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Abstract

Oliveira, Hugo de Souza; Pesco, Sinesio (Advisor); Alla, Alessan-
dro (Co-Advisor). A RBF approach to the control of PDEs
using Dynamic Programming equations. Rio de Janeiro, 2022.
99p. Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Semi-Lagrangian schemes for the approximation of the dynamic program-
ming principle are based on a time discretization projected on a state-space
grid. The use of a structured grid makes this approach not feasible for high-
dimensional problems due to the curse of dimensionality. In this thesis, we
present a new approach for infinite horizon optimal control problems where
the value function is computed using Radial Basis Functions (RBF) by the
Shepard’s moving least squares approximation method on scattered grids. We
propose a new method to generate a scattered mesh driven by the dynamics
and an optimal routine to select the shape parameter in the RBF. This mesh
will help to localize the problem and approximate the dynamic programming
principle in high dimension. Error estimates for the value function are also
provided. Numerical tests for high dimensional problems will show the effecti-
veness of the proposed method. In addition to the optimal control of classical
PDEs, we show how the method can also be applied to the control of nonlocal
equations. We also provide an example analyzing the numerical convergence
of a nonlocal controlled equation towards the continuous model.

Keywords
Radial Basis Functions; Dynamic Programming; Partial Differential

Equations; Optimal Control Problems; Numerical Methods for PDEs.
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Resumo

Oliveira, Hugo de Souza; Pesco, Sinesio; Alla, Alessandro. Um
método baseado em RBF para o controle de EDPs usando
equações de Programação Dinâmica. Rio de Janeiro, 2022.
99p. Tese de Doutorado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Esquemas semi-Lagrangeanos usados para a aproximação do princípio
da programação dinâmica são baseados em uma discretização temporal re-
construída no espaço de estado. O uso de uma malha estruturada torna essa
abordagem inviável para problemas de alta dimensão devido à maldição da
dimensionalidade. Nesta tese, apresentamos uma nova abordagem para pro-
blemas de controle ótimo de horizonte infinito onde a função valor é calculada
usando Funções de Base Radial (RBFs) pelo método de aproximação de míni-
mos quadrados móveis de Shepard em malhas irregulares. Propomos um novo
método para gerar uma malha irregular guiada pela dinâmica e uma rotina
de otimizada para selecionar o parâmetro responsável pelo formato nas RBFs.
Esta malha ajudará a localizar o problema e aproximar o princípio da progra-
mação dinâmica em alta dimensão. As estimativas de erro para a função valor
também são fornecidas. Testes numéricos para problemas de alta dimensão
mostrarão a eficácia do método proposto. Além do controle ótimo de EDPs
clássicas mostramos como o método também pode ser aplicado ao controle
de equações não-locais. Também fornecemos um exemplo analisando a conver-
gência numérica de uma equação não-local controlada para o modelo contínuo.

Palavras-chave
Funções de Base Radial; Programação Dinâmica; Equações Diferenciais

Parciais; Problemas de Controle Ótimo; Métodos Numéricos para EDPs.
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1
Introduction

The importance of optimal control of dynamical systems is steadily
increasing in applied mathematics, as industrial applications are becoming
widespread. Fields like aerospace engineering, social science, economics and
the design of optimal financial trading strategies rely in the solution of this
type of control problem.

In this thesis we deal with infinite horizon control problems. The aim is
to minimize a cost functional like

inf
u∈U

Jx(u) =
∫ ∞

0
g(y(s), u(s))e−λsds, (1-1)

subject to a controlled dynamical systemẏ(t) = f(y(t), u(t)), t > 0,

y(0) = x ∈ Rd.
(1-2)

As usual, the control u : [0,∞) → U ⊂ Rm is taken from the set of admissible
controls U , x is the initial condition, y is the trajectory, λ is the discount factor,
g is the running cost and f is the dynamics.

The solution of the optimal control problems can be obtained by two
different approaches. One is called open-loop: it assumes that the optimal
control u∗(t) is a function depending only on the initial condition and the time
variable. The second is the closed-loop and in this case the optimal control
is a function of the current state y(t) and it is able to adapt itself according
to changes in the trajectories by a feedback law: u∗(t) = µ∗(t, y(t)). Next, we
discuss different methods in each approach.

Open Loop. One of the most used approaches to deal with optimal control
problems is the Pontryagin Maximum Principle (PMP [1]). It gives necessary
conditions to find the optimal control and the optimal trajectory that are
obtained solving a two-point boundary problem in the hamiltonian system
given by state and costate equations. This method is commonly used in finite
horizon problems, but extensions to infinite horizon cases have been formulated
(see e.g. [2, 3, 4]).

The numerical solution of the two-point boundary problem is usually

DBD
PUC-Rio - Certificação Digital Nº 1812633/CA



Chapter 1. Introduction 15

done by a shooting method (single or multiple shooting) [5] that depends on
the initial guesses of the control and costate variables. The selection of those
variables to start the shooting method can be realized using results of a direct
method.

The direct discretization method is an alternative way to solve finite
horizon optimal control problems. This method consists first in a suitable
discretization of the problem along a discrete time horizon and then, solving
the finite dimensional nonlinear programming problem considering constraints
imposed by the discrete control set and the discrete trajectory [6]. The solution
here is also open-loop. A detailed discussion about this topic is found in e.g.
[7, 8] along with numerical algorithms.

Closed Loop. Moving from an open-loop to a closed-loop paradigm, the
Model Predictive Control (MPC) approach is based on the repeated solution
of an open-loop problem for a given initial condition. The basic idea is to break
the time horizon in a finite number of intervals and solve the open-loop problem
obtaining a sequence of optimal controls and optimal states. The first controls
from the previously computed sequence are used in the problem dynamics and
a new state is observed. This new state is compared to the reference state and
the open-loop problem is solved again to obtain a new sequence of controls and
states. The process is repeated until the end of the time horizon (see e.g.[9, 10]).
It is important to note that MPC can be used to approximate solutions for
infinite time horizon problems. Numerically, after a suitable discretization, the
model can be solved using linear and nonlinear programming.

We continue our discussion on closed loop control, focusing on the
Dynamic Programming Principle, which is the focus of this thesis.

The Dynamic Programming Principle (DPP) was designed by Richard
Bellman in the 1950s [11]. We define the value function v(x)

v(x) := inf
u∈U

Jx(u) (1-3)

which gives the optimal cost associated with any initial condition x. This
function can be characterized as the solution of a first order stationary
non-linear partial differential equation, the Hamilton-Jacobi-Bellman (HJB)
equation:

λv(x) + max
u∈U

{−f(x, u) · ∇v(x) − g(x, u)} = 0.

The value function is known to be Lipschitz continuous under mild
regularity conditions of the running cost and the dynamics (see Chapter III
of [12] for a general result about Hölder continuity). The development of the
theory of viscosity solutions by Crandall and Lions in the 1980s allows to
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Chapter 1. Introduction 16

characterize the value function as the unique viscosity solution of the HJB
equation (see e.g. [12] and [13] for a treatment of deterministic and stochastic
cases, respectively).

The knowledge of the value function permits the construction of a feed-
back control and the respective controlled trajectory. The analytical solution
and numerical approximations of HJB equation may be difficult to obtain
due to the lack of regularity. Despite this obstacle, several numerical schemes
have been proposed to approximate the value function, ranging from semi-
Lagrangian [14, 15] to finite differences [16, 17] and finite volumes [18], for
instance. Theoretically, these schemes can be implemented to solve problems
in any dimension, but computationally limitations become quickly evident.

The dimension of a HJB equation related to a specific optimal control
problem inherits the dimension of the dynamical system. The dimension can be
greater than 10 or even of order O(103) if the dynamical system comes from a
PDE discretization. Thus, numerical approximations become computationally
challenging for such problems and it is a major bottleneck for the Dynamic
Programming (DP) approach, known as the curse of dimensionality [19].

In terms of low dimensional problems the numerical solution of the HJB
equation can be obtained using standard PDE methods as cited above. We refer
to e.g. [14] and [12, Appendix A] for a discussion of the method for the static
HJB equation together with error estimates in the context of semi-Lagrangian
schemes

The approximation of the DPP in the fixed point form is

v∆t(x) = min
u∈U

{∆tg(x, u) + (1 − λ∆t)v∆t(x+ ∆tf(x, u))}.

Under adequate assumptions and considering ∆t < 1/λ, this scheme is
contractive and the solution can be obtained by iterations on state space (Value
Iteration algorithm).

In the right-hand side of the above equation, the term v∆t(x+∆tf(x, u))
is the approximate value function evaluated in a point that may not be part
of the grid. This calculation is usually performed using linear interpolation.

A different solution method is to iterate on the policy space instead of the
state space. Such algorithm is called Policy Iteration. A complete treatment of
these algorithms is in e.g. [20] and they are also recalled in Chapter 2 of this
thesis.

The value iteration algorithm is always convergent to any initial guess,
but this convergence can be very slow depending on the dimension of the state
space and refinements in the discretization (e.g. a reduction in ∆t). The policy
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iteration algorithm has a faster convergence but depends on the choice of initial
guesses. In [21] a coupling between value and policy iteration has been proposed
in order to accurately approximate the value function in a reduced amount of
time if compared to traditional methods. The value iteration is solved in a
coarse grid and its solution is used as a smart initial guess of policy iteration
algorithm in a finer mesh. This approach considerably improved performance
and showed effectiveness in tests with dimension up to 5.

Most of the traditional methods used to approximate the value function
are designed to work on structured grids and, due to the curse of dimensional-
ity, are limited to low dimensional problems. Semi-Lagrangian schemes permit
to deal with unstructured grids since it exists an approximation method able
to perform the spatial reconstruction in this context. It is possible to use differ-
ent techniques such as interpolation and approximation based on radial basis
functions (RBF), for example. An RBF approximation approach based on least
squares is Shepard’s method. The Shepard approximation of a function for a
given point is a convex combination of function values from points in nearby
regions.

In [22] Shepard’s method is exemplified in low dimensional examples
(up to dimension 3) in structured grids. The RBFs are compactly supported
Wendland’s functions and are tuned under an empirically selected shape
parameter. This quantity is used to modify the width of RBFs and has a
direct influence on the quality of the approximate value function, as will be
discussed in this thesis.

RBF interpolation or approximation can be coupled to semi-Lagrangian
schemes to approximate the value function in unstructured grids. In [23], the
authors suggest a method to realize surface (or curve) reconstruction using
level set methods. The semi-Lagrangian scheme uses RBF interpolation and
the shape parameter is selected following a predefined rule according to each
example.

In [24] the author introduces a quantity reflecting the quality of the
approximation of the HJB equation called the residual. It is defined as the
absolute difference between the numerical approximation of the value function
and the operator of the fixed point iteration. The residual is calculated at each
simplex of the discretization and used as a proxy for which regions it should
be improved.

In [25], the authors have worked using a semi-Lagrangian scheme with
Shepard approximation as reconstruction tool. They propose an algorithm
where the solution of the discrete HJB is done constructing an iteractively
sequence of approximations. At each iteration of the algorithm and for each
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Chapter 1. Introduction 18

node of the discrete state space, the respective residual is computed and
compared to a threshold. If the residual is above the threshold, then more
basis are needed in the neighborhood of the respective node. The important
point is that the residual is used as a refinement indicator and a clue about
the quality of the approximation.

When the optimal control problem is related to a high dimensional
dynamical system, traditional methods are no longer feasible to solve the
HJB equation. In order to mitigate the curse of dimensionality, different
strategies were proposed. One strategy would be to reduce the dimension of
the dynamical system, aiming to use traditional PDE schemes to solve the
low-dimensional HJB equation. A different strategy would be to use methods
to directly solve the HJB equation in the high dimensional scenario.

One of such methods is a coupling between DP and model order reduction
techniques (e.g. Proper Orthogonal Decomposition (POD), [26, 27]). In POD,
the general idea is to reduce the dimension d of the dynamical system using
a ℓ basis representation in space with ℓ ≪ d. Thus, a reference trajectory
of the dynamical system is calculated and, at certain times, snapshots are
selected and used to obtain the basis functions. Then, an ideal number ℓ of basis
elements are selected in order to well represent the dynamical system according
to its complexity. After the dimensional reduction, the HJB associated to
the reduced dynamical system can be approximated using traditional low
dimensional methods (e.g. semi-Lagrangian schemes) which allow to obtain the
optimal control in feedback form. This turns up to be efficient if the reduction
is up to dimension ℓ ⩽ 5. However, the low dimensional representation may
not be accurate when nonlinear or advection effects of the dynamical system
are relevant. More information about this method and the coupling with HJB
equations can be found in [28] and [29] with an analysis of error estimates.

A major disadvantage of many traditional approaches used in DP is
the need to determine a numerical domain large enough to include different
trajectories of the dynamical system. In general, the dimension of such domains
can be large and refinements in the discretization can impose constraints to
simulations due to memory allocations. In order to overcome this problem,
the authors in [30] propose the solution of the time dependent HJB equation
in a tree structure. Using the discrete version of the dynamics, a suitable
initial condition and the discrete control set, a tree is formed collecting nodes
obtained in the evolution of dynamics. After an adequate pruning of the tree
(from the Lipschitz continuity of the value function) the value function can
be approximated using a semi-Lagrangian scheme since the tree covers only
regions of interest in the model. As all nodes are obtained by the system
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evolution, the forward step in the dynamics is always part of the tree and
there is no necessity of interpolation in the scheme. This approach has shown
effectivenes in the direct solution of problems with dimensions of order O(103).
The coupling between the tree structure algorithm (TSA) and POD was
presented in [31]. It allows the reduction of the dimension of the problem
with the advantage that the calculation of the value function is more efficient.

In [32] the authors present a different strategy to reduce restrictions
imposed by the curse of dimensionality. In order to address the space complex-
ity, the use of Quasi-Monte Carlo grids is proposed in place of regular grids.
Quasi-Monte Carlo points are formed by sequences where the elements present
some correlation with each other. It generates a grid that is more uniformly
distributed than a grid originated by traditional Monte Carlo, resulting in a
domain that is densely populated. This strategy reduces the complexity of the
problem, but introduces another difficulty: the necessity to deal with scattered
data. To overcome this barrier and approximate the value function using a
semi-Lagrangian scheme, the authors propose the use of Kriging regression as
interpolation method to perform the spatial reconstruction. The Kriging re-
gression is formed by a polynomial term and a white noise process (in the cited
work the authors used a second order regression polynomial and a generalized
exponential correlation function in the white noise), both selected accordingly
to the problem at hand. The work deals with examples in dimension up to 6
and served as inspiration in the search for a computationally efficient way to
attack problems in higher dimensions.

So far, the discussed strategies to mitigate the curse of dimensionality
involve grids or scattered data meshes. Recently, new methods that do not
depend on these structures have been shown to be a computationally viable
alternative.

In e.g. [33] it has been proposed a method that relies on a pseudospectral
collocation method to discretize semi-linear parabolic PDEs. This discretiza-
tion provides a meaningful representation of the dynamics using a low number
of degrees of freedom. The HJB equation associated with the control problem
can be numerically solved provided that each coordinate in the problem dynam-
ics is a sum of separable functions. The feasibility of the method is guaranteed
and allows to control systems with dimension up to 14 using parallelization
tools.

Another possible way to overcome the curse of dimensionality is given
by the max-plus algebra theory (see e.g. [35, 36]). Here, the time dependent
value function is described as a combination of coefficients and the max-plus
basis. The number of coefficients increases exponentially with the number of
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time steps.
In [37] the use of adaptative sparse grids was proposed to approximate

the HJB equation related to specific front propagation models. The number of
grid nodes used to represent the functions depends on a threshold error and
can be small if compared to a full grid. The semi-Lagrangian scheme is defined
using sparse multilevel basis and a sparse tensor product construction. Here,
the feasibility of the method is shown in dimension up to 8. The scheme is not
monotone and convergence to the viscosity solution is not guaranteed.

Recently, the use of neural networks (NN) in the estimation of the value
function is becoming more relevant. The works [38] and [39] are examples of
recent advances in this area, which have the benefit of being completely mesh
free and not relying on discretization. In the former work, the authors claim
to be the first known result that presents the formal mathematical connection
between an NN architeture with a specific evolutive first order Hamilton-Jacobi
(HJ) equation. Such architeture exactly represents the viscosity solution of the
HJ PDE if some conditions on the parameters are set. The work provides
examples of HJ equations and their NN representation from given initial
conditions and hamiltonians relating the number of neurons to the dimension
of each problem, with examples of dimension up to 16 in the HJ equation
and higher dimensions in the solution of inverse problems related to these
equations. In [39] the authors present two architetures to solve an evolutive HJ
PDE with viscosity solution given by the Lax-Oleinik formula. These structures
are shown to exactly represent the viscosity solutions without errors and the
effectivess is showed by examples in dimension up to 10 where the NN solution
perfectly represent the solutions with zero smoothing effects when these are
non differentiable functions.

1.1
Contributions

This thesis introduces an approach to mitigate the curse of dimensionality
and, thus, enables the application of the dynamic programming equations to
the control of high dimensional dinamical systems generated by PDEs. Our
method [40] does not rely on a high dimensional regularly discretized state
space. Instead, we take advantage of the problem dynamics and only populate
certain regions using points from the discretized dynamics itself. The resulting
unstructured grid is formed by high dimensional nodes. In order to directly
apply a semi-Lagrangian scheme to aproximate the value function, the Shepard
method is used as the reconstruction tool. We also present a way to automatize
the selection of the shape parameter used to tune the RBFs. The selection is
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not realized based in ad hoc methods, but by comparisons of the residual
quantity.

The method uses a discrete version of the dynamical system that can
be obtained by an Euler or higher order schemes. After a suitable choice of
parameters (a fixed time step, initial conditions in state space, discretized
control space and a sufficient large final time) the discrete trajectories are
stored until the final time. These trajectories are taylored to populate specific
regions of the domain and will be the unstructured grid used to apply
the dynamic programming framework and locally approximate the value
function. This thesis uses the coupling between semi-Lagrangian scheme and
the Shepard’s method to obtain the approximation of the value function in a
high dimensional scattered data domain.

The adequate choice of RBFs is crucial in the construction of the
Shepard’s method and in other least squares or interpolation methods. This
choice has a direct effect in the efficiency and in the quality of the results.
The radial nature of these functions demands the use of distances between
data points. These distances are stored in possibly large matrices depending
on the size of the scattered data set. The choice of compactly supported RBFs
is important to obtain efficiency because this radial function maps distance
matrices in sparse matrices (Chapter 3).

The choice of the RBF is usually followed by the selection of a parameter
that multiplies the distance variable r. It is called the shape parameter σ > 0
and its value crucially affects the quality of the approximations since scales the
support of compactly supported RBFs. In general, it is selected by trial and
error or by ad-hoc methods (cross-validation or maximum likelihood estimation
[42]).

Our work uses the residual of the HJB equation as an indicator of the
quality of the approximation. From a set of different parameter values (a
discrete bounded interval) we approximate the value function and calculate
the residual when using each parameter. The chosen parameter is the one that
minimizes the residual.

We also provide error estimates to the approximation of the value
function. Our error estimates are based on well-known results from semi-
Lagrangian schemes adapted to the scattered data context, the construction of
our localized grid and its parameters, together with the structure of the shape
parameter, as explained in Chapter 4.

