem to find high-quality solutions in a shorter and more controlled time
[134].

As it stands now, metaheuristics can consistently locate high-quality
solutions for CVRPs with up to 1,000 customers in a matter of minutes [135,
136]. Of all existing methods, the Hybrid Genetic Search (HGS) algorithm
developed in [51, 63] and [136] is known to achieve the best-known solution
quality consistently on most problems and instances of interest. Notably,
during the 12th DIMACS implementation challenge on the CVRP organized
in 2022 [137], it was used as the base algorithm for four out of the five
best methods. Very-large problem instances counting dozens of thousands of
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customers can also be solved using tailored data structures and decomposition
strategies [138, 138]. Considering the latest generation of metaheuristics such
as HGS, it is clear that two main operators —local search and crossover— are
instrumental in finding improving solutions.

– Local Search (LS) consists in systematically exploring a neighborhood
obtained by small changes over a current solution to identify improve-
ments. This process is iterated until attaining a local minimum. Clas-
sical neighborhoods for the CVRP involve exchanges or relocations of
client visits and edge reconnections. They typically include O(n2) possi-
ble neighbors, where n represents the number of customers. Due to its
iterative nature, LS typically takes the largest share of the computational
time. Several techniques have been developed to reduce computational
complexity. In particular, [139] observed that the search could be limited
to relocations and exchanges of customers that are geographically related.
The resulting strategy, called granular search, limits classical neighbor-
hoods to O(Γn) moves, where Γ is a user-defined parameter. However,
although very simple in design, a straightforward distance-based relat-
edness criterion may hinder the search process, especially if optimal so-
lutions require a few long edges.

– In contrast, Crossover operators focus on diversifying the search. They
consist of recombining two existing (parent) solutions into a new (off-
spring) solution that inherits promising characteristics from both. For
the CVRP, crossover operators are not primarily designed for solution
improvement, but instead used to create promising starting points for
subsequent LS. Various crossovers have been used in previous works
[140, 136]. As shown in Section 3.2, the Ordered Crossover (OX) is widely
used, and consists in juxtaposing a fragment of the first solution with
the remaining client visits ordered as in the second solution. By doing
so, it implicitly creates a re-connection point, which is typically random.

Note that in both LS and Crossover, there is interest in using relatedness
information between client vertices to (i) speed up the LS or (ii) identify a
subset of more promising crossover operations. It is also noteworthy that the
relatedness information used until now for the LS (and possibly used for the
crossover) is a broader concept that goes beyond simple distance criteria, and
which could be possibly learned.

In recent years, graph neural networks (GNNs) have emerged as a tool
to apply machine learning techniques to combinatorial optimization problems
posed over graphs. To the best of our knowledge, the first attempt in this
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context was proposed by [141] for the TSP. Underpinned by enhancements in
hardware and artificial intelligence research over the last years, the develop-
ment of deep NNs made them relevant to a wide range of difficult combinatorial
optimization problems, such as SAT, Minimum Vertex Cover, and Maximum
Cut [142, 143]. When applied to solve CVRPs, these networks are usually com-
bined with reinforcement learning (RL [144, 145]) or typically used for node
classification or edge prediction [146, 147]. Despite extensive research, GNNs
for directly solving CVRPs remain limited to small problem instances with
up to 100 customers and generally do not compare favorably with classic op-
timization methods (exact or heuristic) in terms of solution quality. This is
possibly due to the fact that good solutions for combinatorial optimization
problems result from tacit structural knowledge about the problem (learnable
solution structure) along with a significant amount of trial-and-error to build
the best possible solution fitting almost perfectly the constraints at hand. After
all, an optimal solution is a very specific outlier. Whereas better knowledge of
solution structures can be learned to guide the search, avoiding some (explicit
or implicit) enumeration of solutions without compromising solution quality
is generally challenging. Consequently, using pure learning algorithms without
any other form of solution enumeration is likely to be unsuccessful.

Given these observations, a promising path toward better solution meth-
ods for VRPs concern the hybridization of learning-based and traditional solu-
tion methods. In this study, in particular, we aim to learn and use relatedness
information in the LS and crossover operators of HGS to improve this state-
of-the-art method substantially. We capitalize upon the work of [146], which
trained a GNN to predict occurrence probabilities of edges in high-quality
solutions (i.e., heatmap), and used this information to sparsify the underly-
ing graph and accelerate related solution procedures. Instead, we leverage the
heatmaps as a source of relatedness information to define neighborhood restric-
tions in the LS and possible re-connection points in the crossover. Through-
out an extensive experimental campaign, we evaluate how HGS’ performance
varies with these surgical changes, for better or worse, on more than 10000
different instances containing from 100 to 1000 customers. Therefore, we make
the following specific contributions.

1. We introduce a framework for defining and exploiting relatedness infor-
mation between pairs of customers in the context of the CVRP.

2. We show that relatedness measures can be exploited to steer the LS
towards the most promising moves. Additionally, we use relatedness
information to extend the classical OX crossover, trading some of its
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inherent randomness for better choices of re-connection points between
the parents. Our approaches are generic and applicable to any type of
relatedness measure. We will specifically consider relatedness from two
sources: geographical relatedness as given by the distance between two
customers, and learnable relatedness (i.e., heatmap) obtained from a
GNN.

3. We suggest a practical technique to exploit the output of a single GNN
(heatmaps for fixed-size graphs) for problem instances of varying size.
To achieve this, we decompose the original instance into a sequence of
fixed-size subproblems and aggregate the resulting heatmap information.
This approach has the benefit of only requiring a single trained model of
moderate size.

4. Finally, we conduct an extensive computational campaign to measure the
enhancements achieved with the proposed techniques and analyze the
impact of each change. We observe that incorporating relatedness infor-
mation within the crossover and LS operators largely benefit the search,
such that learning-based approaches seem to be successful at first sight.
However, after a closer analysis, we also observe that these improvements
are mostly insensitive to the source of the relatedness information (ge-
ographical or learned). Therefore, the problem-specific knowledge and
strategies that we integrated contributed more to the algorithm’s perfor-
mance than GNN-based algorithms for defining relatedness.

3.2
Methodology

The CVRP is defined over a complete graph G = (V,E), where the set
of vertices V = {0, 1 . . . , n} contains a vertex 0 representing the depot, and
the remaining vertices represent customers. Each customer i ∈ {1, . . . , n} is
characterized by a demand di. Edges (i, j) model direct travel between vertices
i and j for a distance dij. A solution to this problem is a set of routes originating
and ending at the depot and visiting customers, such that (i) the total demand
over each route does not exceed a vehicle-capacity limit Q, (ii) each customer
is visited exactly once, and (iii) the total travel distance is minimized.

We additionally assume that we can calculate a relatedness metric
ϕ(i, j) for each edge (i, j). This definition is general: in the simplest setting,
relatedness could be the inverse of distance, i.e., ϕ(i, j) = 1/dij. In a more
informed setting, we can instead consider defining ϕ(i, j) as the output of a
graph neural network (GNN) as seen in [146], predicting the probability of
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occurrence of an edge in a high-quality solution. Probabilities of this kind
are typically called heatmaps. In the remainder of the study, we will refer to
ϕd(i, j) for distance-relatedness, and ϕn(i, j) for GNN-based relatedness. This
information will now be used to refine the two most important HGS operators.

3.2.1
Hybrid Genetic Search

The Hybrid Genetic Search [136] relies on simple solution generation and
improvement steps. A complete pseudo-code is provided in Algorithm 5. The
method starts by initializing a population of size µ with random solutions that
are improved by local search. After this initialization phase, HGS iteratively
generates new solutions by selecting two random solutions in the population,
recombining them using an ordered crossover (OX), and applying local search
for improvement. To promote exploration, solutions that exceed capacity limits
are not directly rejected but instead penalized according to their amount of
infeasibility. The penalty weights are adapted during the search to achieve a
target percentage of feasible solutions, and infeasible solutions are maintained
in a separate subpopulation. Whenever a solution is infeasible after local
search, an extra Repair step is applied, which simply consists of a classic
local search with a temporarily (10×) higher penalty coefficient.

During the overall search process, the number of solutions in the feasible
and infeasible populations is monitored. Whenever any population exceeds
µ + λ solutions, a survivors’ selection phase is triggered to retain only the
best µ individuals, according to a ranking metric based on solution value and
contribution to the population diversity. Finally, the algorithm restarts each
time nit consecutive solution generations have been done without improvement
of the best solution, and it terminates upon a time limit Tmax by returning the
best solution found over all the restarts.

3.2.2
Local Search using Relatedness Measures

Local Search (LS) is a conceptually simple and efficient method to solve
combinatorial optimization problems of the form minx∈X c(x), where X is
the space of all solutions and c is the objective function. A neighborhood
is defined as a mapping N : X → 2X associating with any solution x a set
of neighbors N (x) ⊂ X. For the CVRP, N (x) is usually defined relative to
a set of operations (i.e., moves) that can modify the current solution x. A
move τ is a small modification that can be applied on x to obtain a neighbor
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Algorithm 5: Hybrid Genetic Search for the CVRP (HGS)
1 Initialize population with random solutions improved by local search
2 while time < Tmax do
3 Select parent solutions P1 and P2

4 Apply the crossover operator on P1 and P2 to generate an
offspring C

5 Educate offspring C by local search
6 Insert C into respective subpopulation
7 if C is infeasible then
8 With 50% probability, repair C (local search) and insert it

into respective subpopulation
9 if maximum subpopulation size reached then

10 Select survivors
11 Adjust penalty coefficients for infeasibility
12 Return best feasible solution

τ(x) ∈ N (x). HGS uses four main types of moves and some of their immediate
extensions [136]:

– Relocate: Moves a visit to customer i immediately after a visit to a
different customer j or the depot;

– Swap: Exchanges the visits of customers i and j;

– 2-Opt: Reverts a customer-visit sequence (i, . . . , j);

– 2-Opt*: Exchanges customers i and j and their succeeding visits.

