
Willian Nalepa Oizumi

Identification and Refactoring of Design
Problems in Software Systems

Tese de Doutorado

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
April 2022

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Willian Nalepa Oizumi

Identification and Refactoring of Design
Problems in Software Systems

Thesis presented to the Programa de Pós–Graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Marcos Kalinowski
Departamento de Informática – PUC-Rio

Prof. Juliana Alves Pereira
Departamento de Informática – PUC-Rio

Prof. Thelma Elita Colanzi
Universidade Estadual de Maringá – UEM

Prof. Bruno Barbieri de Pontes Cafeo
Universidade Federal de Mato Grosso do Sul – UFMS

Rio de Janeiro, April 28th, 2022

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

All rights reserved.

Willian Nalepa Oizumi

The author obtained a master’s degree in Informatics from
PUC-Rio (2015). He also holds a bachelor’s degree in Infor-
matics from UEM (2013). His main research interests are:
Software Design, Design Problems, Refactoring, and Quality
Attributes.

Bibliographic data

Oizumi, Willian Nalepa

Identification and Refactoring of Design Problems in Soft-
ware Systems / Willian Nalepa Oizumi; advisor: Alessandro
Fabricio Garcia. – Rio de janeiro: PUC-Rio, Departamento de
Informática, 2022.

v., 235 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Software Design – Teses. 2. Design Problems – Teses.
3. Search-based Software Engineering – Teses. 4. Recommen-
dation Systems – Teses. 5. Refactoring – Teses. 6. Projeto de
Software;. 7. Problemas de Projeto;. 8. Engenharia de Soft-
ware Baseada em Busca;. 9. Sistemas de Recomendação;.
10. Refatoração.. I. Garcia, Alessandro Fabricio. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Acknowledgments

I would like to thank my advisor, Alessandro Garcia, for giving me the opportu-
nity to work with him. His patience, energy and good will are incredible. I also
thank professors Thelma Colanzi, Marcos Kalinowski, Bruno Cafeo, Juliana
Pereira, Baldoino Fonseca, and Alberto Raposo, for dedicating their precious
time to the evaluation of this PhD thesis. The feedback provided by them was
very valuable to me and to this thesis.

I would like to thank my beloved wife, Julia, who supported me during the
conduction of this work. There is no words to describe her love, patience and
kindness. My deepest gratitude goes to my whole family, who always supported
me. A special thank goes to my aunt, Leticia, who was responsible for raising
and educating me. Without her I would not have come this far. I also thank my
friends Roberto, Givanilde, Carlos, Frank, and Hélio and my former students
Flávio, Navarro, Lucas, Angélica, and Henrique.

A special thank also goes to Leonardo Sousa, Anderson Oliveira, Santiago
Vidal, Anderson Uchôa, Rafael Mello, Caio Barbosa, and Diego Cedrim for
the great collaborations during this PhD research.

I thank all the professors from PUC-Rio for their contribution to my education.
My appreciation also goes to my professors from UEM. I also thank my
friends and colleagues from the OPUS Research Group and from the Software
Engineering Laboratory.

Finally, I thank CNPq and PUC-Rio for financial aid, without which this work
would not have been possible.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Abstract

Oizumi, Willian Nalepa; Garcia, Alessandro Fabricio (Advisor).
Identification and Refactoring of Design Problems in Soft-
ware Systems. Rio de Janeiro, 2022. 235p. Tese de doutorado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Software projects impacted by Design Problems (DPs) may become
difficult to maintain and evolve. The identification of DPs may occur th-
rough symptoms such as code smells. After such identification, developers
can remove the DPs through refactorings. However, deciding where and how
to refactor is a challenging task. Thus, several refactoring recommendation
techniques have been proposed. Nevertheless, there is still little consensus on
which requirements must be satisfied by them. In this thesis, we are propo-
sing four empirically identified requirements that any DP removal technique
should follow. First, each single DP is usually related with multiple types of
symptoms in the source code and they should be considered altogether for
generating recommendations. Second, a recommendation technique should
allow the selection of possible candidate contexts for refactoring. Fourth,
the technique should consider the features of undergoing changes to cre-
ate useful recommendations. Finally, developers do not always conduct the
most effective refactorings in practice, quite often unconsciously, resulting
in the incomplete removal of DPs. Thus, they need assistance to remove
DPs. There are techniques partially fulfilling the aforementioned require-
ments, though none satisfactorily meets them all. Thus, we propose the
OrganicRef technique. OrganicRef is intended to help developers in remo-
ving DPs in their contexts of interest. OrganicRef finds the contexts by
capturing the features affecting relevant code elements using a topic mode-
ling algorithm. Then, it collects multiple symptom types affecting the code
elements. To recommend effective refactorings, OrganicRef combines rule-
based and feature-driven heuristics. It also uses search-based optimization
to derive multiple possible recommendations. To evaluate OrganicRef, we
conducted an empirical study with six open source projects. Results showed
that OrganicRef recommendations significantly improves the design of re-
factored elements.

Keywords

Software Design; Design Problems; Search-based Software Engineering;
Recommendation Systems; Refactoring.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Resumo

Oizumi, Willian Nalepa; Garcia, Alessandro Fabricio. Identifica-
ção e Refatoração de Problemas de Projeto em Sistemas
de Software. Rio de Janeiro, 2022. 235p. Tese de Doutorado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Sistemas impactados por Problemas de Projeto (PPs) podem se tor-
nar difíceis de manter e evoluir. A identificação de PPs pode ocorrer por
meio de múltiplos sintomas, tais como code smells. Após tal identificação,
pode-se remover os PPs por meio de refatorações. No entanto, decidir onde
e como refatorar é uma tarefa desafiadora. Assim, técnicas de recomendação
de refatoração têm sido propostas. Apesar disso, ainda há pouco consenso
sobre quais requisitos devem ser atendidos por elas. Nesta tese, estamos
propondo quatro requisitos empiricamente identificados que tais técnicas
devem seguir. Primeiro, cada PP geralmente está relacionado a vários tipos
de sintomas no código-fonte e eles devem ser considerados juntos para gerar
recomendações. Além disso, uma técnica de recomendação deve permitir a
seleção de contextos específicos para refatoração. Quarto, também deve-se
considerar as funcionalidades modificadas para criar recomendações úteis.
Finalmente, os desenvolvedores nem sempre conduzem as refatorações mais
eficazes na prática, muitas vezes inconscientemente, resultando na remo-
ção incompleta de PPs. Assim, eles precisam de assistência para remover
os PPs. Existem apenas técnicas que atendem parcialmente aos requisitos
mencionados. Sendo assim, nós propomos a técnica OrganicRef. OrganicRef
destina-se a ajudar os desenvolvedores na remoção de PPs em seus con-
textos de interesse. OrganicRef encontra as funcionalidades dos elementos
de código usando um algoritmo de modelagem de tópicos. Em seguida, ele
coleta múltiplos tipos de sintomas que afetam os elementos do código. Para
recomendar refatorações, OrganicRef combina heurísticas baseadas em re-
gras e baseadas em funcionalidades. OrganicRef também aplica otimização
baseada em busca para derivar várias recomendações possíveis. Para ava-
liar o OrganicRef, realizamos um estudo experimental com seis projetos de
software. Os resultados mostraram que as recomendações do OrganicRef
melhoram significativamente a qualidade dos elementos refatorados.

Palavras-chave

Projeto de Software; Problemas de Projeto; Engenharia de Software
Baseada em Busca; Sistemas de Recomendação; Refatoração.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Table of contents

1 Introduction 16
1.1 Motivating Example 18
1.2 Problem Statement and Research Questions 20
1.3 Summary of Contributions 24
1.4 Thesis Outline 26

2 Background and Related Work 27
2.1 Software Design and Quality Attributes 27
2.2 Design Problems 28
2.3 Design Problem Symptoms 30
2.4 Refactoring 31
2.5 Search-Based Software Engineering 32
2.6 Related Work 33
2.6.1 Symptoms of Design Problems 34
2.6.2 Impact of Refactoring on Symptoms 35
2.6.3 Refactorings for Removing Design Problems 35
2.6.4 Refactoring Recommendation and its Requirements 36
2.6.5 Secondary and Tertiary Studies on DPs and Refactoring 39

3 On the Identification of Design Problems in Stinky Code: Experiences
and Tool Support 40

3.1 Introduction 41
3.2 Contextualization 44
3.2.1 Basic Concepts 44
3.2.2 Identifying Design Problem in Stinky Code 49
3.3 Organic: A Tool for the Analysis of Stinky Code 51
3.4 Study I: Quasi-Experiment 57
3.4.1 Study Design 58
3.4.1.1 Experimental Procedure 61
3.4.1.2 Software Projects and Participant Selection 64
3.4.1.3 Quantitative Analysis Procedure 66
3.4.1.4 Qualitative Analysis Procedure 67
3.4.2 Results and Analysis 68
3.4.2.1 Do Agglomerations Improve Precision? 69
3.4.2.2 How to Improve Design Problem Identification? 71
3.4.3 Threats to Validity 73
3.5 Study II: Communicability Evaluation of Organic 75
3.5.1 Study Design 76
3.5.1.1 Test Scenario 77
3.5.1.2 Environment and Infrastructure 78
3.5.1.3 Post-study Interview 78
3.5.2 Data Analysis and Evaluation Procedure 78
3.5.3 Results and Interpretation 81
3.5.3.1 Communicability Issues of Organic 82

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

3.5.3.2 Communicability Strengths of Organic 84
3.5.4 Threats to Validity 85
3.6 Concluding Remarks 86

4 Filtering and Ranking Design-Related Agglomerations of Code Smells 88
4.1 Introduction 89
4.2 Agglomerations as Pointers to Design Problems 91
4.2.1 Formal Definition of Code-smell Agglomerations 92
4.2.2 Illustrative Example 93
4.2.3 Detecting Individual Code Smells 95
4.2.4 Types of Agglomerations 96
4.3 Prioritization Approach 97
4.3.1 Agglomeration Relevance 98
4.3.2 Design Concerns 99
4.3.3 Modifiability Scenarios 100
4.3.4 History of Changes 101
4.3.5 Agglomeration Flood 102
4.4 Study Settings 103
4.4.1 Research Question and Hypothesis 103
4.4.2 Target Applications 103
4.4.3 Data Collection and Analysis 104
4.5 Empirical Evaluation 107
4.5.1 Does Agglomeration Relevance Help? 108
4.5.2 Do Design Concerns Help? 109
4.5.3 Do Modifiability Scenarios Help? 110
4.5.4 Does Change History Help? 111
4.5.5 Does Agglomeration Flood Help? 112
4.5.6 Overall Conclusion 114
4.5.7 Threats to Validity 115
4.6 Study with Novice Developers 116
4.6.1 Study Settings 116
4.6.2 Results 118
4.6.3 Discussion 120
4.6.4 Threats to Validity 121
4.7 Concluding Remarks 122

5 On the Density and Diversity of Design Problem Symptoms in Refac-
tored Classes: A Multi-Case Study 125

5.1 Introduction 126
5.2 Background 128
5.2.1 Design Problem 128
5.2.2 Design Problem Symptoms 129
5.2.3 Refactoring 130
5.3 Study Design 132
5.3.1 Goal and Research Questions 132
5.3.2 Target Systems 134
5.3.3 Data Collection and Analysis 135
5.4 Results 138
5.4.1 Density and Diversity as Consistent Indicators 138

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

5.4.2 Low Reduction of Symptoms After Refactoring 141
5.4.3 Combinations as Indicators of Design Problems? 143
5.5 Requirements for Recommending Root Canal Refactorings 144
5.6 Threats to Validity 146
5.7 Conclusion 147

6 Recommending Composite Refactorings for Design Problem Removal:
Heuristics and Evaluation 149

6.1 Introduction 150
6.2 Background and Related Work 152
6.2.1 Code Smells 152
6.2.2 Composite Refactoring 153
6.3 Smell Removal Patterns 154
6.4 Smell Removal Heuristics 156
6.4.1 Feature Envy Removal 156
6.4.2 God Class Removal 158
6.4.3 Complex Class Removal 159
6.5 Empirical Evaluation: Study Design 159
6.5.1 Goal and Research Question 160
6.5.2 Experimental Tasks 161
6.5.3 Qualitative Data Analysis 163
6.6 Evaluation Results 164
6.6.1 Effectiveness of Recommendations 164
6.6.2 Impact of Recommendation Heuristics 165
6.6.3 Guidelines: Improving Recommendations 169
6.7 Threats to Validity 172
6.8 Conclusion 173

7 OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 174

7.1 Introduction 175
7.2 OrganicRef: Components, Algorithms and Heuristics 178
7.2.1 Features Detection and Context Selection 178
7.2.2 Quality Evaluation 180
7.2.3 Refactoring Generation Heuristics 181
7.2.4 Search-based Refactoring Optimization 182
7.3 Study Design 186
7.3.1 Target Projects 187
7.3.2 Execution Settings 188
7.3.3 Data Collection Procedures 189
7.3.4 Quantitative and Qualitative Analysis 189
7.4 Evaluation Results 190
7.4.1 On the Quality Impact of Feature-driven Strategies 191
7.4.2 Solution Space Analysis 194
7.4.3 Best Solutions Analysis 199
7.4.4 Qualitative Evaluation of Recommendations 202
7.4.5 Threats to Validity 206
7.5 Concluding Remarks 207

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

8 Conclusion 209
8.1 Revisiting our Contributions 209
8.2 Publications and Collaborations 212
8.3 Future Work 213

Bibliography references 216

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

List of figures

Figure 1.1 Hypothetical example of a DP that should be early
identified and removed 19

Figure 1.2 Overview of the contributions of this research 24

Figure 2.1 Example of design problem impacting reusability 30

Figure 3.1 Intra-method and intra-class agglomerations in the
WorkflowProcessorQueue class 47

Figure 3.2 Hierarchical agglomeration under the Versioner class 48
Figure 3.3 Example of agglomeration in the Workflow system 50
Figure 3.4 Smells that compose an agglomeration 53
Figure 3.5 Description of an agglomeration 54
Figure 3.6 References of an agglomeration 54
Figure 3.7 Graph representation of a hierarchical agglomeration 55
Figure 3.8 Graph representation of an intra-component agglomeration 55
Figure 3.9 Graph representation of a concern-overload agglomeration 56
Figure 3.10 Graph representation of an intra-class agglomeration 56
Figure 3.11 Graph representation of an intra-method agglomeration 56
Figure 3.12 Historical information of an agglomeration 57
Figure 3.13 Configuration of the tool 58
Figure 3.14 The experimental design 62
Figure 3.15 Example of ambiguity in the static symbols 83

Figure 4.1 Meta model for code-smell agglomerations 93
Figure 4.2 Example of a code-smell agglomeration related to design

problems 94
Figure 4.3 Code smells detected by JSpIRIT 95
Figure 4.4 Code-smell agglomerations detected by JSpIRIT 97
Figure 4.5 Wizard to provide concern mappings in JSpIRIT 99
Figure 4.6 Example of concerns mapped to classes 99
Figure 4.7 Procedures for data collection 105
Figure 4.8 Matrix of ranked agglomerations for MM versus related

design problems (‘a’ to ‘k’). 106
Figure 4.9 Matrix of (top-12) ranked agglomerations for OODT

versus related design problems (‘a’ to ‘h’) 113
Figure 4.10 Rankings given to each agglomeration by the developers 118
Figure 4.11 Kendall W correlations between developer’s ranking and

JSpIRIT’s ranking 119

Figure 5.1 Example of design problem impacting reusability 129
Figure 5.2 Collection of symptoms for data analysis 137
Figure 5.3 Steps taken by a recommender technique based on our

proposed requirements 144

Figure 7.1 Overview of the OrganicRef technique 178
Figure 7.2 Example of solution representation and search operator 183

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Figure 7.3 Median impact of non-dominated solutions on coupling
measures 193

Figure 7.4 Partial view of the solution space for the Fresco project 194
Figure 7.5 Partial view of the solution space for the Dubbo project 195
Figure 7.6 Partial view of the solution space for the Jenkins project 196
Figure 7.7 Partial view of the solution space for the RxJava project 198
Figure 7.8 Partial view of the solution space for the Spring Security

project 198
Figure 7.9 Partial view of the solution space for the OkHttp project 199

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

List of tables

Table 3.1 Description of design problems 45
Table 3.2 Types of code smell 45
Table 3.3 Combinations of groups, projects and steps 62
Table 3.4 Characteristics of software projects 65
Table 3.5 Knowledge classification 65
Table 3.6 Characterization of the participants 66
Table 3.7 Precision 66
Table 3.8 Profile of selected participants 77
Table 3.9 Description of CEM tags that occurred in this study 80
Table 3.10 Frequency of occurrence total and by participant 81
Table 3.11 Frequency of occurrence categorized by type of failure 82

Table 4.1 Design problems considered in this chapter 92
Table 4.2 Types of code smell supported by JSpIRIT 96
Table 4.3 Characteristics of the target applications 104
Table 4.4 Correlation results (the value for OODT is a precision

and not a correlation value) 108
Table 4.5 Design problems and code-smell agglomerations for the 4

applications 108
Table 4.6 Correlation results for agglomeration’s relevance 109
Table 4.7 Kendall concordance coefficient with JSpIRIT’s ranking 119

Table 5.1 Short description for the symptoms used in this study 131
Table 5.2 Characteristics of target systems 134
Table 5.3 Mean density of symptoms in refactored classes and in

others 138
Table 5.4 p-values of the Mann-Whitney Wilcoxon Test for research

questions RQ1 and RQ2 139
Table 5.5 Mean diversity of symptoms in refactored classes and in

others 140
Table 5.6 Classes with increased density and diversity of symptoms 142
Table 5.7 Top-10 combinations of symptoms in refactored classes 144

Table 6.1 Refactoring patterns that often remove smells 155
Table 6.2 Participants’ characterization data 162
Table 6.3 Possible answers during the quasi-experiment 162
Table 6.4 Summarized results of the quasi-experiment 166

Table 7.1 Target projects 187
Table 7.2 Median quality impact of non-dominated solutions on the

top 10 degraded elements 191
Table 7.3 Median computing time (in minutes) for generating solu-

tions 193
Table 7.4 Fitness values before (original) and after (refactored)

applying the best solution 201

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

List of tables 14

Table 7.5 Number of refactorings for the best solutions 201

Table 8.1 Direct contributions of this thesis 212
Table 8.2 Publications indirectly related to this thesis 214

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

List of Abreviations

CEM – Communicability Evaluation Method
DP – Design Problem
FP – False Positive
GA – Genetic Algorithm
HCI – Human-Computer Interaction
HW – Health Watcher
ICPC - International Conference on Program Comprehension
ICSME – International Conference on Software Maintenance and Evolution
IDE – Integrated Development Environment
ISSRE – International Symposium on Software Reliability Engineering
JBCS – Journal of Brazilian Computer Society
KLOC – Thousands of Lines of Code
LENOM – Latest Evolution of Number of Methods
MM – Mobile Media
MOEA – Multi-Objective Evolutionary Algorithm
MOSA – Multi-Objective Simulated Annealing
MSR – Mining Software Repositories
NSGA – Non-dominated Sorting Genetic Algorithm
OO – Object-oriented
OODT – Object Oriented Data Technology
PR – Pull Request
QMOOD – Quality Model for Object Oriented Design
RAM – Random Access Memory
RQ – Research Question
SA – Simulated Annealing
SBES – Brazilian Symposium on Software Engineering
SBSE – Search-based Software Engineering
SDB – Subscribers Database
SRP – Single Responsibility Principle
TP – True Positive
UML – Unified Modeling Language

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

1

Introduction

Design Problems (DPs) occur when stakeholders make decisions that nega-
tively impact quality attributes such as modifiability, modularity, and the like
(Li, Avgeriou and Liang 2015), (Lim, Taksande and Seaman 2012). Software
systems may be discontinued or redesigned when DPs are allowed to persist
(MacCormack, Rusnak and Baldwin 2006). In addition, the introduction of
DPs is linked to: (1) the rejection of contributions in open source projects
(Oliveira, Valente and Terra 2016), and (2) increased costs in industrial soft-
ware projects (Curtis, Sappid and Szynkarski 2012). Therefore, DPs should be
properly handled by software developers.

The identification of DP usually occurs through symptoms such as abnormal
code measures and code smells (Sousa et al. 2018). Refactoring (Fowler 1999) is
a practice adopted by many developers to remove DPs. Nevertheless, deciding
where and how to refactor is far from trivial. Software projects often suffer
massive changes, preventing their developers from keeping track of the source
code locations impacted by DPs. Moreover, there is evidence that even when
the locations of DPs are known, refactorings performed in practice may be
unable to completely remove them (Oizumi et al. 2019), (Bibiano et al. 2020).
In fact, developers consider that better techniques are necessary for tasks such
as identification and removal of DPs (Rebai et al. 2020), (Lim, Taksande and
Seaman 2012), (Ernst et al. 2015).

Given such a need, there are multiple techniques for assisting developers to
identify and remove DPs through refactoring recommendations (Rebai et al.
2020), (Alizadeh et al. 2019), (Ouni et al. 2017), (Lin et al. 2016), (Xiao et
al. 2016). There are also guidelines for building refactoring recommendation
techniques and tools (Tsantalis, Chaikalis and Chatzigeorgiou 2018), (Bavota
et al. 2014). However, recent studies have shown the importance and necessity
of requirements that are still not widely met by existing techniques (Peruma
et al. 2022), (Lacerda et al. 2020). In addition, many of the existing techniques
are still poorly known and adopted in practice (Lacerda et al. 2020), (Pinto
and Kamei 2013).

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 17

In this thesis, we have identified, at least, four minimum requirements that a
recommendation technique should address, namely: (1) consideration of het-
erogeneous information, (2) context-sensitive detection, (3) feature modularity
awareness, and (4) effective recommendations. Next, we briefly describe each
of them.

Consideration of Heterogeneous Information. Refactoring recommenda-
tions should be generated and provided based on information extracted from
multiple and diverse sources. Before refactoring, developers need to consider
and understand various types of information, including the relations between
symptoms, the corresponding DPs, and their negative consequences (Sousa et
al. 2018, Sousa et al. 2017). Without understanding these information and all
these relations, the developer may not be confident enough to conduct refac-
torings. Besides that, each DP is usually related with multiple symptom types,
which should be considered for effectively detecting DPs and generating refac-
toring recommendations (Oizumi et al. 2020, Oizumi et al. 2019, Oizumi et al.
2016).

Context-Sensitive Detection. Recommendation techniques should provide
mechanisms to select and focus on a specific context. To provide refactoring
recommendations, a technique need to rely on the detection of DP symptoms.
However, detecting DP symptoms and generating recommendations for the
whole project is not an effective strategy (Oizumi et al. 2019, Alizadeh and
Kessentini 2018, Rebai et al. 2020, Vidal et al. 2019). In fact, developers usually
avoid changing code elements that are out of their context of interest (Alizadeh
and Kessentini 2018, Alizadeh et al. 2019c). Therefore, an effective technique
should provide a flexible mechanism for helping developers to focus on their
contexts of interest. Examples of context include (1) the components developed
and maintained by the developer, (2) the code elements being changed in a
task, and (3) code elements that will be changed in a future task.

Feature Modularity Awareness. Besides using rule-based heuristics, rec-
ommendation techniques should consider feature modularity for creating refac-
torings. Certain recent studies have been using information about features for
creating refactoring recommendations (Bavota et al. 2013), (Nyamawe et al.
2019), (Rebai et al. 2020). Such a tendency is justified by the fact that devel-
opers often focus on refactoring code elements that realize features affected by
ongoing change tasks (Alizadeh and Kessentini 2018). Therefore, besides re-
stricting the recommendations to a specific context, a technique should employ
feature-driven refactoring heuristics that maximize the chances of modulariz-
ing the features involved in an ongoing change.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 18

Effective Recommendations. Developers need assistance for effectively
removing DPs through refactorings. The removal of a DP usually involves the
execution of a sequence of multiple refactorings (Oizumi et al. 2020, Sousa
et al. 2020a, Cedrim 2018). In this work, we call such refactoring sequences
as composite refactorings. Despite composites being widely investigated in the
literature (e.g., (Brito, Hora and Valente 2020), (Bibiano et al. 2020), (Bibiano
et al. 2019), and (Sousa et al. 2020a)), there is evidence that many refactorings
performed in practice are not effective (Cedrim 2018, Rebai et al. 2020). As a
result, DPs end up not being completely removed. Moreover, some refactorings
may even worsen the design quality (Sousa et al. 2020a, Cedrim 2018). Some of
the reasons for the lack of effectiveness are that developers usually (1) perform
incomplete composite refactorings (Bibiano et al. 2019, Bibiano et al. 2020)
and (2) select combinations of refactorings that are not the most effective for
their context (Rebai et al. 2020, Alizadeh and Kessentini 2018).

Given the aforementioned requirements, there is a growing need for new
techniques to better support the identification and removal of DPs. In the
following section, we present a hypothetical example that illustrates the
importance of addressing the aforementioned requirements to provide effective
support for the removal of DPs.

1.1

Motivating Example

Figure 1.1 uses a UML-like notation to show a partial view of a hypothetical
system called UniM. The main objective of UniM is to provide support for the
management of academic activities in universities. UniM allows its users to
perform operations such as course management and student enrollment.

UniM developers perceived that including new features in the Service compo-
nent were often time consuming and error prone. A traditional DP detection
tool reported more than 1000 symptoms occurring in the UniM system. How-
ever, many of the symptoms were not related to the Service component. Only
after analyzing dozen symptoms occurring in the Service component, develop-
ers managed to find where refactorings should be performed to improve the
modifiability and modularity of Service.

Based on occurrences of the Insufficient Modularization and Broken Modular-
ization symptoms, they discovered that some course management services were
scattered in classes like the InstitutionalEnrollmentService. After that, the de-
velopers had to decided by themselves which composite refactoring should be

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 19

InstitutionalEnrollmentService
+ calcGradePointAverage(InstitutionalEnrollment): Decimal
+ completeCourse(Long): void
+ createSpareEnrollment(Student): void
+ checkForEnrollment(InstitutionalEnrollment, Long): void
+ isLikelyGraduating(InstitutionalEnrollment): boolean

AbstractService

UserService IncidentService

IM

BM

BM IM Insufficient
Modularization

Broken
Modularization

Features

Legend

Service

DepartmentServicePunishmentService CourseService

Enrollment

Course

BM

Feature

BM

Figure 1.1: Hypothetical example of a DP that should be early identified and
removed

performed. Nevertheless, performing effective refactorings also ended up not
being a trivial task. Next, we describe how the challenges faced by developers
in this example are related to the requirements we previously presented.

First, the DP detection tool revealed and reported only code smells as DP
symptoms. Therefore, the developer had more work to manually extract and
analyze others, such as the distribution of responsibilities (concerns) in the
affected code elements. As we previously discussed, developers usually need to
combine multiple symptom types for diagnosing DPs. Therefore, a tool that
provides heterogeneous information, could help the developer to analyze and
understand the DP more easily.

Second, the DP was introduced together with the creation of the CourseService
and InstitutionalEnrollmentService classes. However, due to the lack of context-
sensitive detection, the developer was overload with too many symptoms. Thus,
the relevant symptoms were unconsciously ignored and the DP was allowed
to remain until its effects were perceived. If the DP had been identified and
removed earlier, it would probably have caused fewer side effects. In addition,
the developers would not have spent time analyzing symptoms unrelated to
the DP in the Service component.

Third, developers had to decide and execute the sequence of refactorings they
believed to be the most appropriate. In the example of Figure 1.1, at least

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 20

three refactorings could be performed. First, the isLikelyGraduating method
contains implementations that should be in the CourseService class. Thus,
an Extract Method and a Move Method should be performed to move the
“Course” implementations to the CourseService class. Besides that, another
Move Method should be performed to move the completeCourse method to
the CourseService class. After this sequence of refactorings, the “Course”
responsibilities would be entirely modularized into the CourseService class.
Such a refactoring sequence is not always easy to decide and execute. Therefore,
developers would benefit from effective refactoring recommendations.

Finally, developers that are not fully aware of the implemented features
could perform refactorings that negatively impacts feature modularization. For
example, they could have moved the isLikelyGraduating and completeCourse
methods to a class that is not related to the implemented features. As a result,
the classes involved in the refactoring could become less cohesive. Indeed,
such undesired refactorings could be avoided through the use of feature-driven
refactoring heuristics.

1.2

Problem Statement and Research Questions

To effectively support developers in the task of identifying and removing DPs,
we need a technique that addresses the challenges illustrated by our example.
This need motivates our main goal, which is to provide effective support for
developers in the identification and refactoring of design problems.

We divided our main goal into three specific goals. The first specific goal is
focused in helping developers to effectively identify design problems. With this
goal we tackled the first challenge of this research. To guide this research
towards such a goal, we defined our first research question as follows:

RQ1. How to effectively support developers in the identification of design
problems?

There is growing evidence that each DP manifests itself in the system through
multiple symptoms (Oizumi et al. 2016, Sousa et al. 2018). For instance, in a
study from my Master’s dissertation (Oizumi et al. 2016), there was a consis-
tent finding that DPs are often indicated by symptoms that flock together in
program locations such as classes, hierarchies, and components.

Therefore, to answer RQ1, we started with a multi-method study to investigate

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 21

the use of symptoms combinations for diagnosing DPs (Chapter 3). Such
study provided evidence that the effective support for finding DPs requires the
exploration of multiple characteristics of DP symptoms. Symptoms are often
inadequately explored and presented by existing tools, which tends to frustrate
developers. As we have observed (Chapter 3), heterogeneous information is
necessary so that developers can reason properly about potential refactoring
opportunities.

Nevertheless, we also observed that only using heterogeneous information is not
always enough. Indeed, our findings indicate that besides using heterogeneous
sources of symptoms, developers need assistance for ranking and filtering
the recommendations to specific contexts (Oizumi et al. 2018). Such a need
is corroborated by multiple studies from the literature (e.g., (Alizadeh and
Kessentini 2018, Rebai et al. 2020)).

Thus, we conducted an empirical study for investigating the filtering and
ranking of refactoring candidates to specific contexts (Chapter 4). In this study,
we evaluated the use of multiple criteria related to aspects, such as the number
of symptoms, the implemented features, and the history of changes. Our results
showed that no criteria is uniformly effective on any project. Nevertheless, we
observed that considering the number of symptoms for filtering refactoring
candidates is often a good choice.

Aforementioned studies provided us with an initial comprehension about the
effective identification of DPs. However, our main goal is also focused in the
refactoring of DPs, which was not directly covered by them. Therefore, to
move towards our main goal, we define a second specific objective as defining
the key requirements for effectively supporting the identification and refactoring
of design problems.

In fact, despite the existence of multiple studies and techniques related to
DP identification and refactoring, there is little to no consensus on which are
the key requirements for supporting developers in such tasks. Therefore, an
investigation about such requirements is essential. To guide this investigation,
we defined our second research question as follows:

RQ2. Which are the key requirements for supporting the identification
and refactoring of design problems?

For answering RQ2, we expanded our previous investigations through an em-
pirical study about the relation of symptoms, DPs, and refactorings performed

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 22

in practice (Chapter 5). We investigated DPs and refactorings in the context
of open-source C# and Java projects. This study, provided us with important
insights about the removal of DPs through refactorings. As a result, we defined
an initial set of requirements for refactoring recommendation techniques.

Next, we proposed and evaluated a novel recommendation technique (Chapter
6). Such a technique explored the use of code smells and refactoring patterns
for generating effective recommendations. Besides presenting promising results,
such study also expanded our understanding about the requirements for
recommendation techniques. More than that, we found evidence on how such
requirements could be met.

As a result, the studies reported above helped us to define four key require-
ments, namely Heterogeneous Symptoms, Context-Sensitive Detection, Feature
Modularity Awareness, and Effective Recommendations. We presented and dis-
cussed all of them earlier in the beginning of this chapter. Such requirements
answered RQ2 and motivated our third specific goal, which is to propose and
evaluate a technique based on the key requirements for refactoring recommen-
dation techniques.