We present results showing the suitability of the method for the control of
a different type of PDEs: nonlocal equations. This type of equation differs from
classical PDEs since points in the domain can interact with any other point in
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the space. Due to this property, such models are getting a lot of attention in
applied sciences.

The control of nonlocal and fractional operator equations is usually
performed with the open-loop approach. Basic models were recently object of
study, such as the nonlocal Poisson equation [57, 67, 68] and the fractional heat
equation [71]. The control of nonlocal models with nonlocality different from
the fractional case was studied in [69, 70]. In this thesis we present a novelty
that is the use of the DP approach to control nonlinear parabolic PDEs with
fractional operator. We also analyse the convergence of the controlled solution
towards the continuous model.

Summarizing, the contributions are:

– A versatile way to obtain a grid based on the dynamics of the problem
populating only specific parts of the domain. This helps to mitigate the
curse of dimensionality since there is no need to fix a high dimensional
structured grid;

– The approximation of the value function in a high dimensional scenario
obtained by a semi-Lagrangian scheme using the Shepard’s method;

– The automatic selection of the shape parameter used in RBFs;

– Numerical error estimates for the proposed method;

– Control of PDEs using our algorithm and considering different types of
initial conditions;

– Applications to the control of nonlocal PDEs.

1.2
Organization of the Thesis

This thesis is divided into 5 Chapters

– Chapter 2 reviews some aspects of semi-Lagrangian schemes related
to the infinite horizon optimal control problem and the minimum time
problem. The value iteration and the policy iteration methods are
discussed together with a finite difference implementation to solve a
2D minimum time problem. We conclude this chapter with numerical
experiments.

– Chapter 3 recalls the main properties of radial functions and some
points about the construction of Wendland’s compactly supported RBFs
[43]. This presentation is followed by a discussion about scattered data
interpolation and approximation methods, emphasizing the Shepard’s
method. Here, we present the concepts of fill distance and separation
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distance, relevant in considerations about the notion of good spreading of
points on a scattered data framework. We conclude with numerical tests
about scattered data RBF interpolation and Shepard approximation.

– Chapter 4 is the core of this thesis, since we introduce our algorithm.
Here we develop and analyse the semi-Lagrangian scheme using the
Shepard’s method. Using the discretized dynamics, a choice of discrete
control space, time steps, final time and initial conditions we present
how to construct the dynamics-driven grid. The choice of parameters to
generate the grid not only affects the grid but also the error estimates.

The selection of the shape parameter is given together with the algorithm
that summarizes the whole process (create the mesh, select the parame-
ter, obtain the value function). Then, we demonstrate the method using
low and high dimensional examples arising from PDEs.

– Chapter 5 introduces the notion of nonlocal PDEs and the model used
to test our approach: the fractional heat equation. Then, we present the
finite element discretization of the model and analyse three test cases.
The first test compares the solutions obtained by open-loop approach and
the solution obtained using our RBF dynamic programming method. In
this case we also study the convergence towards the continuous problem.
The second test is devoted to the control of a linear equation in a
subset of the problem domain. The third test consists in the control
of a equation with a nonlinear term. In the first and third tests we show
the robustness of the method in controlling the models with the presence
of a disturbance term.

– Chapter 6 provides a summary with conclusions and future directions.

1.3
Original Material

Chapter 4 is based on the paper "HJB-RBF based approach for the
control of PDEs" [40] , submitted to the Journal of Scientific Computing.

Chapter 5 is based on the paper "Control of fractional diffusion prob-
lems via dynamic programming equations" [41], submitted to the Journal of
Peridynamics and Nonlocal Modeling.

https://arxiv.org/abs/2108.02987
https://arxiv.org/abs/2108.02987
https://arxiv.org/abs/2210.09827
https://arxiv.org/abs/2210.09827
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2
Infinite horizon control problem

In this chapter we present optimal control problems that will be studied
throughout this thesis. We first discuss the infinite horizon control problem, the
related Dynamic Programming Principle (DPP) and the associated first order
PDE: the Hamilton-Jacobi-Bellman (HJB) equation. We present the minimum
time problem and its rescaling by means of Kruzkhov transformation in order
to write it as an infinite horizon problem. Then, we discuss semi-Lagrangian
schemes (the policy and value iteration algorithms) and the finite differences
method. We conclude with numerical experiments.

2.1
Dynamic Programming Principle and the Hamilton-Jacobi-Bellman equa-
tion

In this section we provide the main results for the infinite horizon optimal
control problem. A complete treatment can be found in e.g. [12].

Let us consider an autonomous dynamical system described byẏ(t) = f(y(t), u(t)), t > 0,

y(0) = x ∈ Rd.
(2-1)

We denote by y : [0,∞) → Rd the state variable, u : [0,∞) → Rm the
control variable and by f : Rd×Rm → Rd the dynamics that drives the system.
Let u ∈ U := {u : [0,∞) → U, measurable} with U the set of admissible
controls and U ⊂ Rm a compact set. In order to ensure the existence and
uniqueness of a solution to the Cauchy problem (2-1), the function f needs
to fullfill some assumptions: f be a continuous function in both variables,
Lipschitz continuous in the first variable with constant Lf > 0 and measurable.
Under those assumptions, the Carathéodory Theorem (see e.g. [12]) guarantee
existence and uniqueness of solution to the initial value problem. Specifically,
for any choice of u ∈ U there is a unique trajectory y(·) satisfying (2-1).

In order to select the optimal trajectory, let us introduce the cost
functional J : U → R in infinite horizon context

Jx(u) :=
∫ ∞

0
g(y(s), u(s))e−λsds (2-2)
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where the running cost g : Rd × Rm → R is assumed to be bounded and
Lipschitz continuous with respect to the first variable. The constant λ > 0
is the discount factor and the term e−λs guarantees the convergence of the
integral whenever g is bounded.

Let us introduce the value function. This is defined for any initial
condition x as

v(x) := inf
u∈U

Jx(u). (2-3)
The value function has an important characterizaton given by the Dynamic
Programming Principle (DPP)

v(x) = inf
u∈U

{∫ τ

0
g(yx(s), u(s))e−λsds+e−λτ v(yx(τ))

}
∀x ∈ Rd, τ > 0, (2-4)

where yx(τ) is the trajectory starting at point x evaluated at time τ . Having
introduced the DPP, one can also characterize the value function by a nonlinear
first order partial differential equation, the HJB equation (see e.g. [12]):

λv(x) + max
u∈U

{−f(x, u) · ∇v(x) − g(x, u)} = 0, x ∈ Rd, (2-5)

with ∇v(x) being the gradient of v. Equation (2-5) is known to possess
nonsmooth solutions in many cases. Thus, we consider the solution of this
equation in the viscosity sense (see e.g. [12, 20]). The value function is known
to be the unique viscosity solution of HJB equation (2-5). In general, only
Lipschitz continuity is guaranteed if f and g are Lipschitz.

The solution of HJB equation gives rise to the optimal feedback control
u∗(x):

u∗(x) = arg max
u∈U

{−f(x, u) · ∇v(x) − g(x, u)}, x ∈ Rd. (2-6)

On the next section, we focus on minimum time problem and its connec-
tion with infinite horizon optimal control problems.

2.2
Minimum time problem

The objective of a minimum time problem is to steer the dynamics given
in (2-1) from its initial state x ∈ Rd to a target set T ⊂ Rd in the shortest
possible time. We assume T closed. The time of arrival is defined as

t(x, u) :=


inf

s
{s ∈ R+ : yx(s, u) ∈ T } if yx(s, u) ∈ T for some s,

+∞ otherwise,
(2-7)

where we write yx(s, u) to emphasize the dependence of the trajectory of
the initial condition x, time s and control u. The value function here is the
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minimum time to reach the target and it is called the minimum time function,
defined as

T (x) := inf
u∈U

t(x, u). (2-8)
Since not all initial conditions can be steered to T in finite time, this function
is not defined everywhere. Thus, in order to define the DPP we first need to
define the domain of the problem.

The set of points that allows the dynamics to reach the target is called
the reachable set R, i.e.

R :=
{
x ∈ Rd : T (x) < +∞

}
. (2-9)

From equation (2-8) it is possible to obtain the Dynamic Programming
Principle. For all x ∈ R and τ ∈ (0, T (x)):

T (x) = inf
u∈U

{τ + T (yx(τ, u))}. (2-10)

Assuming regularity of function T (x), from equation (2-10) we obtain
the corresponding HJB equation (see [20]):

max
u∈U

{−f(x, u) · ∇T (x)} = 1. (2-11)

The minimum time problem can also be written as an infinite horizon problem.
In order to rewrite the problem, we first need to rescale T (x) by the so called
Kruzkhov transformation. For µ > 0,

v(x) :=


1
µ

if T (x) = +∞,

1
µ

− e−µT (x) else.
(2-12)

The value function v(x) is associated with the cost functional Jx(u) =∫ t(x,u)
0 e−µsds. Thus, we are in the scenario of an infinite horizon control problem

with constant running cost g(x, u) = 1. The function v(x) is the unique
viscosity solution of

µv(x) + max
u∈U

{−f(x, u) · ∇v(x)} − 1 = 0, x ∈ Rd \ T ,

v(x) = 0 x ∈ T .
(2-13)

The Kruzkhov transform can be inverted and it is possible to recover T (x)
directly from v(x), since

T (x) = − 1
µ

ln
(

1
µ

− v(x)
)
.
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2.3
Numerical methods for the HJB equation

The HJB equation can be difficult to solve using analytical tools, despite
the existence of the theory of viscosity solutions. An alternative strategy to
solve the HJB equation is to approximate these solutions using numerical
schemes such as, e.g. semi-Lagrangian or finite differences. These schemes are
effective in solving low-dimensional problems such as those considered in this
chapter. In what follows we discuss some of these methods with particular focus
on semi-Lagrangian schemes. We consider the problem domain Ω discretized
in equally distributed points, forming the numerical grid G.

2.3.1
Semi-Lagrangian schemes: Value Iteration and Policy Iteration

We will present the discrete version of DPP. First, let us consider a
temporal discretization with fixed size ∆t such that tk = k∆t with k ∈ N.
Then, the dynamics (2-1) is discretized with an explicit Euler schemeyk = yk−1 + ∆tf(yk, uk),

y0 = x,
(2-14)

where uk is a fixed control value in [tk, tk+1) and u∆t(s) = uk for s ∈
[tk, tk+1). The control space U is discretized in m regularly distributed points.
Let y∆t represent the dynamics from equation (2-14). Considering these
information, the discretization of the cost functional (2-2) can be obtained
by the rectangular method as

J ∆t
x (y∆t, u∆t) := ∆t

∞∑
k=0

g(yk, uk)e−λtk , (2-15)

here y∆t is used to emphasize the dependence on the discrete dynamics. The
associated value function is defined as

v∆t(x) := inf
u∆t

J ∆t
x (y∆t, u∆t). (2-16)

Similarly to the continuous case, equation (2-16) can also be split in two terms,
resulting in the Discrete Dynamical Programming Principle (DDPP)

v∆t(x) = inf
u∆t

{
∆t

p−1∑
k=0

g(yk, uk)e−λtk + e−λtpv∆t(yp)
}
, (2-17)

for p ∈ N. Equation (2-17) defines semi-Lagrangian schemes for all p ∈ N. In
this thesis we will consider p = 1, obtaining

v∆t(x) = min
u∈U

{∆tg(x, u) + (1 − λ∆t)v∆t(x+ ∆tf(x, u))}, (2-18)
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since u∆t(s) = u ∈ U for s ∈ [t0, t1).

Value Iteration. To fully discretize equation (2-18) we project it in the
regular spatial grid G using linear interpolation for spatial reconstruction. We
denote by V the vector whose entries are Vj = v(xj), with xj ∈ G. Thus, the
fully discretized scheme reads as

Vj = min
u∈U

{∆tg(xj, u) + (1 − λ∆t)I[V ](xj + ∆tf(xj, u))}, (2-19)

with I[·] being the interpolation operator. The right-hand side of equation
(2-19) is a contraction if the interpolation operator I is non-expansive and
∆t < 1/λ. Let us denote by V n the vector evaluated at iteration n . If the
scheme (2-19) is applied in a iterative manner, it converges to a fixed point for
any inital condition V 0. What was described is the Value Iteration algorithm
which is summarized in Algorithm 1.

Algorithm 1: Value Iteration for the Infinite Horizon control
problem

1: INPUT: initial guess V 0, grid G, ∆t, tolerance tol
2: while ||V n+1 − V n|| ≥ tol do
3: for all xi ∈ G do
4: V n+1

i = min
u∈U

{∆tg(xi, u) + (1 − λ∆t)I[V n](xi + ∆tf(xi, u))}
5: end for
6: n = n+ 1
7: end while

We remark that, in pratical terms, the minimization phase in Algorithm
1 and in future algorithms described in this thesis are realized by comparison.
The control set U is discretized in equally distributed points and for each
xi ∈ G and uj ∈ U the respective value at iteration n is calculated and stored
in entry Rij of a matrix R. The value V n+1

i is selected as the minimum value
in row i from matrix R.

As mentioned in Section 2.2, the minimum time problem can be rewritten
as an infinite horizon control problem. In this way, one can use the value
iteration algorithm to approximate the value function.

Let us consider a time discretization with fixed temporal step size ∆t,
and let the number of steps to reach the target set T be defined by N(x, u∆t).
The discrete version of the minimum time (2-8) is now the minimum number
of steps until the trajectory starting at x reaches the target:

N(x) := min
u∆t

N(x, u∆t). (2-20)

From equation (2-20) it is possible to obtain the Discrete Dynamic
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Programming Principle used in the minimum time case:

N(x) = inf
u∆t

{p+N(yp)} (2-21)

at time p such that 0 ≤ p ≤ N(x). Considering p = 1 in (2-21) we obtain the
equation

N(x) = min
u∈U

{1 +N(x+ ∆tf(x, u))}. (2-22)
As T (x) = ∆tN(x), the Kruzkhov transform (2-12) can be applied to T (x)
with µ = 1 obtaining v∆t(x) = 1−e−∆tN(x). Multiplying both sides of equation
(2-22) by −∆t and exponentiating, we obtain

e−∆tN(x) = e−∆te
−∆t min

u∈U
{N(x+∆tf(x,u))}

.

Using the fact that −e−∆tN(x) = v∆t(x) − 1 and organizing the terms results
in

v∆t(x) = e−∆t min
u∈U

{v∆t(x+ ∆tf(x, u))} + 1 − e−∆t, (2-23)

if x ∈ Rd \ T and v∆t(x) = 0 if x ∈ T . The spatial discretization of equation
(2-23) gives us

V n+1
i = e−∆t min

u∈U
{I[V n](xi + ∆tf(xi, u))} + 1 − e−∆t, xi ∈ Rd \ T ,

V n+1
i = 0 xi ∈ T .

(2-24)
We refer to [20] for more details on these topics.

The discretization (2-24) leads to an approximation scheme similar to
Algorithm 1 as shown in Algorithm 2. The differences are that in minimum
time case the boundary condition needs to be forced to 0 at each point xi ∈ T
at each iteration.

Algorithm 2: Value Iteration for the Minimum Time control
problem

1: INPUT: initial guess V 0, grid G, ∆t, tolerance tol
2: while ||V n+1 − V n|| ≥ tol do
3: for all xi ∈ G do
4: V n+1

i = min
u∈U

{1 − e−∆t + e−∆tI[V n](xi + ∆tf(xi, u))}
5: end for
6: n = n+ 1
7: end while

Policy Iteration. Another method in the context of semi-Lagrangian schemes
discussed here is the approximation in policy space, or Policy Iteration algo-
rithm (see e.g. [19, 44]). Instead of computing a minimum value of V n

i at each
iteration n, this method works as follows: First, an initial guess of the control
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policy u0
i is given for equation (2-19) together with an initial guess V 0

i . Since
the vector V 1 is evaluated substituting these guesses in the right hand side of
(2-19), there is no search for a minimum and the equation becomes a linear
system. This step is called the policy evaluation step. In order to find the policy
to feed the next iteration, a search for the optimal value u1

i is done in each
point of the grid G. This phase is called the policy improvement step. Now,
the policy evaluation step restarts using V 1 and u1 in place of V 0 and u0. This
process continues until a desired tolerance is achieved.

We point here that the acceleration of this method can be improved by
the ideal choice of initial guesses (see [21]) together with the proposal of a
suitable coupling between value iteration and policy iteration methods (the
Accelerated Policy Iteration algorithm), as pointed out in the introduction.

Algorithm 3: Policy Iteration for the Infinite Horizon control
problem

1: INPUT: initial guess V 0 and u0, grid G, ∆t, tolerance tol
2: while ||V n+1 − V n|| ≥ tol do
3: Policy evaluation step:
4: for all xi ∈ G do
5: V n+1

i = min
u∈U

{∆tg(xi, u
n
i ) + (1 − ∆tλ)I[V n](xi + ∆tf(xi, u

n
i ))}

6: end for
7: Policy improvement step:
8: for all xi ∈ G do
9: un+1

i = argmin
u

{∆tg(xi, u) + (1 − λ∆t)I[V n
i ](xi + ∆tf(xi, u))}

10: end for
11: n = n+ 1
12: end while

2.3.2
Finite Differences

Finite differences schemes are traditionally used to approximate differ-
ential equations. In the field of optimal control problems and HJB equations,
those schemes are commonly used in the numerical approximation of stochastic
optimal control problems and mean field games (see e.g. [45]).

The theoretical guarantee of convergence of the finite differences approx-
imation to the viscosity solution is presented in [16, 17]. Although finite dif-
ferences approximation of viscosity solutions is well known, a restriction on
the use of these schemes is due to the computational infeasibility of dealing
with high-dimensional problems, a restriction that other schemes (e.g. semi-
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Lagrangian, finite volumes, finite differences and others) also suffer. To ease
the notations, the discussion here is restricted to a two-dimensional framework
along the lines of [16].

The type of HJ equations considered in [16] is the evolutive first order like
(2-25) where H ∈ C(R2) is the Hamiltonian function. In [17] it is presented
a more general problem, with the possibility of working with second order
equations. We focus in the method proposed in [16] due to its similarity with
conservative schemes and the straighforward implementationvt +H(∇v) = 0, in R2 × (0,∞),

v(x, 0) = v0(x) in R2 × {t = 0}.
(2-25)

We consider a regular grid discretized with space step ∆xi in dimension
i ∈ {1, 2} and a time horizon discretized with time step ∆t. Also consider a Lip-
schitz continuous function H called the numerical Hamiltonian of the scheme.
This function is related to the numerical flux in conservation laws (a discussion
can be found in e.g. [46]). Thus, equation (2-25) can be approximated by a
scheme in differenced form (2-26).

Definition 2.1 The scheme is said to be in differenced form if it has the form

vn+1
j = vn

j − ∆tH
(
D1,j−p[V n], . . . , D1,j+q[V n], D2,j−p[V n], . . . , D2,j+q[V n]

)
(2-26)

and here we denote by Di,j[V ] = vj+ei
−vj

∆xi
with i ∈ {1, 2}, that is, the forward

approximation of spatial derivative vxi
at the point xj. The subscript j is a

multi-index representing the coordinates of the point in the two-dimensional
grid, i.e. j ∈ Z2 where j = {j1, j2} and xj = {j1∆x1, j2∆x2}. The multi-indices
ei with i ∈ {1, 2} represent the canonical vectors e1 = (1, 0) and e2 = (0, 1).
Here, p and q represent general multi-indices with positive components.