The moves are evaluated in a random order of the indices i and j, and
any improvement is directly applied. This process is repeated until a local
minimum is reached, i.e., a situation where no improving move exists for all the
considered neighborhoods. Without further pruning, all these neighborhoods
contain O(n2) solutions. Using incremental calculations (keeping track of
partial load and distance over the routes), it is possible to conduct a complete
evaluation of all neighborhoods in O(n2) time. Moreover, the number of
complete neighborhood searches (i.e., loops) needed to converge is rarely
greater than 10 in practice.

A quadratic complexity for the LS operator is adequate for small prob-
lems, but this can become a significant bottleneck otherwise due to its frequent
use. Considering this, [139] introduced a “granular search” mechanism that
consists in limiting the moves to customer pairs (i, j) that are geographically
close, i.e., such that j belongs to a set Φ(i) formed of the Γ closest customers
of i. Consequently, the total number of moves and the complexity of each LS

DBD
PUC-Rio - Certificação Digital Nº 1821009/CA



Chapter 3. Neural Networks for Local Search and Crossover in Vehicle Routing:
A Possible Overkill? 42

Twenty customers most related to customer 63 accord-
ing to ϕd and ϕn:

Depot

6363

63

𝜙!

𝜙"

Customer 63 in an optimal solution:

Depot

63

Figure 3.1: Sets of related customers according to ϕd and ϕn, on instance X-
n247-k50

loop reduce down to O(nΓ) time. Indeed, it rarely makes sense to relocate or
exchange customer visits that are far away from each other. Moreover, this
strategy ensures that each move creates at least one short edge [148, 149, 138].

Since its inception, granular search has been adapted to many VRP
variants. Especially, to handle customer constraints on service-time windows,
[149] extended the concept to filter node pairs (i, j) based on a compound
metric that includes distance, unavoidable waiting times, and unavoidable
time-window violations arising from this customer succession.

In this study, we instead extend the filtering criterion by relying on re-
latedness information from the GNN. As illustrated in Figure 3.1 for instance
X-n247-k50 from [50], the Γ most-related customers according to the related-
ness metrics ϕd and ϕn can differ very significantly. In this particular example,
the GNN-based relatedness even includes an edge (in boldface) contained in
the optimal solution that is otherwise missing when considering distance only.

For each i, we therefore form the set Φ(i) in two steps: we first include
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Figure 3.2: Illustration of the ordered crossover (OX)

in Φ(i) the ⌊Γ/2⌋ vertices that are most related to i according to the GNN-
based relatedness metric ϕn(i, j), and then we complete the ⌈Γ/2⌉ remaining
customers by increasing distance, therefore according to ϕd(i, j). This strategy
uses learned information and ensures that the Γ/2 closest customers are still
considered in the moves.

3.2.3
Crossover using Relatedness Measures

In HGS, each solution is represented as a single permutation of the
customer’s visits (i.e., a giant tour) during the crossover operation. This use
of this simple representation is motivated by the fact that (i) one can simply
represent any complete solution by concatenating the routes and omitting the
visits to the depot, and (ii) reversely, given a sequence of customers visits, there
exists a linear-time algorithm, called Split, that optimally segments this giant
tour into routes [150].

Based on this representation, HGS employs the ordered crossover (OX
– [151]) illustrated in Figure 3.2. OX works in two steps. First, a fragment F
of the first parent defined by two randomly-selected cutting points is copied
in place into an empty offspring. Next, the second parent is scanned from
the position of the second cutting point to complete all missing customer
visits circularly. This gives a new giant tour, which is then transformed into a
complete CVRP solution using Split.

As it stands, OX is completely dependent upon random choices. In par-
ticular, the second step tends to concatenate unrelated customers immediately

DBD
PUC-Rio - Certificação Digital Nº 1821009/CA



Chapter 3. Neural Networks for Local Search and Crossover in Vehicle Routing:
A Possible Overkill? 44

after fragment F . This creates low-quality fragments of solution requiring many
LS moves for improvement. To correct this issue, we suggest relying on the re-
latedness metric to modify the completion step. Let i be the last customer from
fragment F . Instead of arbitrarily reconnecting F with the next customer from
Parent 2 obtained by a circular sweep, we select a random related customer j
among the Γ customers most related to i that are not part of F or, in case of
Γ customers most related to i are present in F , one could arbitrarily chose any
available customer. Then, proceed to complete the offspring from this posi-
tion following the order in Parent 2. This small but notable difference permits
reconnecting visits that are more closely related among both parents, allow-
ing for better solutions without sacrificing diversity. As previously, the choice
of relatedness metric leads to different variants of the OX crossover. In the
remainder of this study, we will refer to the modified crossover using distance-
relatedness as DOX, and to the modified crossover using GNN-relatedness as
NOX. Figure 3.3 illustrates the use of relatedness measures within OX, as dis-
cussed in Section 2.3. In this example, which is valid for both NOX and DOX,
the algorithm selects fragment F = [9, 1, 10, 7] from Parent 1. With this, i = 7
is the last element of F (Step #1). Then, it proceeds to select a random related
customer among the Γ most-related customers of i that are not part of F . We
assume, in this example, that this customer is j = 8. Finally, it proceeds to
complete the offspring from this position, following the order in Parent 2 (Step
#2).

Step #1
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Step #2

Figure 3.3: Illustration of the crossover using relatedness measures (NOX and
DOX)
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3.3
Experimental Analyses

This section presents extensive computational experiments designed to:
(i) calibrate and evaluate the impact of the granular search parameter Γ,
which governs the size of the LS neighborhoods; (ii) measure the impact of
our enhancements on the LS and OX operators as well as the usefulness of
different relatedness criteria; (iii) confront the characteristics, the computa-
tional effort, and the performance of heatmaps produced by different GNN
configurations, and (iv) analyze the extension of GNNs originally trained on
fixed-size graphs to instances of varying sizes. We address objective (i) in Sec-
tion 3.3.4, whereas objectives (ii, iii, iv) are covered in Sections 3.3.5 and 3.3.6.

We will analyze, in the following sections, the performance of HGS in its
original form (baseline) along with five combinations of ϕd and ϕn for local
search and crossover operators, which are listed below:

– HGS-D-O (baseline): HGS with granular search and OX;

– HGS-D-D: HGS with granular search and DOX;

– HGS-D-N: HGS with granular search and NOX;

– HGS-N-O: HGS with neural granular search and OX;

– HGS-N-D: HGS with neural granular search and DOX;

– HGS-N-N: HGS with neural granular search and NOX.

3.3.1
Computational Environment

All experiments are run on a single thread of an Intel Gold 6148
Skylake 2.4 GHz processor with 40 GB of RAM and NVIDIA Tesla P100 Pascal
(12 G memory), running CentOS 7.8.2003. Unless otherwise stated, we use the
original parameters defined for HGS in [136] and the GNN in [146]. To achieve
fast convergence, we set smaller values for the population-size parameters in
HGS: µ = 12 and λ = 20. We compile HGS with g++ 9.1.0 and execute the
GNN using Python 3.8.8 on Torch 1.9.1.
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3.3.2
Benchmark Instances

Our experiments use two main sets of CVRP instances: Set X from [50],
and Set XML from [152]. Set X is a well-known benchmark of 100 instances
containing between 100 and 1000 customers. This set includes very diverse
instances that mimic important characteristics of real-world situations con-
cerning depot positions, route length, customer demands, and locations. The
XML set [152] includes 10,000 instances of 100 customers each, drawn from a
similar distribution as set X. One advantage of the XML set is that number of
customers is constant in all instances, and all optimal solutions are provided.
This permits comparisons with proven optima instead of best-known solutions
(BKS) collected from all previous works. In contrast, many instances of set X
are still unsolved to proven optimality.

3.3.3
Parametrization and Training of the GNN

The GNN proposed by [146] is a seminal work of the proposals of
[161, 157], built for solving graph-based learning problems and the traveling
salesperson problem (TSP). Their proposals were based on the Graph Con-
volutional Network of [161], which takes a graph as an input and extracts
compositional features from its nodes and edges by stacking several graph
convolutional layers. The output of the neural network is an edge adjacency
matrix denoting the probabilities of edges occurring on the TSP tour.

These networks [146, 161, 157] are designed to be trained and applied for
prediction over graphs (i.e., instances) of fixed size. The authors provided the
final model trained on instances containing 100 customers, which can therefore
be directly applied for inference on the XML instances. In contrast, Set X has
instances with different numbers of customers, such that a different approach is
needed to use the heatmaps. Due to these key differences, we will subdivide the
presentation of our experiments into two parts, with results on XML instances
in Section 3.3.5, and adaptations and results for Set X in Section 3.3.6.

In these experiments, we use the original trained GNN from [146] for
heatmap generation, called Original in the rest of this study. However, even
though this model is already trained, it takes around 0.85 seconds of inference
time to produce the heatmap for a given instance. This is a similar order of
magnitude as the time needed by HGS to solve the CVRP to near optimality
(i.e., below 0.1% error) on instances containing 100 customers. Since we aim
to compare CVRP solution algorithms under the same total CPU time budget
(counting inference time and solution time), GNN-based methods would be at
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a disadvantage if a large share of the CPU time is invested in the inference step.
Therefore, to estimate the performance of GNN-based algorithms in the most
optimistic conditions (e.g., considering a hypothetical scenario where GPU
inference is extremely fast), we will also report the results of the same method
ignoring inference time. Additionally, we produce results (counting inference
time) obtained with two lighter versions of the GNN, called Model #1 and
Model #2, which were trained on the same examples as [146], with fewer
internal nodes and internal layers. Table 3.1 summarizes the parameter setting
of all the considered GNNs.

