
Julia Drummond Noce

Enhanced Q-NAS for Image Classification

Dissertação de Mestrado

Thesis presented to the Programa de Pós–graduação em En-
genharia Elétrica, do Departamento de Engenharia Elétrica da
PUC-Rio in partial fulfillment of the requirements for the degree
of Mestre em Engenharia Elétrica.

Advisor : Prof. Marley Maria Bernardes Rebuzzi Vellasco
Co-advisor: Prof. Karla Tereza Figueiredo Leite

Rio de Janeiro
April 2022

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Julia Drummond Noce

Enhanced Q-NAS for Image Classification

Thesis presented to the Programa de Pós–graduação em Engen-
haria Elétrica da PUC-Rio in partial fulfillment of the require-
ments for the degree of Mestre em Engenharia Elétrica. Approved
by the Examination Committee:

Prof. Marley Maria Bernardes Rebuzzi Vellasco
Advisor

Departamento de Engenharia Elétrica – PUC-Rio

Prof. Karla Tereza Figueiredo Leite
Co-Advisor

UERJ

Dr. Daniela De Mattos Szwarcman
IBM Research

Prof. Douglas Mota Dias
UERJ

Prof. Celso Gonçalves Camilo Junior
UFG

Rio de Janeiro, April 20th, 2022

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

All rights reserved.

Julia Drummond Noce

Graduated in Computer Science at the Universidade Federal
Fluminense in 2019.

Bibliographic data
Noce, Julia

Enhanced Q-NAS for Image Classification / Julia Drum-
mond Noce; advisor: Marley Maria Bernardes Rebuzzi Vel-
lasco; co-advisor: Karla Tereza Figueiredo Leite. – 2022.

74 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Engenharia Elétrica,
2022.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Busca de Arquiteturas
Neurais. 3. Algoritmos Evolucionários de Inspiração Quântica.
4. Classificação de Imagens. I. Bernardes Rebuzzi Vellasco,
Marley Maria. II. Tereza Figueiredo Leite, Karla. III. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Engenharia Elétrica. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

To my friends and family
for the support and encouragement.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Acknowledgments

A pandemic Master’s is far different from what I expected. It was a huge
challenge to move out from my parents house and two months later start the
new normal life away from my friends, family and colleagues. Besides learning
everything away from the campus and having a physically distant contact with
my advisors, I’m glad that I made this far.

With that in mind, first I would like to thank my advisor and my co-
advisor Marley and Karla. They made their best to teach and guide me in
distance learning. Without them, I wouldn’t have so many new opportunities
in my life and in my career. Thank you so much for the feedbacks, for the
patience and for the encouraging messages.

I also would like to thank my family who are always worried about me
and gave me full support and advice from distance as well.

Additionally, I’d like to thank my friends for making me laugh in difficult
times and to be by my side for twenty years, always accepting who I am and
encouraging me to give my best.

Finally, I would like to thank CNPQ for the financial support. For me the
most important thing is to contribute scientifically to society. We are living in
times when science is being denied in many ways and it is up to us scientists
to continue fighting for its development.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Abstract

Noce, Julia; Bernardes Rebuzzi Vellasco, Marley Maria (Advisor); Tereza
Figueiredo Leite, Karla (Co-Advisor). Enhanced Q-NAS for Image
Classification. Rio de Janeiro, 2022. 74p. Dissertação de Mestrado –
Departamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

Deep neural networks are powerful and flexible models that have gained
the attention of the machine learning community over the last decade. Usually,
an expert spends significant time designing the neural architecture, with
long trial and error sessions to reach good and relevant results. Because
of the manual process, there is a greater interest in Neural Architecture
Search (NAS), which is an automated method of architectural search in
neural networks. NAS is a subarea of Automated Machine Learning (AutoML)
and is an essential step towards automating machine learning methods. It
is a technique that aims to automate the construction process of a neural
network architecture. This technique is defined by the search space aspects
of the architectures, search strategy and performance estimation strategy.
Quantum-inspired evolutionary algorithms present promising results regarding
faster convergence when compared to other solutions with restricted search
space and high computational costs. In this work, we enhance Q-NAS: a
quantum-inspired algorithm to search for deep networks by assembling simple
substructures. Q-NAS can also evolve some numerical hyperparameters, which
is a first step in the direction of complete automation. Our contribution involves
experimenting other types of optimizers in the algorithm and make an in-
depth study of the Q-NAS parameters. Additionally, we present Q-NAS results,
evolved from scratch, on the CIFAR-100 dataset using only 18 GPU/days.
We were able to achieve an accuracy of 76.40% which is a competitive result
regarding other works in literature. Finally, we also present the enhanced Q-
NAS applied to a case study for COVID-19 x Healthy classification on a real
chest computed tomography database. In 9 GPU/days we were able to achieve
an accuracy of 99.44% using less than 1000 samples for training data. This
accuracy overcame benchmark networks such as ResNet, GoogleLeNet and
VGG.

Keywords

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Neural Architecture Search; Quantum-Inspired Evolutionary Algo-
rithms; Image Classification.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Resumo

Noce, Julia; Bernardes Rebuzzi Vellasco, Marley Maria; Tereza Figuei-
redo Leite, Karla. Aprimoração do Algoritmo Q-NAS para Classi-
ficação de Imagens. Rio de Janeiro, 2022. 74p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

Redes neurais profundas são modelos poderosos e flexíveis que ganharam
a atenção da comunidade de aprendizado de máquina na última década. Nor-
malmente, um especialista gasta um tempo significativo projetando a arqui-
tetura neural, com longas sessões de tentativa e erro para alcançar resultados
bons e relevantes. Por causa do processo manual, há um maior interesse em
abordagens de busca de arquitetura neural, que é um método que visa auto-
matizar a busca de redes neurais. A busca de arquitetura neural(NAS) é uma
subárea das técnicas de aprendizagem de máquina automatizadas (AutoML) e
uma etapa essencial para automatizar os métodos de aprendizado de máquina.
Esta técnica leva em consideração os aspectos do espaço de busca das arquitetu-
ras, estratégia de busca e estratégia de estimativa de desempenho. Algoritmos
evolutivos de inspiração quântica apresentam resultados promissores quanto à
convergência mais rápida quando comparados a outras soluções com espaço
de busca restrito e alto custo computacional. Neste trabalho, foi aprimorado o
Q-NAS: um algoritmo de inspiração quântica para pesquisar redes profundas
por meio da montagem de subestruturas simples. O Q-NAS também pode evo-
luir alguns hiperparâmetros numéricos do treinamento, o que é um primeiro
passo na direção da automação completa. Foram apresentados resultados apli-
cando Q-NAS, evoluído, sem transferência de conhecimento, no conjunto de
dados CIFAR-100 usando apenas 18 GPU/dias. Nossa contribuição envolve ex-
perimentar outros otimizadores no algoritmo e fazer um estudo aprofundado
dos parâmetros do Q-NAS. Nesse trabalho, foi possível atingir uma acurácia
de 76,40%. Foi apresentado também o Q-NAS aprimorado aplicado a um es-
tudo de caso para classificação COVID-19 x Saudável em um banco de dados
de tomografia computadorizada de tórax real. Em 9 GPU/dias, conseguimos
atingir uma precisão de 99,44% usando menos de 1000 amostras para dados
de treinamento.

Palavras-chave

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Busca de Arquiteturas Neurais; Algoritmos Evolucionários de Inspiração
Quântica; Classificação de Imagens.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Table of contents

1 Introduction 16
1.1 Objectives 17
1.2 Contributions 18
1.3 Work Outline 18

2 Neural Architecture Search 20
2.1 NAS with Reinforcement Learning 20
2.2 NAS with Evolutionary Algorithms 21
2.3 NAS with Other Methods 22
2.4 NAS applied in COVID-19 Scenario 24

3 Quantum-inspired Evolutionary Algorithms 27
3.1 Basics of Quantum Computing 27
3.2 Quantum-Inspired Evolutionary Algorithms 28

4 Quantum-Inspired Neural Architecture Search 32
4.1 Q-NAS Network Representation 34
4.2 Q-NAS Algorithm 36
4.3 Q-NAS Parameters and Previous Experiments 39

5 Enhanced Q-NAS 45
5.1 Switching ADAM to SGD Optimizer 45
5.2 Cyclic Learning Rate 47

6 Experiments 49
6.1 Switching ADAM to SGD for CIFAR-10 and CIFAR-100 Improve-

ments 49
6.2 Cyclic Learning Rate 51
6.3 Evolving a Network from Scratch for CIFAR-100 Classification Task 52
6.4 Case Study: COVID-19 Detection in Computed Tomography Images 58

7 Conclusion 65

8 Bibliography 67

Appendices 74

A Implementation Details 74

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

List of figures

Figure 4.1 Q-NAS context in a classification tasks (Szwarcman 2020) 33
Figure 4.2 Q-NAS flowchart (Szwarcman 2020) 33
Figure 4.3 Network representation and function possibilities. The func-
tions for each node can be as simple as one unique layer or a more complex
structure (Szwarcman 2020). 34
Figure 4.4 Q-NAS Network Quantum Individual Representation
Scheme(Szwarcman 2020). 35

Figure 5.1 Cyclic Learning Rate triangular method (Smith 2017) 48

Figure 6.1 Computed Tomography Examples 58
(a) Non-COVID CT 58
(b) COVID CT 58

Figure 6.2 VGG Architecture (Simonyan e Zisserman 2014) 59
Figure 6.3 EfficientNet Architecture (Tan e Le 2019) 60
Figure 6.4 Inception Module Architecture (Szegedy et al. 2015) 61
Figure 6.5 COVID-Net Architecture (Wang, Lin e Wong 2020) 62

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

List of tables

Table 2.1 Comparing our results with some literature models. The ‘*’
marks the methods that used other datasets for the search and applied the
network on CIFAR-10. 26
Table 2.2 Results from the literature on CIFAR-100. The ‘*’ marks the
methods that used other datasets for the search and applied the network on
CIFAR-100. 26

Table 4.1 Q-NAS algorithm types of Parameters 39
Table 4.2 Functions with convolutional blocks (Szwarcman 2020) 40
Table 4.3 Functions with residual blocks (Szwarcman 2020) 40
Table 4.4 Fixed Hyperparameters used in Q-NAS 41
Table 4.5 Q-NAS algorithm parameters 42
Table 4.6 Best architecture with convolutional blocks found in Q-NAS
for CIFAR-10 without Early-stopping mechanism. 43
Table 4.7 Best architecture with residual blocks found in Q-NAS for
CIFAR-10. 43
Table 4.8 Best architecture found in Q-NAS for CIFAR-100. 44

Table 6.1 SWATS results with differents learning rates for CIFAR-10
individual with Convolutional Layers. 50
Table 6.2 SWATS results with differents learning rates for CIFAR-10
individual with Residual Layers. 50
Table 6.3 Comparing our results with some literature models. The ‘*’
marks the methods that used other datasets for the search and applied the
network on CIFAR-10. 51
Table 6.4 Accuracies for different stepsizes in CIFAR-10 Residual Individual 51
Table 6.5 Accuracies for different stepsizes in CIFAR-10 Convolutional
Individual 52
Table 6.6 Accuracies for different stepsizes in CIFAR-100 Residual
Individual 52
Table 6.7 Accuracies for different stepsizes in CIFAR-100 Convolutional
Individual 52
Table 6.8 Q-NAS algorithm parameters for CIFAR-100 previous Q-NAS
version experiment 53
Table 6.9 Main changes in Q-NAS parameterization to evolve CIFAR-
100. The value before the arrow represents the value from the previous
Q-NAS version. 54
Table 6.10 First Experiment Result for CIFAR-100 dataset from the
Individuals found that are described in Tables 6.11 and 6.12 54
Table 6.11 First Experiment Convolutional Individual 54
Table 6.12 First Experiment Residual Individual 55
Table 6.13 Main changes in Q-NAS parameterization to evolve CIFAR-
100. The value before the arrow represents the value from previous Q-NAS
version. 56

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Table 6.14 Final Experiment Result for CIFAR-100 dataset from the
Individuals found that are described in Tables 6.15 and 6.16. They were
the best individuals that outperforms the previous work by (Szwarcman 2020). 56
Table 6.15 Best Architecture with Convolutional Blocks found in Q-NAS
Enhanced for CIFAR-100 56
Table 6.16 Best Architecture with Residual Blocks found in Q-NAS
Enhanced for CIFAR-100 57
Table 6.17 Results from the literature on CIFAR-100. The ‘*’ marks the
methods that used other datasets for the search and applied the network on
CIFAR-100. 57
Table 6.18 Q-NAS parameters evolution for COVID dataset 63
Table 6.19 Best Architecture found for COVID Classification Task 63
Table 6.20 Final Accuracy for each Network 64

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

List of algorithms

Algorithm 1 QIEA pseudocode 29

Algorithm 2 Q-NAS network quantum update 37
Algorithm 3 Q-NAS algorithm 37

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

This is my letter to the world
That never wrote to me

Emily Dickinson, Selected Letters.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

1
Introduction

In the last decade, Deep Learning methods have become popular for
solving a variety of tasks, such as image, speech and automatic translation
(Hutter, Kotthoff e Vanschoren 2019), (Zoph e Le 2016). In most cases, net-
works built manually by specialists are responsible for the great success of
these applications in the literature (LeCun, Bengio e Hinton 2015). For image
application, EfficientNet (Tan e Le 2019), InceptionNet (Szegedy et al. 2016)
and VGG(Simonyan e Zisserman 2014) are examples of successful hand-made
architectures. However, building a successful network from scratch can be
a time-consuming and error-prone process. Because of the cost of the
manual process, there is a great interest in Neural Architecture Search,
which is an automated method of architectural search in neural networks
(Hutter, Kotthoff e Vanschoren 2019).

Automated Machine Learning (AutoML) has become an important re-
search area with wide applications of machine learning techniques. The goal of
AutoML is to make the area of machine learning accessible to other scientists
who are interested in applying it to different domains. For that, the research
areas of AutoML propose to automate decision making when building and
training a neural network (Hutter, Kotthoff e Vanschoren 2019).