A scheme in differenced form is said consistent if

H(a, . . . , a, b, . . . , b) = H(a, b) for a, b ∈ R,

and it is said to be monotone on [−R,R] if H is a nondecreasing function in
each of its arguments and |Di,j[V ]| ≤ R.

A result from Crandall-Lions [16] asserts that if H : R2 → R is
continuous, the initial condition v0 is Lipschitz continuous with constant L,
the scheme (2-26) is monotone in [−(L + 1), L + 1] and consistent for a
locally Lipschitz continuous numerical Hamiltonian H, then the approximation
converges to the viscosity solution for ∆t → 0.
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The previous result provides conditions under which the convergence of
the numerical solution to the viscosity solution happens in an evolutive problem
like (2-25). The Barles-Sougadinis theorem [17] states that any monotone,
stable and consistent scheme converges to the viscosity solution provided that
exists a comparison principle for the limiting equation, but it does not give
any estimate.

As discussed, in the infinite horizon optimal control problem the objective
is to find a solution to an equation of the following type

λv(x) + max
u∈U

{−f(x, u) · ∇v(x) − g(x, u)} = 0, x ∈ Rd.

We consider that such equation can be rewritten as

λv(x) +H(∇v(x)) = 0. (2-27)

Now, we follow [20] and consider a evolutive equation that converges to
the regime (2-27)

vt(x) + λv(x) +H(∇v(x)) = 0. (2-28)
The choice of a suitable discretization of equation (2-28) leads, for example,
to the differenced form

vn+1
j − vn

j

∆t + λvn
j + H

(
D1,j−p[V n], . . . , D1,j+q[V n],D2,j−p[V n], . . .

. . . D2,j+q[V n]
)

= 0
(2-29)

The spatial derivatives can be built in a forward or backward manner
like in upwind schemes (2-30) or in a centered manner (2-31).

Di,j[V ] = vj+ei
− vj

∆xi

. (2-30)

Di,j[V ] +Di,j−e1 [V ]
2 = vj+ei

− vj−ei

2∆xi

. (2-31)

If the scheme is built in an upwind way a special care should be considered due
to changes in the signal of the velocity coefficient. The scheme (2-29) can be
verified to be consistent and monotone under a suitable choice of the numerical
hamiltonian and parameters. Using the time index as an iteration index, the
scheme becomes

vn+1
j = (1 − ∆tλ)vn

j − ∆tH
(
D1,j−p[V n], . . . , D1,j+q[V n],D2,j−p[V n], . . .

. . . , D2,j+q[V n]
)
,

(2-32)

and the iteration converges to the viscosity solution. The implementation can
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be summarized as
Algorithm 4: Finite Differences for the Infinite Horizon control
problem

1: INPUT: initial guesses V 0, grid G regularly discretized, ∆t, tolerance tol
2: while ||V n+1 − V n|| ≥ tol do
3: for all xj ∈ G do
4: V n+1

j = (1 − ∆tλ)V n
j −

∆tH
(
D1,j−p[V n], . . . , D1,j+q[V n], D2,j−p[V n], . . . , D2,j+q[V n]

)
5: end for
6: n = n+ 1
7: end while

2.3.3
Numerical Examples

In order to exemplify the methods discussed in this section we present
tests performed on a two dimensional problem. Let us consider a minimum
time problem in Ω = [−1, 1]2 with the following dynamics and control space

f(x, u) =
cos(u)

sin(u)

 , U = [0, 2π]. (2-33)

The cost functional to be minimized is Jx(u) =
∫ t(x,u)

0 e−λsds with t(x, u)
being the time of arrival to the target T = (0, 0) for each x ∈ [−1, 1]2 (see
equation (2-7)).

The analytical solution V ∗(x) for this problem is the Kruzkhov transfor-
mation of the distance to the target T (see equation (2-12)):

V ∗(x) :=

1, if v∗(x) = ∞,

1 − exp(−v∗(x)), else

with v∗(x) = ||x||2 for each x ∈ [−1, 1]2, see Figure 2.1.

Figure 2.1: Distance function and its Kruzkhov transformation.
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The relative errors between the analytical solution and the numerical
approximations V are obtained by

E(V ) = ||V − V ∗||∞
||V ∗||∞

(2-34)

Example 1: Value Iteration and Policy Iteration
We present numerical results to compare the use of Value Iteration and

Policy Iteration in solving the two dimensional minimum time problem. The
control space is discretized in 64 points, λ = 1 and ∆t = 0.8∆x. The tolerance
is 10−6.

Numerical results of simulations are presented in Table 2.1 and Table
2.2. We note that the resulting relative errors and, as consequence, the rate of
convergence obtained by both methods are the same. The difference between
both methods lies in computational time with Policy Iteration having a faster
convergence than Value Iteration. Plots of those solutions are in Figure 2.2.

∆x Points Error CPU time (s) Rate
0.1 212 0.0232 0.33
0.05 412 0.0165 0.70 0.49
0.025 812 0.0108 2.05 0.6
0.0125 1612 0.0068 23.90 0.67
0.00625 3212 0.0041 291.90 0.7

Table 2.1: Results of Value Iteration.

∆x Points Error CPU time (s) Rate
0.1 212 0.0232 0.20
0.05 412 0.0165 0.37 0.49
0.025 812 0.0108 1.13 0.6
0.0125 1612 0.0068 12.80 0.67
0.00625 3212 0.0041 156.20 0.7

Table 2.2: Results of Policy Iteration.

Example 2: Finite Differences
Now, we approximate the solution of the minimal time problem using

finite differences. The HJB equation related to the problem written following
(2-13) is

v(x) + max
u∈U

{
− cos(u) ∂v

∂x1
− sin(u) ∂v

∂x2

}
− 1 = 0, x ∈ Ω \ T ,

v(x) = 0 x ∈ T .
(2-35)

Here we can follow the 2D scheme presented in [16] analog to a Lax-Friedrichs
scheme and adapt it to a time-marching version like (2-29). The scheme
becomes

DBD
PUC-Rio - Certificação Digital Nº 1812633/CA



Chapter 2. Infinite horizon control problem 35

Figure 2.2: Value Iteration and Policy Iteration solutions to minimum time
problem with grid formed by 812 points. ∆x = 0.025 and ∆t = 0.02.

v
n+1
j = (1 − ∆t)vn

j − ∆tH
(
D1,j[V n], D1,j−e1 [V n], D2,j[V n], D2,j−e2 [V n]

)
− ∆t,

vn+1
j = 0, x ∈ T ,

(2-36)
where

H
(
D1,j[V n], D1,j−e1 [V n], D2,j[V n], D2,j−e2 [V n]

)
= H

(
vj+e1 − vj−e1

2∆x1
,
vj+e2 − vj−e2

2∆x2

)

− θ
∆x1

∆t

(
vj+e1 + vj−e1 − 2vj

∆x1

)
− θ

∆x2

∆t

(
vj+e2 + vj−e2 − 2vj

∆x2

)
(2-37)

The parameter θ is chosen such that 0 < θ < 1/4 and then ∆t
∆xi

is selected in
order to respect θ − ∆t

∆xi
|H ′

i(α, β)|/2 ≥ 0 with H ′
i being the derivative of the

Hamiltonian with respect to the i-th argument.
Using Algorithm 4 with Ω discretized in regularly distributed points like

in Example 1, U discretized with 32 points, a tolerance of 10−6 and a fixed
relation ∆t = 10−3∆x we obtain the Kruzkov transform of distance function
as in Figure 2.3 and summarize the results in Table 2.3.

Figure 2.3: Finite Differences solution to minimum time problem with grid
formed by 812 points. ∆x = 0.025 and ∆t = 2.5 × 10−5.
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∆x Points Error CPU time (s) Rate
0.1 212 0.0363 50 1.3
0.05 412 0.0212 2.7e+ 03 0.77
0.025 812 0.0134 6.6e+ 04 0.66

Table 2.3: Data from Finite Differences tests.

From Table 2.3 we see the decay of the relative error (2-34) with the
increase of the grid size, assuring that the method converges to the exact
solution. It is clear that the computational time increases very fast, restricting
our test to only 812 grid nodes.
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3
Scattered Data Approximation using RBFs

This chapter recalls interpolation and approximation methods with scat-
tered data using radial basis functions (RBFs). First we define what RBFs are
and present basic properties of radial functions with compact support, specif-
ically the Wendland’s functions. Then, we provide examples of such functions
in one and two dimensional scenarios. Finally we present a discussion of inter-
polation using RBFs and also approximations based in least squares methods.
We give special focus to the Shepard approximation. In conclusion, we present
numerical experiments of RBF interpolation and Shepard’s method.

We refer to e.g. [49, 43, 22] and the references therein for a complete
description of the topic.

3.1
Radial Basis Functions

The scattered data approximation problem consists in finding an ap-
proximant for a function f : Ω ⊂ Rd → R at a point x ∈ Ω with
unstructured grids. Thus, we consider a set of pairwise distinct data sites
X = {x1, x2, . . . , xn} ⊂ Rd and a set of data values Y = {y1, y2, . . . , yn} ⊂ R
with yi = f(xi), 1 ≤ i ≤ n. The objective is to find a function f̃(x) that
approximates the value f(x) for x ∈ Ω and it is built as a linear combination
of basis functions φi : Ω ⊂ Rd → R,

f̃(x) =
n∑

i=1
ciφi(x). (3-1)

Here, the basis functions φi are radial basis functions as described below.

Definition 3.1 (Positive definite function) A continuous function
ϕ : X ⊂ Rd → R is positive definite if and only if it is even and

n∑
i=1

n∑
j=1

cicjϕ(xi − xj) ≥ 0 (3-2)

for any pairwise different points {x1, x2, . . . , xn} ∈ Rd and coefficients c =
[c1, c2, . . . , cn]T ∈ Rn. The function ϕ is strictly positive definite on Rd if the
quadractic form (3-2) is zero only for c = 0.

DBD
PUC-Rio - Certificação Digital Nº 1812633/CA



Chapter 3. Scattered Data Approximation using RBFs 38

Definition 3.2 (Radial Basis Function - RBF) A RBF φ : Rd → R is a
radially invariant function φ(x) = φ(∥x∥2).

Let xi, xj ∈ X such that ∥xi∥ = ∥xj∥. Then, by the definition above
φ(xi) = φ(xj). Also, note that if ∥xi − xj∥ = r we have φ(∥xi − xj∥) = φ(r).
Let us fix xi as the center of a RBF, we consider the distance from any point
xj to the center and denote as φi(xj) := φ(∥xj − xi∥) the RBF centered on xi.

Let us consider a set of pairwise distinct data sites X ⊂ Ω and φσ
i (x)

being a RBF centered at xi with shape parameter σ evaluated at x ∈ Ω.
The radial nature of RBFs can be used to tune their spread by means of the
parameter σ > 0. This parameter has the effect of rescaling ∥x∥2 (by the
multiplication σ∥x∥2) resulting in changes in the width and the shape of the
function.

One example of RBF modified by the shape parameter is the gaussian
φσ(x) = e−σ∥x∥2

2 . This function is similar to the normal probability density
function without the normalization factor. Here, the shape parameter σ works
in similarly to the inverse of variance in probability theory, i.e, it is responsible
for the dispersion of the probability density function in an inverse manner: the
greater the term σ the more concentrated is the density function around the
origin, as illustrated in Figure 3.1.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

 = 0.1

 = 0.5

 = 1

 = 1.5

 = 2

Figure 3.1: Example of Gaussian RBF φσ(x) = e−σ∥x∥2
2 with σ =

{0.1, 0.5, 1, 1.5, 2} and x ∈ [−10, 10].

In this thesis we only work with compactly supported positive definite
RBFs such as the Wendland’s functions.

Wendland’s functions are compactly supported RBFs constructed by an
integral operator I applied to the truncated power function

φℓ(r) = (1 − r)ℓ
+, r = ∥x∥2, (3-3)

which is radial on Rd and strictly positive for ℓ > ⌊d
2⌋ + 1. These functions are

compactly supported in [0, 1]. Here, (1 − r)ℓ
+ := max{0, (1 − r)ℓ} and ⌊·⌋ the

floor function.
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Definition 3.3 Let φ be such that x → xφ(x) ∈ L1[0,∞). The operator I is
defined

(Iφ)(r) :=
∫ ∞

r
xφ(x)dx, r ≥ 0.

If φ has compact support then Iφ has compact support, as explained in e.g.
[49]. Wendland’s functions can be written as φd,k = Ikφ⌊ d

2 ⌋+k+1, with φ⌊ d
2 ⌋+k+1

being the function (3-3). [49, Theorem 11.3] states that functions φd,k are
strictly positive definite and radial in Rd with an unique univariate polynomial
representation having the minimal possible degree. Moreover, φd,k ∈ C2k(R).

In Figure 3.2 we see how one dimensional Wendland’s functions behaves
with different values of k for a fixed shape parameter σ = 1.

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1
Wendland's functions

Figure 3.2: 1D Wendland’s functions for k ∈ {0, 1, 2, 3, 4} and σ = 1.

Let us show how the parameter σ affects a function φσ using a two
dimensional example with k = 2 (i.e. φσ ∈ C4(R)). Figure 3.3 shows the
Wendland RBF

φσ(r) = max{0, (1 − σr)6(35σ2r2 + 18σr + 3)}, r := ∥x∥2, (3-4)

with σ = 0.8 on the left panel and σ = 2 on the right panel. We can see how
the parameter influences the shape of the basis functions and makes them flat
(left) or spiky (right). The RBF is scaled so that φσ(0) = 1.

Figure 3.3: Wendland function (3-4) with σ = 0.8 (left) and σ = 2 (right).

DBD
PUC-Rio - Certificação Digital Nº 1812633/CA



Chapter 3. Scattered Data Approximation using RBFs 40

RBFs are the basic tool used for scattered data approximation methods
we will focus on. Next paragraphs explain some of these methods and how
these functions are used in each context.

3.1.1
Interpolation using RBFs

We consider a continuous function f : Ω ⊂ Rd → R. The objective of the
interpolation problem is to find a close fit to given data X = {x1, x2, . . . , xn}
by a function f̃ such that f̃(xi) = f(xi) ,∀xi ∈ X and f̃ is written as a linear
combination as in equation (3-1).

To perform the construction of f̃ we need to obtain the coefficient
vector c = [c1, c2, . . . , cn]T solving the system Ac = f(x) where f(x) =
[f(x1), . . . , f(xn)]T and

A =


φ(∥x1 − x1∥) φ(∥x1 − x2∥) . . . φ(∥x1 − xn∥)
φ(∥x2 − x1∥) φ(∥x2 − x2∥) . . . φ(∥x2 − xn∥)

... ... . . . ...
φ(∥xn − x1∥) φ(∥xn − x2∥) . . . φ(∥xn − xn∥)

 ∈ Rn×n.

The choice of a strictly positive definite RBF guarantees the solvability
of this system, since a positive definite RBF implies A to be a positive definite
matrix and, by consequence, nonsingular.

This operation can be computationally expensive depending on the
number of nodes in X and the number of times it needs to be performed
(e.g. if it is performed at each iteration in an iterative scheme).

3.2
Weigthed least squares and Shepard approximation

Let us suppose that we want to approximate a function
f : Ω → R in the approximation space formed by M multivariate polynomials
P = span{p1, p2, . . . , pM} with pj ∈ ∏d

s, space of multivariate polynomials in d
variables with total degree less or equal than s. Let us consider pairs (xi, yi),
i = 1, 2, . . . , n as for interpolation problem and M < n. The objective is to
find the best possible approximation of f in P . Differently from interpolation,
we do not demand that f̃(xi) = f(xi).

We want to find an approximant

f̃(x) =
M∑

j=1
cjpj(x), x ∈ Rd,
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where the coefficients c = [c1, c2, . . . , cM ]T are obtained solving the linear
system Gc = fp. Here, the matrix G is formed by Gi,j = ⟨pi, pj⟩w and vector
fp = [⟨f, p1⟩w, ⟨f, p2⟩w, . . . , ⟨f, pM⟩w]T . The system is originated by considering

⟨f − f̃ , pj⟩w = 0, 1 ≤ j ≤ m (3-5)
with the discrete inner product

⟨f, g⟩w :=
n∑

i=1
f(xi)g(xi)w(xi) (3-6)

and given weights w : Ω → [0,∞). The approximation f̃ is the one that
minimizes ∥f̃ −f∥2,w with ∥ · ∥2,w being the norm defined by the inner product
(3-6). This formulation is called weighted least squares (WLS).

Based on the WLS, one can perform a similar construction considering
only points xj that are relatively close to x. In other words, the approximation
problem can be localized. In order to fulfill this task, let us consider a different
weight function to be used in the discrete weighted inner product, that decays
increasing the distance between a specific point x and nodes xj. This function
is denoted by w : Ω × Ω → R+ and it is called moving weight function, where
w(xj, x) decays when ∥xj − x∥2 increases. An example of function that has
the described properties and can be a moving weight function is a compactly
supported RBF, since w(x, xi) = φ(σ∥x − xi∥2) (e.g. see Figure 3.3 and
equation (3-4)).

Thus, the problem of approximate a function f at a point x is to find
a function f̃x ∈ span{p1, p2, . . . , pM} such that ∥f − f̃x∥2,w(x,·) is minimized.
Here, the norm ∥ · ∥2,w(x,·) comes from the discrete inner product

⟨f, g⟩w(x,·) :=
n∑

i=1
f(xi)g(xi)w(x, xi), (3-7)

with w(x, xi) a moving weight function. At any point x ∈ Ω we want
to approximate the function f , we need to obtain coefficients cx

j solving a
system Gxcx = fx with Gx

i,j = ⟨pi, pj⟩w(x,·), cx = [cx
1 , . . . , c

x
M ]T and fx =

[⟨f, p1⟩w(x,·), ⟨f, p2⟩w(x,·), . . . , ⟨f, pM⟩w(x,·)]T .
For each different point x we need to solve a distinct linear system to

obtain specific coefficients cx, that is the reason of the superscript in the
notation. This method is known by Moving Least Squares (MLS) and from this
formulation we can build the main tool used in this work: Shepard’s method
(see e.g. [49, Chapter 23] and the original paper [50]).

We start the presentation of Shepard’s method considering P = {p1} and
f̃x(x) = cx

1p1(x). Solving the Moving Least Squares in this configuration and
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considering p1(x) = 1 leads to

⟨p1, p1⟩w(x,·) · cx
1 = ⟨f, p1⟩w(x,·)

that will result in
cx

1 =
n∑

i=1
f(xi)ψi(x),

where ψi(x) = w(x,xi)∑n

j=1 w(x,xj) . The Shepard approximation of the function f in x
is given by

Sf(x) =
n∑

i=1
f(xi)ψi(x)

In this case, the RBF bases are used to form n weights

ψσ
i (x) := φσ(∥x− xi∥2)∑n

j=1 φ
σ(∥x− xj∥2)

, 1 ≤ i ≤ n, (3-8)

and the Shepard approximant Sσ[f ](x) is formed as

Sσ[f ](x) :=
n∑

i=1
f(xi)ψσ

i (x). (3-9)

Observe that each ψi(x) is compactly supported in B(xi, 1/σ) ⊂ Ω, non
negative function, and the weights form a partition of unity, i.e., ∑n

i=1 ψ
σ
i (x) =

1 for all x ∈ Ω with

ΩX,σ :=
⋃

x∈X

B(x, 1/σ) ⊂ Rd. (3-10)

This implies that Sσ[f ](x) is actually a convex combination of the function
values f(xi). Moreover, the compact support of the weights leads to a com-
putational advantage (due to sparsity of distance vectors) and localization. In
particular, the Shepard weights are evaluated by constructing a distance vec-
tor Λ ∈ Rn with Λi := ∥x − xi∥2 by computing only the entries Λi such that
∥x− xi∥ ≤ 1/σ. This operation can be implemented by a range search [74].

