
Angelo Batista Neves Júnior

Automatic Generation of Benchmarks for
Evaluating Keyword and Natural Language

Interfaces to RDF Datasets

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências - Informática.

Advisor : Prof. Marco Antonio Casanova
Co-advisor: Prof. Luiz André Portes Paes Leme

Rio de Janeiro
September 2022

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Angelo Batista Neves Júnior

Automatic Generation of Benchmarks for
Evaluating Keyword and Natural Language

Interfaces to RDF Datasets

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências - Informática. Approved by the
Examination Committee:

Prof. Marco Antonio Casanova
Advisor

Departamento de Departamento de Informática – PUC-Rio

Prof. Luiz André Portes Paes Leme
Co-advisor

UFF

Prof. Antonio Luz Furtado
Departamento de Informática – PUC-Rio

Profa. Melissa Lemos Cavaliére
Instituto Tecgraf – PUC-Rio

Profa. Vânia Maria Ponte Vidal
UFC

Prof. Geraldo Bonorino Xexéo
UFRJ

Rio de Janeiro, September 9th, 2022

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

All rights reserved.

Angelo Batista Neves Júnior

Angelo Batista Neves Júnior graduated in Computer Science
at the Federal Institute of Education Science and Technology
of Southeast Minas Gerais - Campus Rio Pomba. He holds
a master’s degree in Systems and Information Engineering
from Universidade Federal Fluminense. His line of research
focuses on the Semantic Web, in which he studies keyword
recommendation and search techniques in semantic databases.
He is currently a fellow at Instituto Tecgraf / PUC-Rio.

Bibliographic data
Neves Júnior, Angelo Batista

Automatic Generation of Benchmarks for Evaluating
Keyword and Natural Language Interfaces to RDF Datasets
/ Angelo Batista Neves Júnior; advisor: Marco Antonio Casa-
nova; co-advisor: Luiz André Portes Paes Leme. – 2022.

83 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Departamento de Informá-
tica, 2022.

Inclui bibliografia

1. Informática – Teses. 2. Benchmark. 3. Interface em
Linguagem Natural. 4. datasets. I. Casanova, Marco A.. II.
Portes Paes Leme, Luiz. III. Pontifícia Universidade Católica
do Rio de Janeiro. Departamento de Departamento de Infor-
mática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

To my family and my friends for their support and motivation.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Acknowledgments

First, thank God for giving me health during this research; without Him,
I would not have gotten anywhere.

For my advisor, Prof. Marco Antonio Casanova. He helped with
everything I needed during my doctorate. He is the most intelligent person
and didactic that I know.

For my co-advisor, Prof. Luiz André Portes Paes Leme. He always helped
during my master’s degree and now my doctorate. He always was willing to
take my questions. I always will be grateful for all the knowledge acquired by
him.

Thanks my parents, Angelo Batista Neves and Vânia da Costa Pacheco
Neves. They have always supported, encouraged, and done everything for me.

I also thank my sister Mariana Pacheco Neves, who also always supported
and accompanied me during my doctorate.

To my best friends, Fillipe Flores, Rodrigo Abrão, Maria Clara, and Laís
Brandão, for always supporting me during my doctorate.

My Tecgraf friends Melissa, Yenier, Grettel, Javier, and Bruno for the
knowledge acquired.

To all the professors at PUC-Rio that I had the opportunity to be a
student, for having I learn more and more.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Thank
you for the aids granted, without which this work does not could have been
accomplished.

Last but not least, I would like to thank everyone who directly and
indirectly helped me in this research.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Abstract

Neves Júnior, Angelo Batista; Casanova, Marco A. (Advisor); Por-
tes Paes Leme, Luiz (Co-Advisor). Automatic Generation of
Benchmarks for Evaluating Keyword and Natural Lan-
guage Interfaces to RDF Datasets. Rio de Janeiro, 2022. 83p.
Tese de Doutorado – Departamento de Departamento de Informá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

Text search systems provide users with a friendly alternative to access
Resource Description Framework (RDF) datasets. The performance evaluation
of such systems requires adequate benchmarks, consisting of RDF datasets,
text queries, and respective expected answers. However, available benchmarks
often have small sets of queries and incomplete sets of answers, mainly
because they are manually constructed with the help of experts. The central
contribution of this thesis is a method for building benchmarks automatically,
with larger sets of queries and more complete answers. The proposed method
works for both keyword and natural language queries and has two steps:
query generation and answer generation. The query generation step selects
a set of relevant entities, called inducers, and, for each one, heuristics guide
the process of extracting related queries. The answer generation step takes
the queries and computes solution generators (SG), subgraphs of the original
dataset containing different answers to the queries. Heuristics also guide
the construction of SGs, avoiding the waste of computational resources in
generating irrelevant answers.

Keywords
Benchmark; Natural Language Interface; datasets.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Resumo

Neves Júnior, Angelo Batista; Casanova, Marco A.; Portes Paes
Leme, Luiz. Geração Automática de Benchmarks para Ava-
liar Interfaces Baseadas em Palavras-Chave e Linguagem
Natural para Datasets RDF. Rio de Janeiro, 2022. 83p. Tese
de Doutorado – Departamento de Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Os sistemas de busca textual fornecem aos usuários uma alternativa ami-
gável para acessar datasets RDF (Resource Description Framework). A avalia-
ção de desempenho de tais sistemas requer benchmarks adequados, consistindo
de datasets RDF, consultas e respectivas respostas esperadas. No entanto, os
benchmarks disponíveis geralmente possuem poucas consultas e respostas in-
completas, principalmente porque são construídos manualmente com a ajuda
de especialistas. A contribuição central desta tese é um método para construir
benchmarks automaticamente, com um maior número de consultas e com res-
postas mais completas. O método proposto aplica-se tanto a consultas baseadas
em palavras-chave quanto em linguagem natural e possui duas partes: gera-
ção de consultas e geração de respostas. A geração de consultas seleciona um
conjunto de entidades relevantes, chamadas de indutores, e, para cada uma,
heurísticas orientam o processo de extração de consultas relacionadas. A gera-
ção de respostas recebe as consultas produzidas no passo anterior e computa
geradores de solução (SG), subgrafos do dataset original contendo diferentes
respostas às consultas. Heurísticas também orientam a construção dos SGs
evitando o desperdiço de recursos computacionais na geração de respostas ir-
relevantes.

Palavras-chave
Benchmark; Interface em Linguagem Natural; datasets.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Table of contents

1 Introduction 13

2 Related Work 15
2.1 Benchmarks 15
2.2 Keyword Search Systems 17
2.3 Natural Language Interface to Database - NLIBD 18

3 Background and Definitions 20
3.1 Resource Description Framework - RDF 20
3.2 SPARQL: a query language for RDF 22
3.3 BERT – Bidirectional Encoder Representations from Transformers 24
3.4 Graph-related Definitions, Queries, and Answers 27
3.4.1 Graph-related Definitions 27
3.4.2 Keyword Queries and Answers 30
3.4.3 Natural Language Queries and Answers 31

4 A Method for Generating Benchmarks 34
4.1 Computing Keyword Queries 34
4.2 Computing Natural Language Queries 44
4.2.1 Creating Natural Language Questions Based on Templates 44
4.2.2 Improving the Verbalization of Predicate Labels 48
4.2.3 Verbalization of reified relationships 50
4.3 Computing Solution Generators 51

5 Evaluation of the Benchmark Generation Method 59
5.1 Evaluation Strategy 59
5.2 Results 60

6 Contributions and Future Work 63
6.1 Contributions 63
6.2 Future Work 64

A Fragment of Benchmark for Dataset: Mondial 72

B Natural Language Sentences generated in the Mondial
dataset 75

C Natural Language Sentences generated for reified Relation-
ships in the Mondial dataset 79

D Benchmarks Statistics 81

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

List of figures

Figure 3.1 Representation of triple. 21
Figure 3.2 Example of a declaration of the class. 22
Figure 3.3 Domain and range example of class Work. 22
Figure 3.4 Mirroring graph example. 28

3.4(a)A schema cutout graph G. 28
3.4(b)The one-degree mirroring graph of G. 28

Figure 3.5 Example Reified Class in Mondial Database. 29
Figure 3.6 Example of an RDF graph and three answers for the

information need “character of Meryl Streep in the movie Out
of Africa”. 31
3.6(a)The induced graph of an RDF dataset T . 31
3.6(b)Answer A1. 31
3.6(c)Answer A2. 31
3.6(d)Answer A3. 31

Figure 3.7 Example of Mondial fragment and two answers for the
information need “mauritius india”. 32
3.7(a)The fragment of Mondial dataset graph. 32
3.7(b)Ground Truth answer. 32
3.7(c)Additional geographical answer. 32

Figure 4.1 Neighborhood fragments. 34
4.1(a)Fragment of 2N India

T . 34
4.1(b)Fragment of 2N Poland

T . 34
4.1(c)Fragment of 2NNigeria

T . 34
Figure 4.2 A fragment of the cutout schema 2CGIndia

T induced by the
neighborhood graph of India, which is coincidentally similar to
2CGPoland

T and 2CGNigeria
T . 36

Figure 4.3 Example of Steiner trees. 36
4.3(a)A Steiner tree for 1,2CGIndia

T . 36
4.3(b)A Steiner tree for 0,2CGPoland

T . 36
4.3(c)A Steiner tree for 0,2CGNigeria

T . 36
Figure 4.4 All question patterns created by Bordes et al. [1]. 45
Figure 4.5 Example of a question pattern from a minimum Steiner

tree derived from the mirroring graph 2,2CGIndia
T . 46

4.5(a)The minimum Steiner tree. 46
4.5(b)The target elements indication. 46

Figure 4.6 spaCy Dependency Parse Tree and Part-of-Speech ex-
ample. 49

Figure 4.7 Second example of spaCy Dependency Parse Tree and
Part-of-Speech example. 50

Figure 4.8 Examples of solution generators. 53
4.8(a)The solution generator for SK = {A, B, D, F, H} from the

dataset in Fig. 3.6(a). 53
4.8(b)The solution generator for SK = {A, B, F, H} from the

dataset in Fig. 3.6(a). 53

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

List of tables

Table 4.1 A fragment of the binding sets for the query in Listing 4.2 38
Table 4.2 A fragment of the binding sets for the query in Listing 4.5. 42
Table 4.3 A fragment of the binding sets for the query in Listing 4.8. 43
Table 4.4 Fragment of the binding sets derived from Figure 4.5 47

Table 5.1 Benchmarks statistics obtained for Mondial, IMDb, and
DBpedia. 61

Table B.1 Natural Language Sentence Results. 75

Table C.1 Natural Language Sentence Results - Reified Relationships. 79

Table D.1 Benchmarks statistics obtained for Mondial, IMDb, and
DBpedia. 81

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

List of Abreviations

AE – Autoencoding

AR – Autoregressive

BERT – Bidirectional Encoder Representations from Transformers

SG – Solution Generators

IRI – International Resource Identifier

OWL – Web Ontology Language

POS – part-of-speech

RDF – Resource Description Framework

RDF-KwS – RDF - Keyword Search systems

RDF-NLIB – Natural Language Interfaces to RDF Datasets

RDF-TS – RDF Textual Search

RDFS – Resource Description Framework Schema

RFC – Request for Comments

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

When science offers an answer, that answer is
universal. Humans do not go to war over it;
they rally around it.

Dan Brown, Origin.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

1
Introduction

Keyword search is a popular information discovery method because it
allows naive users to retrieve information without knowing schema details or
query languages. The user specifies a few terms, called keywords and it is up to
the system to retrieve the documents, such as Web pages, that best match the
keywords. Following this trend, keyword search systems designed for Resource
Description Framework (RDF) datasets have emerged. The latest advances
in this area go beyond using keywords as search terms and accept queries
expressed as natural language sentences. One usually refers to the former
category as RDF Keyword Search systems (RDF-KwS), while to the latter as
Natural Language Interfaces to RDF Datasets (RDF-NLID). For simplicity, we
refer to both categories as RDF Textual Search (RDF-TS) systems. Likewise,
we use text queries to refer to both keyword and natural language queries.

RDF-TS systems have three main tasks: (1) retrieve nodes in the RDF
graph that the query specify; (2) discover how they are interrelated to compose
complete answers; and (3) rank these answers [2]. Hence, answers are not just
sets of nodes but sets of nodes and paths between them, i.e., subgraphs of the
dataset.

RDF-TS systems are evaluated using benchmarks with sets of informa-
tion needs and their respective lists of expected answers, possibly ordered, for
a given dataset. Despite the many existing benchmarks for structured data
[3, 4, 5, 6], these benchmarks have at least four limitations when it comes to
RDF-TS: (1) they are frequently built for relational data; (2) they are incom-
plete in the sense that they do not cover many reasonable answers; (3) they
are not always publicly available; (4) they are small.

To remedy the first limitation, some authors [7] adapted benchmarks
developed for relational databases. However, the adaptation requires the
triplification of relational databases and benchmark data, leading to problems
when comparing different systems using different triplifications.

As an example of the incompleteness of existing benchmarks, consider the
keyword query “Mauritius India”, which is Query 43 for the Mondial dataset
in Coffman’s benchmark [8]. The list of expected answers in the benchmark
covers just the organizations that both countries participate in. However, other

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 1. Introduction 14

answers that express geographical relationships between Mauritius Islands and
India should have been included in the list of expected answers. Incompleteness
in this sense is a serious problem, which is difficult to overcome in manually
constructed benchmarks.

Benchmark size is also an issue. Many RDF-TS systems are based
on machine learning techniques and require a large volume of examples for
training.

This thesis addresses the problem of constructing benchmarks for evalu-
ating RDF-TS systems in a holistic approach, i.e., from the definition of queries
to the computation of expected answers. This is a challenging problem for three
fundamental reasons: (1) the set of queries included in the benchmark should
be large and contain a broad range of query patterns; (2) RDF-TS tools vary
widely and compute different – albeit correct – answers for the same query;
(3) computing the set of all expected answers for a given query leads to an
explosive combinatorial problem.

The main contributions of this thesis are then as follows. First, it intro-
duces a method that, given an RDF dataset, automatically defines keyword
queries, as well as natural language queries, and their respective expected an-
swers. Therefore, one can use the method to create benchmarks to evaluate
both keyword-based and natural language-based systems. Second, the thesis
outlines an implementation of the method. Third, the thesis describes five
benchmarks constructed with the proposed method and based on three real
datasets, DBpedia, IMDb, and Mondial, and two synthetic datasets, LUBM
and BSBM. Finally, it compares the constructed benchmarks with keyword
search benchmarks published in the literature.

The rest of this thesis is organized as follows. Chapter 2 covers related
work. Chapter 3 contains the required definitions. Chapter 4 describes the
proposed method for the automatic generation of benchmarks for evaluating
keyword and natural language interfaces to RDF Datasets. Chapter 5 evaluates
the proposed benchmark generation method. Finally, Chapter 6 contains the
conclusions and suggestions for future work.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

2
Related Work

This chapter describes related work on benchmarks, keyword search
systems, and natural language interfaces to database systems.

2.1
Benchmarks

A crucial aspect of keyword search systems is their evaluation. In recent
years, the research community concentrated on evaluating keyword search
systems over relational databases [9] and entity retrieval [10]. Examples of
relational benchmarks are Coffman’s benchmark [3], which uses 50 queries for
Mondial, IMDb, and Wikipedia samples (not real user queries extracted from a
search engine log), and Oliveira’s benchmark [11], which uses Mondial, IMDb,
DBLP, and Northwind.

Unfortunately, benchmarks to assess RDF-KwS systems are scarce [4].
To remedy this situation, some authors [7] adapted relational benchmarks
to RDF. However, this approach depends on the triplification of relational
databases and does not easily induce complete sets of possible answers [12].

State-of-the-art RDF keyword search systems use different benchmarks,
which are not always available. For example, Dosso and Silvello [4] described
openly available benchmarks over three real datasets, LinkedMDB, IMDb, and
a subset of DBpedia [10], and two synthetic databases, the Lehigh University
Benchmark (LUBM) [13] and the Berlin SPARQL Benchmark (BSBM) [14].
For IMDb, they defined 50 keyword queries and their correct translations to
SPARQL queries. For DBpedia, the authors considered 50 topics from the
classes QALD2_te and QALD2_tr of the Question Answering over Linked Data
(QALD) campaigns1. For the synthetic databases, they used 14 SPARQL
queries for LUBM and 13 SPARQL queries for BSBM. For all original SELECT
queries from these datasets, Dosso and Silvello mapped these queries to
SPARQL CONSTRUCT queries and produced their equivalent keyword queries.

In particular, the Lehigh University Benchmark (LUBM) [13] is widely
used to assess the performance of SPARQL engines and was later extended
[15] to cover full-text search performance.

1http://qald.aksw.org

http://qald.aksw.org
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 2. Related Work 16

Some benchmarks are created by trying to optimize the number of queries
generated. For example, Poess and Stephens [16] present QGEN, a flexible,
high-level query generator optimized for decision support system evaluation.
QGEN allows the generation of arbitrary query sets, which conforms to a
selected statistical profile.