Given aforementioned goal, we defined our third research question as fol-
lows:

RQ3. What is the effectiveness of using feature-driven and context-aware
strategies in search-based refactoring recommendation?

As we previously discussed, developers usually avoid refactoring code elements
that are out of their context of interest (Alizadeh and Kessentini 2018, Rebai
et al. 2020). Context-sensitive detection is helpful for limiting the scope of
analysis to specific program locations and also to rank and filter the refactoring
candidates provided to the developers (Oizumi et al. 2019, Vidal et al. 2019). A
code review task, for example, is focused on analyzing the quality and impact
of a specific set of changes. In this case, it would be helpful to limit the DP
symptoms and, consequently, the refactoring recommendations to the code
elements changed in the reviewed task.

In fact, in this thesis, we evaluated several criteria for filtering and prioritizing
refactoring candidates (Vidal et al. 2019). However, our results show that the
effectiveness of the different criteria varies according to certain factors, such
as the project characteristics and the developer involved in the refactoring
task. There is also evidence from the literature showing that refactorings tend

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 23

to be motivated more by changes in features than by the occurrence of DPs
symptoms (Silva, Tsantalis and Valente 2016). DPs tend to be resolved along
changes motivated by feature additions, enhancements or deletions (Paixão et
al. 2020).

Given all the reason mentioned above, we observed that an effective refactoring
technique must support filtering of DP symptoms based on recurring contexts,
such as code elements modified in a task, code elements realizing one or more
features, modules owned by the developer (or the team), code elements with
high change- or bug-proneness, among others (Oizumi et al. 2019). In addition,
the developers must be able to customize their context of interest if necessary.
Finally, the recommendations should help the developers to modularize the
implemented features.

As we previously discussed, many refactorings performed in practice are not
effective (Bibiano et al. 2019, Bibiano et al. 2020, Cedrim 2018, Rebai et al.
2020). In fact, we have observed that developers tend to refactor code elements
affected by multiple and diverse symptoms (Oizumi et al. 2019). Nevertheless,
such refactorings are often unable to completely remove the DPs. Thus, besides
improving the process of identifying DP symptoms, it is necessary to help
developers in the decision of which refactoring sequences should be performed
for removing each potential DP.

There are multiple studies – e.g., (Bavota et al. 2013, Alizadeh and Kessentini
2018, Alizadeh et al. 2019, Alizadeh et al. 2019b, Rebai et al. 2020, Yamanaka
et al. 2021) – that propose automated techniques for refactoring recommen-
dation. However, none of them addresses all the requirements previously pre-
sented in this thesis (see Section 2.6). Therefore, as a last step of the research,
we developed a new technique called OrganicRef. The purpose of OrganicRef
is to bring together in a single technique all requirements that we conjecture
are essential for a refactoring recommendation technique.

For fulfilling the requirements, OrganicRef detects DPs through information
extracted from the project’s design and source code. It relies on a topic mod-
eling algorithm for finding existing features in the project. The features in-
formation is then combined with abnormal quality measures and code smells
to find DPs. For creating refactoring recommendations, OrganicRef relies on
a new refactoring recommendation strategy, which combines rule-based and
feature-driven refactoring heuristics. Finally, we included in OrganicRef the
use of search-based algorithms for deriving improved refactoring recommenda-
tions.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 24

To answer RQ3, we implemented a reference tool for OrganicRef and con-
ducted an empirical evaluation involving six open source projects. This evalua-
tion showed that OrganicRef ’s feature-driven and context-aware recommenda-
tion strategies are able to significantly outperform a baseline strategy (Chapter
7).

1.3

Summary of Contributions

We present in Figure 1.2 an overview of the contributions of this research.
Rounded rectangles represent our specific goals, while the rectangles in the
center of the figure represent the contributions and the related publications.
The arrows indicate the relationships between the goals and contributions. All
of them are related to our main goal and to the research questions presented
in the previous section.

Support for Design
Problem Identification

Support for Design
Problem Removal

Requirements for
Refactoring

Recommendation
Techniques

Identification of
design problems with

multiple symptoms
(JBCS, SCICO)

Investigation about
characteristics of

refactored classes
(ISSRE, ICPC)

Qualitative evaluation
of refactoring

recommendations
(SBES)

Contributes to

Contributes to Contributes to

Contributes to

Contributes to

Feature-driven and
context aware

refactoring
recommendations

Validates

Contributes to

Motivated
by

1 3

2

Figure 1.2: Overview of the contributions of this research

As depicted in Figure 1.2, our first goal was to provide explicit support
for design problem identification. We conducted a study that provided
evidence on the use of multiple co-located symptoms for identifying design
problems (Oizumi et al. 2018). Such a study was based on two experiments
involving professional software developers. This study provided empirical
evidence about the effective identification of design problems (Oizumi et al.
2018).

One of the main findings of the first study was regarding the need for
efficient mechanisms for filtering symptoms and recommendations to delimited

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 25

contexts. Thus we conducted a subsequent study to propose and evaluate
multiple ranking and filtering criteria (Vidal et al. 2019). In such study, we
found different scenarios in which each criterion may be applied. Such a result
is also related to our first contribution.

In addition to the contributions already presented, our studies revealed the
need for understanding the requirements for techniques focused in both the
identification and refactoring of design problems. Thus, to obtain a complemen-
tary point of view on the use of multiple co-located symptoms, we conducted
a study on the characteristics of classes that were refactored to remove design
problems (Oizumi et al. 2019, Eposhi et al. 2019). This investigation provided
us with multiple insights about the effective identification and refactoring of
DPs. As a result, we achieved our second specific goal, which is the definition of
key requirements for refactoring recommendation techniques.

Given that we identified aforementioned requirements, we continued our re-
search by focusing in the investigation of appropriate support to remove
design problems through refactorings. Therefore, we proposed and eval-
uated a technique aimed at providing developers with refactoring recommenda-
tions. This technique was developed in the context of one of our collaborations,
resulting in publications at MSR (Sousa et al. 2020a) and SBES (Oizumi et al.
2020). My exclusive contribution in those collaborative studies was the under-
standing of (un)desirable characteristics of refactoring recommendations. In
particular, our main contribution in such studies – which is part of this thesis
– was to conduct a qualitative assessment of the refactoring recommendations.
This assessment helped us to reveal multiple factors that are related to the
acceptance or rejection of refactoring recommendations.

Despite having proposed the refactoring recommendation technique described
above, our qualitative evaluation showed that the key requirements were not
fully met by it. For example, we observed that the sole use of rule-based
refactoring heuristics is not enough for completely removing DPs. We also
observed that no existing technique satisfactorily fulfills all the requirements
(Section 2.6). Therefore, to fill such a gap in the literature, we proposed and
evaluated the OrganicRef technique.

As we previously described, OrganicRef addresses four key requirements, which
are (1) consideration of heterogeneous symptoms, (2) context-sensitive detec-
tion, (3) feature awareness, and (4) effective recommendations. To meet such
requirements, OrganicRef allows the use of multiple context-selection strate-
gies. It also relies on Topic Modeling (Silva, Galster and Gilson 2021) for iden-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 1. Introduction 26

tifying the features implemented by code elements. Then, OrganicRef com-
bines feature-driven and rule-based heuristics to generate refactoring recom-
mendations for a delimited context. The generated recommendations are later
improved through the use of search-based algorithms. An evaluation of Organi-
cRef showed that its recommendations are able to significantly improve the
design of refactored elements. Among the evaluated search-based algorithms,
we found robust evidence indicating that NSGA-II best fits the purpose of
feature modularization. This happens because NSGA-II is able to explore a
larger set of possible solutions. As a result, it is able to find solutions with
higher positive impact on the modularization of features.

1.4

Thesis Outline

This thesis is organized as collection of papers, which were published or
submitted during this PhD research. To make the text more coherent and fluid,
the chapters presented here were adapted from the original manuscripts. We
adjusted the terminology and removed content unrelated to this thesis.

The chapters are organized as follows. Chapter 2 presents the basic background
and related work for the whole thesis. In Chapter 3 we present our study
on the use of multiple symptoms for effectively identifying DPs. Chapter 4
is dedicated to presenting our study on filtering and prioritization criteria
for refactoring opportunities. Chapter 5 presents an empirical study on the
relation of symptoms, DPs, and refactorings. Next, in Chapter 6 we propose
and evaluate a rule-based refactoring recommendation technique. Chapter 7 is
dedicated to presenting our final contribution, which consists of an improved
refactoring recommendation technique and its evaluation. Finally, we conclude
this thesis in Chapter 8.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

2

Background and Related Work

The literature on software design and refactoring is extensive and may contain
different definitions for concepts used in this thesis. Therefore, this chapter
presents the key concepts for our research along with their definitions. We
organize the presentation of such concepts as follows. Section 2.1 presents our
definitions for software design, quality attributes and other related concepts.
In Section 2.2 we present our definition of design problem. The types of
design problem symptoms considered in this work are described in Section
2.3. Section 2.4 contains the definition of refactoring. Besides the key concepts
presented here, other concepts and definitions that are specific to each study
are presented in their respective chapters.

Moreover, this chapter provides an overview of the main studies related to
this thesis. Such an overview of the literature is useful for mapping what
are the main differences and contributions of this research in comparison to
the literature. Thus, we performed a review of the literature on DPs and
refactoring. The result of such a review is summarized in this chapter in Section
2.6.

2.1

Software Design and Quality Attributes

Software design is the result of multiple design decisions taken by the project’s
stakeholders to fulfill the desired quality attributes (Bass et al. 2003, Booch
2004, Freeman and David 2004, Taylor et al. 2009, Sousa et al. 2018). Quality
attributes determine which characteristics should be taken in account when
evaluating the quality of a software project (ISO-IEC 25010 2011, Bass et
al. 2003). Examples of quality attributes include maintainability, reliability,
portability, among others (ISO-IEC 25010 2011).

There are two main stages in which design decision may be taken (Booch
2004). The first one is called early software design (or software architecture
design) and is focused on defining the overall organization of a software system

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 28

into components (or sub-systems), interfaces and their relationships (Booch
2004, Taylor et al. 2009). Therefore, the early design is also responsible for
defining the intended design of a project (Bass et al. 2003, Perry and Wolf
1992). The intended design is the result of design decisions that should be
followed by the project’s implementation.

The second stage of software design comprises the so called detailed design,
which is focused on achieving more specific decisions governing the design of
each design component (Booch 2004, Taylor et al. 2009). Design components
are elements which address one or more features (Taylor et al. 2009), which
are also called concerns. Each feature represent a functional or non-functional
requirement that the project should satisfy.

2.2

Design Problems

A Design Problem (DP) occurs when stakeholders make decisions that nega-
tively impact quality attributes (Li, Avgeriou and Liang 2015), (Lim, Taksande
and Seaman 2012), (Besker, Martini and Bosch 2017). An example of DP is
the so called Fat Interface (Martin and Martin 2006). This form of DP occurs
when a single interface provides multiple and unrelated operations, making it
difficult to use and increasing the chance of introducing defects to its clients
(Martin and Martin 2006, Oizumi et al. 2016). Due to the negative impact
caused by DPs, software systems have often been discontinued or redesigned
when DPs were allowed to persist (MacCormack, Rusnak and Baldwin 2006).
Thus, to be able to maintain the system’s quality, developers need to identify
and to confirm the existence of DPs. In this thesis we investigated multiple
symptoms as we describe in details along the next chapters. Nevertheless, our
main contributions are focused on three types of DPs, namely Feature Over-
load, Scattered Feature, and Complex Component. We present below a short
description of them:

– Feature Overload occurs when a design component is overloaded with
multiple unrelated features (e.g., authentication and billing) (Brown et
al. 1998), (Oizumi et al. 2016). As a result of this problem, changes
related to one feature may cause side effects to other unrelated features
located in the same component.

– Scattered Feature occurs when multiple non-cohesive design compo-
nents are responsible for realizing the same feature (Brown et al. 1998),
(Oizumi et al. 2016). Changing the scattered feature tends to be chal-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 29

lenging since developers need to change all the components involved in
realizing it.

– Complex Component occurs when the implementation of a component
has a high cyclomatic complexity (Lanza and Marinescu 2006). Compo-
nents affected by this problem tend to be error prone and difficult to
maintain.

We decided to focus on those DP types due to the following reasons. First,
Feature Overload and Complex Component are frequently considered relevant
by developers (Palomba et al. 2014). Second, there is evidence that Scattered
Feature and Feature Overload reflect important maintainability aspects (Ya-
mashita and Moonen 2013). These three DP types are also of major severity
if compared with many others, and their resolution would eliminate/reduce
other inner problematic structures (e.g., a Long Method related to a Feature
Overload) (Abbes et al. 2011, Cedrim et al. 2017). Finally, their removal is
usually not trivial, requiring a combination of multiple refactorings (Sousa et
al. 2020a, Bibiano et al. 2020).

Next, we present an illustrative example to show how quality attributes may
be impacted by DPs. Figure 2.1 shows a partial view of the OpenPOS (Oizumi
et al. 2019) system before and after a degraded structure has been refactored.
OpenPOS is a system that provides sales features. One of the functionalities of
OpenPOS comprises the generation of payment slips. In Brazil, payment slips
serve for clients to make payments at any bank. Developers of OpenPOS im-
plemented this feature in the PaymentSlip sub-component. To protect system
information, this sub-component was strongly coupled to the Authentication
component.

Unfortunately, the strong coupling with the Authentication component led to
a side effect on the reusability of PaymentSlip sub-component. Reusability
is a sub-category of maintainability that indicates the degree to which a
component can be re-used in two or more systems (ISO-IEC 25010 2011).
Since PaymentSlip was so coupled to the Authentication component, it could
not be reused in other systems. In this context, developers have to refactor
the PaymentSlip sub-component to reduce the coupling with Authentication
component. Additionally, refactoring this type of DP is fundamental to avoid
code duplication among systems and rework. In Section 2.4, we explain the
structure obtained after the refactoring.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 30

OpenPOS

PaymentSlip Authentication

FinancialManagement ...

Before Refactoring

After Refactoring

SystemZ

SystemX

SystemY

X

X

X

SystemZ

SystemY PaymentSlip

«interface»
Authentication

X
Violation

Use

Implementation

CompX

System or
Component

Legend:

«interface»
InterfaceZ

Interface

OpenPOS

Figure 2.1: Example of design problem impacting reusability

2.3

Design Problem Symptoms

Sousa et al. (Sousa et al. 2018) identified five categories of symptoms upon
which developers frequently rely to identify DPs. Similarly to other related
work (Yamashita et al. 2015), (Macia et al. 2012a), (Oizumi et al. 2016),
(Oizumi et al. 2018), they observed that developers tend to combine multiple
symptoms, taking into account characteristics such as diversity and density to
decide if there is a DP or not. For refering to (sets of) code elements impacted
by multiple symptoms we use terms like stink code and agglomeration of code
smells. Such terms detailed defined in Chapters 3 and 4.

We selected a sub-set of three symptom categories that can be automatically
detected using state-of-the-art tools, namely abnormal quality measures, im-
plementation smells, and principle violations.

Abnormal quality measures indicate violations of characteristics that are
considered fundamental for software design, such as coupling, cohesion, and
complexity. Coupling, for example, indicates the number of classes that a

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 31

single class uses, and cyclomatic complexity (complexity for short) measures
the structural complexity of the code.

Implementation smells. which are also called code smells, are surface
indicators of quality degradation that may be related to DPs (Fowler 1999),
(Sharma and Spinellis 2018). This symptom category have been investigated
by different researchers (e.g., (Murphy-Hill and Black 2010), (Yamashita and
Moonen 2012), and (Moha et al. 2010)). An example of implementation smell
type is the Long Method. This type of smell usually leads to DPs related to
modifiability.

In object-oriented systems, DPs usually impact object-oriented design charac-
teristics, such as abstraction, encapsulation, modularity, and hierarchy. There-
fore, the second symptom category we used comprises the principle viola-
tions, which are symptoms that may indicate the violation of common object-
oriented principles (Martin and Martin 2006), (Sharma and Spinellis 2018).
An example of object-oriented principle is the Single Responsibility Principle
(SRP). The SRP determines that each class should have a single and well de-
fined responsibility in the system (Martin and Martin 2006). An example of
symptom that may be used for finding SRP violations is the Insuficient Mod-
ularization (Suryanarayana, Samarthyam and Sharma 2014). This symptom
occurs in classes that are large and complex, possibly indicating the occur-
rence of the Feature Overload DP.

2.4

Refactoring

Refactoring consists in transforming the source code structure without
changing the functional behaviour of the system (Fowler 1999). Thus, we
consider that refactoring is any structural software change that is aimed
at improving quality attributes of the system’s design. There are multiple
refactoring types cataloged in the literature (e.g., (Fowler 1999) and (Tsantalis
et al. 2018)). Each refactoring type is applied to perform a specific structural
transformation. For example, Move Method aims at transferring a method
from one class to another.

According to Murphy-Hill and Black (Murphy-Hill and Black 2008b), refac-
toring can be classified into two tactics, which are floss refactoring and root
canal refactoring. On one hand, floss refactoring is characterized by refactoring
changes intermingled with other kinds of source code changes, such as adding
new features and fixing bugs. The aim of floss refactoring is to keep struc-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 32

tural quality as a means to achieve other goals. On the other hand, root canal
refactoring aims at exclusively removing or reducing the intensity of DPs. A
root canal refactoring consists of only refactoring changes; it should not be
performed in conjunction with other non-refactoring changes. Based on that,
in this proposal, our focus is on root canal refactorings as they are explicitly
aimed to remove DPs. Thus, from now on, whenever we talk about refactoring
in this work, we’ll be referring to root canal refactoring.

To illustrate our definition of refactoring, let’s return to the example of Figure
2.1. As previously discussed, multiple different systems of the same company
began to require a payment slip feature. Therefore, developers were asked to
remove the reusability DP by refactoring the PaymentSlip sub-component.
The refactorings consisted of extracting an interface for authentication and
moving the existing authentication implementation to another component.
This way, each system that needs to use the PaymentSlip component must
specify an authentication component that meets the interface specifications
required by PaymentSlip. After refactoring the PaymentSlip sub-component,
besides removing the DP, it is expected the removal of symptoms such as the
Hub-Like Modularization (Sharma and Spinellis 2018), (Sharma 2020).

2.5

Search-Based Software Engineering

As described in Chapter 7, in this thesis we are using search-based software
engineering (SBSE) (Harman and Jones 2001, Harman et al. 2012) techniques
as a way to optimize refactoring recommendations. Thus, in this section we
describe the fundamental concepts of SBSE that are required for understanding
our work.

Software engineering problems often depend on competing factors and con-
straints that are often conflicting (Harman and Jones 2001). In this sense,
SBSE techniques can be applied to find near-optimal solutions. In this context,
different metaheuristic algorithms can be applied, such as genetic algorithms
(GAs), simulated annealing and tabu search (Harman et al. 2012). The use of
SBSE for refactoring is called Search-Based Refactoring (Harman and Tratt
2007).

Initially, search-based refactoring techniques were mono-objective (Harman
and Tratt 2007), which means that the search algorithm performs optimiza-
tions based on a single fitness function. A fitness function is defined to assess
the quality of the generated (i.e., optimized) solutions based on the goal we

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 33

want to achieve. However, according to Harman and Tratt (Harman and Tratt
2007), the use of mono-objective algorithms for refactoring is problematic as,
among other limitations, they require the complex combination of multiple
metrics into a single fitness function.

Therefore, in this work, we focus on the use of GAs (Goldberg 1989), which
are inspired by the Darwinian Evolution theory (Harman et al. 2012). Some
GAs are adapted for optimizing multi-objective problems. Such GAs are called
Multi-Objective Evolutionary Algorithms (MOEAs).

The most popular and largely applied MOEA is the Non-dominated Sorting
Genetic Algorithm (NSGA-II) (Deb et al. 2002). A multi-objective problem de-
pends on multiple factors (objectives) that may be conflicting and, therefore,
there is not a single possible solution. Thus, there may be multiple quasi-
optimal solutions that represent the trade-off between the different objec-
tives. Such solutions are called non-dominated solutions and form the Pareto
front.

Using a MOEA, we start from an initial population composed by alternatives
for refactoring recommendation. After that, search operators – namely, selec-
tion, crossover, and mutation – are applied to evolve the population throughout
multiple generations. The selection operator is responsible for selecting solu-
tions that present the best fitness values to survive as parents for the next
generation. The crossover operator combines parts of two parent solutions to
create a new one. Finally, the mutation operator randomly changes a solu-
tion.

Based on the application of selection, crossover, and mutation operators a new
population is created to replace the parent population. This new population
is called offspring.

This optimization process is repeated over multiple generations according to
the type of algorithm and the parameters defined for its execution. The final
result is the Pareto front, which will be composed by multiple quasi-optimal
solutions.

2.6

Related Work

In this section we present the literature related to this proposal. In Section 2.6.1
we discuss studies about DP symptoms. Sections 2.6.2 and 2.6.3 are dedicated
to discussing studies on the impact of refactoring on symptoms and on DPs.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 34

In Section 2.6.4 we present studies about guidelines for creating refactoring
techniques and existing refactoring recommendation techniques. Finally, in
Section 2.6.5 we discuss some recent secondary and tertiary studies on DPs
and refactoring.

2.6.1

Symptoms of Design Problems

Different studies have proposed and evaluated techniques that use different
symptoms for identifying DPs (Moha et al. 2010), (Murphy-Hill and Black
2010), (Le et al. 2018), (Ran et al. 2015), (Oizumi et al. 2016). Many of them
use only code smells as symptoms for the identification of DPs. Nevertheless,
there is consistent evidence (Macia et al. 2012a), (Macia et al. 2012), (Macia
et al. 2012b), (Oizumi et al. 2015) that individual code smells are not enough
to accurately indicate the presence of DPs. For this reason, in a previous study
(Oizumi et al. 2016), we have proposed an alternative approach to identify DPs
with the combination of multiple code smells. In this study, we investigated to
what extent code smells could “flock together” to realize a DP. We concluded
that certain combinations of code smells are consistent indicators of DPs.
Despite such result, in a recent study that is part of this thesis proposal
(Oizumi et al. 2018), we observed that our previously proposed technique may
not be effective in practice. In addition, in (Oizumi et al. 2016), we did not
verify whether multiple code smells occur more frequently in classes that are
actually refactored by developers.

Sousa’s et al. (Sousa et al. 2018) revealed that, in practice, developers use mul-
tiple heterogeneous symptoms to diagnose DPs. However, although they have
used a systematic methodology to propose their theory, it was not validated.
In this thesis, we intend to overcome such limitation by investigating the use of
multiple symptoms for generating effective refactoring recommendations.

Mamdouh and Mohammad (Alenezi and Zarour 2018) conducted an study
involving six open source systems to investigate if DP symptoms are removed
as the system evolves. They observed that, in general, the density of symptoms
undergo few changes throughout the systems evolution. We conducted a
similar analysis in one of our studies (Oizumi et al. 2019). Nevertheless, our
study was focused on refactored classes, while they analyzed all classes of
systems indistinctly. Moreover, we intend to go beyond the investigation of
DP symptoms through the investigation of refactoring sequences that can be
applied for removing DPs.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 35

2.6.2

Impact of Refactoring on Symptoms

The impact of refactoring on symptoms was also vastly studied by different
researchers – e.g., (Bavota et al. 2015), (Chávez et al. 2017), and (Cedrim et al.
2017). Similarly to us, Bavota et al. (Bavota et al. 2015) investigated whether
refactorings occur in classes with symptoms such as the code smells. Overall,
they observed that none of the investigated symptoms are strong indicators
of need for refactoring. In our case study (Oizumi et al. 2019), unlike them,
both code smells and principle violations showed to be strong indicators of
the need for refactoring. Finally, like us, they also observed that code smells
are not usually removed by means of refactorings. However, we are the first to
investigate the impact of refactorings on different categories of DP symptoms
(implementation smells and principle violations).

Cedrim et al. (Cedrim et al. 2017) also investigated the impact of refactorings
on code smells. Different from us, they evaluated the impact of refactorings
by each individual commit. As in the work of Bavota et al. (Bavota et al.
2015), they collected the refactorings using an automated tool. Although this
approach results in the collection of a larger volume of refactorings, it is not
able to collect only the refactorings intentionally performed by the developers.
Also, they did not investigated the symptom characteristics of refactored
classes.

2.6.3

Refactorings for Removing Design Problems

Regarding the investigation of refactorings for removing DPs, there are some
studies in the literature – e.g., (Lin et al. 2016), (Rizzi et al. 2018), (Kumar and
Kumar 2011), (Zimmermann 2017), and (Rachow 2019). The work of Kumar
and Kumar (Kumar and Kumar 2011), for example, reported an industrial
case study about the conduction of refactorings in a payment integration
platform. Such study presented the key drives that motivated the refactoring,
including DPs such as the Feature Overload. According to the presented
results, the refactorings led to significant improvement in application stability
and throughput. Lin et al. (Lin et al. 2016) proposed an approach to guide
developers in applying refactorings for improving the architectural design.
In their approach, the developers indicate the target design, and then the
approach suggests stepwise refactorings that will change the source code to
meet the target design.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 36

Rizzi, Fontana and Roveda (Rizzi et al. 2018) proposed a tool to remove a DP
known as Cyclic Dependency. Their tool suggests the refactorings steps that
the developer should follow to remove the Cyclic Dependency. Finally, Rachow
(Rachow 2019) proposed a research idea to develop a framework that (i) detects
a DP, (ii) selects and prioritizes refactorings, and (iii) shows to developers the
impact on the design. Although his framework has not been implemented,
the author indicates seven types of DPs that he intends to support with his
framework.

2.6.4

Refactoring Recommendation and its Requirements

Guidelines for refactoring recommendation. Bavota et al. (Bavota et al.
2014) presented guidelines to build and evaluate refactoring recommendation
tools. However, unlike us, their guidelines are not based on qualitative empir-
ical data. They generated several recommendations based on state-of-the-art
papers and based on the authors’ prior knowledge on the subject. In addition,
according to the authors themselves, there are still limitations and challenges
regarding the recommendation of composite refactorings, which are not covered
by their guidelines.

Tsantalis et al. (Tsantalis, Chaikalis and Chatzigeorgiou 2018) presented
lessons learned from 10 years of research with the JDeodorant tool. Their
lessons are mostly focused on the adoption of recommendation tools in practice.
We, on the other hand, focus on guidelines for the effective recommendation of
composite refactorings for removing DPs. As far as we know, we are the first
to identify such guidelines through systematic qualitative studies.

Composite recommendation. The removal of DPs may required the appli-
cation of sequences of refactorings (Oizumi et al. 2020, Cedrim 2018), which
are know as composite refactorings. The proposal and evaluation of refactoring
tools have been the focus of several studies (e.g., (Bavota et al. 2014, Tsantalis,
Chaikalis and Chatzigeorgiou 2018)). Despite making important contributions,
such studies have not considered the application of composite refactorings for
removing DPs. In fact, when composite refactorings are not properly applied, a
DP may not be completely removed (Bibiano et al. 2019, Bibiano et al. 2020).
Other studies focused on proposing recommendations for composite refactor-
ings (Cedrim et al. 2017, Bibiano et al. 2019).

Cedrim et al. (Cedrim et al. 2017), for example, investigated the effect of single
refactorings on code smells. They found that single refactorings often introduce

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 37

or do not fully remove code smells. Then they suggest some composites that
could have removed code smells based on Fowler’s catalog (Fowler 1999).
However, these suggestions were based only on anecdotal evidence. Bibiano
et al. (Bibiano et al. 2019) investigated composite refactorings on 57 software
projects. They found some composites that removed code smells, generating
recommendations from these results. However, they detected only composites
in the scope of individual elements. They did not analyze composites that
involve and affect multiple elements.

Composite refactorings were also the focus of Sousa et al. (Sousa et al. 2020a)
in the context of a collaboration of ours. In this study, Sousa et al. proposed sets
of composite patterns for the removal of different DP types. For creating the
composite patterns, we on data mined from 48 industry-strength Java projects.
In a subsequent collaborative study (Oizumi et al. 2020), we developed and
evaluated a pattern-based refactoring recommendation technique. Despite
showing promising results, we observed that, in many cases, the pattern-based
recommendations are not enough for removing DPs. This helped us to better
understand which requirements a technique should met to provide effective
recommendations.

Search-based techniques. Multiple studies have used Search-Based Soft-
ware Engineering techniques to create recommendations of composites – e.g.,
(Alizadeh and Kessentini 2018), (Ouni et al. 2017), (Alizadeh et al. 2019), and
(Alizadeh et al. 2019b). Ouni et al. (Ouni et al. 2017), for example, introduced
an automated approach for refactoring recommendation, called MORE, using
a genetic algorithm that is focused on three objectives: (1) improve design
quality, (2) fix code smells, and (3) introduce design patterns.

Alizadeh et al. (Alizadeh et al. 2019b) proposed a technique called RefBot.
This technique is focused in providing context sensitive refactoring recommen-
dations. More specifically, they provide recommendations in the context of pull
requests, which is a mechanism frequently used for reviewing and integrating
source code changes. Their technique relies on a software bot, which analyzes
the changes in a pull request and uses a search-based algorithm for generating
refactoring recommendations.

In general, we have observed important differences when comparing existing
search-based refactoring techniques to the one proposed in this thesis. First,
such techniques usually rely only on traditional metrics (e.g., number of symp-
toms, QMOOD and OO metrics) for finding refactoring opportunities and eval-
uating the generated solutions (Mariani and Vergilio 2017). We, on the other

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 38

hand, rely on the combination of heterogeneous symptoms. Moreover, despite
the existence of some techniques (e.g., (Alizadeh et al. 2019b)) that provide
context-sensitive recommendations, the context is usually fixed rather than
flexible as we intend to provide. Finally, few to no techniques take into account
feature modularization for generating refactoring recommendations.

Recommendation based on semantic and design information. Some
studies go beyond the use of traditional symptoms and metrics for recom-
mending refactorings (Bavota et al. 2013, Rebai et al. 2020, Yamanaka et
al. 2021, Nyamawe et al. 2019). Bavota et al. (Bavota et al. 2013) proposed
a technique for recommending Move Method refactorings. Their technique is
based on Topic Modeling and combines structural and textual information for
finding Move Method refactoring opportunities. Differently from us, they use
Topic Modeling only at the method level. We, on the other hand, apply a Topic
Modeling algorithm for finding software features in classes and methods. We
use the extracted features for recommending multiple refactoring types, such
as Extract Class, Move Method and Move Field (see Chapter 7).

Nyamawe et al. (Nyamawe et al. 2019) trained a Machine Learning (ML) model
for relating feature requests with the refactorings needed for completing the
feature’s implementation. Based on such a model, they created a technique
which recommends refactorings for enable the implementation of future feature
requests. Like us, they aim to provide recommendations within the context of
interest to the developers. Unlike them, the technique proposed in this thesis
aims to make it possible to recommend refactorings in multiple contexts, not
being restricted to feature requests.

The work of Rebai et al. (Rebai et al. 2020) is focused in helping developers to
find and complement incomplete refactorings. They find incomplete refactor-
ings through the developers’ refactoring intention manifested in commit mes-
sages. Their work also takes a step towards supporting the recommendation
of refactorings within the developers’ context of interest. Similarly to them,
we also focus in considering the context of interest for recommending refactor-
ings. The main difference between us is that they focus in completing existing
refactoring sequences, while we focus in recommending refactoring composites
for removing DPs.

Yamanaka et al. (Yamanaka et al. 2021) presented a new technique for
recommending Extract Method refactorings based on predicted method names
for code extraction candidates. The prediction of method names is based on
an existing technique called code2seq. This technique relies on a classification

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 2. Background and Related Work 39

model to bind code characteristics with sequences of words. The disadvantage
of this work is that its accuracy depends on a large model that is compatible
with the domain of the project to be refactored. Furthermore, such a technique
only provides Extract Method recommendations, which is not always sufficient
for removing DPs.