Table 3.1: GNN configurations
GNN #Nodes #Layers #Epochs Pred-T(s)

Original 300 30 1500 0.85
Optimistic 300 30 1500 Ignored
Model #1 10 5 500 0.03
Model #2 10 5 1500 0.03

This table lists for each GNN the number of hidden layers (# Layers),
nodes per layer (# Nodes), and epochs (# Epochs) used for training.
Finally, the last column reports the average inference time on an XML instance.
The parameters of Model #1 and Model #2 were selected to achieve
training and inference in a limited time. Model #1 (resp. #2) required 8
(resp. 24) hours of training time on our hardware.

3.3.4
Calibration of the Local Search

We focus here on the parameter Γ, which drives the exploration breadth
of the LS (see Section 3.2.2) and significantly impacts the computational time
of HGS. The aim of this experiment is to select a meaningful range of values for
this parameter. Based on standard values used in previous works, we evaluate
configurations Γ ∈ {5, 10, 15, 20, 30, 50, 100} and analyze the sensitivity of
the baseline method (i.e., HGS-D-O) to this parameter. To keep a simple
experimental design, we focus on the performance of the LS by generating
ten random initial solutions for each instance and applying a single LS to each
of these solutions. We then report in Table 3.2 the quality of the best solution
found as well as the computational time used by the ten LS runs.

In Table 3.2 and the rest of this study, solution quality is expressed as a
percentage error gap calculated as Gap(%) = 100 × (z − zbks)/zbks, where z
represents the cost of the solution and zbks is the optimal or BKS cost value.
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Table 3.2: Impact of Γ on solution quality and CPU time
Set X Set XML

Γ Gap% Time (s) Gap% Time (s)
5 4.664 0.157 2.976 0.024
10 4.018 0.160 2.365 0.026
15 3.817 0.162 2.194 0.027
20 3.667 0.165 2.137 0.029
30 3.630 0.197 2.087 0.034
50 3.696 0.238 2.089 0.043
100 3.690 0.375 2.087 0.057

The results of this experiment indicate that solution quality generally
improves with Γ, but with decreasing marginal returns. We cease to see notable
solution quality improvements once Γ exceeds a value of 30, but CPU time
dramatically increases. Given this, we set Γ = 15 in the remainder of our
experiments, and additionally provide detailed results with Γ ∈ {20, 30, 50} in
Appendices A and B.

3.3.5
Experimental Results – Set XML

Having calibrated all the algorithmic components, we can now measure
the impact of GNN-informed relatedness measures in the LS and crossover
operator. We focus here on the instances of set XML. Given that HGS
converges towards near-optimal solutions within seconds for these instances, we
use Tmax = 5 seconds per instance and report final results as well as convergence
plots to measure the impact of the different versions of the LS and crossover.

Table 3.3 therefore reports the number of optimal solutions (#Opt)
attained over the 10,000 instances and the average final Gap(%) for all of
the methods, considering the four possible GNN configurations (Original,
Optimistic, Model #1, and Model #2). Best performance is indicated in
boldface. Additionally, the convergence plots of Figure 3.4 depict the progress
of the average gap of the different methods over time for the Optimistic
configuration of the GNN, and similar graphs are provided for the other GNN
configurations in Appendix A.

As seen in these results, all HGS versions decrease the gap in a smooth
way within the time limit, and all approaches except HGS-N-O outperformed
HGS-D-O (the baseline HGS algorithm) in terms of their number of optimal
solutions and average gap. The significance of these improvements is confirmed
by two-tailed paired-samples Wilcoxon tests between each of the methods and
HGS-D-O at a significance level of 0.05.
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Table 3.3: Results of all methods and GNN configurations for the instances of
set XML

HGS-D-O HGS-D-D HGS-D-N HGS-N-O HGS-N-D HGS-N-N
GNN #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap%

Original 7715 0.030 8105 0.024 8086 0.023 7691 0.031 8046 0.023 8011 0.025
Optimistic 7715 0.030 8105 0.024 8120 0.023 7732 0.031 8062 0.023 8041 0.025
Model #1 7715 0.030 8105 0.024 8094 0.023 7697 0.031 8028 0.024 7994 0.025
Model #2 7715 0.030 8105 0.024 8102 0.024 7719 0.030 8067 0.024 8057 0.024
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Figure 3.4: Convergence plots for all HGS variants on set XML (upper graph
= complete run, lower graph = last 1.5 seconds)

However, these experiments also show that HGS-N-O does not perform
significantly better than HGS-D-O, even when ignoring the inference time (i.e.,
Optimistic evaluation of the GNN). This indicates that the use of the GNN-
based relatedness criterion in the LS does not bring significant benefits. It is
an open research question to determine if different GNN architectures may
perform better in the task of filtering LS neighborhoods.

Now, a comparison of configurations HGS-D-O (baseline), HGS-D-D, and
HGS-D-N permits us to assess the impact of our changes on the crossover
operator. We remind that HGS-D-O refers to the original OX crossover,
whereas HGS-D-D and HGS-D-N modify the reconnection step to integrate
relatedness information. As seen in our experiments, HGS-D-D and HGS-
D-N are much better than the baseline (final gaps of 0.024% compared to
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Table 3.4: Results of all methods and GNN configurations for the instances of
set X

HGS-D-O HGS-D-D HGS-D-N HGS-N-O HGS-N-D HGS-N-N
GNN #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap%

Original 188 0.368 187 0.302 184 0.317 177 0.395 169 0.325 172 0.317
Optimistic 188 0.368 187 0.302 187 0.299 185 0.365 177 0.307 182 0.299
Model #1 188 0.368 187 0.302 185 0.309 166 0.414 177 0.332 184 0.336
Model #2 188 0.368 187 0.302 186 0.301 169 0.391 175 0.314 170 0.316

0.030%), as confirmed by paired-samples Wilcoxon tests at 0.05 significance
level. This is a notable breakthrough, given that it is uncommon to identify
simple conceptual changes to HGS that significantly improve its state-of-the-
art performance.

Finally, the choice of configuration for the GNN did not significantly
affect the results, and our observations remain valid for the Original, Model
#1, and Model #2 configurations.

3.3.6
Experimental Results – Set X

The instances of set X include a different number of customers, but
the GNN of [146] is designed to predict heatmaps only for fixed-size graphs.
Moreover, training a model on an instance of maximal size (1000 customers)
and relying on dummy nodes is likely to require extensive training time
(especially with its original parametrization).

To circumvent this issue, we instead propose to combine the heatmaps
from different subproblems to obtain a relatedness measure for all customers.
Let ng be the graph size handled by the GNN. For each customer i ∈
{1, . . . , n}, in turn, we collect the ng − 1 closest customers along with the
depot to form a CVRP subproblem with exactly ng customers. We rely on the
GNN to infer the heatmap for this graph, and use the heatmap values for all
edges (i, j) such that j belongs to the subproblem and 0 otherwise. This simple
approach requires n heatmaps inference steps, but the inherent parallelism of
Pytorch makes it effective enough for our purposes.

As previously, we report the results of the different HGS variants in Ta-
ble 3.4 for the four considered GNN parameter settings. We set a total compu-
tational time budget that is linearly proportional to n, allowing 24 seconds for
the smallest instance (X-n101-k25) with 100 customers, and up to 240 seconds
for the largest one (X-n1001-k43) with 1000 customers. Moreover, we perform
10 experiments with different random seeds for each of the 100 instances, lead-
ing to 1000 solution processes. The table, therefore, counts the number of op-
timal solutions out of 1000 as well as the average error gap when the algorithm
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terminates. With these time limits, the inference time of the Original GNN
represents 15.2% of the overall time budget, and the inference time of Model
#1 and Model #2 is limited to 1.9% of the time budget. Convergence plots
in the same format as before are additionally presented in Figure 3.5, including
for the other GNN configurations in Appendix B.
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Figure 3.5: Convergence plots for all HGS variants on set X

These additional results on Set X confirm our previous observations:
all HGS variants except HGS-N-O outperformed the HGS-D-O baseline.
Additionally, the proposed modifications to the crossover operator (HGS-D-D
and HGS-D-N) led to performance improvements that are even more expressive
on that instance set, with final gaps of 0.302% and 0.299% compared to 0.368%
for the original HGS. As previously, however, the use of learned information
from the GNN instead of distance did not make a substantial difference in the
crossover and even appeared to be detrimental in the context of the LS.

It is important to stress that, without a complete analysis involving
HGS-D-D, a comparison of HGS-D-N versus HGS-D-O could have led to
the conclusion that the GNN was responsible for the improvement. However,
recommending the use of this method in this context would have been an
“overkill” since a simpler reconnection mechanism based on distance effectively
produces the same gains.
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3.4
Conclusions

In this study, we have shown that relatedness metrics can be broadly
used to improve the performance of the HGS [136], a state-of-the-art solution
algorithm for the CVRP. Relatedness has been exploited in two ways: to focus
the LS on promising moves, and to steer the crossover operator towards mean-
ingful reconnections. As relatedness is a fairly general concept, we can freely
use geographical or learnable (i.e., GNN-based) information for that purpose.
As seen in our experimental analyses, these adaptations lead to significant
improvements on a large benchmark counting over 10,000 instances. Addition-
ally, we show that a simple strategy to extend GNN heatmap predictions to
instances of varying size is fairly effective, circumventing the limitation due
to fixed-size training. Overall, exploiting heatmaps to boost HGS operators is
very effective, but also not superior to a simpler application of distance-based
relatedness for similar purposes. This observation comes in contrast with the
superiority claims of sophisticated learning mechanisms and ever-larger net-
works. Instead, it aligns with the “less-is-more” approach toward algorithmic
design.