However, none of these benchmarks was specifically designed for RDF
keyword search.

Other benchmarks in the State-of-the-art RDF can be listed. For example
Zheng et al. [17] used DBpedia and Yago datasets. The queries used were
derived from QALD-4. Han et al. [18] describe the benchmark over the DBpedia
with QALD-6 and Freebase with Free917 datasets based on an open question
answering benchmark that consists of natural language question and answers
pairs over Freebase. Izquierdo et al. [12] used full versions of the Mondial and
IMDb datasets and queries from Coffman’s benchmark in their experiments.

Lin et al. [19] described the benchmark over datasets: LUBM, Wordnet,
BSBM, Barton, and DBpedia Infobox. They used twelve keyword queries
to assess their system. Wen et al. [20] used nine queries for YAGO, three
queries for DBLP, and six queries for LUBM. Rihany et al. [21] described the
benchmark over two datasets: AIFB and DBpedia. They used ten queries for
each dataset and the sizes of the queries were between 2 and 8 keywords.
Menendez et al. [2] used in your experiments to assess the tool QUIRA
full versions of IMDb and MusicBrainz. They used 50 queries of Coffman’s
Benchmark for IMDb, and 25 queries from QALD-2 for MusicBrainz.

There are some benchmarks that have no public link or are not available
for download. For example, Zhou et al. [22] described a benchmark and keyword
queries over Mooney Natural Language Learning Data. Zenz et al. [23] used a
benchmark containing an initial set of queries extracted from a query log of the
AOL search engine. Then, the queries were pruned based on the visited URLs,
obtaining 3,000 sample keyword queries for IMDb and Lyrics Web pages. This
process yielded 100 queries for IMDb, and 75 queries for Lyrics, consisting of
2–5 keywords. Tran et al. [24] describe a benchmark with 30 queries for DBLP,
and 9 for TAP2. Elbassuoni and Blanco [25] used datasets derived from the
LibraryThing community and IMDb, and 15 queries for each dataset. Lastly, Le
et al. [26] used the benchmark LUBM, Wordnet, BSBM, Barton, and DBpedia
Infobox. And use 12 queries: 4 for LUBM, 2 for Wordnet, 2 for BSBM, 2 for
Barton, 2 for DBpedia Infobox.

The Question Answering over Linked Data challenges3 provide a series
2http://tap.stanford.edu
3http://qald.aksw.org

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 2. Related Work 17

of queries to test Q&A approaches. Pound, Mika, and Zaragoza [27] addressed
the task of ad-hoc object retrieval, as opposed to traditional ad-hoc document
retrieval. They analyzed a real world Web query log from a semantic search
point of view and proposed a semantic search query classification. Lastly,
Balog and Neumayer [10] defined a test collection for entity search in DBpedia
and summarized related work on entity search. Albeit attractive, in all these
references, the proposed query workloads suffer from the same limitation -
they retrieve individuals or lists of individuals - and do not fully explore the
potentialities of RDF keyword search algorithms.

As well as keyword search systems, the critical aspect of NLIBD systems
is their evaluation. However, these systems have not used benchmarks with
many queries to evaluate the system. For example, Affolter et al. [28] created
a cured list with ten natural language questions to assess 24 NLIB systems
and show their strengths and weaknesses.

Some NLIBD systems use workloads with relational data and their
queries over different domains in the cloud service. Saha et al. [29] uses ge-
ographical, academic, and financial data workloads to evaluate their system.
For geographical domain, they used GEOWorkload contains 250 natural lan-
guage queries over geographical data about the United States. For academic
domain, they used MAS Workload for the academic domain, which consists
of 196 natural language queries. Lately, for the financial domain, called FIN
workload, contains 108 natural language queries.

State-of-the-art NLIBD systems inspire the creation of new benchmarks
based on real datasets for evaluating the systems. For example, Arenas et al.
[30] evaluated their system over an integrated database of the three sources:
Cortellis drug data, a Thomson Reuterspatent dataset, and DrugBank. They
generated 5000 random natural language questions with the help of users to
complete questions.

There are some benchmarks with natural language queries for NLIB
systems. For example, Franco et al. [31] present ExQuestions, a dataset
providing multiple paraphrased questions using common-sense knowledge over
graphs. This dataset contains 128,000 question-answer pairs with questions in
natural language and provides templates for each question.

2.2
Keyword Search Systems

As for the keyword search itself, systems follow, basically, two distinct
approaches. They can either take advantage of the declared schema of the
dataset or disregard it and use the graph structure of the data to answer

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 2. Related Work 18

queries. QUIOW [12] (an improved implementation of previous work [7]) and
QUICK [23] are both schema-based systems, but they differ in that QUICK
relies on user feedback while QUIOW is fully automated. Both systems rewrite
the original keyword query into SPARQL queries, with the help of the schema,
to return the final answers.

SPARK [22] is a graph-based system that uses techniques, such as
synonyms from WordNet and string metrics, to match keywords with RDF
graph nodes. The matched nodes are then connected by minimum spanning
trees from which SPARQL queries are generated.

Elbassuoni and Blanco [25] described a technique to retrieve a set of
subgraphs that match the keywords and to rank them based on statistical
language models. Tran et al. [24] introduced the idea of generating summary
graphs for the RDF graph to generate and rank candidate SPARQL queries.
Lin et al. [19] summarized all the inter-entity relationships from the RDF data
to translate keywords to SPARQL queries. Wen et al. [20] introduced a graph
summarization technique that amounts to recovering an RDF schema from the
RDF graph. Le et al. [26] also proposed to process keyword queries using an
RDF graph summarization algorithm. Han et al. [18] described an algorithm
that uses the keywords to first obtain elementary query graph building blocks
and then applies a bipartite graph matching-based best-first search method to
assemble the final query.

2.3
Natural Language Interface to Database - NLIBD

NALIR [32] is a system that uses an interactive natural language inter-
face for relational databases. This system translates a complex natural lan-
guage question into a SQL query, which may include aggregation and joins.
The system is composed of two steps: First, they used an on-the-shelf nat-
ural language parser and created a represented by a parse tree. After, they
correlated the elements of the parse tree with the concepts database.

Athena [29] is an ontology-driven system for natural language questions
to relational databases. This system uses an ontology that describes semantic
entities and their relationships in a domain. They proposed a two-stage
approach: 1) Given a natural language question, they created an intermediate
engine query, called Ontology Query Language (OQL), that uses database
data and synonyms to map the tokens of natural language query to ontology
elements. 2) is translated OQL into a SQL query, where is created relationships
between the ontology elements and the database.

TR Discovery [30] translates the input question in the form of an English

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 2. Related Work 19

sentence into SQL or SPARQL query. They provided auto-suggestions like
autocomplete and prediction based on user input. Their suggestions are based
on the relationships and entities in the dataset. The system parses the input
question into a First Order Logic (FOL) representation and then translates
the generated FOL into a parse tree.

Ferré [33] described an NLIDB for searching and updating an RDF store
with context-free generative grammar. The system recognizes the keywords,
performs a syntactic analysis based on a descending parser with the grammar
rules, generates the logical language based on the definition in the grammar,
and finally translates into the chosen formal language.

Ferre [34] developed a guided query builder for SPARQL using natural
language for better understanding. The translation process for SPARKLIS is
reversed: it translates possible SPARQL queries into a natural language such
that the users can understand their choices.

Marginean [35] showed an NLIDB system for biomedical Linked Data
that covers basic elements of SPARQL to support term constraints, aggregates,
and negations.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

3
Background and Definitions

This chapter contains basic definitions and concepts used in the next
chapters. First, it describes the Resource Description Framework (RDF) as a
data model to represent data. Then, it summarizes SPARQL, the language used
to query RDF datasets. Next, it presents a natural language representation
model, called BERT. Finally, it introduces additional definitions required in
next chapters.

3.1
Resource Description Framework - RDF

The Resource Description Framework (RDF) is a flexible data model
to represent data about resources [36]. Resources can be anything, including
documents, people, physical objects, and abstract concepts. RDF represents
data as triples (s, p, o), where s is called the subject, p is called the predicate,
and o is called the object of the triple. A set T of triples is called an RDF
dataset, or simply a dataset; T induces a graph GT = (N, E), where E is the
set of subjects and objects of the triples in T , and there is a directed edge from
s to o, labeled with p, in S iff there is a triple (s, p, o) in T .

The subjects of the triples can be IRIs or blank nodes, the predicates are
always IRIs, and objects can be IRIs, literals, or blank nodes. An International
Resource Identifier, or IRI, is a character string that complies with the RFC
3987 specification1. An IRI denotes something, either physical or abstract, in
the world. For example, <http://dbpedia.org/resource/Meryl_Streep>
represents the actress Meryl Streep in the DBpedia dataset. Note that IRIs
are informed between < and > in RDF. A literal is either a typed or untyped
value, for example, numbers, dates, strings, etc. and are informed between
double-quotes. Unlike IRIs and literals, blank nodes do not identify things in
the world, but they represent nodes in the RDF graph [37]. Some properties
link resources with literals, and they are called datatype properties by the Web
Ontology Language (OWL) [38], an RDF extension. Some other properties link
resources, and they are called object properties [38]. While the former represent
attributes of a resource, the latter represent relationships between resources.

1https://www.rfc-editor.org/rfc/rfc3987

http://dbpedia.org/resource/Meryl_Streep
https://www.rfc-editor.org/rfc/rfc3987
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 21

Listing 3.1 shows a fragment of an RDF dataset using Turtle [39]
notation. It induces the graphs of Figures 3.1–3.3. Turtle notation allows
for aggregating triples with the same subject by separating pairs of predi-
cate/object with semicolons. Also, the IRIs appear shortened with the in-
dication of a namespace before a colon and without the diamond (<>)
notation. Namespaces are IRI prefixes which are defined in the beginning
of the dataset. Lines 6 and 9 represent the fact that the movie “Mamma
Mia! Here We Go Again” (subject – <http://dbpedia.org/resource/
Mamma_Mia!_Here_We_Go_Again>) starred (predicate – <http://dbpedia.
org/ontology/starring>) Merryl Streep (object – <http://dbpedia.org/
resource/Meryl_Streep>). Lines 8, 12, and 18 set friendly names to the IRIs
of this triple. The graph in Figure 3.1 uses the friendly names as labels for the
nodes and the edge induced by this triple.
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
3 PREFIX dbr: <http :// dbpedia .org/ resource />
4 PREFIX dbo: <http :// dbpedia .org/ ontology />
5
6 dbr: Mamma_Mia ! _Here_We_Go_Again
7 rdf:type dbo:Film;
8 rdfs:label "Mamma Mia! Here We Go Again ";
9 dbo: starring dbr: Meryl_Streep .

10 dbr: Meryl_Streep
11 rdf:type dbo: Actress ;
12 rdfs:label "Meryl Streep ".
13 dbo: Actress rdfs:label " Actress ".
14 dbo:Film rdfs:label "Film ".
15 dbo: starring
16 rdfs: domain dbo:Work;
17 rdfs:range dbo: Actress ;
18 rdfs:label " starring ".
19 dbo:Film rdfs: subclassOf dbo:Work.

Listing 3.1: Fragment of DBpedia dataset using Turtle notation

Figure 3.1: Representation of triple.

RDF also allows schema definitions. Lines 6–7 declare that “Mamma Mia!
Here We Go Again” is an instance of the class Film, and lines 10–11 declare

http://dbpedia.org/resource/Mamma_Mia!_Here_We_Go_Again
http://dbpedia.org/resource/Mamma_Mia!_Here_We_Go_Again
http://dbpedia.org/ontology/starring
http://dbpedia.org/ontology/starring
http://dbpedia.org/resource/Meryl_Streep
http://dbpedia.org/resource/Meryl_Streep
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 22

that Meryl Streep is an instance of the class Actress. Figure 3.2 shows the
graph induced by these definitions.

Figure 3.2: Example of a declaration of the class.

RDF can also specify class hierarchies, relationships and attributes. Line
19 declares that the class Film is a subclass of Work. Also, it is possible to
define type restrictions about subjects and objects. Line 15–17 represent that
the domain of <http://dbpedia.org/ontology/starring> is Work, and its
range is Actress, i.e. the edges with that predicate must start in a resource of
type Actress and end in a resource of type Work. Figure 3.3 shows the graph
induced by these triples.

Figure 3.3: Domain and range example of class Work.

3.2
SPARQL: a query language for RDF

SPARQL is a query language for RDF datasets. The result of SPARQL
queries can be either a relation or an RDF graph, but, for the sake of
conciseness, we will present only the first one.

http://dbpedia.org/ontology/starring
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 23

RDF datasets group triples in subsets, called dataset graphs. Dataset
triples can then be viewed as quads: (g, s, p, o) where g is an identifier of the
dataset graph to which the triple (s, p, o) belongs in the dataset.

Datasets can be conceptually modeled as a database of only one relational
table with four columns, i.e., dataset(graph, subject, predicate, object). One
says that dataset tuples with the attribute graph unknown refer to triples that
belong to a default graph, i.e., the default graph is the unidentified graph.

For the sake of simplicity, in this work, SPARQL queries will process
the only table of a dataset, although there are means, such as using FROM
and FROM NAMED clauses and federated queries, to join data from other
datasets in the same query.

The basic syntax of a SPARQL query is a simple structure with two
clauses: SELECT and WHERE. Listing 3.2 shows the syntax of a SPARQL
query. The SELECT clause contains a list of variable names which specifies
a relational projection over the resulting table of the WHERE clause. The
WHERE clause contains a graph pattern expression that operates on the only
dataset relation and returns another relation.
1 SELECT list of variables
2 WHERE { graph pattern }

Listing 3.2: Basic syntax of a SPARQL query

The simplest graph pattern expression is called a triple pattern which is
of the form {vS vP vO.}, where each element vS, vP or vO can be a variable
or a constant. A variable is a character string starting with the question mark
character ?, such as “?s”. A constant can be either an IRI, a blank node
identifier or a literal. Recall that literals are valid only as objects. A triple
pattern is equivalent to the relational expression shown in Equation 3-1:

R← π(list of variables)(σ subject=vS
And predicate=vP

And object=vO

(dataset)) (3-1)

where variables represent ANY VALUE in the relational selection condition,
i.e., subject = ?s returns true for every tuple of the dataset, while subject
= <http://dbpedia.org/resource/Meryl_Streep> returns true only for
triples with this IRI as subject, and list of variables is the list of all variables
used in the triple pattern. A variable maps the subject column, the predicate
column, or the object column of the dataset table, when respectively used as
the subject, the predicate, or the object of the triple pattern.

Triple patterns can be nested {vS1 vP1 vO1. vS2 vP2 vO2. ... vSn vPn vOn.}
to express more complex expressions. A graph pattern is equivalent to the

<http://dbpedia.org/resource/Meryl_Streep>
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 24

following relational expression:

R1 ∗R2 ∗ ... ∗Rn

where Ri, i = 1, 2, ..., n are the resulting relations of each triple pattern
individually. The nested triple patterns is then equivalent to a natural join
between their resulting relations R1, R2, ..., Rn. Note that using the same
variable names in different triple patterns will cause natural joins, while using
distinct variable names will cause a cross product. There is no limit to the
number of nested triple patterns.

SPARQL also allows to query dataset graphs. The triple pattern
{GRAPH vG {vS vP vO.}} is equivalent to the following relational expres-
sion shown in Equation 3-2:

R← π(list of variables)(σ graph=vG
Andsubject=vS

And predicate=vP
And object=vO

(dataset))
(3-2)

It is possible to apply a relational selection operation over a whole graph
pattern. That is, let G be a graph pattern and RG be its resulting relation, one
wants to compute σC(RG). The SPARQL constructor to do this is FILTER.
The Listing 3.3 shows a query that lists the labels of actors who starred a
movie with its label containing the string “Mamma Mia!”.
1 SELECT ?ls
2 WHERE {
3 ?s dbo: starring ?m.
4 ?m rdfs:label ?lm.
5 ?s rdfs:label ?ls.
6 FILTER regex (?lm , "Mamma Mia !")
7 }

Listing 3.3: Example of query lists the labels

3.3
BERT – Bidirectional Encoder Representations from Transformers

Unsupervised learning has been very successful in generating natural lan-
guage sentence models. Indeed, such models produce better results in complex
tasks, such as classification, translation, and query answering. Typically, one
trains neural networks to produce contextual word representations, and then
uses such representations to train other neural networks for specific tasks.
The goal is to create similar representations for words with the same seman-
tic value. Specific neural networks will not process words and sentences but,

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 25

instead, they will use their “meanings”. Intuitively, different words and sen-
tences with similar meanings are expected to have similar representations and
processed by complex task-specific neural networks.