2.6.5

Secondary and Tertiary Studies on DPs and Refactoring

There are also multiple secondary and tertiary studies related to DPs and
Refactoring - e.g., (Lacerda et al. 2020, Abid et al. 2020, Mariani and Vergilio
2017). Lacerda et al. (Lacerda et al. 2020) conducted a tertiary literature
review on DP symptoms and refactoring. Their results presents multiple
observations on what is well known about DP symptoms and refactoring and
what are the open challenges. Being a tertiary study, the results presented
by them were obtained through the synthesis of secondary studies. Therefore,
their study provides evidence that helped us in the motivation of this thesis.
Indeed, our goal is related to some of the challenges reported by them.

Abid et al. (Abid et al. 2020) conducted a systematic literature review about
refactoring. Based on the investigation of 3,183 papers, they built a taxonomy
to classify existing research about refactoring. Based on that, they identified
the main trends and the gaps in the software refactoring literature. Their
results shows that refactoring is a topic of extreme relevance to the software
engineering community and there are still many open challenges in this research
field.

In the work of Mariani and Vergilio (Mariani and Vergilio 2017), a systematic
literature review on search-based refactoring was presented. The results of
this study show that several search-based techniques have been proposed
recently. Nevertheless, despite the huge number of studies, there is a limitation
regarding the metrics used by existing techniques to evaluate the generated
refactoring solutions. Many studies evaluate their solutions based on metrics
like the number of DP symptoms, the number of proposed refactorings (i.e.,
number of changes), and on traditional metrics such as QMOOD and OO
metrics. However, as discussed in Chapter 1, effective detection and refactoring
of DP problems often requires a combination of heterogeneous symptoms.
Therefore, this thesis contributes in this direction through a new technique
based on the combination of traditional symptoms and metrics with design
information.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

3

On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support

Developers often have to locate design problems in the source code. Several
types of design problems may manifest as code smells in the program. As
we described in Section 2.3 of Chapter 2, a code smell is a source code
structure that may reveal a partial hint about the manifestation of a design
problem. Recent studies suggest that developers should ignore smells occurring
in isolation in a program location. Instead, they should focus on analyzing
stinkier code, i.e. program locations – e.g., a class or a hierarchy – affected by
multiple smells (Section 2.3). There is evidence that the stinkier a program
location is, more likely it contains a design problem.

However, there is no empirical evidence on whether developers can effectively
identify a design problem in stinkier code. Developers may struggle to make
an analysis of inter-related smells affecting the same program location. Besides
that, the analysis of stinkier code may require proper tool support due to
its analysis complexity. However, there is little knowledge on what are the
requirements for a tool that helps developers in revealing stinkier program
locations. As a result, developers may not be able to identify design problems
due to tool issues.

Given that our first specific objective is to support the effective identification
of design problems, in this chapter we proposed Organic – a tool supporting
the analysis of stinky code. We applied a mixed-method approach to analyze if
and how developers can effectively find design problems when reflecting upon
stinky code – i.e., a program location affected by multiple smells. Finally, we
evaluated if Organic could be used by developers to identify design problems in
practice. For this evaluation, we used a method from the Semiotic Engineering
theory. This method enabled us to evaluate what are the tool issues that may
hinder the identification of design problems in stinky code.

Our study revealed that only 36.36% of the developers found more design
problems when explicitly reasoning about multiple smells as compared to single

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 41

smells. Moreover, 63.63% of the developers reported much lesser false positives
when using the first approach as compared to the latter. The second study,
in its turn, showed that most developers may be unable to identify design
problems in stinky code without proper tool support.

Our experiences, in particular the second study, helped us to refine the features
of Organic for better supporting developers in reflecting upon stinkier code.
For example, analyses of stinky code scattered in class hierarchies or packages
is often difficult, time consuming, and requires proper visualization support.
Moreover, without effective support, it remains time-consuming to discard
stinky program locations that do not represent design problems.

The two studies presented in this chapter were published in a paper at the
Journal of the Brazilian Computer Society (JBCS) (Oizumi et al. 2018).

3.1

Introduction

The identification of design problems in the source code is not a trivial
task (Ciupke 1999, Trifu and Marinescu 2005). Developers usually need to find
hints, as code smells, in the source code that can lead to a design problem.
A code smell is a structure in the source code that may provide developers
with a partial indication about the manifestation of a design problem (Fowler
1999). A classical example of code smell is the God Class, which occurs when a
class is long and complex, centralizing a considerable amount of intelligence of
the system. However, the occurrence of a single smell in isolation in a program
often does not represent a design problem (Macia et al. 2012b, Oizumi et al.
2016). A design problem is a design characteristic that negatively impacts
maintainability (Trifu and Marinescu 2005). Recent studies reveal that design
problems are much more often located in stinkier program locations (i.e., a
class, a hierarchy or a package) affected by multiple smells (Abbes et al.
2011, Macia et al. 2012b, Yamashita and Moonen 2013, Yamashita et al.
2015, Oizumi et al. 2016). For instance, a Fat Interface (Martin and Martin
2006) is a design problem that often manifests as multiple smells in a program,
affecting various classes that implement, extend, and use the interface in a
program (Oizumi et al. 2016).

The stinkier a program location is, more likely it contains a design prob-
lem (Oizumi et al. 2016, Oizumi et al. 2015). In fact, developers tend to focus
on refactoring program locations with a high density of code smells, and ig-
nore those locations affected by a single smell (Cedrim et al. 2016, Cedrim et

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 42

al. 2017). However, there is limited understanding if developers can effectively
identify design problems in stinkier code, i.e. program locations affected by
multiple smells. Indeed, existing techniques tend to focus on the detection and
visualization of each single smell (Emden and Moonen 2002, Ratzinger, Fischer
and Gall 2005, Murphy-Hill and Black 2010, Wettel and Lanza 2008). They
do not offer a summarized view of inter-related smells affecting a program
location (Oizumi et al. 2016). Moreover, previous studies focus on simply ana-
lyzing the correlation between design problems and code smells (Oizumi et al.
2016, Macia et al. 2012). They have not investigated if and how developers are
indeed effective in the task of finding design problems in stinkier code.

Therefore, we do not know whether the analysis of multiple smells actually
provides better precision for the identification of design problems. Developers
may struggle to make a meaning out of inter-related smells affecting the same
program location. Additionally, the analysis of stinkier code may require proper
tool support due to its analytic complexity. However, there is limited knowledge
on what are the requirements for a tool that supports the analysis of stinkier
code. This is important because developers may not be able to identify design
problems due to tool support issues. To address these matters, we defined three
goals for our research: (1) provide proper support for the analysis of stinkier
code, (2) assess to what extent developers are able to identify design problems
in stinkier code, and (3) identify tool issues that may hinder the identification
of design problems.

To achieve our first goal, we designed and implemented Organic – a tool sup-
porting the analysis of stinky code. We used findings from previous stud-
ies (Macia et al. 2012b, Oizumi et al. 2016, Macia et al. 2012, Macia et al.
2012a, Oizumi et al. 2014a, Oizumi et al. 2017) as a start point for defin-
ing the requirements of Organic. In a nutshell, Organic supports the analysis
of multiple forms of stinkier code, provides detailed information about code
smells, supports the analysis of dependencies between stinky elements, provides
a visualization for stinkier code, provides historical information about stinkier
code, and allows developers to specify the thresholds that should be considered
when identifying stinkier code. In the context of Organic, the threshold defines
the minimum number of smells that a program location should have to be con-
sidered stinkier. Those features will be presented in detail in Section 3.3.

For achieving the second goal, we applied a mixed-method approach to analyze
if and how developers can effectively find design problems when reflecting upon
stinky code. This study comprised both quantitative and qualitative analyses.
For the quantitative analysis, we compared the precision of the developers with

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 43

a baseline, i.e., situations where only single smells were given to them. As we
want to assess if multiple smells can help developers to reveal more design
problems than single smells, we divided the developers into two groups. In the
first group, we asked them to identify design problems through the analysis
of stinky program locations. In the second group, we asked them to identify
design problems with the analysis of single smells. After that, we inverted the
groups, and we asked them to repeat the identification of design problems in
a second system. In each identification task, we used the group that identified
design problems with single smells as the control group. Thus, we could use
the control group to measure if the analysis of stinkier program locations can
improve the precision of design problem identification.

In the qualitative analysis, we performed a systematic evaluation through:
the careful observation of participants during the study execution and the
application of a follow-up questionnaire. The objective of this analysis was to
identify the main barriers of reflecting upon multiple smells along the task of
identifying design problems. The outcomes of this analysis helped us to better
understand ways to improve support for the identification of design problems
in stinky code.

By triangulating the results of both analyses, we noticed that 36.36% of
the developers found more design problems when explicitly reasoning about
multiple smells. We found that the understanding of complex stinky code
helped to confirm the occurrence of non-trivial design problems, such as
Scattered Feature (Garcia et al. 2009). Furthermore, we found that 63.63%
of the developers reported much less false positives when analyzing multiple
smells than when analyzing single smells. Thus, developers that considered
stinky program locations, instead of isolated smelly code, could identify
design problems with higher precision. However, this study also showed that
developers need better support to analyze stinky program locations to reveal
design problems. We observed that the analysis of stinky code may be difficult
and time consuming. For instance, a prioritization and filtering approach is
required so that developers do not waste time analyzing many stinky program
locations not related to design problems.

Finally, to achieve our third goal, we evaluated Organic with the Communi-
cability Evaluation Method (CEM) (de Souza et al. 2009). CEM is a method
from the Semiotic Engineering theory, which is intended to reveal ruptures
of communication when a user interacts a system, i.e., in our case when the
developer interacts with the Organic tool. This method enabled us to iden-
tify issues in the Organic tool that may hinder the identification of design

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 44

problems.

By conducting the communicability evaluation of Organic, we observed three
major issues. First, although the tool detects stinkier program locations, it
often fails to provide a concise message that facilitates the reasoning about
the possible design problem (affecting the stinky program location). Second,
the terms used in the tool are not adequate to certain software developers.
Third, Organic uses ambiguous static symbols for representing different types
of information. During the evaluation, we noted that, the aforementioned issues
may often hinder the identification of design problems in stinky code.

3.2

Contextualization

This section, which is organized into two subsections, provides background
information to support the understanding of this chapter. Section 3.2.1 outlines
basic concepts. Section 3.2.2 brings up an illustrative example of analyzing
stinky code to identify design problems.

3.2.1

Basic Concepts

Design Problem. A design problem is a characteristic in the software
design that leads to negative impact on maintainability (Trifu and Marinescu
2005). Design problems affect program locations such as packages, interfaces,
hierarchies, classes, and other structures that are relevant for the design of
the system (Bass et al. 2003). Examples of design problems include Scattered
Feature (Garcia et al. 2009) and Fat Interface (Martin and Martin 2006). The
description of the eight types of design problems considered in our study is
presented in Table 3.1. We opted by selecting these design problems since: (i)
they are often considered as critical in the systems (Oizumi et al. 2016) chosen
in our study, and (ii) other studies haven shown the relation between such
design problems and code smells (Macia et al. 2012b, Oizumi et al. 2016, Macia
et al. 2012, Macia et al. 2012a, Macia 2013).

Smelly Code. Code smell is a recurring micro structure in the source code
that may indicate the manifestation of a design problem (Fowler 1999). A
design problem can manifest itself in a program by affecting multiple source
code locations. Each of these locations are called here smelly code. Thus, the
developers can analyze the smelly code to identify a design problem. There are
several types of code smell, which may affect a method, a class or a hierarchy.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 45

Table 3.1: Description of design problems
Name Description

Fat Interface Interface of a design component that offers only a general, ambiguous entry-point that
provides non-cohesive services, thereby complicating the clients’ logic.

Unwanted Dependency Dependency that violates an intended design rule.
Feature Overload Design components that fulfill too many responsibilities (i.e., concerns).
Cyclic Dependency Two or more design components that directly or indirectly depend on each other.
Delegating Abstraction An abstraction that exists only for passing messages from one abstraction to another.
Scattered Feature Multiple components that are responsible for realizing a crosscutting features.

Overused Interface Interface that is overloaded with many clients accessing it.
That is, an interface with too many clients.

Unused Abstraction Design abstraction that is either unreachable or never used in the system.

In this chapter, we used nine types of code smell, which are: God Class, Brain
Method, Data Class, Dispersed Coupling, Feature Envy, Intensive Coupling,
Refused Bequest, Shotgun Surgery, and Tradition Breaker. These types of smell
were considered in this study as they occur in the target systems used in this
work. The description of each type of smell is presented in Table 3.2.

Table 3.2: Types of code smell
Type Description

God Class Long and complex class that centralizes the intelligence of the system
Brain Method Long and complex method that centralizes the intelligence of a class
Data Class Class that contains data but not behavior related to the data

Dispersed Coupling
The case of an operation which is excessively tied to many other operations
in the system, and additionally these provider methods that are dispersed
among many classes

Feature Envy Method that calls more methods of a single external class than the internal
methods of its own inner class

Intensive Coupling When a method is tied to many other operations in the system, whereby
these provider operations are dispersed only into one or a few classes

Refused Bequest Subclass that does not use the protected methods of its superclass

Shotgun Surgery This smell is evident when you must change lots of pieces of code in different
places simply to add a new or extended piece of behavior

Tradition Breaker Subclass that provides a large set of services that are unrelated to services
provided by the superclass

Code Smells and Design Problems. Developers can rely on the analysis
of code smells to identify design problems (Macia et al. 2012, Lanza and
Marinescu 2006, Suryanarayana, Samarthyam and Sharma 2014). The use of
code smells to identify design problems is possible because some instances of
code smells manifest in the source due to the presence of a design problem.
Consequently, code smells tend to co-occur in elements affected by design
problems (Oizumi et al. 2016, Yamashita et al. 2015, Macia et al. 2012a, Oizumi
et al. 2015), which make them indicators of design problems. Unfortunately,
not all (instance of) code smells are related to a design problem (Macia et al.
2012).

Usually, a code smell is related to a design problem when it occurs due to
the presence of design problem. For instance, consider Scattered Feature (Gar-
cia et al. 2009), a design problem that occurs when multiple code elements

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 46

implement a functionality that should have been implemented by only a few
elements. Often, elements that implement the scattered functionality contains
code smells such as God Class, Feature Envy, Intensive Coupling, Divergent
Change, and the like. As the code elements implement a scattered function-
ality, these elements are likely of implementing at least two functionalities:
their predominant functionality and another one, in which the predominant
functionality can either the scattered one or not. Either way, the elements
implement more than one functionality, which leads them to the appearance
of a God Class. Additionally, the methods in the class have to communicate
with other classes that also implement the scattered functionality. Thus, these
methods can contain instances of Feature Envy, leading to the appearance of
an Intensive Coupling smell. Furthermore, every chance in the functionality
will impact the elements that implement it; thus, these elements will have
the Shotgun Surgery and Divergent Change. In summary, these code smells
could appear in the elements due to the scattered functionality, i.e., due to the
Scattered Feature.

Stinky Program Location. Indeed, code smells can be indicators of design
problems. In fact, recent studies (Macia et al. 2012b, Oizumi et al. 2016, Abbes
et al. 2011, Yamashita et al. 2015) suggest that the stinkier a program
location is, the more likely it is to be affected by a design problem. Stinky
code is the manifestation of multiple code smells in a program location. In
this chapter, we are especially interested in stinky code indicated by smell
agglomerations (Oizumi et al. 2016). A smell agglomeration is a group of inter-
related code smells affecting the same program location, such as a method, a
class, a hierarchy or a package (Oizumi et al. 2016). Thus, the agglomeration
is determined in the program by the co-occurrence of two or more code smells
in the same method, class, hierarchy or package (or component). For code
smells that co-occur in the last three cases, we only consider they are part
of an agglomeration if they are syntactically related (Oizumi et al. 2016).
For instance, two classes can be related through structural relationships in the
program, such as method calls and inheritance relationships. In this chapter, we
considered four categories of agglomeration, which are presented below.

An intra-method smell agglomeration consists of multiple code smells that are
located in a single method. The minimum number of code smells required
to characterize an intra-method smell agglomeration is arbitrarily defined by
the developers through a threshold. Figure 3.1 presents an example of intra-
method agglomeration extracted from the Apache OODT (Object Oriented
Data Technology) system. OODT is a distributed system aimed at supporting

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 47

the management and integration of processes, data, and metadata (Mattmann
et al. 2006). The agglomeration of Figure 3.1 occurs in the fromWorkflowIn-
stance method, which is implemented by the WorkflowProcessorQueue class.
This method is affected by two code smells: Brain Method and Intensive Cou-
pling. The smelly method is the source of a Brain Method because fromWork-
flowInstance performs several operations related to pre-conditions, tasks, and
pos-conditions. All these operations make the method difficult to read and,
consequently, to maintain. Moreover, this method suffers from Intensive Cou-
pling because it is tightly coupled to a few classes, namely WorkflowInstance,
WorkflowProcessor, WorkflowCondition, and WorkflowTask. These two smells
together indicate the method is complicated, addresses multiple responsibili-
ties, and is intensively coupled to a few classes in the system.

Figure 3.1: Intra-method and intra-class agglomerations in the WorkflowPro-
cessorQueue class

An intra-class smell agglomeration consists of multiple code smells affecting a
single class. Thus, a class C has an agglomeration whenever the number of code
smells affecting C is higher than an arbitrary threshold defined by the devel-
oper. Figure 3.1 also shows an example of intra-class agglomeration extracted
from the OODT system. This agglomeration occurs in the WorkflowProces-
sorQueue class and is composed by four code smells instances: Feature Envy
in the getLifeCycle method, Dispersed Coupling in the getProcessors method,
Brain Method and Intensive Coupling in the fromWorkflowInstance method.
Such a combination of smells suggests the WorkflowProcessorQueue class is
tied to many other classes in the system, and has more responsibilities than it
should.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 48

A hierarchical agglomeration follows two conditions. First, all code elements
have to be affected by the same type of code smells. Second, these elements
have to implement the same interface or inherit from the same code element.
Figure 3.2 illustrates an example of hierarchical agglomeration affecting the
Apache OODT system. The Versioner class is an abstraction affected by a
Fat Interface instance due to the high number of responsibilities implemented
into it, which realize different features. Besides that, the Versioner class is
inherited by other classes, namely SingleFileBasicVersioner, BasicVersioner,
DateTimeVersioner, and MetadataBasedFileVersioner. All implementations
are affected by Feature Envy, because they have too many dependencies with
multiple classes of the system. Thus, all these Feature Envy instances together
form an agglomeration that reifies the Fat Interface design problem affecting
Versioner.

Figure 3.2: Hierarchical agglomeration under the Versioner class

An intra-component smell agglomeration occurs inside of a single design com-
ponent. This agglomeration comprises multiple code smells affecting different
code elements that are located within the same component. The minimum
number of code smells required to characterize an intra-component smell ag-
glomeration is arbitrarily defined by the developer. Note that, for characteriz-
ing this type of smell agglomeration, all code elements have to (i) be affected by
the same type of code smell and (ii) be connected by method calls or type refer-
ences. Section 3.2.2 presents a detailed example involving an intra-component
smell agglomeration.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 49

The concept of smell agglomeration is not limited to the categories presented
above. There are other categories that we did not consider in this study.
An example is the Concern-overload category (Oizumi et al. 2016), which is
provided by the Organic tool – as described in Section 3.3. In this chapter, our
focus was to analyze the identification of design problems in stinky program
locations. Therefore, we considered only categories that represent common
program locations, such as methods and classes.

3.2.2

Identifying Design Problem in Stinky Code

As explained in previous section, the identification of design problems can be
based on code smells. For instance, let us consider the example illustrated in
Figure 3.3. This figure presents some classes that belong to the Workflow Man-
ager subsystems – a subsystem of the Apache OODT (Object Oriented Data
Technology) system (Mattmann et al. 2006). It is responsible for description,
execution, and monitoring of workflows. Suppose that a developer is in charge
of identifying design problems in the Workflow Manager subsystem. She can
rely on the analysis of code smells to spot program locations that may contain
a design problem. If she is analyzing the repository package, she will notice
that this package contains several code smells as indicated by a smell agglom-
eration. This agglomeration is formed by 4 instances of the Feature Envy smell.
As illustrated by Figure 3.3, each of the Feature Envy occurrences affects a dif-
ferent class. In this case, 3 classes implement the WorkflowRepository interface.
When the developer analyze these classes based on the Feature Envy smell, she
will realize that these classes contain the smell because one of their methods
is more interested in other classes than in its own hosting class. This happens
because these methods are forced to implement a method that was defined
in the WorkflowRepository interface. That is, the smells in the agglomeration
are indicating that (the corresponding method in) the interface may contain
a design problem. In fact, this “forced implementation” becomes a problem
because these methods are implementing a feature that should not have been
implemented in their hosting classes. That happens because of the fact that
the WorkflowRepository interface processes multiple services; thus, any class
that implements this interface needs to handle more services than it actually
should have.

In this example, the developer knows that the code smells in the agglomeration
have the same type (Feature Envy). Also, she knows that 3 classes affected
by the code smells implement the same interface, as reified in a hierarchical

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 50

repository

<<WorkflowRepositoryFactory>>

DataSourceWorlflowRepository

20 1

DataSourceWorlflowRepositoryFactory

PackagedWorflowRepository

13 1

XMLWorkflowRepository

1

<<WorkflowRepository>>

Legend
Number of relevant smells
in a class or method#

Number of irrelevant smells
in a class or method#

Design Component

Class

Interface

9

1 1

Agglomeration

Fat Interface

Figure 3.3: Example of agglomeration in the Workflow system

agglomeration. This interface, in its turn, seems to provide non-cohesive
services. Thus, the developer can infer that a design problem, called Fat
Interface, is affecting the WorkflowRepository interface. On the other hand,
if she did not reflect upon the code smell agglomeration, it would be harder
to her to identify the same design problem. One of the reasons is the number
of code smells spread over the 6 classes and 2 interfaces within the package.
Although the package contains only 8 classes (Figure 3.3 only shows some
of them), it has more than 50 code smells, many of which are irrelevant for
the identification of a Fat Interface. Thus, she has to analyze many smelly
code snippets in order to discard, postpone or further consider them in the
identification of design problems.

Let us assume that the developer only reasons about each code smell in
isolation to identify the design problem, i.e., without taking into consideration
smell relationships in an agglomeration. Thus, she can choose to analyze
the DataSourceWorkflowRepository class first because the class contains the
highest number of smells in the package. Analyzing the 21 instances of code
smells in the class, the developer will notice that the class has smells related to
high coupling with other classes (Intensive Coupling and Dispersed Coupling),
low cohesion (Feature Envy), and overload of responsibilities (God Class).
However, all these smells may indicate different problems. Thus, she has to
extend the analysis to other classes in order to gather more information that
can potentially indicate a design problem. Unfortunately, the other classes also
have different instances of code smells, and these instances may not be related
to any design problem. Therefore, the developer can face difficulties to find
the relevant code smells that can help him to identify a design problem. Thus,

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 51

the analysis of stinky program locations, as revealed by agglomerations, seems
to be a better strategy. However, there is little empirical understanding about
this phenomenon. Existing studies are limited to investigating only if there is
a correlation of design problems with stinky code.

3.3

Organic: A Tool for the Analysis of Stinky Code

In this section, we present the Organic tool1. Organic is a plug-in developed
for the Eclipse IDE. The essential objective of Organic is to enable its users
to identify and reason about design problems. To fulfill its role, Organic de-
tects, and groups code smells into agglomerations of code smells. The detection
of smells is performed with the conventional detection strategies proposed by
Marinescu (Marinescu, 2004). Each conventional detection strategy is a heuris-
tic that detects code elements that possibly suffer from a particular type of
code smell. The heuristic of a detection strategy is based on a set of met-
rics and thresholds, which are combined into logical expressions (Marinescu,
2004). After the detection of code smells, Organic explores different forms of
relationship between smells in order to search for smell agglomerations. The
smell agglomerations are identified through information extracted from differ-
ent artifacts of the analyzed software. Finally, for each agglomeration, Organic
extracts information that may be helpful for the identification of design prob-
lems.

We developed and evolved Organic’s features based on findings from related
work (Macia et al. 2012b, Oizumi et al. 2016, Macia et al. 2012, Macia et al.
2012a, Oizumi et al. 2014a, Oizumi et al. 2017). We used their findings as a
start point for defining a preliminary set of requirements for supporting the
identification of design problems in stinky code. Next, we present the require-
ments along with the corresponding features of Organic. The requirements are
made explicit in the title of each paragraph below, followed by the description
of Organic features that implement the corresponding requirement.

Supporting Multiple Categories of Agglomeration. Our prior
work (Oizumi et al. 2014a, Oizumi et al. 2015) provided evidence that design
problems may be reified in the source code by different forms of agglomera-
tion. Therefore, a tool for the analysis of stinky code must support multiple
categories of agglomeration. Thus, to support this requirement, Organic pro-

1Organic. Available at http://wnoizumi.github.io/organic/.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 52

vides five categories of agglomerations: (i) intra-method, (ii) intra-class, (iii)
intra-component, (iv) hierarchical, and (v) concern-overload.

Before searching for agglomerations, Organic uses the source code model pro-
vided by Eclipse – through the org.eclipse.jdt.core.dom package – to compute
metrics such as Access to Data, Number of Lines of Code, McCabe Complex-
ity, and the like. After that, The metrics are combined into heuristics for the
detection of code smells. Organic uses the heuristics defined by the conven-
tional detection strategies of Marinescu (Marinescu, 2004). Below we present
an example of detection strategy for Long Method smells:

Long Method = Lines Of Code > VERY HIGH and Cyclomatic Com-
plexity > HIGH

Detection strategy above determines that a Long Method occurs when the
method (1) has more lines of code than the number defined by a given
threshold (VERY HIGH), and (2) has cyclomatic complexity higher than a
given threshold (HIGH).

After detecting all code smells, Organic use different algorithms to search for
different categories of agglomeration. Algorithm 1 shows a pseudo-code illus-
trating the algorithm used by Organic to search for intra-method agglomera-
tions. For each method in the source code, Organic computes the number of
smells. When a method has more code smells than a given threshold, Organic
considers that there is an intra-method agglomeration.

Data: Set M of methods
Result: Set A of intra-method agglomerations
initialization;
for each method m in M do

if numberOfSmells(m) > THRESHOLD then
A.add(agglomerationOf(m))

end
end

Algorithm 1: Pseudo-code of the algorithm to search for intra-method
agglomerations

The different categories are shown by Organic in the Agglomerations View. This
is the main view of the tool and it provides features to support the identification
of design problems. Figure 3.4 shows a screenshot of the Agglomerations View.
As one can observe, this view is separated in two parts: the first part is called
Agglomerations, which is shown on the left side; the second part is called
Details, which is shown on the right side. The Agglomerations part shows

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 53

the agglomerations found in one or more projects according to their category.
For instance, Figure 3.4 shows two categories of agglomerations detected in a
project called cas-pushpull.

Figure 3.4: Smells that compose an agglomeration

By clicking on an agglomeration category, one more subitem level is expanded.
This new level displays all agglomerations in the selected category. For ex-
ample, in Figure 3.4 all the Hierarchical agglomerations that were found in
the cas-pushpull project are displayed. Thus, developers can use these Organic
features to select the category and/or the specific agglomeration they want to
focus.

Providing Detailed Information about Code Smells. Many developers
have little to no knowledge about the concept of code smells. In a survey
conducted by Yamashita and Moonen (Yamashita and Moonen 2013), for
example, only 18% of participants reported a good or strong understanding
about code smells. As a result, most developers may fail short in the analysis
of stink code when using a tool that do not provide enough information. Hence,
to overcome this limitation, Organic provides detailed information about each
agglomeration of code smells.

When the user selects an agglomeration, Organic displays all the smells that
compose the agglomeration on the right side of the screen (in the Anomalies
tab). One can see in Figure 3.4 that the first agglomeration in the Hierarchical
category contains three Intensive Coupling smells. The second tab (Figure 3.5)
presents a textual description with information about the agglomeration
according to the category. As one can observe in the figure, the description
of a Intra-method agglomeration displays information about the number of
smells that compose the agglomeration with a textual description of each type
of smell.

Supporting the Analysis of Surrounding Code Elements. In our previ-
ous work (Oizumi et al. 2015, Oizumi et al. 2016), we observed that a design
problem may involve the surrounding code elements of an agglomeration. For
instance, we found agglomerations in which one or more surrounding elements

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 54

Figure 3.5: Description of an agglomeration

were the main cause for the design problem manifestation. Thus, to support
the analysis of surrounding code elements, Organic provides a tab called Ref-
erences. This tab displays all references involving smelly code elements. For
instance, in Figure 3.6 the getSite method of the RemoteSiteFile class is refer-
enced by 10 other methods. This Organic feature enables developers to reason
about the external impact of an agglomeration and further help for the search
of a design problem associated with the agglomeration. For example, a high
number of references involving agglomerated element(s) and their surrounding
elements may suggest the occurrence of a scattered functionality and/or an
overly coupled component.

Figure 3.6: References of an agglomeration

Providing a Visual Representation of Stinkier Code. Based on find-
ings from our first (mixed-method) study (Section 3.4), we also incorporated a
graph-based view into Organic. This view is displayed in the fourth tab. Fig-
ure 3.7 shows an example of the graph-based visualization for a selected ag-
glomeration. The visualization is not intended to provide a dependency graph
of the agglomeration’s code elements. Instead, the objective is to provide an
abstract representation of an agglomeration, an overview of the composition

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 55

of the agglomeration, and to help the analysis and understanding of the ag-
glomeration. Figure 3.7 illustrates the graphic representation of an hierarchical
agglomeration. In this graph, the blue nodes represent smelly classes, while the
red arrows represent inheritance relationships. Figure 3.8 illustrates an intra-
component agglomeration graph. In the graph, a rectangle with a red outline
represents the affected component while the nodes represented within the com-
ponent are the smelly classes. In the same way, the concern-overload agglom-
eration graph (Figure 3.9) also illustrates the component and smelly classes. In
this graph, features (i.e., concerns) are shown by hovering over the nodes rep-
resenting the classes. The intra-class agglomeration graph (Figure 3.10) shows
a blue node that represents the agglomerated class, while the gray nodes repre-
sent the smelly methods of the class. Finally, the intra-method agglomeration
graph (Figure 3.11) shows a blue node representing the agglomerated method
and red nodes to represent the name of smells affecting the method.

Figure 3.7: Graph representation of a hierarchical agglomeration

Figure 3.8: Graph representation of an intra-component agglomeration

Providing Historical Information. During the analysis of an agglomera-
tion, developers may benefit from information about the evolution of an ag-
glomeration across the source code history (Oizumi et al. 2014b). Therefore,
the fifth tab of Organic displays historical information about the selected ag-
glomeration. By historical information we mean information about the agglom-
eration in previous versions of the software. Thus, this historical information

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 56

Figure 3.9: Graph representation of a concern-overload agglomeration

Figure 3.10: Graph representation of an intra-class agglomeration

Figure 3.11: Graph representation of an intra-method agglomeration

is organized by versions. For example, in the Figure 3.12, information about
the agglomeration is displayed in 2 previous versions: “0.2” and “0.5”. Each
version shows the code smells that were members of the agglomeration.

The objective of this tab is to assist the analysis of the evolution of each
agglomeration throughout the different versions of the system. This tab shows
the history of code smells that progressively composed the agglomeration along
the versions of the software. As one can be observe in Figure 3.12, in version
0.2, the agglomeration was composed by four smells (1 Dispersed Coupling,
2 Feature Envy, and 1 Intensive Coupling). On the other hand, the same
agglomeration was composed of three smells (1 Dispersed Coupling, 1 Feature
Envy, and 1 Intensive Coupling) in version 0.5. Using this feature, developers

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 57

Figure 3.12: Historical information of an agglomeration

can identify agglomerations that are growing or shrinking along the system’s
evolution. The analysis of this phenomenon can help developers identify certain
design problems. For example, a developer can check: (i) if the number of smelly
clients of a specific interface (all taking part in the agglomeration) is growing
(or not) along the project history, and (ii) if the agglomeration started from
a smell affecting an interface in the program. These observations will help the
developer to confirm if the design problem is located in that interface.