We acknowledge that some aspects studied in this study can be further
investigated for future research. The first one refers to the applications of relat-
edness criteria to other combinatorial optimization settings and solvers (e.g.,
branch and bound). Another research avenue of interest concerns exploiting
different relatedness sources and simpler machine learning models. Finally,
from a more general viewpoint, we expect that the contributions of this study
can lead to a better comprehension of the challenges involved in incorporating
sophisticated machine learning techniques into state-of-the-art solvers. We be-
lieve that the general research direction towards GNN-enhanced heuristics is
promising. However, careful ablation studies are critically needed to correctly
identify improvement sources and measure the true contribution of learned
information.
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4
Support Vector Machines with the Hard-Margin Loss: Opti-
mal Training via Combinatorial Benders’ Cuts

4.1
Introduction

Support vector machines (SVMs) are among the most popular classifica-
tion models due to their simplicity and solid theoretical foundations from sta-
tistical learning [79, 80, 81]. Application fields of SVMs include, among others,
image classification, bioinformatics, handwritten digits recognition, face de-
tection, and generalized predictive control [82, 83, 84]. Beyond this, SVMs are
regularly used as elementary building blocks of sophisticated AutoML pipelines
[85]. They achieve state-of-the-art results for a variety of applications, espe-
cially for large-scale datasets [86, 87, 88].

In its simplest form, an SVM can be defined as follows. Let (X,y) =
{xi, yi} be a training set in which each xi ∈ Rm is an m-dimensional feature
vector, and each yi ∈ {−1, 1} is its associated class. Then, an SVM seeks
a hyperplane H = {x ∈ Rm : w · x + b = 0} that optimizes the following
objective:

min
w,b

1
2 ||w||

2 + C
n∑

i=1
f(yi(w · xi + b)). (4-1)

The first term of Equation (4-1) acts as a regularization term and indirectly
maximizes the margin of the SVM [80], whereas the second term ensures
fidelity to the data and penalizes misclassified samples, with coefficient C

balancing the two terms. Accordingly, the objective establishes a trade-off
between maximizing the hyperplane’s margin and minimizing the concomitant
misclassification error. The loss function f varies with respect to the studied
problem variant. In the classical SVM with hinge loss (SVM-HL), we define

f(u) := fHinge(u) = max{0, 1− u}, (4-2)

such that a misclassified sample, i.e., a sample for which yi(w · xi + b) < 1,
directly increases the objective value of Equation (4-1) proportionally to its
error (see Figure 4.1).

However, while the classical convex SVM-HL permits fast training and
scalability, it is also known to lack robustness in the presence of misclassified
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samples or outliers since its loss function is unbounded. As a drawback,
the trained model can be severely affected by these outliers, preventing its
application in several domains, especially for high-stakes decisions where
robustness is critical [89].

In light of this, some works have considered the use of bounded but non-
convex loss functions in an attempt to gain robustness (see e.g., [98, 106, 129]).
In particular, the SVM with hard-margin loss (SVM-HML) uses

f(u) := fHard(u) =

1 if u < 1
0 otherwise,

(4-3)

such that any misclassified sample (or sample within the margin) leads to a
unit penalty (see Figure 4.2), therefore limiting the influence of misclassified
samples on H and increasing classification robustness.

-1 0 1 

0 

1 

2 

Margin 

yi(w · xi + b)

HfHINGE

Figure 4.1: Hinge loss function
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yi(w · xi + b)

HfHM

Figure 4.2: Hard-margin loss function

However, this much-needed robustness comes at the expense of compu-
tational efficiency since training SVM-HML requires solving a mixed-integer
quadratic problem (MIQP) and is NP-hard [90]. This hardness, but more es-
pecially the inability to efficiently solve the SVM-HML, limits its current use.
Training SVM-HML models to global optimality is currently only achievable
for very small datasets, whereas current heuristics for training do not consis-
tently find high-quality hyperplanes. It is noteworthy to highlight that SVM-
HML is different from the classical hard-margin SVM, where the former admits
misclassified samples over a fixed penalty factor while the latter becomes in-
feasible in the presence of non-separable data.

In this study, we contribute towards addressing those challenges and pave
the way toward more efficient global optimization algorithms. We propose new
mixed-integer programming approaches to train SVM-HML models to global
optimality. We exploit the problem’s structure to devise efficient decomposition
techniques, relying on subsets of the samples to generate Combinatorial
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Benders’ (CB) cuts quickly. More specifically, the contribution of this study is
fourfold:

– We show that CB cuts can be successfully exploited to generate useful
inequalities for SVM-HML.

– We introduce sampling strategies that permit to quickly generate a
diversified pool of cuts. We effectively embed these cuts within a branch-
and-cut algorithm, leading to an efficient training algorithm that can
achieve global optimality.

– We conduct an extensive numerical campaign to measure the perfor-
mance of our training approach and the impact of important design
choices. As seen in our experiments, this algorithm significantly improves
the current status-quo regarding the solution of SVM-HML, solving for
the first time 117 new data sets to optimality and achieving a reduction
of 50% in the average optimality gap over previous approaches for the
hardest datasets of the benchmark.

– Generally, our study underlines the benefits of applying cutting-edge
mixed-integer programming techniques to combinatorial optimization
problems that arise when training non-convex machine learning models.

The remainder of this study is organized as follows. Section 4.2 briefly re-
views the related literature. Section 4.3 introduces the proposed methodology.
Section 4.4 details our computational experiments, and Section 4.5 concludes
this study.

4.2
Related Literature

A vast body of literature on SVMs exists, covering various topics such as
applications, training algorithms, and loss functions. For the sake of brevity,
we focus on recent contributions to training algorithms for SVM-HL as well
as works on SVMs with non-convex loss functions, namely SVM-HML and the
SVM with ramp loss (SVM-RL).

The training problem for the classical SVM-HL can be cast and efficiently
solved as a continuous convex quadratic programming problem. Existing
solution approaches typically detect and fix violations of first-order optimality
conditions, leading to a series of small subproblems with few variables. A
classical approach, called Sequential Minimal Optimization (SMO) is used
in several state-of-the-art implementations [86, 87, 88, 91] and consists of
solving a restricted problem of only two variables at each iteration. Still, some
algorithms have also exploited larger subproblems (see e.g., [130, 88, 131]).
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Training algorithms for SVM-HL are quite diverse and base on data-selection
concepts [92, 93], geometric methods [79] and heuristics [94]. For a detailed
presentation of algorithms for the SVM-HL and its variants, we refer the reader
to the surveys of [95, 83], and [96], as well as to the book of [97].

Despite its widespread use, the sensitivity of SVM-HL to outliers has reg-
ularly raised obstacles when dealing with critical applications. Consequently,
a part of recent research has explored the possibility of using non-convex loss
functions to gain robustness. [98] focused on two non-convex loss functions in
particular: the SVM-HML [99, 100, 101] and the SVM-RL [102, 103, 104]. Both
of these functions are bounded, such that the contribution of each sample to
the objective is limited. In the SVM-RL model, any sample within the margin
receives a linear penalty proportional to its distance to the margin (a value be-
tween 0 and 2C), whereas any misclassified sample outside the margin receives
a fixed penalty of 2C. In the SVM-HML, the penalty of any misclassified or
within-margin sample is simply fixed to a constant C.

The solution algorithm proposed by [98] solves the training problem as a
mixed-integer quadratic programming (MIQP) using state-of-the-art branch-
and-cut solvers. For the SVM-HML and SVM-RL, the authors rely on indicator
constraints representing logical implications between a binary variable repre-
senting the status of each sample (misclassified or not) and a linear constraint
that evaluates its relative position from the separating hyperplane. However,
it is well known that such constraints can be reformulated in linear form using
a “big-M” constant, but doing so without carefully tuning the value of the
M constant typically leads to an ineffective formulation with a weak linear
relaxation, impeding an efficient solution by branch-and-cut [105].

For the SVM-RL setting, [106] explored the ramp loss function with
ℓ1-penalty, resulting in a piecewise linear programming problem. Later, [107]
compared different formulations for the logical constraints and concluded that
aggressive bound-tightening techniques are necessary for a successful solution
approach. The strategy derived from their studies has been since implemented
as a standard routine for handling such constraints in the commercial solver
CPLEX for MILP/MIQPs. Finally, [108] tightened the M constants by solving
sequences of continuous problems and Lagrangian relaxations. For the SVM-
HML, [109] proposed hard-margin loss formulations within the context of
multiple-instances classification, a setting in which class labels are defined as
sets. Finally, in [110], the hard-margin loss was transformed into a re-scaled
hinge loss function for imbalanced noisy classification.

Concluding, only a few studies have attempted to improve the state-of-
the-art training algorithms for SVM-HML after the seminal work of [98], often
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by concentrating on the handling of the logical constraints and the proper
calibration of the M constants. Despite this progress, optimal training remains
limited to data sets counting a few hundred samples. To improve this status-
quo, we investigate a different approach, which consists of the separation of
CB cuts and their combination with classical logical constraints to achieve a
valid problem formulation with a better linear relaxation. Moreover, to improve
computational efficiency, we rely on sampling techniques for a fast generation
of diverse cuts.

4.3
Methodology

We first recall the classical mathematical programming formulations for
the SVM variants that are of interest for our study, namely SVM-HL and
SVM-HML, and then proceed with a description of our algorithmic approach.

4.3.1
Descriptive formulations

The SVM with hinge loss (also known as soft-margin SVM) associates to
misclassified and within-margin samples a penalty that is proportional to their
distance in relation to the “correctly classified margin” of the found hyperplane
(see Figure 4.1).