Autoregressive (AR) language modeling and autoencoding (AE) are two
of the most successful methods to generate word representations. Autoregres-
sive models seek to estimate, for each word, the probability that it occurs after
the words preceding it in the sentence. The term “preceding” here is under-
stood as a relative concept determined by the characteristics of a language,
whether it is written from left to right or the other way around. Autoencoding
methods, on the other hand, are not based on conditional probabilities but
on trying to reconstruct the original sentence when some words are dropped.
BERT [40] is a notable example of this second type of system.

Devlin et al. [40] and Yang et al. [41] argued that AE systems produce
more significant benefits in training neural networks for specific tasks because
they can produce word representations based on all the context of a sentence,
that is, based on what occurs before and after a word. In fact, “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding” [40]
became one of the most successful tools for generating semantic representations
of words in natural language processing.

Contrasting with Devlin et al. [40], which introduced BERT and applied
it to more complex tasks, this thesis uses only BERT representations of words
and sentences.

The pre-trained BERT model generates embedding tokens from a sen-
tence. The main advantage of using the embeddings the pre-trained BERT
model generates is that they are context-dependent, unlike word2vec [42],
which produces the same vector representation for words in the sentence. List-
ing 3.4 shows a code snippet that creates a token and sentence vector repre-
sentation using the pre-trained BERT model. The code was inspired in Dhami
Dharti [43].
1 tokenizer = BertTokenizer . from_pretrained ('bert -base - uncased ')
2
3 tokens = tokenizer . tokenize (sentence)
4 tokens_ids = tokenizer . convert_tokens_to_ids (tokens)
5 segments_ids = [1] * len(tokens)
6 tensor = torch. tensor ([tokens_ids])
7 tensors = torch. tensor ([segments_ids])
8
9 model = BertModel . from_pretrained ('bert -base - uncased ',

output_hidden_states = True)
10
11 with torch. no_grad ():

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 26

12 outputs = model(tensor , tensors)
13 hidden_states = outputs [2]
14
15 embeddings = torch.stack(hidden_states , dim =0)
16 embeddings = torch. squeeze (embeddings , dim =1)
17 embeddings = embeddings . permute (1 ,0 ,2)
18
19 token_vecs_sum = []
20 for token in embeddings :
21 sum_vec = torch.sum(token [-4:], dim =0)
22 token_vecs_sum . append (sum_vec)
23
24 sente_embedding = torch.mean(torch.stack(token_vecs_sum),

dim =0)

Listing 3.4: Code of generating embeddings from bert

Line 1 loads the pre-trained BERT model. We have chosen the option
uncased, which disregards cased characters.

Line 3 splits the sentence into tokens. These tokens are created according
to BERT’s vocabulary. Line 4 converts tokens into their respective ids. Line 5
creates a vector of the same size as the tokens vector full of “1’, configuring
BERT to process just one sentence. Line 6 and 7 create a tensor representation
for the sentence.

Line 11–13 applies the BERT model to the sentence representation and
take the hidden states. The hidden states contain the outputs of the neural
network layers and have four dimensions, in the following order:

1. First dimension: neural network layer number (the first layer is the input
layer, and the remaining 12 are the outputs of each subsequent layers).

2. The batch number: in this example is 1 because there is just one sentence.

3. The word/token number: corresponding numbers of tokens of the sen-
tence. We represent this number with n.

4. The hidden unit/feature numbers (a vector with 768 positions).

Line 15 combines the output into a large tensor, which has four compo-
nents that can be represented as vector with dimension [13×1×n×768]. If we
consider tokens over many sentences, it is hard for machines to process a vector
of this dimension. Then, we need to reduce dimensionality, producing a single
vector representing the embedding of each token from the sentence. To remedy
this, there are some steps. Line 16 discards the batch dimension, resulting in a

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 27

vector of dimension [13×n×768]. Line 17 permutes the tokens dimension with
the layer dimension, producing the hidden state with dimension [n×13×768].

Lines 19-22 shows how to compute token embeddings. Each word can
have multiple tokens. Tokens of the same word begin with the symbol ##
except for the first token. For example, the tokens for the word “embedding”
are [em, ##bed, ##ding]. The embedding of a word is the average embedding
of the word tokens. Line 24 show how to compute the sentence embedding,
which is the average embedding of the sentence words.

Dhami Dharti [43] and Alammar Jay [44] proposed six ways of dimen-
sionality reduction and evaluated each of them in a named-entity recognition
task. They found that the two most successful ways of generating embedding
are summing up the last four layers of the neural network. This thesis uses
the sum of the last four layers because the vectors are smaller and easier to
handle, and its performance is one of the best.

3.4
Graph-related Definitions, Queries, and Answers

3.4.1
Graph-related Definitions

As defined in Section 3.1 an RDF dataset is a set T of RDF triples
(s, p, o), which is equivalent to an edge-labeled directed graph GT (Figure
3.6(a)) such that the set of nodes of GT is the set of RDF terms that occur as
subject or object of the triples in T and there is an edge (s, o) in GT , labeled
p, iff the triple (s, p, o) occurs in T .

An RDF dataset T is also equivalent to a knowledge base KB =
TBox ∪ ABox in which a subset of triples, TBoxT ⊆ T , defines the RDF
schema (Lines 13–19 of Listing 3.1) and the ABoxT defines the data (Lines
6–12 of Listing 3.1).

The resource graph induced by a subset T ′ ⊆ T is the subgraph RGT ′

of GT ′ obtained by dropping all literal nodes from GT ′ . The nodes in RGT ′ are
the resources of T ′

The entity graph induced by a subset T ′ ⊆ T is the subgraph EGT ′ of
GT ′ obtained by dropping all literal nodes from the graph GT ′−TBox. The nodes
in EGT ′ are the entities of T ′.

The neighborhood of distance d of an entity e in T , denoted dN e
T , is the

set of all nodes visited in a breadth-first walk of distance d starting from e in
EGT .

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 28

The schema graph of T , denoted T GT , is the graph in which the set of
nodes are the named classes in TBox [45], and there is an edge (A, B), labeled
p in T GT , iff there is an edge labeled p from an entity of type A to an entity
of type B in ABox, [45], the domain of p contains a subset of A, and the range
of p contains a subset of B, such that A and B are either asserted or inferred
classes. Such definitions aim at dealing with multiple class assertions.

For example, let ABoxT ′′′ = {(s, type, A), (o, type, B), (s, type, C), (s, p, o)}
be a dataset. Without the restrictions, one could add the edges (A, B) and
(C, B) to T GT ′′′ . However, if the TBoxT ′′′ defined restrictions on the domain
and range of p, such as TBoxT ′′′ = {(p, domain, A), (p, range, B)} , the only
valid edge for T GT ′′′ would be (A, B). Note that T GT is not a replacement
for the GTBox, it is just a convenient way of generating graph patterns for
extracting keywords as shown later in Chapter 4.1.

A schema cutout of T GT , or simply a cutout, induced by dN e
T , denoted

dCGe
T , is the graph resulting from dropping nodes from T GT that are not

classes, either asserted or inferred, of any entity in dN e
T .

The one-degree mirroring graph of dCGe
T , denoted 1,dCGT , is a graph that

has a mirror node A+ for each node A in dCGe
T and that, if there is an edge

(A, B) in dCGe
T , there will be the edges (A, B), (A+, B+), (A+, B), and (A, B+)

in 1,dCGT . Figure 3.4(b) shows an example of a one-degree mirroring graph for
the cutout schema in Figure 3.4(a).

Likewise, a two-degree mirroring graph 2,dCGT , will have nodes A, A+,
and A++ and the edges (A, B), (A+, B+), (A++, B++), and so on.

An n-degree mirroring graph n,dCGT can thus be inductively defined, with
0,dCGT = dCGT . The sets of mirrored classes, such as {A, A+, A++, ...}, are
called mirrored sets. The symbols A+, A++, ... are distinct aliases for the same
class A.

3.4(a): A schema cutout graph G. 3.4(b): The one-degree mirroring graph
of G.

Figure 3.4: Mirroring graph example.

A set of triples T ′ ⊆ T induces a path π = (s0, p0, s1, p1, s2, ..., sn, pn, sn+1)

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 29

in GT iff, for each i ∈ [0, n], either (si, pi, si+1) ∈ T ′ or (si+1, pi, si) ∈ T ′.
We also say that (si, pi, si+1) (or (si+1, pi, si)) occurs in π. Note that we
assume that paths in GT may traverse arcs in both directions. A path
π = (s0, p0, s1, p1, s2, ..., sn, pn, sn+1) begins (resp. ends) on a resource r iff
r = s0 or r = p0 (resp. r = sn+1 or r = pn).

Recall that n-ary relationships, with n > 2, and relationships that have
attributes or that participate in other relationships have to be reified in RDF.
The standard treatment of reified relationships is described in [46] and involves
the definition of a reification class, a set of reification object properties, and
a set of reification axioms that encode, in Description Logic, the essence of
reification.

For example, Figure 3.5 shows a fragment of the relationship between
Country and Language in the Mondial2 dataset, which is reified with reification
class SpokenBy. Note that each entity si represents a reified relationship and
is an instance of SpokenBy (indicated via type). Also note that si is associated
with an instance of Country, via the languageInfo object property, and an
instance of Language, via onLanguage object property.

Figure 3.5: Example Reified Class in Mondial Database.

2https://www.dbis.informatik.uni-goettingen.de/Mondial/

https://www.dbis.informatik.uni-goettingen.de/Mondial/
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 30

3.4.2
Keyword Queries and Answers

A keyword query, which represents an information need, is a set K of
literals.

A matching function in the context of keyword queries is a function σL

that maps pairs of literals into Boolean values. If σL(L1, L2) = True then
we say that L1 and L2 match. The exact matching function adopted is left
unspecified at this point, and varies from system to system. Typically, it is
based on string similarity, but it can use more sophisticated strategies.

A triple (s, p, o) ∈ T is a matching triple for K iff o is a string literal that
matches at least one keyword in K.

We also say that s is a matching resource forK, the setMs of all matching
triples in T for K whose subject is s is the set of matching triples of s in T ,
and the graph induced by Ms is the matching subgraph of s in GT . Note that
s may occur as the subject, property, or object of a triple in T , but s is always
the subject of a matching triple.

A set of triples A ⊆ T is an answer for K over T iff A can be partitioned
into two subsets A′ and A′′ such that: (i) A′ is the set of all matching triples
for K in A; let RA be the set of subjects of such triples; (ii) RGA′′ , the resource
graph induced by A′′, is connected and contains all resources in RA. Condition
(i) captures keyword matches and Condition (ii) indicates that an answer must
connect the matching resources by paths in RGA′′ . We also say that RA is the
set of matching resources of A and that RGA′′ is the connectivity graph of A.
Figure 3.6 shows an RDF graph, Figure 3.6(a), and three answers, Figures
3.6(b)–3.6(d), for the keyword query MS = {“character”, “meryl”, “streep”,
“movie”, “out”, “africa”}.

Figure 3.7 shows another example of a dataset and answers for the
keywordsMS = {“mauritius”, “india”}. Figure 3.7(a) is the dataset fragment
and Figures 3.7(b) and 3.7(c) show two possible answers.

An annotated answer is an answer such that each matching triple is
annotated with the keywords it matches. The specific way to represent the
annotations is left unspecified at this point. It suffices to remark that such
annotations help relate triples in an answer with keywords in the query.

This definition of answer is less stringent than those introduced by
Bhalotia et al. [47], Hristidis and Papakonstantinou [48], Kimelfeld and Sagiv
[49] since it neither requires all keywords to be matched nor includes a
minimality criterion. For later reference, we say that an answer A for K over
T is minimal iff there is no proper subset B of A such that B is an answer for
K and B and A have the same set of matching resources.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 31

3.6(a): The induced graph of an RDF dataset T .

3.6(b): Answer A1. 3.6(c): Answer A2. 3.6(d): Answer A3.

Figure 3.6: Example of an RDF graph and three answers for the information
need “character of Meryl Streep in the movie Out of Africa”.

Finally, we can informally state the RDF KwS-Problem as: “Given an
RDF dataset T and a keyword query K, find an answer A for K over T ,
preferably, with as many keyword matches as possible and with the smallest
set of triples as possible”.

3.4.3
Natural Language Queries and Answers

A natural language query is simply a sentence S in a natural language,
such as “What is the character of Meryl Streep in the movie Out of Africa?”.

The definition of a matching function σN for natural language queries is
quite different from the definition of matching functions for keyword queries.
However, to maintain the next definitions close to those in Section 3.4.2, we
consider σN as a function that maps pairs (f, t), where f is a natural language
sentence fragment and t is a triple, into Boolean values. If σN(f, t) = True

then we say that f and t match.
Given a natural language query S, we say that t is a matching triple for

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 32

3.7(a): The fragment of Mondial dataset graph.

3.7(b): Ground Truth answer. 3.7(c): Additional geographical answer.

Figure 3.7: Example of Mondial fragment and two answers for the information
need “mauritius india”.

S iff σN(f, t) = True, for some fragment f of S.
Again, the exact matching function σN adopted is left unspecified at

this point, but we observe that the application of σN is typically preceded
by a natural language processing stage that decomposes the query sentence
into fragments. The benchmark creation method described in this thesis is not
dependent on the matching function, since it is concerned with synthesizing
natural language queries, as discussed in Section 4.2.

The notions of matching resource, answer, and annotated answer then
follow as in Section 3.4.2. However, we observe that the notion of annotated
answer in this case helps identify which triples in an answer match which
fragments of the natural language query.

Figure 3.6 shows an RDF graph and three answers for the natural
language query S = “What is the character of Meryl Streep in the movie Out

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 3. Background and Definitions 33

of Africa?”.
Finally, we can informally state the RDF NLI-Problem as: “Given an

RDF dataset T and a natural language query S, find an answer A for S over
T , preferably, with as many matches as possible and with the smallest set of
triples as possible”.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

4
A Method for Generating Benchmarks

4.1
Computing Keyword Queries

This section describes, with the help of examples, how to automatically
generate sets of keyword queries for a given RDF dataset T .

The method consists of: (i) choosing a set I of relevant entities, called in-
ducers, as starting points of the query generation; (ii) computing the inducers’
neighborhood N, which are subgraphs centered in the node i ∈ I; (iii) compute
distinct graph patterns connecting entities to i; and (iv) extracting keywords
from different instantiations of graph patterns.

4.1(a): Fragment of 2N India
T . 4.1(b): Fragment of 2NPoland

T .

4.1(c): Fragment of 2NNigeria
T .

Figure 4.1: Neighborhood fragments.

An inducer function for T is a function that maps T into a set I
of entities of T , called inducers. Such function should follow requirements
consistent with the benchmark’s purpose, i.e., it should select entities from the
information domain in question with appropriate relevance scores. High scores
induce keywords from relevant entities, while low scores can challenge RDF-

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 35

KwS systems by inducing keywords from less relevant entities. For example, let
T be the Mondial RDF dataset1. An inducer function for T would select the
top-k and bottom-k countries according to their infoRank score [2]. InfoRank
estimates entities’ relevance for users based on three intuitions: 1) important
things have lots of datatype properties, 2) important things are surrounded
by other important things, and 3) few good friends are better than many
acquaintances. The first step of the process for generating queries is to select
a set of inducers.

The second step is to compute the inducers’ neighborhoods dN i
T , i ∈ I.

Figure 4.1(a) shows an example fragment of the neighborhood 2N India
T of the

country India, which is the 8th country with the most significant infoRank
score in the Mondial dataset. We have chosen India as an example because it
can lead the query generation process to recreate the 43rd query in Coffman’s
benchmark. The following examples are also chosen with the same idea. The
rationale is to demonstrate that the proposed approach could generate the
same queries as a known benchmark. Note, though, that an automatic running
of the approach would not necessarily generate the same queries as another
benchmark. It will depend on arbitrary choices, such as selecting relevant
inducers to be used in the process.

The third step is to compute the n-degree mirroring graphs n,dCGi
T , and

the set of all possible minimal Steiner trees in each one. Figure 4.2 shows
a fragment of the cutout schema 2CGIndia

T which is coincidentally similar to
2CGPoland

T and 2CGNigeria
T . The Steiner trees induce different SPARQL graph

patterns Pi that correlate entities from dN i
T . Note that n is a user-defined

parameter that allows one to control the cardinality of elements of the same
type in the graph patterns.

These graph patterns, called answer graph patterns, represent typical
answer templates for keyword sets. For example, Figure 4.3(a) shows a Steiner
tree from 1,2CGIndia

T that induces the graph pattern in Listing 4.1. Note that the
expression typical answer template refers to the process that guides the query
generation. It does not mean that it is the most common or desired answer
pattern among all valid answers. There can be many more valid answer graph
patterns that search systems can find for the same keyword set, as explained
in Section 4.3.

Each node of a Steiner tree maps to distinct SPARQL variables, the
edges of the trees straightforwardly derive the joining triple patterns (Lines
6–7 in Listing 4.1), and the types of the nodes filter out entities of their
respective types. We call the joining triple patterns the core graph pattern

1http://www.dbis.informatik.uni-goettingen.de/Mondial/

http://www.dbis.informatik.uni-goettingen.de/Mondial/
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 36

Figure 4.2: A fragment of the cutout schema 2CGIndia
T induced by the neighbor-

hood graph of India, which is coincidentally similar to 2CGPoland
T and 2CGNigeria

T .