Allowing Flexible Thresholds. Similarly to conventional detection strate-
gies for code smells (Marinescu, 2004), the detection of agglomerations also
requires flexible thresholds. Therefore, to satisfy this requirement, Organic has
a configuration screen (Figure 3.13) that can be accessed through the Window
→ Preferences menu. The purpose of this screen is to allow users to define
the threshold for each agglomeration category. The threshold defines the min-
imum number of code smell that should be in a program location before being
considered as an agglomeration. For example, if we configure the intra-method
category with threshold 2, Organic will only find agglomerations in methods
that contain 3 or more code smells.

3.4

Study I: Quasi-Experiment

This work is intended to address three main goals, which are: (1) provide proper
support for the analysis of stinkier code, (2) assess to what extent developers
are able to identify design problems in stinkier code, and (3) identify tool issues
that may hinder the identification of design problems.

In the previous section, we proposed the Organic tool, attending to our first

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 58

Figure 3.13: Configuration of the tool

goal. Section Section 3.5 presents a study that addresses our third goal.
Thus, aiming at achieving our second goal, in this section we present a
quasi-experiment with professional software developers. Quasi-experiment is an
empirical interventional study in which the subjects are not randomly assigned
to certain conditions (Shadish, Cook and Campbell 2001). In this study, we
investigated whether the use of smell agglomerations improves the precision of
developers in identifying design problems.

3.4.1

Study Design

A previous study suggests that code smell agglomerations are related to
occurrences of design problems (Oizumi et al. 2016). This study only analyzed
the correlation between agglomerated smelly elements and code elements
affected by design problems. However, such study did not show evidence that
developers indeed identify design problems when exploring information about
agglomerations. Thus, there is a need to investigate whether developers can,
by themselves, identify design problems when exploring smell agglomerations.
In order to address this matter, we defined two research questions. The first
one is presented as follow:

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 59

RQ1. Does the use of agglomerations improve the precision of developers
in identifying design problems?

Research question RQ1 allows us to analyze whether code smell agglomerations
help developers to identify design problems. To answer this question, we
conducted a quasi-experiment with 11 professional developers. In this quasi-
experiment, we measured the precision of developers using agglomerations
to identify design problems. Precision in our context is measured based
on the percentage of true positives indicated by the developers – i.e., the
percentage of correctly identified design problems (against a ground truth,
as explained later). We have used precision since it is an important aspect of
the identification task.

Through the precise identification of design problems, developers are able
to optimize their work by solving problems that really impact design. On
the other hand, the lack of precision would lead software development teams
to spend time and budget with irrelevant refactoring tasks. Refactoring is a
transformation used for improving the structural quality of a system while
preserving its observable behavior (Fowler 1999). In companies adept of code
review practices (McIntosh et al. 2014), the lack of precision in identifying
design problems can lead developers to waste time on refactorings that do not
contribute to improving software maintainability, or even refactorings that are
harmful to the software design (Cedrim et al. 2017). The precise identification
of design problems is also important in open source projects. For instance, the
contributions of eventual collaborators are often rejected by core developers
due to the presence of design problems (Oliveira, Valente and Terra 2016).
Therefore, in this case, lack of precision could lead core developers to reject
relevant contributions due to “false design problems”.

Someone could wonder why we have not measured recall. Although we agree to
the relevance of measuring recall, we did not measure it. The reason is because
the analyzed systems have a high number of design problems unfeasible to
be identified during the quasi-experiment, which should not last (in total) for
more than 90 minutes. Therefore, the consideration of recall would not be
feasible in a quasi-experiment as the developers have limited time to search
for some design problems only. Together with the system’s original developers,
we created a ground truth of design problems with more than 150 instances
of design problems. Hence, it would be impracticable for participants to find
all the design problems in the system due to the time constraints in the study

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 60

(45 minutes). Consequently, they were expected to reach a low recall value.
Therefore, we focused on the precision.

In order to measure whether precision improved or not, we compared the
participants using agglomerations with a control group. The control group
comprises of participants identifying design problems with a flat list of smells,
i.e., code smells presented individually without showing their connection with
other smells in the program. In the comparison, we used a ground truth to
confirm or refute each design problem indicated by participants. Then, we
compared the number of false positives and true positives produced with
the code smell agglomerations against the number of false and true positives
produced by the control group. In the context of this study, a false positive
occurs when a participant reports a design problem that is not confirmed by
our ground truth analysis. On the other hand, a true positive occurs when the
design problem is confirmed during the ground truth analysis.

Someone could assume that developers would often benefit from the use of
agglomerations in their quest for design problems. However, we do not have
evidence about such benefit. Hence, we need to address RQ1 to verify if de-
velopers can correctly identify more design problems using smell agglomera-
tions. Regardless of RQ1 results, another question involves the understanding
of how to better support developers in exploring smell agglomerations. The suc-
cess of developers on identifying design problems through agglomerations may
strongly depend on additional support for this task. Even though a previous
study (Oizumi et al. 2016) has shown the strong relation between design prob-
lems and code smells within an agglomeration, we do not know whether and
how the identification of design problems with agglomerations can be improved
with additional support. The following question addresses this matter:

RQ2. How can the identification of design problems with code smell
agglomerations be improved?

We conducted a qualitative analysis to address RQ2. This analysis was based
on the observation of participants during the quasi-experiment and a follow-
up questionnaire. As reported in Section 3.4.2, the combination of quantitative
and qualitative analyses helped us to draw more well grounded conclusions.
Thus, RQ1 can inform us if developers become (or not) more precise on
identifying design problems when they use agglomeration, while RQ2 can
provide a complementary perspective to explain why developers succedded or
struggled to precisely identify design problems. For instance, RQ2 can reveal

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 61

the benefits and barriers associated with the use of smell agglomerations.

3.4.1.1

Experimental Procedure

We had to define a set of requirements in order to answer our research
questions. Thus, we opted for conducting a quasi-experiment (Shadish, Cook
and Campbell 2001). A quasi-experiment is an empirical study in which the
units or groups are not assigned to conditions randomly. This allowed us to
assign each participant to different treatments during the experimental steps.
The experimental procedure was conducted individually with each participant.
They had to perform the quasi-experiment in two steps with four tasks in each
one. Both steps comprise the same set of tasks the only difference between them
was regarding the treatment, i.e., usage of agglomerations or non-agglomerated
smells.

As explained before, we compare developers using agglomeration with a con-
trol group using non-agglomerated smells. Thus, we divided the participants
into two groups. The first group would identify design problems using agglom-
erations in the first step. After that, they would identify design problems using
non-agglomerated smells in the second step. The second group of participants
would make the identification inversely: using the non-agglomerated smells in
the first step and, then, using the agglomerations in the second step. Thus, in
each step, we have two groups of participants: a group using agglomerations
and a control group.

As each participant identifies design problems twice (first and second step),
we had to select two software projects. Thus, each participant could identify
design problems using a different project in both steps. Another reason for
providing two software projects is to avoid bias with the learning curve. For
example, supposing that the participant uses the same project in both steps.
She could find more problems in the second step than in the first step. That
could happen because she can identify in the second step the same problems
that she identified in the first step, plus other design problems identified only
in the second step. This increase in the number of design problems found in
the second step would not be due to the use of agglomerations, but rather due
to the knowledge acquired by the participant.

There are four possible combinations with the participants based on the
distribution between steps and software projects. Therefore, all participants
were divided into four mutually exclusive arranges. Table 3.3 presents the cross

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 62

design for the four arranges. The agglomeration group represents the group of
participants that identified design problems using the agglomerations, and the
control group comprises the participants that identified design problems using
the list of non-agglomerated code smells.

Table 3.3: Combinations of groups, projects and steps
Step 1 Step 2

Arrange Group Project Group Project
1 Agglomeration Project 1 Control Project 2
2 Agglomeration Project 2 Control Project 1
3 Control Project 1 Agglomeration Project 2
4 Control Project 2 Agglomeration Project 1

The study was composed by a set of six activities distributed into three phases,
as represented in Figure 3.14 described as follows.

Figure 3.14: The experimental design

Activity 1: Apply the questionnaire for subjects’ characterization.
The subjects’ characterization questionnaire is composed of questions to char-
acterize each participant, including academic degree, professional experience
with Java programming, background on code smells, and Eclipse IDE.

Activity 2: Training Session. After defining the order of execution of each
step, the next step was to provide a training session for the participants. The
main objective of the training session was to level the participant at the same
background required to understand and properly execute the experimental

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 63

tasks. Thus, they received training about basic concepts and terminologies.
This training was given only once for each participant before the first steps of
the quasi-experiment. The training consisted of a 15-minute presentation that
covered the following topics: software design, code smells, and design problems.
The training session took approximately 15 minutes, and the participants could
make any question throughout it.

After the training, subjects received some artifacts that could be used during
the study. They received a list with a brief description of the types of design
problems presented in the training session. They also received a list with the
description of basic principles of object-oriented programming and software
design. They received a document containing: (i) a brief description of both
project systems, and (ii) a very high-level description of their design blueprint.
We gave these documents because when they have to conduct perfective
maintenance tasks, they need to have some minimal information about the
systems to be maintained. The design blueprint represented the high-level
design in the view of the project managers, but it was not detailed enough
to support the identification of design problems. As it often occurs in practice,
the analysis of the source code is inevitably required to identify a design
problem.

Activity 3: System Introduction. We asked the participants to read the
document containing the description of the project in which they would identify
design problems. They had 20 minutes to read the description and the design
blueprint of the system. Thus, they could start the identification with a certain
level of familiarity with the software project.

Activity 4: Understanding the Task. In this activity, we explained how
the participant could use the Organic tool to collect either the list of agglom-
erations or the list of (non-agglomerated) code smells. As the Organic tool
was developed as an Eclipse plug-in, we explained each one of the sections
displayed in the Eclipse IDE and that was related to the Organic tool. This
activity lasted approximately 10 minutes.

Activity 5: Identification of Design Problems. In this activity, the par-
ticipant had 45 minutes to identify design problems in the project. We em-
phasized to the participant the importance of achieving the key goal of finding
design problems. For each identified design problem, the participant was asked
to provide the following information: (i) short description of the problem, (ii)
possible consequences caused by the problem, (iii) classes, methods or pack-
ages realizing the design problem in the source code, and (iv) the category(s)

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 64

of agglomerations – described in Section 3.2.1 – that helped him to identify
the design problems. If the participant was identifying design problems as part
of the control group, she needed to provide almost the same information; the
difference was that instead of providing the agglomeration (and its category),
she needed to provide the code smells that she used to identify the design
problem. For conducting this task, participants were instructed to use only
the information provided by Organic in the current phase. This means that,
neither the control group had access to the list of agglomerations, nor the ag-
glomeration group had access to the list of non-agglomerated smells. This was
guaranteed by providing different versions of Organic for each group – that is,
one version for agglomerations and another version for non-agglomerated code
smells. Nevertheless, both the project source code and the information pro-
vided by Organic (agglomerated or non-agglomerated smells) could be freely
explored and analyzed during the design problem identification.

Activity 6: Follow-up Questionnaire. In this activity, the participant
received a feedback form. This form provides a list of questions, which enables
the participant to expose her opinion on the identification of design problems.
More details about this activity are provided in Section 3.4.1.4.

After the sixth activity had been completed, we asked the same participant to
repeat all tasks in the second phase.

3.4.1.2

Software Projects and Participant Selection

In order to conduct the quasi-experiment as explained in the previous section,
we selected two software systems in which developers had to identify design
problems. We selected two programs that represent components of the Apache
OODT project (Mattmann et al. 2006): Push Pull and Workflow Manager.
We selected subsystems of the OODT project since it is a large heterogeneous
system; then, we could choose subsystems based on their diversity. Also, the
Apache OODT project has a well-defined set of design problems previously
identified by developers who actually implemented the systems (Oizumi et
al. 2016); thus, avoiding the introduction of false positive design problems in
the ground truth. In addition, the OODT project was developed for NASA,
used in other studies (Macia et al. 2012a, Macia et al. 2012, Macia et al.
2012b, Macia 2013, Oizumi et al. 2016) and with a global community involved
in its development. Table 3.4 presents the characteristics of each project.
The columns of this table are organized as follows. The second column
shows the project size in Source Lines of Code (SLOC), the third column

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 65

Table 3.4: Characteristics of software projects
Project Size (SLOC) # Classes # Agglomerations
Pushpull 11213 133 49
Workflow 18505 150 111

presents the number of classes, and the fourth column contains the number
of agglomerations in the project. A brief description of the project systems is
presented as follow:

– Push Pull: it is the OODT component responsible for downloading
remote content (pull) or accepting the delivery of remote content (push)
to a local staging area.

– Workflow Manager: it is a component that is part of the OODT client-
server system. It is responsible for describing, executing, and monitoring
workflows.

After choosing the projects, our next step was to recruit developers for the
study. Thus, we sent a characterization questionnaire for a group of developers
of our network. Their answers were analyzed to determine which of them were
eligible to participate in the study based on the following requirements:

– Four years or more of experience with software development and main-
tenance. We have chosen four years because this is the average time used
by multiple companies to classify a developer as experienced.

– No previous knowledge about Push Pull and Workflow Manager.

– At least basic knowledge about code smells.

– At least intermediary knowledge on Java programming and Eclipse IDE.

Table 3.5: Knowledge classification
Classification Description
None I have never heard about it
Minimum I have heard about it, but I do not use it

Basic I have a general understanding,
but almost never use it

Intermediary I have a good understanding,
and use basic features sometimes

Advanced I have a deep understanding,
and often use advanced features

Expert I am a specialist in this topic,
and I use many features almost every day

We defined the knowledge in each topic based on a scale composed of six
levels: none, minimum, basic, intermediary, advanced, and expert. Table 3.5

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 66

presents the description of such classification. We included in the questionnaire
a description of each level, allowing the subjects to have a similar interpretation
of the answers. Table 3.6 summarizes the characteristics of each selected
developer.

Table 3.6: Characterization of the participants
ID Experience

in years
Education

Level
Knowledge

Java Code Smells Eclipse
P1 5 PhD Advanced Advanced Advanced
P2 6 Graduate Advanced Basic Advanced
P3 8 Master Advanced Intermediary Advanced
P4 4 Graduate Intermediary Basic Basic
P5 5 Master Advanced Intermediary Intermediary
P6 5 Graduate Intermediary Intermediary Intermediary
P7 12 Graduate Expert Advanced Expert
P8 5 Graduate Advanced Advanced Advanced
P9 10 Graduate Intermediary Intermediary Intermediary
P10 4 PhD Advanced Intermediary Advanced
P11 5 PhD Advanced Intermediary Advanced

Table 3.7: Precision
Agglomeration Group Control GroupID TP FP Precision TP FP Precision

1 2 1 66.67% 1 1 50%
2 0 3 0% 1 4 20%
3 3 2 60% 1 4 20%
4 2 0 100% 1 3 25%
5 4 0 100% 3 1 75%
6 1 0 100% 1 0 100%
7 1 1 50% 1 1 50%
8 3 0 100% 3 0 100%
9 0 1 0% 0 6 0%
10 0 0 - 1 1 50%
11 0 1 0% 0 0 -
All 16 9 64% 13 21 38.24%

3.4.1.3

Quantitative Analysis Procedure

In order to answer research question RQ1, we asked the study participants to
analyze two systems with the aim of identifying design problems as described
above. For each system, we analyzed the precision of participants regarding the
identification of design problems. The precision of participants was measured
based on true positives (TP) and false positives (FP). In this context, a true
positive is a candidate of design problem, as indicated by the participant, that
was confirmed by a ground truth analysis. On the other hand, a false positive

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 67

is a candidate of design problem that was not confirmed in the ground truth
analysis. Thus, the precision is calculated using the following formula:

Precision = TP

TP + FP
(3-1)

We had to validate the identified design problems as true positive or false
positive for each one of the analyzed systems. However, we could not argue
that a design problem was correct or not since we were not involved with
the design of each system. Thus, we relied on the knowledge of the systems’
original designers and developers to help us in validating the design problems.
We certified they were the people who had the deepest knowledge of the design
of the investigated projects. We highlight these designers and developers were
not subjects of this study.

We performed two steps to incrementally develop the ground truth. First, we
asked original OODT designers and developers to provide us a list of design
problems affecting the systems. They listed the problems and explained the
relevance of each one through a questionnaire. They also described which
code elements were contributing to the realization of each design problem.
Second, we identified some design problems using a suite of design recovery
tools (Garcia et al. 2013). We asked developers of the systems to validate and
combine our additional design problems with their list. The procedure for the
additional identification was the following: (i) an initial list of design problems
was identified using a method presented by Macia and colleagues (Macia et
al. 2012a), (ii) the developers had to confirm, refute or expand the list, (iii)
the developers provided a brief explanation of the relevance of each design
problem, and (iv) when we suspected there was still inaccuracies in the list of
design problems, we discussed with them. In the end, we had the ground truth
of design problems validated by the original designers and developers.

3.4.1.4

Qualitative Analysis Procedure

Our first research question aim to investigate the precision of developers in the
identification of design problems with agglomerations. Answer for such ques-
tion will indicate whether developers benefit or not of using agglomerations.
However, answering this questions is not enough for revealing the reasons why
agglomerations may benefit developers. Moreover, we will not know how to
improve the use of agglomerations to identify design problems. Therefore, we
conducted a qualitative analysis to investigate what should be improved from

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 68

the perspective of professional software developers. Besides identifying possible
improvements, this analysis also helped us to understand what are the main
strengths of exploring agglomerations for design problem identification.

As described in Section 3.4.1.1, we asked the participants to provide us feed-
back about the identification of design problems. They answered a follow-up
questionnaire, and we use their answers to conduct a qualitative analysis. The
objective of the questionnaire was to gather participant’s opinion regarding
(i) the (dis)advantages of using the agglomerations or code smells to identify
design problems, (ii) whether the provided information could be easily under-
stood, (iii) which types of information were fundamental to identify design
problems, (iv) what she believes that should be done to improve the identifica-
tion of design problems, (v) what she thought about the use of the code smells
for the identification of design problems, (vi) how the visualization mechanism
provided by the Organic tool affected her performance, and (vii) which types
of code smell and categories of agglomeration were the most useful for iden-
tifying design problems. The results of this questionnaire helped us to answer
research question RQ2.

By applying the questionnaire, we were able to gather the opinion of developers
regarding the use of code smell agglomerations. However, as reported by
Easterbrook and colleagues (Easterbrook et al. 2008), what is reported in the
questionnaire may not be what actually happens in practice. Therefore, to
obtain more reliable results, we also observed the participants of our study
during the identification of design problems. This observation was performed
during the study and also in analyzes after it, through video and audio recorded
during the quasi-experiement. This analysis allowed us to look at code smell
agglomerations from the standpoint of professional software developers. It
is important to note that the observation of participants during the quasi-
experiment does not replace nor invalidate the questionnaire responses. In fact,
the combination of observations and responses helped us to obtain a deeper
understanding and interpretation on the results observed in the study.

3.4.2

Results and Analysis

The results of this study are organized in two sub-sections. Section 3.4.2.1
presents the results of our quantitative analysis regarding research question
RQ1. Section 3.4.2.2 provides the results of our qualitative analysis to answer
research question RQ2.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 69

3.4.2.1

Do Agglomerations Improve Precision?

As described in Section 3.4.1.3, we conducted a quantitative analysis to
answer our first research question: Does the use of agglomerations improve the
precision of developers in identifying design problems?. Table 3.7 presents the
precision results for each participant (rows). The first column (ID) shows the
identification number of each participant. The second column (Agglomeration
Group) presents the true positives (TP), false positives (FP), and precision
for the participants when they were provided with agglomerations to identify
design problems. Similarly, the third column (Control Group) presents the
true positives (TP), false positives (FP), and precision for the participants
in the control group, i.e., when they were provided with non-agglomerated
smells.

Agglomeration led to a slight increase of true positives. We can see
in Table 3.7 that the developers identified a few more design problems (TPs)
when they were in the agglomeration group (16 TP design problems) than
when they were in the control group (13 TP design problems). As far as the
per-subject analysis is concerned, 4 developers (light gray rows) identified more
true positives when they used agglomerations than when they used the list of
code smells in the control group. The use of agglomerations outperformed the
use of smells in these 4 cases. On the other hand, 2 participants (2, 10) did not
identify any true positive using the agglomerations, but they identified a true
positive each in the control group. The other participants (6, 7, 8, 9 and 11)
identified the same number of true positives (5 TP design problems) regardless
the group.

Upon qualitative analysis, we were able to reveal the main reason why the 4
developers in the light gray rows identified more true positive design problems
in the agglomeration group than in the control group. As illustrated in the
example in the Figure 3.3 (Section 3.2.2), these 4 participants systematically
used each agglomeration’s smell as an indicator of the presence of a design
problem. They analyzed each one of the code smells as a complementary
symptom of the presence of a design problem, which gave them increasing
confidence to confirm the occurrence of the design problem. Surprisingly, we
noticed the same behavior for the participant 8 even when she was in the
control group. She was capable of agglomerating the code smells on her own,
starting from the individual smells given in the flat list. Then, she used such
agglomerations to identify design problems in the control group. This may be

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 70

the reason why she reached a precision value of 100% in both groups.

Agglomerations help developers to avoid false positives. In general,
developers identified less false positives when they used agglomerations (9 FP
design problems) than when they used the list of code smells (21 FP design
problems). As presented in our qualitative analysis (Section 3.4.2.2), with the
exception of participant 11, who analyzed several irrelevant agglomerations
– i.e., agglomerations that do not reveal any design problem – all others
identified either less or equal number of false positives when they were in
the agglomeration group than when they were in the control group. When we
analyze the control group, we can notice that more than half of the identified
design problems are false positives (61,76%) while the agglomeration group
identified only 36% of false positives.

After observing how developers identify design problems in the control group,
we noticed that they did not go further with the analysis of the elements.
Usually, a developer needs to analyze other classes in order to gather more
information that can potentially indicate a design problem as discussed in
Section 3.2.2. When the participants used the agglomerations, they analyzed
multiple elements because they analyzed each code smell within the agglom-
eration even when the smells were in different elements. This behavior did not
happen when participants were in the control group. In most of the cases, the
participants in the control group analyzed only one code smell, which increased
the likelihood of reporting false positives. Then, they reported a design prob-
lem in the class due to the presence of the code smell. However, some code
smells are not related to any design problem; thus, the developer can report a
false positive if she mistakenly considers a code smell that is not related to a
design problem. That explains why developers in the control group found so
many false positives. As developers tend to look at all agglomeration’ smells
before reporting a design problem, the likelihood of reporting a false positive
decreases, even when there is a code smell that is a false positive by itself.

Agglomerations improve the precision. Even though we cannot claim a
statistical significance in our results due to the sample size of this study, we
can notice that developers achieve a higher precision (64%) when they use
agglomerations than when they use code smells (38,24%). Therefore, this re-
sult suggests that agglomerations may improve the precision of developers in
identifying design problems, answering our first research question. However,
someone could expect that all developers using agglomerations would signif-
icantly outperform the control group. As a matter of fact, we noticed some
factors that explain, at least partially, why developers did not find much more

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 71

design problems when they were in the agglomeration group than when they
were in the control group. These factors are presented next, and they are use-
ful to discover improvements for the identification of design problem with the
analysis of stinky program locations.

3.4.2.2

How to Improve Design Problem Identification?

This section presents the answer for our second research question: How can the
identification of design problems with code smell agglomerations be improved?
We conducted a qualitative analysis to answer this question. As described
in Section 3.4.1.4, this analysis was based on the observation of participants
during the identification of design problems as well as the analysis of responses
to our follow-up questionnaire.

Where to start from? As discussed in the previous section, the participants
identified few more true positives using agglomerations. Someone could expect
that all developers using agglomerations would significantly outperform the
control group. However, we observed that participants spent much more time
analyzing the agglomerations than analyzing the smells in the control group.
That happened because they analyzed each code smell in the stinky program
location as previously explained in Section 3.4.2.1. Furthermore, sometimes
the participants analyzed agglomerations that were not related to any design
problem, which is a key factor that explains the almost same number of true
positives between both groups.

Unfortunately, almost all the participants analyzed irrelevant agglomerations.
Participants 6, 9, 10, and 11 were the ones that suffered the most from the
analysis of irrelevant agglomerations. Since these four participants faced this
issue, they suggested in our follow-up questionnaire that the Organic tool
should provide means to prioritize and filter (or, at least, rank) potentially
relevant agglomerations. This feature would help to further reduce the time
spent with the analysis of irrelevant stinky code. Thus, this issue also helps
us to explain why they fell short in identifying additional design problems
through the analysis of agglomerations.

Need for prioritizing and filtering agglomerations. The aforementioned
need for agglomeration prioritization and filtering shows that the time and
effort required to identify design problems is a key factor for developers; thus,
prioritization should be taken into consideration. Such a need is reinforced by
recent studies which explored the prioritization of code smells (Arcoverde et

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 72

al. 2013, Vidal, Marcos and Díaz-Pace 2016, Vidal et al. 2016).

Based on our qualitative analysis, we noticed that existing criteria for prior-
itization should select agglomerations that are cohesive. We consider an ag-
glomeration to be cohesive whenever all its code smells are related to the same
design problem. If there is one code smell that is not related to the design prob-
lem: (i) in the best case, the developer will spend time analyzing a code smell
that is useless to identify the design problem, or (ii) in the worst case, such
smell may direct the developer away from the design problem. This fact sug-
gests that developers need accurate approaches to find cohesive agglomerations
and to discard the less cohesive ones. However, prioritization algorithms based
on existing criteria are unable to do this as far we are concerned. Consequently,
the prioritization of stinky program locations still poses as a challenging re-
search topic. Therefore, after this study, we decided to not incorporate existing
prioritization criteria into Organic. Before including any prioritization feature
into Organic, we intend to propose and evaluate improvements for the existing
prioritization criteria.

Stinky code analysis is challenging. Besides the prioritization issue,
participants also suffered to analyze large agglomerations. As reported in
Section 3.4.2.1, this problem was even worse for agglomerations affecting larger
program scopes, i.e., agglomerations crosscutting implementation packages
or class hierarchies. We noticed that a large agglomeration requires that
developers reason about a wide range of scattered code smells. As they tend to
use each code smell as a symptom of design problem, they have difficulties to
correlate the multiple symptoms of an agglomeration. This is a challenging task
because the higher the number of code elements involved in an agglomeration,
the greater is the volume of code that must be analyzed. Consequently,
developers will have more code to analyze, which increases the complexity
of the analysis.

Need for proper visualization mechanisms. In order to alleviate the anal-
ysis of stinky code, some participants suggested the adoption of better visu-
alization mechanisms. For instance, participant number 8 suggested the vi-
sualization of agglomerations through a graph-based representation (Herman,
Melancon and Marshall 2000). She mentioned that such visualization would
provide an abstract and general view of agglomerations. The main advantage of
this form of visualization is that the more abstract a representation is, the less
details will be displayed for analysis. Consequently, the developers would not
be overloaded with details. At the same time, an abstract representation like
the graph-based visualization would help developers to see the full extent of

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 73

an agglomeration. After providing an abstract view, a visualization mechanism
could allow developers to progressively explore the agglomeration details such
as the types of smells, location of stinky code and relationships among smells.
In order to address this matter, we incorporated a graph-based visualization
mechanism into Organic.

Identification of the design problem type. The difficulty in analyzing
agglomerations also raised the need for recommendations on which types of
design problem each smell agglomeration is more likely to indicate. These rec-
ommendations would reduce the effort required to decide whether the elements
are affected by a specific design problem. For example, the agglomeration of
Figure 3.3 occurs in classes of the same hierarchy that are implementing the
WorkflowRepository interface. All smelly elements of this stinky program loca-
tion manifest the same type of smell, which is the Feature Envy. The occurrence
of multiple Feature Envies in a single hierarchy suggests that there is a prob-
lem, in a root abstract class or a root interface, which is spreading through
all the subclasses of the hierarchy. Therefore, to help developers to decide
whether there is a problem or not, the Organic tool could suggest the analysis
of this hierarchical agglomeration trying to identify problems like Ambiguous
Interface (Garcia et al. 2009) and Fat Interface (Martin and Martin 2006), for
example.

Suggestions of design problem types can help developers to focus their atten-
tion is specific characteristics of the suggested design problems. However, this
kind of recommendation algorithm requires multiple empirical studies to un-
derstand how and when each form of agglomeration may consistently represent
specific types of design problem. This is indeed a challenging research topic
to be addressed in the future and, therefore, we are unable to provide this
recommendation feature in the Organic tool.

3.4.3

Threats to Validity

This section presents some threats that could limit the validity of our main
findings. For each threat, we present the actions taken to mitigate its impact
on the research results.

The first two threats to validity are related to the number of participants
in the study and to the convenience approach used to find participants. We
have selected a sample of 11 participants, which may not be enough to achieve
conclusive results. However, instead of drawing conclusions based on the quan-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 74

titative results, we complemented our analysis with a qualitative analysis. In
addition, we defined a set of requirements to selecting participants suitable
for this study. Also, we conducted training sessions with all participants. Such
sections aimed to resolve any gaps in the participants’ knowledge and any ter-
minology conflicts, allowing us to increase our confidence in the results.

The third threat is related to possible misunderstandings during the study.
As we asked developers to conduct a specific software engineering task and
to answer a questionnaire, they could have conducted the study different from
what we asked. To mitigate this threat, we assisted the participants during the
entire study, and we make sure of helping them to understand the experimental
tasks and the questionnaire. We highlighted that our help was limited to only
clarify the study in order to avoid some bias on our results.

Next threat concerns the ground truth used to confirm or to refute the design
problems reported by participants. Since our ground truth was built manually,
it is possible that some design problems are missing in the ground truth,
which would impact the precision measure. To mitigate this threat, we built
the ground truth with the help of original OODT designers and developers.
Moreover, we relied on a suite of design recovery tools to identify possible
design problems that were not reported by original designers and developers
of OODT.

There is another threat that is related to the amount of information we
asked participants to provide for each design problem reported. Providing all
information during the experiment may slow down the participants and, as a
consequence, some participants may report fewer design problems than they
would be able to do during the 45-minute time frame. We mitigated this threat
by asking the same amount of information for both the agglomeration group
and the control group.

Finally, there are two threats concerning the selected projects. The first one is
about the difficulty of the participants in understanding the source code used
in the experimental tasks. This difficulty appears due to the complexity of the
source code and time constraints to complete each task. The second threat is
related to one software project could be easier to identify design problem than
the other. We minimized the first threat by running a pilot study to define
a experimental time reasonable to perform the tasks. To minimize the second
threat, we selected projects with similar size, complexity, and number of known
design problems. We also have trained all participants about each project. In
addition, the cross design of our experiment allowed different combinations of

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 75

project and technique. Finally, our results suggest no variation in difficulty for
identifying design problems in the two projects.

3.5

Study II: Communicability Evaluation of Organic

In the previous section, we presented a quasi-experiment, which allowed
us to gather quantitative and qualitative results regarding design problem
identification. In addition, we collected the opinion of developers regarding
the use of code smell agglomerations. Nevertheless, the previous study did
not evaluate Organic, which is the tool proposed in this chapter for helping
in the identification of design problems. Thus, we did not have shreds of
evidence that indicate to what extent Organic affect the users during the
identification of design problems. In order to understand these effects, we
conducted a qualitative evaluation of the Organic tool. We opted for proposing
and evaluating Organic because, to the extent of our knowledge, it is the only
tool that meets the requirements (Section 3.3) for helping developers in the
analysis of stinkier code.