Neural Architecture Search (NAS) is a subarea of AutoML and is an
essential step towards automating machine learning methods. It is a technique
that aims to automate the construction processes of a neural network archi-
tecture (Hutter, Kotthoff e Vanschoren 2019). Several new algorithms have
been proposed to solve the Neural Architecture Search problem, but many of
them require significant computational resources. The approach includes dif-
ferent techniques such as Reinforcement Learning (RL) (Zoph e Le 2016),
(Baker et al. 2016), (Hsu et al. 2018), (Tian et al. 2020), Bayesian op-
timization (Han et al. 2020),(Real et al. 2019), evolutionary algorithms
(Szwarcman, Civitarese e Vellasco 2019), (Awad, Mallik e Hutter 2020),
(Ottelander et al. 2021) or its variation, the quantum-inspired evolution-
ary algorithms (QIEA), which show promising results when it comes to
faster convergence. The first proposal for QIEA used important principles
of quantum computing such as the quantum bit, the linear superposition of
states and the quantum rotation gate. Empirical results show that QIEAs
can find better solutions with fewer evaluations when compared to similar
algorithms for many optimization problems (Cruz, Vellasco e Pacheco 2007),

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 1. Introduction 17

(Cruz, Vellasco e Pacheco 2010).
Quantum Inspired Neural Architecture Search (Q-NAS)

(Szwarcman, Civitarese e Vellasco 2019) is a QIEA model for searching
deep neural architectures, assembling substructures and optimizing numerical
hyperparameters. In Q-NAS, quantum individuals contain chromosomes which
have two parts: one is responsible for encoding the numerical space of some
hyperparameters (such as the weight decay factor) and the other encodes
the space for discrete neural architecture. However, this is not a co-evolution
context: the algorithm evaluates classical individuals as a solution containing
the architecture and the hyperparameters. The best accuracies found on the
CIFAR-10 task were 93.85% for a residual network and 93.70% for a convo-
lutional network, overcoming hand-designed models and some NAS works.
Considering the addition of a simple early-stopping mechanism, the evolution
times for these runs were 67 GPU days and 48 GPU days, respectively. Also,
they applied Q-NAS evolved network to CIFAR-100 without any parameter
adjustment, reaching an accuracy of 74.23%, which is comparable to a ResNet
with 164 layers.

1.1
Objectives

Our primary goal is to investigate and evaluate enhancements in Q-
NAS in order to improve performance in terms of accuracy and processing
time. For this, we evaluate the algorithm by training the network on CIFAR-
10 and CIFAR-100 benchmark datasets as a way to mediate and compare
with the originally proposed Q-NAS. Moreover, we evaluate the previous
Q-NAS version and its evolution strategy and compare to the proposed
Neural Architecture Search strategies. Our focus is to analyze the impact of
changing the parameters in CIFAR-10 and CIFAR-100 datasets. As described
in following chapters, we observe that changing only the optimizer in the Q-
NAS training phase will bring positive impacts on the accuracy.

As mentioned in Section 1, the work of Szwarcman, Chevitarese, and Vel-
lasco (Szwarcman, Civitarese e Vellasco 2019) achieved an accuracy of 74.23%
for the CIFAR-100 database. Thus, our second goal is to train a network from
scratch so that it can achieve similar or even surpass the accuracy found in
the previous proposal in a much more restricted computational infrastructure.

The COVID-19 pandemic changed our way of living. With its rapid
spread and potential virulence, many lives are compromised and hospitals are
dealing with capacity management to treat as many patients as possible. An
efficient way to detect the presence of the virus and the patient’s condition

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 1. Introduction 18

is the chest computed tomography images which is analyzed by radiologists
to look for visual indicators associated with a viral infection. Because of this
scenario, the final goal of this work is also to apply the algorithm to a real
database of chest computed tomography images to build an architecture which
detects Sars-CoV-2 of patients from Pedro Ernesto University Hospital.

1.2
Contributions

The main contributions of this work involve carrying out a study of the
best individual found at (Szwarcman, Civitarese e Vellasco 2019) and making
an assessment of possible improvements for this individual. For this case, we
investigated and applied other optimizers and with that we were able to achieve
an even greater accuracy than the previous work. One should note that this
improvements were made in the retraining phase, which means that we already
picked the best individual found by the previous work and improved it in the
retraining phase.

Furthermore, it involves providing an in-depth study of the Q-NAS for
the CIFAR-100 database so that it is possible to search an architecture that
surpasses the result found in (Szwarcman, Civitarese e Vellasco 2019).

Finally, as far as we are concerned this is the first quantum-inspired NAS
work that is applied to the task of detecting COVID-19 through computed
tomography image classification. We were able to achieve an accuracy of
99.44% in the classification task.

1.3
Work Outline

This work comprises five additional chapters, which we describe below.
In Chapter 2, we provide the theoretical background necessary to understand
the NAS context, including the concepts of convolutional neural networks and
a review of some NAS works.

We present quantum-inspired evolutionary algorithms in Chapter 3,
including the definition of essential concepts and a brief description of some
previous works.

In the next chapter 4, we revisit Q-NAS proposed by (Szwarcman 2020)
and provide an in-depth study of the previous experiments in order to out-
perform them. We investigate the previous experiments to make a comparison
and to analyze the main contributions that changing the Q-NAS parameters
could possibly have in the accuracy.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 1. Introduction 19

In chapter 5, we point out the enhancements made in Q-NAS algorithm,
emphasizing the main changes and make an in-depth study in the parameters.

Next, Chapter 6 describes and discusses the experiments. We present our
experimental track in the order it was developed, with each section addressing
a specific investigation subject.

Finally, we present the final remarks in Chapter 7, along with the next
steps of our research.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

2
Neural Architecture Search

As previously reported, there are different neural architecture search
techniques for image classification. The techniques covered in this section will
be: Reinforcement Learning (RL), Evolutionary Algorithms and NAS with
different methods.

2.1
NAS with Reinforcement Learning

Reinforcement Learning approaches are useful for modeling a sequential
decision-making process in which an agent interacts with an environment with
the main objective of maximizing its future rewards (Sutton e Barto 2018).
The agent learns to improve its behavior according to multiple interactions
with the environment of the problem (Wistuba, Rawat e Pedapati 2019). A
policy defines the behavior of the learning agent at any given time: it maps
the perceived states of the environment to action decisions when in those states.
The NAS is formulated as a Reinforcement Learning problem by considering
the generation of a neural architecture as the agent’s action. Moreover, the
environment of the problem is the same as the network and hyperparameters
search problem. The RL approaches are mainly distinguished by the agent’s
policy representation and the method to optimize it.

In (Baker et al. 2016), the authors introduce MetaQNN, which uses Q-
Learning, reinforcement technique with epsilon-greedy as exploration strategy,
(Watkins 1989) to train a policy that selects CNN layers sequentially. For
example, if the layer is convolutional, the options for kernel size and filters are
{1, 3, 5}, and {64, 128, 256, 512}. In addition, Zhong et al. (Zhong et al. 2018)
present one of the first approaches implementing block-wise architecture
search, the BlockQNN, which automatically builds convolutional networks
using Q-Learning (Mnih et al. 2015). The block structure is similar to ResNet
and Inception (GoogLeNet) networks since it contains shortcut connections
and multi-branch layer combinations.

Additionaly, in (Chu, Zhang e Xu 2020), the authors proposed MoreM-
NAS (Multi-Objective Reinforced Evolution in Mobile Neural Architecture
Search). They incorporate a variant of multi-objective genetic algorithm, in
which the search space is composed of various cells and each cell contains
an amount of repeated basic operators. For example, two repeated 3 × 3 2D
convolutions with 16 channels is a basic operator. Thus, the crossovers and mu-

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 2. Neural Architecture Search 21

tations can be performed at the cell level. Moreover, reinforced control is mixed
with a natural mutating process to regulate arbitrary mutation, maintaining
a delicate balance between exploration and exploitation.

2.2
NAS with Evolutionary Algorithms

Evolutionary algorithms (EA), as the name suggests, are inspired by
the natural process of evolution. A population of individuals represents can-
didate solutions to an optimization problem. All the individuals are evalu-
ated to assign a fitness value to them. In each iteration of the algorithm
(generation), the fittest individuals are selected to create a new population
(Eiben, Smith et al. 2003). One common method of selecting parents who will
generate new individuals in Neural Architecture Search is tournament selection
(Goldberg e Deb 1991). The tournament selection made k tournaments in or-
der to select the individuals to crossover. Each tournament is made with n indi-
viduals (usually 2 individuals) randomly selected and the one with best fitness
is chosen for the recombination stage. (Real et al. 2019) and (Real et al. 2017)
applied tournament selection in their works. In (Real et al. 2017) the authors
propose an evolutionary method that produces a fully trained network with-
out the need for retraining. The authors start the evolution process from a
single layer network and apply mutation operators that act on the structure,
allowing its growth. In addition, in (Real et al. 2019) the authors apply an
evolutionary algorithm to search for normal and reduction cells in the NAS-
Net search space, as defined in (Zoph et al. 2018). New cells are generated by
parent individual cells that have been mutated, with simple modifications. Its
mutation operator ensures that the child cells are still in NAS-Net space. In-
stead of removing the worst individuals, they eliminate the oldest ones in each
iteration.

Furthermore, EAs for multi-objective evolutionary NAS (ENAS) are
gaining more and more attention from researchers. The single objective ENAS
algorithms are always concerned about only one objective, e.g., the classifi-
cation accuracy, and these algorithms have only one goal: searching for the
architecture with the highest accuracy. In general, most of the multi-objective
ENAS algorithms aim at dealing with both the performance of the neu-
ral network and the number of parameters simultaneously (Lu et al. 2019),
(Elsken, Metzen e Hutter 2018), (Yang et al. 2020). However, these objective
functions are often in conflict with each other. For example, getting a higher
accuracy often requires a more complicated architecture with the need of more
computational resources. On the contrary, a device with limited computational

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 2. Neural Architecture Search 22

resource, e.g., a mobile phone, cannot afford such sophisticated architectures
(Liu et al. 2021).

The simplest way to tackle the multi-objective optimization problem is
by converting it into a single objective optimization problem with weighting
factors, i.e., the weighted summation method. The Equation 2-1 is the classical
linear form to weight two objective functions f1 and f2 into a single objective
function, where the λ ∈ (0, 1) denotes the weighting factor.

F = λf1 + (1− λ)f2 (2-1)
In (Zhang 2019), (Laredo et al. 2019), (Loni et al. 2018), the multi-

objective optimization problem was solved by using the available single objec-
tive optimization methods by Equation 2-1 of the weighted summation. This
works consist in finding an architecture for image classification task. Chen et
al.(Chen et al. 2018) did not adopt the linear addition as the objective func-
tion, whereas using a nonlinear penalty term. However, the weights manually
defined may incur bias (Deb 2014).

A Different type of the Evolutionary NAS method is proposed by
(Li e Talwalkar 2020). Their algorithm is designed for an arbitrary search
space with a Directed Acyclic Graph (DAG) representation. In order to com-
bine random search with weight-sharing, they simply use randomly sampled
architectures to train the shared weights. In the CIFAR-10 database, they
achieved an accuracy of 97.29%.

Finally, in recent work (Ottelander et al. 2021), the authors use a local
search strategy. Their work considers multi-objective NAS (the objective is a
function of accuracy and network complexity), focuses on macro search rather
than cell-based search.

2.3
NAS with Other Methods

Compared with the above gradient-free optimization methods, the
gradient-based (GD-based) methods have become increasingly popular re-
cently, mainly because their search speed is much faster than RL-based
and EA-based methods (Zhu, Zhang e Jin 2021). Early GD-based methods
(Shin, Packer e Song 2018), (Ahmed e Torresani 2018), (Fang et al. 2020) im-
plement this idea for optimizing layer hyperparameters or connectivity pat-
terns, respectively. Lorraine et al. (Lorraine, Vicol e Duvenaud 2020) intro-
duce an algorithm for inexpensive GD-based hyperparameter optimization. Liu
et al. (Liu, Simonyan e Yang 2018) employ GD in the DARTS algorithm, opti-
mizing both the network weights and the architecture. The authors use relax-

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 2. Neural Architecture Search 23

ation tricks to make a weighted sum of candidate operations differentiable, and
then apply the gradient descent method to train the weights directly. Inspired
by DARTS (Liu, Simonyan e Yang 2018), Dong et al. (Dong e Yang 2019) in-
troduce gradient-based search using the differentiable architecture sampler
(GDAS) method. The authors develop a method that samples individual archi-
tectures in a differentiable way to accelerate the architecture search procedure.

One bottleneck of the above GD-based NAS methods (e.g. DARTs) is
that it requires excessive GPU memory during the search in that all candidate
network layers must be explicitly instantiated in the GPU memory. As a result,
the size of the search space is constrained. To address this issue, Wan et
al. (Wan et al. 2020) propose DMaskingNAS, a memory and computationally
efficient DARTS variant. DMaskingNAS employs a masking mechanism for
feature map reuse (Zhu, Zhang e Jin 2021).

Another way to address the above problem is to utilize proxy tasks,
e.g., learning with only a small number of building blocks or training for
a small number of epochs (Liu, Simonyan e Yang 2018) (Xie et al. 2018).
However, these approaches cannot guarantee to be optimal target tasks
due to the restricted block diversity (Cai, Zhu e Han 2018). Cai et al.
(Cai, Zhu e Han 2018) proposed the ProxylessNAS method, which directly de-
signs the networks based on the target task and hardware instead of proxy.
Meanwhile, the authors used path binarization to reduce the computational
cost (GPU-hours and GPU memory) of NAS to the same normal training level.
Hence, the ProxylessNAS algorithm can generate network architectures on the
ImageNet dataset without any proxy (Zhu, Zhang e Jin 2021).

A more recent NAS study is called Federated Neural Architecture Search,
which aims to optimize the architecture of neural network models in the feder-
ated learning environment. The main purpose of federated learning is to protect
users’ private information, while distributed learning aims to accelerate train-
ing speed. Second, federated learning cannot determine the data distribution
of any client devices. Moreover, federated learning is often categorized based
on the distribution characteristics of the data.

Most NAS methods include two steps: i) searching the architecture
of the neural network model; and ii) training the weights of the found
neural network model afterwards. Additionally, and most importantly, only
the final performance is considered for comparison with other methods..
(Zhu, Zhang e Jin 2021).

One of the federated NAS method is presented as adversarial feder-
ated neural architecture search, and it has two purposes: (1) inference of
the client data information; (2) attack the global model to conduct backdoor

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 2. Neural Architecture Search 24

(Bagdasaryan et al. 2020) elements or even let the model unusable. Geiping et
al. (Geiping et al. 2020) showed that local images can be reconstructed from
the knowledge of model parameters (or gradients) by inverting gradients tech-
niques. In addition, an adversarial GAN (Goodfellow et al. 2014) generator
can be developed on either the server (Wang et al. 2019) or the client side
(Hitaj, Ateniese e Perez-Cruz 2017). The adversary can reconstruct other par-
ticipating clients’ private data even if it has no knowledge of the label infor-
mation. In general, finding robust model architectures in federated learning to
defend against adversarial attacks is still a hard task.

2.4
NAS applied in COVID-19 Scenario

One of the contributions of this work is to provide an algorithm capable
to detect COVID-19 in chest computed tomography (CT) images. Because of
this, we are providing all related works, as far as we are concerned, that apply
NAS to detect COVID-19.

(He et al. 2021) proposes an efficient Evolutionary Multi-objective neu-
ral ARchitecture Search (EMARS) framework, that automatically searches
for 3D neural architectures based on a search space for COVID-19 chest
CT scan classification. Within the framework, they proposed a factor-
ized 3D search space, in which all child architectures use weight sharing
among each other to significantly improve the search efficiency and fin-
ish the search process in 8 hours. In their search space, a global aver-
age pooling layer is inserted before the fully connected layer; therefore, the
class activation mapping (CAM) algorithm, which is a method to improve
explainability, can be easily embedded into their searched models, which
can help doctors locate the discriminate lesion areas on the CT scan im-
ages. In this paper, they use three publicly available datasets: Clean-CC-
CCII (He et al. 2020), MosMedData (Morozov et al. 2020) and COVID-CTset
(Rahimzadeh, Attar e Sakhaei 2021), all of which provide 3D chest CT scans.
They reached the accuracy of 89.61% in 1.3 GPU days.