Let w ∈ Rm be a vector of real variables that represents the coordinates
of the hyperplane, let b be its intercept to the origin, and let ξi represent
the misclassification penalty of sample i. With these notations, the training
problem for SVM-HL can be mathematically formulated as:

min
w,b,ξ

1
2 ||w||

2 + C
n∑

i=1
ξi (4-4)

s.t. yi(w · xi + b) ≥ 1− ξi, i ∈ {1, . . . , n} (4-5)

ξi ≥ 0, i ∈ {1, . . . , n}. (4-6)

Objective (4-4) seeks a maximum margin separator through the term
1
2 ||w||

2 and minimizes the total misclassification penalty C
∑n

i=1 ξi, where
C > 0 is a constant that balances both parts of the objective. Moreover,
Constraints (4-5) calculate the misclassification penalty of each sample.

In the SVM with hard-margin loss, misclassified samples are associated a
fixed penalty cost. Binary variables z are used to indicate whether a sample i
is misclassified or within the margin (zi = 1), or correctly classified (zi = 0).
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The SVM-HML can be formulated as follows:

min
w,b,z

1
2 ||w||

2 + C
n∑

i=1
zi (4-7)

s.t. (zi = 0)⇒ yi(w · xi + b) ≥ 1 i ∈ {1, . . . , n} (4-8)

zi ∈ {0, 1} i ∈ {1, . . . , n}. (4-9)

In this formulation, the penalty term in the objective (4-7) is directly pro-
portional to the number of misclassified samples. Constraints (4-8), represented
as logical constraints, ensure that zi = 0 only if sample i is correctly classified.
On the use of indicator constraints, the solver is able to branch explicitly on
these constraints or to derive tighter big-M values to make the formulation
more stable. Namely, these constraints are strictly speaking not part of the se-
mantic of a MILP/MIQP, but they could be directly transformed into a linear
constraint by using a big-M constant and imposing yi(w·xi+b) ≥ 1−Mzi. The
drawback of such a reformulation is that it leads to a formulation that pro-
vides notably weaker linear-relaxation bounds, rendering branch-and-bound
algorithms relatively inefficient.

4.3.2
Combinatorial Benders’ cuts

To optimally solve the SVM-HML, we propose a solution method based
on Benders’ decomposition [111]. In its canonical form, this strategy exploits
the structure of a mixed-integer linear program and splits its variables into two
subsets. The first subset of integer or continuous variables (sometimes called
“complicating variables”) is selected in such a way that fixing them either de-
composes or reduces the complexity of the resulting problem. The remaining
variables should be continuous. The method then works by decomposing the
original problem into a master problem (MP), solved over the complicating
variables, and a subproblem (SP), solved as a linear program over the remain-
ing continuous variables. The algorithm iteratively produces an incumbent
solution of the MP and uses the dual of the SP to assess its feasibility. If the
SP determines that the incumbent solution is feasible, then this information is
integrated into the MP in the form of an additional CB cut, which eliminates
the infeasible incumbent solution.

The studies of [112] and [113] paved the way towards efficient applications
of Benders’ decomposition to a broad class of mixed-integer programming
problems (MIPs) with logical constraints. Notably, the so-called CB approach
leads among others to a new solution paradigm for models of the following
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form:

min c⊺z (4-10)

s.t. (zi = 0)⇒ ai
⊺ y ≥ di i ∈ {1, . . . , n} (4-11)

z ∈ {0, 1}n (4-12)

y ∈ Y, (4-13)

with binary complicating variables z, continuous variables y in a polytope
Y (i.e., respecting a set of linear inequalities), and linear weights c (applied
only on the coefficients of z) to calculate the objective. In a CB approach,
Model (4-10–4-13) is reformulated as follows:

min c⊺z (4-14)

s.t.
∑
i∈S

zi ≥ 1 S ∈ Smis (4-15)

z ∈ {0, 1}n, (4-16)

where Smis is the collection of all inclusion-minimal infeasible subsystems (MIS)
of rows:

Smis =

S
∣∣∣∣∣∣
{ai

⊺ y ≥ di ∀i ∈ S,y ∈ Y } is infeasible

{ai
⊺ y ≥ di ∀i ∈ Ŝ,y ∈ Y } is feasible ∀Ŝ ⊂ S

 . (4-17)

Notably, this formulation no longer contains logical implications or big-
M terms. However, it includes an exponential number of constraints. For
this reason, the CB approach consists of dynamically detecting and adding
Constraints (4-15). As in a classical Benders’ decomposition, the method
alternates between solving the master problem with only a subset of the
constraints S ⊂ Smis found so far, and solving a subproblem to identify new
violated constraints that cut the incumbent solution of the master in case of
infeasibility. Namely, Each MIS corresponds to a subsystem of inequalities and
equations such that the subsystem is inconsistent and every proper subsystem
is consistent (i.e., feasible). Finally, we observe that Smis does not need to be
restricted to “inclusion-minimal” subsets of rows to yield a valid formulation,
but doing so significantly reduces the number of constraints in the set.

Despite its successful application in a variety of settings [114, 115, 116],
the aforementioned CB framework is not directly applicable to problems with
objective functions that contain both complicating variables z and continuous
variables y. This is unfortunately the case for the SVM-HML, due to the
occurrence of the continuous variables w and b in the objective and the logical
implications. To circumvent this issue, we introduce a weaker set of CB cuts
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in conjunction with the original logical implication constraints to design an
effective solution method. In this case, the cuts do not carry the burden of
ensuring the model’s validity, but nevertheless contribute to strengthening
the formulation to obtain a better linear relaxation and improve the solution
process.

4.3.3
Combinatorial Benders’ cuts and the SVM-HML

We first start by describing a direct application of CB to the SVM-
HML and by analyzing its shortcomings. This would lead to the following
formulation:

min
W,z

1
2W

2 + C
n∑

i=1
zi (4-18)

s.t.
∑
i∈S

zi ≥ 1 S ∈ Smis
svm-hml(W ) (4-19)

z ∈ {0, 1}n (4-20)

with Smis
svm-hml(W ) =S

∣∣∣∣∣∣
{yi(w · xi + b) ≥ 1 ∀i ∈ S, ||w||2 ≤ W 2} is infeasible

{yi(w · xi + b) ≥ 1 ∀i ∈ Ŝ, ||w||2 ≤ W 2} is feasible ∀Ŝ ⊂ S

 .

(4-21)

As seen in this formulation, W appears in the objective and also charac-
terizes the set of Benders’ cuts. Unfortunately, the resulting formulation can
no longer be practically solved as a MILP or MIQP due to this dependency.
To remedy this issue, we leverage Property 1.

Property 1 Let Wub be a valid upper bound on W on any optimal solution
of Problem (4-18–4-21). Then, Smis

svm-hml(Wub) is also set of valid inequalities for
the SVM-HML.

Proof. Consider S ∈ Smis
svm-hml(Wub). Due to the definition of Smis

svm-hml(Wub),
{yi(w ·xi + b) ≥ 1 ∀i ∈ S with ||w||2 ≤ W 2

ub} is an infeasible subsystem. Given
that all optimal solutions of Problem (4-18–4-21) satisfy W ≤ Wub, then
{yi(w · xi + b) ≥ 1 ∀i ∈ S with ||w||2 ≤ W 2} is also an infeasible subsystem,
and therefore at least one sample i in S must be misclassified, implying that∑

i∈S zi ≥ 1 is a valid inequality.

With this property, the dependence upon parameter W can be avoided
as soon as a valid upper bound is known. The quality of the upper bound also
impacts the strength of the valid inequalities obtained. Given an initial feasible
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solution of the SVM-HML problem with value Φub (obtained, for example, with
a heuristic for this problem), we can use Wub = 2

√
Φub since the two terms of

the objective are positive.
Finally, we opted to further relax the CB cuts by using −Wub ≤ wj ≤

Wub for j ∈ {1, . . . ,m} instead of ||w||2 ≤ W 2
ub in Equation (4-21). Our

experimental analyses have shown that this permitted a faster cut separation
with only a limited impact on the strength of the formulation. Overall, we will
use the resulting valid inequalities in combination with the original formulation
and the tightened bounds on the wj coefficients, leading to the following model:

min
w,z

1
2 ||w||

2 + C
n∑

i=1
zi (4-22)

s.t. (zi = 0)⇒ yi(w · xi + b) ≥ 1 i ∈ {1, . . . , n} (4-23)

−Wub ≤ wj ≤ Wub j ∈ {1, . . . ,m} (4-24)∑
i∈S

zi ≥ 1 S ∈ Smis-ub
svm-hml (4-25)

z ∈ {0, 1}n (4-26)

with Smis-ub
svm-hml =S

∣∣∣∣∣∣
{yi(w · xi + b) ≥ 1 ∀i ∈ S, −Wub ≤ wj ≤ Wub ∀j} is infeasible

{yi(w · xi + b) ≥ 1 ∀i ∈ Ŝ, −Wub ≤ wj ≤ Wub ∀j} is feasible ∀Ŝ ⊂ S

.
(4-27)

With this problem formulation in mind, we will focus on our general solution
approach and the separation of the CB cuts in the following.

4.3.4
General Solution Approach

Our solution approach unfolds in three steps:

Step 1. Finding an initial upper bound Wub;

Step 2. Solving a simplified formulation by branch-and-cut to obtain a
cut set Smis-ub

svm-hml;

Step 3. Solving Problem (4-22–4-27) with the set of cuts identified in
the previous step.

We note that the generation of the cuts is done in a separate phase (Step
2). Our computational experiments have shown that it is more effective to
generate a set of cuts beforehand, and then allow the MILP solver (CPLEX)
to use its default settings when solving the complete model with these cuts,
instead of dynamically providing additional cuts as the search progresses. We
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now proceed with a detailed description of each step of the algorithm.

Step 1 – Initial bound. We start by solving an SVM with hinge loss, cast as
a continuous quadratic program through Equations (4-4–4-6), and collect the
resulting value of the variables (w′, b′, ξ′) defining the hyperplane. With this
hyperplane, we obtain an associated SVM-HML solution by setting zi = ⌈ξi⌉
and calculate the resulting Wub objective value.