To evaluate Organic, we applied the Communicability Evaluation Method
(CEM) (Prates et al. 2000). CEM is a qualitative evaluation method developed
to capture communicability issues, which are problems that appear due to poor
communication between users and a system, usually when users interact with
a system. An example of communicability issue is when the user mistakenly
believes that she performed a certain task on the system successfully. Another
example is when the user does not understand the answers provided by the
system. In our case, we are interested in communicability issues that happen
when developers interact with the Organic tool. We have to investigate these
communicability issues because they may hinder the identification of design
problems when developers use the Organic tool.

CEM has been widely used in HCI (Human-Computer Interaction) research
to evaluate the communicability of software systems. This method is based on
the theory of Semiotic Engineering (de Souza et al. 2009) and is intended to
find ruptures of communication when a user interacts with a system. Thus, in
order to use CEM, we have to characterize the system and users in the context
of our study. As explained in Section 3.3, developers use the Organic tool to
identify design problems. Hence, in the context of this study, the system is
the Organic tool and the user is the software developer that uses Organic to
identify design problems in stinky code. Therefore, the objective of this study
is to use the CEM to find communicability issues in the Organic tool.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 76

In the subsection below we present details about this study. Section 3.5.1
presents the study design. Section 3.5.2 contains an overview of the evaluation
procedure followed in this study. Section 3.5.3 presents the results. Finally,
Section 3.5.4 outlines the threats to validity of this study.

3.5.1

Study Design

We defined our third research question to evaluate the Organic tool as
follows:

RQ3. Which are the communicability issues of Organic that hinder the
identification of design problems?

To answer RQ3, we followed the procedure defined by the CEM. For being a
method focused on user experience, CEM allowed us to look at the Organic
tool from the standpoint of potential users, which are professional software de-
velopers. In this way, we can observe the aspects of the tool that affect the iden-
tification of design problems as if we were the users ourselves. Moreover, such
observation was not fully accomplished by our previous study (Section 3.4),
since the primary goal there was to evaluate precision of developers when using
the technique (code smell agglomerations) rather than the tool itself.

CEM requires the participation of potential users of the system under evalua-
tion. Therefore, similarly to the previous study (Section 3.4.1.2), we selected
participants for this study according to the following requirements:

– Minimum of 4 years experience with software development

– Intermediary knowledge about software design

– Advanced knowledge about the Java programming language

– Basic knowledge about the Eclipse development environment

– Basic knowledge about code smells

Requirements above are justified by the fact that Organic is part of a complex
domain, which is the identification of design problems. Therefore, participants
that have a minimum knowledge about basic concepts have more chance of
revealing communicability problems when using the tool. This happens since
the influence of the domain complexity is mitigated by the experience and
knowledge of participants. Based on the aforementioned requirements, we
selected 3 participants for this study. On Table 3.8, we summarize the profile
of each participant, presenting their experience with Software Design, Java

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 77

Programming Language, Eclipse IDE, and Code Smells. Participant 1 is a
developer with vast experience both in academic field and software industry.
He has advanced knowledge about software design and code smells. Participant
2 is a professor from the computing field with 4 years of experience in the
industry. He has intermediary knowledge about software design and basic
knowledge about code smells. Finally, participant 3 had moderate experience
in the industry, and he was also undergoing his postgraduate studies at the
time of this evaluation. He has advanced knowledge about software design and
intermediary knowledge about code smells. Table 3.8 summarizes the profile
of all participants.

Table 3.8: Profile of selected participants
Participant Software Design Java Programming Language Eclipse IDE Code Smells

1 Advanced Advanced Advanced Advanced
2 Intermediary Advanced Advanced Basic
3 Advanced Advanced Basic Intermediary

3.5.1.1

Test Scenario

After selecting the participants, the definition of a test scenario is the next
CEM procedure. Since Organic is designed to be applied to a single task,
which is the identification of design problems, our test scenario is composed of
one task as well. The task consists in:

Using the Organic tool to search for design problems in the source code
of a given software project.

In the context of this study, Apache OODT (Mattmann et al. 2006) is the
selected software project. We selected Apache OODT due to the same reason
explained at Section 3.4.1.2. As defined by the CEM, this task was designed
to last at most 30 minutes. During the execution of this task, for each design
problem found, the participant should give the following information:

– Brief description of the problem.

– Classes and methods participating in the design problem.

– Tool resources that were useful to identify the problem.

During the identification task, besides using the Organic tool, the participants
could consult three documents: (1) Apache OODT documentation, (2) a
reference document about basic concepts (design problems, code smells, and
the like), and (3) manual of the Organic tool. We provided these documents

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 78

to help users to gather an understanding of the system. Consequently, they
were able to focus on the task instead of wasting time trying to understand,
for example, the system and basic concepts. This initial preparation was not
part of the time frame of 30 minutes.

3.5.1.2

Environment and Infrastructure

To perform this study, we used an individual room equipped with a computer
containing the following hardware configuration: 8GB of RAM, CPU Intel Core
i5 2.7GHz, GPU GeForce GT 740M, and built-in microphone in the notebook.
In addition, we used following softwares: Organic tool, Windows 10 Operational
System, Java Development Kit 1.7, Eclipse Luna IDE, Rabbit Eclipse Plugin,
and Screen record tool Active Presenter. Eclipse Luna was chosen as the
Organic tool only works with this version at the moment. The Rabbit plugin
registers information regarding the time spent using the resources of Eclipse
(e.g., files, perspectives, views, etc.). This information is useful to the analysis
and interpretation of videos recorded using the Active Presenter.

3.5.1.3

Post-study Interview

Using the interview pre-test, we collected data regarding the participant’s
profile. The questions of the interview post-test were developed individually
for each participant. Thus, the evaluators, based on their observation, could
explore the participants’ answers. Additionally, the following questions were
asked to all participants:

– What were the main difficulties to perform the task?

– What were the most useful tool resources?

3.5.2

Data Analysis and Evaluation Procedure

In order to conduct our evaluation following the CEM, we collected the
following data: (1) video from the computer screen with audio from the
microphone, (2) report collected with the Rabbit Plugin, (3) annotations
done during the execution of the tests, and (4) answers given during the
interview.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 79

After data collection, we followed three main steps, which are defined by the
CEM (de Souza et al. 2009). They are: (1) tagging, (2) interpretation, and (3)
semiotic profile. On tagging, the researcher analyzes the recording of the task
being performed, after that, she identifies the evidence of communicability
failures. To each of these failures, she associates with one of the 13 tags
defined by CEM (de Souza et al. 2009). On the interpretation, the researcher
works with the tagged data, trying to identify the main communicability
issues. The researcher then analyzes and organizes the collected evidence,
according to some perspectives. Finally, in the semiotic profiling step, an in-
depth characterization of metacomunication is achieved. The idea of these steps
is to achieve higher levels of abstraction in our analysis and interpretation of
how the developers receive communication from the Organic tool (de Souza et
al. 2009).

Tagging. In this step, we analyzed and tagged the communicability failures
that occurred during the interaction between software developers and the
Organic tool. A communicability failure is the result of a communicability
issue. In our case, if the Organic tool contains a communicability issue, this
issue will lead to a communicability failure observed when the user interacts
with the tool. Thus, tagging was made according to what happened when
the communicability failures were observed. To perform this step, we observed
each participant during the task of identifying design problems, taking notes
of possible communicability failures. After that, we analyzed the video and
audio recorded during the task registering communicability issues according
to 13 tags defined by the CEM (de Souza et al. 2009). Whenever necessary, we
consulted the Rabbit reports to confirm or to change the tags. For a detailed
description of the tagging step, we refer to (de Souza et al. 2009, Prates et al.
2000). Table 3.9 presents a brief description of the tags that occurred in this
study.

Interpretation. In this step, we analyzed the tagged material aiming to
identify the main communicability issues in the Organic tool. Based on the
CEM (de Souza et al. 2009), we analyzed and organized collected evidence
based on three perspectives:

– Frequency and context of each communicability failure.

– Recurrent sequences of communicability failures.

– Identification of communicability issues that have caused the observed
failures.

The analysis of frequency and context of communicability failures was helpful

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 80

Table 3.9: Description of CEM tags that occurred in this study
Classification Tag Description

Complete Failure I give up
The developer is unable to identify design problems with Organic
either because he does not know how to or because he does not
have enough time, or will, or patience for it.

Partial Failure I can do otherwise
The developer manages to identify design problems in a way that
is not optimal. For example, without using the most
functionalities provided by Organic.

Temporary Failure -
Communicate What now?

The developer searches for a clue of what to do next and not
searching for a specific functionality that will help in the
identification of design problems.

Temporary Failure -
Understand the Rules

What is this?
The developer seems to be exploring the tool to gain
more (or some) understanding of what a specific
functionality achieves.

Help! The developer deliberately calls a help function, using menus,
dragging question marks, or asking for help.

Why doesn’t it?
The developer expects some sort of outcome from Organic, but
does not achieve it. She steps through the path, again and again,
to check that it is not working.

to discover the most frequent failures in the communication between software
developers and the Organic tool. Identifying recurrent sequences of failures
helped us to discover the origins of communicability issues in Organic. Finally,
the identification of communicability issues in the Organic tool is the main
objective of this study, as defined by our main research question. To identify
communicability issues, we classified tags as Complete, Partial, or Temporary
Failures (first column of Table 3.9), following theoretical tag categorizations
from Semiotic Engineering (de Souza et al. 2009).

Complete failures occur when the developers is unable to identify any design
problem with Organic and do not try again. Partial failures occur when the
developer gives up from using Organic’s functionalities before identifying any
design problem and tries to achieve this in another way. Finally, temporary
failures occur when the developer temporarily interrupts the identification of
design problems with Organic due to some communicability issue. According
to the CEM, there are three types of temporary failures: (1) trying to
communicate, (2) trying to fix an error, and (3) trying to understand the
rules.

Semiotic Profiling. In this last step, we conducted an analysis to understand
the communication between software developers and the Organic tool. After
executing all steps defined by the CEM, we were able to look at Organic as if
we were the users ourselves. This helped us to acquire a deeper understanding
of Organic’s communicability issues. In addition, looking from the perspective
of potential users, we were able to identify the requirements for a tool that
supports the identification of design problems in stinky code.

The steps defined by the CEM were fundamental for achieving the goal of this

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 81

study: discover communicability issues in Organic that hinder the identification
of design problems. The first step (Tagging) provided a guideline for the
identification of communicability failures that may occur when a user interacts
with Organic. After that, with the Interpretation step, CEM provided us with
a systematic method for the analysis and classification of communicability
failures. This classification was fundamental for organizing the data collected
during this study. Finally, in the last step, we analyzed the data collected
in previous steps to consolidate our results. During this step, we identified
the main communicability issues of Organic based on the recurrent failures
observed during the interaction of software developers with Organic. Next, we
present the results and our interpretation of this study.

3.5.3

Results and Interpretation

Table 3.10 presents the frequency of occurrence of each tag (rows) by par-
ticipant (columns). Also, the total frequency, considering all participants, is
summarized in the last column. Table 3.11 presents the frequency of com-
municability failures, categorized by the type of failure. We did not observe
any recurring pattern of failures among the participant. Nevertheless, as seen
on Table 3.11, all participants suffered from the “I give up” failure, which is
a complete failure. For all of them, the complete failure occurred after suc-
cessive temporary failures. As exposed in Table 3.11 most of the temporary
failures were of type 3 - that occur when the developer is trying to understand
the communication rules of Organic. This sequence of failures indicates that
developers tried to identify design problems with Organic. However, due to
successive failures, the developers gave up on the task.

Table 3.10: Frequency of occurrence total and by participant
ParticipantTag P1 P2 P3 Total

I give up 1 1 1 3
Go another way 1 0 1 2
And now? 0 1 0 1
What is this? 1 4 2 7
Help! 2 8 2 12
Why doesn’t it? 4 0 0 4

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 82

Table 3.11: Frequency of occurrence categorized by type of failure
ParticipantType of Failure P1 P2 P3 Total

Complete Failures 1 1 1 3
Partial Failures 1 0 1 2
Temporary Failures - Type 1
Communicate 0 1 0 1

Temporary Failures - Type 2
Fix an Error 0 0 0 0

Temporary Failures - Type 3
Understand the Rules 7 12 14 23

3.5.3.1

Communicability Issues of Organic

Answering research question RQ3, we observed three main communicability
issues in the Organic tool, which are: (1) lack of a precise message, (2)
inadequate terminology, and (3) ambiguity in static signs. Next, we present
details about each of them.

Lack of a Precise Message. Although the tool identifies and groups the
symptoms that are interrelated (the agglomerated code smells), it does not
provide a message that facilitates concise reasoning about the possible design
problem. Hence, the developer needs, by himself, to explore and synthesize
all the information needed to analyze a design problem. The tool gives
the necessary information, but the analysis of those information requires a
significant effort from the developer. Besides being a communicability issue,
it also has relation with the domain complexity in which Organic is designed
for. We list next some changes in Organic that can contribute for building and
delivering a more precise message.

Following our findings from the previous study (Section 3.4.2.2), for this study,
we incorporated a graph-based view into Organic. However, we observed that
developers did not use the graph-based view of Organic. In the post-study
interviews, we noticed that this happened because the graph-based view did
not prove to be useful for identifying design problems. Nevertheless, we believe
that, after some improvements, this type of view can indeed contribute for
transmitting a more concise message about each agglomeration. For that,
it is required a better integration of this view with other information. For
example, instead of using a separated tab, the description of code smells
could be provided in the graph nodes. Moreover, the graph could show the
relationships between the agglomeration external classes. This information

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 83

could be provided on demand, when required by the developer. We believe that
such improvements would help developers to conduct an integrated, smoother
analysis of an agglomeration.

Inadequate Terminology. The terms used in the tool are not adequate
to the target public, which are common software developers. Terms such
as “anomalies” and “agglomeration”, for instance, are unknown by most
developers. Two participants (P2 and P3) who have the least knowledge about
software engineering mentioned the fact that the concepts embedded in the
tool were too hard to understand. The participant (P1) that did not have
difficulties with the terms was a postgraduate student, acting on the software
developer field.

To improve the communicability of Organic, participants suggested maximiz-
ing the use of terms from popular books like the books of Fowler (Fowler
1999) and Martin (Martin 2008), which are widely known in the software de-
velopment community. In addition, as observed in the quasi-experiment (Sec-
tion 3.4), for being a complex domain, developers would benefit from inter-
active help content. This kind of aid should be available, at least, in the first
interaction between the developer and Organic.

Ambiguity in Static Signs. The last problem of communicability occurs due
to the inadequate use of static symbols. As presented in Figure 3.15, different
types of information are presented with the same static symbols. This mixture
confused all the participants, leading to situations in which, for instance,
the participant believes that he is interacting with the tab “Anomalies,”
when in fact he was interacting with the tab “References.” This is the least
harmful communicability issue, but also affects the identification of design
problems.

Figure 3.15: Example of ambiguity in the static symbols

The direct solution for resolving this ambiguity consists on the use of different
static symbols for each type of information. Also, the improvement on the
graph visualization - mentioned to solve the first communicability issue - would

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 84

be an excellent alternative to solve this problem. The graph would integrate
the different information in a single view, removing existing ambiguities.

3.5.3.2

Communicability Strengths of Organic

Despite presenting some communicability issues, Organic also has its strengths
revealed in this study. In fact, there was no previous study evaluating Organic.
Therefore, looking from the perspective of Semiotic Engineering, besides
identifying communicability issues, we also identified some communicability
strengths of Organic. This provided us with evidence on what is working
well in Organic. It is important to note that the strengths presented here
were not reported by participants. Instead, they are the result of our own
observations.

Next, we present the main strengths found in Organic during this study:

Multiple Analyses of Stinky Code. The identification of a design problem
in stinky code requires multiple complementary analyses. Organic provides
the opportunity to analyze stinky code based on different agglomeration
categories (Section 3.2.1). As reported by Oizumi and colleagues (Oizumi et
al. 2016), each agglomeration category provides a different perspective to the
analysis of source code. In addition, Organic provides multiple information
about each agglomeration: (1) list of code smells, (2) description of code
smells, (3) dependencies of the agglomeration with external classes, (4) a
high level visualization, and (5) information about the agglomeration across
different versions of the source code. We observed, in this study and in
the quasi-experiment (Section 3.4), that developers were able to identify
design problems when they managed to explore and synthesize the multiple
information provided by Organic for each agglomeration.

Integration with IDE. The analysis of stinky code requires the developer to
constantly navigate from Organic to the source code, and vice-versa. This is
necessary because most code smells can only be fully understood in the source
code. Moreover, the analysis of source code is required to verify if a code
smell is a false positive. As an Eclipse plugin, Organic promotes a smooth
integration of its views with the source code. In addition, the developer can
open the source code affected by a code smell with a double-click in the code
smell. Without this integration, the developer would have to constantly shift
between programs to analyze stinky code. For example, without this resource,
the analysis of an agglomeration of 5 code smells would require, at least, 9

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 85

shifts between programs.

Information about Code Smells. Most developers benefit from reading in-
formation about code smells during the analysis of stinky code. We observed
in this study that, during the analysis of an agglomeration, even experienced
developers usually consult the definition of each smell. As explained in Sec-
tion 3.3, Organic provides this information in a tab called “Description”. We
noted that developers used the “Description” tab (back and forth) as a guide for
analyzing agglomerated code smells. Providing this information is important
because even experienced developers do not know or remember the definition
of all code smells. Thus, without this resource, they would spend more time
analyzing an agglomeration and searching for information about code smells
via external resources.

3.5.4

Threats to Validity

This section presents threats that could impact the validity of this study. For
each threat, we present the actions we took to mitigate its impact on the
study.

First, one could claim it would be beneficial to have more participants in the
study in order to achieve representative results. However, according to Yin (Yin
2015), qualitative research is, by nature, particularistic. Thus, the analysis and
understanding of qualitative results requires the study of specific situations
and people, complemented by considering specific contextual conditions. We
selected three software professionals, which are representative individuals
of our target population. Thus, we consider that this threat was properly
mitigated. However, we plan to perform other studies in the future in order
to analyze the behavior of professionals with other types of background and
using future versions of Organic.

The second threat is related to possible misunderstandings during the study.
To mitigate this threat, we prepared the participants before the study, ex-
plaining how the study would proceed. Moreover, in order to comply with the
recommendations of CEM, two researchers assisted the participants during the
entire study.

Finally, there is a threat related to the complexity of the system used in this
study. We mitigated this threat by selecting system from a widely known
computer science domain – Apache OODT is a middleware system that
provides infrastructure services, such as file management and networking

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 86

communication. In addition, as presented in Section 3.5.1.1, we provided
participants with the required documentation of Apache OODT.

3.6

Concluding Remarks

In this chapter, we presented Organic – a tool supporting the analysis of
stinky code. Organic is a tool to help developers to identify design problems
through the analysis of code smells in the source code. Organic supports
the analysis of multiple forms of stinkier code, provides detailed information
about code smells, supports the analysis of dependencies involving stinky
code, provides a graph-based visualization for stinkier code, and it provides
historical information about stinkier code. These features were designed and
implemented based on findings from previous studies about the relation
between design problems and code smells. We believe these features can provide
the basic support to support developers on identifying design problems.

In addition to proposing Organic, we also conducted two studies to assess if
developers are effective in revealing design problems when they reason about
agglomerated code smells, and to identify tool issues that may hinder the
identification of design problems. These studies were important because they
revealed that: (i) developers find more design problems (and report less false
positives) with agglomerations than with a flat list of smells, and (ii) developers
sometimes may not be able to identify design problems either because they
cannot properly reason about multiple code smells or because limited support
tool is hindering the identification. Thus, we address these two aspects not
explored by previous studies.

In the first study, we conducted a multi-method study with 11 developers. We
asked participants to identify design problems in stinkier program locations.
After that, we compared their results with the results of when they analyzed a
flat list of single code smells to identify design problems. Our analysis showed
that developers found more design problems when they reasoned about stinkier
code (i.e., agglomerated smells). In addition, we noticed that, when developers
were aware of multiple smells in a program location, they reported less false
positives. Therefore, our results suggest that reasoning about stinkier code may
improve the precision of developers in identifying design problems. Based on
the qualitative analysis, we observed that developers indeed tend to have higher
confidence to identify the occurrence of non-trivial design problems when
using information about multiple smells. That happens because developers

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 3. On the Identification of Design Problems in Stinky Code:
Experiences and Tool Support 87

usually analyze all smells before reporting a design problem. Consequently,
the likelihood of reporting a false positive decreases.

Additionally to these results, this first study also helped us to identify oppor-
tunities to improve the tool support for developers. For instance, we observed
that developers need to prioritize stinkier program locations that are most
likely to indicate a design problem. This need should be addressed because the
analysis of stinky code is difficult and time-consuming. Furthermore, a system
may contain several stinkier locations, which choosing which location to ana-
lyze can be a cumbersome task for developers. Thus, developers should focus
on those locations that are most likely to embody a design problem. In addi-
tion, we also noticed that developers need proper visualization mechanisms to
support the analyses of stinky code scattered across wider program locations,
such as hierarchies or packages.

In the second study, we evaluated Organic with the Communicability Evalua-
tion Method (CEM) (de Souza et al. 2009). This method enabled us to identify
communicability issues in the Organic tool that may hinder the identification of
design problems. For example, we observed that, although detecting stinkier
program locations, Organic does not provide a message containing concise
reasoning about the possible design problem occurring in the stinkier code.
As a result, the developer may struggle to make a meaning out of multiple
smells.

The second study also revealed some strengths of Organic. For instance, we
observed that Organic provides useful information about code smells and about
dependencies. Such information was considered useful by most participants. We
also observed that Organic promotes a smooth integration of its views with
the source code. This characteristic is important because most code smells can
only be understood through source code analysis.

In a nutshell, we conclude that both studies encourage the analysis of stinky
code to identify design problems. However, there are issues that should be
addressed before developers can more effectively explore multiple code smells
in a time-effective manner. As discussed above, there is a need to provide
mechanisms for better prioritizing and visualizing stinkier code. As a future
work, we plan to improve these mechanisms in the Organic tool and evaluate
their impact on developers’ effectiveness and efficacy.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

4

Filtering and Ranking Design-Related Agglomerations of
Code Smells

Code smells are symptoms in the source code that could help to identify
design problems. However, developers may feel discouraged to analyze multiple
smells if they are not able to focus their attention on a specific context of
interest. Unfortunately, current techniques fall short in assisting developers to
prioritize and filter smelly locations that are likely to indicate design problems.
Furthermore, in Chapter 3, we found evidence that developers often have
trouble analyzing interconnected smells that contribute together to realize a
design problem. As a result, one of our conclusions in Chapter 3 indicates
that this difficulty can be alleviated by filtering and prioritizing refactoring
candidates.

Therefore, to deal with these issues, this chapter presents and evaluates a
suite of five criteria for ranking groups of code smells as indicators of design
problems in evolving systems. These criteria were implemented in a tool called
JSpIRIT. In a first experiment, we have assessed the criteria in the context
of 23 versions of 4 systems and analyzed their effectiveness for revealing
design problem locations. In addition, we conducted a second experiment
for analyzing similarities between the prioritization provided by developers
and the prioritization provided by our best performing criterion. The results
provide evidence that one of the proposed criteria helped to correctly prioritize
more than 80 code locations of design problems, alleviating tedious manual
inspection of the source code vis-a-vis with the design.

We published all the results of this study in a paper at the Science of Computer
Programming (SCICO) journal.

For a reader who went through Chapters 2 and 3, you can skip Section 4.2.1
as it show definitions already presented there.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 89

4.1

Introduction

Software systems usually suffer from design problems introduced either during
development or along their evolution. Several systems have been restructured
with high costs or even discontinued due to the constant occurrence of design
problems (Bass et al. 2003, Kazman et al. 2015, Wong et al. 2011). Many design
problems occur when one or more components of a system are violating design
principles or rules (Rosik et al. 2008). By component, we mean a software entity
that encompasses a set of related functions and often hides the complexity of
their implementation. A component might be realized by one or multiple classes
in the source code. For instance, in some Java systems, there is a direct mapping
between components and packages; while in other systems each component
may be realized by classes scattered in different packages.

The violations of principles or rules negatively affect the maintainability and
other quality attributes of a system (Terra and Valente 2009, Oizumi et al.
2016). Typical examples of design problems are Fat Interface and Unwanted
Dependency between components (Sousa et al. 2017). The former violates the
principle of separation of concerns (Bass et al. 2003), while the latter violates
a dependency rule in the system’s design (Bass et al. 2003). Both of them
often negatively affect software maintainability and performance (Garcia et al.
2009b).

Unfortunately, the identification of code locations in a system that likely indi-
cate design problems is time-consuming and cumbersome for several reasons.
This task generally requires the analysis of both design documentation and
the realization of design decisions in source code. It is hard for a developer to
effectively explore these two types of information together in order to uncover
possible design problems. Even when design information is available, it is often
not detailed enough to help developers to reveal design problems (Oizumi et al.
2016, Garcia et al. 2009b, Oizumi et al. 2015). Thus, developers need to resort
to hints in the source code for the presence of design problems. An occurrence
of certain types of well-known code anomalies (i.e., code smells) (Fowler 1999)
may provide helpful, albeit partial, hints of the location of design problems in
a system (Oizumi et al. 2016). Classical examples of code smell types often
related to design problems are Long Method, God Class and Feature Envy
(Oizumi et al. 2015, Fowler 1999).

Even for systems of modest size, developers might need to analyze hundreds
of smells and infer their likelihood of indicating a design problem. As those

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 90

systems evolve, the number of smells tends to grow across system versions,
thereby further obscuring the location of design problems in a program
(Chatzigeorgiou and Manakos 2014, Tufano et al. 2015). In such situations,
developers do not know where to focus, i.e., which few groups of code smells
can be used as a starting point for locating design problems in the source
code. We argue that a practical strategy is to prioritize groups of code smells
according to their criticality to the system design, that is, their ability to point
out one or more design problems. Unfortunately, to the best of our knowledge,
existing techniques do not support developers in automatically prioritizing
code smells to reveal design problems, thereby discouraging them from locating
such symptoms in their programs.

In this context, we defined the concept of code-smell agglomeration in prior
work (Oizumi et al. 2016, Oizumi et al. 2015) and explored such a concept
in Chapter 3. An agglomeration is a group of inter-related code smells (e.g.,
code smells occurring in the same inheritance tree) that likely indicate together
the presence of a design problem (Section 4.2). This group of smells can be
composed by instances of the same or different kinds of smells. However, we did
not address the key challenge of filtering and prioritizing smell agglomerations
that indicate design problems. In fact, many smell agglomerations are not
related to design problems (Oizumi et al. 2016, Oizumi et al. 2015). Therefore,
in a previous work (Vidal et al. 2016) we proposed three ranking criteria
for supporting the prioritization of smell agglomerations. The goal was to
assist developers in: (i) finding agglomerations that more likely indicate design
problems, and (ii) for each design problem, identifying its full extent in
the source code by inspecting the group of smells comprising a top-ranked
agglomeration, while discarding irrelevant smells. In order to rank smell
agglomerations according to their impact on the design, the proposed criteria
consider both the system implementation and design information that may be
available. Although the criteria were useful, an initial evaluation revealed some
limitations for spotting design problems.

In this chapter, we extend the initial set of criteria (Vidal et al. 2016) by
proposing two additional ranking criteria, which are original contributions of
this work. The first criterion is based on how relevant an agglomeration is
regarding its type. (Section 4.3.1). An agglomeration type defines the search
strategy used to group predetermined smells. An example of search strategy
is to look for code smells of the same type, which occur across classes of the
same inheritance tree. The second criterion is based on the relation between
agglomerations and modifiability scenarios (Section 4.3.3). A modifiability

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 91

scenario represents a change-related property that a system must support by
means of planned feature changes in the system. Thus, agglomerations related
to changes could indicate critical modifiability properties of the design.

Given these new criteria, we repeated the initial experiment in (Vidal et al.
2016) and assessed how each of our five criteria helps developers to locate
symptoms of design problems in the source code while keeping aside irrelevant
(agglomerated and non-agglomerated) code smells. Our study considered 23
versions of 4 Java systems (Section 4.4). Furthermore, one of the systems had
a large size (1400 classes and 1800 code smells), to test the scalability of our
approach. Our results (Section 4.5) show that the use of one of the criteria,
the so called agglomeration flood, can consistently and accurately indicate
several design problems. The criterion helped to correctly locate more than
80 design problems in our top-7 rankings of the 4 systems, alleviating tedious
manual inspections of the source code vis-a-vis with the design. Moreover,
this prioritization criterion would have also helped developers to discard at
least 500 code smells having no relation to design problems in the analyzed
systems. In particular, we observed that the prioritization of agglomerations
based on their type usually presents mixed results regarding the identification
of design problems. As for the criterion based on scenarios, we found that
when the scenarios capture unforeseen changes, then the criterion can prioritize
agglomerations related to design problems.

As another contribution, to provide a deeper understanding of the results ob-
served in our case-studies in the first study, we conducted a second experiment
in which we analyzed how software engineering students rank code agglom-
erations without tool assistance (Section 4.6). Finally, we reflect upon these
findings and present the concluding remarks (Section 4.7).

4.2

Agglomerations as Pointers to Design Problems

In the context of our work, we focus on design problems (Bass et al. 2003) that
represent violations of design principles or rules (Garcia et al. 2009b, Perry and
Wolf 1992). We mainly target design problems affecting the modular decompo-
sition of a system into components and their interfaces, i.e., maintainability-
related problems (Garcia et al. 2009b). Table 4.1 summarizes all the design
problems considered in this work.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 92

Table 4.1: Design problems considered in this chapter
Name Description

Ambiguous
Interface

Interface that offers only a single, general entry-point
but provides two or more services

Feature
Overload

Component that is responsible for realizing two or more
unrelated system features (concerns)

Connector
Envy

Component that encompasses extensive interaction-
related functionality that should be delegated to a con-
nector

Cyclic
Dependency

Components that either directly or indirectly depend
on each other to function properly

Scattered
Feature

Multiple components responsible for realizing the same
high-level feature (concern), with some of them respon-
sible for orthogonal features

Unused
Interface

Interface that is never used by external modules

Design
Violation

Element or relationship that is in the actual design but
is not in the intended design, or vice versa

4.2.1

Formal Definition of Code-smell Agglomerations

Based on previous empirical findings (Oizumi et al. 2016, Oizumi et al. 2015),
our premise is that groups of code smells, so-called code-smell agglomerations,
are normally associated with several design problems. A code-smell agglomer-
ation is a coherent group of inter-related code smells that contributes to the
realization of a design problem.

In Figure 4.1 we present an agglomeration meta-model that supports our
definitions. The first meta-model element is code element, which corresponds to
the most basic unit of description in the system implementation. We consider
two code element types: class and method. Constructors are also considered
as being methods. Fine-grained program elements, such as code blocks and
statements, are examined during the detection of code smells. However, as
they are less relevant to the system design, we did not include them in our
meta-model.

A code-smell agglomeration is composed of a set of two or more code smells,
where each code smell affects a single code element. A code element may be
affected by zero or multiple code smells. Each code smell may be a member
of zero or multiple agglomerations. Also, each code smell is an occurrence of a
type of smell. A type of smell is associated with a specific code element type,
which means that occurrences of a type of smell exclusively affect either classes

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 93

Figure 4.1: Meta model for code-smell agglomerations

or methods.

Code smells are grouped into agglomerations based on relationships among
code elements. Two types of relationship to group code smells are considered.
The first one is common component, which identifies code smells occurring
in code elements of the same design component. The second relationship is
hierarchical, which identifies code smells occurring in code elements of the
same hierarchy. More details about relationship types are provided in Section
4.2.4. At last, an design problem may be reified in the source code by one or
multiple code elements, which can be classes and methods.