Additionally, in (Timofeev, Chrysos e Cevher 2021) they propose a NAS-
based framework that bears the threefold contributions: (a) they focus on the
self-supervised scenario, i.e., where no labels are required to determine the
architecture,(b) they assume the datasets are imbalanced, (c) they design
each component to be able to run on a resource constrained setup, i.e.,
on a single GPU. The authors also conduct experiments on ChestMNIST
(Wang et al. 2017), which contains 78,468 images of chest X-ray scans and
COVID-19 X-ray (Ozturk et al. 2020).

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 2. Neural Architecture Search 25

Finally in (Rahbar e Yazdani 2021), they first introduce a new dataset
with augmented features and then forecast COVID-19 cases with a new ap-
proach, using an evolutionary neural architecture search with Binary Bat Al-
gorithm (BBA) (Yang 2010) to generate an optimized deep recurrent network
to forecast the pandemic cases. The individuals are defined using a hybrid en-
coding structure as the population of BBA. Since the final goal is forecasting
COVID-19 daily cases, one can conclude that the problem is regression. As the
literature of artificial neural networks and deep learning models in regression
problems suggests, the authors select Mean Squared Error (MSE) as BBA’s
fitness function. As a result, the authors built a network that had Mean RMSE
Loss of 1.23e-3, using only one GPU.

2.4.1
Final Remarks

Most of the works reported above use more than 50 GPUs/day to do this
search. One of them is NASNet, the authors trained in the dataset CIFAR-
10 using 500 GPUs which makes its use very limited in terms of scalabil-
ity. Moreover, in (Baker et al. 2016), the authors searched for an architec-
ture for CIFAR-10 that used 10 GPUs for 10 days (100 GPUs/days). In
(Ottelander et al. 2021), the authors were able to find a network that uses
only 1 GPU in 6.5 minutes. However, their search space is much more lim-
ited. The reduction layers such as Max-pooling are fixed in the architecture
and there are only 5 types of convolutional layers. In addition, the authors
compare their Local Search with the Random Search approach. They do not
provide further information along others NAS strategies.

In the QIEA context, the authors (Ye et al. 2020) also encode a CNN
using quantum inspiration. However, they fixed the first layer to be a Convo-
lutional Layer. Moreover they also fixed the length size of the convolutional
layers by 10. This means that the authors also limited the search space in
terms of complexity. Finally, the authors do not penalize the reducing layers,
which makes the evolution capable to find irregular structures.

The Q-NAS comparative results with other works are described in Table
2.1 for CIFAR-10 while 2.2 compares Q-NAS result with other works using
CIFAR-100 dataset.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 2. Neural Architecture Search 26

Hand-designed models
accuracy(%) #params GPU days

ResNet (He et al. 2016) 93.57 1.7M -
VGG (Simonyan e Zisserman 2014) 92.06 15.2M -
GoogleLeNet (Szegedy et al. 2015) 93.64 - -

NAS
Meta-QNN (Baker et al. 2016) 93.08 11.18M 100
DARTS (Liu, Simonyan e Yang 2018) 97.24 3.3M 5
NAS-Net (Zoph et al. 2018) 96.86 3.3M 2000
Block-QNN-S (Zhong et al. 2018) 96.46* 39.8M 96
Q-NAS (Szwarcman 2020) 93.85 7.07M 67

Table 2.1: Comparing our results with some literature models. The ‘*’ marks
the methods that used other datasets for the search and applied the network
on CIFAR-10.

Hand-designed models
accuracy(%) #params GPU days

ResNet-1001 (He et al. 2016) 77.30 10.2M -
ResNet-164 (He et al. 2016) 75.67 1.7M -
Network in Network (NiN) (Lin, Chen e Yan 2013) 64.32 - -

NAS
Meta-QNN (Baker et al. 2016) 72.86* 11.18M 100
Block-QNN-S (Zhong et al. 2018) 81.94 39.8M 96
Q-NAS (Szwarcman 2020) 74.23% 6.25M 156

Table 2.2: Results from the literature on CIFAR-100. The ‘*’ marks the
methods that used other datasets for the search and applied the network on
CIFAR-100.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

3
Quantum-inspired Evolutionary Algorithms

3.1
Basics of Quantum Computing

In conventional computations, information is recorded at a macroscopic
level and represented using two logical basis states; a "0" or "1". These states
form a bit of information coded in the current flowing in a circuit: closed for
"0" and open for "1". However, quantum computations are represented at a
microscopic level using quantum states. Inspired by quantum mechanics, this
allows information to be represented using Dirac notation: in the ground state
as |0⟩ and in the excited state as |1⟩ (Schumacher 1995). These are the two
basis states that form a q-bit.

In quantum computer, the q-bits are quaternary in nature. Each q-bit
has three states unlike the binary bits in classical computers. The states are
state 0 or state 1 and the linear superposition of these two basic states. The
state |Ψ⟩ of the q-bit

[
α β

]T
is defined as (Han e Kim 2002):

|Ψ⟩ = α|0⟩+ β|1⟩

where α and β are complex numbers and represent the probability amplitudes
of q-bit to be 0 and 1, respectively. The q-bit collapses to the state "0" with
probability α2 and to the state "1" with probability β2. The q-bit state can be
modified by means of quantum gates.

A quantum gate is a unitary operator that acts on the q-bit basis. It can
be represented by a matrix M that, in order to preserve orthogonality, must sat-
isfy M †M = I, where M † is the conjugate transpose of M (Han e Kim 2002).
One can think of these unitary transformations as being rotations of the q-bit
vector space. This is the concept of a q-bit giving a single classical bit of in-
formation, which collapses from the quantum state to one of the two classical

states
1
0

 or
0
1

. The difference between the memory in classical and quan-

tum computation is that n bits in a classical computation require 2n binary
states to represent them; however, the n q-bits require only n quantum states.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 3. Quantum-inspired Evolutionary Algorithms 28

3.2
Quantum-Inspired Evolutionary Algorithms

The idea of quantum-inspired computing is to create classical algorithms,
which can be executed in classical computers, but that take advantage of
the paradigms of quantum physics (Moore e Narayanan 1995), (Cruz 2007). A
quantum-inspired evolutionary algorithm (QIEA) applies quantum computing
principles, such as quantum bits and superposition of states to solve optimiza-
tion problems. The authors in (Han e Kim 2002) presented the first proposal
of quantum-inspired evolutionary algorithms where some important principles
of quantum computing are used, such as the collapsed quantum bit, the linear
superposition of states and the quantum rotation gate.

A QIEA, just like other evolutionary algorithms, is defined by the in-
dividual representation, an evaluation function, and the population dynam-
ics. However, in QIEA, the individual is encoded in a probabilistic fashion,
thus representing a superposition of states (solutions) in the search space
(Han e Kim 2002).

The first practical QIEA used a q-bit representation, in which a string of
q-bits defines an individual. Initially, a q-bit individual represents all possible
states with the same probability, thus better characterizing the population
diversity than other types of representations. During evolution, a Q-gate
operator can modify the probability of each q-bit, so it gradually converges
to a single state – the optimal solution. However, quantum individuals cannot
be directly evaluated: they must be observed to generate classical individuals.
In other words, since a quantum individual represents many quantum states,
it can only be evaluated when it collapses to a single one (Han e Kim 2002)
(Szwarcman 2020).

One key concept of QIEAs that distinguishes them from other EAs is
the quantum population. It represents a superposition of states covering the
search space, or more specifically, each quantum state characterizes a possible
solution. The Algorithm 1 shows a QIEA pseudocode (Han e Kim 2002). The
QIEA procedure includes some unique steps, such as the observation of the
quantum population Q(t) and the update of the quantum individuals.

QIEAs combine binary and real representation (Pinho, Vellasco e Cruz 2009)
and also have been proposed for problems in which both real and categorical
parameters need to be evolved, such as the hyperparameters and weights of a
neural network (Cardoso et al. 2015). The numerical variables are represented
using the square pulse scheme, and the categorical parameters follow the q-bit
scheme. The variation operators (Q-gate, crossover or mutation), that will be
described in the following Sections, are applied accordingly to the problem. As

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 3. Quantum-inspired Evolutionary Algorithms 29

Algorithm 1: QIEA pseudocode
t← 0
Initialize Q(t)
Generate classical population P (t) observing Q(t)
Evaluate P (t)
Store the best solutions of P (t) in B(t)
while t ≤ T do

t← t + 1
Generate classical population P (t) observing Q(t− 1)
Evaluate P (t)
Q(t)← Update Q(t)
Store the best solutions of P (t) and B(t− 1) in B(t)

end while

described, one q-bit can be represented as
α

β

. And m-q-bits representation

is defined as:

qt
i =

 α1 α2 · · · αm

β1 β2 · · · βm

 (3-1)

where |αi|2 + |βi|2 = 1, i = 1, 2, · · · , m

This representation have an advantage that is the possibility to represent
every superposition states. In (Han e Kim 2002) they define a quantum popu-
lation with N individuals Q(t) = {qt

1, qt
2, . . . qt

N} Each quantum individual qt
i

is a string of q-bits. The quantum individual qt
i can represent a solution of 2m

states.
Suppose that we have a quantum individual consisting of two q-bits: 1√

2
1√
2

1√
2

−1√
2

 (3-2)

To calculate the probability of the state |01⟩, we should first calculate the
probability amplitude associated with this state. The amplitude is obtained by
multiplying the positions (0, 0) and (1, 1) of the quantum individual matrix.
So the probability of the state |01⟩ is given by:

P|01⟩ =
(

1√
2
× −1√

2

)2

= 1
4 (3-3)

In this example, one can see that a single quantum individual can
represent four possible solutions. The classical binary representation would
need four strings to represent the same amount of information.

Now that the representation part has been briefly explained, we will
proceed with the algorithm step-by-step, following the pseudocode presented
in the Algorithm 1. At first, we initialize the quantum population Q(t) (line 2

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 3. Quantum-inspired Evolutionary Algorithms 30

in the Algorithm 1). The strategy is to assign initial values to each quantum
gene j of every individual i, so that all possible states have the same initial
probability. This can be described below:

α0
ij, β0

ij = 1√
2

i = 1, 2, . . . , N ; j = 1, 2, . . . G (3-4)

Next, we generate classical individuals by observing the quantum individuals.
The observation is an analogy as we are working with classical computers.
Consequently, to generate a binary solution xt

j to be evaluated, one selects a
state for each gene independently.

Thus, we want to generate P(0) observing Q(0) (line 3 in Algorithm 1),
where P (0) = {x0

1, x0
2, . . . , x0

n} at generation t = 0. One binary solution, x0
j , j =

1, 2, . . . , n is a binary string of length n, which is formed by selecting either 0 or
1 for each bit, respecting the probabilities |α0

i |
2 and |β0

i |
2 (Han e Kim 2002).

One should point out that a quantum computer collapses to a single state
in observing a quantum state. Finally, this process is repeated for all N

individuals to generate the classical population.
Once generated, the first classical population P(0) is ready for evaluation

to give a level of its fitness. The best solutions of one generation are stored into
B(0), where B(0) = {b0

1, b0
2, . . . , b0

n}. At generation 0, B(t) = P(t). This ends
the initial procedures, and we begin the loop of generations by the observation
process followed by the evaluation step.

After, the q-bit individuals in Q(t) are updated by applying Q-gates
proposed by (Han e Kim 2002) and it is described below:

U (∆θi) =
 cos (∆θi) − sin (∆θi)

sin (∆θi) cos (∆θi)

 (3-5)

where ∆θj is a rotation angle for each q-bit toward either 0 or 1
state depending on its sign. ∆θj should be designed in compliance with the
application problem.

A Q-gate is defined as a variation operator of QIEA, which the updated
q-bit should satisfy the normalization condition, |α′

i|
2 + |β′

i|
2 = 1, where α′

and β′ are the values of the updated q-bit. One should note that the best
solutions influence the quantum individuals’ update, so the quantum gate will
gradually rotate the q-bits toward promising solutions. Consequently, the q-
bits will progressively converge to a single state which means the possible
optimal solution, as we can’t guarantee that it achieves the optimal solution.
This means that QIEA starts with a global search and changes automatically
into a local search which leads to a good balance between exploration and
exploitation (Han e Kim 2002).

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 3. Quantum-inspired Evolutionary Algorithms 31

Finally, the last step in the loop consists of storing the best solutions
among B(t − 1) and P (t) into B(t). Then, the solutions from the current
generation and the best solution are ordered by fitness value and the best ones
from the group are selected.

QIEA was implemented by other researches with different versions to
solve several other problems. In (Ye et al. 2020), the authors encode CNNs
into quantum chromosomes, then, the quantum chromosomes are updated by
applying quantum gates and finding the best individual with a quantum genetic
algorithm. Finally, the algorithm predicts the network performance after a few
stochastic gradient descent steps by means of an evaluation estimate strategy,
in order to avoiding overfitting and to speed up the evolution process.

Additionally, in (Saad et al. 2021), the authors investigate the per-
formance of a Quantum-Inspired Genetic Algorithm(QIGA) that was
adapted to solve the Resources-Constrained Project-Scheduling Problem
(Blazewicz, Lenstra e Kan 1983). They analysed the effects of different quan-
tum parameters in the QIGA, such as quantum population size, quantum
mutation rate, and single-point and two-point quantum crossover, initialised
the quantum population using quantum rotation gates with different rota-
tion angles. Their result was competitive when compared to solutions using
heuristics and meta-heuristics.

Moreover, the authors (Mittal et al. 2020) proposed a feature selection
method based on QIEA for the classification of fake-face images. In the pro-
posed Improved QIEA (IQIEA), the authors add a mutation operation in
the rotational quantum-gate to enhance the exploration ability. The proposed
method initially extracts features of an image through AlexNet, a pre-trained
deep learning model. The extracted features are processed through the pro-
posed improved quantum-inspired evolutionary algorithm to select an optimal
feature subset. Finally, the classification is performed with the elicited feature
subset through the kNN classifier.

Finally,(Ramos e Vellasco 2020) applied q-bit QIEA for feature selection
in a classification task of electroencephalography data. They compared the
QIEA approach with a classical genetic algorithm. The results for the imple-
mented QIEA demonstrated a greater convergence speed. The authors con-
clude that it can also be an effective algorithm for feature selection.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

4
Quantum-Inspired Neural Architecture Search

This chapter explains the Quantum-inspired Neural Architecture Search
(Q-NAS): an algorithm proposed by (Szwarcman 2020). Q-NAS is a quantum-
inspired evolutionary algorithm that automates the process of building a deep
neural network to execute a predefined task.