Step 2 – Separation of the Combinatorial Benders’ cuts. Next,
we consider Problem (4-22–4-27) excluding the logical Constraints (4-23)
while dynamically generating Constraints (4-25). After excluding the logical
constraints, ||w||2 is free to take a value of 0, and therefore the first term of the
objective vanishes. The resulting problem is a variant of the linear separator
problem [117, 80], which we will only use to generate CB cuts for the subsequent
solution of the SVM-HML. To obtain the cuts, we apply a branch-and-cut
scheme on the following master problem:

Master: min
z

n∑
i=1

zi (4-28)
∑
i∈S

zi ≥ 1 S ∈ S (4-29)

z ∈ {0, 1}n. (4-30)

At each branching node, the linear relaxation of the master problem is solved
and the set I 0 of variables with values zi = 0 are identified. Based on this
set of variables, we define the following feasibility subproblem to check if a
violated CB cut exists:

Subproblem: yi(w · xi + b) ≥ 1 i ∈ I 0 (4-31)

−Wub ≤ wj ≤ Wub j ∈ {1, . . . ,m} (4-32)

If this subproblem admits a feasible solution, then no CB cut needs to be
added. Otherwise, the subproblem is infeasible and we can obtain an inclusion-
minimal infeasible subsystem (MIS) of indices from CPLEX, giving us a new
set of variables Ī which can be added to S. As seen in Algorithm 6, this process
is repeated at each node of the branch-and-cut tree until no additional cut can
be found.

To avoid spending excessive time on the solution of this auxiliary
problem and to generate a diversified set of CB cuts, we rely on sampling
strategies. Until a maximum time limit of TS, we randomly select subsets

DBD
PUC-Rio - Certificação Digital Nº 1821009/CA



Chapter 4. Support Vector Machines with the Hard-Margin Loss: Optimal
Training via Combinatorial Benders’ Cuts 63

Algorithm 6: Generation of Combinatorial Benders’ cuts on a
given node
1 S ← ∅
2 repeat
3 z← Solve the linear relaxation of Problem (4-28–4-30) with S
4 I 0 ← Indices such that zi = 0
5 if Problem (4-31–4-32) with I 0 admits a feasible solution then
6 break
7 else
8 Ī ← MIS from Problem (4-31–4-32)
9 S ← S ∪ Ī

10 until

of r = min{n/2, 50} samples, and apply the aforementioned branch-and-cut
and cut separation methodology. Only afterward we repeat this process in a
final run, considering all the samples and hot starting with all the CB cuts
already found. We stop the cut separation as soon as a time limit TB is attained.

Step 3 – Solution of the SVM-HML. Finally, we proceed with
solving the complete Problem (4-22–4-27), using the union of the CB cuts
that have been found in Step 2. These cuts are included as lazy constraints to
avoid any overhead due to the number of cuts. Furthermore, we warm start
from the solution found in Step 1, and use the default settings of CPLEX,
except for the locally valid implied bounds parameter, which is set to very
aggressively as suggested in [107]. The solution approach is run until it proves
optimality or reaches a maximum time limit of TMax. Note that this time limit
encompasses all the steps of our method, such that it is possible to limit the
total computational time and compare our method with other algorithms.

4.4
Computational Experiments

We conduct extensive experimental analyses to evaluate the performance
of the proposed approach, denoted as CB-SVM-HML, on a diverse set of
benchmark instances. As an experimental baseline for this comparison, we rely
on a reimplementation of the branch-and-cut approach of [98]. The goal of our
experiments is (i) to compare the performance of these algorithms in terms of
computational time and optimality gaps, and (ii) to evaluate the impact of the
CB cuts and of the proposed search strategies based on sampling.
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4.4.1
Data and Experimental Setup

To evaluate the performance of our algorithm, we use the same bench-
mark as in [98], divided into three sets: UCI, Type A, and Type B. The UCI set
consists of 11 heterogeneous datasets from the UCI machine learning repository
[118], which were preprocessed by [98]. Table 4.1 lists the number of samples (n)
and features (m) of these datasets. Type-A and Type-B datasets have been
constructed by [98] using simulated data with a controlled number of outliers.
Type-A datasets contain outliers that are clustered together, and generally
distant from the rest of the data points. In contrast, Type-B datasets contain
outliers that are more evenly distributed. Type-A and Type-B sets both in-
clude 12 datasets with different number of samples n = {60, 100, 200, 500} and
features m = {2, 5, 10}. Finally, for all of the considered benchmark datasets,
[98] obtained five different instances with different random data points. Over-
all, this gives us (11 + 12 + 12) × 5 = 175 instances to evaluate SVM-HML
solution methods. Additionally, for each of these instances, we will consider
C ∈ {1, 10, 100, 1000, 10000} for the penalty factor as done in [98], giving a
total of 875 instances for each algorithm.

Name n m

adult 400 77
australian 366 45
breast 383 9
bupa 193 6
german 400 24
heart 152 20
ionosphere 196 33
pima 400 8
sonar 116 60
wdbc 319 30
wpbc 108 30

Table 4.1: Characteristics of the UCI datasets

All the algorithms considered in this study have been implemented
in C++ and use the CPLEX 12.9 callable library. The experiments were
run on an Intel Xeon E5-2620 2.1 GHz processor machine with 128 GB of
RAM and CentOS Linux 7 (Core) operating system. All the source code
and scripts needed to reproduce these experiments are provided at https:
//github.com/vidalt/Hard-Margin-SVM.

https://github.com/vidalt/Hard-Margin-SVM
https://github.com/vidalt/Hard-Margin-SVM
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4.4.2
Performance of CB-SVM-HML

In the first set of experiments, we compare the results of the proposed
CB-SVM-HML with those of the baseline algorithm of [98]. We use the same
experimental conditions, and therefore run each algorithm until a time limit
of TMax = 600 seconds for each instance and value of C. The time dedicated to
the separation of CB cuts in CB-SVM-HML is set to TB = TS = 30 seconds.
In other words, 5% of the total time is dedicated to the separation of CB on
subsets of samples, and 5% of the time on the complete problem. As shown in
our sensitivity analyses in Section 4.4.3, this amount of time already permits
to separate a large number of cuts. Allocating more computational time for
cut separation did not further improve the overall search process.

Tables 4.2 to 4.6 report, for each algorithm over all C values, the
number of instances solved to optimality (# Opts), the average optimality gap
(Gap (%)), and the average computational time in seconds (Avg Time). In the
last line, Overall provides the sum of all values for columns # Opts, and the
average of all values for columns Gap (%) and Avg Time. In Tables 4.3 and 4.4,
the results of the instance of Type A and Type B are aggregated per number
of samples n ∈ {60, 100, 200, 500}, whereas in Tables 4.5 and 4.6, the results
are aggregated according to the dimension of the feature space m ∈ {2, 5, 10}.
The detailed results for each instance are additionally provided in the same
repository as the source code.

Baseline [98] CB-SVM-HML
# Opts Gap (%) Avg Time # Opts Gap (%) Avg Time

Overall 149/275 33.32 295.31 152/275 20.70 280.17

Table 4.2: Performance comparison on the UCI instances

[98] CB-SVM-HML
n # Opts Gap (%) Avg Time # Opts Gap (%) Avg Time
60 75/75 0.00 2.87 75/75 0.00 32.83
100 42/75 11.66 325.71 61/75 4.26 170.76
200 4/75 56.83 582.13 32/75 18.21 395.30
500 0/75 88.17 600.00 11/75 36.05 542.28

Overall 121/300 39.16 377.33 179/300 14.63 285.29

Table 4.3: Performance comparison on the Type-A instances – grouped by
number of samples n

As seen in these experiments, CB-SVM-HML generally achieves better
performance than the baseline algorithm of [98]. In general, it solves more
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[98] CB-SVM-HML
n # Opts Gap (%) Avg Time # Opts Gap (%) Avg Time
60 74/75 0.28 72.01 73/75 0.45 63.87
100 26/75 26.63 404.67 49/75 8.55 266.52
200 1/75 65.59 595.16 24/75 22.51 437.02
500 0/75 90.76 600.00 11/75 40.01 529.61

Overall 101/300 45.82 417.61 157/300 17.88 324.26

Table 4.4: Performance comparison on the Type-B instances – grouped by
number of samples n

[98] CB-SVM-HML
m # Opts Gap (%) Avg Time # Opts Gap (%) Avg Time
2 54/100 28.15 297.02 86/100 1.84 145.27
5 40/100 40.37 388.24 52/100 13.87 322.75
10 27/100 48.98 446.72 41/100 28.18 387.85

Overall 121/300 39.16 377.33 179/300 14.63 285.29

Table 4.5: Performance comparison on the Type-A instances – grouped by
number of features m

[98] CB-SVM-HML
m # Opts Gap (%) Avg Time # Opts Gap (%) Avg Time
2 51/100 32.14 305.96 83/100 1.60 148.83
5 26/100 48.06 455.49 47/100 16.13 358.51
10 24/100 57.26 491.38 27/100 35.90 465.42

Overall 101/300 45.82 417.61 157/300 17.88 324.26

Table 4.6: Performance comparison on the Type-B instances – grouped by
number of features m

instances to optimality with the same time limit (488/875 compared to
371/875) and achieves smaller optimality gaps (17.65% on average compared to
39.61%). CB-SVM-HML also found optimal solutions for some instances with
500 samples. Instances of this size could not be solved to proven optimality
by previous approaches. Observing the results for instances with a different
number of features m, we see that CB-SVM-HML performs especially well
on low-dimensional problems (i.e. when m ∈ {2, 5}) since MIS are generally
smaller in this regime, leading to stronger CB cuts involving fewer variables.
Generally, our method improved upon the baseline for all values of m.