4.2.2

Illustrative Example

To illustrate the relation between design problems and agglomerations, let us
consider the example of Figure 4.2 taken from Mobile Media – a system for
managing photos, music, and videos on mobile devices (see Section 4.4.2). The
left side of the figure shows a fragment of the component structure of the
MobileMedia design. Components Controller and UI are mapped to separate
Java packages in the implementation, each one containing several classes (right
side). If a smell detection tool is run over the Mobile Media implementation, the
developer would receive a list of more than one hundred code smells. Then,
it may not be clear in which code smells she should focus her attention as

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 94

UI

Controller

+handleCommand
AbstractController

AlbumListScreen

Architecture Source Code

Controller

UI

AI

handleCommand

handleCommand
(Command command){
 String label= command.getLabel();
 if (label.equals("Add")){...}
 if (label.equals("View")){...}
 if (label.equals("Play")){...}
 ...

MediaData

MultiMediaData

...

......

PlayVideoScreen CaptureVideoScreen

NetworkScreen
FE

FEFE

+handleCommand
MediaController

+handleCommand
AlbumController

+handleCommand
PhotoViewController Legend

Dependency

Mapping

Dispersed Coupling
Code Smell

DCDCDC

DC

Architectural Violation

Agglomeration

Architectural Component
Architectural Problem

Feature Envy Code
Smell

FE

Figure 4.2: Example of a code-smell agglomeration related to design problems

candidates for revealing design problems. This situation prevents her from
performing effective maintenance or refactoring activities.

Design Problems. This example exhibits three design problems. First, the
Controller component is mainly realized by the class hierarchy rooted in
class AbstractController, which is responsible for handling different commands
through the handleCommand method. After a broad look at all the imple-
mentations of method handleCommand and their callers, the developer re-
alizes, based on her experience, that there is an overload of responsibilities,
which leads to two design problems, called Fat Interface and Ambiguous Inter-
face (Garcia et al. 2009b). These problems mean that Controller, as a design
component, provides several non-cohesive services (Fat Interface) that are not
properly exposed in its interface handleCommand (Ambiguous Interface). Note
that the problem is not the controller itself or its object-oriented materializa-
tion in terms of an abstract class with many concrete classes, but rather the
decision of having only one single controller (at the design level), which can
generate ripple effects to other components and their implementations if the
controller logic has to be changed. Second, the call from class PhotoViewCon-
troller to class AlbumListScreen leads to a usage dependency between packages
Controller and UI, which is not allowed by the component design. This viola-
tion is indicated in the design (left side) by the absence of arrows between the
two components.

In these examples, a possible way for a developer to identify the design prob-
lems is by reasoning about the design documentation and checking candi-
date problems in the source code. Unfortunately, developers are usually over-
whelmed by these tasks because, even with tool support, it is hard to effectively
explore all the available information and all code smells to uncover design prob-
lems. Thus, the developer needs to turn her attention to the (partial or full)

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 95

Kind of code
smell

Information of
smell

Figure 4.3: Code smells detected by JSpIRIT

realization of design problems in the source code. Along this line, she might
discover that the implementations of handleCommand in the subclasses of Ab-
stractController are simultaneously affected by the code smell called Dispersed
Coupling (DC), which is a method that calls various methods of several classes.
That is to say that the subclasses of AbstractController generate dependencies
on many other classes. Since there are several DC smells within the Controller
package, this group of smells is considered as an agglomeration. Therefore,
this package-level agglomeration is a sign of (potential) design decay (Le et al.
2018), which in this case affects the Controller component.

However, the developer cannot be fully sure about the design problem exposed
by the agglomeration of DC smells, as it could be a false positive. Other
agglomerations can be present nearby, as is the case of a group of instances
of the smell called Feature Envy (FE) in package UI, which corresponds to
the UI component. FE is a smell representing a class that is more interested
in accessing data from other classes (instead of using its data), which often
indicates a poor assignment of responsibilities. Things get more complicated
for the developer because agglomerations normally vary from a system version
to another owing to the creation and fix of code smells. These two factors (false
positives and variations over time) motivate our interest in the definition of
criteria for prioritizing agglomerations.

4.2.3

Detecting Individual Code Smells

Existing catalogs of code smells define guidelines to identify single smells and
to provide tool support for their detection (Fowler 1999, Lanza and Marinescu
2006). In this work, we use the JSpIRIT 1 tool for that purpose. JSpIRIT is
an Eclipse plugin for detecting and ranking code smells according to different
criteria (Vidal, Marcos and Díaz Pace 2014b). Figure 4.3 shows the view of
JSpIRIT that lists the code smells found in a system. Currently, JSpIRIT

1https://sites.google.com/site/santiagoavidal/projects/jspirit

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 96

supports the detection of 10 types of code smells (Vidal, Marcos and Díaz
Pace 2014b) following the detection strategies presented in Lanza’s catalog
(Lanza and Marinescu 2006). Table 4.2 presents a list of all code smell types
supported by JSpIRIT.

Table 4.2: Types of code smell supported by JSpIRIT
Name Description

Brain Class Complex class that accumulates intelligence by brain
methods

Brain Method Long and complex method that centralizes the intelli-
gence of a class

Data Class Class that contains data but not behavior related to the
data

Disperse
Coupling

Method that calls one or few methods of several classes

Feature Envy Method that calls more methods of a single external
class than its own methods

God Class Long and complex class that centralizes the intelligence
of the system

Intensive
Coupling

Method that calls several methods that are imple-
mented in one or few external classes

Refused
Bequest

Subclass that does not use the protected methods of its
superclass

Shotgun
Surgery

Method called by many methods that are implemented
in different classes

Tradition
Breaker

Subclass that does not specialize its superclass

4.2.4

Types of Agglomerations

In previous work (Vidal et al. 2015), we extended the original version of
JSpIRIT to support the detection of agglomerations. Figure 4.4 shows a
list of agglomerations detected based on the smells detected by JSpIRIT.
Since our work focuses on design information regarding static code structures,
we deal with agglomerations within the scope of design components. For
our case-studies (Sections 4.4 and 4.5), we assumed a mapping between a
design component and its realization as a Java package in the code. However,
developers can flexibly establish other kinds of mappings between components
and packages or classes in a program.

We are mainly interested in two particular types of agglomerations:

– Smells within a component. This type of agglomeration groups
code smells that occur in code elements of the same design component.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 97

Grouping pattern Information of
agglomerations

Ranking
position

Ranking
score

Figure 4.4: Code-smell agglomerations detected by JSpIRIT
Specifically, we look for one single component with: (i) code smells
occurring in code elements that are syntactically related, or (ii) code
elements - of the same design component - infected by the same type of
code smell. Two code elements are syntactically related if at least one
of them references the other one. Figure 4.2 showed an example of this
kind of agglomeration where different classes in package UI are affected
by the Feature Envy (FE) smell.

– Smells in a hierarchy. This type of agglomeration groups code smells
that occur across the same inheritance tree involving one or more
components. We only consider hierarchies exhibiting the same type of
code smell. The rationale is that a recurring introduction of the same
type of smell in different elements might represent a problem related
to the design imposed by the root class or root interface. An example
of this agglomeration is the AbstractController hierarchy in Figure 4.2
whose subclasses are affected by Dispersed Coupling (DC) smells.

A more complete description of the agglomerations above can be found in
previous work (Oizumi et al. 2015). Certainly, other types of agglomerations
are possible, as we previously reported (Oizumi et al. 2016), but they are
related to other design problems not addressed in this chapter.

4.3

Prioritization Approach

Since the agglomerations are not enough to completely reveal relevant design
problems, additional mechanisms are needed. Along this line, we present
five ranking criteria to prioritize agglomerations through scoring criteria. We
hypothesize that one or more of these criteria are useful for prioritizing
agglomerations with high chances of spotting design problems. In this way,
a criterion can be seen as a function:

criterionA(agglomerationB) = scoreA,B

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 98

where the score for an agglomeration B given by a criterion A is a value
between 0 and 1. The score value indicates how critical the agglomeration is
for the system design (0=not critical, 1=very critical).

Details about the five criteria are organized as follows. Section 4.3.1 presents
a criterion based on the relevance of each agglomeration type. Section 4.3.2
introduces a criterion for prioritization based on design concerns. Section 4.3.3
shows details about a criterion based on modifiability scenarios. Section 4.3.4
presents a criterion that uses history information for prioritizing agglomera-
tions. Finally, Section 4.3.5 introduces a criterion that explores information
about the evolution of agglomerations along different versions of the source
code.

All the 5 criteria were implemented in JSpIRIT. Furthermore, developers and
researchers can add new prioritization strategies or modify the current ones in
the tool, as explained in our previous work (Vidal et al. 2015).

4.3.1

Agglomeration Relevance

This criterion specifies how relevant a type of agglomeration is for the design
of a system. This criterion was initially suggested in (Oizumi et al. 2014a), and
it relies solely on information about code-smell agglomerations. We conjecture
that some types of agglomeration may indicate more design problems than
other types of agglomeration. In this way, a developer must choose a relevance
value using a [0..1] continuous scale for each type of agglomeration. In this
context, 0 means that the agglomeration type is not relevant to the system
design and 1 means that agglomeration is very relevant for finding design
problems in the system (values in the middle are also allowed). For example,
a developer could think that agglomerations affecting classes of a component
are more relevant than agglomerations focused on a hierarchy of classes. If
so, she can assign a higher relevance value (e.g., 1.0) to the Smells within
a component agglomerations and a lower value (e.g., 0.2) to the Smells in
a hierarchy agglomerations. In our first experiment, we investigated different
configurations of this criterion and prioritized different types of agglomeration
in each configuration (Section 4.4.3).

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 99

Concern
name

Packages that
compose the

concern

Classes that
compose the

concern

Figure 4.5: Wizard to provide concern mappings in JSpIRIT

H

A

I

II

III

C

D

EF

Concern

Concern

Concern

Agglomeration

Class mapped
from concern

B

G

Agglomeration
A1

Agglomeration
A2

Agglomeration
A3

IV
Concern

Figure 4.6: Example of concerns mapped to classes
4.3.2

Design Concerns

This criterion analyzes the relationship between an agglomeration and a design
concern. A design concern (i.e., feature) is some important part of the problem
(or domain) that developers aim at treating in a modular way (Sant’Anna
et al. 2007), such as graphical user interface (GUI), exception handling,
or persistence, among others. For example, in Figure 4.2, the subclasses of
AbstractController (along with other system classes) address a concern called
PhotoLabelManagement. This criterion was adapted from (Guimaraes, Garcia
and Cai 2014) where it is used for ranking single code smells. The rationale
behind this criterion is that an agglomeration that realizes several concerns
could be an indicator of a design problem.

The JSpIRIT tool offers a simple interface to specify concerns (Figure 4.5).
Specifically, the developer must provide a concern name and select the system

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 100

packages and classes the concern maps to. To compute the ranking score
of an agglomeration, we count the number of concerns involved in that
agglomeration. A concern is involved in an agglomeration if the agglomeration
is located in a class mapped by the concern. At last, we normalize the values to
obtain scores between [0..1]. To do so, the highest number of concerns affecting
a single agglomeration is used. For example, let us consider the example in
Figure 4.6, in which there are three agglomerations (A1, A2, A3) and four
concerns (I, II, III, and IV). Agglomeration A1 is related to two concerns
(I and II), A2 with one concern (II) and A3 with three concerns (II, III,
and IV). Thus, the highest number of concerns per agglomeration is 3, and
the agglomeration scores will be 2/3 = 0.66 for A1, 1/3 = 0.33 for A2, and
3/3 = 1.0 for A3.

Certainly, the specific mappings of concerns to program elements affect the
results of this criterion. Furthermore, as the implementation evolves, the
mappings might need to be adjusted. Existing feature-location tools, such as
Mallet (McCallum 2002) and XScan (Nguyen et al. 2011), can be used here to
derive concern mappings automatically and with high accuracy according to
our experience (Oizumi et al. 2016).

4.3.3

Modifiability Scenarios

This criterion analyzes the relationship of agglomerations with modifiability
scenarios. A modifiability scenario describes a change-related property that is
desirable in a system (Bass et al. 2003). That is, scenarios describe specific
kinds of changes that the system must support. In terms of the design, a sce-
nario affects certain design components that are key for fulfilling the scenario.
This criterion was adapted from (Vidal, Marcos and Díaz Pace 2014b), and its
rationale is that the agglomerations related to modifiability scenarios can be
more critical because they directly affect modifiability properties of the system
design.

Scenarios can be considered as particular types of design concerns related to
modifiability because, like in the case of concerns, each scenario is mapped
to different packages and classes of a system using JSpIRIT. Moreover, the
developer can give different importance values to the scenarios, by assigning
values between 0 and 1 to each scenario to model the criticality of its
satisfaction.

To compute the score of an agglomeration, we analyze if the main classes of the

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 101

code smell (within the agglomeration) are affected by one or more scenarios.
We consider “main classes” to be those classes in which the smells are mainly
located. For a coupling-related code smell, the main class is the one that causes
or that concentrates the anomalous relationships. For example, the main class
of a FE smell is the class where the feature-envy method is declared. As another
example, the main class of an Intensive Coupling (IC) is the class containing
the method that is tied to many other methods. A code smell is affected by a
scenario when the scenario is mapped to the main class of such smell.

The agglomeration ranking score is computed as the sum of the importance
values of the scenarios that affect each smell being part of the agglomeration
(in case there is any). If a code smell is affected by more than one scenario,
we only consider the scenario with the highest importance. Once this sum is
calculated for all the agglomerations, the values are normalized. For example,
let us consider the definition of 2 modifiability scenarios, S1, and S2 with
importance values of 0.7 and 0.9 respectively. S1 is mapped to classes Foo
and Foo2 while S2 is mapped to Foo and Foo3. Given an agglomeration A1
composed of two code smells whose main classes are Foo and Foo2, its score
will be computed as 0.9 + 0.7 = 1.6. Then, this value will be normalized such
that the largest value is 1.

4.3.4

History of Changes

This criterion analyzes the stability of the classes in which the code smells (of
an agglomeration) are located. The stability assesses how often the main class
of a smell was modified during the lifetime of the system. By looking at the
“stability” of the smells within an agglomeration, we want to check whether
the agglomeration is in a component or class hierarchy that is usually modified.
Our assumption is that agglomerations appearing in classes that changed often
should have a higher score, and thus, might hint design problems. Note that
this notion of stability relies not only on the actual design information (e.g. an
agglomeration affecting a particular component) but also on information from
the history of class changes.

To calculate the stability of an agglomeration (and also, its ranking score)
we use the LENOM (Latest Evolution of Number of Methods) metric (Girba,
Ducasse and Lanza 2004). We previously used this metric to rank single code
smells (Vidal, Marcos and Díaz Pace 2014a). LENOM identifies the classes that
experienced most changes in the last versions of the system. The classes that

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 102

most frequently changed are identified by weighting the delta in the method
count (NOM) of a class between two adjacent versions. More formally:

LENOMj..k(C) =
k∑

i=j+1
| NOMi(C) − NOMi−1(C) | ∗2i−k

where 1 ≤ j < k ≤ n being j the first version of the system analyzed, k the
last version analyzed and n the total number of versions of the system.

Once the LENOM values for each main class of the code smells are obtained,
the criterion computes the score of the containing agglomeration by averaging
the LENOM values. For example, given an agglomeration A1 that is composed
of three Brain Method (BM) smells: Foo.a(), Foo.b(), and Foo2.c(), and
knowing that LENOM(Foo) = 0.8 and LENOM(Foo2) = 0.5, the score
of A1 will be 0.8+0.8+0.5

3 = 0.7. A score close to 1.0 means that the classes
composing the agglomeration change often during the system history. In
contrast, a score of 0.0 means that those classes did not change since their
initial implementation.

4.3.5

Agglomeration Flood

This criterion makes an analogy of the agglomeration with a flooding problem
in the system history. If the impact of the flood is given by the number of
smells contained in an agglomeration, our assumption is that a growing flood
is more critical than a flood that seems stable (i.e., the agglomerated smells
do not change) or that is shrinking (i.e., the agglomeration has progressively
less smells). Along this line, we analyze the behavior of the agglomerations
across system versions and compute a variation rate in terms of the number
of code smells that compose each agglomeration. This criterion concentrates
on the “volume” of smells over time, by combining history-based and design
information.

To calculate the ranking score of an agglomeration, we consider pairs of
adjacent versions and determine the percentage of variation in the number
of code smells that constitute the agglomeration. This percentage will be
positive or negative, depending on whether the smells increased or decreased.
For example, given an agglomeration A1 with 3 code smells in version v1,

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 103

5 smells in v2, and 4 smells in v3, the corresponding variation rates are
5*100

3 − 100 = 66.6% from v1 to v2, and 4*100
5 − 100 = −20% from v2 to

v3 (by definition, agglomerations always have at least two smells). Then, all
the percentages of variation (for the same agglomeration) are averaged. In
our example, this value becomes 66.6−20

2 = 23.3%. Once averages for all the
agglomeration are obtained, we normalize these values to produce scores in
the range [0..1].

4.4

Study Settings

This section describes the research question and hypothesis of our first experi-
ment. We also describe the target applications used in our empirical evaluation,
as well as the procedures for data collection and analysis.

4.4.1

Research Question and Hypothesis

To investigate the effectiveness of the scoring criteria on the prioritization of
design problems, we defined the following research question (RQ1): Does the
use of a scoring criterion assist developers to prioritize smell agglomerations
that indicate design problems? RQ1 is analyzed for each of our 5 scoring criteria
in Section 4.5.

We derived the corresponding hypothesis for this research question: (H10)
the use of a scoring criterion does not assist developers to prioritize critical
agglomerations. We consider that a scoring criterion is effective to assist
developers if at least half of the prioritized agglomerations are related to design
problems. The reasoning is that developers would give up in inspecting the
agglomerations if more than 50% of them are not related to design problems.
If the criterion ranks correctly most agglomerations, we can conclude that the
criterion enables developers to analyze the most critical agglomerations.

4.4.2

Target Applications

We chose systems for our study that had exhibited several symptoms of
design degradation so that we could properly evaluate the effectiveness of the
prioritization criteria. The selection of the target systems was performed in
two stages. In the first stage, we selected 3 Java applications of a reasonable
size (from 10 to 54 KLOC). They were also chosen because either the original

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 104

developers were available or we could rely on an expert architect, to validate
the design problems and code smells being inspected in our analyses. With
their assistance, we produced ground truths for the design problems of all the
systems. The first application is Mobile Media (MM) (Young 2005), a software
product line that provides support for the manipulation of media on mobile
devices. The second application is Health Watcher (HW) (Soares et al. 2002), a
Web-based application that allows citizens to register complaints about health
issues in public institutions. Our third application is SubscriberDB (SDB)
(Vidal, Marcos and Díaz Pace 2014b), a subsystem of a publishing house that
manages data related to the subscribers of its publications, and also supports
different queries on the data.

In the second stage, we selected a large system, consisting of 182 KLOC.
The goal was to check whether our most effective scoring criteria would also
be effective to prioritize design problems in more complex projects. Given
this goal, we selected Apache OODT (OODT) (Mattmann et al. 2006), a
middleware framework aimed at supporting the management and storage
of scientific data. A summary of the application characteristics is given in
Table 4.3.

Table 4.3: Characteristics of the target applications
Target

Application
MM HW SDB OODT

System Type Software
Product Line

Web Web Middleware

Programming
Language

Java Java Java Java

Architecture
Design

MVC Layers MVC Layers

Selected
Version

5 8 2.4 10

KLOC 54 49 10 182
#Classes 77 125 151 1424

#Code Smells 260 497 82 1816

4.4.3

Data Collection and Analysis

This section describes the main activities of the study, which are graphically
summarized in Figure 4.7. For the sake of reproducibility, the resulting dataset
is available in our supplementary material.2

2https://bit.ly/2E7kOAG

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 105

1 - Detection of
code anomalies

and
agglomerations
(automatically)

2a - Identification
of architectural

problems
(manually)

3 - Prioritization of
agglomerations

with scoring criteria
(automatically)

4 - Computation
of correlations

Source Code
(Java)

JSpIRIT

Architecture
documentation

(blueprint, design
rationale, etc.)

Applications
Experts

2b - Creation of
reference
ranking

(manually)

List of scenarios
and mappings

System versions

Figure 4.7: Procedures for data collection
1-Detection of code smells and agglomerations. We used JSpIRIT to detect
both code smells and agglomerations automatically. After detecting all in-
stances of code smells, JSpIRIT proceeds to identify the agglomerations based
on the grouping patterns described in Section 4.2.4. JSpIRIT presents two
different outputs: (i) a list of smell instances, and (ii) groups of inter-related
code smells, i.e., the agglomerations, along with their score for a given crite-
rion (Figure 4.4). For the criterion of design concerns, we relied on a list of
concerns provided by the original architects of each system. For each concern,
they provided a list of packages/classes realizing the concerns, i.e., the concern
mappings. A correspondence between design components and Java packages
was assumed.

2-Identification of design problems. For HW, MM and SDB, the application
developers or the expert architect identified and reported to us the design
problems they faced in their projects. Based on a catalog of design problems
(Garcia et al. 2009b), they reported the existence of 7 types of design prob-
lems, namely: Ambiguous Interface, Concern Overload, Connector Envy, Cyclic
Dependency, Scattered Feature, Unused Interface, and Design Violations (un-
wanted dependencies among components). To confirm the presence of design
problems, the developers first manually inspected the source code and the de-
sign blueprint of each system. Based on their experience with the project, they
produced a list of the most critical design problems for each version of the tar-
get applications. As a result, using the list of design problems, we produced a
reference ranking of the agglomerations detected by JSpIRIT that contribute
to the most critical design problems for each target application.

To determine if an agglomeration X was linked to a design problem Y, we check
whether problem Y mapped to (some of) the main classes hosting the smells
of agglomeration X. That is, we looked at intersections between the program
elements realizing the design problem and those related to the agglomeration.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 106

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

XX

XX

X
kjihgfedcba

1 - IntraComponent: FE datamodel
2 - IntraComponent: DC controller
3 - IntraComponent: FE screens
4 - Hierarchical: BM AbstractController
5 - IntraComponent: BM controller
6 - Hierarchical: DC AbstractController
7 - IntraComponent: SmsMessanging
8 - Hierarchical: FE MediaAccesor
9 - IntraComponent: MediaController
10 - IntraComponent: MediaAccessor
11- Hierarchical: FE AlbumData
12 - IntraComponent: DC sms
13 - IntraComponent: AlbumController
14 - IntraComponent: SS controller
15 - IntraComponent: AbstractController
16 - Hierarchical: SS AbstractController

a: Concern Overload - ImageAlbumData
b: Concern Overload - MusicAlbumData
c: Concern Overload - MusicMediaAccessor
d: Concern Overload - VideoAlbumData
e: Concern Overload - MusicMediaUtil
f: Ambiguous Interface - Controller

Ranking using the cancer criterion

g: Ambiguous Interface - PlayMediaScreen
h: Redundant Interface - Datamodel
i: Cyclic dependency - Controller
j: Architectural violation - Controller
k: Architectural violation - Datamodel

Figure 4.8: Matrix of ranked agglomerations for MM versus related design
problems (‘a’ to ‘k’).
Coming back to Figure 4.2, we can see an example of this intersection for the
Ambiguous Interface problem, which is realized by the Controller package and
some of its classes take also part in an agglomeration. The reference ranking
of agglomerations was built in such a way that it has in the first positions
the agglomerations being related to the highest number of design problems.
That is to say, the score of an agglomeration is the number of related design
problems. The agglomerations along with their related design problems for
each case-study constituted our ground truth. For OODT, we did not produce a
ground truth, due to the size and complexity of this application. Our goal with
OODT was to evaluate the criteria in a system larger than HWS, MM or SDB

and assess the design problems for the best-ranked agglomerations. Along this
line, we performed a manual analysis considering the top-12 agglomerations as
ranked by the flood criterion (Section 4.3.5).

3-Prioritization of agglomerations with scoring criteria (JSpIRIT). We exe-
cuted JSpIRIT to apply automatically all the scoring strategies (criteria) from
Section 4.3, one by one, on the agglomerations detected in activity 1. We con-
figured the relevance values for the agglomeration types. However, we relied on
the concerns, scenarios, mappings and system versions provided by the appli-
cation experts. As a result, the agglomerations were ranked according to their
scoring value in decreasing order. We focused on analyzing the top-7 rank-
ings for each system, as those high-priority agglomerations would represent
the initial focus of the developer’s attention.

As an example, Figure 4.8 shows the ranking of agglomerations for MM as

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 107

produced by JSpIRIT with the flood criterion (rows), and the associated design
problems (columns) determined from the ground truth. Note that cell 2f (smells
within a component agglomeration based on DC for Controller intersecting
with Ambiguous Interface in Controller) corresponds to the situation of
Figure 4.2. Also note that the smells within a component agglomeration in
SmsMessaging (row 7) has no association to design problems, even when it is
relatively high in the ranking. This is a case of a false positive. which can be
due to variations in the number of smells of the agglomerations across system
versions, as detected by the flood criterion. In other cases, like the hierarchical
agglomeration based on FE for AlbumData (row 11), the agglomeration is
ranked low in spite of being related to four design problems. This situation
can be explained by the fact that the smells of the agglomeration remained
almost constant over time.

4-Computation of correlations: For HW, MM and SDB, once a given scoring
strategy was applied on the agglomerations, we measured the correlation
between the ranking generated by JSpIRIT and the reference ranking (from
the ground truth). To do so, we applied the Spearman’s correlation coefficient
for rankings with ties (p) (Ricci et al. 2011). This coefficient measures the
strength of the association between two rankings. The coefficient can take
values between 1 and -1. If p=1, it indicates a perfect association between
both rankings. If p=0, it indicates no correlation between the rankings. If
p=-1, it indicates a negative association between the rankings. Finally, values
between 0.5 and 0.7 are regarded as a good correlation, while values higher
than 0.7 are regarded as a strong correlation. As we did not have a ground
truth for OODT, we did not use the same correlation strategy. To evaluate
OODT, we looked instead at the precision of the criteria for the top-12 ranked
agglomerations. With the help of an OODT architect, we analyzed whether
each agglomeration (in the top-12 ranking) was related to design problems.
Table 4.4 shows the correlation results computed on the three case-studies,
plus the precision value for OODT (7 true positives over 12 cases).

4.5

Empirical Evaluation

In this section, we first report on the results of applying each of the five scoring
criteria to the three target applications. Then, as previously explained (Section
4.4.2), we also discuss the results of applying the most effective criterion to
the fourth software project, OODT, which is the largest one. Table 4.5 shows
the number of design problems (reported by architects) and agglomerations

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 108

Table 4.4: Correlation results (the value for OODT is a precision and not a
correlation value)

Applications Design
concerns

Modifiability
scenarios

History
of

changes

Agglomeration
flood

Health Watcher
(HW)

0.01 -0.13 0.57 0.62

Mobile Media
(MM)

0.53 0.01 0.34 0.77

SubscriberDB
(SDB)

0.38 0.45 0.71 0.14

SubscriberDB
(SDBv2)

0.1 0.08 0.51 0.6

Apache OODT n/a n/a n/a 0.58

Table 4.5: Design problems and code-smell agglomerations for the 4 applica-
tions

HW MM SDB OODT
#Design problems 61 41 60 n/a
#Agglomerations 11 16 22 431

(identified by JSpIRIT) in each system. On the one hand, as suggested in
recent studies (Oizumi et al. 2016, Oizumi et al. 2015), we confirmed that the
use of the agglomerations helped to discard hundreds of (non-agglomerated)
smells that had no relationship to design problems. On the other hand, up
to 60% of the agglomerations had no relationship to design problems, thereby
confirming the need for defining and assessing the effectiveness of alternative
prioritization criteria. Therefore, in the following subsections, we carefully
analyze the correlation results for each scoring criterion and discuss their
effectiveness to indicate locations of design problems. We also derive additional
insights after inspecting all the prioritized agglomerations.

4.5.1

Does Agglomeration Relevance Help?

For the three applications, we analyzed several settings of this criterion.
Specifically, we analyzed the cases in which an agglomeration type has a bigger
relevance than another one, and vice-versa (e.g. by setting relevance values to
different values in the range [0..1]). Table 4.6 shows the results for the different
applications. We could not find any agglomeration relevance setting with a
strong correlation for the three applications (correlations higher than 0.4 are
considered significant). Moreover, we only found 3 settings with a correlation
higher than 0.5 but only for HW. The lack of a strong correlation means

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 109

Table 4.6: Correlation results for agglomeration’s relevance
Smells

within a
component

Smells in
a

hierarchy

Correlation
HW

Correlation
MM

Correlation
SDB

Correlation
SDBv2

0.1 0.3 0.34 -0.02 -0.46 -0.48
0.2 0.3 0.51 0.37 -0.07 0.08
0.3 0.2 -0.02 0.36 0.23 0.34
0.3 0.1 -0.34 0.02 0.46 0.49
0.1 0.2 0.02 -0.36 -0.23 -0.34
0.2 0.1 -0.51 -0.37 0.07 -0.08
0.1 0.2 0.57 0.21 -0.48 -0.37
0.1 0.1 -0.28 -0.43 -0.09 -0.22
0.2 0.1 -0.18 0.21 0.36 0.43

that this criterion is not enough to prioritize agglomerations related to design
problems. This happens because there is no specific agglomeration type that
dominates the manifestation of design decay in the implementation of the
analyzed systems.

4.5.2

Do Design Concerns Help?

The design concerns were provided by the system architects. Our goal was
to check whether the scoring criterion (Section 4.3.2) would work with a
minimal amount of design information, which is usually part of either the
project documentation or the architects’ mindset. The architects defined: (i)
nine design concerns for HW – their mappings encompass around 100 classes
in the program, which cover 74% of the total number of classes), (ii) seven
design concerns for MM – their mappings include 65 classes (84% coverage),
and (iii) five concerns for SDB – their mappings subsume 45 classes (30%
coverage).

After applying this criterion, JSpIRIT ranked the agglomerations according
to their number of concerns. All the agglomerations were related to at least 3
design concerns. As shown in Table 4.4, only MM had a moderate correlation
with this criterion (correlation of 0.53 with p-value = 0.03471); the correlations
for HW and SDB turned out low. The correlations were low because the
agglomerations with the largest number of design problems were not ranked
first. The reason for these low correlations is that, albeit agglomerations were
often related to design problems, this criterion gave the highest scores to
agglomerations that were not related to design problems. Developers would
need to inspect more agglomerations in the ranking to find design problems.
The use of this criterion would require more effort than the other criteria to

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 110

find the first spots of design problems in the source code.

This criterion had the worst results in the HW system. In this system, the
first two agglomerations ranked were related to 13 problems. However, the
agglomerations ranked third, fourth and fifth were not related to design
concerns. In the case of the HW system, 11 agglomerations were found, but only
5 of such agglomerations were related to problems. Therefore, this result does
not necessarily represent a negative result because, on average, the developer
would need to approximately inspect two agglomerations for finding at least
one agglomeration related to design problems. Moreover, we found that certain
agglomerations in the ranking tend to concentrate on most of the design
problems. For example, in the case of the HW system: two agglomerations
were related to 14 problems, two with 13, and one agglomeration with 7
problems.

Concluding, we observed that the successful use of design concerns (as a
criterion) depends on the completeness and coverage of the list of design
concerns provided by the developers. In fact, MM was the system that had
the mappings with the highest coverage (84%) and the highest correlation
(0.53). Also, we observed that this criterion worked well in systems (e.g.
MM) where most problems were caused by the poor modularization of design
concerns.

4.5.3

Do Modifiability Scenarios Help?

To evaluate this criterion, we described the change-related properties of three
target application with the help of experts. To perform this task, besides the
experts’ knowledge, we used all design documentation that was available. For
HW, 4 scenarios involving 25 classes were defined, which is 20% of the total
number of classes. Regarding MM, 4 scenarios involving 10 classes were defined,
resulting in 13% of coverage. Finally, 3 scenarios involving 10 classes were
described for SDB, achieving a coverage of 7. A complete list of the modifiability
scenarios is provided in our supplementary material 3. The importance values
of the different scenarios were defined by the application experts.