In Q-NAS, quantum individuals contain chromosomes that have two
parts: one is responsible for encoding the numerical space of some hyperpa-
rameters (such as the weight decay factor) and the other for encoding the
discrete architecture space. This approach goes in the direction of complete
automation, which is the goal of AutoML. Moreover, one quantum individual
can generate multiples classical individuals and then, the algorithm evaluates
these classical individuals as a solution containing the architecture and the
hyperparameters.

However, as stated by the authors in (Szwarcman 2020), the hyperparam-
eter evolution does not provide better results on CIFAR-10 and CIFAR-100
datasets when compared with the Tensorflow’s default hyperparameters values
(Abadi et al. 2015) on the same architecture. Thus, this work will not focus
on hyperparameters’ evolution.

The search space for the network structure is defined by the user and the
values of the hyperparameters are fixed for every network structure found by
the algorithm. The network search space consists of the selection of building
blocks (layer functions) that will be used to assemble the networks. The
system’s output, is a network description along with the fixed hyperparameters’
values that the user defined. This is described in Figure 4.1. The Fx1 ... FxL
represent the network function that are in the search space. Q-NAS find the
best combination between this functions in order to reach the highest accuracy
in the classification task.

One should notice that Q-NAS does not evolve the weights of the
networks. Regular gradient based training is conducted for this purpose, as
will be described in the following sections. Moreover, as described before, we
will only focus on the encoding of the network structure and the values of
hyperparameters are fixed.

Figure 4.2 shows a simplified Q-NAS flowchart (Szwarcman 2020): we
iterate over the generations until the maximum value defined by the user. Inside
the loop, we sample solutions from the quantum individuals, evaluate them,
and update the quantum population. The gray boxes indicate the steps that

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 33

Figure 4.1: Q-NAS context in a classification tasks (Szwarcman 2020)

must consider the particular quantum representation. The quantum individual
representation is the main factor that discriminates it from the previously
discussed QIEA. The section 4.1 discuss the network structure representation
in a quantum individual.

Figure 4.2: Q-NAS flowchart (Szwarcman 2020)

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 34

4.1
Q-NAS Network Representation

In (Szwarcman 2020), the authors proposed to represent the network
structure in a chain-like structure with a fixed size L, in which every node has a
function associated with it. These functions are basically designed to be one or
more network layers function. For example, one node can be one Convolutional
layer in the structure. As the task of this work is image classification, the last
network layer is fixed to be a classifier (fully connected) layer. Figure 4.3 shows
the chain-like structure and some examples of functions. The schematic of the
network on the left of the Figure 4.3 indicates the structure of the network,
having as the first layer the one indicated with the label F1, until the last one
indicated with the label FL, where L is a value previously defined by the user
in the algorithm input. Thus, the number of layers is fixed. The last layer,
fully connected, is standard in any architecture evaluated, in order to address
the problems of pattern classification. At the end (output) the value of the
output class is presented. In addition, on the right of Figure 4.3 an example
of architecture explored in the search process can be observed, containing 3
layers that represent a sequence of functions: F1, F2 and F3.

Figure 4.3: Network representation and function possibilities. The functions for
each node can be as simple as one unique layer or a more complex structure
(Szwarcman 2020).

The only restriction specified by the authors is that a node only can
be connected in a chain-like structure; no skip-connections between nodes are
allowed. The user can manually specify a list of predefined functions with
different kernels, filters and strides that can be selected by the algorithm and
be in the search space for every node. To represent variable length networks,
the authors included a “no operation” function(NoOp) to the node in the
function list.

The predefined function names are mapped to integers in the range
[0, M − 1]. We can define our classical individual pi as an array of integers:

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 35

pi = [gi1, . . . , giL] ; gij ∈ [0, M − 1] (4-1)
where L is the number of nodes in our networks, and M is the number of
functions available in the search space. It is important to note that the user
can previously define the number of L and M which means that if L and M

increase, the computational time may also increase because of the increasing of
the complexity of the structure. However, it is also important to note that if we
have few complex functions in a structure, it can cost more computational time
than have many simpler functions. The quantum gene defines a probability
mass function (PMF) for a node in the structure. A quantum gene encoding a
single node is then represented by an array described below:

gj = [xj1, . . . , xjM] ; xjk ∈ [0.0, 1.0);
M∑

k=1
xjk = 1.0 (4-2)

If there are N quantum individuals, a maximum network size of L layers
and M functions in the function list, the quantum population will be an
array of shape (N, L, M). If the user does not specify the initial probability
value manually in each function, all nodes will start with the same PMF
(Szwarcman 2020). This means that it is possible to start the evolution giving
an initial bias to one or more functions.

Figure 4.4 summarizes the entire generation process for the network
part of the chromosome: from the user input parameters to the final decoded
network. The Q-NAS’ parameters are listed on the left. Conv(k; s, f) stands for
a convolution layer with kernel size k x k, stride s and f filters. The observation
of the quantum individual is carried out by sampling from the PMF of each
node. The decoding process is a mapping from integers to function names. The
final architecture includes a fully connected (FC) classifier layer at the end of
the structure.

Figure 4.4: Q-NAS Network Quantum Individual Representation
Scheme(Szwarcman 2020).

Network quantum individuals can lead to invalid structures. One can

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 36

assume that there is a pooling operation in the function list that reduces the
feature map size in half. For a given input image size, there is a maximum
number of times this pooling function can appear in the network before the
feature map reaches unit pixel size. However, since Q-NAS samples each node
independently, this cannot be handled directly.

Considering these points, the authors (Szwarcman 2020) decided to pe-
nalize invalid architectures. First, the authors developed a simple procedure
to correct an invalid structure: when building the decoded network for evalua-
tion, they ignore all pooling operations that appear after the allowed number
is reached but penalizes the fitness value (Szwarcman 2020). The parameter
penalize_number defines the maximum number of reducing layers a network
can have without being subject to penalization. This means that every pooling
layer added, beyond the limit, in the network structure will decrease the fitness
value by 0.01, considering that the fitness range is [0, 1]. Suppose that we have
the parameter penalized_number = 2 and the network has 5 reducing layers.
Its fitness will be reduced by 0.03. This means that instead of waiting for cor-
rectly sampled individuals, this approach corrects them at evaluation time, so
they can be trained and then penalized. Moreover, it differentiates networks
with a few invalid layers from others that greatly exceed the penalize_number.

The quantum update procedure must be created for the network part of
the chromosome. In Q-NAS, the best classical individuals information modify
the quantum population.

For the Q-NAS network quantum update, the heuristic is described
below. The loop is only depicted here for clarity; the actual program applies
the operation in the entire array of individuals at once. The goal is to increase
the probability of a promising function in a node by a random factor, which
can assume the maximum value of 0.05. The other probabilities in the same
node must be reduced to guarantee the total sum of 1.0. Consequently, the
other probabilities are decreased proportionally to their current size. This
proportional decrease ensures that small probabilities will never get negative.
The maximum update value was chosen to be conservative.

4.2
Q-NAS Algorithm

The Q-NAS algorithm comprises three main operations: (1) population
generation; (2) candidate evaluation; (3) ranking and update. In order to
find the best individual, the algorithm repeats these steps for T generations
(Szwarcman, Civitarese e Vellasco 2019). The Algorithm 3 provides the sum-
marized steps of the Q-NAS. Here, we will refer to the quantum population as

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 37

Algorithm 2: Q-NAS network quantum update
Generate random mask, based on update_quantum_rate
Chosen nodes positions = idx
for each node position i in idx do

Get best_classical_individuals[i] function f
Increase the probability for f in node i by:

update_value = random() ∗ 0.05

Subtract update_value from the probabilities other than f in node i
proportionally to their current size

end for

Q(t), which consists of a set of N quantum individuals qt
i , i = {1, 2, . . . , N}.

Algorithm 3: Q-NAS algorithm
t← 0
Initialize Q(t)
while t ≤ T do

Generate classical population C(t) observing Q(t)
if t = 0 then

Evaluate C(t)
P (t)← C(t)

else
C(t)← recombination between C(t) and P (t)
Evaluate C(t)
P (t)← select(C(t), P (t))

end if
Q(t + 1)← update Q(t) based on P (t) values
t← t + 1

end while

At the beginning of the loop of generations, Q(t) is observed to generate
the classical population C(t). As reported before, the user can provide initial
probabilities or the program assigns the same probability to all functions,
creating a uniform PMF.

The generation t loop with observing quantum individuals generate
candidate solutions. The candidate solution comprises a network architecture
description and the fixed hyperparameters’ values defined previously by the
user. It is important to emphasize that each quantum individual can generate
one or more classical individuals as long as they generate the same number
of individuals. Otherwise, we would favor some quantum individuals over the
others. The number of individuals in the classical population C(t) is a multiple
of N :

C(t) =
{
ct

1, ct
2, . . . ct

m·N

}
, m ∈ N (4-3)

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 38

The parameter repetition (m) specifies the number of classical individuals
per quantum individuals that will be generated. If repetition = 3 each
quantum individual generates three classical ones.

Once ready, C(t) can be evaluated. The evaluation procedure involves
training the candidate networks for a few epochs - in this work, just like the
previous version, it was defined 50 epochs - with a subset of the training
data. Then, following the (Szwarcman 2020) work, from epoch 45 onward, we
evaluate the network according to a predefined metric, such as accuracy, using
a validation dataset at the end of each epoch. Finally, assign the best of the 5
evaluation results as the individual’s fitness. It is calculated the accuracy only
at the final five epochs to save time, as it is expensive to stop training and
perform evaluations. One should note that the network weights are initialized
using the proposed method in (He et al. 2015) which takes ReLU/PReLU into
account.

It is important to mention that the algorithm implemented by
(Szwarcman 2020) has a timeout flag for these training sessions. If the first
45 epochs of training (before accuracy evaluations start) take more than 90
minutes, the candidate network receives a fitness value of zero. This was im-
plemented in order to eliminate structures that take too long to train, thus
creating pressure toward more efficient models.

In the first generation, C(t) individuals are ranked and stored in P(t).
In generation t = 0, they do not have any previous population, so they
store in P(t) all the individuals they just evaluated. Note that classical
recombination is only possible after the first generation. It was also decided
not to apply crossover operators in the network architecture, based on the
following observation: Blocks of subsequent nodes can repeatedly appear
during evolution, and new or unexpected sequences might be discovered. Unlike
the first generation, since P(t) exists, a new population C(t) must be evaluated
and then select individuals to be stored.

Consequently, the authors developed Q-NAS to use a steady-state
technique, in which they select the k worst individuals from the old
population with the k best from the new populations. This method
orders the old and new population and keeps the k best individuals
(Szwarcman, Civitarese e Vellasco 2019). For example, consider a population
of K individuals. Every generation it is created C(t) with size K and then they
keep the K best individuals from [C(t) ∪ P (t)]. The authors also studied that
the elitism technique does not outperform the steady-state

Finally, quantum individuals are updated based on the best classical
individuals. It is important to emphasize that the update increases the proba-

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 39

bility of the most promising function, based on its fitness, and consequentially
reduces the other probabilities proportionally so that it continues to add up
to 1. The idea is to gradually modify the quantum population so it can gen-
erate solutions that are closer to the optimal. In other words, the update
should reduce the search space and also map promising search areas. The up-
date step completes the algorithm loop, which is repeated for T generations
(Szwarcman 2020). The parameter update_quantum_gen is used to establish
the frequency in which the update procedure will be conducted.

When the evolution is complete, the final architecture is retrained from
scratch for 300 epochs using the fixed hyperparameters and all the available
training data. In addition, the network is evaluated every ten epochs using a
validation dataset. The periodic evaluations’ accuracy is used to save the best
model during the retraining phase. When training is over, the best validation
model is applied to the test data to obtain the final accuracy value. The test
accuracy is used to compare the models among different experiments and with
other works (Szwarcman 2020). The following Table 4.1 parameters are used
in Q-NAS and are defined by the user:

Parameter Name Description
n_samples number of samples that will be used during the evolution phase in the algorithm
max_generations maximum number of generations to run the algorithm
num_quantum_individuals number of quantum individuals in quantum population
max_num_nodes maximum number of nodes in the network structure (network size)

penalize_number maximum number of reducing layers a network can
have without suffering penalization

repetition number of classical individuals each quantum individual
will generate

fn_dict dictionary defining the functions for the network
search space and their initial probabilities

update_quantum_gen periodicity, in generations, in which the quantum
individuals will be updated

update_quantum_rate rate for all the quantum update operations

Table 4.1: Q-NAS algorithm types of Parameters

4.3
Q-NAS Parameters and Previous Experiments

The authors (Szwarcman 2020) made three types of experiments. In the
first group, they use the CIFAR-10 benchmark dataset, which contains 60000
colored images of size 32 x 32 pixels, divided into training and test sets – 50000
and 10000 examples, respectively. The images are labeled for ten categories,
such as dog, cat, or airplane.

The second set of experiments requires a more challenging dataset, so it
was selected CIFAR-100. It has the same properties as CIFAR-10, except for
the number of classes that is ten times bigger. Thus, for the 50,000 training
examples, CIFAR-100 has only 500 examples per class.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 40

Finally the last experiment involves a seismic image classification task
using Q-NAS to solve it.

It is important to notice that the authors made the search space for
the network structure and the hyperparameters, which means that they also
made a hyperparameter optimization. However, as they stated, the default
Tensorflow’s hyperparameters outperformed the hyperparameters found by Q-
NAS.

In (Szwarcman 2020), two evolutions were implemented for each exper-
iment, with different search spaces: one using functions with convolutional
blocks, as shown in Table 4.2, and another using functions with residual blocks
as shown in Table 4.3 in the search space and their initial probabilities, respec-
tively.

Table 4.2: Functions with convolutional blocks (Szwarcman 2020)

Table 4.3: Functions with residual blocks (Szwarcman 2020)

Tables 4.2 and 4.3 show the function sets for pooling, convolutional and
residual layers defined in the Q-NAS search space. The idea is that Q-NAS
should find the set of layers to form an architecture that achieves the best
fitness.

The ConvBlock comprises a convolutional layer, batch normalization,
and ReLU activation. Zero-padding is also used in the convolution layer input
borders. The others are straightforward: the Pooling function can be a max-
pooling or an average pooling layer; NoOp is the no-operation function that
allows us to represent variable-length networks.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 41

The Table 4.3 explores residual units instead of convolutional functions.
To understand the idea behind residual learning, first consider two networks:
a shallow one and a deep counterpart, created by adding identity layers on
the smaller model. The authors (He et al. 2016) stated that this construction
should indicate that a deeper network could not present higher training errors
than its shallow equivalent. Since their experience showed otherwise, they
proposed to make the layers fit a residual mapping instead of the original
unreferenced mapping. If the stacked identity layers were the optimal solution,
they claim it would be easier to zero out the residual than directly try to fit the
identity. If we denote the underlying mapping as H(x), the residual mapping
is then F (x) ≡ H(x)−x. The original mapping becomes F (x) + x. The unit’s
shortcut(or skip connection) can be directly used if the input x and the output
F (x) + x have the same dimensions. When the sizes do not match, there are
two typical approaches to fix this issue. The first one pads the input with zeros
when performing the summation. The second uses a projection shortcut, which
applies a 1x1 convolution to fix the dimensions.