In terms of computational time, CB-SVM-HML achieves optimality
or attains smaller gaps faster than the baseline algorithm on all instances
except those with n = 60 samples. For those small instances, the difference
of performance comes from our parametrization choices: the current cut-
separation algorithm uses at least 5% of the time (30 seconds) separating
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cuts on randomly-generated subproblems including different subsets of the
samples. As a consequence, the method’s computational time is bounded
below by 30 seconds, whereas the baseline algorithm sometimes solves the
complete problem in shorter time for very small instances. One way to reduce
computational effort in those cases could involve using a variable separation
time that depends on the size of the instance, or setting a limit on the number
of subproblems considered in the sampling phase.

We complete this analysis in Figure 4.3 with a fine-grained study of
the optimality gaps of the methods as a function of the number of samples
n ∈ {60, 100, 200, 500} in Type-A and Type-B instances. For each value of n
and for each method, we represent the optimality gaps (over the 75 instances)
as a boxplot. The boxes indicate the first and third quartile, and the whiskers
extend to 1.5 times the interquartile range. Outliers that extend beyond this
range are depicted as small dots.
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Figure 3: Optimality gap results of Type-A and Type-B instances grouped by n

for all values of n. Especially when n = 500, thebaseline method terminates with optimality gaps

as high as 85% in a majority of the cases, whereas CB-SVM-HML achieves much smaller gaps. This

confirms the positive impact of the CB cuts, which significantly tighten the formulation and decrease

the optimality gap.

4.3. Impact of the separation time budget

Finally, we measure the impact of the amount of computational effort dedicated to separating the

CB cuts on solution quality. We therefore compare eight different configurations of CB-SVM-HML with

different time budgets for TS and TB to measure the impact of the effort spent separating CB-cuts on

randomized sample subsets (during TS) as well as on the complete problem (during TB). The total time

limit is maintained fixed to TMax to 600 seconds. Figure 4 displays the results of this experiment as

boxplots, where each boxplot corresponds to the optimality gaps obtained by a method on an instance

set. The number of optimal solutions found by the method is also indicated over each boxplot.

As seen in these experiments, the configuration (5%; 5%) (which is the reference configuration used in

Section 4.2) achieved the best performance among all the considered configurations. Moreover, all these

configurations with combinatorial Benders’ cuts achieved better optimality gaps and number of optimal

solutions than the baseline algorithm without them. Comparing configuration (TS, TB) = (10%, 10%)

with configurations (20%, 0%) and (0%, 20%), we notice that allocating the complete separation time-

budget to the complete problem or to the randomized subproblems is not as effective as dividing

the available time between these two approaches. Finally, allocating a larger amount of time to the

separation process, as in configurations (30, 30) and (40, 40) leads to a performance decrease as there is

a larger number of cuts (heavier model) and no longer enough time for Step 3.

As seen in Table 7, the previous observations are confirmed at 0.05 significance level by paired-

samples Wilcoxon tests: all versions of CB-SVM-HML obtained optimality gaps which were significantly

14

Type-A instances: Type-B instances:

Number of samples (n)

Figure 4.3: Optimality gaps on Type-A and Type-B instances as a function of
the number of samples

As can be seen, CB-SVM-HML achieves better optimality gaps than the
baseline algorithm for all values of n. Especially when n = 500, the baseline
method terminates with optimality gaps as high as 85% in most cases, whereas
CB-SVM-HML achieves much smaller gaps. This confirms the positive impact
of the CB cuts, which significantly tighten the formulation and decrease the
optimality gap.

4.4.3
Impact of the time dedicated to cut separation

Finally, we measure the impact of the amount of computational effort
dedicated to separating the CB cuts on solution quality. We therefore compare
eight different configurations of CB-SVM-HML with different time budgets for
TS and TB to evaluate the impact of CB-cuts separation on randomized sample
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subsets (during TS) as well as on the complete problem (during TB). For all
configurations, we fix the total time limit to TMax to 600 seconds. Figure 4.4
shows the results of this experiment as boxplots, where each plot corresponds
to the optimality gaps obtained by a method configuration on an instance
set. Additionally, we indicate the number of optimal solutions found by each
configuration on top of each boxplot.
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Figure 4.4: Optimality gaps achieved by CB-SVM-HML with different values
of TB and TS

As can be seen, the configuration (5%; 5%) (which is the reference con-
figuration used in Section 4.4.2) achieved the best performance among all the
considered configurations. Moreover, all the configurations with combinatorial
Benders’ cuts achieved better gaps and number of optimal solutions than the
baseline algorithm of [98]. Comparing configuration (TS, TB) = (10%, 10%)
with configurations (20%, 0%) and (0%, 20%), we notice that allocating the
complete separation-time budget to the complete problem or to the random-
ized subproblems is not as effective as dividing the available time between
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these two approaches. Finally, allocating a larger amount of time to the sepa-
ration process, as in configurations (30%, 30%) and (40%, 40%), also leads to
a performance deterioration since there is a larger number of cuts, which leads
to a heavier model, such that the remaining time to solve Step 3 is insufficient
to obtain a good solution quality.

As seen in Table 4.7, the previous observations are confirmed at 0.05
significance level by paired-samples Wilcoxon tests. All versions of CB-SVM-
HML obtained optimality gaps which were significantly smaller than the
baseline method of [98] without cuts. Moreover, the configuration of CB-SVM-
HML with (TS, TB) = (5%, 5%) obtained better results than all configurations,
except (20%, 20%) for which no statistical difference was observed.

Table 4.7: Significance results of paired-samples Wilcoxon tests
Configuration (20%,0%) (0%,20%) (2%,2%) (5%,5%) (10%,10%) (20%,20%) (30%,30%) (40%,40%)

vs p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Baseline [98] sign ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

vs p <0.001 <0.001 <0.001 – <0.001 0.796 <0.001 <0.001
(5%,5%) sign ✓ ✓ ✓ – ✓ ✓ ✓

4.5
Conclusion

In this study, we have introduced CB-SVM-HML, a mixed integer
programming approach based on combinatorial Benders’ cuts for optimally
training the SVM-HML. CB-SVM-HML operates by (i) generating an initial
heuristic solution of the SVM-HML to obtain an upper bound on ||w||, (ii)
using this bound to define separation subproblems that permit to separate
CB cuts, and finally (iii) solving the SVM-HML with these additional cuts.
Through extensive experiments, we observed that this methodology permits
substantial advances in the solution of the SVM-HML, increasing our ability to
achieve optimal solutions and small optimality gaps. Our sensitivity analyses
show that additionally separating CB cuts on small randomized subproblems
with fewer samples also permits substantial performance improvements.

The findings of our study open many research avenues. First, we suggest
pursuing methodological developments on mixed-integer programming strate-
gies for the SVM-HML. Indeed, non-convex separation problems such as the
SVM-HML with natural “big-M” MILP formulations are archetypal in many
classification models (see, e.g., [119, 120, 121, 122, 123, 124]), such that new
developments realized on one problem can trigger significant advances for the
others. Next, while this study focuses on algorithms capable of proving opti-
mality, research is still needed on efficient heuristics that can scale up to much
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larger data sets. Arguably, there is a need for both optimal algorithms and
heuristics, since known optimal solutions give critical information regarding our
ability to solve training problems reliably. Moreover, optimal or near-optimal
solutions permit us to properly assess learning models without confounding fac-
tors due to the possible errors and instabilities of the training algorithms [66].
Finally, from a more general viewpoint, combinatorial optimization techniques
can play an essential role in many other learning tasks and models. Especially
given the rising concerns over equity, privacy, and transparency, sophisticated
optimization strategies become necessary for challenging tasks related to model
compression, training, and explanations, among others [125, 126, 127, 128].
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5
Conclusions

The intersection of CO and ML has become a prospective area of research
in science and engineering, mainly due to their common key elements (e.g.,
linear algebra, statistics, and mathematical optimization, among others). On
the one hand, one can use ML techniques to improve existing CO methods
while, on the other hand, CO techniques can be used to improve ML training.
This thesis presented three studies intercepting CO and ML areas in both
research directions.

In the first study, reported in Chapter 2, a pattern-mining strategy was
used to generate high-order local-search neighborhood moves, which can be
critical to exploiting the solution’s search space effectively. Tested on two
state-of-the-art metaheuristics for the Capacitated Vehicle Routing Problem
(CVRP), we demonstrated that these generated moves, which would never be
found otherwise, are valuable for improving these algorithms’ overall perfor-
mances. In the second study, which is also in the CVRP domain and presented
in Chapter 3, a general concept of relatedness criteria was introduced. This
concept was exploited in the contexts of reconnections performed by crossover
operators and in the focus on promising moves by the local search. Due to
its generality, two relatedness criteria were defined on geographical (distance-
based criterion) and learnable (GNN-based criterion) sources to improve state-
of-the-art results. In the experiments, we demonstrated that this sophisticated
learning mechanism could improve state-of-the-art results but is also not su-
perior to the performance of simply distance-based criterion. Overall, these re-
sults were against the superiority claims of improving algorithmic performance
by employing sophisticated learning mechanisms or large networks, which made
them overkill components to resolve simple decisions.

With these two studies, we observed two distinct aspects of ‘ML in
CO’: a successful incorporation of ML into a CO method and an overkill
approach based on a sophisticated ML technique almost equivalent to a
more straightforward implementation without learning. Thus, these studies
illustrated that the incorporation of ML techniques into CO methods is
promising, but ablation studies are absolutely essential to properly attribute
performance improvements and isolate the impact of the learning components.
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In the third work of this thesis, shown in Chapter 4, we went in the
direction of ‘CO in ML’. In this case, we proposed new integer programming
techniques and sampling strategies to train SVM-HML more efficiently. Indeed,
the training of SVM-HML is a combinatorial optimization problem modeled
over a combination of integer and continuous variables along with logical
constraints. Remarkably, in our work, we identified that this mathematical
formulation, after some adjustments, fits in the Combinatorial Benders’ (CB)
framework. As reported in the experiments, training this ML model became,
in practice, substantially easier than the baseline once separating valid CB
cuts was essential in achieving optimal solutions and smaller optimality gaps.
Thus, applying CO techniques to ML models is not only essential in mitigating
training time but also in making feasible the exploration of complex ML
models.