A high correlation of design problems with modifiability scenarios was ex-
pected, because design problems are often introduced during source code
changes and, modifiability scenarios represent planned changes in the system.
However, we obtained poor results with this criterion (Table 4.4), with negative

3https://bit.ly/2E7kOAG

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 111

or low correlations. The reason is that the agglomerations related to scenarios
are not necessarily the agglomerations related to design problems. For exam-
ple, in the case of HW, 7 (out of 11) agglomerations are related to modifiability
scenarios. While the agglomerations related to 14 design problems are ranked
third and fourth (i.e., they are related to scenarios), the agglomerations related
to 13 and 7 problems are ranked in the last position since they are not related
with any scenario (they are tied).

These results seem to contradict our initial intuition. Therefore, we performed
further analysis to understand them. In this analysis, we observed that the
designs of our target applications were designed, from the outset, for satisfying
those modifiability scenarios. Consequently, the modifiability scenarios had
low influence on the introduction of design problems, which may explain
the poor results presented by this ranking criterion. Following this idea, this
ranking criterion may present better results when probed with modifiability
scenarios that were not anticipated in the design. This would reveal code-smell
agglomerations related to changes not supported by the design.

4.5.4

Does Change History Help?

To compute the rankings using the history criterion (Section 4.3.4), we loaded
in JSpIRIT previous versions of the analyzed systems. In particular, we
analyzed all the versions available for each application, namely: 10 versions
of HW, 8 versions of MM and 15 versions of SDB. In this case, we were
able to find a moderate correlation for HW (0.57 with p-value = 0.06713)
and a strong correlation for SDB (0.71 with p-value = 0.00021). Also, we
obtained a positive correlation for MM (Table 4.4). These results mean that
the agglomerations located in the classes that changed often during the history
represent sources of design problems in the implementation. We observed that
the classes realizing agglomerations related to design problems experienced
more changes during their history than the agglomeration classes that were
not affected by those problems. For instance, in the case of HW, after applying
this criterion, the agglomeration ranked first by JSpIRIT is related to 7 design
problems, while the agglomerations ranked second and third are related to 14
problems. Regarding the agglomerations related to 13 problems, they were tied
in the sixth position. Therefore, we observed that the consideration of history
information improves the prioritization of design problems as compared to the
use of design concerns, presented in the previous sub-section.

However, the use of the change history criterion was also not effective to

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 112

prioritize design problems in all software projects. Recent studies (Wong et
al. 2011) have suggested that anomalous source code, whenever it is frequently
changed, indicates the presence of major design problems. We found this
might be true in certain systems and, therefore, this factor helps to identify
design-relevant code smells. However, this is not always the case, as captured
by the low correlation (0.34) in MM. In this system, several design-harmful
agglomerations were not often touched by changes. Moreover, the success of
the history criterion depends on having several versions to be processed.

4.5.5

Does Agglomeration Flood Help?

Overall, the use of agglomeration flood was the best-performing criterion in the
context of our dataset. As shown in Table 4.4, we obtained strong correlations
for HW and MM. At first, we obtained a low correlation in SDB. However,
while understanding the reasons for this low correlation, we realized there
was an issue to be addressed in the SDB artifacts. When examining the design
blueprints provided by the system architects, we found out that the blueprint of
SDB was inconsistent with the source code (Guimaraes, Garcia and Cai 2014).
By inconsistent, we mean that the blueprint was an “ideal” design model of the
application, but it was not faithfully implemented in the source code. In fact,
we computed a consistency metric (Guimaraes, Garcia and Cai 2014) for HW,
MM, and SDB. We found that the HW blueprint had 89.6% of consistency, the
MM blueprint had a 67.9%, and the SDB blueprint had just a 54.5%.

For this reason, with the help of an SDB architect, a new, more realistic
blueprint called SDBv2 was created, which had a consistency of 77.3%. In this
case, the architect found 11 critical design problems. Then, we re-computed the
reference ranking of this application and ran again the scoring criteria using
JSpIRIT. Then, we observed a significant improvement in the correlation for
the flood criterion (0.6 with p-value=0.00315), that is, a moderate correlation.
As shown in Table 4.4, the correlation values for the remaining criteria
decreased in SDBv2. In the case of the change history criterion, the correlation
was still acceptable with the adjusted blueprint. Nonetheless, this was not the
case for the criterion of design concerns that dropped to 0.1 (Table 4.4). These
results indicate that the correlation values are sensitive to how the blueprints
are defined. Therefore, to get the best results of this criterion, developers also
need to rely on blueprints of the implemented design rather than on blueprints
of the planned design.

As agglomeration flood was consistently the best-performing criterion in all

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 113

X

X

X

X

XX
X

X

hgfedcba
1 - IntraComponent: FE action
2 - IntraComponent: FE crawl
3 - IntraComponent: FE page.metadata
4 - Hierarchical: DC system
5 - IntraComponent: FE mux
6 - IntraClass: filemgr.util.XmlRpcStructFactory
7 - IntraClass: workflow.util.XmlRpcStructFactory
8 - IntraClass: resource.util.XmlRpcStructFactory
9 - IntraComponent: FE jobqueue
10 - IntraComponent: MediaAccessor
11- Hierarchical: FE AlbumData
12 - IntraComponent: DC sms

a: Scattered Functionality - craw
b: Scattered Functionality - metadata
c: Connector Envy - system
d: Cyclic Dependency - system

Ranking using the cancer criterion

e: Ambiguous Interface - XmlRpcStructFactory
f: Connector Envy - XmlRpcStructFactory
g: Cyclic Dependency - jobqueue
h: Connector Envy – query

Figure 4.9: Matrix of (top-12) ranked agglomerations for OODT versus related
design problems (‘a’ to ‘h’)
the three systems, we also applied it to OODT. Our goal was to check whether
this criterion would scale well to very large systems, such as OODT. Following
the procedures described in Section 4.4.3, we analyzed the top-12 ranked ag-
glomerations in OODT (Figure 4.9). In this analysis, we observed a moderate
precision for design problems: 7 out of 12 agglomerations were true indicators
of design problems. Also, three of the top-4 agglomerations were related to one
or more design problems. Therefore, the results for OODT suggest that the
proposed criterion can work well for large software projects in terms of “circum-
scribing” the search for design problems. For instance, consider the OODT’s
crawl component. In OODT, crawl is responsible for listing the contents of a
staging area and submitting products to be persisted by the file management
component. However, as presented in Figure 4.9, there is an agglomeration indi-
cating the presence of a design problem named Scattered Feature. This design
problem takes place when a design concern is scattered across multiple com-
ponents and some of those components are responsible for other independent
concerns. This problem occurs in crawl because functionality related to the
extraction of metadata from products, which should be done by the metadata
component, is mixed with the crawling functionality. The Scattered Feature
problem may affect aspects like maintainability and reusability. This happens
because when the shared concern needs to be changed, all the components
that realize it should be updated and tested. Therefore, the metadata concern
should be better modularized by the metadata component.

The only top-ranked agglomeration unrelated to any design problem is a
smell within a component agglomeration, found in the action component.
In this agglomeration, the number of Feature Envy (FE) smells grew over
time. However, this agglomeration turned out to be a false positive when
judged by the OODT architect. The rationale is that the action component

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 114

was responsible for parsing command-line options, and thus it was expected
to depend on several other classes for this task. The ranking also exposed
several FE-related agglomerations, because this smell was more prevalent in
the OODT versions than other types of smells. Thus, we consider that this
result does not undermine our conclusions.

4.5.6

Overall Conclusion

After analyzing the results of the five scoring criteria the answer to RQ1 is
that: (i) we cannot reject H10 for the first four criteria since none of them
sufficed to rank correctly at least half of the agglomerations across all the
systems, and (ii) we can reject H10 for the fifth criterion, the agglomeration
flood criterion, since it ranked correctly more than half of the agglomerations in
all the systems, including OODT. The use of the latter would help developers to
find most design problems in all the systems with less effort. Developers would
still need to inspect each ranked agglomeration and discard the irrelevant ones.
However, we found that they could discard more than 500 code smells in their
analysis. If developers analyze all these individual code smells, they would need
to carefully inspect dozens or hundreds of smells to eventually find a partial
source of a single design problem.

Furthermore, even when the detection might lead to some false positives, the
automation of the criteria with JSpIRIT contributes to significantly reducing
mistakes and manual effort of developers. With existing solutions or tools to
detect code smells, developers would have to investigate the design information,
code smells, and all their relationships, to luckily find key design problems.
Alternatively, developers could rely on recent tools for detecting design smells
in the code, although their detection capabilities for different design problems
remains to be investigated (Azadi, Fontana and Taibi 2019).

When analyzing why the agglomeration flood was consistently the best cri-
terion, we observed an interesting phenomenon affecting most of the design
problems: groups of smells flocking together tend to better indicate the pres-
ence of design problems, and these groups tend to be increasingly connected
with additional new smells when changes are made in the source code over
time. This phenomenon is often caused by a bad design decision in early sys-
tem versions. This finding can be illustrated by the misuse of Controllers in the
MVC design of MM. In principle, the architects decided to rely on the use of
a single Controller instead of multiple Controllers (Section 4.2.2). There were
only three smells as part of the agglomeration affecting Controllers in the first

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 115

version. These smells were located in the BaseController class. In subsequent
versions, this agglomeration was being “expanded” to several code elements,
including those located in BaseController subclasses and clients. The newly-
introduced smells in the existing agglomeration were all directly caused by the
harmful constraint of having only a single Controller. Therefore, inter-related
smells in the code of evolving software systems (i.e., flood criterion) tend to
be good indicators of design problems.

4.5.7

Threats to Validity

In this section, we present potential threats to the validity of our study and
how we tried to mitigate them.

Internal and External Validity. An internal threat is related to the quality
of the mappings between design problems and code elements. We used a
consistency metric (Guimaraes, Garcia and Cai 2014) to make sure that
the design specification reached a minimum quality. Also, for each target
application, we validated with system experts all the responsibilities and design
components realized by the code elements in the different system versions.
A threat related to the criteria was about the mapping of concerns to code
and the selection of the system versions. Also, the usage of LENOM as the
main metric for the history criterion can introduce bias, because some kinds
of changes are insensitive to LENOM. The main threat to external validity
is that the applications analyzed were relatively small with few instances of
code smells and agglomerations. We mitigated this threat by analyzing the
flood criterion in the context of Apache OODT. Unfortunately, performing
a complete analysis in larger applications (like OODT) is not always viable
because an expert must manually analyze the source code and the blueprints
to find the design problems. Another threat is associated with possible errors in
the detection of the code smells and agglomerations. There is a possibility that
the metric-based detection rules of JSpIRIT might have identified false-positive
smells. We mitigated this threat by applying the same metric thresholds
proposed by Lanza and Marinescu (Lanza and Marinescu 2006), which had
been also used in previous work (Vidal, Marcos and Díaz Pace 2014b, Vidal et
al. 2018, Guimaraes et al. 2018).

Construct and Conclusion Validity. As for construct threats, we can mention
possible errors introduced in the generation of the reference ranking. We par-
tially mitigated this imprecision by involving the original architects and de-
velopers in the inspection process. For all target applications, architects with

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 116

previous experience on the detection of design problems and code smells, vali-
dated and refined the list of problems. The main threat to conclusion validity
refers to the number and characteristics of the target applications. We are
aware that a higher number of applications are needed for generalizing our
findings. However, the information required to conduct this kind of study can
be difficult to obtain. For instance, the activities of identifying and validating
design problems are highly dependent on having the original personnel avail-
able. To account for this threat, we selected applications with different sizes,
purposes, and domains. The applications had different design styles and in-
volved a different set of design problems (with a minor overlapping). Finally,
to mitigate the risks associated with the difficulty in obtaining the required
information, we selected applications in which we had access to the original
developers or expert architects. Also, we selected applications having design in-
formation available in documents, in addition to their source code, to validate
the implementation with the design information.

4.6

Study with Novice Developers

In the previous section, we reported an empirical evaluation of different priori-
tization criteria for agglomerations. This evaluation showed the agglomeration
flood was consistently the best criterion among the 5 criteria. Nevertheless, we
are uncertain whether this prioritization criterion would be useful in practice.
In this section, we present an experiment about the prioritization of agglom-
erations by human subjects. This experiment can help us to understand when
and why the agglomeration flood may be useful in practice. The remainder
of this section is organized as follows. Section 4.6.1 presents the design of the
experiment. Section 4.6.2 gives the results, while Section 4.6.3 discusses the
main findings. Finally, Section 4.6.4 presents threats to validity.

4.6.1

Study Settings

To complement the previous empirical evaluation, we conducted an experiment
with advanced students of Software Engineering to answer the following
research question (RQ2): Does the agglomeration flood criterion rank smell
agglomerations in a similar way as subjects do? RQ2 applies the criterion with
the best performance as determined from RQ1.

To achieve our goal, we performed this experiment in the context of a course
on Software Evolution and Maintenance taught at UNICEN university. The

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 117

experiment was run off-line (i.e., in a laboratory under controlled conditions).
The subjects were undergraduate students of Systems Engineering in their
fourth and fifth years at the university. All students had previous experience
with Java and object-oriented programming. Also, all of them had attended
the course lectures, a tutorial on code smells, agglomerations, and a labora-
tory where they practiced how to refactor different kinds of smells. For these
reasons, it is possible to assume that their experience in code smells and ag-
glomerations was, in general, similar. Although the experiment was conducted
with novice developers, developers with this level of experience are often con-
tributors to open-source projects, including tasks of code and design reviews.
In this context, it is reasonable to assume that these kinds of tasks could be
performed by novice developers.

The experiment was run over SportsTracker,4 which is a Java system for
recording sport activities. This application is open-source and it has been
developed over the last 13 years. The analyzed version of SportsTracker
has around 23K lines of Java code and 183 classes. A first run of JSpIRIT
on SportsTracker reported 99 smells and 13 agglomerations. SportsTracker
was selected for the experiment because it is a well-documented mid-size
application. This helped the subjects to easily understand the source code
and, as a consequence, to focus on the experimental tasks.

A total of 20 students participated in the experiment. Because of time
constraints, we randomly selected five agglomerations of those identified by
JSpIRIT in SportsTracker. Then, we asked each participant to analyze and
rank the selected agglomerations. Each participant had to identify possible
design problems in the source code related to each agglomeration, and then
rank them according to the probability that the agglomeration could generate
a problem of critical maintenance. The list of agglomerations instances was
presented to each participant in random order. Additionally, we made available
the complete source code of the SportsTracker project to the participants.
Participants were allowed to spend as much time as they needed to complete
the task. At the end of their analysis, we asked each participant to fill out a
form, which is available in our complementary material, using a scale ranging
from 1 to 5 – being 1 the most critical agglomeration.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 118

0

2

4

6

8

10

12

14

16

18

20

dialogs OptionDialog listview data Exercise

#1 #2 #3 #4 #5

Figure 4.10: Rankings given to each agglomeration by the developers
4.6.2

Results

Figure 4.10 shows the number of participants that gave a specific ranking for
each agglomeration. A total of 15 participants indicated the dialogs agglomer-
ation as being the most critical one. Moreover, 19 out of 20 participants ranked
this agglomeration in the first or second positions. Similarly, most participants
indicated the data agglomeration as being critical: 5 ranked it in the first
position and 8 in the second one. Also, the participants showed some agree-
ment regarding which agglomerations were the less critical ones. In the case of
Exercise, 15 out of 20 participants ranked this agglomeration in the fourth or
fifth positions. Similarly, OptionDialog was ranked fourth or fifth by 16 out of
20 participants. There were mixed opinions for listview: 7 participants ranked
it in the second position, and 7 participants ranked it in the fourth or fifth
positions (the remaining 6 participants ranked it in the third place).

To measure the level of agreement between participants, we used the Kendall
coefficient of concordance (Kendall’s W). Kendall coefficient ranges from 0 (no
agreement) to 1 (total agreement). After running the test, we obtained W=0.65
with p-value=1.379e-10. This value rises to W=0.739 (p-value=1.278e-09)
when we do not consider the listview agglomeration. Thus, we can say that a
high level of agreement existed for the remaining agglomerations.

To answer to RQ2, we need to compare the participants’ rankings with those
generated by JSpIRIT. When considering only the selected agglomerations,
JSpIRIT generates the following ranking:

1. dialogs

2. OptionDialog
4http://www.saring.de/sportstracker/index.html v 5.7.0

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 119

Subject 1 2 3 4 5 6 7 8 9 10 11 12
W 0.55 0.85 0.55 0.75 0.55 0.8 0.85 0.85 0.7 0.65 0.6 0.8

Subject 13 14 15 16 17 18 19 20 Avg. Std. Dev.
W 0.85 0.85 1 0.65 0.85 0.85 0.95 0.8 0.765 0.13

Table 4.7: Kendall concordance coefficient with JSpIRIT’s ranking

(0.5, 0.6]							(0.6, 0.7]						(0.7, 0.8]							(0.8, 0.9]								(0.9, 1]

8

7

6

5

4

3

2

1

0

Figure 4.11: Kendall W correlations between developer’s ranking and
JSpIRIT’s ranking

3. data

4. listview

5. Exercise

Table 4.7 lists the Kendall coefficients obtained after the comparison. Since
the goal of this study is to empirically test if the flood criterion ranks
agglomerations in a similar way as developers, we state the null and alternative
hypotheses as follows:

– H0: the mean of the Kendall coefficients is less or equal than 0.7.

– H1: the mean of the Kendall coefficients is greater than 0.7.

We choose the threshold of 0.7 for our hypothesis because it is a value that
could be interpreted as a strong agreement. To test our hypothesis, we used
the Wilcoxon test. After running the test, we can reject H0 with a one-tailed
test with a probability of error (or significance level) α = 0.05 and a p-value
of 0.007126. This means that there is enough statistical evidence to claim that
the mean of the Kendall coefficients is greater than 0.7. This finding is partially
explained by the fact that 13 out of 20 W values are in the range 0.7-1 (Figure
4.11). Along this line, we can answer our RQ positively by saying that the
agglomeration flood criterion ranks the agglomerations in a similar way as the
subjects do.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 120

4.6.3

Discussion

As presented in the previous section, most participants of the study ranked
the agglomerations similarly to the ranking provided by JSpIRIT using the
flood criterion. Therefore, we have evidence that ranking agglomerations with
the flood criterion may help developers to focus the analysis on agglomerations
that are more likely to indicate design problems. However, the statistical tests
cannot reveal why the rankings of participants are similar to the flood criterion
ranking. Thus, to provide a deeper understanding of this matter, we conducted
a manual analysis of the five agglomerations considered in this study. In this
analysis, we focused on understanding the characteristics that increase the
chances of an agglomeration to indicate a design problem. We investigated
(i) the information provided by participants to justify their rankings, (ii) the
algorithm used in our flood criterion, and (iii) the internal characteristics of
each agglomeration (e.g. type of each smell, number of smells, implemented
functionalities, etc.).

Growing agglomerations as indicators of Feature Overload. Starting
with the highest-ranked agglomeration, we analyzed the dialogs component.
This component is affected by a Smells within a component agglomeration.
Some classes from the dialogs component, such as class OverviewDialog, for
example, are affected by smells like Brain Method, Dispersed Coupling, In-
tensive Coupling, and Feature Envy. These smells indicate that, despite being
GUI classes, classes in the dialogs component implement functionalities that
should be modularized in another component. For example, method addEx-
erciseTimeSeries from class OverviewDialog – which is affected by the Brain
Method and Dispersed Coupling smells – calculates exercise values such as
distance, duration, and average speed. This method is implementing a busi-
ness rule that should not be coupled to the GUI implementation. As a result,
the dialogs component is overloaded with GUI functionalities and business
functionalities. This design problem is known as Feature Overload.

The flood criterion was able to prioritize this agglomeration as being a strong
indicator of design problems because classes overloaded with two or more
concerns tend to aggregate more smells as the system evolves. This happens
because multiple functionalities induce the implementation of bigger classes
and bigger methods (Brain methods). Moreover, the evolution of components
affected by this type of design problem introduces multiple dependencies that
would not exist if the component was not overloaded with functionalities.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 121

Those undesired dependencies are often linked to smells like Feature Envy
and Intensive Coupling.

Are bigger agglomerations strong indicators of design problems?
The data agglomeration, which is a Smells within a component agglomeration,
was highly ranked by several participants of our experiment. However, there
is no design problem in the SportsTracker system involving classes of this
agglomeration. Thus, after a qualitative analysis, we observed that the size of
agglomerations – i.e., the total number of code smells – plays an important role
both for manual and automated prioritization of agglomerations. The bigger
an agglomeration is, the more impressed a developer may become. As a result,
she may think that bigger agglomerations are strong candidates to indicate a
severe design problem.

A similar effect may occur with prioritization criteria like the flood criterion.
Along with the evolution of a system, bigger agglomerations may aggregate
more and more smells. As a consequence, such agglomerations are considered
the most relevant ones according to the heuristics defined in the flood criterion
(Section 4.3.5). At first, it is acceptable to expect any big agglomeration as
being a strong indicator of design problems. Nevertheless, an agglomeration
may be overloaded with false positive code smells, which are code smells that
do not contribute to the identification of any design problem. Therefore, the
prioritization criterion would fail in prioritizing the most relevant agglomera-
tions, since the results of a criterion – such as the agglomeration flood – are
highly influenced by the number of false positive smells. This is also important
from the perspective of practitioners, as they may lose confidence in a tool
that prioritizes agglomerations with many false positives. In fact, according to
Sousa et al. (Sousa et al. 2018), developers tend to lose confidence in symptoms
that, at least once, failed to reveal design problems. Therefore, a reduction of
false positives, which is a challenging research problem, must be achieved to
increase the practical impact of our prioritization criteria.

4.6.4

Threats to Validity

The first threat to validity is about the sample of participants. We selected
a total of 20 students, which may not be enough for generalizing our results.
Moreover, the lack of experienced programmers among participants might have
also affected the validity of our results. We tried to mitigate this threat by only
selecting students with previous experience with Java. Also, we conducted

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 122

training sections with all participants about fundamental concepts, such as
code smells and design problems.

Another threat is related to the particular software project that we used for
running the experiment. The tasks may have been hampered by the lack of
knowledge of the participants about the project. We tried to mitigate this
threat by selecting a small and low complexity system.

Finally, there is a threat related to possible misunderstandings during the
study. We mitigated this threat by preparing the participants before the
experiment. We explained how the experiment would proceed and we asked
them to clarify all doubts before starting with the experiment.

4.7

Concluding Remarks

As far as we are aware of, no previous work supports the prioritization of
smell agglomerations to assist developers to focus on a limited set of potential
sources of design problems. The prioritization is based on 5 scoring criteria that
have the goal of ranking first the agglomerations that likely indicate locations
of design problems. To rank agglomerations, the criteria explored different
types of information that are typically available in software projects, including
(partial) lists of design concerns, (approximate) component structure, and
change history. As a proof-of-concept, the scoring criteria were implemented
in the JSpIRIT tool.

To assess and compare the effectiveness of the prioritization criteria, we
conducted a fist study based on the analysis of four systems, one of them
with a very large size (OODT). In this study, we found that, although the
effectiveness of most criteria depended on the characteristics of each project,
the use of the agglomeration flood criterion was consistently effective across
all the projects, including OODT. The other criteria did not present a good
correlation in certain projects. For instance, in two projects, the use of design
concerns alone did not suffice to pinpoint agglomerations related to design
problems. We observed that the criterion based on design concerns is effective
only in projects where developers can provide complete coverage of the design
concerns. In our dataset, this was the case of MM, where the specification of
the design concerns covered 84% of the classes in the source code. However,
even for this project, it would be useful to also rely on the use of the flood
criterion as: (i) it had a strong correlation with design problems in this system,
and (ii) it helped to spot a different list of design problems, not detected with

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 123

the criterion of design concerns. Along this line, another experiment using the
flood criterion showed that the ranking provided by the criterion for a given
application is similar to the ranking given by a group of developers.

In a second study with subjects, we observed that different types of design
problems may require different prioritization criteria. The flood criterion, for
example, presented good results for the identification of design problems like
the Feature Overload. However, this criterion is unable to capture many other
types of design problems. Our analysis also revealed that some agglomerations
are overloaded with false positives, which impacts both automated and manual
prioritization. Thus, we conjecture that developers need better tool assistance
to analyze agglomerations. This can be achieved by (i) improving the under-
lying techniques used for detecting code smells; and (ii) providing multiple
and diverse filtering and prioritization criteria for capturing different types of
design problems.

We believe that these findings have practical implications. For instance, the
choice among the relevance-based, concern-based, scenarios-based, history-
based and flood-based criteria has tradeoffs (Vidal, Marcos and Díaz Pace
2014b). The usage of the criterion of design concerns may be preferred in
several cases, even at the cost of being an inferior indicator of design problems,
because problems can be spotted already in the first versions when they
are usually easier to be dealt with. Further studies could investigate how
the use of two or more scoring criteria could be combined to get better
indicators of design problems. In fact, in our study, using design concerns
and agglomeration flood in conjunction would lead to the identification of
almost 90% of all design problems affecting the three first systems: HW, MM,
and SDB. Further work can investigate, for example, which combination of
criteria tends to be the most effective across a larger sample of projects.
For instance, the fact that both the modifiability scenarios and the system
history are based on code changes suggests that scenarios affecting previous
versions of a system can impact subsequent versions and their agglomerations
(which is hinted by the performance of the flood criterion). As regards history-
based information, we envision the usage of metrics other than LENOM as
an alternative proxy for maintenance effort. We intend to investigate other
types of code-smell agglomerations (Oizumi et al. 2016) to check if they lead
to better correlations.

Finally, we would like to mention that the identification of agglomerations as
likely indicators of design problems brings the issue of system refactoring to
alleviate those problems. However, even when developers know about a critical

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 4. Filtering and Ranking Design-Related Agglomerations of Code
Smells 124

agglomeration, envisioning a refactoring solution for it is often not trivial from
a design perspective. Along this line, appropriate refactoring tools for design
smells still need to be investigated. Anyway, if the practical decision is not to
refactor the agglomeration, developers can still perform careful testing of the
affected classes, avoid adding more logic to them, and also plan alternative
evolution paths for the system.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

5

On the Density and Diversity of Design Problem Symptoms
in Refactored Classes: A Multi-Case Study

Refactoring is a software development activity that is intended to improve
dependability-related attributes such as modifiability and reusability. Despite
being an activity that contributes to these attributes, deciding when apply-
ing refactoring is far from trivial. In fact, finding which elements should be
refactored is not a cut-and-dried task. One of the main reasons is the lack
of consensus on which characteristics indicate the presence of design prob-
lems.

Chapters 3 and 4 showed that the use of multiple symptoms (so called
agglomerations in previous chapters) is an effective strategy for finding DPs.
Thus, in this chapter, we evaluated whether the density and diversity of
multiple automatically detected symptoms can be used as consistent indicators
of the need for refactoring. To achieve our goal, we conducted a multi-case
exploratory study involving 6 open source systems and 2 systems from our
industry partners. For each system, we identified the classes that were changed
through one or more refactorings. After that, we compared refactored and
non-refactored classes with respect to the density and diversity of design
problem symptoms. We also investigated if the most recurrent combinations
of symptoms in refactored classes can be used as strong indicators of design
problems.

Our results show that refactored classes usually present higher density and
diversity of symptoms than non-refactored classes. However, refactorings that
are performed by developers in practice may not be enough for reducing de-
sign problems, since the vast majority had little to no impact on the density
and diversity of symptoms. Finally, we observed that symptom combinations
in refactored classes are similar to the combinations in non-refactored classes.
Thus, combinations alone may not be enough for consistently finding DPs.
Based on our findings, we elicited an initial set of requirements for automat-
ically recommending refactorings. Such requirements are based both on the

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 126

results presented in this chapter and on results obtained in Chapters 3 and
4.

The results of this study were published in a series of papers. First, we pub-
lished a short paper at the negative results track of the International Con-
ference on Program Comprehension (ICPC) (Eposhi et al. 2019). This paper
included only an initial investigation with our industry partners. Next, we
published a full paper in the International Symposium on Software Reliability
Engineering (ISSRE) (Oizumi et al. 2019). The ISSRE paper contains all the
results presented in this chapter. Finally, we also published a position paper in
the Doctoral Symposium track of ISSRE (Oizumi 2019). Such a paper was fo-
cused in the requirements for refactoring recommendation techniques (Section
5.5).

5.1

Introduction

As software systems evolve, they can go through changes that can lead to
their design problems. Unfortunately, the design problems can lead software
systems to the discontinuation or at least either significant maintenance
effort or the complete redesign (Godfrey and Lee 2000, Gurp and Bosch
2002, MacCormack, Rusnak and Baldwin 2006, Schach et al. 2002). This
design problem occurs when stakeholders make decisions that have a negative
impact on dependability-related attributes (Li, Avgeriou and Liang 2015, Lim,
Taksande and Seaman 2012, Besker, Martini and Bosch 2017). An example of
this scenario is when a stakeholder decides to create a common system interface
to provide access to different unrelated services. This decision is likely to harm
the system maintainability and extensibility (Martin 2002).

Developers constantly have to improve the internal design of software systems
to, in the worst case scenario, repair a deteriorated code. For this purpose,
they have been relying on one of the most common activities applied during
software maintenance and evolution: refactoring (Fowler 1999). Refactoring is
a transformation in the source code design without changing the functional
behavior of the system (Fowler 1999, Murphy-Hill and Black 2008b, Murphy-
Hill, Parnin and Black 2012). A commonly applied refactoring tactic is known
as root canal refactoring, which involves a process of exclusively applying
refactorings to reduce the design problems (Murphy-Hill and Black 2008b,
Murphy-Hill, Parnin and Black 2012). Despite being an activity aimed at
improving dependability-related attributes of the system’s design, deciding
when applying root canal refactoring is not trivial (Bavota et al. 2014).

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 127

Developers need to know where they should refactor the source code; more
specifically, they have to find first what code elements (packages, classes, meth-
ods, and the like) need to be refactored to reduce the design problems (Bavota
et al. 2014). To this end, developers can find and monitor indicators of design
problems in the source code, i.e., they need to rely on symptoms of design
problems (Sousa et al. 2018). Code smell is an example of a symptom. It is
a structure in the system implementation that represents a surface indication
of design problems (Fowler 1999). An example of code smell is Long Method,
which indicates a method that is too long to understand (Fowler 1999).

After the design problem symptoms have been found, developers can reduce
the design problems by applying efactorings (Murphy-Hill and Black 2008b).
Hence, based on results of our previous chapters, one might expect that de-
velopers often apply refactoring in code elements that contain either multiple
symptom instances (density) or different types of symptoms (diversity). Unfor-
tunately, there is little information and no much consensus whether the density
and diversity of multiple automatically detected symptoms can be consistent
indicators of the need for refactoring.

Existing studies are mostly focused in investigating the impact of any refac-
toring kind in the density of symptoms (Bavota et al. 2015), (Cedrim et al.
2017). However, none of them investigated the relation of refactorings with the
density and diversity of symptoms. Thus, we investigated to what extent the
density and diversity of symptoms indicate the need for refactoring. We also
investigated whether refactoring impacts the density and diversity of symp-
toms.

To better understand the density and diversity of design problem symptoms,
we conducted a multi-case exploratory study in which we observed the refac-
torings applied by developers. This study involves eight software system: six
open source systems and two systems from our industry partners. For each
software system, we found the classes that were changed through one or more
refactorings, and then we collected the design problems symptoms in all classes
from the system. After that, we compared refactored and non-refactored classes
with respect to the density and diversity of symptoms. We also evaluated the
impact of refactorings on the density and diversity of these detected symp-
toms. Finally, we investigated if the most recurrent combinations of symptoms
in refactored classes are different from the recurrent combinations in non-
refactored classes.