Thus, in Q-NAS it was adopted two types of units: the ResidualV1, with
identity shortcut, and the ResidualV1Pr, with projection shortcut as described
in Table 4.3.

One should notice that in the individual from Table 4.2 the authors
decided to list function specifications that are relatively inexpensive concerning
computational cost. Note that one can be as general as desired regarding the
options of kernel, strides, and number of filters. Furthermore, one can observe
that the convolutional layers have a stride of 1, which means that they do not
reduce the input size since they apply zero-padding.

The initial probabilities were equally divided between the three types
of functions: NoOp received 1/3, and both ConvBlock and Pooling received
1/3 divided by the number of options of each. kind. The same logic was
implemented for the Residuals Block.

The hyperparameters used to find the best individual were fixed with the
values described in Table 4.4. Moreover the Q-NAS parameter configuration is
described in Table 4.5. This parameters were the baseline for the experiments
that will be showed in Chapter 7, since it was the set of parameters that was
used to find and train the individual that reached the best accuracy.

optmizer decay learning rate momentum weight decay
RMSProp 0.9 1.0e-3 0.0 1.0e-4

Table 4.4: Fixed Hyperparameters used in Q-NAS

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 42

parameter value
max_generations 300
max_num_nodes 20
penalize_number 3
num_quantum_ind 5
repetition 4
update_quantum_gen 5
update_quantum_rate 0.1

Table 4.5: Q-NAS algorithm parameters

As described before, the first experiment consists in finding the archi-
tecture that achieves the highest accuracy in CIFAR-10 dataset. With the
parameters described in Tables 4.4 and 4.5, the authors evolved an architec-
ture with Q-NAS using 10000 samples and retraining this same architecture
for 300 epochs. In the retraining phase, it is used 60000 samples. Table 4.6
shows the final individual found for the convolutional blocks. The best ar-
chitecture found in (Szwarcman 2020) was the one evolved with the Residual
Blocks search space. They were able to achieve an accuracy of 93.85% for 67
GPU days. This individual is described in Table 4.7. For the evolution with
ConvBlocks their best accuracy was of 93.70% using early-stopping mechanism.

However, as the authors from the previous version did not defined the
architecture found, we decided to use the architecture that was the cited in
the previous work and reached an accuracy of 92.95% without using the early-
stopping mechanism.

The same experiment was made with CIFAR-100 dataset containing
10000 images in the evolution phase (9000 for training and 1000 for validation).
The parameters described in Table 4.5 were the same used in this experiment
with the exception of max_num_nodes that was 30 instead of 20. The authors
(Szwarcman 2020) reached an accuracy of 74.23% with the individual described
in the Table 4.8.

Using early-stopping mechanism they evolved for 156 GPU days. Q-NAS
could reach accuracy levels comparable to other methods for CIFAR-100, as
can be seen in Table 6.17 without any adjustments on parameter values or the
early-stopping mechanism, indicating robustness in the algorithm.

One can notice that it is possible to create new networks with much less
layers than the one defined in max_num_nodes.

One should also note that we did not describe the hyperparameter
optimization since the authors from previous version of Q-NAS stated that
the hyperparameter optimization did not improve when compared with the

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 43

Nodes Function
0 conv_5_1_512
1 no_op (x2)
2 conv_3_1_128
3 conv_3_1_512
4 no_op (x2)
5 conv_5_1_256
6 avg_pool_2_2
7 no_op (x3)
8 conv_3_1_256
9 avg_pool_2_2
10 no_op
11 conv_5_1_128
12 avg_pool_2_2
13 max_pool_2_2
14 no_op (x2)

Table 4.6: Best architecture with convolutional blocks found in Q-NAS for
CIFAR-10 without Early-stopping mechanism.

Nodes Function
0 bv1p_3_1_128
1 bv1p_3_1_128
2 bv1p_3_1_256
3 avg_pool_2_2
4 no_op
5 bv1p_3_1_256
6 no_op(3x)
7 max_pool_2_2
8 max_pool_2_2
9 bv1_3_1_128
10 bv1_3_1_64
11 bv1p_3_1_256
12 bv1_3_1_256
13 no_op
14 max_pool_2_2
15 bv1_3_1_256
16 bv1p_3_1_64
17 no_op

Table 4.7: Best architecture with residual blocks found in Q-NAS for CIFAR-
10.

default values from Tensorflow library.
The motivation of this work involves looking for a more generic architec-

ture in a scalable and fast way so that it can be applied to computers with
fewer requirements than the ones described before. As mentioned earlier, QIEA

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 4. Quantum-Inspired Neural Architecture Search 44

Nodes Function
0 bv1_3_1_128
1 bv1p_3_1_64
2 max_pool_2_2
3 bv1_3_1_256
4 bv1p_3_1_128
5 bv1p_3_1_256
6 bv1p_3_1_256
7 avg_pool_2_2
8 bv1p_3_1_256
9 bv1p_3_1_256
10 avg_pool_2_2
11 avg_pool_2_2

Table 4.8: Best architecture found in Q-NAS for CIFAR-100.

can find better solutions with fewer evaluations.
Thus, this work presents Enhanced Q-NAS an algorithm capable to find a

more complex structure in a larger search space and using only 4 GPUs and still
achieving a competitive accuracy when compared to the related works. In terms
of scalability, Enhanced Q-NAS is an improved algorithm that implements
a new optimizer and build a network from scratch to apply in CIFAR-100
context. Finally, and most importantly, enhanced Q-NAS is the first QIEA,
as far as the authors are concerned, applied to detect COVID-19 in computed
tomography chest images.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

5
Enhanced Q-NAS

In the previous work (Szwarcman 2020), the authors achieved a compet-
itive accuracy building a network from scratch for CIFAR-100. Since our goal
is to enhance the algorithm, due to the need for comparison with the old ver-
sion of Q-NAS algorithm, this work is also focused on the classification task.
Moreover, we want to apply it on a case study in a real medical image dataset.

However, due to the dataset complexity, there was a need to carry out a
more in-depth study in order to achieve a higher accuracy. Our main focus will
be in the improvements for CIFAR-100 dataset. Moreover, the authors used 20
GPUs to make their experiments that was cited in this work. The focus of this
work is to make Q-NAS more scalable and improve the result without making
huge changes in the algorithm.

For that, seeking to improve results and reduce processing time this
Section presents improvements we made in the (Szwarcman 2020). Initially,
we changed the optimizer RMSProp to SWATS algorithm proposed by
(Keskar e Socher 2017). Furthermore, an experiment was conducted that
evolved a network from scratch, using Q-NAS to CIFAR 100 dataset, just
changing a few parameters of the algorithm and transforming it into a prob-
lem to be solved with fewer GPUs. The GPUs used in the following experiments
were 4 Nvidia GTX 1080. The resultant network is relatively small (20 lay-
ers) compared to other state-of-the-art models and achieve promising accuracy
with considerably less computational cost than other NAS algorithms.

5.1
Switching ADAM to SGD Optimizer

During the training in image classification, we want to adjust the net-
work weights so that the highest score appears for the correct label of the
corresponding image. We must define an error function to measure how far
the current output is from the correct answer. The learning algorithm mini-
mizes this error function (or cost function) concerning the network’s weights.
Stochastic Gradient Descent (SGD) and its variants are the most popular op-
timization algorithms for training CNNs. First, it presents a batch of input
arrays - images, then it computes the output scores and errors. Sequentially, it
is calculated the average gradients for the batch examples. Finally, the weights
are adjusted accordingly. The learning rate is a critical parameter for the SGD
algorithm, as it can affect the model performance significantly.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 5. Enhanced Q-NAS 46

The original Q-NAS (Szwarcman 2020) used RMSProp optimizer during
the evolution phase to find the best architecture and the SGD for the re-
training phase (Tieleman, Hinton et al. 2012).

RMSProp is an adaptive method which diagonally scale the gradient via
estimates of the function’s curvature. This method can be interpreted as a
method that use a vector of learning rates, one for each parameter, that are
adapted as the training algorithm progresses. It also discards contributions
from the extreme past with the help of an exponentially decaying moving
average. RMSProp adds the moving average decay to the list of parameters to
be specified by the user. However, as stated by (Wilson et al. 2017), RMSProp,
just like the optimizer Adam, tends to be insufficient at generalizing in a fashion
comparable to SGD. These methods tend to perform well in the initial portion
of training but are outperformed by SGD at later stages of training.

With this motivation, the authors (Keskar e Socher 2017) proposed the
Switch ADAM to SGD (SWATS) algorithm. The switch is designed to be auto-
matic and one does not introduce any more hyperparameters. The switchover
point and the SGD learning rate are both learned as a part of the training
process. A projection of the Adam step is monitored on the gradient subspace
and use its exponential average as an estimate for the SGD learning rate after
the switchover.

Adaptive algorithms, such as Adam, converge fast and are suitable for
processing sparse data. SGD with momentum can converge to more accurate
results. The combination of SGD and Adam develops the advantages of both
methods. Specifically, it first trains with Adam to quickly drops the loss
and then switches to SGD for precise optimization based on the previous
parameters at an appropriate switch point (Sun et al. 2019).

However, there are two issues to point in this operation: the first is when
to switch from Adam to SGD and the second is how to adjust the learning
rate after switching the optimization algorithm. To solve this, the authors
(Keskar e Socher 2017) proposed the following theory: the movement dAdam

of the parameter at iteration t of the Adam is:

dAdam
t = ηAdam

Vt

mt (5-1)

where ηAdam is the learning rate of Adam, Vt is the accumulated historical
gradient of the parameter and mt is the decaying average of the gradients.

The movement dSGD of the parameter at iteration t of the SGD is:

dSGD
t = ηSGDgt (5-2)

where ηSGD is the learning rate of SGD and gt is the gradient of the current

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 5. Enhanced Q-NAS 47

position. The movement of SGD can be decomposed into the learning rates
along Adam’s direction and its orthogonal direction. At the same time, SWATS
also adjusts its optimized trajectory by moving in the orthogonal direction.
Then, we have:

ProjAdam dSGD
t = dAdam

t (5-3)
and derive solution:

ηSGD
t =

(
dAdam

t

)T
dAdam

t

(dAdam
t)T

gt

(5-4)

where ProjAdam is the projection in the direction of Adam. To reduce noise, a
moving average can be used to correct the estimate of the learning rate,

λSGD
t = β2λ

SGD
t−1 + (1− β2) ηSGD

t (5-5)

λ̃SGD
t = λSGD

t

1− β2
(5-6)

where λSGD
t is the first moment of learning rate ηSGD, and λ̃SGD

t is the learning
rate of SGD after converting and β2 is exponential decay rate. For switch point,
a simple guideline

∣∣∣∣λ̃t
SGD − λSGD

t

∣∣∣∣ < ϵ is often used.

5.2
Cyclic Learning Rate

Another approach which was experimented in this work was making
the learning rate from RMSProp optimizer cyclical. It is well known that
a too small learning rate will make a training algorithm converge slowly
while a too large learning rate will make the training algorithm diverge
(Orr e Müller 1998). The authors (Smith 2017) stated that increasing the
learning rate might have a short term negative effect and yet achieve a longer
term beneficial effect.

This motivated the authors to design the learning rate to vary within
a range of values rather than adopting a stepwise fixed or exponentially
decreasing value. This means that one could define a maximum and minimum
boundaries and the learning rate cyclically varies between these bounds. A
more practical reason as to why Cyclic Learning Rate (CLR) works is that
it is likely the optimum learning rate will be between the bounds and near
optimal learning rates will be used throughout training.

The authors designed a triangular method which linearly increase and
linearly decrease the learning rate. The red curve in Figure 5.1 shows the
result of the triangular policy on CIFAR-10. The settings used to create the
red curve were a minimum learning rate of 0.001 (as in the original parameter
file) and a maximum of 0.006.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 5. Enhanced Q-NAS 48

Figure 5.1: Cyclic Learning Rate triangular method (Smith 2017)

The general schedule can be described as:

ηt = ηmin + (ηmax − ηmin)(max(0, 1− x)) (5-7)

where x is defined as:

x =| iterations
stepsize − 2(cycle) + 1 | (5-8)

and cycle can be calculated as:

cycle = floor
(

1 + iterations
2 (stepsize)

)
(5-9)

where ηmin and ηmax define the bounds of our learning rate, iterations
represents the number of completed mini-batches, stepsize defines one half of
a cycle length.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

6
Experiments

6.1
Switching ADAM to SGD for CIFAR-10 and CIFAR-100 Improvements

The experiments conducted by previous Q-NAS work (Szwarcman 2020)
showed that it was possible to achieve the accuracy of 93.85% for CIFAR-
10 and 74.23% for CIFAR-100 datasets evolving an architecture with Q-NAS
using 10000 samples in each experiment and retraining the final architectures
for 300 epochs. In the retraining phase, it is used 60000 samples.

Two evolutions were implemented, with different search spaces: one using
functions with convolutional blocks, as shown in Table 4.2, and another using
functions with residual blocks as shown in Table 4.3 in the search space. Finally,
the architecture with residual layers was the one with the best accuracy. Table
4.7 presents the best architecture for CIFAR-10 dataset. This work also updates
the Q-NAS algorithm to run in Tensorflow 2.3.

Additionally, they used RMSProp optimizer in the evolution and SGD
in the retraining phase (Hinton, Srivastava e Swersky 2012) with Tensorflow’s
default hyper-parameters: decay = 0.9, learning rate= 1.0e-3, momentum
= 0.0, weight decay = 1.0e-4. Since Tensorflow’s default hyperparameters
outperform the hyperparameter evolution in Q-NAS, as described before, it
is not the interest of this work to present this evolution.

This work presents a new enhancement for Q-NAS algorithm, which is to
change RMSProp to SWATS optimizer, proposed by (Keskar e Socher 2017) as
described in this section. Our first experiment was to use SWATS algorithm in
the training during the evolution phase, just like the authors (Szwarcman 2020)
used RMSProp. However, not only increased the time of each iteration in the
evolution but it also did not showed any improvements in the fitness value.
Thus, since applying SWATS in the Q-NAS evolution phase showed no better
performance than using RMSProp, this work proposes to apply SWATS only
in the retraining phase.

In order to achieve better accuracy and compare the results, the best
architectures found in (Szwarcman 2020) for CIFAR-10 were selected. This
architectures were defined in Tables 4.6 and 4.7, using convolutional blocks
and residual blocks, respectively. The idea is that Q-NAS should find the set
of layers to form an architecture that outperforms the previously fitness and
accuracy.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 50

For this experiment, we test different types of learning rates for SWATS
that it is described in Tables 6.1 and 6.2. As stated by (Keskar e Socher 2017),
this changes in learning rate procedure to perform better than a generic grid-
search or hyperparameter optimization, given the vastly different scales of
learning rates needed for different modalities. We also fixed the β1, β2 and
ϵ values, following the (Keskar e Socher 2017) experiments.