4.3(a): A Steiner tree for
1,2CGIndia

T .
4.3(b): A Steiner tree for
0,2CGPoland

T .
4.3(c): A
Steiner
tree for
0,2CGNigeria

T .

Figure 4.3: Example of Steiner trees.

of the mirroring graph. The bind expression determines that solutions must
contain the inducer and the filter dismiss solutions with repetitive entities.
This last restriction aims to dismiss solutions such as ?s1=:IND and ?s2=:IND,
where :IND is the India’s URI. It seems not to make sense in this pattern.
We opted to automatically generate the full mutual inequality filter rather
than a more specific one such as FILTER (?s1!=?s2) to avoid more sophisticated
inferences, although this strategy can dismiss good repetitions. For the sake of
query generation, it is not required to generate all possible ones.

Keywords are then extracted for each entity, property, and class in the
patterns by instantiating Pi from T and retrieving values of their datatype
properties. The query in Listing 4.2 shows the value extraction for the pattern
in Listing 4.1, and Table 4.1 shows fragments of two binding sets from the
Mondial dataset. We assume that all terminological elements have a single
property rdfs:label. More complex queries could avoid such assumptions,
which are disregarded here for conciseness. Lines 12–14 extract label values
for schema elements in the pattern. Lines 16–27 extract label values from all
properties for each entity in the pattern. Lines 29–38 extract literal values from
all properties for each entity in the pattern.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 37

1 {
2 BIND (: IND as ?s1) # sets India ’s URI
3 ?s1 a : Country .
4 ?s2 a : Country .
5 ?s3 a : Organization .
6 ?s1 : isMember ?s3.
7 ?s2 : isMember ?s3.
8 FILTER (?s1 !=? s2 && ?s1 !=? s3 && ?s2 !=? s3)
9 }

Listing 4.1: Answer Graph Pattern for keywords {“mauritius”, “india”}

1 SELECT ?l1 ?l2 ?l3 ?l4 ?l5 ?l6 ?v1 ?v2 ?v3
2 WHERE {
3 {
4 BIND (: IND AS ?s1) # sets India ’s URI
5 ?s1 a : Country .
6 ?s2 a : Country .
7 ?s3 a : Organization .
8 ?s1 : isMember ?s3.
9 ?s2 : isMember ?s3.

10 FILTER (?s1 !=? s2 && ?s1 !=? s3 && ?s2 !=? s3)
11 }
12 : Country rdfs:label ?l1.
13 : Organization rdfs:label ?l2.
14 : isMember rdfs:label ?l3.
15
16 OPTIONAL
17 { SELECT ?s1 (group_concat (DISTINCT ?l) AS ?l4)
18 WHERE {?s1 ?p ?o. ?p rdfs:label ?l.}
19 GROUP BY ?s1}
20 OPTIONAL
21 { SELECT ?s2 (group_concat (DISTINCT ?l) AS ?l5)
22 WHERE {?s2 ?p ?o. ?p rdfs:label ?l.}
23 GROUP BY ?s2}
24 OPTIONAL
25 { SELECT ?s3 (group_concat (DISTINCT ?l) AS ?l6)
26 WHERE {?s3 ?p ?o. ?p rdfs:label ?l.}
27 GROUP BY ?s3}
28
29 { SELECT ?s1 (group_concat (?o) AS ?v1)
30 WHERE {?s1 ?p ?o FILTER isLiteral (?o)}
31 GROUP BY ?s1}
32 OPTIONAL
33 { SELECT ?s2 (group_concat (?o) AS ?v2)
34 WHERE {?s2 ?p ?o FILTER isLiteral (?o)}
35 GROUP BY ?s2}
36 { SELECT ?s3 (group_concat (?o) AS ?v3)

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 38

37 WHERE {?s3 ?p ?o FILTER isLiteral (?o)}
38 GROUP BY ?s3}
39 }

Listing 4.2: Query for retrieving property values for keywords
{“mauritius”, “india”}

?l1 ?l2 ?l3 ... ?v1 ?v2 ?v3

“Country” “Organization” “is member” ... “India...” “Mauritius...” “IFAD”
“Country” “Organization” “is member” ... “India...” “Mauritius...” “G-77”

Table 4.1: A fragment of the binding sets for the query in Listing 4.2
.

Each line of Table 4.1 corresponds to a different entity instantiation set
and, therefore, it may be considered a different answer for the pattern. Still,
each line may produce distinct keyword sets.

Table 4.1 enables benchmark developers to create queries, such as queries
number 43, 30, and 27 of Coffman’s benchmark for Mondial, KCoff-Q43 =
{“mauritius”, “india”}, KCoff-Q30 = {“poland”, “language”}, and KCoff-Q27 =
{“nigeria”, “gdp”}, respectively. The first query contains keywords for the
names of two countries, the second query contains keywords for the name of a
country and the name of an object property, and the third contains keywords
for the name of a country and one of its datatype properties (Gross Domestic
Product - GDP).

The fourth and final step of the keyword-query generation is to ex-
tract keywords from the bindings. For example, the 43rd Coffman’s query,
KCoff-Q43 = {“mauritius”, “india”}, can be created by extracting the literals
from the bindings for ?v1 and ?v2.

The SPARQL query in Listing 4.3 can generate Coffman’s ground truth
for this query. Each created named graph is considered a different solution. This
ground truth is adapted from Coffman’s benchmark and our previous answer
definition for RDF-KwS since Coffman’s benchmark is built for relational
databases and does not define answers as graphs.
1 INSERT {
2 GRAPH ?g {
3 ?s1 : isMember ?s3; ?p1 ?v1.
4 ?s2 : isMember ?s3; ?p2 ?v2.
5 }
6 }
7 WHERE {
8 BIND (UUID () AS ?g)
9 {

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 39

10 ?s1 a : Country .
11 ?s2 a : Country .
12 ?s3 a : Organization .
13 ?s1 : isMember ?s3.
14 ?s2 : isMember ?s3.
15 FILTER (?s1 !=? s2 && ?s1 !=? s3 && ?s2 !=? s3)
16 }
17 ?s1 ?p1 ?v1.
18 ?s2 ?p2 ?v2.
19
20 FILTER (REGEX (?v1 ,"India","i") &&
21 REGEX (?v2 ," Mauritius ","i"))
22 }

Listing 4.3: Query to generate the Coffman’s ground truth for keywords
{“mauritius”, “india”}

The query in Listing 4.3 is not necessarily the query an RDF-KwS system
would generate to answer KCoff-Q43. It simply shows an intuition that the
method can generate queries similar to Coffman’s associated with the same
ground truth. Section 4.3 defines the actual ground truths.

Each tuple of bindings in Table 4.1 can derive many more keyword
queries, each literal combination would be a different query. However, some
combinations are not allowed: those with no literals coming from property
values or classes of any leaf entity. Leaf entities are instances of leaf classes.
Leaf classes are those connected by just one edge in Steiner trees. The leaf
entities for the Steiner tree in Figure 4.3(a) are bound to the variables ?s1

and ?s2 in Listing 4.1. They are instances of the class Country. Recall that
Country+ is an alias to the class Country. We call this restriction the must-
include-all-leaves rule. Such restriction is necessary because keyword search
systems usually try to interconnect nodes linked to the given keywords. For
example, Coffman’s 43rd query intends to connect the nodes corresponding to
India and Mauritius. Search systems would try to find paths to connect these
nodes. Eventually, they would find IFAD and G-77, representing international
organizations in which both countries participate. If, on the other hand, search
systems used the keywords {India, IFAD}, the algorithms could never find
Mauritius since a path interconnecting India and IFAD traversing Mauritius
could not exist. Those keywords then could not be appropriate for the pattern
in Figure 4.3(a).

Because of the combinatorial nature of this problem, we propose not to
materialize every keyword combination. Instead, we extract keywords from
every binding for each binding set (each line of Table 4.1) and leave the
generation of appropriate keyword combinations to benchmark developers. The

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 40

method outputs for each inducer a set of pairs (K, G), called keyword query
generators, such that K is a set of bindings, in the form of Table 4.1, and G

is an answer graph pattern. The pairs (K, G) allow developers to follow the
must-include-all-leaves rule to generate their own keyword sets.

Query generators are also convenient to compare different benchmarks
in terms of the variety of expected answers. Sets of expected answers that
show considerable variety pose more challenges to search engines. For example,
from the 50 queries provided by Coffman for the Mondial database, one can
count just 14 answer patterns. Indeed, for instance, Queries 36–45 aim at
discovering relationships between two countries and international organizations
and, therefore, have the same answer pattern. Differently from the existing
benchmarks, the proposed method can generate many distinct answer patterns.

A second example illustrates a limitation of the method and how it can
generate a query similar to Query 30 of Coffman’s benchmark for Mondial:
KCoff-Q30 = {“poland”, “language”}. This query aims at finding the language
spoken in Poland and could be generated with the Steiner tree in Figure 4.3(b).
Poland is the name of an instance of type :Country and language is the label of
the property :onLanguage with domain :SpokenBy which points to the Language
entity :Polish. However, the must-include-all-leaves rule requires one to extract
keywords from property values of :SpokenBy instances or from the class itself.
If one replaced the original query with {“poland”, “spoken”, “language”} the
answer graph pattern would be that in Listing 4.4, the extraction query that
in Listing 4.5, the binding table that in Table 4.2, and the ground truth that
in Listing 4.6. The keywords would be extracted from ?l2, ?l5, and ?v1.
1 {
2 BIND (:PL as ?s1) # sets Poland ’s URI
3 ?s1 a : Country .
4 ?s2 a : SpokenBy .
5 ?s2 : languageInfo - ?s1.
6 FILTER (?s1 !=? s2)
7 }

Listing 4.4: Answer graph pattern for keywords
{“poland”, “spoken”, “language”}

1 SELECT ?l1 ?l2 ?l3 ?l4 ?l5 ?v1 ?v2
2 WHERE {
3 {
4 BIND (:PL AS ?s1) #sets Poland ’s URI
5 ?s1 a : Country .
6 ?s2 a : SpokenBy .
7 ?s2 : languageInfo - ?s1.
8 FILTER (?s1 !=? s2)

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 41

9 }
10 : Country rdfs:label ?l1.
11 : SpokenBy rdfs:label ?l2.
12 : languageInfo - rdfs:label ?l3.
13
14 OPTIONAL
15 { SELECT ?s1 (group_concat (DISTINCT ?l) AS ?l4)
16 WHERE {?s1 ?p ?o. ?p rdfs:label ?l.}
17 GROUP BY ?s1}
18 OPTIONAL
19 { SELECT ?s2 (group_concat (DISTINCT ?l) AS ?l5)
20 WHERE {?s2 ?p ?o. ?p rdfs:label ?l.}
21 GROUP BY ?s2}
22
23 { SELECT ?s1 (group_concat (?o) AS ?v1)
24 WHERE {?s1 ?p ?o FILTER isLiteral (?o)}
25 GROUP BY ?s1}
26 { SELECT ?s2 (group_concat (?o) AS ?v2)
27 WHERE {?s2 ?p ?o FILTER isLiteral (?o)}
28 GROUP BY ?s2}
29 }

Listing 4.5: Query for retrieving property values for keywords
{“poland”, “spoken”, “language”}

1 INSERT {
2 GRAPH ?g {
3 ?s2 a ?cls.
4 ?s2 : languageInfo - ?s1.
5 ?s2 ?p2 ?s3.
6 ?s1 ?p1 ?v1.
7 ?cls rdfs:label ?l2.
8 }
9 }

10 WHERE {
11 BIND (UUID () AS ?g)
12 {
13 ?s1 a : Country .
14 ?s2 a ?cls.
15 ?s2 : languageInfo - ?s1.
16 FILTER (?s1 !=? s2)
17 }
18 ?s1 ?p1 ?v1.
19 ?cls rdfs:label ?l2.
20 ?s2 ?p2 ?s3.
21 ?p2 rdfs:label ?l5.
22
23

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 42

24 FILTER (REGEX (?v1 ," Poland ","i") &&
25 REGEX (?l2 ," Spoken ","i") &&
26 REGEX (?l5 ," language ","i"))
27 }

Listing 4.6: Query for generate the Coffman’s ground truth for keywords
{“poland”, “spoken”, “language”}

?l1 ?l2 ... ?l5 ?v1 ...
“Country” “Spoken By” ... “... on language...” “Poland...” ...

Table 4.2: A fragment of the binding sets for the query in Listing 4.5.

The last example generates Query 27 of Coffman’s benchmark for Mon-
dial: KCoff-Q27 = {“nigeria”, “gdp”}. Nigeria is the 15th country by ranking
with the infoRank score, and gdp is the Gross Domestic Product datatype
property. The Steiner tree is in Figure 4.3(c), the answer patterns are in List-
ing 4.7, the extraction query is in Listing 4.8, the binding table is Table 4.3,
and the ground truth is in Listing 4.9. The keywords would be extracted from
?l2, and ?v1.
1 {
2 BIND (: WAN AS ?s1) #sets Nigeria ’s URI
3 ?s1 a : Country .
4 }

Listing 4.7: Answer graph patter for keywords {“nigeria”, “gpd”}

1 SELECT ?l1 ?l2 ?v1
2 WHERE {
3 {
4 BIND (: WAN AS ?s1) # sets Nigeria ’s URI
5 ?s1 a : Country .
6 }
7 : Country rdfs:label ?l1.
8
9 { SELECT ?s1 (group_concat (DISTINCT ?l) AS ?l2)

10 WHERE {?s1 ?p ?o. ?p rdfs:label ?l.}
11 GROUP BY ?s1}
12
13 { SELECT ?s1 (group_concat (?o) AS ?v1)
14 WHERE {?s1 ?p ?o FILTER isLiteral (?o)}
15 GROUP BY ?s1}
16 }

Listing 4.8: Query for retrieving property values for keywords
{“nigeria”, “gpd”}

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 43

?l1 ?l2 ?v1

“Country” “... gdp...” “Nigeria”

Table 4.3: A fragment of the binding sets for the query in Listing 4.8.

1 INSERT {
2 GRAPH ?g {
3 ?s1 ?p1 ?v1.
4 ?s1 ?p2 ?v2.
5 }
6 }
7 WHERE {
8 BIND (UUID () AS ?g)
9 {

10 ?s1 a : Country .
11 }
12 ?s1 ?p1 ?v1.
13 ?s1 ?p2 ?v2.
14 ?p2 rdfs:label ?l2.
15
16 FILTER (REGEX (?v1 ," Nigeria ","i") &&
17 REGEX (?l2 ,"gdp","i"))
18 }

Listing 4.9: Query to generate the Coffman’s ground truth for keywords
{“nigeria”, “gpd”}

Computing all Steiner trees for n,dCGi
T can be computationally expensive.

Besides limiting n and d, we then defined the following heuristics to filter out
unwanted patterns: 1) dismiss Steiner trees with more than ρ1 nodes; 2) dismiss
Steiner trees that do not include the inducer’s classes; 3) dismiss Steiner trees
with a max distance between two nodes longer than ρ2; and 4) dismiss Steiner
trees with more than ρ3 mirrored sets.

The first heuristic expresses the intuition that small solutions are prefer-
able to complex ones. The complexity is estimated by the number of nodes
since minimal Steiner trees, by definition, contain the smallest set of edges
possible for a given set of terminal nodes. The second heuristic expresses the
intuition that inducers guide the query generation process. The third heuristic
expresses the intuition that users do not easily understand distant relation-
ships, as argued by Nunes et al. [50]. Finally, the last heuristic allows one to
control the answer patterns. For example, solutions with two countries and
two organizations in an answer graph pattern may seem less satisfactory than

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 44

the graph pattern in Figure 4.3(a). The third parameter (ρ3) then limits the
number of mirrored sets in the patterns.

4.2
Computing Natural Language Queries

Recent research on textual search over RDF datasets has shown im-
portant results using natural language queries. In this section, we propose
a method to synthesize natural language queries (NLQ) to help create bench-
marks for evaluating Natural Language Interfaces to Databases.

The method consists of: (i) choosing a set I of relevant entities, called in-
ducers, as starting points of the query generation; (ii) computing the inducers’
neighborhood N , which are subgraphs centered in the node i ∈ I; (iii) comput-
ing distinct graph patterns connecting entities to i; (iv) extracting keywords
from different instantiations of graph patterns; (iv) creating a NLQ based on
template; and (v) improving the verbalization of predicate labels, including
labels of reified relationships.

Steps (iv) and (v) aim at making the benchmarks useful for RDF-TS
systems based on natural language sentences. One computes answers for a
natural language question by extracting its keywords, as Web Search Engines
do, and computing answers in the same way as for keyword queries. Therefore,
natural language questions and keyword queries are two distinct ways of
creating benchmark queries.