An additional advantage of the Shepard’s method is that the construction
of the approximant (3-9) can be directly obtained from the function values and
the evaluation of the weights, without solving any linear system.

As RBF-based methods work with unstructured meshes, to obtain error
estimates in this context it is common to consider the fill distance and the
separation distance

h := hX,Ω := sup
x∈Ω

min
xi∈X

∥x− xi∥, q = qX := min
xi ̸=xj∈X

∥xi − xj∥.

The fill distance h replaces the mesh size and it is the radius of the largest ball
in Ω which does not contain any point from the set X = {x1, x2, . . . , xn}, and
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it gives a quantification of the well spread of the approximation nodes in the
domain. On the other hand, the separation distance q quantifies the minimal
separation between different approximation points. We remark that, for any
sequence of points, 1

2q ≤ h, but the inverse inequality h ≤ Cq, C > 0, does
not hold unless the points are asymptotically uniformly distributed.

Two important concepts about convergence of interpolation or approx-
imation methods are non-stationarity and stationarity of these methods. We
say that a method is non-stationary if, with a denser set X (resulting in a
possible decrease in h), we mantain the shape parameter σ fixed. A method is
said to be stationary if, with a denser set X, the shape parameter is scaled as
σ = θ/h for some θ > 0, i.e. the denser the set, the smaller the support of the
RBFs used on the method.

The point here is to note that interpolation methods using RBF are
convergent in a non-stationary scenario (Theorem 15.3, [49]) while the Shep-
ard approximation method is convergent in a stationary one, i.e. scaling the
support of RBFs according to h. A more detailed discussion of stationarity
and non-stationarity can be found in e.g. [49].

Example. Shepard approximation and RBF interpolation
We present an example of RBF interpolation and Shepard approximation

using the squared distance function with respect to the origin in R2 i.e. ||x||2.
We restrict our case to Ω = [−1, 1]2 and analyse the quality of Shepard
approximation and RBF interpolation with different meshes. We first fix a
set X of 200 points randomly selected in Ω according to a uniform probability
distribution function, these are the evaluation points. Then we generate regular
and random scattered meshes of size 212,412,812 and 1612. The scattered
meshes were obtained first by selecting a set of 40000 points according to a
uniform distribution function and then selecting the desired number of points
to each mesh size by the kmeans algorithm [73]. In every mesh we calculate
the Shepard approximation and the RBF interpolation of distance function
to evaluation points in X and compare the results with the exact solution
computing the relative error

E(Λ) = ||Λ − Λ∗||∞
||Λ∗||∞

(3-11)

where Λ∗ is a vector with all exact distances and Λ is a vector with Shepard
approximations or RBF interpolation values. In the case of randomly scattered
meshes we perform a sequence of 10 tests and give results in average (average
relative errors and average fill distances). For Shepard approximation in
regular and scattered meshes we fix σ = 0.75/h and use an Wendland’s RBF
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φ2,2(r) (the exact formula is given in equation (3-4)). As RBF interpolation is
convergent in a non-stationary scenario, we fix σ = 0.75 for all meshes.

In Figure 3.4 we can see the difference between the structured and
unstructured grids, both with the same evaluation points.
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Figure 3.4: Regular mesh with evaluation points and scattered mesh with
evaluation points. 412 points used to generate meshes and 200 evaluation
points.
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Figure 3.5: Distance functions and errors obtained in the regular grid case.
Upper left: distance function calculated in evaluation points using Shepard
approximation. Upper right: Relative errors in Shepard approximation case,
logarithmic scale. Bottom left: distance function calculated in evaluation points
using RBF interpolation. Bottom right: Relative errors in interpolation case,
logarithmic scale.
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h Points Interpolation error Rate CPU time (s) Shepard error Rate CPU time (s)
0.0692 212 1.2e−2 0.02 3.7e−2 0.03
0.0340 412 4.6e−4 4.9 0.17 1.8e−2 1 0.01
0.0175 812 7.8e−5 2.4 4.14 9.2e−3 0.9 0.05
0.0084 1612 1.0e−5 3 163.01 4.7e−3 1 0.22

Table 3.1: Data relative to interpolation using RBF and Shepard approxima-
tion on a regular grid.
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Figure 3.6: Distance functions and errors obtained in the scattered mesh case.
Upper left: distance function calculated in evaluation points using Shepard
approximation. Upper right: Average relative errors in Shepard approximation
case, logarithmic scale. Bottom left: distance function calculated in evaluation
points using RBF interpolation. Bottom right: Average relative errors in
interpolation case, logarithmic scale.

h Points Interpolation error Rate CPU time (s) Shepard error Rate CPU time (s)
0.0807 212 9.8e−3 0.02 8.0e−2 0.01
0.0340 412 1.9e−3 2.6 0.23 4.0e−2 1.2 0.02
0.0175 812 4.6e−4 2.4 5.97 1.9e−2 1.2 0.05
0.0084 1612 1.5e−5 9.8 139.90 1.3e−2 0.9 0.23

Table 3.2: Data relative to interpolation using RBF and Shepard approxima-
tion on scattered grids.

In Figure 3.5 and Table 3.1 we see the results related to the Shepard
approximation and RBF interpolation in a regular mesh whereas in Figure
3.6 and in Table 3.2 we show the results in the case of scattered meshes. In
both cases the error in the Shepard approximation decays almost linearly and
this is expected since Shepard’s method has approximation of order O(h) (see
e.g. [49]). The RBF interpolation error decays very fast and we can perceive
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a higher rate of convergence. This behavior is also noted in [49, Chapter
12]. It is important to stress that we are working with interpolation in a
non-stationary scenario, which is convergent, but inefficient, since it deals
with dense interpolation matrices. This point becomes clear in a comparison
between the increase in CPU times (measured in seconds) of RBF interpolation
and Shepard approximation with the increase in grid size. For instance, in the
case of 1612 points the CPU time of RBF interpolation is 740× bigger than the
time of Shepard approximation in the case of a regular grid and 608× bigger
in the case of a scattered grid.

From the results, we can also verify that both interpolation and ap-
proximation methods have lower relative errors in structured grids than in
unstructured grids.
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4
HJB-RBF based approach to the control of PDEs

In this chapter we present our new approach to mitigate the curse
of dimensionality coupling the semi-Lagrangian scheme and the Shepard
approximation method. The method is based on a scattered data mesh across a
region of interest. We also develop a method to automatize the selection of the
RBF shape parameter which minimizes the residual. We derive error estimates
of the overall approximation method and, finally, summarize everything in one
algorithm. In order to test the effectiveness of the numerical scheme we perform
tests for low and high dimensional dynamical systems.

4.1
Semi-Lagrangian scheme with Shepard for HJB equation

This section discusses the semi-Lagrangian scheme with the Shepard
approximation in place of linear interpolation. Then, we present (i) the
localized mesh, (ii) the method used to select the shape parameter, (iii) the
error estimates and (iv) the algorithm.

Let us consider a temporal step size ∆t > 0 and build a grid in
time such that tk = k∆t with k ∈ N. We will discuss in the following
how to define a spatial discretization, and for now we just denote it as
X = {x1, x2, . . . , xn} ⊂ Ω. Furthermore, the set U is also discretized by setting
the control u(t) = uk ∈ U for t ∈ [tk, tk+1) piecewise constant. To introduce the
approximation of the value function, we represent the Shepard approximant
as an operator

Sσ : (L∞, ∥ · ∥∞) → (W , ∥ · ∥∞), (4-1)
where W = span{ψσ

1 , ψ
σ
2 , · · ·ψσ

n} as in (3-8). We remark that the Shepard
approximation uses as interpolation nodes the same points X defined above.

We aim at the reconstruction of the vector {Vj}n
j=1 ∈ Rn where Vj is the

approximate value for v(xj) for each xj ∈ X. The full discretization of equation
(2-5) is obtained starting from a classical approach (see e.g. [20]), as discussed
in Section 2.3 , but replacing the local linear interpolation operator on a
structured grid (equation (2-19)) with the Shepard approximation operator
following [22]. This discretization reads
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Vj = [Wσ(V )]j := min
u∈U

{
∆t g(xj, u)+(1−∆tλ)Sσ[V ](xj +∆t f(xj, u))

}
. (4-2)

In (4-2) the set U is discretized in a finite number M ∈ N of points
U := {u1, . . . , uM}, and the minimum is computed by comparison. The full
approximation scheme of the value function is the Value Iteration (VI) method,
as discussed in Chapter 2, it is obtained by iteration of (4-2), i.e.,

V k+1 = Wσ(V k), k = 0, 1, . . . . (4-3)

In this context, the Shepard operator offers a striking benefit in comparison
with RBF interpolation. Indeed, Sσ in (4-1) has unit norm, and this implies
that the right hand side of (4-2) is a contraction if ∆t ∈ (0, 1/λ] (see Lemma 4.1
below). Therefore, the convergence of the value iteration scheme is guaranteed.

Lemma 4.1 The Shepard operator Sσ : (L∞, ∥ · ∥∞) → (W , ∥ · ∥∞) has norm
equal 1.

Proof. By the assumption of the basis functions ψσ
i > 0 for i = 1, . . . , n and

by the fact that for each x ∈ Ω, Sσv(x) is a convex combination of the values
v(x1), v(x2), . . . , v(xn) we have

|Sσv(x)| ≤
n∑

i=1
|Sσv(xi)ψσ

i (x)| ≤ max
i=1,...,n

|v(xi)|
n∑

i=1
|ψσ

i (x)| ≤ max
i=1,...,n

|v(xi)| ≤ ∥v∥∞

■

As soon as we obtain an approximation of the value function, we can
compute the numerical feedback control as

u∗
n(x) = arg min

u∈U
{∆tg(x, u) + (1 − λ∆t)Sσ[V ](x+ ∆tf(x, u))}, (4-4)

with x = y(tn). Thus, we are able to perform a reconstruction of an optimal
trajectory y∗ and optimal control u∗.

Under the assumption that the fill distance h decays to zero and that the
shape parameter scales as σ = θ/h, the approximation scheme (4-2) converges
[22]. More precisely, under suitable assumptions on f and g Theorem 3 in [22]
guarantees that ∥v − V ∥∞ ≤ (C/θ)h, where C depends on the dynamics but
not on the discretization.

4.1.1
The Scattered Mesh

Despite these convincing theoretical guarantees, the requirement that
h = hX,Ω decays to zero is too restrictive in our setting, since filling the entire
computational domain Ω may be out of reach for high dimensional problems.

DBD
PUC-Rio - Certificação Digital Nº 1812633/CA



Chapter 4. HJB-RBF based approach to the control of PDEs 49

Moreover, as already mentioned in Section 3.2, Shepard’s method performs
approximations in high dimensions and unstructured grids, while in [22] the
authors focused on a given configuration for the shape parameter and an
equidistant grid. In the next paragraphs, we will explain how to select the shape
parameter and to generate unstructured meshes to solve high dimensional
problems. This approach can also be used for minimum time problem as we
will see in Section 4.2.

Mesh. Different possibilities are available for the discretization of the spatial
domain. A standard choice would be to use an equi-distributed grid, which
covers the entire space and usually provides accurate results for interpolation
problems. Unfortunately, for higher dimensional problems it is impossible to
think to work on equi-distributed grids, as their size grows exponentially. This
is a particular limitation in our case, since our goal is to control PDEs, whose
discretization leads to high-dimensional problems e.g. d ≳ O(103). On the
other hand, a random set of points is computationally efficient to generate and
to use, but additional care should be taken since the distribution of points is
usually irregular (some regions can be more densely populated than others)
and the fill distance may decrease only very slowly when increasing the number
of points.

In general terms, there is a tradeoff between keeping the grid at a
reasonable size and the need to cover the relevant part of the computational
domain. In particular, it is well known that the fill distance h for any sequence
of points {Xn}n∈N can decrease at most as h ≤ cΩn

−1/d in Rd for a suitable
constant cΩ > 0 depending only on the geometry of the domain. Observe that
uniform points have precisely this asymptotic decay of the fill distance. Thus,
an exponentially growing number of points is required to obtain a well spread
covering of Ω as d increases.

The key point to overcome these limitations is to observe that the
evolution of the system provides itself an indication of the regions of interest
within the domain. Following this idea, we propose a discretization method
driven by the dynamics of the control problem (2-1). Observe that a similar
idea has been used in [51] to compute the value function along the trajectories
of open-loop control problems. Also in [30] the grid has been generated by
points of the dynamics leading to the solution of the HJB equation on a tree
structure. We stress once again that this kind of approach is an effective way to
address the curse of dimensionality, since only the parts of the space that are
visited by some system trajectories are considered, without the need of filling
the entire space. This is possible at the price of having a local approximation,
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but this locality is taken in full account in the following estimates, so that
one can balance between the efficiency of the method and the coverage of the
domain.

To define our dynamics-driven grid we fix a time step ∆t > 0, a maximum
number K ∈ N of discrete times and, for L,M > 0, some initial conditions of
interest and a discretization of the control space, i.e.,

X := {x̄1, x̄2, . . . , x̄L} ⊂ Ω, U := {ū1, ū2, . . . , ūM} ⊂ U.

Observe that all these parameters do not need to coincide with the ones used in
the solution of the value iteration (4-2), but they are rather used to construct
the grid. In general we use ∆t > ∆t and M < M , i.e., the discretization used
to construct the mesh is coarser than the one used to solve the control problem.

Given an initial condition x̄i ∈ X and a control ūj ∈ U , we solve
numerically for i = 1, . . . , L̄ and j = 1, . . . , M̄ equation (2-1) to obtain
trajectories

xk+1
i,j = xk

i,j + ∆t f(xk
i,j, ūj), k = 1, . . . , K̄ − 1, (4-5)

x1
i,j = x̄i,

such that xk
i,j is an approximation of the state variable with initial condition

x̄i, constant control u(t) = ūj, for all time t = k∆t. For each pair (x̄i, ūj) we
obtain the set X (x̄i, ūj) := {x1

i,j, . . . , x
K̄
i,j} containing the discrete trajectory,

and our mesh is defined as

X := X(X,U,∆t,K) :=
L̄⋃

i=1

M̄⋃
j=1

X (x̄i, ūj) . (4-6)

In this view, the values of X,U,∆t,K should be chosen such that X contains
points that are suitably close to the points of interest for the solution of the
control problem. In the following proposition we provide a quantitative version
of this idea, which will be the base of our error estimate in Theorem 4.5.

Proposition 4.2 Let X := X(X,U,∆t,K) be the dynamics-dependent mesh
of (4-6), and assume that f is uniformly bounded i.e., there exists Mf > 0
such that

sup
x∈Ω,u∈U

∥f(x, u)∥ ≤ Mf .

Then, for each x ∈ X, ∆t > 0 and u ∈ U ,

dist(x+ ∆tf(x, u), X) ≤Mf∆t, (4-7)
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where the distance between a point x to a set X is defined as
dist(x,X) := inf{dist(x, y)| y ∈ X}. Assume furthermore that f is uniformly
Lipschitz continuous in both variables, i.e., there exist Lx, Lu > 0 such that

∥f(x, u) − f(x′, u)∥ ≤ Lx∥x− x′∥ ∀x, x′ ∈ Ω, u ∈ U,

∥f(x, u) − f(x, u′)∥ ≤ Lu∥u− u′∥ ∀x ∈ Ω, u, u′ ∈ U.

Then, if x := xk(x0, u,∆t) ∈ Ω is a point on a discrete trajectory with initial
point x0 ∈ Ω, control u ∈ U , timestep ∆t > 0, and time instant tk, with k ∈ N,
k ≤ K̄,

dist(x,X) ≤
(

|∆t− ∆t|K̄Mf + min
x̄∈X̄

∥x̄− x0∥ + K̄∆tLu min
ū∈Ū

∥ū− u∥
)
eK̄∆tLx .

(4-8)

Proof. If x ∈ X we simply have

dist(x+ ∆tf(x, u), X) = min
x′∈X

∥x+ ∆tf(x, u) − x′∥ ≤ ∥x+ ∆tf(x, u) − x∥

= ∆t∥f(x, u)∥ ≤ Mf∆t,

which gives the bound (4-7) using only the boundedness of f .
To prove (4-8) we need to work explicitly with the initial points and the

control values. By assumption we have

x = xk(x0, u,∆t) = x0 + ∆t
k−1∑
p=0

f(xp(x0, u,∆t), u),

and since x′ ∈ X, using the definition (4-6) we can choose it as

x′ = xk
ℓ,m = x̄ℓ + ∆t

k−1∑
p=0

f(xp
ℓ,m, ūm),

for some ℓ ∈ {1, . . . , L̄}, m ∈ {1, . . . , M̄}, and with x0
ℓ,m = x0.

It follows that

xk(x0, u,∆t) − xk
ℓ,m = x0 − x̄ℓ +

+ ∆t
k−1∑
p=0

f(xp(x0, u,∆t), u) − ∆t
k−1∑
p=0

f(xp
ℓm, ūm),
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and thus adding and subtracting ∆t∑k−1
p=0 f(xp(x0, u,∆t), u) we obtain

∥xk(x0, u,∆t) − xk
ℓ,m∥ ≤ ∥x0 − x̄ℓ∥ + |∆t− ∆t|

k−1∑
p=0

∥f(xp(x0, u,∆t), u)∥ +

+ ∆t
k−1∑
p=0

∥f(xp(x0, u,∆t), u) − f(xp
ℓm, ūm)∥

≤ ∥x0 − x̄ℓ∥ + |∆t− ∆t|kMf +

+ ∆t
k−1∑
p=0

∥f(xp(x0, u,∆t), u) − f(xp
ℓm, ūm)∥.

Now adding and subtracting f(xp(x0, u,∆t), ūm) in the sum, and using the
Lipschitz continuity of f , we get

∥xk(x0, u,∆t) − xk
ℓ,m∥ ≤ ∥x0 − x̄ℓ∥ + |∆t− ∆t|kMf +

+ ∆t
k−1∑
p=0

(
Lu∥u− ūm∥ + Lx∥xp(x0, u,∆t) − xp

ℓ,m∥
)

= ∥x0 − x̄ℓ∥ + |∆t− ∆t|kMf + k∆tLu∥u− ūm∥ +

+ ∆tLx

k−1∑
p=0

∥xp(x0, u,∆t) − xp
ℓ,m∥.