It can be noticed that in all cases the SWATS-1 outperforms the other
configurations. In CIFAR-10, the higher the learning rate values, the lower are
the accuracies.

configuration β1 β2 ϵ learning rate accuracy
SWATS-1 0.900 0.999 1.0e-9 0.001 93.39%
SWATS-2 0.900 0.999 1.0e-9 0.003 91.09%
SWATS-3 0.900 0.999 1.0e-9 0.005 89.43%

Table 6.1: SWATS results with differents learning rates for CIFAR-10 individ-
ual with Convolutional Layers.

configuration β1 β2 ϵ learning rate accuracy
SWATS-1 0.900 0.999 1.0e-9 0.001 94.85%
SWATS-2 0.900 0.999 1.0e-9 0.003 92.21%
SWATS-3 0.900 0.999 1.0e-9 0.005 91.13%

Table 6.2: SWATS results with differents learning rates for CIFAR-10 individ-
ual with Residual Layers.

When this network was retrained using SWATS optimizer, we achieved
an accuracy of 94.95% for CIFAR-10, which surpassed the previous work
(Szwarcman 2020) by 1.10 percentual points. In this specific case, the GPU/-
days information was not considered, as only the retraining phase was changed.
Based on these results, we can conclude that by only changing the optimizer
RMSProp to SWATS, we were able to achieve a new higher score for Q-NAS
in CIFAR-10 context. The comparative results with other works are described
in Table 6.3 for CIFAR-10.

One should note that there are some algorithms from chapter 2 that are
not presented in the Table. This is because not all algorithms can be directly
compared to Q-NAS since they have different search space from what it is
proposed and different environments (i.e. Federated Learning environments,
use of skip connections).

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 51

Hand-designed models
accuracy(%) #params GPU days

ResNet (He et al. 2016) 93.57 1.7M -
VGG (Simonyan e Zisserman 2014) 92.06 15.2M -
GoogleLeNet (Szegedy et al. 2015) 93.64 - -

NAS
Meta-QNN (Baker et al. 2016) 93.08 11.18M 100
DARTS (Liu, Simonyan e Yang 2018) 97.24 3.3M 5
NAS-Net (Zoph et al. 2018) 96.86 3.3M 2000
Block-QNN-S (Zhong et al. 2018) 96.46* 39.8M 96
Q-NAS (Szwarcman 2020) 93.85 7.07M 67
Q-NAS Enhanced 94.95 3.6M 67

Table 6.3: Comparing our results with some literature models. The ‘*’ marks
the methods that used other datasets for the search and applied the network
on CIFAR-10.

6.2
Cyclic Learning Rate

Before estimating a good value for the cycle length as stated by the
authors in (Smith 2017), one should note that an epoch is calculated by
dividing the number of training images by the batch size used. Q-NAS used a
batch size of 256 for 60000 samples in CIFAR-10. Thus, an epoch = 60000/256
= 234 iterations. The authors stated that it is often good to set stepsize equal
to 2 to 10 times the number of iterations in an epoch. In this work, we decided
to set different stepsizes of 2, 3, 4 and 5 x epoch. The result accuracy for
CIFAR-10 dataset is described in Tables 6.4 and 6.5, while the result accuracy
for CIFAR-100 dataset is described in Tables 6.6 and 6.7.

base learning rate maximum learning rate stepsize accuracy
0.001 0.006 2 x epoch 87.43%
0.001 0.006 3 x epoch 87.09%
0.001 0.006 4 x epoch 88.26%
0.001 0.006 5 x epoch 88.11%

Table 6.4: Accuracies for different stepsizes in CIFAR-10 Residual Individual

From these Tables we could conclude that using cyclic learning rate with
the triangular method in all cases did not outperform the baseline results from
(Szwarcman 2020). However, we did not tested other methods reported by the
authors (Smith 2017) such as triangular2, which is the same as the triangular
policy, except the learning rate difference is cut in half at the end of each
cycle, or exp_range, which the learning rate varies between the minimum and

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 52

base learning rate maximum learning rate stepsize accuracy
0.001 0.006 2 x epoch 85.22%
0.001 0.006 3 x epoch 86.86%
0.001 0.006 4 x epoch 86.10%
0.001 0.006 5 x epoch 85.09%

Table 6.5: Accuracies for different stepsizes in CIFAR-10 Convolutional Indi-
vidual

base learning rate maximum learning rate stepsize accuracy
0.001 0.006 2 x epoch 68.13%
0.001 0.006 3 x epoch 67.88%
0.001 0.006 4 x epoch 68.01%
0.001 0.006 5 x epoch 68.24%

Table 6.6: Accuracies for different stepsizes in CIFAR-100 Residual Individual

base learning rate maximum learning rate stepsize accuracy
0.001 0.006 2 x epoch 63.32%
0.001 0.006 3 x epoch 64.68%
0.001 0.006 4 x epoch 64.02%
0.001 0.006 5 x epoch 64.00%

Table 6.7: Accuracies for different stepsizes in CIFAR-100 Convolutional
Individual

maximum boundaries and each boundary value declines by an exponential
factor of gammaiteration. This could be a possible test for future works.

6.3
Evolving a Network from Scratch for CIFAR-100 Classification Task

Another experiment was explored in Q-NAS algorithm: to achieve a
higher score in the CIFAR-100 dataset without using the CIFAR-10 evolved
network architecture. In (Szwarcman 2020), the authors achieved the best ac-
curacy for CIFAR-100 of 74.23% in their single experiment, without using
CIFAR-10 best individual architecture. In the last Q-NAS version, the au-
thors evolved CIFAR-100, from scratch, with 300 generations, 50 epochs per
generation, a maximum number of layers of 30, a maximum number of pool-
ing layers of 3 and number of samples to be used in the evolution phase of
10000 as it is described in Table 6.8. Note that the main difference between
the CIFAR-10 parameter configuration is the max_num_nodes that changed
from 20 to 30. This is because CIFAR-100 is a dataset with much more classes
than CIFAR-10. Thus, the authors decide to increase the network complexity

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 53

to achieve a competitive result.
However, the best individual found in (Szwarcman 2020) for CIFAR-100

has less than 20 layers. Because of this, we decided to decrease the maximum
number of nodes to 20 in the following experiments.

It is highly important to note is that the previous experiment was made
using 20 GPUs. Our main goal is to reach a higher accuracy using only 4
GPUs, which can make the evolution more scalable.

parameter value
num_samples 10,000
max_generations 300
max_num_nodes 30
penalize_number 3
num_quantum_ind 5
repetition 4
update_quantum_gen 5
update_quantum_rate 0.1

Table 6.8: Q-NAS algorithm parameters for CIFAR-100 previous Q-NAS
version experiment

Our first experiment involves reducing the maximum number of nodes
from 30 to 20 again and reducing the maximum number of generations to 100.
Moreover, we doubled the number of samples to use during the evolution phase,
which means that we have now 20000 samples. Finally, since we are using only
4 GPUs, we decreased the number of quantum individuals and the number
of classical individuals that can be generated by the quantum one. Thus, our
parameter table is described in 6.9. The right arrow indicates the changes in
parameter configuration with the baseline experiment from (Szwarcman 2020).
It is important to emphasize that the previous version of Q-NAS tested the
usage of 4 classical individuals but not the setting with number of quantum
individuals of 2 and number of classical individuals generated by each quantum
individuals of 2.

The first result found with this configuration was an accuracy of 70.74%
for 16 GPU days for the best individual (Table 6.10), which overcame the
first value found by (Szwarcman 2020) which were 69.95%. Even though the
residual networks are slower to train, the fact that residual networks allow other
forms of learning with layer bypass helps to make more flexible combinations
which is reflected in the obtained results. The best individuals can be seen
in Tables 6.11 and 6.12, considering convolutional and residual individuals,
respectively. It is important to note that the main difference was the number
of samples used. Still, the training did not take much longer because we are

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 54

parameter value
num_samples 10,000 −→ 20, 000
max_generations 300 −→ 100
max_num_nodes 30 −→ 20
penalize_number 3
num_quantum_ind 5 −→ 2
repetition 4 −→ 2
update_quantum_gen 5
update_quantum_rate 0.1

Table 6.9: Main changes in Q-NAS parameterization to evolve CIFAR-100. The
value before the arrow represents the value from the previous Q-NAS version.

only using 2 quantum individuals to generate 2 classical individuals. Because
of this, we increased the number of samples in the evolution phase in the
following experiments.

Individual fitness best accuracy in
validation set

final
test accuracy GPU days

Convolutional 58.20% 63.12% 62.44% 12.8
Residual 64.21% 70.93% 70.74% 16

Table 6.10: First Experiment Result for CIFAR-100 dataset from the Individ-
uals found that are described in Tables 6.11 and 6.12

Nodes Function
0 conv_5_1_128
1 max_pool_2_2
2 conv_1_1_512
3 conv_5_1_256
4 conv_1_1_512
5 conv_5_1_128
6 conv_5_1_128
7 avg_pool_2_2
8 conv_5_1_256
9 avg_pool_2_2
10 no_op
11 conv_5_1_256
12 conv_1_1_128
13 no_op

Table 6.11: First Experiment Convolutional Individual

Finally, we decided to increase once more the dataset samples from 20000
to 35000 and decrease the total number of generations to 200. All parameters
for this experiment are described in Table 6.13. With these settings we were

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 55

Nodes Function
0 no_op
1 bv1_3_1_64
2 bv1_3_1_64
3 no_op
4 no_op
5 bv1p_3_1_64
6 no_op (x2)
7 bv1p_3_1_256
8 avg_pool_2_2
9 bv1p_3_1_256
10 bv1p_3_1_256
11 avg_pool_2_2
12 bv1p_3_1_128
13 no_op
14 bv1_3_1_64
15 avg_pool_2_2

Table 6.12: First Experiment Residual Individual

able to reach our final accuracy of 76.39% for 18 GPU days, outperforming the
evolution by 2.16 from the evolution from scratch in CIFAR-100.

The results can be seen in Table 6.14. It is possible to observe that the
residual individual outperforms the convolutional as it is expected. The final
network architecture is described in Table 6.16. The comparative results with
other works are presented in Table 6.17.

From these results, we can conclude that increasing the number of
samples might be a good alternative for getting a higher accuracy without
increasing the number of GPU days used. As a result, we were able to achieve
a higher accuracy using only four GPUs which shows that Q-NAS can be
more scalable. Moreover, we were able to find an architecture that outperforms
the previous work using the maximum number of nodes of twenty and with
only two quantum individuals. Finally, the residual network outperforms the
convolutional just like the (Szwarcman 2020) work.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 56

parameter value
num_samples 10,000 −→ 35, 000
max_generations 300 −→ 200
max_num_nodes 30 −→ 20
penalize_number 3
num_quantum_ind 5 −→ 2
repetition 4 −→ 2
update_quantum_gen 5
update_quantum_rate 0.1

Table 6.13: Main changes in Q-NAS parameterization to evolve CIFAR-100.
The value before the arrow represents the value from previous Q-NAS version.

Individual fitness best accuracy in
validation set

final
test accuracy GPU days

Convolutional 68.3% 72.6% 72.1% 14.1
Residual 69.40% 76.8% 76.39% 18

Table 6.14: Final Experiment Result for CIFAR-100 dataset from the Indi-
viduals found that are described in Tables 6.15 and 6.16. They were the best
individuals that outperforms the previous work by (Szwarcman 2020).

Node Function
0 conv_5_1_32
1 conv_3_1_64
2 no_op
3 max_pool_2_2
4 max_pool_2_2
5 conv_1_1_64
6 no_op
7 conv_3_1_256
8 no_op
9 conv_3_1_64
10 conv_5_1_256
11 conv_1_1_32
12 conv_3_1_64
13 conv_5_1_256
14 conv_5_1_64
15 no_op
16 avg_pool_2_2
17 conv_3_1_256
18 conv_5_1_64
19 conv_3_1_64

Table 6.15: Best Architecture with Convolutional Blocks found in Q-NAS
Enhanced for CIFAR-100

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 57

Nodes Function Names
0 bv1_3_1_64
1 bv1p_3_1_64
2 avg_pool_2_2
3 bv1_3_1_64
4 bv1_3_1_256
5 max_pool_2_2
6 bv1p_3_1_256
7 bv1p_3_1_128
8 no_op
9 bv1_3_1_256
10 bv1_3_1_64
11 bv1_3_1_64
12 no_op
13 bv1_3_1_64
14 no_op
15 no_op
16 bv1p_3_1_64
17 no_op
18 bv1p_3_1_128
19 bv1_3_1_256

Table 6.16: Best Architecture with Residual Blocks found in Q-NAS En-
hanced for CIFAR-100

Hand-designed models
accuracy(%) #params GPU days

ResNet-1001 (He et al. 2016) 77.30 10.2M -
ResNet-164 (He et al. 2016) 75.67 1.7M -
Network in Network (NiN) (Lin, Chen e Yan 2013) 64.32 - -

NAS
Meta-QNN (Baker et al. 2016) 72.86* 11.18M 100
Block-QNN-S (Zhong et al. 2018) 81.94 39.8M 96
Q-NAS (Szwarcman 2020) 74.23 6.25M 67
Q-NAS Enhanced 76.39 3.8M 18

Table 6.17: Results from the literature on CIFAR-100. The ‘*’ marks the
methods that used other datasets for the search and applied the network on
CIFAR-100.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 58

6.4
Case Study: COVID-19 Detection in Computed Tomography Images

In this section, we present the use of Q-NAS to evolve an architecture
for a real case study involving COVID-19 detection in computed tomography
images that outperformed benchmark networks.

The computed tomography chest images used in this work were extracted
from patients hospitalized that totalled more than 1500 images. The dataset
was divided into two classes: 827 labeled COVID images and 850 labeled
healthy images. Each CT image was evaluated and labeled by three experienced
radiologists. It is emphasized that the identification of each patient has been
eliminated. During the training phase, the dataset was split into 80% training,
10% validation and 10% test.

(a) Non-COVID CT (b) COVID CT

Figure 6.1: Computed Tomography Examples

Figure 6.1 shows examples of the two types of computed tomography. The
first represents the healthy chest CT, since there are no changes in the lung
parenchyma, typical of the presence of the virus, and the second represents the
COVID infected chest CT. All the input images were resized to 128-by-128 and
each training image was augmented with random cropping, with a scale of 0.5,
horizontal flip, random contrast, and random brightness with a factor of 0.2.

Before evolving a Q-NAS architecture, we trained these images in four
benchmark networks: VGG, EfficientNet, GoogleLeNet and COVID-Net. Fur-
thermore, the dataset was also used to train the most recent network proposed
by (Wang, Lin e Wong 2020), COVID-Net. The hyperparameters values were
chosen as Tensorflow’s default. In the next sections, we will briefly discuss the
architecture of the benchmarks networks.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 59

6.4.1
VGG - Very Deep Convolutional Neural Network

VGG (Simonyan e Zisserman 2014) is a Convolutional Neural Network
architecture proposed in 2014. The original idea is that instead of having a
large number of hyperparameters they focused on having convolution layers of
3x3 filters with a stride 1 and always used the same padding and maxpool layer
of 2x2 filter of stride 2. In this way, it can simulate larger filters, keeping the
benefits of being a small filter. In addition, the small-size convolution filters
allows VGG to have a large number of weight layers; of course, more layers
leads to improved performance.