The process is based on the same mirroring graphs described in the
previous section. For example, for the reference answer of the 43rd query in
Coffman’s benchmark, KCoff-Q43 = {“mauritius′′, “india′′}, and the mirroring
graph in Figure 4.3(a), one wants to generate a natural language query as
follows:

“What are the organizations of which India and Mauritius Islands
are both members?”.

Natural language queries will then be processed much in the same way as
keyword queries to compute their valid answers, as shown in Section 4.3.

4.2.1
Creating Natural Language Questions Based on Templates

The process of generating natural language queries in this thesis is
inspired by Bordes et al. [1], that proposed question patterns to generate
natural language questions from RDF triples. For example, given a triple
(s, r, e), the question pattern (?, r, e) generate questions such as “Who r e?”

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 45

and “What r e?”, where r must be replaced by its label and e must be replaced
by its label when it is not a literal. The label can be the value of the predicate
rdfs:label or any other predicate indicating spoken descriptions for r and e.
We call the element with the symbol “?” in the question pattern as the target
element of the question pattern {? r e.}. Table 4.4 shows all question patterns
proposed by Bordes et al. [1].

Figure 4.4: All question patterns created by Bordes et al. [1].

We extended such a method to generate more complex questions, involv-
ing graph patterns with more than one triple, such as “What are the organi-
zations of which India and Mauritius Islands are both members and have their
headquarters in Italy?”. This question can be an intuitive derivation of the
mirroring graph 2,2CGIndia

T in Figure 4.5(a) when the target elements are the
Organization (?1) and the City (?2) in Figure 4.5(b). Since we admit multiple
target nodes, we number each node to distinguish them.

The first step is querying the dataset for instantiating the graph pattern
in Figure 4.5(a) with resource labels, using the query in Listing 4.11, as
explained in Section 4.1. Table 4.4 shows a fragment of the result set.

The second step is to build a generic natural language question based on
the template in Listing 4.10. We express templates according to the Transact-
SQL Reference syntax conventions2 for convenience.
{What is target_node_id | What are target_node_id [, ...] and

target_node_id } such that { triple_pattern_translation |
triple_pattern_translation [, ...] and
triple_pattern_translation }

where
target_node_id is one of the {?1, ?2, ...} and
triple_pattern_translation is a sentence decribing a triple

pattern .

Listing 4.10: Generic template.
2https://documentation.help/tsqlref/ts_syntaxc_9kvn.htm

https://documentation.help/tsqlref/ts_syntaxc_9kvn.htm
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 46

4.5(a): The minimum Steiner tree. 4.5(b): The target elements indication.

Figure 4.5: Example of a question pattern from a minimum Steiner tree derived
from the mirroring graph 2,2CGIndia

T .

For example, given the mirroring graph in Figure 4.5(a), the correspon-
dent generic question would be

“What are ?1 and ?2 such that India is member ?1, Mauritius
Islands is member ?1, ?1 has headquarter ?2 and Italy has city
?2?”.

It has two targets, ?1 and ?2, and four triple_pattern_translations.
Note that the triple_pattern_translations are built with the resource and
predicate labels in Table 4.4 and the core graph pattern in Lines 10–13 of
Listing 4.11.
1 SELECT ?l1 ?l2 ?l3 ?l4 ?l5 ?l6 ?v1 ?v2 ?v3 ?v4 ?v5
2 WHERE {
3 {
4 BIND (: IND as ?s1) # sets India ’s URI
5 ?s1 a : Country .
6 ?s2 a : Country .
7 ?s3 a : Country .
8 ?s4 a : Organization .
9 ?s5 a :City.

10 ?s1 : isMember ?s4.
11 ?s2 : isMember ?s4.
12 ?s4 : hasHeadq ?s5.
13 ?s3 : hasCity ?s5.
14 FILTER (?s1 !=? s2 && ?s1 !=? s3 && ?s1 !=? s4 && ?s1 !=? s5

&& ?s2 !=? s3 && ?s2 !=? s4 && ?s2 !=? s5 && ?s3 !=? s4
&& ?s3 !=? s5 && ?s4 !=? s5)

15 }

triple_pattern_translations
triple_pattern_translations
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 47

16 : Country rdfs:label ?l1.
17 : Organization rdfs:label ?l2.
18 :City rdfs:label ?l3.
19 : isMember rdfs:label ?l4.
20 : hasHeadq rdfs:label ?l5.
21 : hasCity rdfs:label ?l6.
22 ?s1 rdfs:label ?v1.
23 ?s2 rdfs:label ?v2.
24 ?s3 rdfs:label ?v3.
25 ?s4 rdfs:label ?v4.
26 ?s5 rdfs:label ?v5.
27 }

Listing 4.11: Query for retrieving labels class, predicates and entities

?l1 ?l2 ?l3 ?l4 ?l5 ?l6 ?v1 ?v2 ?v3 ?v4 ?v5

Country Organization City is member headquarters located
in

Mauritius
Island India Italy IFAD Roma

Table 4.4: Fragment of the binding sets derived from Figure 4.5

As one can see, target node identifications and the existing dataset
predicate labels may not produce good verbalization. The same sentence could
be improved as follows.

“What are the entities E1 and E2 such that India is a member of
E1, Mauritius Islands is a member of E1, E1 has headquarters in
E2 and Italy has the city E2?”

or

“What are the Organization O and the City C such that India
is a member of O, Mauritius Islands is a member of O, O has
headquarters in C and Italy has the city C?”

Improvements can optionally use the classes of the target nodes and add
prepositions, articles, and other complements for the predicate labels. In this
case, the predicate improvements are subtle, but more complex replacements
may occur, such as "is in the mountain of" instead of "in mountains", "river
flows through" instead of "flows through", and replacements of reified N × N

relationships. Sections 4.2.2 and 4.2.3 address these issues.
The third and final step is a grammatical optimization of the question

using the following rules.

– (?s1, r, e), ..., (?sn, r, e) replace with: ?s1, ..., ?sn r e

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 48

– (e, r, ?s1), ..., (e, r, ?sn) replace with: e r ?s1, ..., and ?sn

For example,

“What are the Organization O and the City C such that India and
Mauritius Islands are members of O, O has headquarters in C and
Italy has the city C?”

Generic questions assume that all predicate labels induce sentences with
good readability. However, this is not always the case. For example, the
predicate label “is member” should be “is a member of” , and “has headq”
should be “has headquarters in”. The next section shows how to improve the
predicate labels to generate better natural language questions.

4.2.2
Improving the Verbalization of Predicate Labels

This section describes, with the help of examples, how to improve the
verbalization of the predicate label for a given RDF triple t.

Predicate labels do not always induce good readability. One can verbalize
the triple (</countries/MS>, :isMember, </organizations/IFAD/>) as “Mau-
ritius Islands is member International Fund for Agricultural Development” us-
ing the URI’s labels. We call it the triple’s original verbalization. However,
a sentence like “Mauritius Islands is a member of the International Fund for
Agricultural Development”, called the triple’s improved verbalization, would
be preferable. Towards this end, we propose the technique presented in what
follows.

The first step consists in creating vector representations of the words
in the predicate labels for a triple t. We use the Bidirectional Encoder
Representations from Transformers (BERT) [40], as in Section 3.3, to encode
the triple’s original verbalization and to get the word embeddings.

The next step is to select a sentence from a corpus that has a similar
expression for the predicate. In this case, we have found the sentence “Algeria
is a member of the African Union, the Arab League, OPEC, the United Nations
and is the founding member of the Maghreb Union”.

In detail, let C be a sentence corpus. Then, BERT encodes each sentence
s ∈ C, and computes their word embeddings. We used the sentences extracted
from the DBpedia abstracts.

Let #»w be the word embedding of the predicate label’s word w of triple t,
#»

w′ be the word embedding of the word w′ of a sentence s ∈ C, and cos(#»v1,
#»v2)

be the cosine similarity function between two vectors #»v1 and #»v2. We rank the

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 49

corpus sentences with max # »

w′
1,...,

»

w′
n
(H(cos(# »w1,

»

w′
1), ..., cos(# »wn,

»

w′
n))), where H is

the harmonic mean of the cosine similarities and n is the number of words in
the predicate label of t. The top-ranked sentences should contain a convenient
verbalization of the predicate of t, if the words are not distant from each
adjacent word for more than three words.

The third and final step is to extract words from the sentence to replace
the original predicate label. One starts by computing part-of-speech and the
syntactic dependency tree of words in the top ranked sentence s. We used
spaCy3 for this task. Our running example selected the sentence “Algeria is a
member of the African Union, the Arab League, OPEC, the United Nations
and is the founding member of the Maghreb Union”, whose fragment of the
part-of-speech and dependency tree is shown in Figure 4.6.

Figure 4.6: spaCy Dependency Parse Tree and Part-of-Speech example.

The grammatical information is used to define some rules to extract the
new predicate label, as follows.

1. Select the words w′
i that match words wj in the predicate label using

cosine similarity of embeddings (for example “is” and “member”)

2. Select the words w′′
k linked to w′

i by the syntactic tree at a distance 1 (for
example “Algeria”, “a”, and “of”)

3. Filter in the words linked with the following relationships: “det” (deter-
miner) and “prep” (preposition) and (such as “a” and “of”)

The replacement label is then “is a member of”.
Another example is the verbalization of triple (</mountains/Maipo>,

:locatedIn, </countries/RCH/>) as “Maipo located in Chile” using the URI’s
labels. Running all the steps of our method, the select sentence is “The
city is located in the province of North Holland.”, whose part-of-speech and
dependency tree fragment is in Figure 4.7.

This grammatical information is used to define some rules to extract the
new predicate label, as follows.

3https://spacy.io/

https://spacy.io/
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 50

Figure 4.7: Second example of spaCy Dependency Parse Tree and Part-of-
Speech example.

1. Select the words w′
i that match words wj in the predicate label using

cosine similarity of embeddings (for example, “is” and “located”);

2. Select the words w′′
k linked to w′

i by the syntactic tree at a distance 1 (for
example, “city” and “in”);

3. Filter in the words linked with the following relationships: "prep" (prepo-
sition) (such as “in”).

In our running example, the replacement label is then “is located in”.
We applied this method for all predicate labels in the Mondial dataset,

achieving 100% precision for all of them. Appendix B.1 presents the results.

4.2.3
Verbalization of reified relationships

Reified relationships, describe in 3.4.1, should not be verbalized as defined
in Section 4.2.2. Instead, the triples whose subjects are instances of the
reification class should be part of the same sentence such as, for example,
“Hindi is spoken by India” or “India speaks Hindi”. This section will address
the issues of identifying such cases and properly verbalizing these relationships.

Intuitively, all instances of a reification class would share the same object
properties. The first step is then to identify the RDF classes that follow this
intuition as candidate classes that encode reified relationships. The second
step is determining which object properties play the role of reification object
properties.

Given a property pair p, such as “language info” and “on language”,
and a candidate class C, such as “Spoken by”, one computes the aver-
age cosine similarity between the vectorial representations of the class la-
bel and each property label in p. Vectorial representations are computed
with BERT using sentences derived from triples but using the label of
the candidate class instead of the label of the relationship instances. For
example, given the relationship instance _:s1 in Figure 3.5, the triple
(_:s1, :languageInfo-, </countries/IND/>) would be written as “Spoken by
language info India” and the triple (_:s1, :onLanguage, </languages/Hindi/>)

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 51

would be written as “Spoken by on language Hindi”. The process repeats for
a sample of relationship instances, and one computes the average similarity
in the sample. The property pair with the highest average similarity above a
given threshold is the property pair embodying the binary relationship.

Given the detected pair of object properties embodying the reified binary
relationship, the final step is determining the relationship verbalization. One
can read it both ways, i.e., “Hindi spoken by India” or “India spoken by Hindi”.
To choose the best verbalization, one computes embeddings for each sentence
and proceeds with the same process as the in the previous section. The corpus
sentence with the highest score will indicate the correct verbalization. In the
running example, the best sentence is “English is spoken by American people”,
which matches the sentence “Hindi spoken by India” and therefore would
indicate that the correct reading direction, from Language to Country, and
the replacement label “is spoken by”.

We applied this method to detect reified relationships over the Mondial
dataset and found all reified relationships. That is, the recall was 100% and
there were no false positives, i.e., precision was also 100%. Appendix C.1
presents in more detail such results over verbalization of reified relationships.

4.3
Computing Solution Generators

This section addresses the computation of solution generators for key-
word queries through four heuristics to circumvent the complexity of the prob-
lem.

Let T be an RDF dataset. Recall from Section 3.4.1 that the entity graph
induced by a subset T ′ ⊆ T is the subgraph EGT ′ of GT ′ obtained by dropping
all literal nodes from the graph GT ′−TBox. Also recall that the neighborhood of
distance d of an entity e in T , denoted dN e

T , is the set of all nodes visited in
a breadth-first walk of distance d starting from e in EGT .

The next step is to compute possible answers for K. The method
computes the complete set of matching resources for K, called the set of seeds
for K, denoted SK. By the previous definitions, the set of matching resources of
an answer A for K must be a subset of SK. Preferably, answers should contain
subsets of SK that match all keywords in K.

Consider the following example. Let “character of Meryl Streep in the
movie Out of Africa” be an information need over the dataset T of Figure
3.6(a). This information need can be translated to a keyword query MS =
{“character”, “meryl”, “streep”, “movie”, “out”, “africa”}. The set of seeds for
MS is SMS = {A, B, D, F, H}. Figures 3.6(b)–3.6(d) show the graphs induced

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 52

by three possible answers for MS containing subsets of SMS . Intuitively,
answer A1 (Figure 3.6(b)) is better than A2 (Figure 3.6(c)) and A3 (Figure
3.6(d)), because A1 addresses what seems to be the query intention, which is to
find the character played by the actress in the movie. Also, A1 matches 6 of the
6 keywords inMS, whileA2 andA3 match only 5 and 3 keywords, respectively.
Note that, in A1 and A2, but not in A3, keywords are not matched by more
than one literal. Also, note that the keywords “movie” and “character” are
associated with elements of the schema, nodes B and H.

This example illustrates two important characteristics of keyword queries
and correct answers: keyword queries name existing resources, and answers
correlate these resources. In this example, “Meryl Streep”, “Out of Africa”,
“character”, and “movie” are informal resource identifiers that represent an
actress, a movie, the Character class, and the Movie class, respectively.

Let R ⊆ SK be a subset of seeds. Assume that all seeds in R belong to
the same connected component of RGT , the resources graph induced by T .
One can compute all possible answers whose matching resources are subsets of
R by computing all acyclic paths in RGT between pairs of distinct nodes in R,
combining them in all distinct ways to construct connected graphs containing
all nodes in R, and adding the matching subgraphs for the seeds r ∈ R.

Consider the set of seedsR′
MS = {A, B, F, H}, for example. If one selects

the paths (B ← A → G → F) and (G → H) and adds the matching
subgraphs (A→ “Out of Africa”), (B → “Movie”), (F → “Meryl Streep”),
and (H → “Character”), one will obtain the answer in Figure 3.6(b). If one
selects the path (B ← A → F ← G → H) and adds the same matching
subgraphs, one will obtain another valid answer (not shown in the figure).

Consider now the set of seeds R′′
MS = {A, B, F}. If one selects the path

(B ← A → F) and adds the matching subgraphs (A → “Out of Africa”),
(B → “Movie”), and (F → “Meryl Streep”), one will obtain the answer in
Figure 3.6(c). If one selects a different path (B ← A → G → F), one will
obtain yet another answer. In general, distinct path combinations may lead to
distinct valid answers for the same set of seeds.

More precisely, let K again be a keyword query and R ⊆ SK. Assume
that all seeds in R belong to the same connected component of RGT . A set
of triples SG ⊆ T is a solution generator for R iff SG can be partitioned into
two sets, SG ′ and SG ′′, such that: (i) SG ′ is the set of all matching triples of
the resources in R; (ii) SG ′′ is the set of all triples that occur in paths in RGT

that begin and end on the seeds in R. We say that SG expresses an answer A
iff A ⊆ SG and the set of matching resources of A is R.

Figure 4.8 shows the solution generators for RMS = {A, B, D, F, H} and

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 53

4.8(a): The solution generator for SK =
{A, B, D, F, H} from the dataset in Fig.
3.6(a).

4.8(b): The solution generator
for SK = {A, B, F, H} from the
dataset in Fig. 3.6(a).

Figure 4.8: Examples of solution generators.

R′
MS = {A, B, F, H}. Note that, even though both RMS and R′

MS cover all
keywords, they are distinct and express distinct sets of answers.

A synthetic benchmark is then a triple s = (T , Qs, As) such that T is an
RDF dataset, Qs is a list of keyword queries, and As contains, for each query
in Qs, a list of solution generators. Chapter 5 illustrates this concept.

However, computing all solution generators can be expensive, depending
on the cardinality of SK and the number of paths between the seeds. We
then propose to compute solution generators that capture only the most
relevant answers. Fortunately, unlike traditional Information Retrieval (IR)
systems, one can exploit peculiarities of the RDF KwS-Problem to define
optimization heuristics that reduce the computational cost and help rank
solution generators.