Applying the discrete Grönwall lemma to this inequality gives

∥xk(x0, u,∆t) − xk
ℓ,m∥ ≤

(
∥x0 − x̄ℓ∥ + |∆t− ∆t|kMf + k∆tLu∥u− ūm∥

)
ek∆tLx ,

and since ℓ and m are free, we can choose them as ūm := arg min
ū∈Ū

∥u− ū∥ and

xℓ := arg min
x̄∈X̄

∥x0 − x̄∥. Finally, bounding k by K̄ gives (4-8). ■

4.1.2
Selection of the shape parameter

The quality of Shepard approximation strongly depends on the choice of
the shape parameter σ. As mentioned in the introduction, several techniques
exist to tune the shape parameter in the RBF literature, such as cross
validation and maximum likelihood estimation (see e.g. Chapter 14 in [52]), but
they are designed to optimize the value of σ in a fixed approximation setting.
In our case, on the other hand, we need to construct an approximant at each
iteration k within the value iteration (4-2). This makes the existing methods
computationally expensive and difficult to adapt to the target of minimizing
the error in the iterative method.

For these reasons, we propose here a new method to select the shape
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parameter based on the minimization of a problem-specific indicator, namely
the residual R(σ) := R(Vσ). We will denote by Vσ the discrete value function
related to the choice σ in the Shepard approximation. Assuming that the
value iteration with parameter σ has been stopped at iteration kfinal giving
the solution Vσ := V kfinal , we define the residual as

R(σ) := ∥Vσ −Wσ(Vσ)∥∞, (4-9)

and we choose the shape parameter that minimizes this quantity with respect
to σ.

To get a suitable scale for the values of σ, we parametrize it in terms of
the grid X, similarly to what it is done in [22], we set σ := θ/hΩ,X for a given
θ > 0. Since hΩ,X is difficult to compute or even to estimate in high dimensional
problems, we resort to setting σ = θ/qX and we optimize the value of θ > 0.
Observe that the separation distance qX is an easily computable quantity that
depends only on X, and it is thus actually feasible to use this parametrization
even in high dimensions.

Choosing an admissible set of parameters P := [θmin, θmax] ⊂ R+, the
parameter is thus chosen by solving the optimization problem

θ̄ := arg min
θ∈P

R(θ/qX) = arg min
θ∈P

∥Vθ/qX
−Wθ/qX

(Vθ/qX
)∥∞. (4-10)

Remark. This problem can be solved by using a comparison method or
e.g. an inexact gradient method. The former means to discretize the set
P as {θ1, . . . , θNp} ⊂ P and to compute all the value functions for all θi,
i = 1, . . . , Np. The latter considers a projected gradient method where the
parameter space P is continuous and the derivative is approximated by

Rθ = R(θ + ε) −R(θ)
ε

,

for some fixed ε > 0. In the numerical tests, we will compare both minimization
strategies in the low dimensional case, while we will concentrate on the
comparison method in high dimensional one.

4.1.3
Error Estimates

We adapt the classical theory that is used to prove rates of convergence
for the value iteration when linear interpolation is performed (see [20, Section
8.4.1]).

The idea is to estimate the time and space discretizations separately.
Since the time discretization is independent of the interpolation scheme used
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in the space discretization, we just recall the following result from [20, Section
8.4.1]. The original result holds for the supremum norm over Ω, we formulate
it here for a general compact subset Ω̃ ⊂ Ω in order to deal with the space
discretization later. Let ∥f∥∞,Ω̃ := supx∈Ω̃ |f(x)|.

Theorem 4.3 Let v be the exact value function, and v∆t be the solution of the
value iteration (4-2) without space discretization, i.e.,

v∆t(x) = min
u∈U

{
∆t g(x, u) + e−λ∆tv∆t(x+ ∆t f(x, u))

}
. (4-11)

If v is Lipschitz continuous, for each compact subset Ω̃ ⊂ Ω there exists a
constant C := C(Ω̃) > 0 such that

∥∥∥v − v∆t
∥∥∥

∞,Ω̃
≤ C∆t1/2. (4-12)

Assume additionally that the following hold:

1. f is uniformly bounded, U is convex, f(x, u) is linear in u.

2. g(·, u) is Lipschitz continuous and g(x, ·) is convex.

3. There exists an optimal control u⋆ ∈ U .

Then there exists C ′ := C ′(Ω̃) > 0 such that

∥∥∥v − v∆t
∥∥∥

∞,Ω̃
≤ C ′∆t. (4-13)

The proof of estimate (4-12) can be found in Chapter VI of [12]. Here,
we focus in the proof of (4-13) since it is used in the construction of our error
estimate.
Proof. In order to prove (4-13) using the assumptions above, let us consider
the explicit minimum in (4-11) and in (2-4) with optimal controls û and u∗(s)

v∆t(x) = ∆t g(x, û) + e−λ∆tv∆t(x+ ∆t f(x, û))

v(x) =
∫ ∆t

0
g(yx(s), u∗(s))e−λsds+ e−λ∆t v(yx(∆t)).

To ease the notations, we omit the dependence of the trajectory on the
control yx(∆t) = yx(∆t, u).
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For the first part of the proof, we consider u(s) = û and verify the
following inequality:

v(x) − v∆t(x) ≤
∫ ∆t

0
g(yx(s), û)e−λsds+ e−λ∆t v(yx(∆t)) (4-14)

− ∆t g(x, û) − e−λ∆tv∆t(x+ ∆t f(x, û)).

Then, using approximation arguments on g(yx(s), û)e−λs and integrating we
obtain

∫ ∆t

0
g(yx(s), û)e−λsds− ∆tg(x, û) = O(∆t2). (4-15)

On the other hand, working with the remaining terms of (4-14)

v(yx(∆t)) − v∆t(x+ ∆t f(x, û)) = v(yx(∆t)) − v(x+ ∆t f(x, û)) +

+ v(x+ ∆t f(x, û)) − v∆t(x+ ∆t f(x, û))

≤ Lv ∥yx(∆t) − x− ∆t f(x, û)∥ +
∥∥∥v − v∆t

∥∥∥
∞,Ω̃

≤ O(∆t2) +
∥∥∥v − v∆t

∥∥∥
∞,Ω̃

, (4-16)

where we have used the Lipschitz continuity of the value function and an
approximation argument in yx(∆t) −x− ∆t f(x, û). We then plug inequalities
(4-15) and (4-16) into (4-14) and we end up with the unilateral estimate

v(x) − v∆t(x) ≤ O(∆t2) + e−λ∆t
∥∥∥v − v∆t

∥∥∥
∞,Ω̃

. (4-17)

To the estimate of v∆t(x)−v(x) we consider the control ū, which is suboptimal
in v∆t(x). Thus,

v∆t(x) − v(x) ≤ ∆t g(x, ū) + e−λ∆tv∆t(x+ ∆t f(x, ū)) (4-18)

−
∫ ∆t

0
g(yx(s), u∗(s))e−λsds− e−λ∆t v(yx(∆t)).

The control ū is chosen in order to ū = 1
∆t

∫∆t
0 u∗(s)ds. Using assumption 1

that f(x, u) is linear in u and explicitly considering f(x, u) = f1(x) + f2(x)u,
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with f1 : Rd → Rd and f2 a d×m matrix, we can write

yx(∆t) = x+
∫ ∆t

0
f(yx(s), u∗(s))ds

= x+
∫ ∆t

0
f1(yx(s))ds+

∫ ∆t

0
f2(yx(s))u∗(s)ds

= x+
∫ ∆t

0
(f1(x) + O(∆t))ds+

∫ ∆t

0
(f2(x) + O(∆t))u∗(s)ds

= x+ ∆t(f1(x) + f2(x)ū) + O(∆t2)

= x+ ∆tf(x, ū) + O(∆t2). (4-19)

We can develop the term
∫∆t

0 g(yx(s), u∗(s))e−λsds as

∫ ∆t

0
g(yx(s), u∗(s))e−λsds =

∫ ∆t

0
(g(x, u∗(s)) + O(∆t))(1 + O(∆t))ds

=
∫ ∆t

0
g(x, u∗(s))ds+ O(∆t2)

≥ ∆tg(x, ū) + O(∆t2), (4-20)

where we have used the fact that g(x, ·) is convex combined with Jensen
inequality in the last part. Using results (4-19), (4-20) and working in (4-18)
similarly as done in the proof of the first unilateral estimate (4-17), we have

v∆t(x) − v(x) ≤ ∆t g(x, ū) + e−λ∆tv∆t(x+ ∆t f(x, ū))

−
∫ ∆t

0
g(yx(s), u∗(s))e−λsds− e−λ∆t v(yx(∆t))

≤ ∆t g(x, ū) − ∆t g(x, ū) + O(∆t2)

+ e−λ∆tv∆t(x+ ∆t f(x, ū)) − e−λ∆t v(yx(∆t))

resulting in

v∆t(x) − v(x) ≤ O(∆t2) + e−λ∆t
∥∥∥v − v∆t

∥∥∥
∞,Ω̃

. (4-21)

Using (4-17) and (4-21)

|v(x) − v∆t(x)| ≤ O(∆t2) + e−λ∆t
∥∥∥v − v∆t

∥∥∥
∞,Ω̃

(4-22)

Passing to the norm ∥.∥∞ and adjusting terms give us the final estimate

(1 − e−λ∆t)
∥∥∥v − v∆t

∥∥∥
∞,Ω̃

≤ C̄∆t2∥∥∥v − v∆t
∥∥∥

∞,Ω̃
≤ C ′∆t. (4-23)
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■

It remains now to quantify the error that is committed by introducing
a space discretization, i.e., the error associated to the interpolation scheme in
(4-2). To do this, we first require a bound on the error of Shepard interpolation,
and we report in the next proposition a result obtained in [22]. In this case,
the key idea is to scale the shape parameter of the RBF basis according to
the fill distance of the mesh. Following Proposition 4.2, we can control the fill
distance hX,Ω̃ of the mesh X within the set Ω̃ obtained as the collection of the
different trajectories of the discrete dynamics. In other words, we set

Ω̃ := Ω̃(X̃, Ũ , T̃ ) :=
{
x := xk(x0, u,∆t) : x0 ∈ X̃, u ∈ Ũ ,∆t ∈ T̃ , k ≤ K̄

}
.

(4-24)
For this set, equation (4-8) gives

hX,Ω̃ := sup
x∈Ω̃

dist(x,X)

≤
(

sup
∆t∈T̃

|∆t− ∆t|K̄Mf + sup
x0∈X̃

min
x̄∈X̄

∥x̄− x0∥ + K̄∆tLu sup
u∈Ũ

min
ū∈Ū

∥ū− u∥
)
eK̄∆tLx

(4-25)

We now recall from [22] the error estimate for the Shepard approximation.

Proposition 4.4 Let Lv > 0 be the Lipschitz constant of v : Ω → R. Let Sσ

be the Shepard approximation of v on X obtained using a kernel with support
contained in B(0, 1), and let σ := C/hX,Ω̃ for a positive constant C > 0. Then

∥v − Sσ[v]∥∞,Ω̃ ≤ CLvhX,Ω̃. (4-26)

We can finally prove our main result.

Theorem 4.5 Let Ω̃ given in (4-24), and assume that Ũ contains the two
controls that are optimal for v∆t and for V . Then, under the assumptions of
Proposition 4.4,

∥V − v∆t∥∞,Ω̃ ≤ CLv

λ

hX,Ω̃

∆t (4-27)

≤ CLv

λ

eK̄∆tLx

∆t

(
sup
∆t∈T̃

|∆t− ∆t|K̄Mf + sup
x0∈X̃

min
x̄∈X̄

∥x̄− x0∥ +

+ K̄∆tLu sup
u∈Ũ

min
ū∈Ū

∥ū− u∥
)
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Proof. We consider the control û that is optimal for v∆t, and we define
ẑ := xj + ∆tf(xj, û) for 1 ≤ j ≤ n. This implies in particular that û is
sub-optimal for V , and thus by the definition (4-2) for each 1 ≤ j ≤ n,

Vj ≤ ∆t g(xj, û) + (1 − ∆tλ)Sσ[V ](ẑ).

Combining this inequality with the definition (4-11) of v∆t(xj), we have

Vj − v∆t(xj) ≤ ∆t g(xj, û) + (1 − ∆tλ)Sσ[V ](ẑ) − ∆t g(xj, û) −

− (1 − ∆tλ)v∆t(ẑ)

= (1 − ∆tλ)
(
Sσ[V ](ẑ) − v∆t(ẑ)

)
.

Now, we add and subtract the interpolation Sσ[v∆t] of v∆t evaluated at ẑ, use
the bound (4-26) and the fact that Sσ is a contraction to obtain

Vj − v∆t(xj) ≤ (1 − ∆tλ)
(
Sσ[V ](ẑ) − Sσ[v∆t](ẑ) + Sσ[v∆t](ẑ) − v∆t(ẑ)

)
≤ (1 − ∆tλ)

(
∥V − v∆t∥∞,Ω̃ + CLvhX,Ω̃

)
.

We can now repeat the same reasoning with the control ũ that is optimal for V ,
and in this way we can obtain a bound on the opposite quantity v∆t(xj) − Vj.
These two inequalities, when combined, give the desired bound:

∥V − v∆t∥∞,Ω̃ ≤ CLv

λ

hX,Ω̃

∆t .

■

By the triangular inequality from (4-13) and (4-27), one can obtain

∥v − V ∥∞,Ω̃ ≤ C ′∆t+ CLv

λ

hX,Ω̃

∆t .

4.1.4
Algorithm

The generation of the localized mesh, the value iteration al-
gorithm with Shepard approximation and the selection of the
shape parameter can be summarized in the following algorithm.
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Algorithm 5: Value Iteration with shape parameter selection
1: INPUT: Ω, ∆t, U, P parameter range, tolerance, RBF and system dynamics f ,

flag
2: initialization;
3: Generate Mesh
4: if flag == Comparison then
5: for θ ∈ P do
6: Compute Vθ;
7: R(θ) = ||Vθ − W (Vθ)||∞
8: end for
9: θ̄ = arg min

θ∈P
R(θ);

10: else
11: Rθ = 1, θ = θ0, tol, ε

12: while ∥Rθ∥ > tol do
13: Compute Vθ and Vθ+ε

14: Evaluate R(Vθ) and R(Vθ+ε)

15: Rθ = R(Vθ+ε) − R(Vθ)
ε

16: θ = θ − Rθ

17: θ = max(min(θmax, θ), θmin) (projection into P)
18: end while
19: θ̄ = θ, Vθ̄ = Vθ

20: end if
21: OUTPUT: {θ̄, Vθ̄}

4.2
Numerical experiments

In this section we present three numerical tests to illustrate the effective-
ness of the proposed algorithm. The first test is a two dimensional minimum
time problem with well-known analytical solution. In this test we analyse re-
sults using regular and scattered grids. The second and the third test deal
with a advection equation and a nonlinear heat equation, respectively. We
discretize in space both PDEs using finite differences. The dimension of the
semi-discrete problem will be 10201 for the advection equation and 961 for the
parabolic problem. Note that the high dimensions of the PDEs examples make
the problems impossible to solve by classical methods. For each test we provide
examples of feedback reconstruction for different initial conditions that may
not belong to the grid. In the parabolic case we present the effectiveness of the
feedback control under disturbances of the system.

In every experiment, we define an admissible interval P to solve the
minimization problem by comparison in Algorithm 5 as follows: we start with
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a large interval P1 and we coarsely discretize it. Then, we run Algorithm 5 and
obtain θ̄1. Later, we choose a set P2 ⊂ P1 such that θ̄1 ∈ P2. Using P2 and
a finer refinement, the Algorithm provides θ̄2. We iterate this procedure, and
finally we set P = Pn.

For the purpose of numerical computations we consider only finite
horizons t ∈ [0, T ] with a given T > 0 large enough to simulate the infinite
horizon problem. We also assume that the dynamics evolve for each initial
value and control parameter within a compact set Ω ⊂ Rd.

In our tests, we use the Wendland RBF defined in (3-4).

Test 1: Eikonal equation in 2D

The first test is the same problem studied in Subsection 2.3.3. We
consider a two dimensional minimum time problem in Ω = [−1, 1]2 with the
following dynamics and control space

f(x, u) =
cos(u)

sin(u)

 , U = [0, 2π]. (4-28)

The cost functional to be minimized is Jx(y, u) =
∫ t(x,u)

0 e−λsds with

t(x, u) :=

infs{s ∈ R+ : yx(s, u) ∈ T } if yx(s, u) ∈ T for some s

+∞ otherwise,
(4-29)

being the arrival time to the target T = (0, 0) for each x ∈ [−1, 1]2.
The analytical solution V ∗(x) for this problem is the Kruzkov transform

of the distance to the target T (see e.g. [12]):

V ∗(x) :=

1 if v∗(x) = ∞,

1 − exp(−v∗(x)) else

with v∗(x) = ||x||2 for each x ∈ [−1, 1]2.
We tested Algorithm 5 for two different cases. The first one considers

an unstructured grid generated by random points, whereas the second case
studies an unstructured grid generated by the problem dynamics. Due to the
randomness of our grid we compute an average error. In the first case we will
average over 10 tests whereas on the second one over 5. We do not discuss in
detail the case with a regular grid since it has been extensively analyzed in [22].
However, in Example 4.2, we show optimal trajectories using also the regular
grid with linear interpolation and the Shepard’s approximant. The relative
error reads
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E(Vθ) = ||Vθ − V ∗||∞
||V ∗||∞

(4-30)

where Vθ is the discrete value function obtained with the shape parameter
σ = θ

h
and V ∗ is the exact solution. We will denote by θ∗ the parameter

selected in order to minimize the relative error from (4-30):

θ∗ := arg min
θ∈P

E(Vθ)

Clearly, E(Vθ∗) will be a lower bound for E(Vθ). In the following three
cases we set λ = 1 and U is discretized with 16 equidistant controls.
Example 1. Random Grid

The first test with the Eikonal equation is performed using an unstruc-
tured grid generated by random points. In order to obtain a grid which densely
covers our numerical domain, a set of 40000 randomly distributed points in
[−1, 1]2 is clustered using the k-means algorithm, where k is the number of
desired points in the grid. Examples of this type of grids are shown in Figure
4.1.
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Figure 4.1: Example 1. Random generated grids. Left: 200 points and fill
distance 0.1618. Center: 800 points and fill distance 0.0846. Right: 3200 points
and fill distance 0.0461.

We found P = [1, 3] a suitable parameter space discretized with 0.1 as
step size. In the HJB equation we set ∆t = h. In the left panel of Figure 4.2
we see an example of residual R(θ) when the unstructured grid is formed by
3200 nodes. The residual is minimized between 1.5 and 2. The average value
after 10 tests is θ̄ = 1.76 as can be seen in the fourth column of Table 4.1. In
the middle panel of Figure 4.2 we see a plot of E(Vθ) for different number of
points in the grid; the values θ∗ are in the fifth column of Table 4.1. The right
panel of Figure 4.2 shows the behavior of E(Vθ̄) and E(Vθ∗) decreasing the fill
distance h. The error decays as h does.

Table 4.1 shows the quality of our results. The first column presents
the fill distance h and the relative number of points is shown in the second
column. The third column presents the CPU time (in seconds). The fourth
column presents the values θ̄, outputs of Algorithm 5 using the comparison
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Figure 4.2: Example 1. Left: Average residual for 3200 points. Middle: E(Vθ).
Right: E(Vθ̄) and E(Vθ∗) variation with h.

method in the minimization procedure. The fifth column presents the values
of θ∗. The sixth and seventh columns present the values of E(Vθ̄) and E(Vθ∗).