From the studies conducted in this thesis, we observed that CO and ML
fields could mutually benefit from each other. In particular, positive results
for optimality, ML training performance, and running time were observed
in the reported experiments. We believe that the performance incentives in
exploiting techniques from one field to another are essential to progress towards
practical algorithms. However, we also highlight the importance of considering
standard approaches in the benchmark once the utilization of learning-based
techniques may not compensate for the computational expenses, as discussed
in Chapter 3. Overall, these lessons learned were crucial to the development of
this thesis and may be promising for extension in open research opportunities.
First, decomposition approaches appear to be a key component for solving
open ML problems (classification, clustering, deep neural networks, etc.),
particularly for making complex models feasible at a real-life scale. Second,
employing ML techniques in CO algorithms for multi-objective problems and
bi-level optimization seems a challenging research avenue for exploration. The
computational cost of employing such techniques (e.g., pattern extraction and
model training/prediction) for these problems is potentially expensive and non-
trivial but encouraging to be tested for such a class of complex CO problems.
Finally, we expect this thesis could present some benefits and shortcomings
of the connection between CO and ML areas to the operations research and
machine learning communities.
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A
Detailed Experimental Results – Set XML

Table A.1 provides additional detailed results, covering all values of Γ ∈
{15, 20, 30, 50} on all XML instances of [152]. It reports the number of optimal
solutions (#Opt) attained over the 10,000 XML instances and the average final
Gap(%), calculated as Gap(%) = 100 × (z − zbks)/zbks, where z represents
the cost of the solution and zbks is the optimal or BKS cost value. The results are
provided for all of the methods, considering the four possible GNN configurations
(Original, Optimistic, Model #1, and Model #2). The best performance
in each row is highlighted in boldface.

Additionally, Figure A.1 provides convergence plots for all possible GNN
configurations. The graphs included in it represent the progress of the average
gap over time, considering the parameter value Γ = 15. On these graphs, it is
noteworthy that the Original configuration of the GNN requires significant
inference time to generate the heatmap before the optimization can start. In
comparison, Model #1 and Model #2 start much faster and behave quite
similarly to the Optimistic curve that ignores inference time.

Next, Figure A.2 presents boxplots of the percentage error gaps of the meth-
ods for different subsets of the XML instances, using the Original configuration
of the GNN and Γ = 15. Indeed, as discussed in [50] and [152], the instances
were designed to mimic important features present in real-world problems, with
different conventions regarding depot position, customers position, demand distri-
bution, and average route size. Therefore, each boxplot corresponds to a subset
of the instances with a specific configuration for one of these parameters. In these
boxplots, the boxes indicate the first and third quartile, and the whiskers extend
to 1.5 times the interquartile range.
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Figure A.1: Convergence plots on set XML for all GNN configurations (for
each configuration, left graph = complete run, right graph = last 1.5 seconds
of the run time)
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Table A.1: Results for set XML for all values of Γ ∈ {15, 20, 30, 50}
HGS-D-O HGS-D-D HGS-D-N HGS-N-O HGS-N-D HGS-N-N

GNN #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap%

Original (#Nodes: 300; #Hidden Layers: 30; #Epochs: 1500; Pred-T(s) = 0.85)
15 7715 0.030 8105 0.024 8086 0.023 7691 0.031 8046 0.023 8011 0.025
20 7612 0.032 7969 0.025 7932 0.026 7482 0.035 7903 0.027 7811 0.028
30 7181 0.041 7590 0.031 7544 0.032 7054 0.044 7466 0.034 7419 0.036
50 6421 0.063 6804 0.050 6775 0.052 6365 0.067 6674 0.055 6684 0.055

Avg 7232.3 0.042 7617.0 0.033 7584.3 0.033 7148.0 0.044 7522.3 0.035 7481.3 0.036

Optimistic (#Nodes: 300; #Hidden Layers: 30; #Epochs: 1500; Pred-T(s) = Ignored)
15 7715 0.030 8105 0.024 8120 0.023 7732 0.031 8062 0.023 8041 0.025
20 7612 0.032 7969 0.025 7956 0.026 7515 0.034 7942 0.026 7814 0.028
30 7181 0.041 7590 0.031 7591 0.031 7102 0.044 7517 0.033 7465 0.035
50 6421 0.063 6804 0.050 6830 0.052 6427 0.066 6718 0.054 6748 0.054

Avg 7232.3 0.042 7617.0 0.033 7624.3 0.033 7194.0 0.044 7559.8 0.034 7517.0 0.036

Model #1 (#Nodes: 10; #Hidden Layers: 5; #Epochs: 500; Pred-T(s) = 0.03)
15 7715 0.030 8105 0.024 8094 0.023 7697 0.031 8028 0.024 7994 0.025
20 7612 0.032 7969 0.025 7941 0.025 7450 0.034 7822 0.027 7865 0.027
30 7181 0.041 7590 0.031 7524 0.032 7068 0.044 7464 0.034 7384 0.036
50 6421 0.063 6804 0.050 6815 0.051 6379 0.066 6709 0.056 6715 0.055

Avg 7232.3 0.042 7617.0 0.033 7593.5 0.033 7148.5 0.044 7505.8 0.035 7489.5 0.036

Model #2 (#Nodes: 10; #Hidden Layers: 5; #Epochs: 1500; Pred-T(s) = 0.03)
15 7715 0.030 8105 0.024 8102 0.024 7719 0.030 8067 0.024 8057 0.024
20 7612 0.032 7969 0.025 7954 0.025 7577 0.033 7845 0.027 7900 0.026
30 7181 0.041 7590 0.031 7582 0.031 7105 0.042 7545 0.033 7503 0.033
50 6421 0.063 6804 0.050 6830 0.049 6394 0.065 6724 0.054 6758 0.053

Avg 7232.3 0.042 7617.0 0.033 7617.0 0.032 7198.8 0.043 7545.3 0.035 7554.5 0.034
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Figure A.2: Boxplots of the percentage error gaps achieved by the methods,
for different subsets of the XML instances, using Γ = 15 and the Original
configuration of the GNN

DBD
PUC-Rio - Certificação Digital Nº 1821009/CA



B
Detailed Experimental Results – Set X

Finally, Table B.1 and Figures B.1–B.2 provide the same detailed results for
the X instance set of [50].

Table B.1: Results for set X for all values of Γ ∈ {15, 20, 30, 50}
HGS-D-O HGS-D-D HGS-D-N HGS-N-O HGS-N-D HGS-N-N

GNN #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap%

Original (#Nodes: 300; #Hidden Layers: 100; #Epochs: 1500; Pred-T(s) = 15.2%)
15 188 0.368 187 0.302 184 0.317 177 0.395 169 0.325 172 0.317
20 166 0.380 186 0.305 184 0.323 160 0.412 169 0.328 175 0.322
30 162 0.401 176 0.318 164 0.341 139 0.438 173 0.355 160 0.348
50 130 0.464 158 0.370 140 0.402 114 0.522 146 0.410 134 0.411

Avg 161.5 0.403 176.8 0.324 168.0 0.346 147.5 0.442 164.3 0.354 160.3 0.350

Optimistic (#Nodes: 300; #Hidden Layers: 100; #Epochs: 1500; Pred-T(s) = Ignored)
15 188 0.368 187 0.302 187 0.299 185 0.365 177 0.307 182 0.299
20 166 0.380 186 0.305 191 0.306 170 0.383 176 0.308 179 0.305
30 162 0.401 176 0.318 171 0.320 153 0.406 176 0.331 167 0.326
50 130 0.464 158 0.370 153 0.372 122 0.482 154 0.380 142 0.382

Avg 161.5 0.403 176.8 0.324 175.5 0.324 157.5 0.409 170.8 0.332 167.5 0.328

Model #1 (#Nodes: 10; #Hidden Layers: 5; #Epochs: 500; Pred-T(s) = 1.9%)
15 188 0.368 187 0.302 185 0.309 166 0.414 177 0.332 184 0.336
20 166 0.380 186 0.305 172 0.312 165 0.419 177 0.337 179 0.340
30 162 0.401 176 0.318 181 0.322 149 0.445 170 0.355 164 0.350
50 130 0.464 158 0.370 143 0.373 120 0.500 149 0.391 143 0.400

Avg 161.5 0.403 176.8 0.324 170.3 0.329 150.0 0.445 168.3 0.354 167.5 0.357

Model #2 (#Nodes: 10; #Hidden Layers: 5; #Epochs: 1500; Pred-T(s) = 1.9%)
15 188 0.368 187 0.302 186 0.301 169 0.391 175 0.314 170 0.316
20 166 0.380 186 0.305 179 0.310 162 0.394 183 0.321 177 0.322
30 162 0.401 176 0.318 174 0.322 164 0.429 162 0.335 174 0.340
50 130 0.464 158 0.370 155 0.371 127 0.478 150 0.388 146 0.389

Avg 161.5 0.403 176.8 0.324 173.5 0.326 155.5 0.423 167.5 0.340 166.8 0.342
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Figure B.1: Convergence plots on set X for all GNN configurations (for each
configuration, left graph = complete run, right graph = last 25 % of the run
time)
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Figure B.2: Boxplots of the percentage error gaps achieved by the methods,
for different subsets of the X instances, using Γ = 15 and the Original
configuration of the GNN
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Publication Status

Chapter 2 (“PILS: Exploring high-order neighborhoods by pattern mining
and injection”) is already published on Pattern Recognition.

– Reference: Arnold, F. , Santana, Í. , Sörensen, K. , & Vidal, T. (2021).
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