The differences between traditional IR systems and RDF-KwS systems
stem from the fact that keywords that co-occur in a document may not convey
the idea of keyword correlation. By contrast, an RDF subgraph connecting
resources linked to these keywords is much more likely to be related to the
intended meaning of the keyword query because resources are not connected
by chance in an RDF graph, as it may be the case in a text document.

By assuming such differences, one can define some characteristics of good
answers: the keywords must be connected as closely as possible, and answers
must contain as many keywords as possible. One can define other features
based on the number of resources in answers and the co-occurrence of keywords
among the literals. These features may guide the automatic computation of
answers by helping prune the search space.

We use four heuristics to work around the complexity of the problem
of computing solution generators, guided by five questions: (1) Are all seeds
relevant?; (2) Are all paths between seeds relevant?; (3) Should we prefer

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 54

answers that match more literals or answers that match fewer literals?; (4)
Should we prefer answers in which literals in the keyword query occur in many
seeds, or answers in which literals occur in only one seed?; (5) Should we prefer
answers with many seeds or answers with fewer seeds?

The first heuristic refers to the selection of the most relevant seeds.
Assume that Lucene for Apache Jena Fuseki is the text search engine over
RDF adopted. The Lucene score is a TF-IDF-based score that captures the
relevance of property values for the keywords. The complete set of seeds of a
keyword query can be obtained from the Lucene inverted index

However, the set of seeds can be large. One could then limit this set to the
top-k resources by the Lucene score, but the resource labeled “Meryl Streep"
would be the 7th entry in the ranked list of seeds, and the resource labeled
“Out of Africa" would be the 30th entry. If one took the top 30 resources in the
ranking, the two seeds would be selected, but many less relevant seeds would
also be selected. Therefore, we define a more elaborated entity score as follows.

Let K be keyword query and SK be the set of seeds of K. We define the
entity score of a seed s ∈ SK for K as

es(s,K) = 1
2(maxvj

(lucene(s, vj,K)) + infoRank(s)) (4-1)

where vj is a string value such that there is a triple (s, p, vj) ∈ T . The infoRank
score [2] reflects the relevance of s to users. The entity score ranges in [0, 1],
since we used normalized versions of lucene(s, vj,K) and infoRank(s). If a text
search engine other than Lucene is adopted or a resource relevance measure
other than infoRank is used, Eq. 4-1 should be adjusted accordingly.

By ranking the set of seeds of K according to the entity score, the resource
labeled “Meryl Streep” would appear in the 1st position, and that labeled with
“Out of Africa" would appear in the 18th position.

The first heuristic is then to refine the set of seeds SK to be the set ΣK

of the top-σ2 elements of {s ∈ SK|es(s,K) ≥ σ1} ordered in decreasing order
of entity score, where σ1 and σ2 are thresholds empirically defined to optimize
computing resources and match user’s preferences.

The threshold σ1 defines a minimum seed entity score to speed up the
Lucene engine for practical reasons, and σ2 effectively limits the number of
selected seeds. By defining σ1 = 0 and σ2 = ∞, one would select the full set
of seeds. But, by defining σ1 > 0 and σ2 <∞ one can restrict the cardinality
of 2ΣK and, consequently, the total number of paths to compute.

However, ΣK may not cover all keywords in K. We then compute another
set SKi

of matching resources, where Ki is the subset of K not matched
by resources in ΣK, and repeat this procedure to extend ΣK until no other

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 55

keyword can be matched or Ki = {}. More precisely, for any Ki ⊆ K, let SKi

be the set of seeds in SK that match keywords in Ki. Let µ[σ1](Ki,SKi
) =

{s ∈ SKi
|es(s,Ki) ≥ σ1}, and τ [σ1, σ2](Ki,SKi

) be the top-σ2 elements of
µ[σ1](Ki,SKi

), ordered by the entity score of the seeds.
Let (K0, ...,KN) be the longest sequence such that K0 = K and, for

each i ∈ [1, N], Ki is the set of keywords in K not matched by seeds in
τ [σ1, σ2](Ki−1,SKi−1) and Ki ̸= ∅ and SKi

̸= ∅. Then, ΣK is defined as

ΣK =
N⋃

i=0
τ [σ1, σ2](Ki,SKi

) (4-2)

The second heuristic refers to the selection of sets in 2ΣK for which one
would compute the solution generators. It is done by scoring each R ∈ 2SK

and selecting the top-ranked ones based on four principles. First, the set of
matching keywords of R is the union of the set of keywords matched by each
resource in R; the sets R with the most significant number of keyword match-
ings are preferable and potentially would generate better answers. Second, the
keywords should preferably match just a few seeds of an answer because key-
words identify entities. We assume that answers where keywords do not match
more than one resource, such as those in Figures 3.6.3.6(b) and 3.6.3.6(c), are
more relevant.

Nevertheless, as detailed later in this chapter, this constraint can be
relaxed to allow answers such as that in Figure 3.6(d). Third, smaller answers,
in terms of the number of seeds, are preferable over larger ones since they are
easier to understand. Lastly, small sets are preferable, but it is also necessary
that their resources are the most relevant to users. Based on these principles,
we define the following scores.

Let E be a set of resources. The coverage score of E , denoted cs(E ,K),
measures the number of keywords inKmatched by resources in E ; cs(E ,K) = 1,
if all keywords are matched, and cs(E ,K) = 0, if no keyword is matched:

cs(E ,K) =
∑

ki∈K occur(E , ki)
|K|

(4-3)

where occur(E , ki) = 1, if some resource in E matches ki, and occur(E , ki) = 0,
otherwise.

The co-occurrence score of E , denoted os(E ,K), measures the repetition
degree of keywords in K among resources in E ; os(E ,K) = 1, if each keyword
is matched by only one resource, and os(E) = 0, if all keywords are matched
by all resources:

os(E ,K) =
1− f(E,K)

|E|

1− 1
|E|

(4-4)

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 56

where f(E ,K) is the average number of resources in E that match keywords in
K. Keywords not covered in E are not taken into account; os(E ,K) is assumed
to be 1, if the denominator is 0.

Let C be the collection of sets of resources considered. The size score of
E w.r.t. C, denoted ss(E), measures the relative size of E ; ss(E) = 1, if E is
one of the smallest sets, and ss(E) = 0, if E is one of the largest sets:

ss(E) = N − |E|
N − 1 (4-5)

where N is the cardinality of the largest set in C; ss(E ,K) is assumed to be 1,
if the denominator is 0.

The infoRank score of E , denoted is(E), is the average infoRank value [2]
of the resources in E :

is(E) = average({infoRank(si)|si ∈ E}) (4-6)

The second heuristic is then the refinement of the set 2ΣK by choosing
only those R ∈ 2ΣK with better coverage, lower co-occurrence, fewer number
of resources, and with more relevant nodes. Recall that a lower co-occurrence
would favor answers such as those in Figures 3.6.3.6(b) and 3.6.3.6(c), while
allowing answers such as that in Figure 3.6.3.6(d). On the other hand, no
co-occurrence (os(R,K) = 1) would allow answers such as those in Figures
3.6.3.6(b) and 3.6.3.6(c) only. The refinement is expressed by defining set ΠK

as follows:

ΠK = {R ∈ 2ΣK|cs(R,K) ≥ σ3 ∧ os(R,K) ≥

σ4 ∧ ss(R) ≥ σ5 ∧ is(R) ≥ σ6}
(4-7)

where σ3, σ4, σ5, and σ6 are empirically defined according to the available
computing resources and user preferences. If σ3 = σ4 = σ5 = σ6 = 0 then
ΠK = 2ΣK and all possible solution generators with ΣK would be computed.
The above scores can be redefined for subsets of triples U ⊆ T by taking
E = EU , where EU is the set of all resources in U .

The third heuristic is to consider only paths between seeds with length
less than or equal to a given limit L, say L = 4, to compute solution generators.
As argued by Nunes et al. [50], paths longer than 4 would express unusual
relationships, which users might misinterpret.

The fourth heuristic is to rank the solution generators in ΠK according to
their scores, following user needs. For example, if one ranks based only on the
coverage and size, one may define a Boolean function “order” between solution

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 57

generators as follows:

order(SG1,SG2) =

 cs(SG1,K) ≥ cs(SG2,K), if C holds
ss(SG1,K) ≥ ss(SG2), otherwise

(4-8)

where C is the condition cs(SG1,K) ̸= cs(SG2,K). Alternatively, one could
rank solution generators by their average scores as in Eq. 4-9 to balance the
losses and gains of each individual score:

order(SG1,SG2) = 1
4(cs(SG2,K)+

os(SG2,K) + ss(SG2) + is(SG2))
(4-9)

Eqs. 4-2, 4-7, 4-8, and 4-9 are, in fact, flexibilization points of the method.
For example, instead of using the Lucene score in Eq. 4-1, one could use a
keyword count, and instead of a selection in Eq. 4-7, one could use the top
of the ranking of the sets R ∈ 2ΣMS with the order function defined in Eq.
4-9. The method chosen will determine the set of solution generators that will
be computed. The central contribution of this work lies, then, in using the
peculiarities of RDF keyword search to define a process for optimizing the
computation of solution generators.

Algorithm 1 Algorithm to compute a ranked list of solution generators for a
keyword query K over an RDF dataset T .
Require: a keyword query K and an RDF dataset T

1: ΣK = ⋃N
i=0 τ [σ1, σ2](Ki,SKi

)
2: ΠK = {R ∈ 2SK|cs(R,K) ≥ σ3∧ os(R,K) ≥ σ4∧ ss(R) ≥ σ5∧ is(R,K) ≥

σ6}
3: U = {}
4: for all R ∈ ΠK do
5: SG = {}
6: for all distinct unordered pairs of nodes {n1,

n2} such that n1, n2 ∈ ΣK do
7: SG = SG∪{(s, p, o) ∈ T |(s, p, o) is in a path with length ≤ 4

between n1 and n2}
8: end for
9: if G ′

SG is connected then
10: U = U ∪ {SG}
11: end if
12: end for
13: Create U ′ by ordering U using the score function in Eq. 4-8
14: return U ′

Algorithm 1 embeds the proposed heuristics to reduce the cost of com-

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 4. A Method for Generating Benchmarks 58

puting solution generators by disregarding the less relevant ones. It takes as
input a keyword query K and an RDF dataset T , and outputs a ranked list of
solution generators according to the score function in Eq. 4-8. Lines 1 and 2
prepare the sets of nodes that will guide the computation of the solution gen-
erators according to Eqs. 4-2 and 4-7. Lines 4–12 compute solution generators
for each set of seeds in ΠK . In lines 9–11, if the set of triples SG computed for
a set of seeds R ∈ ΠK does not induce a connected graph G ′

SG (connectivity
graph of SG), then SG is discarded because, for each connected component Ci

of G ′
SG, there is a strict subset Rj of R such that the set of triples computed

for Rj induces Ci.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

5
Evaluation of the Benchmark Generation Method

This chapter addresses the critical question of evaluating the proposed
benchmark generation method. The evaluation concentrates on assessing the
quality of the solution generators.

5.1
Evaluation Strategy

The evaluation strategy goes as follows. Let b = (D, Qb, Ab) be a baseline
benchmark, where D is an RDF dataset, Qb is a set of keyword queries,
and Ab defines the correct answers for the queries in Qb. The strategy is
to construct a synthetic benchmark s = (D, Qs, As) for the same dataset
D, using the proposed method, where Qb ∩ Qs ̸= ∅ and As contains, for
each keyword query in Qs, a list of solution generators over D, synthesized
using an implementation of Algorithm 1. Then, for each keyword query in
Qb ∩ Qs, we compare the answers in Ab with the solution generators in As,
as explained in what follows; this is the critical point of the evaluation. Note
that we have to guarantee that Qb ∩ Qs ̸= ∅ as otherwise, the benchmark
comparison would have a vacuous effect. Rather than using the keyword query
generation method discussion in Section 4.1, we manually selected keyword
queries from the baseline benchmarks to include in the synthetic benchmarks,
as also discussed in what follows.

As baselines, we adopted a benchmark for RDF-KwS based on Coffman’s
[3] and Dosso’s [4] benchmarks. Coffman’s benchmark was created to evalu-
ate keyword search systems over relational databases and is based on data
and schemas of relational samples of IMDb, Mondial, and Wikipedia. Each
database has 50 keyword queries and their correct answers. Dosso and Silvello
[4] used three real RDF datasets, LinkedMDB, IMDb, and DBpedia, and two
synthetic RDF datasets, The Lehigh University Benchmark – LUBM, and The
Berlin SPARQL Benchmark – BSBM.

As for the datasets, we chose triplifications of relational versions of the full
Mondial and IMDb datasets, and not just samples as in Coffman’s benchmark,
and the RDF datasets BSBM, LUBM, and DBpedia from Dosso’s benchmark.
For each such RDF dataset, we computed the infoRank scores [2].

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 5. Evaluation of the Benchmark Generation Method 60

We selected the keyword queries of the synthetic benchmarks as follows.
Quite a few keyword queries in Coffman’s benchmark are simple queries in that
their expected answers are single entities. Since these queries do not explore
the complexity of the graph structure of the RDF datasets, we disregarded
them for IMDb and Mondial. We used the keyword queries for BSBM, LUBM,
and DBpedia as defined in Dosso’s benchmark. In total, we used 35 keyword
queries for IMDb and 12 for Mondial from Coffman’s benchmark, and 50
keyword queries for DBpedia, 14 for LUBM, and 13 for BSBM, from Dosso’s
benchmark.

Finally, we ran an implementation of Algorithm 1 to obtain a list of
solution generators, for each of the selected keyword queries. The parameters
described in Section 4.3 were set as σ1 = 0, σ2 = 5, σ3 = 1.0, σ4 = 0.5, σ5 =
0.2, σ6 = 0.2, for all datasets.

The above process resulted in 5 synthetic benchmarks using IMDb, Mon-
dial, BSBM, LUBM, and DBpedia. The RDF datasets are available at https:
//doi.org/10.6084/m9.figshare.11347676.v3, and the implementation of
the Algorithm 1, the keyword queries, the solution generators, and statistics
are available at https://doi.org/10.6084/m9.figshare.16598813.v1.

5.2
Results

We compared the baseline benchmark with the corresponding synthetic
benchmark for each of the five RDF datasets. Consider the following ques-
tions (where K is a keyword query of both the baseline benchmark and the
corresponding synthetic benchmark, as explained above):

Q1. What is the total number sK of answers expressed by the solution
generators for K in the synthetic benchmark?

Q2. What is the total number bsK of answers of K, defined in the baseline
benchmark, that are expressed by the solution generators for K in the
synthetic benchmark?

Q3. What is the total number snK of answers expressed by the solution
generators for K in the synthetic benchmark that are not defined in
the baseline benchmark?

Let BK be the set of answers for K defined in the baseline benchmark
and bK = |BK|.

To address these questions, one has to compute the set SK of answers
for K that the solution generators for K express. It depends on the exact

https://doi.org/10.6084/m9.figshare.11347676.v3
https://doi.org/10.6084/m9.figshare.11347676.v3
https://doi.org/10.6084/m9.figshare.16598813.v1
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 5. Evaluation of the Benchmark Generation Method 61

notion of answer one is adopting. For example, the set of minimal answers
can be estimated by counting the minimal Steiner Trees [51, 52] of a solution
generator SG whose terminal nodes are the set of seeds of SG. To compute
|BK ∩ SK|, one has to test, for each answer A ∈ BK, if there is some solution
generator for K that expresses A. Hence, we have that

– sK = |SK|

– bsK = |BK ∩ SK|

– snK = |SK −BK| = |SK| − |BK ∩ SK|

Column #Ms of Table 5.1 shows the total number of minimal answers
expressed by the solution generators for K that are not defined in the original
benchmarks.

Q1 and Q2 lead to an interesting discussion. Consider that the baseline
benchmarks are keyword search systems to be evaluated against the synthetic
benchmarks. Then, one can compute the precision of the baseline benchmark
for K against the equivalent synthetic benchmark as pK = bsK/bK. The larger
pK is, the larger will be the number of correct answers for K, in the baseline
benchmark, that the solution generators express. Likewise, one can compute
the recall of the baseline benchmark for K against the equivalent synthetic
benchmark as rK = bsK/sK.

Table 5.1: Benchmarks statistics obtained for Mondial, IMDb, and DBpedia.