We see the average decay of the fill distance h when increasing the number
of nodes. Accordingly, the average CPU time increases. The parameters θ̄ and
θ∗ assume values close to each other, with θ∗ > θ̄. The errors E(Vθ̄) and E(Vθ∗)
reduce according to h. We can also observe that the rate of convergence with
respect to the choice of θ̄ and θ∗ is similar.

h Points CPU time (s) θ̄ θ∗ E(Vθ̄) rate E(Vθ∗) rate
0.1603 200 9.8 1.91 2.16 0.303 0.2981
0.1177 400 14.6 1.86 2.06 0.230 0.89 0.2284 0.86
0.0861 800 31.8 1.92 2.21 0.172 0.92 0.1697 0.95
0.0641 1600 115.0 2.04 2.42 0.1432 0.62 0.1407 0.63
0.0464 3200 504.0 1.76 2.06 0.1037 0.99 0.0969 1.1

Table 4.1: Example 1. Numerical Results with random unstructured grid.

Figure 4.3 presents in the left panel the exact solution evaluated on the
scattered grid with 3200 points and h = 0.0464. The middle picture is the
solution obtained by value iteration algorithm with Shepard approximation
and the last picture is the absolute error between the two solutions. The error
has an erratic behavior always below 10−1.

Figure 4.3: Example 4.2. Value Functions generated in a Random Unstructured
Grid formed by 3200 points. Left: Exact solution. Center: Solution obtained
by VI and Shepard approximation. Right: Absolute error of exact solution and
value function obtained by Shepard approximation Value Iteration.

Example 2. Grid driven by the dynamics
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In this example we test our novel grid proposed in Subsection 4.1.1. We set
∆t = h in the HJB equation. To generate the trajectories which will be
our grid points, we set (∆t, L̄, M̄) = {(0.1, 4, 16), (0.05, 8, 16), (0.025, 16, 16)}
in (4-6). Figure 4.4 shows some examples of meshes generated in this case,
with randomly selected initial conditions. These meshes follow the pattern of
problem dynamics.
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Figure 4.4: Example 2. Meshes generated by the dynamics. Left: 246 points
and fill distance 0.1436. Middle: 909 points and fill distance 0.0882. Right: 3457
points and fill distance 0.0439.

We set, again, P = [1, 3]. The behavior of R(θ) is shown in the left panel
of Figure 4.5 when the grid has 3469 points on average. The minimum value is
achieved for θ̄ = 1.7. The middle panel of Figure 4.5 shows a plot of E(Vθ) for a
different number of points. The right picture shows the error behavior in E(Vθ̄)
and E(Vθ∗) with the reduction of h. It decreases according to Theorem 4.5. We
stress that all of these quantities are computed averaging 5 simulations.
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Figure 4.5: Example 2. Left: Average residual to case with 3469 points. Middle:
E(Vθ). Right: E(Vθ̄) and E(Vθ∗) variation with h.

Table 4.2 summarizes the results of Example 2 as discussed in Example
1. All the considerations are very similar to the previous example but now
we have a different grid which will help us to deal with higher dimensional
problems as it will be presented in the next sections. We stress that the values
of the error indicator in the sixth and eighth column of Table 4.2 are very
close to each other. Once again, this is very interesting since we are using an
a-posteriori criteria for the computation of the shape parameter. We can also
observe that the rate of convergence with respect to the choice of θ̄ and θ∗ is
similar.
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h Points CPU time (s) θ θ∗ E(Vθ̄) rate E(Vθ∗) rate
0.1642 245 8.5 1.58 1.82 0.3182 0.2949
0.0820 915 55.6 1.66 1.76 0.1861 1.29 0.1855 1.49
0.0455 3469 654.0 1.7 1.82 0.1016 0.97 0.0997 0.94

Table 4.2: Example 4.2. Numerical results with a grid driven by the dynamics.

Finally, Table 4.3 presents the results of Algorithm 5 using a gradient
descent method with ε = 10−6 in step 11 of Algorithm 5. If we compare the
results with Table 4.2 we can see that this method is computationally slower
and the accuracy has the same order of the comparison method. Thus, we will
only show the performance of our method where the minimization is computed
by comparison. We do not provide results with smaller h in Table 4.3 because
it is clear that it will be slower than the comparison method.

h Points CPU time θ̄ E(Vθ̄)
0.1364 248 9.7 1.62 0.2780
0.0865 924 152.0 1.72 0.1859

Table 4.3: Example 4.2. Results using gradient method.

Example 3. On the feedback reconstruction.
The approximated value functions computed by means of Algorithm 5 with
different grids allow us to obtain the optimal trajectories and optimal controls
for any initial conditions. In Figure 4.6, we present an example of optimal
controls and trajectories computed for x = (0.7,−0.7) using value functions
obtained in Example 1 and Example 2. For completeness, we also show
the results considering the value function obtained by the traditional value
iteration algorithm using linear interpolation and Shepard method on a regular
grid as done in [22].
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Figure 4.6: Example 3. Optimal trajectories (left) and optimal controls (right)
for x = (0.7,−0.7).

All trajectories reach the target T with different costs. The value of the
cost functional, for a given initial condition, is equal when dealing with a
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structured grid with linear interpolation and Shepard approximation (named
RBF-Regular in the table). The value of cost functional with value function
from Example 2 is always smaller or equal than the value of the cost functional
from Example 1, for both initial conditions.

In Table 4.4 we provide the evaluation of the cost functional for different
initial conditions and different methods. It is interesting to see that linear
interpolation and Shepard approximation coincide on a equidistributed grid
and that the use of Shepard with a grid driven by the dynamics lead to lower
cost functional values with respect to the random mesh.

x Linear RBF-Regular Example 1 (RG) Example 2 (GDD)
(−0.7,−0.7) 0.6664 0.6664 0.7315 0.7006

(0.7, 0.7) 0.6664 0.6664 0.7847 0.6839
(−0.7, 0.7) 0.6664 0.6664 0.7458 0.6839
(0.7,−0.7) 0.6664 0.6664 0.7458 0.7006

Table 4.4: Example 3. Evaluation of the cost functional for different methods
and initial conditions x. Example 1 is the random grid (RG) and Example 2
is the grid driven by the dynamics (GDD).

Test 2: Bilinear advection Equation

The second test deals with the control of a two-dimensional advection
equation with constant velocity c ∈ R

yt(ξ, t) + c∇ξy(ξ, t) = u(t)y(ξ, t) (ξ, t) ∈ D × [0, T ]

y(ξ, t) = 0 ξ ∈ ∂D × [0, T ]

y(ξ, 0) = x(ξ) ξ ∈ D,

(4-31)

and x the initial condition. Equation (4-31) can be written as equation (2-1)
using finite differences in space (see e.g. [53]) which leads to a system of ODEs:ẏ(t) = Ay(t) + u(t)y(t) t ∈ (0,∞)

y(0) = x x ∈ Ω,
(4-32)

where A ∈ Rd×d is the discretization of the gradient term, y(t) ∈ Rd and control
u(t) ∈ U . Our goal is to steer the solution to 0, minimizing the following cost
functional:

Jx(y, u) ≡
∫ ∞

0
(∥y(s)∥2

2 + γ|u(s)|2)e−λsds (4-33)

where y(t) solves (4-32). The parameters in (4-31) are D = [0, 5]2, c = 1 and
T = 2.5 is chosen large enough to simulate the infinite horizon. We also set
γ = 10−5 in (4-33).
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In this test we select initial conditions from a class of parametrized
functions:

C :=
{
k sin(πξ1) sin(πξ2)χ[0,1]2 ; k ∈ (0, 1]

}
. (4-34)

To generate the grid driven by the dynamics we chose k = {0.5, 1} in
(4-34), 11 equidistributed controls in U = [−2, 0] and ∆̄t = 0.1. Thus, in
(4-6), we set: ∆̄t = 0.1; M̄ = 11; L̄ = 2. Equation (4-32) is then solved for
each initial condition and each control with D discretized with d = 10201
points, and final time T = 2.5. After computing the grid generated by the
dynamics, we run Algorithm 5 with P = [0.4, 0.7] discretized with step size
0.05, fixing ∆t = 0.05 to discretize (4-32) by an implicit Euler method and
21 equidistributed controls. The residual R(θ) reaches its minimimum with
θ̄ = 0.65 as shown in the bottom-left panel of Figure 4.7. The CPU time to
run our algorithm is 583.6 seconds.

To obtain the feedback control and optimal trajectories we have further
discretized the set U with 81 points. Thus, we have studied the control problem
for different initial conditions selected from the set (4-34) using the value
function already stored. In Figure 4.7, we can compare in the top panels the
uncontrolled solution, i.e., the transport of initial condition in D considering
u(t) = 0, with controlled solution for y(ξ, 0) = 0.75 sin(πξ1) sin(πξ2)χ[0,1]2 . The
respective optimal control is shown in the bottom-right panel of Figure 4.7.
Note that this initial condition does not belong to the grid.
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Figure 4.7: Test 2. Initial condition y(ξ, 0) = 0.75sin(πξ1)sin(πξ2)χ[0,1]2 . Top:
uncontrolled solution (left) and controlled solution (right). Bottom: residual
(left) and optimal control (right).

We have also studied other initial conditions, with k = {0.5, 1} in (4-34).
The behavior of the solution is similar to Figure 4.7. We show a plot of the cost
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functionals in Figure 4.8, and we see that the controlled solution has always
a lower cost functional than the uncontrolled solutions. We are able to reach
the desired configuration with the three initial conditions considered.
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Figure 4.8: Test 2. Cost functional. Left: y(ξ, 0) = 0.5sin(πξ1)sin(πξ2)χ[0,1]2 .
Center: y(ξ, 0) = 0.75sin(πξ1)sin(πξ2)χ[0,1]2 . Right: y(ξ, 0) =
sin(πξ1)sin(πξ2)χ[0,1]2 .

Test 3: Nonlinear Heat Equation

This test deals with the control of a two-dimensional parabolic equation
with polynomial nonlinearities:
yt(ξ, t) = α∆y(ξ, t) + β(y2(ξ, t) − y3(ξ, t)) + u(t)x(ξ) (ξ, t) ∈ D × (0,∞)

∂ny(ξ, t) = 0 ξ ∈ ∂D × (0,∞)

y(ξ, 0) = x(ξ) ξ ∈ D

(4-35)
with D = [0, 1]2, α = 1

100 , β = 6 and x the initial condition. Finite differences
in space for (4-35) leads toẏ(t) = αAy(t) +Bu(t) + βF(y(t)) t ∈ (0,∞)

y(0) = x x ∈ Ω
(4-36)

where A ∈ Rd×d is the discretization of the laplacian, B ∈ Rd with Bi = x(ξi)
for i = 1, . . . , d and ξi a node of the discretization of D. Here the nonlinear
term is F(y(t)) = y(t)2 − y(t)3.

We want to minimize again (4-33) as in the previous test and consider
the class of initial conditions (4-34). Here, we build an unstructured mesh
using as initial condition k = {0.5, 1} in (4-34). In (4-6), we set ∆̄t =
0.1, M̄ = 41, L̄ = 2. The state space D = [0, 1]2 was discretized in 312 points
which is the dimension of the discretized problem (4-36). The control space
U = [−2, 0] is discretized with 41 points. The time domain is T = [0, 5] which
was discretized with 51 points. We set γ = 10−4 in (4-33) and run Algorithm
5 using P = [2, 2.4] with step size of 0.05 and ∆t = 0.075. The parameter
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that minimizes R(θ) is θ̄ = 2.25 as shown in Figure 4.9. The time needed to
approximate the value function is approximately 20 minutes.

1.8 1.9 2 2.1 2.2 2.3

Parameter 

10
0

10
1

1.8 1.9 2 2.1 2.2

Parameter 

0.795

0.796

0.797

0.798

Figure 4.9: Test 3. Residual.

We present the controlled solutions for different initial conditions taken
from C in (4-34). First, we consider the initial condition
y(ξ, 0) = 0.75 sin(πξ1) sin(πξ2) and the results are shown in Figure 4.10. As one
can see in the left panel the solution reach the equilibrium y(t) = 1, whereas
the controlled solution goes to 0 as desired. The optimal control is then shown
in the bottom panel of Figure 4.10. Note that the initial condition does not
belong to the grid where we computed the value function.

0 1 2 3 4 5

time

-2

-1.5

-1

-0.5

0

Figure 4.10: Test 3. Initial condition y(ξ, 0) = 0.75 sin(πξ1) sin(πξ2). Left:
uncontrolled solution at time t = 5. Right: controlled solution at time t = 5.
Bottom: optimal control.

Figure 4.11 presents the evaluation of the cost functional for the initial
conditions considered. As expected, the cost of controlled solutions is always
smaller than costs of uncontrolled solutions.
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Figure 4.11: Test 3. Cost functional. Left: y(ξ, 0) = 0.5sin(πξ1)sin(πξ2).
Center: 0.75y(ξ, 0) = sin(πξ1)sin(πξ2). Right: y(ξ, 0) = sin(πξ1)sin(πξ2)

Simulation with noise. We now check the robustness of the method adding
a noise term at each time instance. We keep using the same value function
stored before and we computed the optimal trajectory for a initial condition
with a small perturbation. Here, we consider y(ξ, 0) = 0.75 sin(πξ1) sin(πξ2) +
N (0, 6.25 × 10−4) for each (ξ1, ξ2) ∈ D, where N (0, 6.25 × 10−4) is a normally
distributed random variable with zero mean and standard deviation 0.025.
With these parameters we have a probability of 95, 45% of selecting a number
in the range [−0.05, 0.05] at each iteration. At each time iteration a new
independent perturbation N (0, 6.25 × 10−4) has been added to the trajectory.
Left picture of Figure 4.12 presents the uncontrolled trajectory and the solution
converges (somehow) to y(t) = 1 with a perturbation. The right panel shows
the controlled solution and how it is close to y(t) = 0, also with a perturbation.
The left panel in the bottom line of Figure 4.12 presents the optimal control.
A comparison of the cost functional for the perturbed problem is show in the
bottom right panel of Figure 4.12.

Finally, to further show the effectiveness of our method we consider a
non-smooth initial condition that does not belong to (4-34):

y(ξ, 0) = max{−(2|ξ1 − 0.5| + 1)(2|ξ2 − 0.5| + 1) + 2, 0}

as shown in the left panel of Figure 4.13. Here we consider a time interval
T = [0, 8] discretized in 161 points.

Figure 4.13 shows the uncontrolled trajectory, which converges to y(t) =
1 and the controlled trajectory, which converges to the unstable equilibrium
y(t) = 0 as desired. Figure 4.14 also presents the optimal control and the
evaluation of the cost functional.

4.3
Policy Iteration

In Chapter 2 we have discussed semi-Lagrangian schemes to approximate
the value function. In this chapter, the discussion has focused on the use of the
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Figure 4.12: Test 3. Initial condition y(ξ, 0) = 0.75sin(πξ1)sin(πξ2) +
N (0, 6.25 × 10−4). Upper left: uncontrolled solution. Upper right: controlled
solution. Lower left: optimal control. Lower right: Cost functional.

Figure 4.13: Test 3. Left: Initial condition y(ξ, 0) = max{−(2|ξ1 − 0.5| +
1)(2|ξ2 − 0.5| + 1) + 2, 0}. Middle: uncontrolled solution. Right: controlled
solution.

value iteration algorithm coupled with Shepard approximation as fundamental
framework. A natural path would be to adapt the same method with a policy
iteration scheme.

We have discussed in Chapter 2 the reduced computational time of policy
iteration over value iteration due to the lack of a minimization phase and
under the suitable choice of the initial guess. There, the discussion considered
a regular grid. The use of policy iteration in Algorithm 5, despite being
intuitively straightforward, is restricted due to computational time.

We work with the Van der Pol oscillator as a model problem to discuss
the restricions on the use of policy iteration. Let Ω = [−2, 2]2, U = [−1, 1],
λ = 1 and dynamics given by

f(x, y, u) =
 y

(1 − x2)y − x+ u

 .
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Figure 4.14: Test 3. Left: optimal control and (right) running Cost with initial
condition y(ξ, 0) = max{−(2|ξ1 − 0.5| + 1)(2|ξ2 − 0.5| + 1) + 2, 0}.

The running cost is given by

g(x, y, u) = x2 + y2

and the objective is to minimize the cost functional∫ ∞

0
g(x(s), y(s), u(s))e−λsds. (4-37)

We obtain the reference value function by value iteration in a regular grid of
3212 points, U discretized in 32 equidistributed points, ∆t = 0.3∆x and the
boundary value v(x) = 3.5. This configuration is the same studied in [21]. This
reference solution is presented in Figure 4.15.

Figure 4.15: Left: Reference value function for Van der Pol oscillator. Right:
Contour plot of the reference value function.

We run Algorithm 5 using both value iteration and policy iteration.
The domain Ω is populated with random points generated by an uniform
distribution such that Ω is densely populated. We use numerical domains of
sizes {200, 400, 800, 1600} points, ∆t = 0.85h, U discretized in 17 points and
a parameter space P = [0.1, 2]. Due to the random nature of the meshes,
for each mesh we calculate 10 tests and obtain average values. The average
relative errors are calculated using the reference solution as the function that
the value and policy iterations aim to achieve. The initial guess V 0 to start
the policy iteration is a value function obtained by value iteration in a regular
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grid formed by 812 nodes.

Figure 4.16: Left: value function obtained by value iteration in a mesh formed
by 1600 scattered points. Right: value function obtained by policy iteration in
a mesh formed by 1600 scattered points.

As we can see in Figure 4.16, the solutions obtained using value iteration
and policy iteration in Algorithm 5 are close to the shape of the reference
solution and the accuracy of the approximation increases as the decay in the
average relative errors suggests. The focus of this example is a comparison
between computational time of Algorithm 5 using each value iteration and
policy iteration.

h Points Error-VI Error-PI CPU time - VI (s) CPU time - PI (s)
0.3295 200 0.3228 0.3228 6.0 5.7
0.2359 400 0.2948 0.2948 9.9 13.0
0.1715 800 0.2776 0.2776 26.3 47.9
0.1252 1600 0.2493 0.2493 139.9 243.5

Table 4.5: Average computational times of value iteration and policy iteration
implementations of Algorithm 5

The implementation of Algorithm 5 deals with storage of distance matri-
ces and simultaneous search for minimum among them. Each of these matrices
stores distances from all xi ∈ X to points with the form xj + ∆tf(xj, uk),
where xj ∈ X and uk ∈ U is fixed. The entries on those matrices are mapped
by the RBF φ, resulting in a matrix A associated to the fixed control uk:
Ai,j(uk) = φ(∥xi − xj − ∆tf(xj, uk)∥).

The size of these matrices A(uk) depends on the number of nodes in the
unstructured grid X and the quantity of matrices depends on the number of
discrete controls, since each matrix is associated to a specific uk.