The main disadvantage is as the size of the input volume decreases
(because of Convolution and Pooling), the depth of the Network increases due
to an increase in the number of filters to be applied. The VGG 16 architecture
consists of 13 convolutional layers and 3 pooling layers. Figure 6.2 shows the
complete architecture of VGG.

Figure 6.2: VGG Architecture (Simonyan e Zisserman 2014)

6.4.2
EfficientNet

EfficientNet (Tan e Le 2019) network focus on how to scale Convolu-
tional Neural Networks efficiently. (Tan e Le 2019) used a compound scaling
method: they simply scale each network dimension by a constant ratio to bal-
ance all dimensions of network width/depth/resolution. Unlike conventional
practice that arbitrary scales these factors, the EfficientNet method uniformly
scales network width, depth, and resolution with a set of fixed scaling coeffi-
cients.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 60

To explain this compound scaling method, let us have this example: if
we want to use 2N times more computational resources, then we can simply
increase the network depth by αN , width by βN and image size by γN where
α, β, γ are constant coefficients determined by a small grid search on the
original small model. EfficientNet uses a compound coefficient ϕ to uniformly
scale network width, depth, and resolution in a principled way.

The compound scaling method is justified by the intuition that if the
input image is bigger, then the network needs more layers to increase the re-
ceptive field and more channels to capture more fine-grained patterns on the
bigger image. The resulting architecture uses mobile inverted bottleneck convo-
lution (MBConv). Figure 6.3 shows the complete architecture of EfficientNet.

Figure 6.3: EfficientNet Architecture (Tan e Le 2019)

6.4.3
GoogleLeNet

In the GoogleLeNet network (Szegedy et al. 2015), it is proposed a
new module called inception. In order to make deep neural networks less
computationally expensive, the work presented in (Szegedy et al. 2015) limits
the number of input channels by adding an extra 1x1 convolution before the
3x3 and 5x5 convolutions.

An Inception Module consists of the following components: Input layer,
1x1 convolution layer, 3x3 convolution layer, 5x5 convolution layer, Max
pooling layer, Concatenation layer. Within an Inception module, they add
padding(same) to the max-pooling layer to ensure it maintains the height and
width as the other outputs(feature maps) of the convolutional layers within
the same Inception module. By doing this, they ensure they can concatenate
the outputs of the max-pooling layer with the outputs of the conv layers within
the concatenation layer. Figure 6.4 shows the inception module introduced in
GoogleLeNet architecutre.

GoogLeNet has nine such inception modules stacked linearly. It is 22
layers deep (27, including the pooling layers). It uses global average pooling
at the end of the last inception module. Needless to say, it is a pretty deep

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 61

classifier. As with any very deep network, it is subject to the vanishing gradient
problem.

Figure 6.4: Inception Module Architecture (Szegedy et al. 2015)

6.4.4
COVID-Net

COVID-Net, a deep convolutional neural network design tailored for
the detection of COVID-19 cases from chest X-ray (CXR) images that is
open source and available to the general public (Wang, Lin e Wong 2020). A
few points should be considered by the authors during the manual design of
COVID-Net architecture:

It can be observed that the COVID-Net network architecture makes
heavy use of a lightweight residual projection-expansion projection-extension
(PEPX) design pattern, which consists of: 1×1 convolutions for projecting
input features to a lower dimension, 1×1 convolutions for expanding features
to a higher dimension that is different from that of the input features,
efficient 3×3 depth-wise convolutions for learning spatial characteristics to
minimize computational complexity while preserving representational capacity,
1×1 convolutions for projecting features back to a lower dimension, and 1×1
convolutions that finally extend channel dimensionality to a higher dimension
to produce the final features.

The proposed COVID-Net was pretrained on the ImageNet dataset and
then trained on the COVIDx dataset using the Adam optimizer using a learning
rate policy where the learning rate decreases when learning stagnates for a
period of time (i.e., ’patience’). The following hyperparameters were used for
training: learning rate=2e-4, number of epochs=22, batch size=64, factor=0.7,
patience=5. Furthermore, data augmentation was leveraged with the following
augmentation types: translation, rotation, horizontal flip, zoom, and intensity
shift.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 62

Figure 6.5: COVID-Net Architecture (Wang, Lin e Wong 2020)

In particular, the COVID-Net network architecture is comprised of a
heterogeneous mix of convolution layers with a diversity of kernel sizes (ranging
from 7×7 to 1×1), and grouping configurations (ranging from ungrouped to
depth-wise). The considerable architectural diversity exhibited by the COVID-
Net architecture further reinforces the fact that the machine-driven design
exploration strategy has tailored the network architecture to a very fine level
of granularity for COVID-19 case detection from CXR images to achieve strong
representational capacity for a specific task.

6.4.5
Q-NAS experiment and Comparative Methods

For Q-NAS evolution scheme, we defined the following setting to evolve
the CT images: 100 generations, 50 epochs per generation, a maximum number
of layers of 20, and a maximum number of pooling layers of 8. For the evolution
phase, we used the RMSProp optimizer and, for the retraining phase, we used
the SWATS optimizer with the same hyperparameters defined in the other
experiments. After the evolutionary process, the best architecture found was
retrained for 100 epochs. With these settings, we were able to reach the final
accuracy of 99.44% for 9 GPU days. The final network architecture can be
seen at Table 6.19. Our network contains only 15 layers, which is a competitive
number compared to GoogleLeNet which contains 22, VGG-16 that contains
16 layers and EfficientNet which contains 237 layers. One should note that
we did not use ResNet’s Q-NAS configuration since it is a heavier network
and we already achieved a high accuracy, but for future experiments this can
be an option. COVID-Net can not be compared in this context because they
introduced a new layer design called projection-expansion-projection-extension
(PEPX) (Wang, Lin e Wong 2020).

The benchmarks networks (VGG-16, EfficientNet, GoogleLeNet and

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 63

parameter value
max_generations 100
max_num_nodes 20
penalize_number 8
num_quantum_ind 2
repetition 2
update_quantum_gen 5
update_quantum_rate 0.1

Table 6.18: Q-NAS parameters evolution for COVID dataset

Nodes Function Names
0 no_op
1 no_op
2 no_op
3 avg_pool_2_2
4 conv_3_1_128
5 conv_3_1_128
6 avg_pool_2_2
7 conv_1_1_32
8 conv_1_1_32
9 conv_1_1_64
10 conv_3_1_64
11 avg_pool_2_2
12 avg_pool_2_2
13 conv_3_1_256
14 conv_3_1_256
15 conv_3_1_32
16 conv_5_1_64
17 conv_5_1_32
18 no_op
19 max_pool_2_2

Table 6.19: Best Architecture found for COVID Classification Task

COVID-Net) were trained in the same dataset for 100 epochs using ADAM
optimizer. One of the future investigations is to use a SWATS optimizer
in these networks to check if they can achieve a higher accuracy. All these
networks were pre-trained with the ImageNet dataset, including COVID-Net.
We then trained all these networks in our dataset, contemplating all layers.
The resulting accuracies can be seen in Table 6.20 where it can be perceived
that Q-NAS outperforms the three benchmarks and COVID-Net networks.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 6. Experiments 64

Network Accuracy Number of Layers
VGG16 92.86% 16
EfficientNetB0 98.25% 237
GoogleLeNet 96.97% 22
COVID-Net 95.88% -
Q-NAS 99.44% 15

Table 6.20: Final Accuracy for each Network

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

7
Conclusion

In this work, we revisited Q-NAS: a quantum-inspired algorithm to search
for deep neural network structures. The first thing that we considered is to not
optimize the hyperparameters. The motivation behind this is that Q-NAS as
reported by (Szwarcman 2020) did not show better results than the default’s
parameters of Tensorflow. Because of this we decided to focus only in the
architecture optimization. We also decided not to make the network search
space more complex since we want to find alternatives to evolve a network
with only 4 GPUs instead of 20.

We were able to enhance the algorithm settings to improve CIFAR-10 and
CIFAR-100 results, when compared to (Szwarcman 2020), using fewer GPUs.
The first experiment demonstrated that, by using the SWATS algorithm to
retrain the best individual, the original results found in (Szwarcman 2020)
could be improved. We make multiples experiments with different learning
rates as recomended by the author (Keskar e Socher 2017). The learning rate
with the best result was the one with 0.001.

Additionally we provide another experiment using Cyclic Learning Rate
for RMSProp optimizer. We chose the triangular method as reported before.
As related by the authors, it is often good to set stepsize equal to 2 to 10
times the number of iterations in an epoch. Because of this, we decided to
change different configurations of stepsize. However, none of the results found
outperforms the baseline work. For future works we intend to test different
types of methods such as triangular2 and gammaiteration.

Furthermore, this work also evolved and trained a new architecture from
scratch for CIFAR-100 image classification. Instead of increasing the number
of layers it was decided to increase the number of samples to be used in the
evolution phase and decrease the number of generations. We were able to find
an architecture that reached an accuracy of 76.39% with only 18 GPU days
with an architecture that contains only 20 layers. With this accuracy we were
able to outperform the baseline work using fewer GPUs.

Finally, the enhanced Q-NAS was applied to a real case study to detect
COVID-19 in computed tomography chest images. We were able to find a
network that achieved an accuracy of 99.44% for just 9 GPU days. As far as
we are concerned, this is the first QIEA applied to COVID-19 detection. We
were also able to outperform the benchmark networks.

Future works involve using Q-NAS to evolve a network capable of clas-

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 7. Conclusion 66

sifying different types of pulmonary diseases in CT chest images. Moreover,
more complex functions, with skip connections as well as encapsulated func-
tions, can be added to the search space of the evolutionary process, to include
some sequence of layers that frequently appear in the structures from the lit-
erature. Finally, we plan to extend the parameters analysis, studying their
impact when working with other datasets.

In addition, we could also make an hyperparameter optimization focused
on COVID-19 detection extending our parameter analysis and studying their
impact for CT images. Another approach that can be explored is the use of
Q-NAS for Segmantation or Object Detection task. Since our search space can
be modified with different functions, it is possible to use this algorithm to
search for different architectures focused on this task.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

8
Bibliography

Abadi et al. 2015 ABADI, M. et al. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. 2015. Software available from tensorflow.org.
Disponível em: <http://tensorflow.org/>.

Ahmed e Torresani 2018 AHMED, K.; TORRESANI, L. Maskconnect: Connectiv-
ity learning by gradient descent. In: Proceedings of the European Conference
on Computer Vision (ECCV). [S.l.: s.n.], 2018. p. 349–365.

Awad, Mallik e Hutter 2020 AWAD, N.; MALLIK, N.; HUTTER, F. Differential
evolution for neural architecture search. arXiv preprint arXiv:2012.06400, 2020.

Bagdasaryan et al. 2020 BAGDASARYAN, E. et al. How to backdoor federated
learning. In: PMLR. International Conference on Artificial Intelligence and
Statistics. [S.l.], 2020. p. 2938–2948.

Baker et al. 2016 BAKER, B. et al. Designing neural network architectures using
reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Blazewicz, Lenstra e Kan 1983 BLAZEWICZ, J.; LENSTRA, J. K.; KAN, A. R.
Scheduling subject to resource constraints: classification and complexity. Discrete
applied mathematics, Elsevier, v. 5, n. 1, p. 11–24, 1983.

Cai, Zhu e Han 2018 CAI, H.; ZHU, L.; HAN, S. Proxylessnas: Direct neural ar-
chitecture search on target task and hardware. arXiv preprint arXiv:1812.00332,
2018.

Cardoso et al. 2015 CARDOSO, M. C. et al. Quantum-inspired features and pa-
rameter optimization of spiking neural networks for a case study from atmospheric.
Procedia Computer Science, Elsevier, v. 53, p. 74–81, 2015.

Chen et al. 2018 CHEN, Y. et al. Joint neural architecture search and quantiza-
tion. arXiv preprint arXiv:1811.09426, 2018.

Chu, Zhang e Xu 2020 CHU, X.; ZHANG, B.; XU, R. Multi-objective reinforced
evolution in mobile neural architecture search. In: SPRINGER. European Con-
ference on Computer Vision. [S.l.], 2020. p. 99–113.

Cruz 2007 CRUZ, A. Quantum-inspired evolutionary algorithms for problems
based on numerical representation. PhD Thesis, Pontifical Catholic University
of Rio de Janeiro, 2007.

Cruz, Vellasco e Pacheco 2007 CRUZ, A. A. da; VELLASCO, M. M. B. R.;
PACHECO, M. A. C. Quantum-inspired evolutionary algorithm for numerical
optimization. In: Hybrid evolutionary algorithms. [S.l.]: Springer, 2007. p. 19–
37.

http://tensorflow.org/
DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 8. Bibliography 68

Cruz, Vellasco e Pacheco 2010 CRUZ, A. V. A. da; VELLASCO, M. M.;
PACHECO, M. A. C. Quantum-inspired evolutionary algorithms applied to numer-
ical optimization problems. In: IEEE. IEEE Congress on Evolutionary Compu-
tation. [S.l.], 2010. p. 1–6.

Deb 2014 DEB, K. Multi-objective optimization. In: Search methodologies.
[S.l.]: Springer, 2014. p. 403–449.

Dong e Yang 2019 DONG, X.; YANG, Y. Searching for a robust neural archi-
tecture in four gpu hours. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. [S.l.: s.n.], 2019. p. 1761–1770.

Eiben, Smith et al. 2003 EIBEN, A. E.; SMITH, J. E. et al. Introduction to
evolutionary computing. [S.l.]: Springer, 2003. v. 53.

Elsken, Metzen e Hutter 2018 ELSKEN, T.; METZEN, J. H.; HUTTER, F. Ef-
ficient multi-objective neural architecture search via lamarckian evolution. arXiv
preprint arXiv:1804.09081, 2018.

Fang et al. 2020 FANG, J. et al. Densely connected search space for more flexible
neural architecture search. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. [S.l.: s.n.], 2020. p. 10628–10637.

Geiping et al. 2020 GEIPING, J. et al. Inverting gradients–how easy is it to break
privacy in federated learning? arXiv preprint arXiv:2003.14053, 2020.

Goldberg e Deb 1991 GOLDBERG, D. E.; DEB, K. A comparative analysis of
selection schemes used in genetic algorithms. In: Foundations of genetic algo-
rithms. [S.l.]: Elsevier, 1991. v. 1, p. 69–93.

Goodfellow et al. 2014 GOODFELLOW, I. et al. Generative adversarial nets.
Advances in neural information processing systems, v. 27, 2014.

Gulli, Kapoor e Pal 2019 GULLI, A.; KAPOOR, A.; PAL, S. Deep learning with
TensorFlow 2 and Keras: regression, ConvNets, GANs, RNNs, NLP, and
more with TensorFlow 2 and the Keras API. [S.l.]: Packt Publishing Ltd,
2019.

Han e Kim 2002 HAN, K.-H.; KIM, J.-H. Quantum-inspired evolutionary algo-
rithm for a class of combinatorial optimization. IEEE transactions on evolu-
tionary computation, IEEE, v. 6, n. 6, p. 580–593, 2002.