Datasets Sample Keyword Queries #Seeds Precision #Sol. Generators #Ms

Mondial

niger country 4 1.00 4 23
haiti religion 2 1.00 1 2
mongolia china 4 1.00 2 3
lebanon syria 5 1.00 3 10
poland cape verde organization 5 0.82 4 132
rhein germany province 5 0.50 2 82

OVERALL AVERAGE 0.91 5.00 184.83

IMDb

Johnny Depp Actor 5 1.00 12 46
Will Smith Male 5 1.00 6 21
Atticus Finch Movie 5 1.00 10 35
russell crowe gladiator character 5 0.50 11 21
sean connery ian fleming work 5 0.11 10 27

OVERALL AVERAGE 0.52 5.51 38.60

DBpedia

Captain America creator notable works 5 1.00 5 47
Canada Capital 5 1.00 3 57
governor of Texas 5 1.00 5 58
Francis Ford Coppola film director 5 1.00 11 61
mayor of new york city 5 0.00 2 9
NASA launchpad 5 0.00 3 5

OVERALL AVERAGE 0.58 8.22 91.86

Table 5.1 summarizes statistics for Mondial, IMDb, and DBpedia (Ap-
pendix D.1 shows the results for all queries). For sample keyword queries, it
shows the number of retrieved seeds, the precision values that the baseline
benchmarks achieved, the number of solution generators obtained from the

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 5. Evaluation of the Benchmark Generation Method 62

seeds, and the number of minimal answers expressed by the solution gener-
ators that are not defined in the baseline benchmarks. For example, for the
keyword queryK = {“niger”, “country”} from Mondial, the algorithm selected
four seeds: the country Niger, the province Niger, the river Niger, and
the class Country. Then, it computed four solution generators: 1) with all
seeds; 2) with all seeds, except the class Country; 3) with two seeds, the class
Country and the node Niger, which is an instance of class Country; and 4)
with only the class Country.

The Overall Averages can be interpreted as the percentage of the correct
answers, defined in the baseline benchmarks, that the solution generators
express - 91% for Mondial, 52% for IMDb, and 58% for DBpedia - which
is quite reasonable for synthetic benchmarks.

The results for IMDb and DBPedia can be explained as follows. Observe
that these datasets contain ambiguities, i.e., entities with similar names. The
automatic selecting seeds could not always choose the same entities as in
the original benchmarks. Furthermore, the ambiguity entities have many data
properties, which implies that the inforank score selects the ambiguous entity.

Finally, we remark that, for the synthetic datasets (BSBM and LUBM),
Algorithm 1 precisely found the correct answers listed in Dosso’s benchmark.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

6
Contributions and Future Work

6.1
Contributions

One of the main issues in developing RDF keyword search algorithms
is the lack of appropriate benchmarks. The main contribution of the thesis,
described in Chapter 4, is a offline method to build benchmarks automatically,
allowing larger sets of queries and more complete answers.

The method has two steps: query generation and answer generation. The
query generation step, described in Sections 4.1 and 4.2, selects a set of inducers
and uses heuristics to extract related queries for each inducer. In particular,
Sections 4.2.2 and 4.2.3 discussed a process to improve the readability of
natural language queries by improving the verbalization of predicate labels
and treating exceptional cases, such as reified classes. The answer generation
step takes the queries and computes solution generators (SG), which are
subgraphs of the original dataset containing different answers to the queries.
We also proposed some heuristics that guide the construction of SGs and avoid
irrelevant answers.

The second contribution of the thesis is an implementation of the method,
also presented in Chapter 4. We explained the method step by step, with the
help of real examples taken from the Mondial database.

The third contribution of the thesis, described in Chapter 5, is an
evaluation of the benchmark generation process. We proceeded to describe
synthetic benchmarks for IMDb, Mondial, BSBM, LUBM, and DBpedia. The
experiments compared the synthetic benchmarks with baseline benchmarks.
The results showed that the obtained solution generators express most of the
correct answers defined in the baseline benchmarks, but express many more
answers for IMDb, Mondial, and DBpedia and precisely the defined answers
for the synthetic datasets, BSBM and LUBM.

Partial results related to this thesis, as well other relevant results, were
reported in the following articles:

– Neves, A., Leme, L.A.P.P., Izquierdo, Y.T., Casanova, M.A., Automatic
Construction of Benchmarks for RDF Keyword Search Systems Evalua-

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 6. Contributions and Future Work 64

tion. In Proceedings of the 23rd International Conference on Enterprise
Information Systems - Volume 1: ICEIS, ISBN 978-989-758-509-8; ISSN
2184-4992, pages 126-137. (Best student paper award)

– Izquierdo, Y.T., García, G.M., Menendez, E.S., Leme, L.A.P.P., Neves,
A., Lemos, M., Finamore, A.C., Oliveira, C., Casanova, M.A. Keyword
search over schema-less RDF datasets by SPARQL query compilation.
Information Systems, v.102, article 101814 (21 pages), 2021.

– Neves, A.B., Leme, L.A.P.P., Izquierdo, Y.T., Jiménez, J.H., Lopes, G.R.,
Casanova, M.A. Automatically Creating Benchmarks for RDF Keyword
Search Evaluation. Science Nature Computer Science, 3:4, pp 1-17 (July
2022).

6.2
Future Work

As future work, we may suggest the following.
The first suggestion is to improve the process of computing SGs, which

we recall is a combinatorial problem.
The second suggestion is to generate answers from keywords that allow

Boolean expressions and keyword phrases using quotes.
The third suggestion is to improve the answer generation method for

natural language queries. Indeed, this thesis described an answer generation
method for keyword queries and then adapted the method to natural language
queries. However, natural language queries, and their answers, can express
more complex relationships than keyword queries.

For example, the proposed method does not generate natural language
questions with aggregations. The fourth suggestion therefore is to adapt the
method to generate natural language queries with aggregations (or other
language constructions) and their respective answers.

The fifth suggestion stems from the fact that natural language database
interfaces, based on Deep Learning methods, are highly dependent on the
availability of training datasets, that is, datasets with sets of NL queries and
their answers, to obtain good results. Therefore, such systems would benefit
from an (easy) adaption of the benchmark construction process described in
this thesis to create such training datasets.

The sixth suggestion is to conduct a new experiment to evaluate the
keyword queries generated. The experiment would aim at discovering which
keyword queries in baseline benchmarks, such as Coffman’s, a benchmark
generated by the proposed method managed to produce.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Chapter 6. Contributions and Future Work 65

The last suggestion for future work is to extend the proposed benchmark
generation method to create multi-language natural language queries and their
answers.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Bibliography

[1] A. Bordes, J. Weston, and N. Usunier, “Open question answering with weakly
supervised embedding models,” in Joint European conference on machine
learning and knowledge discovery in databases. Springer, 2014, pp. 165–
180.

[2] E. S. Menendez, M. A. Casanova, L. A. P. Paes Leme, and M. Boughanem,
“Novel Node Importance Measures to Improve Keyword Search over RDF
Graphs,” in Proceedings of the 31st International Conference on Database
and Expert Systems Applications (DEXA’19), vol. 11707, 2019, pp. 143–158.

[3] J. Coffman and A. C. Weaver, “A framework for evaluating database keyword
search strategies,” in Proceedings of the 19th ACM International Conference
on Information and Knowledge Management (CIKM’10). New York, New
York, USA: ACM Press, 2010, p. 729.

[4] D. Dosso and G. Silvello, “Search Text to Retrieve Graphs: A Scalable RDF
Keyword-Based Search System,” IEEE Access, vol. 8, pp. 14 089–14 111,
2020.

[5] M. Dubey, D. Banerjee, A. Abdelkawi, and J. Lehmann, “LC-QuAD 2.0:
A Large Dataset for Complex Question Answering over Wikidata and DB-
pedia,” in Proceedings of the 18th International Semantic Web Conference
(ISWC’19), 2019, pp. 69–78.

[6] P. Trivedi, G. Maheshwari, M. Dubey, and J. Lehmann, “LC-QuAD: A Corpus
for Complex Question Answering over Knowledge Graphs,” in Proceedings of
the 16th International Semantic Web Conference (ISWC’17), 2017, pp. 210–
218.

[7] G. M. García, Y. T. Izquierdo, E. S. Menendez, F. Dartayre, and M. A.
Casanova, “RDF Keyword-based Query Technology Meets a Real-World
Dataset,” EDBT/ICDT 2017, pp. 656–667, 2017.

[8] J. Coffman and A. C. Weaver, “Benchmark for Relational Keyword Search.”
[Online]. Available: https://doi.org/10.18130/V3/KEVCF8

https://doi.org/10.18130/V3/KEVCF8
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Bibliography 67

[9] H. Bast, B. Buchhold, and E. Haussmann, “Semantic Search on Text and
Knowledge Bases,” Foundations and Trends in Information Retrieval, vol. 10,
no. 1, pp. 119–271, 2016.

[10] K. Balog and R. Neumayer, “A test collection for entity search in DBpedia,”
in Proceedings of the 36th International ACM SIGIR Conference on Research
and Development in Information Retrieval. New York, NY, USA: ACM, 7
2013, pp. 737–740.

[11] A. d. C. Oliveira Filho, “Benchmark para métodos de consultas por palavras-
chave a bancos de dados relacionais,” Universidade Federal de Goiás, Goiás,
Tech. Rep., 2018.

[12] Y. T. Izquierdo, G. M. García, E. S. Menendez, M. A. Casanova, F. Dartayre,
and C. H. Levy, “QUIOW: A Keyword-Based Query Processing Tool for RDF
Datasets and Relational Databases,” in Proceedings of the 30th International
Conference on Database and Expert Systems Applications (DEXA’18), vol.
11030 LNCS, 2018, pp. 259–269.

[13] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL Knowledge
Base Systems,” Journal of Web Semantics, vol. 3, no. 2-3, pp. 158–182, 10
2005.

[14] C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark,” International
Journal on Semantic Web and Information Systems, vol. 5, no. 2, pp. 1–24,
4 2009.

[15] E. Minack, W. Siberski, and W. Nejdl, “Benchmarking fulltext search perfor-
mance of RDF stores,” in Proceedings of the 6th European Semantic Web
Conference (ESWC’09), vol. 5554 LNCS. Heraklion, Greece: Springer-Verlag,
2009, pp. 81–95.

[16] M. Poess and J. M. Stephens, “Generating Thousand Benchmark Queries in
Seconds,” in Proceedings of the Thirtieth International Conference on Very
Large Data Bases - Volume 30, ser. VLDB ’04. VLDB Endowment, 2004,
p. 1045–1053.

[17] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao, “Semantic
SPARQL similarity search over RDF knowledge graphs,” Proceedings of the
VLDB (VLDB’16), vol. 9, no. 11, pp. 840–851, 2016.

[18] S. Han, L. Zou, J. X. Yu, and D. Zhao, “Keyword Search on RDF Graphs
- A Query Graph Assembly Approach,” in Proceedings of the 2017 ACM on

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Bibliography 68

Conference on Information and Knowledge (CIKM’17). New York, NY, USA:
ACM, 11 2017, pp. 227–236.

[19] X. Q. Lin, Z. M. Ma, and L. Yan, “RDF keyword search using a type-based
summary,” Journal of Information Science and Engineering, vol. 34, no. 2,
pp. 489–504, 2018.

[20] Y. Wen, Y. Jin, and X. Yuan, “KAT: Keywords-to-SPARQL translation
over RDF graphs,” in Proceedings of the 23rd International Conference
on Database Systems for Advanced Applications (DASFAA’18), vol. 10827
LNCS. Gold Coast, Australia: Springer, 2018, pp. 802–810.

[21] M. Rihany, Z. Kedad, and S. Lopes, “Keyword search over RDF graphs using
wordnet,” in Proceedings of the 1st International Conference on Big Data and
Cyber-Security Intelligence (BDCSIntell’18), vol. 2343, 2018, pp. 75–82.

[22] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu, “SPARK: Adapting
keyword query to semantic search,” in Proceedings of the 6th International
Semantic Web Conference (ISWC’07), vol. 4825 LNCS. Busan, Korea:
Springer, Berlin, Heidelberg, 2007, pp. 694–707.

[23] G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl, “From keywords
to semantic queries—Incremental query construction on the semantic web,”
Journal of Web Semantics, vol. 7, no. 3, pp. 166–176, 9 2009.

[24] T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k exploration of query
candidates for efficient keyword search on graph-shaped (rdf) data,” 25th
International Conference on Data Engineering (ICDE), pp. 405–416, 2009.

[25] S. Elbassuoni and R. Blanco, “Keyword search over RDF graphs,” in
Proceedings of the 20th ACM International Conference on Information and
Knowledge Management (CIKM’11). Glasgow, UK: ACM Press, 2011, pp.
237–242.

[26] W. Le, F. Li, A. Kementsietsidis, and S. Duan, “Scalable Keyword Search on
Large RDF Data,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 11, pp. 2774–2788, 11 2014.

[27] J. Pound, P. Mika, and H. Zaragoza, “Ad-hoc Object Retrieval in the Web of
Data,” in Proceedings of the 19th International Conference on World Wide
Web (WWW ’10). New York, NY, USA: ACM, 2010, pp. 771–780.

[28] K. Affolter, K. Stockinger, and A. Bernstein, “A comparative
survey of recent natural language interfaces for databases,” VLDB

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Bibliography 69

Journal, vol. 28, no. 5, pp. 793–819, 2019. [Online]. Available:
https://doi.org/10.1007/s00778-019-00567-8

[29] D. Saha, A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R.
Mittal, and F. Özcan, “ATHENA: An Ontology-Driven System for Natural
Language Querying over Relational Data Stores,” Proceedings of the
VLDB Endow., vol. 9, no. 12, p. 1209–1220, 2016. [Online]. Available:
https://doi.org/10.14778/2994509.2994536

[30] M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. D’Aquin, K. Srinivas,
P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, and S. Staab, “TR Dis-
cover: A Natural Language Interface for Querying and Analyzing Interlinked
Datasets,” Lecture Notes in Computer Science, vol. 9367, no. December 2016,
2015.

[31] W. Franco, A. O. R. Franco, C. V. Avila, L. Cabral, G. Maia, V. Pinheiro,
V. Vidal, and J. Machado, “ExQuestions: An Expanded Factual Corpus for
Question Answering over Knowledge Graphs,” in 2022 IEEE 16th International
Conference on Semantic Computing (ICSC), 2022, pp. 235–242.

[32] F. Li and H. V. Jagadish, “NaLIR: an interactive natural language interface
for querying relational databases,” Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (SIGMOID’14), 2014.

[33] S. Ferré, “SQUALL: a High-Level Language for Querying and
Updating the Semantic Web,” pp. 1–18, 2011. [Online]. Available:
https://hal.inria.fr/inria-00628427/document

[34] S. Ferre, “SPARKLIS: A SPARQL endpoint explorer for expressive question
answering,” CEUR Workshop Proceedings, vol. 1272, no. October 2014, pp.
45–48, 2014.

[35] A. Marginean, “Question answering over biomedical linked data with Gram-
matical Framework,” Semantic Web, vol. 8, no. 4, pp. 565–580, 2017.

[36] Y. SCHREIBER, GUUS; RAIMOND, “RDF 1.1 Primer,” 2014. [Online].
Available: https://www.w3.org/TR/rdf11-primer/#

[37] M. L. R. Cyganiak, D. Wood, “RDF 1.1 Concepts and Abstract Syntax,”
2014. [Online]. Available: https://www.w3.org/TR/rdf11-concepts/

[38] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea

https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.14778/2994509.2994536
https://hal.inria.fr/inria-00628427/document
https://www.w3.org/TR/rdf11-primer/#
https://www.w3.org/TR/rdf11-concepts/
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Bibliography 70

Stein, “OWL Web Ontology Language,” 2009. [Online]. Available:
https://www.w3.org/TR/owl-ref/

[39] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin
Carothers, “RDF 1.1 Turtle,” 2014. [Online]. Available: http:
//www.w3.org/TR/2014/REC-turtle-20140225/

[40] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” Proceedings of
the Conference North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL HLT’ 2019), vol. 1, no.
Mlm, pp. 4171–4186, 2019.

[41] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le,
“XLNet: Generalized autoregressive pretraining for language understanding,”
Advances in Neural Information Processing Systems, vol. 32, pp. 1–18, 2019.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space,” Proceedings of Workshop at ICLR, 2013.

[43] Dhami Dharti, “Understanding BERT — Word Embed-
dings,” 2020. [Online]. Available: https://medium.com/@dhartidhami/
understanding-bert-word-embeddings-7dc4d2ea54ca

[44] Alammar Jay, “The Illustrated BERT, ELMo, and co. (How
NLP Cracked Transfer Learning),” 2021. [Online]. Available:
http://jalammar.github.io/illustrated-bert/

[45] F. Baader, D. Calvanese, D. L. McGuinness, D. L.
McGuinness, D. Nardi, and P. F. Patel-Schneider,
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2007.

[46] D. Berardi, D. Calvanese, and G. D. Giacomo, “Reasoning on UML class
diagrams,” Artif. Intell., vol. 168, pp. 70–118, 2005.

[47] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, “Key-
word searching and browsing in databases using BANKS,” in Proceedings of
the 18th International Conference on Data Engineering (ICDE’02). IEEE
Comput. Soc, 2002, pp. 431–440.