When using value iteration, at the n-th iteration the minimum value
V n is obtained comparing entries of different vectors. Each of these vectors
is calculated using a pre-stored matrix associated to a discrete control, as
described above. When working with policy iteration we have two phases:
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policy evaluation and policy improvement steps. In the policy evaluation step
each entrie of V n+1 is obtained by

V n+1
i = ∆tg(xi, u

n
i ) + (1 − λ∆t)S[V n](xi + ∆tf(xi, u

n
i )) (4-38)

where each node xi is associated to a specific control un
i evaluated in policy

improvement step at previous iteration n. In order to calculate the Shepard ap-
proximation S[V n](xi + ∆tf(xi, u

n
i )) in equation (4-38), we need the distances

between xi + ∆tf(xi, u
n
i ) and all other nodes xj in X. These values are stored

as columns in each matrix A(un
i ). Thus, to each node, the method demands the

search for specific entries between different matrices, which is computationally
expensive with the increase of the mesh size or in the number of controls. This
explains the CPU time differences when comparing value and policy iteration
in Table 4.5.
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5
The HJB-RBF approach to control nonlocal PDEs

In this chapter we apply our approach to control nonlocal models focusing
on the fractional Laplacian operator. We will introduce our nonlocal model
together with its discretization. Then, we describe the control problem we
studied and test our approach on three distinct examples. The first test
compares the solution of our DP approach with the open-loop method. In
this case we also study the numerical convergence towards the continuous
problem. In the second test, we control the dynamical system in a specific
region of the domain and in the third we study a nonlinear model. We also
test the robustness of the method under disturbance of the problem to show
the effectiveness of the feedback control.

5.1
Problem setting

Nonlocal, integral models are valid alternatives to classical PDEs to
describe systems where small scale effects or interactions affect the global
behavior. In particular, nonlocal models are characterized by integral operators
that embed length scales in their definitions, allowing to capture long-range
space interactions. Furthermore, the integral nature of such operators reduces
the regularity requirements on the solutions that are now allowed to feature
discontinuous or singular behavior.

In its simplest form, the action of a nonlocal (spatial) operator L, on a
scalar function y : Rn → R, is defined as

Ly(ξ) =
∫

Bδ(ξ)
I(ξ, z, y) dz,

where Bδ(ξ) defines a nonlocal neighborhood of size δ surrounding a point
ξ ∈ Rn, n being the spatial dimension and δ the so-called horizon or interaction
radius. The latter defines the extent of the nonlocal interactions and embeds
the nonlocal operator with a characteristic length scale. The integrand function
I is application dependent and plays the role of a constitutive law. Its definition
is not straightforward and represents one of the most investigated problems in
nonlocal research [56, 57, 58, 59, 60].
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Fractional differential operators are almost as old as their integer counter-
part [61]; however, their usability has increased during the last decades thanks
to progress in computational capabilities and to a better understanding of their
descriptive power. The simplest form of a fractional operator is the fractional
Laplacian; in its integral form, its action on a scalar function y is defined as
(see e.g. [61])

(−∆)ςy(ξ) = Cn,ς p.v.
∫
Rn

y(ξ) − y(z)
|ξ − z|n+2ς

dz, (5-1)

where ς ∈ (0, 1) is the fractional order, Cn,ς a normalization constant defined
as Cn,ς := 22ς ςΓ(ς+n/2)

πn/2Γ(1−ς) and p.v. indicates the principal value. It follows from
(5-1) that in fractional modeling the state of a system at a point depends on
the value of the state at any other point in the space; in other words, fractional
models are nonlocal. Specifically, fractional operators are special instances of
more general nonlocal operators [62, 63, 64, 55] of the following form [54]:

−Ly(ξ) =
∫

Bδ(ξ)
(y(ξ)γ(ξ, z) − y(z)γ(z, ξ))dz. (5-2)

Here, interactions are limited to a norm-induced ball Bδ(ξ) of radius δ.
The kernel γ(ξ, z) is a modeling choice and determines regularity properties
of the solution. Note that for δ = ∞ and for the fractional-type kernel
γ(ξ, z) = |ξ − z|−n−2ς the nonlocal operator in (5-2) is equivalent to the
fractional Laplacian in (5-1). Also, it has been shown in [63] that for that
choice of γ solutions corresponding to the nonlocal operator (5-2) converge to
the ones corresponding to the fractional operator (5-1) as δ → ∞ (see [62] for
more convergence results and for a detailed classification of these operators
and relationships between them).

Given the bounded, open domain D ⊂ Rn and a given constant δ > 0,
we define the interaction domain corresponding to D as

DIδ
:= {z ∈ Rn such that z ∈ Bδ(ξ) for some ξ ∈ D}.

If the interaction radius is δ = ∞ we have the interaction domain DIδ
= Rn\Ω.

While in classical PDEs models the constraints of the problem (Dirichlet,
Neumann or Robin conditions) are applied on the boundary ∂D, in nonlocal
models analogous conditions are imposed in the interaction domain DIδ

. They
are called volume constraints.
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5.2
The control problem and its discretization

For the fractional Laplacian operator defined in (5-1) we let D denote a
bounded Lipschitz domain and we define the integral fractional Laplacian on
a bounded domain to be the restriction of the full-space operator to functions
satisfying a volume constraint on DIδ

= Rn \ D. Here, for simplicity, we only
consider the homogeneous case, i.e. y = 0 in DIδ

.
We focus on the control of a general parabolic problem with time

dependent, reaction-diffusion equation. The objective is to find y : Rn ×
(0,∞) → R satisfying

∂ty(ξ, t) = −α(−∆)ςy(ξ, t) + F (y(ξ, t))+ (ξ, t) ∈ D × (0,∞),
+b(ξ, t) + u(t)q(ξ)

y(ξ, t) = 0 (ξ, t) ∈ DIδ
× (0,∞),

y(ξ, 0) = x(ξ) ξ ∈ D,

(5-3)
where the control term is u(t), with u : [0,∞) → U ⊂ R a compact set and
q : D → R. We also consider a non-linear function F : R → R, a forcing term
b : D × [0,∞) → R and a constant α > 0.
The general formulation of the cost functional that we intend to minimize is

J ∞
x (y, u) :=

∫ ∞

0
(∥y(·, s) − ȳ∥2

L2(D) + γ∥u(s)q(·)∥2
L2(D))e−λsds,

where x is the initial condition, ȳ is the desired state, γ > 0 and λ > 0 is the
discount factor. Then, the optimal control problem is formulated as

min
u∈U

J ∞
x (y, u) s.t. y(u) satisfying (5-3),

and we write y = y(u) to emphasize the dependence of the solution on the
control u.

We obtain the variational formulation of problem (5-3) by multiplying
the equation with a test function w with w|Rn\D = 0, w ∈ Y . In order to define
Y , let us present the definition of the fractional Sobolev space Hς via Fourier
Transform F (see e.g. [65]) by

Hς (Rn) :=
{
y ∈ L2 (Rn) :

∫
Rn

(1 + |ξ|2ς)|Fy(ξ)|2dξ < ∞
}
.

Considering the Dirichlet volume constraint y = 0, we define the space

Y := {y ∈ Hς(Rn) : y = 0, ∀ξ ∈ Rn \D}
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equipped with the norm

∥y∥2
Y = ∥y∥2

Hς(Rn) = ∥y∥2
L2(D) +

∫
Rn

∫
Rn

(y(ξ) − y(z))2

|ξ − z|n+2ς
dξdz.

Hence, the variational formulation of the parabolic problem (5-3) is given by

Find y ∈ V such that ∀w ∈ Y

⟨∂ty, w⟩ = −αa(y, w)+⟨F (y), w⟩ + ⟨b, w⟩ + u⟨q, w⟩, (5-4)

with the space V defined as

V := {y ∈ L2((0,∞); Y) : ∂ty ∈ L2((0,∞); Y ′)},

and Y ′ being the dual space of Y . The term a(y, w) is obtained using the
fractional laplacian (5-1) resulting in

a(y, w) := Cn,ς

2

∫
Rn

∫
Rn

(y(ξ) − y(z))(w(ξ) − w(z))|ξ − z|−n−2ςdzdξ.

Having introduced the variational formulation of equation (5-3), we now
describe its discretization process.

Let G = {K} be a conforming partition of D into simplices K with size
hK = diam(K), and set hG = max

K∈G
hK. Given G, we define the finite element

space of continuous piecewise polynomials of degree one as

Y(G) =
{
wG ∈ C0(Ω) : wG|K ∈ P1(K),∀K ∈ G, wG = 0 on ∂D

}
, (5-5)

where P1(K) is the space of linear functions on K. We point that Y(G) ⊂ Y .
Consider {ϕi}d

i=1 ⊂ Y(G) be the nodal hat functions that span the
space. We search for a function yG ∈ Y(G) which can be described by the
ansatz yG(ξ, t) = ∑d

i=1 yi(t)ϕi(ξ), i.e. for every fixed time t the function yG is
a continuous linear piecewise function with time dependent nodal values yi(t).
Thus, using this ansatz in (5-4) we obtain the terms

a(yG, ϕj) =
d∑

i=1
yia(ϕi, ϕj), (ẏG, ϕj) =

d∑
i=1

ẏi(ϕi, ϕj),

where ẏ = dy
dt

. Let us denote by Ω the discretization of D considering d

nodes. Using these spatial discretized elements and treating the other terms
accordingly (note that the initial condition is written as the ansatz x(ξ) =∑d

i=1 xiϕi(ξ)), we have the semi-discrete version of equation (5-3) given by

DBD
PUC-Rio - Certificação Digital Nº 1812633/CA



Chapter 5. The HJB-RBF approach to control nonlocal PDEs 78

MẎ (t) = −αAY (t) + F(Y (t)) +B(t) +Qu(t), t > 0,

Y (0) = x, x ∈ Ω.
(5-6)

Here, the matrices A,M ∈ Rd×d are constructed with entries

Aij = a(ϕi, ϕj), Mij = (ϕi, ϕj).

The other elements are d-dimensional vectors with entries given by Yi(t) =
yi(t), Ẏi(t) = ẏi(t), Fi(Y ) = ⟨F (yG), ϕi⟩, Bi(t) = ⟨b, ϕi⟩ and Qi(t) = ⟨q, ϕi⟩.

Relabelling ẏ(t) = Ẏ (t), y(t) = Y (t), multiplying the right-hand side of
(5-6) by the inverse of matrix M , and the initial condition y(0) = x being an
element of Y(G), leads us to the systemẏ(t) = M−1(−αAy(t) + F(y(t)) +B(t) +Qu(t)), t > 0,

y(0) = x, x ∈ Ω.
(5-7)

Equation (5-7) gives us a dynamical system in the format of equation (2-1)
with f(y(t), u(t)) = M−1(−αAy(t) + F(y(t)) + B(t) + Qu(t)). It is similar to
what we have introduced in Chapter 2 and used in Chapter 4. Thus, we are
able to apply the DP approach.

We remark that in numerical approximations, the matrix M−1 is never
computed.

5.3
Numerical Tests

In order to illustrate the DP approach to control fractional diffusion
problems we present three tests. The first is a parabolic problem where the
analytical solution is known. In this case, we show a comparison between
the solutions obtained by open-loop method and by the DP approach. The
same equation is also used to show the effectiveness of the feedback control
when dealing with disturbances of the system. We also study the numerical
convergence towards the continuous problem.

The second and third test are performed using exclusively the DP
approach. The second test is a modification of the previous problem where we
control the equation on a target subset T ⊂ D. The third test is a fractional
heat equation with a nonlinear term and a diffusive coefficient α. Our tests are
one-dimensional (n = 1) and consider ς = 0.75 in Section 5.3.

In our tests we use Wendland RBFs constructed according to the dimen-
sion d of each discrete problem. We remember that the problem dimension is
the number of nodes in the spatial discretization. The functions are of class
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C4(Rd) and are obtained using the general formula proposed in [66]

φσ(r) = max{0, (1 − σr)ℓ+2((ℓ2 + 4ℓ+ 3)σ2r2 + (3ℓ+ 6)σr + 3)}, r := ∥x∥2,

where ℓ = ⌊d
2⌋ + 3.

5.3.1
Test 1: Linear example with exact solution

Let us present an artificial example with optimal solution that will be
used for comparison with the results obtained using the DP approach. We refer
to e.g. [71] and references therein for optimal control of parabolic fractional
equations.

Let ỹ and b̃ be the exact solution and corresponding right-hand side of
the fractional Poisson problem (−∆)ςy(ξ) = b̃(ξ) ξ ∈ D,

y(ξ) = 0 ξ ∈ DIδ
,

on D, with ∥ỹ∥L2(D) = 1, and let ϕ, ψ : (0, T ) → R such that ϕ(0) = 1,
ψ(T ) = 0. Let the space U := [a, b] and take the control to be of the form
u(ξ, t) ∈ Uad where

Uad := {u ∈ L2(0, T ;D) : aỹ(ξ) ≤ u(ξ, t) ≤ bỹ(ξ), (ξ, t) ∈ D × (0, T )}

and u(ξ, t) = c(t)ỹ(ξ) with c : (0, T ) → U . Consider the following functions
that will be used in the construction of the cost functional and the PDE

yd(ξ, t) := ϕ(t)ỹ(ξ) − γψ′(t)ỹ(ξ) + γψ(t)b̃(ξ) + λγψ(t)ỹ(ξ),

ud(ξ, t) := projU(ψ(t))ỹ(ξ),

b(ξ, t) := ϕ′(t)ỹ(ξ) + ϕ(t)b̃(ξ) − ud(ξ, t).

We aim to minimize the cost functional

J T
x (y, u) := 1

2

∫ T

0
(∥y(·, s) − yd(·, s)∥2

L2(D) + γ∥u(·, s)∥2
L2(D))e−λsds

= 1
2∥y − yd∥2

L2
ν(0,T ;D) + γ

2∥u∥2
L2

ν(0,T ;D),

where we have set ν(t) := e−λt, subject to
∂ty(ξ, t) + (−∆)ςy(ξ, t) = b(ξ, t) + u(ξ, t) (ξ, t) ∈ D × (0, T ),

y(ξ, t) = 0 (ξ, t) ∈ DIδ
× (0, T ),

y(ξ, 0) = x(ξ) ξ ∈ D.

(5-8)
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For fixed initial condition x, we can write the first order optimality
conditions. Let j(u) := J T

x (Su, u), where S is the solution operator of the
above PDE (5-8). The operator S is also called the fractional control-to-state
operator

S : L2(0, T ;D) → V

and Su = y(u), where y(u) solves (5-8).
Then, the optimal control must satisfy the variational inequality (see

Lemma 2.21 in [72])

u = argmin j(u) ⇔ (j′(u), u− u) ≥ 0 ∀u ∈ Uad.

The inequality can be written in the equivalent form

(S∗(Su− yd) + γu, u− u)L2
ν((0,T );D) ≥ 0,

where S∗ is the adjoint solution operator. Hence, p := S∗(Su − yd) is the
solution to

−∂tp(ξ, t) + λp+ (−∆)ςp(ξ, t) = y(ξ, t) − yd(ξ, t) (ξ, t) ∈ D × (0, T ),
p(ξ, t) = 0 (ξ, t) ∈ DIδ

× (0, T ),
p(ξ, T ) = 0 for all ξ ∈ D.

with y = Su.
Then, the following inequality

0 ≤ (p+ γu, u− u)L2
ν(0,T ;D) = ((p, ỹ)L2(D)ỹ + γu, u− u)L2

ν(0,T ;D)

implies that u = projU
(
− 1

γ
(p, ỹ)L2(D)

)
ỹ.

If we set

y∗(ξ, t) := ϕ(t)ỹ(ξ), p∗(ξ, t) := −γψ(t)ỹ(ξ), u∗(ξ, t) := ud(ξ, t),

we obtain

y∗(ξ, 0) = ỹ(ξ),

∂ty
∗(ξ, t) + (−∆)sy∗(ξ, t) = ϕ′(t)ỹ(ξ) + ϕ(t)b̃(ξ)

= b(ξ, t) + u∗(ξ, t),

where we have used that ỹ is the solution of Poisson equation. Hence, y∗ is the
state corresponding to the control u∗ and the initial condition x = ỹ.
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Moreover,

p∗(ξ, T ) = 0,

−∂tp
∗(ξ, t) + λp∗(ξ, t) + (−∆)sp∗(ξ, t) = γψ′(t)ỹ(ξ) − λγψ(t)ỹ(ξ) − γψ(t)b̃(ξ)

= y∗(ξ, t) − yd(ξ, t).

and hence p∗ solves the adjoint equation with right-hand side y∗ − yd.
Finally, projU

(
− 1

γ
(p∗, ỹ)L2

)
ỹ(ξ) = projU (ψ(t)) ỹ(ξ) = u∗(ξ, t).

Therefore, for the initial condition x = ỹ, the optimal control is u∗, and
the optimal state is y∗.

Let us now link the problem to the infinite horizon framework. In order
to do it, we make T → ∞. In addition, let us choose T0 > 0 and ψ such
that ψ(t) = 0 for t ≥ T0. Moreover, choose U such that 0 ∈ U . For T > T0,
the previous construction gives the solution of the optimal control problem on
(0, T ). On the other hand, we have

J ∞
x (y∗, u∗) = J T

x (y∗, u∗) + 1
2∥y∗ − yd∥2

L2
ν(T,∞;D) + γ

2∥u∗∥2
L2

ν(T,∞;D)

= J T
x (y∗, u∗) + γ2

2
[
∥ψ′∥2

L2
ν(T,∞) + ∥ψ∥2

L2
ν(T,∞)∥b̃∥2

L2(D) − λ(ψ′, ψ)L2
ν(T,∞)

− 2(ψ′, ψ)L2
ν(T,∞)(ỹ, b̃)L2(D) + 2λ

γ
∥ψ∥2

L2
ν(T,∞)(ỹ, b̃)L2(D) + λ2∥ψ∥L2

ν(T,∞)

]

+ γ

2∥ projU(ψ)∥2
L2

ν(T,∞)

= J T
x (y∗, u∗),

where we have used that ψ and ψ′ are zero on (T,∞). We also need to consider
γ > 0. Therefore,

min J ∞
x (y, u) ≤ min J T

x (y, u),

but the inverse inequality also holds, since J T
x (y, u) ≤ J ∞

x (y, u). Hence, the
pair (y∗, u∗) is also optimal on (0,∞).

Let us set the following quantities

γ > 0, λ ≥ 0, U = [a, b] ⊂ R,

a ≤ 0 ≤ b, 0 < T0 ≤ T,

where T is the final time used for the open loop approach. Moreover, let us
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choose the parameters of equation (5-8) as

D = (−1, 1),

b̃(ξ) = 22ςΓ (1 + ς) Γ(ς + 1/2)
Γ(1/2)

√√√√ Γ(2ς + 3/2)
Γ(2ς + 1)Γ(1/2) ,

ỹ(ξ) =

√√√√ Γ(2ς + 3/2)
Γ(2ς + 1)Γ(1/2)

(
1 − ξ2

)ς

+
, (5-9)

ϕ(t) = cos(t),

ψ(t) = (T0 − t)2χ{t≤T0},

ud(ξ, t) = projU(ψ(t))ỹ(ξ),

yd(ξ, t) = ϕ(t)ỹ(ξ) − γψ′(t)ỹ(ξ) + γψ(t)b̃(ξ) + λγψ(t)ỹ(ξ),

b(ξ, t) = ϕ′(t)ỹ(ξ) + ϕ(t)b̃(ξ) − ud(ξ, t).

With u(·, t) = c(t)ỹ(·), we minimize

J ∞
x (y, u) = 1

2

∫ ∞

0
(∥y(·, s) − yd(·, s)∥2

L2(D) + γ∥u(·, s)∥2
L2(D))e−λsds (5-10)

subject to
∂ty(ξ, t) + (−∆)ςy(ξ, t) = b(ξ, t) + u(ξ, t) (ξ, t) ∈ D × (0,∞),

y(ξ, t) = 0 (ξ, t) ∈ DIδ
× (0,∞),

y(ξ, 0) = x(ξ) ξ ∈ D.