Han et al. 2020 HAN, S. et al. Optimal dnn architecture search using bayesian
optimization hyperband for arrhythmia detection. In: IEEE. 2020 IEEE Wireless
Power Transfer Conference (WPTC). [S.l.], 2020. p. 357–360.

He et al. 2015 HE, K. et al. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE
international conference on computer vision. [S.l.: s.n.], 2015. p. 1026–1034.

He et al. 2016 HE, K. et al. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2016. p. 770–778.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 8. Bibliography 69

He et al. 2016 HE, K. et al. Identity mappings in deep residual networks. In:
SPRINGER. European conference on computer vision. [S.l.], 2016. p. 630–
645.

He et al. 2020 HE, X. et al. Benchmarking deep learning models and automated
model design for covid-19 detection with chest ct scans. medRxiv, Cold Spring
Harbor Laboratory Press, 2020.

He et al. 2021 HE, X. et al. Efficient multi-objective evolutionary 3d neural
architecture search for covid-19 detection with chest ct scans. arXiv preprint
arXiv:2101.10667, 2021.

Hinton, Srivastava e Swersky 2012 HINTON, G.; SRIVASTAVA, N.; SWERSKY,
K. Neural networks for machine learning lecture 6a overview of mini-batch gradient
descent. Cited on, v. 14, n. 8, p. 2, 2012.

Hitaj, Ateniese e Perez-Cruz 2017 HITAJ, B.; ATENIESE, G.; PEREZ-CRUZ, F.
Deep models under the gan: information leakage from collaborative deep learning.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. [S.l.: s.n.], 2017. p. 603–618.

Hsu et al. 2018 HSU, C.-H. et al. Monas: Multi-objective neural architecture
search using reinforcement learning. arXiv preprint arXiv:1806.10332, 2018.

Hutter, Kotthoff e Vanschoren 2019 HUTTER, F.; KOTTHOFF, L.; VAN-
SCHOREN, J. Automated machine learning: methods, systems, challenges.
[S.l.]: Springer Nature, 2019.

Keskar e Socher 2017 KESKAR, N. S.; SOCHER, R. Improving generalization
performance by switching from adam to sgd. arXiv preprint arXiv:1712.07628,
2017.

Laredo et al. 2019 LAREDO, D. et al. Automatic model selection for neural
networks. arXiv preprint arXiv:1905.06010, 2019.

LeCun, Bengio e Hinton 2015 LECUN, Y.; BENGIO, Y.; HINTON, G. Deep
learning. nature, Nature Publishing Group, v. 521, n. 7553, p. 436–444, 2015.

Li e Talwalkar 2020 LI, L.; TALWALKAR, A. Random search and reproducibility
for neural architecture search. In: PMLR. Uncertainty in artificial intelligence.
[S.l.], 2020. p. 367–377.

Lin, Chen e Yan 2013 LIN, M.; CHEN, Q.; YAN, S. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

Liu, Simonyan e Yang 2018 LIU, H.; SIMONYAN, K.; YANG, Y. Darts: Differen-
tiable architecture search. arXiv preprint arXiv:1806.09055, 2018.

Liu et al. 2021 LIU, Y. et al. A survey on evolutionary neural architecture search.
IEEE Transactions on Neural Networks and Learning Systems, IEEE, 2021.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 8. Bibliography 70

Loni et al. 2018 LONI, M. et al. Designing compact convolutional neural network
for embedded stereo vision systems. In: IEEE. 2018 IEEE 12th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MC-
SoC). [S.l.], 2018. p. 244–251.

Lorraine, Vicol e Duvenaud 2020 LORRAINE, J.; VICOL, P.; DUVENAUD, D.
Optimizing millions of hyperparameters by implicit differentiation. In: PMLR.
International Conference on Artificial Intelligence and Statistics. [S.l.],
2020. p. 1540–1552.

Lu et al. 2019 LU, Z. et al. Multi-criterion evolutionary design of deep convolu-
tional neural networks. ArXiv, abs/1912.01369, 2019.

Mittal et al. 2020 MITTAL, H. et al. Fake-face image classification using im-
proved quantum-inspired evolutionary-based feature selection method. In: IEEE.
2020 IEEE Symposium Series on Computational Intelligence (SSCI). [S.l.],
2020. p. 989–995.

Mnih et al. 2015 MNIH, V. et al. Human-level control through deep reinforce-
ment learning. nature, Nature Publishing Group, v. 518, n. 7540, p. 529–533,
2015.

Moore e Narayanan 1995 MOORE, M.; NARAYANAN, A. Quantum-inspired
computing. Dept. Comput. Sci., Univ. Exeter, Exeter, UK, Citeseer, 1995.

Morozov et al. 2020 MOROZOV, S. et al. Mosmeddata: Chest ct scans with
covid-19 related findings dataset. arXiv preprint arXiv:2005.06465, 2020.

Orr e Müller 1998 ORR, G. B.; MÜLLER, K.-R. Neural networks: tricks of
the trade. [S.l.]: Springer, 1998.

Ottelander et al. 2021 OTTELANDER, T. D. et al. Local search is a remarkably
strong baseline for neural architecture search. In: SPRINGER. International
Conference on Evolutionary Multi-Criterion Optimization. [S.l.], 2021. p.
465–479.

Ozturk et al. 2020 OZTURK, T. et al. Automated detection of covid-19 cases
using deep neural networks with x-ray images. Computers in biology and
medicine, Elsevier, v. 121, p. 103792, 2020.

Pinho, Vellasco e Cruz 2009 PINHO, A. G. de; VELLASCO, M.; CRUZ, A. V. A.
da. A new model for credit approval problems: A quantum-inspired neuro-
evolutionary algorithm with binary-real representation. In: IEEE. 2009 World
Congress on Nature & Biologically Inspired Computing (NaBIC). [S.l.],
2009. p. 445–450.

Rahbar e Yazdani 2021 RAHBAR, M.; YAZDANI, S. Forecasting of covid-19
cases, using an evolutionary neural architecture search approach. arXiv preprint
arXiv:2109.13062, 2021.

Rahimzadeh, Attar e Sakhaei 2021 RAHIMZADEH, M.; ATTAR, A.; SAKHAEI,
S. M. A fully automated deep learning-based network for detecting covid-19 from a

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 8. Bibliography 71

new and large lung ct scan dataset. Biomedical Signal Processing and Control,
Elsevier, v. 68, p. 102588, 2021.

Ramos e Vellasco 2020 RAMOS, A. C.; VELLASCO, M. Chaotic quantum-
inspired evolutionary algorithm: enhancing feature selection in bci. In: IEEE. 2020
IEEE Congress on Evolutionary Computation (CEC). [S.l.], 2020. p. 1–8.

Real et al. 2019 REAL, E. et al. Regularized evolution for image classifier archi-
tecture search. In: Proceedings of the aaai conference on artificial intelli-
gence. [S.l.: s.n.], 2019. v. 33, n. 01, p. 4780–4789.

Real et al. 2017 REAL, E. et al. Large-scale evolution of image classifiers. In:
PMLR. International Conference on Machine Learning. [S.l.], 2017. p. 2902–
2911.

Saad et al. 2021 SAAD, H. M. et al. Quantum-inspired genetic algorithm for
resource-constrained project-scheduling. IEEE Access, IEEE, v. 9, p. 38488–
38502, 2021.

Schumacher 1995 SCHUMACHER, B. Quantum coding. Physical Review A,
APS, v. 51, n. 4, p. 2738, 1995.

Shin, Packer e Song 2018 SHIN, R.; PACKER, C.; SONG, D. X. Differentiable
neural network architecture search. In: ICLR. [S.l.: s.n.], 2018.

Simonyan e Zisserman 2014 SIMONYAN, K.; ZISSERMAN, A. Very deep
convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Smith 2017 SMITH, L. N. Cyclical learning rates for training neural networks.
In: IEEE. 2017 IEEE winter conference on applications of computer vision
(WACV). [S.l.], 2017. p. 464–472.

Sun et al. 2019 SUN, S. et al. A survey of optimization methods from a machine
learning perspective. IEEE transactions on cybernetics, IEEE, v. 50, n. 8, p.
3668–3681, 2019.

Sutton e Barto 2018 SUTTON, R. S.; BARTO, A. G. Reinforcement learning:
An introduction. [S.l.]: MIT press, 2018.

Szegedy et al. 2015 SZEGEDY, C. et al. Going deeper with convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2015. p. 1–9.

Szegedy et al. 2016 SZEGEDY, C. et al. Rethinking the inception architecture
for computer vision. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. [S.l.: s.n.], 2016. p. 2818–2826.

Szwarcman 2020 SZWARCMAN, D. Quantum-inspired Neural Architecture
Search. Tese (Doutorado) — PUC-Rio, 2020.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 8. Bibliography 72

Szwarcman, Civitarese e Vellasco 2019 SZWARCMAN, D.; CIVITARESE, D.;
VELLASCO, M. Quantum-inspired neural architecture search. In: IEEE. 2019 In-
ternational Joint Conference on Neural Networks (IJCNN). [S.l.], 2019.
p. 1–8.

Tan e Le 2019 TAN, M.; LE, Q. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In: PMLR. International Conference on Machine
Learning. [S.l.], 2019. p. 6105–6114.

Tian et al. 2020 TIAN, Y. et al. Off-policy reinforcement learning for efficient
and effective gan architecture search. In: SPRINGER. European Conference on
Computer Vision. [S.l.], 2020. p. 175–192.

Tieleman, Hinton et al. 2012 TIELEMAN, T.; HINTON, G. et al. Lecture 6.5-
rmsprop: Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, v. 4, n. 2, p. 26–31,
2012.

Timofeev, Chrysos e Cevher 2021 TIMOFEEV, A.; CHRYSOS, G. G.; CEVHER,
V. Self-supervised neural architecture search for imbalanced datasets. arXiv
preprint arXiv:2109.08580, 2021.

Wan et al. 2020 WAN, A. et al. Fbnetv2: Differentiable neural architecture search
for spatial and channel dimensions. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2020. p.
12965–12974.

Wang, Lin e Wong 2020 WANG, L.; LIN, Z. Q.; WONG, A. Covid-net: A tailored
deep convolutional neural network design for detection of covid-19 cases from chest
x-ray images. Scientific Reports, Nature Publishing Group, v. 10, n. 1, p. 1–12,
2020.

Wang et al. 2017 WANG, X. et al. Hospital-scale chest x-ray database and
benchmarks on weakly-supervised classification and localization of common thorax
diseases. In: IEEE CVPR. [S.l.: s.n.], 2017. v. 7.

Wang et al. 2019 WANG, Z. et al. Beyond inferring class representatives: User-
level privacy leakage from federated learning. In: IEEE. IEEE INFOCOM 2019-
IEEE Conference on Computer Communications. [S.l.], 2019. p. 2512–2520.

Watkins 1989 WATKINS, C. J. C. H. Learning from delayed rewards. King’s
College, Cambridge United Kingdom, 1989.

Wilson et al. 2017 WILSON, A. C. et al. The marginal value of adaptive gradient
methods in machine learning. Advances in neural information processing
systems, v. 30, 2017.

Wistuba, Rawat e Pedapati 2019 WISTUBA, M.; RAWAT, A.; PEDAPATI, T. A
survey on neural architecture search. arXiv preprint arXiv:1905.01392, 2019.

Xie et al. 2018 XIE, S. et al. Snas: stochastic neural architecture search. arXiv
preprint arXiv:1812.09926, 2018.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

Chapter 8. Bibliography 73

Yang 2010 YANG, X.-S. A new metaheuristic bat-inspired algorithm. In: Nature
inspired cooperative strategies for optimization (NICSO 2010). [S.l.]:
Springer, 2010. p. 65–74.

Yang et al. 2020 YANG, Z. et al. Cars: Continuous evolution for efficient neural
architecture search. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. [S.l.: s.n.], 2020. p. 1829–1838.

Ye et al. 2020 YE, W. et al. Quantum-inspired evolutionary algorithm for convo-
lutional neural networks architecture search. In: IEEE. 2020 IEEE Congress on
Evolutionary Computation (CEC). [S.l.], 2020. p. 1–8.

Zhang 2019 ZHANG, L. M. A new compensatory genetic algorithm-based method
for effective compressed multi-function convolutional neural network model selec-
tion with multi-objective optimization. arXiv preprint arXiv:1906.11912, 2019.

Zhong et al. 2018 ZHONG, Z. et al. Practical block-wise neural network archi-
tecture generation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. [S.l.: s.n.], 2018. p. 2423–2432.

Zhu, Zhang e Jin 2021 ZHU, H.; ZHANG, H.; JIN, Y. From federated learning to
federated neural architecture search: a survey. Complex & Intelligent Systems,
Springer, v. 7, n. 2, p. 639–657, 2021.

Zoph e Le 2016 ZOPH, B.; LE, Q. V. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

Zoph et al. 2018 ZOPH, B. et al. Learning transferable architectures for scalable
image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. [S.l.: s.n.], 2018. p. 8697–8710.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

A
Implementation Details

One of the main modifications of Q-NAS was to update the Tensorflow
version from 1.9 to 2.3. The Tensorflow is an open source deep learning library and
it was used to make the network assembling and training. There are huge changes
between these versions (Gulli, Kapoor e Pal 2019). Using MPI4Py library, Q-NAS
was implemented to run in a multi-process environment via MPI messages.

The master node runs Q-NAS and distributes the evaluation tasks to the
slaves with non-blocking send operations and it also collects the results with
non-blocking receives. The master and the slaves evaluates one individual per
generation. This means that the number of processes is equal to the number of
classical individuals to be evaluated.

The experiments were executed in a multi-computer environment, which con-
tains 4 NVIDIA GTX 1080 running on Linux system. OpenMPI 3.1.1 distribution
was installed. However, we run the jobs on a single machine from the environment
described above for the retraining phase. We use 1 GPU and 1 CPU in the single
machine.

DBD
PUC-Rio - Certificação Digital Nº 2012816/CA

	Enhanced Q-NAS for Image Classification
	Resumo
	Table of contents
	Introduction
	Objectives
	Contributions
	Work Outline

	Neural Architecture Search
	NAS with Reinforcement Learning
	NAS with Evolutionary Algorithms
	NAS with Other Methods
	NAS applied in COVID-19 Scenario

	Quantum-inspired Evolutionary Algorithms
	Basics of Quantum Computing
	Quantum-Inspired Evolutionary Algorithms

	Quantum-Inspired Neural Architecture Search
	Q-NAS Network Representation
	Q-NAS Algorithm
	Q-NAS Parameters and Previous Experiments

	Enhanced Q-NAS
	Switching ADAM to SGD Optimizer
	Cyclic Learning Rate

	Experiments
	Switching ADAM to SGD for CIFAR-10 and CIFAR-100 Improvements
	Cyclic Learning Rate
	Evolving a Network from Scratch for CIFAR-100 Classification Task
	Case Study: COVID-19 Detection in Computed Tomography Images

	Conclusion
	Bibliography
	Appendices
	Implementation Details