[48] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search in Rela-
tional Databases,” in Proceedings of the 28th International Conference on
Very Large Databases (VLDB’02). Elsevier, 2002, pp. 670–681.

https://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
https://medium.com/@dhartidhami/understanding-bert-word-embeddings-7dc4d2ea54ca
https://medium.com/@dhartidhami/understanding-bert-word-embeddings-7dc4d2ea54ca
http://jalammar.github.io/illustrated-bert/
DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Bibliography 71

[49] B. Kimelfeld and Y. Sagiv, “Efficiently enumerating results of keyword search
over data graphs,” Information Systems, vol. 33, no. 4-5, pp. 335–359, 6
2008.

[50] B. P. Nunes, J. Herrera, D. Taibi, G. R. Lopes, M. A. Casanova, and S. Dietze,
“SCS Connector - Quantifying and Visualising Semantic Paths Between Entity
Pairs,” in Proceedings of the Satellite Events of the 11th European Semantic
Web Conference (ESWC’14), 2014, pp. 461–466.

[51] P. S. de Oliveira, A. Da Silva, E. Moura, and R. De Freitas, “Efficient Match-
Based Candidate Network Generation for Keyword Queries over Relational
Databases,” IEEE Transactions on Knowledge and Data Engineering, p. 1,
2020.

[52] M. C. Dourado, R. A. de Oliveira, and F. Protti, “Generating all the Steiner
trees and computing Steiner intervals for a fixed number of terminals,”
Electronic Notes in Discrete Mathematics, vol. 35, pp. 323–328, 12 2009.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

A
Fragment of Benchmark for Dataset: Mondial

Question: What are the Organization O such that India and Mauritius
are members of O ?

Keywords: Mauritus, India and Organization

Solution Generator:

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
3 PREFIX dbr: <http :// dbpedia .org/ resource />
4 PREFIX mondial : <http :// www. semwebtech .org/ mondial /10/ >
5
6 mondial :IND
7 rdf:type Country ;
8 rdfs:label "India ";
9 mondial : isMember mondial :IFAD ;

10 mondial : isMember mondial :G -77 .
11
12 mondial :MS
13 rdf:type mondial : Country ;
14 rdfs:label " Mauritius ";
15 mondial : isMember mondial :IFAD;
16 mondial : isMember mondial :G -77.
17
18 mondial : islandMauritius
19 rdf:type mondial : Island ;
20 rdfs:label " Mauritius ";
21 mondial : locatedInWater ; mondial : IndianOcean ;
22 mondial : locatedIn mondial :MS.
23
24 mondial : IndianOcean
25 rdf:type mondial :Ocean;
26 rdfs:label " Indian Ocean ".
27
28 mondial :IFAD
29 rdf:type mondial : Organization ;
30 rdfs:label "Int. Fund for Agricultural Development ".
31

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Appendix A. Fragment of Benchmark for Dataset: Mondial 73

32 mondial :G -77
33 rdf:type mondial : Organization ;
34 rdfs:label "Group of G -77".
35
36 mondial : Country
37 rdfs:label " Country ".
38
39 mondial : Organization
40 rdfs:label " Organization ".
41
42 mondial : Island
43 rdfs:label " Island ".

Answer 1:
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
3 PREFIX dbr: <http :// dbpedia .org/ resource />
4 PREFIX mondial : <http :// www. semwebtech .org/ mondial /10/ >
5
6 mondial :IND
7 rdf:type Country ;
8 rdfs:label "India ";
9 mondial : isMember mondial :IFAD;

10 mondial : isMember mondial :G -77.
11
12 mondial :MS
13 rdf:type mondial : Country ;
14 rdfs: label " Mauritius ";
15 mondial : isMember mondial :IFAD;
16 mondial : isMember mondial :G -77.
17
18
19 mondial :IFAD
20 rdf:type mondial : Organization ;
21 rdfs: label "Int. Fund for Agricultural Development ".
22
23 mondial :G -77
24 rdf:type mondial : Organization ;
25 rdfs:label "Group of G -77".
26
27 mondial : Country
28 rdfs: label " Country ".
29
30 mondial : Organization
31 rdfs: label " Organization ".

Answer 2:
1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Appendix A. Fragment of Benchmark for Dataset: Mondial 74

2 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
3 PREFIX dbr: <http :// dbpedia .org/ resource />
4 PREFIX mondial : <http :// www. semwebtech .org/ mondial /10/ >
5
6 mondial :IND
7 rdf:type Country ;
8 rdfs:label "India ";
9 mondial : isMember mondial :IFAD;

10 mondial : isMember mondial :G -77.
11
12 mondial :MS
13 rdf:type mondial : Country ;
14 rdfs:label " Mauritius ";
15 mondial : isMember mondial :IFAD;
16 mondial : isMember mondial :G -77.
17
18 mondial : islandMauritius
19 rdf:type mondial : Island ;
20 rdfs:label " Mauritius ";
21 mondial : locatedIn mondial :MS.
22
23 mondial :IFAD
24 rdf:type mondial : Organization ;
25 rdfs:label "Int. Fund for Agricultural Development ".
26
27 mondial :G -77
28 rdf:type mondial : Organization ;
29 rdfs:label "Group of G -77".
30
31 mondial : Country
32 rdfs:label " Country ".
33
34 mondial : Organization
35 rdfs:label " Organization ".
36
37 mondial : Island
38 rdfs:label " Island ".

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

B
Natural Language Sentences generated in the Mondial
dataset

Table B.1: Natural Language Sentence Results.

Results by ismember predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

India is member
International Fund for

Agricultural Development
Algeria is a member of the

African Union, the Arab League,
OPEC, the United Nations

and is the founding
member of the Maghreb

Union

is a member
of

Italy is member
the Black Sea

Economic Cooperation Zone
United Arab Emirates

is member Group
of 77.

Results by hascity predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

The United States has city
Arlington

The archipelago, with a total
population of nearly 254,000
inhabitants, has the city of

Funchal as its most important centre.

has the city
ofIndia has city Ahmadabad

France has city
Paris

Results by hasprovince predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

China has province
Heilongjiang

It has the province of Catanzaro
to the north, Reggio

di Calabria.

has the province
ofRussia has province

Primorskiy.
India has province

Chhattisgarh.

Results by locatedin predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Acre located in
Peru

The city is located in
the province

of North Holland in
the west of the country.

is located in
Maipo located in Chile.

Donau located in
Slovakia.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Appendix B. Natural Language Sentences generated in the Mondial dataset 76

Results by locatedat predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Formosa located at
Paraguay

India Gate, which is located at
the eastern end of the

Rajpath.
is located at

Posadas located at
Parana.

Minneapolis
located at

Mississippi.

Results by mergeswith predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Skagerrak merges with
Kattegat. By sea Ukraine borders

with Romania and Russia.
borders with

Kattegat merges with
Skagerrak.

Results by dependentof predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Hong Kong dependent
of China.

This index describes how a
country is dependent of

importation and how diverse are
its importation.

is dependent of
Puerto Rico dependent

of United States.
Macao dependent of China.

Results by inmountains predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Mt. Everest in
mountains Himalaya.

Our future home is
in the mountain of the house

of the Lord in the world
to come.

is in the mountain of
Iremel in mountains

Ural.
Montalto in mountains

Apennin.

Results by hasheadquarters predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Bank for International
Settlements has headquarters

Basel
The World Council

of Churches, including
Orthodox Churches, has

its headquarters in
Geneva, Switzerland.

has its headquarters
in

International Energy Agency
has headquarters

Paris.
International Civil Aviation

Organization has headquarters
Montréal.

Results by capital predicate

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Appendix B. Natural Language Sentences generated in the Mondial dataset 77

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

United States capital
Washington D C

For example, do
you know what
country has the

capital in Bogota?

has the capital
inUnited Kingdom capital

London
Brazil capital Brasilia

Results by encompassed predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

China encompassed Asia The majority of
the United States
is encompassed by
either the North

American ECA or
the U S.

is encompassed byRussia encompassed
Europe.

Mali
encompassed

Africa

Results by dependentof predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Mongolia dependent
of China

After China was
dependent of bigger
countries, they were

afraid it would
happen to them.

was dependent of
India dependent

of United Kingdom.
Qatar dependent

of United Kingdom

Results by locatedin predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Chongming located in
water Yangtze

Chongming is located
in the Yangtze River,

dividing the river
into northern and
southern channels.

is located in the
Fünen located in
water Kattegat.

Seeland located in
water Kattegat.

Results by flowsthrough predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Ammer flows through
Ammersee What river flows

through Kiev Ukraine?.
river flows through

Aare flows through
Brienzersee.

Vuoksi flows through
Saimaa.

Results by locatedinwater predicate

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Appendix B. Natural Language Sentences generated in the Mondial dataset 78

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Chongming located in
water Yangtze

Chongming is located
in the Yangtze River,

dividing the river
into northern and
southern channels.

is located in the
Fünen located in
water Kattegat.

Seeland located in
water Kattegat.

Results by locatedonisland predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Psiloritis located on
island Crete

Faedra Beach is located on the
island of Crete to the east

of Heraklion.

is located on
the island ofGalway located on

island Ireland.

Results by neighbor predicate

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Hungary neighbor
Slovakia

Ukraine borders Poland. borders
Brazil neighbor

Guyana.
Bolivia neighbor

Peru.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

C
Natural Language Sentences generated for reified Relation-
ships in the Mondial dataset

Table C.1: Natural Language Sentence Results - Reified Relationships.

Reified relationship by SpokenBy class

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

French Spoken By
Luxembourg English is spoken

by American people.
is spoken by

Spanish Spoken By
Argentina.

Hindi Spoken By
India.

Reified relationship by BelievedBy class

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Christian believed by
India

God is believed by the mystic
to be real outside of the

occasional mystical experiences,
and to reveal

himself in the experiences.

is believed by
Muslim believed by

Bulgaria.
Anglican believed by

Canada.

Reified relationship by EthnicProportion class

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Polish Ethnic Proportion
Ukraine the Polish has

Ethnic group in Ukraine.
has ethnic group

inGerman Ethnic Proportion
Germany.

Roma Ethnic Proportion
Slovakia.

Reified relationship by Membership class

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Appendix C. Natural Language Sentences generated for reified Relationships in
the Mondial dataset 80

Labeled RDF Triples Selected Sentence from Corpus Extracted Predicate Label

Feerum membership Lower
Silesian Chamber of

Commerce
Germany is a

membership of the
Lower Silesian Chamber

of Commerce.

is a membership
of the

Austria Membership Food
and Agriculture Organization.
Ukraine Membership United

Nations Conference on
Trade and Development.

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

D
Benchmarks Statistics

Table D.1: Benchmarks statistics obtained for Mondial, IMDb, and DBpedia.

Datasets Sample Keyword Queries #Seeds Precision #SG #Ms

Mondial

niger country 4 1.00 4 23
spain galician 5 1.00 5 20
poland language 5 1.00 5 22
haiti religion 2 1.00 1 2
mongolia china 4 1.00 2 3
lebanon syria 5 1.00 3 10
poland cape verde organization 5 0.82 4 132
iceland mali organization 5 0.84 4 150
mauritius india organization 5 0.89 8 532
vanuatu afghanistan organization 5 0.87 16 850
hutu country africa 5 1.0 6 380
rhein germany province 5 0.50 2 82

OVERALL AVERAGE 0.91 5.00 184.83

IMDb

Denzel Washington Person 5 1.00 1 2
Johnny Depp Actor 5 1.00 12 46
Forrest Gump Work 5 1.00 4 29
Star Wars Movie 5 0.16 1 3
Angelina Jolie gender 5 1.00 3 5
the sound of music length 5 1.00 2 3
lord of the rings novel 5 1.00 7 12
Will Smith Male 5 1.00 6 21
tom hanks 9 July 1956 5 1.00 3 60
gone with the wind August 1991 5 0.50 10 92

casablanca They had a date
with fate in Casablanca

5 0.50 1 3

johnny depp Work 5 1.00 6 15
morgan freeman Work 5 1.00 4 8
atticus finch movie 5 0.50 10 35
indiana jones movie 5 0.20 10 150
james bond movie 5 0.43 3 26
will kane movie 5 0.00 3 8
dr hannibal lecter movie 5 0.50 2 7
darth vader movie 5 0.20 2 5
the wicked witch of the west movie 5 0.50 3 6

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Appendix D. Benchmarks Statistics 82

nurse ratched movie 5 0.50 9 21
jack ryan actor 5 0.25 11 40
terminator actor 5 0.25 4 177
clint eastwood Frank Horrigan 5 1.00 4 4
tom hanks 2004 5 0.20 6 145
audrey hepburn 1951 5 0.14 5 8
julia roberts richard gere work 5 0.00 4 45
harrison ford george lucas work 5 0.09 2 119
sean connery ian fleming work 5 0.11 10 27

indiana Jones and the last
crusade raiders
of the lost ark person

5 0.40 24 180

nathan algren tom cruise Work 5 0.50 2 7
rocky balboa sylvester stallone Work 5 0.50 3 15

Henry Jaynes Fonda Yours
Mine and Ours character

5 0.50 2 4

russell crowe gladiator character 5 0.40 11 21

brent spiner work star trek
the next generation character

5 0.20 3 3

OVERALL AVERAGE 0.52 5.51 38.60

DBpedia

Clint Eastwood starring director 5 1.00 7 52
John F Kennedy predecessor 5 1.00 1 9
Governing Mayor of Berlin 5 0.00 2 21
current tenants prime minister of spain 5 1.00 3 25
professional skateboarders Sweden 5 0.00 3 36
postalabbreviation MN 5 1.00 4 97

occupation bandleader
instrument trumpet

5 0.82 20 146

Kerouac author
Viking Press publisher

5 1.00 5 96

world heritage sites 5 1.00 7 150

Captain America creator
notable works

5 1.00 5 47

prodigy associated acts 5 1.00 7 11
female Russian astronauts 5 0.66 10 10
automobile assembly Germany 5 0.00 8 11
Vienna place of Birth Death Berlin 5 0.00 3 63
Canada Capital 5 1.00 3 57
governor of Texas 5 1.00 5 58
issue Elizabeth II 5 1.00 39 150
SPD ruling party 5 1.00 2 60
Sean Parnell governor 5 0.00 14 190
Sean Parnell governor 5 0.00 14 190
Francis Ford Coppola film director 5 1.00 11 61
starring director William Shatner 5 0.00 6 10

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

Appendix D. Benchmarks Statistics 83

US state gold mineral 5 0.00 3 95

Australian company type
nonprofit organization

5 0.36 5 20

T E Lawrence battles 5 1.00 2 124
products Skype 5 1.00 1 3
company location Munich 5 0.00 2 30
game GMT publisher 5 0.00 3 44
Intel founder 5 1.00 28 180
Amanda Palmer spouse 5 1.00 20 220
German Shepherd Dog breed 5 0.63 25 185
Weser city 5 1.00 5 91
Rhine city 5 1.00 8 130
born Philippines occupation surfing 5 0.00 5 197
goofy creator 5 0.20 6 45
Uzi designer 5 0.50 20 173

Frisian island
subdivisionName netherland

5 0.00 4 97

Lisbon leader party 5 1.00 13 230
abode Mount Olympus 5 1.00 20 135
Apollo 14 mission astronaut 5 1.00 8 135
Salt Lake City timezone 5 0.00 6 170
mayor of new york city 5 0.00 2 9
lake Denmark basin country 5 0.00 5 162
africa city capital 5 0.00 20 217
NASA launchpad 5 0.00 3 5
John Lennon instrument 5 1.00 6 115
The Scream Edvard Munch museum 5 0.00 3 35
television show Walt Disney creator 5 1.00 9 115
Area 51 location 5 1.00 8 180
Margaret Thatcher children 5 1.00 2 93
Scarface nickname 5 0.00 4 25

OVERALL AVERAGE 0.58 8.22 91.86

DBD
PUC-Rio - Certificação Digital Nº 1812807/CA

	Automatic Generation of Benchmarks for Evaluating Keyword and Natural Language Interfaces to RDF Datasets
	Resumo
	Table of contents
	Introduction
	Related Work
	Benchmarks
	Keyword Search Systems
	Natural Language Interface to Database - NLIBD

	Background and Definitions
	Resource Description Framework - RDF
	SPARQL: a query language for RDF
	BERT – Bidirectional Encoder Representations from Transformers
	Graph-related Definitions, Queries, and Answers
	Graph-related Definitions
	Keyword Queries and Answers
	Natural Language Queries and Answers

	A Method for Generating Benchmarks
	Computing Keyword Queries
	Computing Natural Language Queries
	Creating Natural Language Questions Based on Templates
	Improving the Verbalization of Predicate Labels
	Verbalization of reified relationships

	Computing Solution Generators

	Evaluation of the Benchmark Generation Method
	Evaluation Strategy
	Results

	Contributions and Future Work
	Contributions
	Future Work

	Fragment of Benchmark for Dataset: Mondial
	Natural Language Sentences generated in the Mondial dataset
	Natural Language Sentences generated for reified Relationships in the Mondial dataset
	Benchmarks Statistics