(5-11)

The solution for x = ỹ is given by

y∗(ξ, t) = ϕ(t)ỹ(ξ), u∗(ξ, t) = ud(ξ, t). (5-12)

Finally, to fit the cost functional into the setting of the DPP we make a
change of variable

z(ξ, t) = y(ξ, t) − yd(ξ, t).

Denoting the initial condition by zo = z(ξ, 0), our problem will be able to
minimize the cost functional

J ∞
zo

(z, u) := 1
2

∫ ∞

0
(∥z(·, s)∥2

L2(D) + γ∥u(·, s)∥2
L2(D))e−λsds (5-13)

subject to
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
∂tz(ξ, t) + (−∆)ςz(ξ, t) = b(ξ, t) + u(ξ, t) − (ξ, t) ∈ D × (0, ∞),

−∂tyd(ξ, t) − (−∆)ςyd(ξ, t)
z(ξ, t) = 0 (ξ, t) ∈ DIδ

× (0, ∞),
z(ξ, 0) = x(ξ) − yd(ξ, 0) ξ ∈ D.

(5-14)
Equation (5-14) is equivalent to (5-11). The great benefit is that the cost

functional has only the norm of z. With this change of variables we can solve
the problem using the HJB approach and then recover the solution y.

The finite element spatial discretization of equation (5-14) leads us to
the system formed by ODEs Mż(t) = −Az(t) +Qc(t) +B(t) −Mẏd(t) − Ayd(t) t ∈ (0,∞)

z(0) = x− yd(0) x, yd ∈ Ω,
(5-15)

with A,M ∈ Rd×d and d-dimensional vectors ż, z, Q and B as described in
(5-6). Here, yd and ẏd are also d-dimensional vectors with construction analogue
to the other terms. The vector x is equal to ỹ where ỹi = ỹ(ξi), i = 1, . . . , d
and ξi is a node in the discretization of D.

Our goal is to minimize the cost functional

Jx(z, u) = 1
2

∫ ∞

0
(∥z(s)∥2

L2(D) + γ∥c(s)x∥2
L2(D))e−λsds (5-16)

where z(t) solves (5-15).
In this example, we study the problem for d = 63 and d = 127. We

compare the solution obtained by the DP approach (later denoted with yHJB)
with the exact solution y∗ and with the solution obtained considering the exact
optimal control plugged into the discrete system (5-15) (later denoted with y∗).

To approximate the value function and obtain the control in feedback
form, using our Algorithm 5, we consider γ = 0.01, λ = 0.5 and T0 = 3. To
generate the scattered mesh the control space U = [0, 1] is discretized with 7
equidistributed controls and the time step used is ∆t = 0.0125. The problem
(5-15) is solved up to T = 4 and the discrete trajectories are collected. The
grid is formed by a total of 2248 nodes for both d = 63 and d = 127. The
separation distances are 0.0248 and 0.0350, respectively.

We use the grid generated by the dynamics to run our algorithm using
the parameter space P = [0.1, 0.3] discretized with step size 0.02. The residual
is minimized with the parameter equal to 0.2. We, then, consider U discretized
in 21 points and ∆t = 0.01. We use these data and the grid X to approximate
the value function. To obtain the feedback control and optimal trajectories
we discretize the control set U in 1681 points and solve (5-15) up to the final
time T = 4. We revert the change of variables used to obtain equation (5-14),
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then we can compare the solutions obtained via DP approach, denoted by
yHJB(ξ, t), with the exact solution y∗(ξ, t) (as described in equation (5-12))
and with the solution obtained using the optimal control u∗(ξ, t) inserted on
equation (5-15), denoted by y∗(ξ, t).

Figure 5.1 presents the solutions for d = 127 and ∆t = 0.0125. In the
left panel we can see the uncontrolled solution of system (5-15), whereas in
the middle panel we show the open-loop solution. In the right panel we show
the controlled solution via the HJB equation. We note the difference between
the shape of the uncontrolled solution to the other solutions. This difference is
clear if we look at Figure 5.2 the plots of the absolute difference between the
uncontrolled solution and the HJB solution and the uncontrolled solution to
the open-loop solution. Also, the similarity between the shape of the solutions
obtained by open-loop control and feedback control becomes evident when we
look at their absolute difference in the right panel of Figure 5.2.

Figure 5.1: Test 1. Left: Uncontrolled solution. Middle: Open-loop solution.
Right: HJB solution. Solutions in the case ∆t = 0.0125 and d = 127.

Figure 5.2: Test 1. Left: Absolute difference between the HJB solution and
the uncontrolled solution. Center: Absolute difference between the open-loop
solution and the uncontrolled solution. Right: Absolute difference between the
HJB and open-loop solutions.

In the left panel of Figure 5.3, we compare the control obtained by the
HJB approach with respect to the analytical control u∗. One can observe that
the controls are very close up to T0. Then, there is a slight difference which does
not really affect the cost functional. Indeed, in the right panel of Figure 5.3 we
show the evaluation of the cost functional for the uncontrolled solution, the
analytical and the HJB driven approach. One can see that the cost functional
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of the two controlled solutions matches perfectly. This already highlights the
quality of our approximation.
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time

0
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Analytical
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0.25
Uncontrolled

Controlled - HJB

Analytical

Figure 5.3: Test 1. Left: optimal control, Right: Cost functional (5-10) calcu-
lated for uncontrolled, analytical and controlled by HJB approach solutions.

To further validate our approach, we study the error of our approximation
towards the control of the PDE. Thus, we have increased the dimension of the
problem d (i.e. reduce the error in space of the discretized problem) and use
different temporal step sizes ∆t. Our convergence analysis is performed with
the norm ∥ · ∥L2

ν(0,T ;D), which we write as ∥ · ∥L2
ν

to ease of notation. In Table
5.1 we show the values of ∥yHJB − y∗∥L2

ν
in the second column, ∥yHJB − y∗∥L2

ν

in the fourth column and ∥y∗ − y∗∥L2
ν

in the sixth. Here we considered distinct
values of ∆t to solve the discrete problem. We note that these values decay
with the reduction in ∆t, as expected, since a more refined time discretization
implies better approximations.

∆t ∥yHJB − y∗∥L2
ν

rate ∥yHJB − y∗∥L2
ν

rate ∥y∗ − y∗∥L2
ν

rate
0.05 0.0450 0.0351 0.0470
0.025 0.0340 0.40 0.0225 0.64 0.0233 1
0.0125 0.0260 0.38 0.0197 0.2 0.0115 1

Table 5.1: Test 1. Data of simulation with dimension = 63. h = 0.0248. Number
of nodes = 2248.

Table 5.2 presents results for d = 127. The decay in the norm of
differences also happens with a reduction on time step. The comparison
between values in Table 5.2 with values in Table 5.1 suggests that the refined
spatial discretization implies a more accurate approximation, since the values
in the second and fourth columns are smaller than their counterparty in Table
5.1. These values in Table 5.2 are almost the half of the respective values in
Table 5.1. The entries in the sixth column of Table 5.1 are very similar to those
in the same column of Table 5.2, indicating that the time discretization error
has a greater influence than the spatial error.

DBD
PUC-Rio - Certificação Digital Nº 1812633/CA



Chapter 5. The HJB-RBF approach to control nonlocal PDEs 86

∆t ∥yHJB − y∗∥L2
ν

rate ∥yHJB − y∗∥L2
ν

rate ∥y∗ − y∗∥L2
ν

rate
0.05 0.0423 0.0220 0.0473
0.025 0.0281 0.59 0.0173 0.34 0.0236 1
0.0125 0.0149 0.9 0.0072 1.2 0.0117 1

Table 5.2: Test 1. Data of simulation with dimension = 127. h = 0.0350.
Number of nodes = 2248.

One of the benefits of computing the control in closed form is the ability
to react under disturbances of the system. In this example, we disturb the
system at each time instance adding a noise vector with each component
following an uniform distribution in the interval [0, 0.02].

Simulation with noise Keeping the same value function obtained in the
previous test (in the 127 dimensional case), we compute the feedback control
with ∆t = 0.025 and U discretized with 1681 nodes. We compare the solutions
where we plug the open-loop control into the system and the solution using the
HJB approach. The open-loop control is computed without taking into account
the disturbance. We can see, in the left panel of Figure 5.4, the evaluation of
the cost functional for both methods. It is clear that the feedback control leads
to a lower cost function than the open-loop. For completeness, we show the
solution in the middle and right panel of Figure 5.4. In the third panel of Figure
5.4 we can see that the solution controlled using the HJB approach under
the presence of perturbation closely follows the shape of the HJB controlled
solution without perturbation, as shown in Figure 5.1.

0 1 2 3 4

time

0

0.02

0.04

0.06

0.08

0.1

0.12
Analytical

Controlled - HJB

Figure 5.4: Test 1: Left: Cost functionals with noise term. Center: Open Loop
solution with noise. Right: HJB approach solution with noise. T = 4, 1681
controls; ∆t = 0.025

This test shows the effectiveness of our method under disturbances and
further motivate this approach with respect to open-loop controls.
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5.3.2
Test 2: Linear example with desired state restricted to a target

In this example we minimize the cost functional

J ∞
x (y, u) := 1

2

∫ ∞

0
(∥y(·, s)∥2

L2(T ) + γ∥u(·, s)∥2
L2(D))e−λsds (5-17)

that is similar to the cost functional (5-13), but the norm of y is calculated with
the restriction to the target T = [−1/2, 1/2] and T ⊂ D with D = (−1, 1). It
is minimized subject to the following dynamics

∂ty(ξ, t) + (−∆)ςy(ξ, t) = b(ξ, t) + u(ξ, t) for all ξ ∈ D × (0, T ),
y(ξ, t) = 0 for all ξ ∈ DIδ

× (0, T ),
y(ξ, 0) = x(ξ) for all ξ ∈ D,

(5-18)
where

b(ξ, t) = (1 − cos(t))χ[−1,−3/4](ξ) (5-19)
and

u(ξ, t) = u1(t)χ[−3/4,−1/2](ξ) + u2(t)χ[1/2,3/4](ξ), (5-20)
with ui(t) ∈ U = [−0.5, 0], i ∈ {1, 2}, i.e., the control is formed by two
independent terms, each of them acting on a specific region of the domain.

Here, the semi-discrete system in equation (5-18) is
Mẏ(t) = −Ay(t) +

(
u1(t)χ[−3/4,−1/2](ξ) + u2(t)χ[1/2,3/4](ξ)

)
t ∈ (0,∞)

+B(t)
y(0) = 0 0 ∈ Ω

(5-21)
where ξ ∈ Rd with ξi a node in the discretization of D, i = 1, . . . , d. The cost
functional to be minimized is

Jx(y, u) = 1
2

∫ ∞

0
(∥y(s)∥2

L2(T ) + γ∥u1(s)χ[−3/4,−1/2] + u2(s)χ[1/2,3/4]∥2
L2(D))e−λsds

(5-22)

with y(t) solution of (5-21) and u(ξ, s) defined as (5-20).
We set the parameters of the equation as γ = 10−6 and λ = 0.5. To build

the scattered mesh we use ∆t = 0.025 and control pairs (u1, u2) ∈ U ×U , with
U discretized in 5 equidistributed controls, resulting in a total of 25 control
pairs. We solve equation (5-21) up to time T = 6 and collect a total of 6026
nodes to form our 63 dimensional grid. The separation distance is 0.0180.

If we consider the parameter θ = 0.01, a time step ∆t = 0.01 and use the
same discrete control set of the mesh, we compute the value function using the
unstructured grid. In order to execute the feedback reconstruction we used a
∆t = 0.025 and a total of 1681 control points.
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In Figure 5.5, we show the uncontrolled solution in the left panel and the
controlled solution in the middle, both with final time T = 10. The difference
between the solutions becomes clear in the evaluation of the cost functional in
the right panel of Figure 5.1. The cost of the controlled solution is below the
cost functional of the uncontrolled solution most of the time.
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0.5

1

1.5

2
10

-3

Uncontrolled

Controlled - HJB

Figure 5.5: Test 2: Left: uncontrolled solution. Middle: controlled solution.
Right: Cost Functionals.

In Figure 5.6, we present the two control variables u1 and u2 obtained
with our approach in the left panel. The control u1 acts in an interval that
is very close to the region where the force term is positive. Then, it is clear
that u1 is more active than u2 since it is closer to the interval where b(ξ, t)
acts. Finally, a further zoom of the uncontrolled and controlled solution in the
target region in the middle and right panels, respectively.
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Figure 5.6: Test 2: Left: Controls u1 and u2. Center: uncontrolled solution in
a plot restricted to target T . Right: controlled solution in a plot restricted to
target T .

5.3.3
Test 3: A nonlinear example

In this test we consider the following nonlinear state equation


∂ty(ξ, t) + α(−∆)ςy(ξ, t)+ = F (y(ξ, t)) + x(ξ)u(t) for all ξ ∈ D × (0,∞),

y(ξ, t) = 0 for all ξ ∈ DIδ
× (0,∞),

y(0, ξ) = x(ξ) for all ξ ∈ D,

(5-23)
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where the nonlinear term is given by F (y) = y2(1 − y) and the parameter
α = 0.01.

Here, the finite element spatial discretization results in the system Mẏ(t) = −αAy(t) + F(y(t)) +Qu(t) t ∈ (0,∞)
y(0) = x x ∈ Ω,

(5-24)

where the nonlinear term F : Rd → Rd is F(y(t)) = y(t)2 − y(t)3, Q ∈ Rd with
Qi = x(ξi) for i = 1, . . . , d and ξi a node in the discretization of D. The initial
condition used in this case is the same used in Section 5.3.1, i.e. the solution
of the Poisson problem. The cost functional we want to minimize is

Jx(y, u) := 1
2

∫ ∞

0
(∥y(s)∥2

L2(D) + γ∥u(t)x∥2
L2(D))e−λsds, (5-25)

subjected to the semi-discrete system (5-24).
The parameters chosen in the cost are λ = 0.5 and γ = 0.01. To generate

the scattered mesh we consider the control space U = [−0.5, 0] discretized in
11 nodes, a temporal step ∆t = 0.025 and the same initial condition from the
first test. We collect the trajectory points generated solving the system (5-24)
up to final time T = 6 for d = 63. The scattered mesh has 2652 nodes and the
separation distance is 0.12.

The space P = [0.08, 0.12] is discretized with step size 0.01. The
residual is minimized when the parameter is equal to 0.09. We run the value
iteration algorithm with ∆t = 0.01 and U discretized in 21 nodes. We obtain
the feedback control and solution considering 81 discrete control points and
∆t = 0.025. In Figure 5.7, we show the uncontrolled solution on the left and
the controlled solution on the right. We can visually see how the controlled
solution reaches the desired configuration which is the zero equilibrium. In the

Figure 5.7: Test 3. Left: Uncontrolled solution. Right: Controlled solution.

left panel of Figure 5.8, we compare the evaluation of the cost functional for
controlled and uncontrolled solution. As expected the controlled solution has
a lower cost functional with respect to the the uncontrolled one. Finally, in the
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right panel of Figure 5.8 we show the control found. The control is active at
the beginning then it is zero when the desired configuration is reached.
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Figure 5.8: Test 3. Left: Cost functional. Right: Optimal control.

Using the same value function from previous test, now we compute
the feedback control and trajectory with the presence of a noise term. Here
we consider as perturbation a 63 dimensional vector with each component
following a normal random variable with zero mean and standard deviation of
0.0025. With this configuration we have a probability of 95.45% of selecting a
number in [−0.005, 0.005]. At each instance of time we add to the trajectory
a new independent perturbation term.

Simulation with noise The feedback control and the trajectory are computed
with ∆t = 0.025 and U discretized in 81 nodes. In the left panel of Figure 5.9
we show the controlled solution under disturbances. We can see that, although
the noise, we are able to reach our desired configuration. Then, in the right
panel of Figure 5.9 we show the control found. The behaviour of the control
is qualitatively similar to the picture in the right panel of Figure 5.8, but we
can note how the feedback is able to react and adjust itself, see e.g. the pick
around t = 3.5.
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Figure 5.9: Test 3. Simulation with noise. Left: Controlled solution. Right:
Optimal control.
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6
Summary and Conclusions

In this thesis, we have proposed a new approach to approximate the
solution of HJB equations for infinite horizon optimal control problems using
Shepard approximation. The method mitigates the curse of dimensionality
and provides a new approach to control high dimensional systems coming from
PDEs. Our approach has some important advantages if compared to traditional
methods that rely on the regular discretizations of time and state space. The
first advantage is that there is no dependence of a regularly discretized state
space since our method is based on a semi-Lagrangian scheme that uses the
Shepard approximation as reconstruction tool.

Another advantage of our approach is the use of the problem dynamics
itself to generate the scattered mesh. Since we have the parameters properly
chosen (a time step, a discretization of the control set), the trajectories
collected from the evolution of the discrete dynamical system will populate
only certain regions of the domain. Thus, this strategy does not require a
complete domain discretization and consequently reduces the computational
memory requirements.

Furthermore, we have discussed RBFs and their use in the Shepard’s
method. We used Wendland functions since its compact support is important
when working with large scale distance matrices as they become sparse.
We also pointed out the importance of an adequate selection of the shape
parameter to improve the quality of the Shepard approximation. This selection
is performed comparing residual values [24] computed from different value
functions, each of them obtained using a different shape parameter in the
Shepard approximation. The selected shape parameter is the value associated
to the minimal residual.

We have also adapted classical theoretical results presented in e.g. [20]
to the use of Shepard method and to the generation of our grid.

The effectiveness of our method was tested for low and high dimensional
problems. In fact, in our numerical tests, the desired state was always reached
and the method was also stable under disturbances. Furthermore, we have
also shown the possibility to control such systems for different types of initial
conditions, specifically, coming from a class of initial conditions.
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Chapter 6. Summary and Conclusions 92

We briefly discussed nonlocal equations and their basic differences from
traditional PDE models. The control of nonlocal equations is usually performed
by the open-loop approach. The novelty we have presented in this thesis
is the control of nonlocal models using our DP approach. We analyzed
the convergence of the controlled solution towards the continuous model.
Furthermore, we could also control nonlocal problems when the system is
disturbed.

Finally, we would like to stress that the fundamental idea introduced in
this thesis may be of interest also when applied to other local-approximation
methods. Thus, the method is not necessarily bounded to the RBF-based
Shepard approximation introduced in Section 3.2. In particular, the application
of a semi-Lagrangian scheme and the construction of the scattered mesh that
are discussed in this thesis, can all be applied together with any interpolation
method that can work on high-dimensional and scattered meshes.

Future directions. The number of nodes that form the dynamics-driven mesh
can be large depending on the system and the choice of the parameters used
to run the discrete problem. The implementation of the algorithm demands
that we save a distance matrix associated to each control used in the grid
construction. The mesh size affects the dimension of the distance matrices
and it can lead to a computational restriction due to the amount of memory
required to store all the matrices. In order to overcome this problem a possible
strategy would be to reduce the dimension of the dynamical system beforehand
using Model Order Reduction methods (e.g. POD) in a similar way to [31] with
the aim that the reduced system could be controlled using a lower number of
variables and the computation of the value function could be more efficient.

Finally, we remark that the proposed method can be generalized also to
other hyperbolic equations using semi-Lagrangian schemes.
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