Upon data analysis, we found that refactored classes usually present higher

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 128

density and diversity of symptoms than other classes. After investigating what
happens with the refactored classes, we did not find a consistent reduction
in the density or in the diversity of symptoms, leading us to conclude that
refactorings cause little to no positive effect in design problem symptoms. In
fact, the effects of refactorings are practically nonexistent in the core classes
that are constantly modified. We also found that the recurrent combinations
of symptoms in refactored classes are similar to the recurrent combinations
in non-refactored classes. Thus, the combinations by themselves are not good
indicators of design problems. Based on such findings, we elicited an initial set
of requirements for automatically recommending refactorings.

5.2

Background

5.2.1

Design Problem

Design problems occurs when stakeholders make decisions that negatively
impact dependability-related attributes (Li, Avgeriou and Liang 2015), (Lim,
Taksande and Seaman 2012), (Besker, Martini and Bosch 2017). An example of
design problems is the so called Fat Interface (Martin and Martin 2006). This
form of design problems occurs when a single interface provides multiple and
unrelated operations, making it difficult to use and increasing the chance of
introducing defects to its clients. Due to the negative impact caused by design
problems, software systems have often been discontinued or redesigned when
design problems was allowed to persist (MacCormack, Rusnak and Baldwin
2006). Thus, to be able to maintain the system’s quality, developers need to
identify and to confirm the existence of design problems. Next, we present an
example to illustrate how dependability-related attributes may be impacted
by design problems.

Figure 5.1 shows a partial view of the OpenPOS system before and after a
degraded design has been refactored. OpenPOS is a system that provides sales
features. One of the functionalities of OpenPOS comprises the generation
of payment slips. In the country where OpenPOS is used, payment slips
serve for clients to make payments at any bank. Developers of OpenPOS
implemented this feature in the PaymentSlip sub-component. To protect
system information, this sub-component was strongly dependent from the
Authentication component.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 129

OpenPOS

PaymentSlip Authentication

FinancialManagement ...

Before Refactoring

After Refactoring

SystemZ

SystemX

SystemY

X

X

X

SystemZ

SystemY PaymentSlip

«interface»
Authentication

X
Unfeasible use

Use

Implementation

CompX

System or
Component

Legend:

«interface»
InterfaceZ

Interface

OpenPOS

Figure 5.1: Example of design problem impacting reusability
Unfortunately, the strong dependency with the Authentication component led
to a side effect on the reusability of PaymentSlip sub-component. Reusability
is a sub-category of maintainability that indicates the degree to which a com-
ponent can be re-used in two or more systems (ISO-IEC 25010 2011). Since
PaymentSlip was so coupled to the Authentication component, it could not
be reused in other systems. In this context, developers have to refactor the
PaymentSlip sub-component to reduce the coupling with Authentication com-
ponent. Additionally, refactoring this kind of design problems is fundamental
to avoid code duplication among systems and rework. In Section 5.2.3, we will
explain the design obtained after the refactoring.

5.2.2

Design Problem Symptoms

Sousa et al. (Sousa et al. 2018) identified five categories of symptom upon
which developers frequently rely to identify design problems. Similarly to
other related work (Yamashita et al. 2015, Macia et al. 2012a, Oizumi et al.
2016, Oizumi et al. 2018), they observed that developers tend to combine
multiple symptoms, taking into account dimensions such as diversity and

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 130

density to decide if there is a design problem or not. In this work, we selected
a sub-set of two symptom categories that can be automatically detected
using state-of-the-practice tools, which are the code smells and the principle
violations.

Code smell is a surface indicator of possible design problems (Fowler 1999).
This symptom category have been extensively investigated by different re-
searchers (e.g., (Lanza and Marinescu 2006, Murphy-Hill and Black 2010, Ya-
mashita and Moonen 2012, Moha et al. 2010)). Recent studies (Yamashita et
al. 2015, Oizumi et al. 2016, Oizumi et al. 2018, Sousa et al. 2018) suggest
that combining multiple code smells may improve the precision when identify-
ing design problems. An example of code smell type is the Long Method. This
type of smell usually leads to design problems related to modifiability.

In object-oriented systems, design problems usually impact object-oriented de-
sign characteristics, such as abstraction, encapsulation, modularity, and hierar-
chy. Therefore, the second symptom category we used comprises the principle
violations, which are symptoms that may indicate the violation of common
object-oriented principles (Martin and Martin 2006). An example of object-
oriented principle is the Single Responsibility Principle (SRP). The SRP deter-
mines that each class should have a single and well defined responsibility in the
system (Martin and Martin 2006). An example of symptom that may be used
for finding SRP violations is the Insuficient Modularization (Suryanarayana,
Samarthyam and Sharma 2014). This symptom occurs in classes that are large
and complex, possibly due to the accumulation of responsibilities.

Table 5.1 shows the descriptions for the 17 types of principle violations and
10 types of code smells used in this study. The descriptions are based on
the taxonomy of symptoms provided by Sharma and Spinellis (Sharma and
Spinellis 2018, Sharma 2020).

5.2.3

Refactoring

Refactoring consists in transforming the source code design without changing
the functional behaviour of the system (Fowler 1999). Thus, we consider
that refactoring is any design software change that is aimed at improving
dependability-related attributes of the system’s design.

According to Murphy-Hill and Black (Murphy-Hill and Black 2008b), refac-
toring can be classified into two tactics, which are floss refactoring and root
canal refactoring. On one hand, floss refactoring is characterized by refactoring

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 131

Table 5.1: Short description for the symptoms used in this study
Symptom Type Description

Category 1 - Code Smells
Abstract Function
Call From
Constructor

A constructor that calls an abstract method

Complex Conditional A conditional statement that is complex
Complex Method A method that has high cyclomatic complexity
Empty Catch Block A catch block of an exception that is empty
Long Identifier An identifier that is excessively long
Long Method A method that is too long to understand
Long Parameter List A method that accepts a long list of parameters
Long Statement A statement that is excessively long
Magic Number When an unexplained number is used in an expression
Missing Default A switch statement that does not contain a default case

Category 2 - Principle Violations
Broken
Hierarchy

A supertype and its subtype that conceptually do not
share an “is a” relationship

Broken
Modularization

When data and/or methods that should have been into a
single abstraction are spread across multiple abstractions

Cyclic Dependent
Modularization

When two or more abstractions depend on each other
directly or indirectly

Cyclic
Hierarchy

A supertype in a hierarchy that depends on any of its
subtypes

Deep Hierarchy An inheritance hierarchy that is excessively deep
Deficient
Encapsulation

The accessibility of one or more members of an
abstraction is more permissive than actually required

Hub Like
Modularization

An abstraction that has dependencies with a large
number of other abstractions

Imperative
Abstraction When an operation is turned into a class

Insufficient
Modularization

An abstraction that has not been completely
decomposed

Missing
Hierarchy

When a design segment uses conditional logic instead
of polymorphism

Multifaceted
Abstraction

An abstraction that has more than one responsibility
assigned to it

Multipath
Hierarchy

A subtype that inherits both directly as well as indirectly
from a supertype

Rebellious
Hierarchy

A subtype that rejects the methods provided by its
supertype(s)

Unexploited
Encapsulation

A client class that uses explicit type checks instead of
exploiting the variation in types already encapsulated
within a hierarchy

Unnecessary
Abstraction An abstraction that is actually not needed in the system

Unutilized
Abstraction An abstraction that is left unused

Wide Hierarchy An inheritance hierarchy that is too wide

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 132

changes intermingled with other kinds of source code changes, such as adding
new features and fixing bugs. The aim of floss refactoring is to keep design
quality as a means to achieve other goals. On the other hand, root canal refac-
toring aims at exclusively reducing design problems. A root canal refactoring
consists of only refactoring changes; it is not performed in conjunction with
other non-refactoring changes. Thus, in this chapter, our focus is on root canal
refactorings as they are explicitly aimed to reduce design problems. Thus, from
now on, whenever we talk about refactoring in this chapter, we’ll be referring
to root canal refactoring.

To illustrate our definition of refactoring, let’s return to the example of
Figure 5.1. As previously discussed, multiple different systems of the same
company began to require a payment slip feature. Therefore, developers were
asked to remove the reusability design problems by refactoring the PaymentSlip
sub-component. The refactoring consisted of introducing an interface for
authentication. This way, each system that needs to use the PaymentSlip
component must specify an authentication component that meets the interface
specifications required by PaymentSlip. After refactoring the PaymentSlip sub-
component, besides fixing the design problems, it is expected the removal of
symptoms such as the Hub-Like Modularization (Table 5.1).

5.3

Study Design

5.3.1

Goal and Research Questions

Several studies (e.g., (Murphy-Hill and Black 2008a, Le et al. 2018, Xiao et
al. 2016)) have proposed and evaluated techniques for the detection of design
problems. Nevertheless, in practice, most of them are not applied by developers.
One of the issues of existing techniques is the high amount of false positives
(Oizumi et al. 2018, Macia et al. 2012b), which may lead developers to have
little confidence in the presented symptoms. Another problem is that most
techniques are based on a single category of symptom. However, according
to the literature, developers may combine multiple and diverse symptoms
for confirming the existence of a design problems. In this sense, there are
techniques that work with multiple symptoms (Macia et al. 2012a, Oizumi et
al. 2018). Still, unlike what was observed in the study of Sousa et al. (Sousa
et al. 2018), existing techniques only combine symptoms of the same category
(e.g., code smells). In addition, their efficiency to reveal classes impacted by

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 133

design problems has not been exhaustively validated. Finally, there is little
evidence on the impact of refactoring on symptoms such as principle violations.
Thus, in this chapter, we aim at evaluating the relation of refactorings with
the occurrence of multiple and diverse design problems symptoms. To achieve
our goal, we defined the following research questions:

RQ1. Are the density and diversity of design problem symptoms in (root
canal) refactored classes different from the density and diversity in other
classes?

With RQ1, we aim at understanding if the design problem symptoms are
denser and more diverse in refactored classes when compared to other classes.
As refactorings should be applied to classes impacted by design problems
(Murphy-Hill and Black 2008b), we need to know if such classes, before
being refactored, present higher density and diversity of symptoms than most
regular classes. Answering this question will be helpful for evaluating whether
combining multiple and diverse symptoms is indeed an effective strategy for
identifying and confirming the existence of design problems.

RQ2. Do classes modified by refactorings present design improvement in
the medium term?

With RQ2, we want to observe whether the expected improvements of refac-
torings impact the density and diversity of symptoms. This question will help
us to understand if symptoms disappear, decrease, or increase in the medium
term after the application of refactorings. In this context, we consider medium
term as being the next release after refactoring. With this research question we
will also be able to better understand if the refactorings performed in practice
have been effective, according to the measurement provided by the investigated
symptom categories.

RQ3. Are the combinations of symptoms in (root canal) refactored classes
different from the combinations in other classes?

The aim of RQ3 is to investigate whether combinations of symptoms can be
used to differentiate refactored classes from other classes. In addition, this
research question will help us to understand which combinations of code smells
and principle violations are often refactored by the developers of our target
systems. Based on the findings, it may be possible to prioritize degraded
classes based on the combinations of symptoms that developers refactor more

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 134

Table 5.2: Characteristics of target systems
Name Platform Domain Size

(LOC)
of

Commits Releases

Partners’ Systems
OpenPOS .Net/C# Enterprise 97,000 3,318 67, 68
UniNFe .Net/C# Enterprise 492,000 2,373 345, 362

Open Source Systems
Achilles Java Tool 83,124 1,188 1.0-beta, 3.0.0, 5.1.0

Ant Java Tool 137,314 13,331 15_ 141, 163_ 170,
180_

Derby Java Database 1,760,766 8,135 10.3.2.1, 10.5.3.0,
10.7.1.1

Elasticsearch Java Engine 578,561 23,597 1.2.2, 1.5.0, 2.3.0
MPAndroidChart Android/Java Library 23,060 1,737 1.0.1, 2.1.0, 2.2.4

Tomcat Java Middleware 668,720 18,068
7.0.0-RC1, 7.0.8,
7.0.35, 7.0.57,
7.0.67, 8.5.9

often.

To answer our research questions, we conducted a case study involving multiple
and diverse software systems. We collected and analyzed source code changes
due to refactoring , i.e., changes that were exclusively dedicated to fixing design
problems. After that, we collected multiple types of code smells and principle
violations and conducted our data analysis. Next, we provide details about the
target systems and about our procedures for data collection and analysis.

5.3.2

Target Systems

Table 5.2 shows the target systems of this chapter. Columns two to five of
Table 5.2 show respectively the: platform, the system domain, the size in Lines
of Code (LOC), and the number of commits. Column six shows the releases of
each system in which we collected design problem symptoms.

Open Source Systems. As presented in Table 5.2, we selected six open
source systems for this study: Apache Ant, Apache Derby, Apache Tomcat,
Achilles, Elasticsearch, and MPAndroidChart. To select these systems, we first
selected 50 open source systems in which we applied a set of filtering criteria
(Section 5.3.3). We aimed at selecting a set of representative systems from
different domains.

Partners’ Systems. To make our data sample more heterogeneous, we se-
lected two C# systems from our industry partners. The first system is Open-
POS, a desktop system that provides sales features, such as sales registration
and cashier closing. UniNFe is a background service that sends and receives
electronic invoices. These projects are suitable for this study because each of

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 135

them presents more than one hundred classes that were refactored due to design
problems. In addition, their refactorings are documented in specific refactoring
tasks. Finally, we had full access to their original developers for questions and
clarifications.

5.3.3

Data Collection and Analysis

We followed three main steps for data collection and analysis: (a) finding
refactorings, (b) collecting information about design problems symptoms, and
(c) running data analysis. Next we present details about each step.

Finding refactorings In the first step, we searched for source code changes
that were exclusively intended to fix design problems. To achieve this goal,
we adopted different procedures for the partners’ systems and for the open
source systems. To select the open source systems, we started by analyzing a
database containing information about 50 open source projects. We created
and validated this database in previous studies (Cedrim et al. 2017, Bibiano
et al. 2019) in which we collected information about the projects’ history of
changes, commit messages, and performed refactorings. We used Refactoring
Miner 0.2.0 (Tsantalis et al. 2018) to automatically detect refactorings of 11
different types. Due to space constraints, the description of refactoring types
are presented in our replication package1.

Since Refactoring Miner is unable to differentiate root canal from floss refac-
toring, we identified and filtered the refactorings based on the following filter:
(1) the selected refactorings should be occurring in groups of two or more refac-
torings, and (2) the refactorings withing a group should have been detected in
the same commit or in sequential commits. As a result, this filter has helped us
to find refactorings that changed multiple source code structures and, there-
fore, had a greater chance of being refactorings. After filtering, we discarded
the systems with less than 10 refactored classes since it would be a very small
sample of classes. In this way, we have reduced our sample of systems to the
6 open source systems presented in Table 5.2. We also tried to apply a sec-
ond filter by considering the commit message associated with each refactoring
change. With this filter we would only select the refactorings for which the
associated commit message contained any variation of the word refactor (e.g.,
refactoring, Refactor, etc). However, the resulting sample of refactorings was
very small, which meant that the results would not be statistically significant.

1http://wnoizumi.github.io/ISSRE2019/

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 136

Thus, we decided to use this second filter only as a parameter of comparison
for the results obtained with the first filter.

To find refactorings in partners’ systems, we asked two original developers of
each project to provide us with a list of tasks aimed at refactoring. After that,
we conducted an automated search in the issue tracking system to complement
the lists of tasks provided by developers. Our automated search was based
on a set of keywords that are often associated with design problems (e.g.,
structure, interface, and duplicate). We have defined those keywords based
on the analysis of task descriptions from 50 open source projects from our
previously mentioned database. These keywords often occur in the description
of tasks that aim at improving dependability-related attributes. After the
automated search with the keywords, we, together with the two developers,
analyzed the resulting list of tasks. We discarded those that could not be
characterized as refactorings.

Collecting information about design problem symptoms As presented in
Section 5.2, we collected two categories of design problems symptoms: code
smells and principle violations. We used the Designite tool to collect these
symptoms (Sharma et al. 2016). We selected this tool because it detects the
same set of symptoms for both C# and for Java programs, thus, keeping the
consistency regarding the detection strategies for both programming language.
Detailed descriptions, detection strategies, and thresholds for all types of
symptoms are available in our replication package.

As illustrated in Figure 5.2, we collected the symptoms in the last release of
the system before refactorings and in the first release after refactorings. The
releases presented in the last column of Table 5.2 are the ones that we collected
the symptoms. We are aware that this makes refactoring changes to be mixed
with other changes. Nevertheless, we have chosen this approach intentionally,
since we wanted to evaluate if the possible design improvements caused by
refactorings persist in the medium term.

Running data analysis After collecting data about tasks, source code changes
and symptoms, we conducted the data analysis to answer our research ques-
tions. To answer RQ1, we divided our dataset into two groups: Refactored
Classes and Other Classes (or simply, Others). The first one is composed by
all classes for which we found one or more refactorings. The second group is
composed by all classes in the systems that are not in the former group.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 137

Release
0.2.0

rev.
123

rev.
124

rev.
140

rev.
141

rev.
142

Release
0.2.5

Symptoms
Before

Refactoring

Symptoms
After

Refactoring

Ref. 1 Ref. 3

rev.
130

Ref. 2

Data Analysis

RQ1 - Refactored vs. Others
RQ2 - Before vs. After Refactoring
RQ3 - Combinations of Symptoms

Figure 5.2: Collection of symptoms for data analysis
For both groups, we calculated the density and diversity of symptoms. Density
represents the number of individual instances of symptoms occurring in a class,
while diversity represents the number of different symptom types occurring in
a class. We compared the density of both groups by computing the code smell
and principle violation distributions. We compared the diversity of symptoms
by calculating the distribution of symptom types quantity. As previously
explained, we considered 10 types of code smells and 17 types of principle
violations. Based on the collected data about density and diversity, we used
the Mann-Whitney Wilcoxon statistical test to check whether there was a
significant difference in the distributions presented by both groups.

To answer RQ2, we collected and compared the same data used to answer RQ1.
The difference here is that we compared the density and diversity of classes
collected in releases before and after the execution of refactorings. Hence, for
this question, we only considered classes that were changed by refactorings.
Additionally, with the help of developers from our industry partners, we
conducted further analysis to better understand the obtained results.

Finally, to answer RQ3, we performed a threefold analysis. First, we inves-
tigated the number of classes affected by 170 pairwise combinations of code
smell types with principle violation types. Second, we generated two rank-
ings for the combinations based on the number of refactored (1st ranking) and
non-refactored (2nd ranking) classes affected by each combination. Then, we
applied the Spearman’s rank correlation rho statistical test to compare both
rankings. Finally, we evaluated the relevance of symptom combinations for
recommending refactorings. Our rationally for combining symptoms from dif-
ferent categories is that they could be stronger indicators of design problems.
We also tried to investigate combinations with more than two symptoms. How-
ever, those combinations were rare and not observed in more than two systems.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 138

Conversely, combinations with only two symptoms from different categories oc-
curred frequently.

5.4

Results

5.4.1

Density and Diversity as Consistent Indicators

Table 5.3: Mean density of symptoms in refactored classes and in others
Category

Mean Density of Symptoms
OpenPOS UniNFe Achilles Ant Derby Tomcat Elasticsearch MPAndroidChart

Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others
Before Refactoring

P. Violation 0.806 0.756 2.238 1.134 1.632 1.073 1.802 1.068 1.802 1.068 1.801 1.032 1.632 1.042 1.250 1.138
Code Smell 35.843 4.102 41.642 1.415 16.775 4.578 10.985 1.810 10.985 1.810 23.72 3.731 14.475 6.380 21.62 9.317

After Refactoring
P. Violation 0.725 0.768 2.404 1.497 1.666 1.043 1.921 1.070 1.921 1.070 1.794 1.020 1.557 1.082 1.625 1.127
Code Smell 35.462 3.765 41.357 1.719 32.055 4.463 12.156 1.840 12.156 1.840 21.339 3.691 24.242 7.440 18.687 8.475

Table 5.3 shows the mean density of symptoms in the classes of both groups
(refactored and others). Each line shows, for a symptom category, the mean
density of symptoms in refactored classes (Ref.) and in other classes (Oth-
ers). This information is provided for each system before and after refactor-
ings.

For code smells, we observed a notable difference when comparing refactored
classes with others in all target systems. This difference indicates that the
density of smells can be used as a strong indicator of design problems. For
the most extreme cases (OpenPOS and UniNFe), the density of smells was
more than 8 times higher in refactored classes. Analyzing the dataset, we also
observed several outliers in the distribution of code smells for Others. Many
of these outliers may be classes affected by design problems that were not
changed in refactorings.

Principle violations, in general, were denser in refactored classes when com-
pared to other classes. However, for all target systems the observed difference
was small. The system that presented the greatest difference regarding princi-
ple violations was the UniNFe, where the density of violations was almost two
times higher in refactored classes. Nevertheless, in all target systems, the den-
sity of principle violations in refactored classes (before refactoring) was higher
than in other classes.

We applied the Mann-Whitney Wilcoxon test to check whether there was
a statistically significant difference in the density distribution. Table 5.4
summarizes the results for all systems. The results related to density, in the
context of RQ1, are presented in the second (for principle violation) and fourth

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 139

Table 5.4: p-values of the Mann-Whitney Wilcoxon Test for research questions
RQ1 and RQ2

System Principle Violation Code Smell
Density Diversity Density Diversity

RQ1 - refactored classes and others
OpenPOS 0.18 0.12 <0.01 <0.01
UniNFe <0.01 0.03 <0.01 <0.01
Achilles <0.01 0.01 <0.01 0.01
Ant <0.01 <0.01 <0.01 <0.01
Derby <0.01 <0.01 <0.01 <0.01
Elasticsearch <0.01 0.01 <0.01 <0.01
MPAndroidChart 0.76 0.52 <0.01 0.04
Tomcat <0.01 <0.01 <0.01 <0.01

RQ2 - before and after refactoring
OpenPOS 0.62 0.68 0.54 0.32
UniNFe 0.98 0.88 0.72 0.68
Achilles 0.72 <0.01 0.06 0.06
Ant 0.33 0.30 0.59 0.54
Derby 0.63 0.61 0.96 0.46
Elasticsearch 0.73 <0.01 0.10 <0.01
MPAndroidChart 0.35 <0.01 0.64 0.07
Tomcat 0.96 0.11 0.20 0.34

(for code smell) columns and in lines four to eleven of Table 5.4. A p-value
smaller than 0.05, means that the distribution of density of symptoms in
refactored classes is different from the distribution of density in other classes.
The raw data and the detailed results of this statistical test are available in
our replication package.

The tests showed that, for all systems, the smell density in refactored
classes was significantly different from the smell density in other
classes. On the other hand, when we ran the same test for the density of
principle violations, we cannot reject the null hypothesis for the OpenPOS
and MPAndroidChart systems. Therefore, the density distribution of principle
violations in refactored classes may be equal to the density distribution of
principle violations in other classes for some systems. For MPAndroidChart,
this result is partially explained by the sample size, since we found only 18
refactored classes in this system. The explanation for OpenPOS, is the fact that
its refactorings were more focused on fixing modifiability design problems. Such
issues generally do not manifest themselves in the form of principle violations,
since they do not affect aspects such as abstraction and hierarchy. In any case,
to achieve greater generalization, the density of principle violations must be
further investigated in the context of other systems.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 140

Table 5.5: Mean diversity of symptoms in refactored classes and in others
Category

Mean Diversity of Symptoms
OpenPOS UniNFe Achilles Ant Derby Tomcat Elasticsearch MPAndroidChart

Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others Ref. Others
Before Refactoring

P. Violation 0.650 0.701 1.166 0.815 0.500 0.218 1.157 0.540 1.725 0.876 1.113 0.568 1.143 0.828 0.555 0.363
Code Smell 1.581 0.444 3.285 0.190 0.437 0.175 1.931 0.352 3.412 1.247 2.581 0.529 2.151 0.770 1.388 0.411

After Refactoring
P. Violation 0.600 0.722 1.142 1.076 0.187 0.366 1.280 0.644 1.825 0.974 1.272 0.619 0.459 0.477 1.444 0.765
Code Smell 1.387 0.424 3.523 0.245 0.237 0.280 2.093 0.418 3.700 1.365 2.795 0.569 0.877 0.441 2.555 0.822

Diversity of symptoms is also more significant for code smells.
Table 5.5 shows the diversity of symptoms for code smells and for principle
violations. This table follows the same organization of Table 5.3, providing the
mean diversity of each symptom category. In all systems, the diversity of code
smells was significantly higher in refactored classes when compared to other
classes in the systems. For refactored classes, the diversity of code smells was
more than five times higher in Ant and more than seventeen times higher in
UniNFe, for example. Similarly to what we observed regarding the density of
symptoms, the statistical tests (3rd and 5th columns of Table 5.4) revealed that,
for all target systems, the diversity mean of code smells in refactored classes
is different from the diversity mean of code smells in other classes. However,
regarding diversity of principle violations, we cannot reject the null hypothesis
for the OpenPOS and MPAndroidChart systems. The rationale for explaining
the diversity results in these two systems is the same as that used to explain
the density results.

When we applied the second filter in the refactorings of open source systems
(Section 5.3.3), the density and diversity averages remained similar. The refac-
tored classes continued to present higher density and diversity of symptoms
when compared to other classes. This second filtering made the averages of
most open source systems more similar to the averages observed in the part-
ner systems. For the Derby system, for example, the mean density of both
smells and violations in refactored classes became significantly higher: 2.50 for
violations and 29.25 for smells. Therefore, based on our analyses, we conclude
that the density and diversity of symptoms in refactored classes are,
indeed, different from the density and diversity of symptoms in other
classes. However, for two out of eight target systems, principle violations did
not show significant differences for both density and diversity of symptoms.
This indicates that we should, in future work, test our hypotheses on another
set of systems to verify if the results converge. In addition, the results observed
here indicates that the density and diversity of code smells may be considered
a more reliable indicator of design problems, according to the criteria adopted
by developers to decide when to conduct refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 141

5.4.2

Low Reduction of Symptoms After Refactoring

Table 5.3 shows the mean density of symptoms before and after the application
of refactorings. It is possible to observe that refactorings caused little impact
on all symptom categories. In some cases the mean value increased while in
others it decreased after the refactorings. However, for most of them, there was
not a significant difference. To confirm whether there is a significant difference
between the two groups – before refactoring and after refactoring –, we applied
the Mann-Whitney Wilcoxon test. In all target systems, the test revealed p-
values higher than 0.05 for both code smells and principle violations, indicating
that we cannot reject the null hypothesis. Based on such result, we concluded
that refactorings applied in the systems of this case study did not reduce the
density of any of the investigated symptoms.

Regarding diversity, we carried out a similar analysis. Table 5.5 shows the
mean number of different types of code smells and principle violations. In
this case, the difference was often marginal for both symptom categories.
Moreover, we did not observe similar trends for most systems. The mean
diversity for both symptom categories was reduced in some systems but
increased in other systems. The statistical test revealed p-values higher than
0.05 for both code smells and principle violations in most systems. The only
systems in which we observed a statistically significant difference for principle
violations were Achilles, MPAndroidChart, and Elasticsearch. For code smells,
only in Elasticsearch the diversity before and after refactoring was statistically
different. Thus, it is not possible to state that diversity of any symptom
category always reduces or increases after refactorings.

As we could not observe a significant and consistent reduction in the density
or in the diversity of symptoms, the answer of our second research question
RQ2 is that refactorings cause little to no impact on symptoms of
design problems in the medium term. This trend was maintained even
after applying the second filter (Section 5.3.3) to the refactorings of open source
systems.

To better understand why most refactorings did not remove symptoms, we
decided to take a close look at refactored classes with the help of our industry
partners. We selected and analyzed two sub-sets of refactored classes from
OpenPOS and UniNFe: (1) classes with increased density, and (2) classes with
decreased density. The former is composed by refactored classes that, after
refactorings, presented higher density of symptoms. The latter is composed by

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 142

Table 5.6: Classes with increased density and diversity of symptoms
System Class

OpenPOS

OpenPOS.Data.Abstract.Faturamento.Lancamento.Movimento.NF.NFBase
OpenPOS.Data.Regra.CFOP.CFOPRegraFiltro
OpenPOS.Data.Abstract.Cadastro.Item.ItemBase
OpenPOS.Desktop.Forms.FrenteCaixa.Lancamento.frmVendaCF

UniNFe

UniNFe.Service.TFunctions
UniNFe.Service.Processar
UniNFe.Service.TaskAbst
UniNFe.ConvertTxt.UniNFeW
UniNFe.Service.TaskConsultarLoteeSocial
NFSe.Components.SchemaXMLNFSe_TIPLAN

refactored classes that, after refactorings, presented lower density of symptoms.
With the first set of refactored classes, we expected to identify and analyze
the classes that, even after refactorings, have continued to worsen the design
quality. On the other hand, with the second set, we intended to find cases of
success in which the refactorings fixed design problems.

Symptoms tend to increase in core classes. Table 5.6 shows the classes
of OpenPOS and UniNFe that presented higher density for both symptom
categories. Analyzing the classes in which there was an increase in the density of
all symptoms, we asked the developers to describe what they remember about
the implementation and maintenance of each class. Based on their observations,
we noted that many of the refactored classes are also frequently changed in
other tasks. In addition, many of the refactored classes that presented higher
density after refactorings are considered core classes of the system. That is,
they are linked to fundamental functionalities of the system. The frmVendaCF
class, for example, is a core class that was changed in 306 different commits,
while most classes in the OpenPOS system were not changed more than 20
times. Such changes may be often conducted without proper concern for design
quality.

As a result, any improvement promoted by refactorings ends up getting lost
with the design problems. Thus, even being refactored in three different tasks
– for improving modifiability and reusability –, frmVendaCF continued to
present high density and diversity of symptoms. In fact, analyzing these results
from the perspective of the refactoring literature, other studies (Bavota et al.
2015), (Cedrim et al. 2017) have pointed out that refactoring in general (not
just root canal) does not usually remove symptoms such as code smells. We
conjecture that this is due to the fact that carrying out design transformations
is usually costly. Therefore, developers end up performing refactorings only to
avoid increasing design problems in classes that (1) have been poorly designed,
or (2) undergo constant modifications related to changing requirements.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 143

The effects of refactorings only persist in classes that are not often
modified. In OpenPOS and UniNFe, only the frmCliente class from OpenPOS
presented a decreased number of symptoms. We observed that the design
quality of this class was indeed improved. However, the developers of OpenPOS
revealed to us that frmCliente is not often modified – it was changed less
than 20 times along source code history. Therefore, a natural conclusion is
that the low volume of changes allowed this class to maintain a good design.
Nevertheless, design problems is critical when impacting the core classes of the
system, such as the ones presented in Table 5.6. Thus, developers still need help
to effectively identify and refactor the most relevant design problems.

5.4.3

Combinations as Indicators of Design Problems?

In the previous research questions we observed that developers tend to apply
refactorings in classes with high density and diversity of symptoms, and
that most refactorings present little to no persistent positive effects on the
density and diversity of symptoms. Thus, aiming at improving the effectiveness
of existing detection techniques for design problems, we investigated which
combinations of symptoms are more likely to indicate design problems.

As explained in Section 5.3, we identified the number of classes affected by 170
pairwise combinations of code smell types with principle violation types both
for refactored classes and for other classes. Table 5.7 shows the top-10 pairwise
combinations of code smells and principle violations in refactored classes.
Each line corresponds to a pairwise combination of code smell and principle
violation. Column 3 shows the number of refactored classes, considering all
target systems, affected by each pairwise combination. The complete rankings
of combinations for both groups (refactored and other classes) are available in
our replication package.

To observe whether the recurrent combinations can be used as indicators
of design problems, we applied the Spearman’s rank correlation rho test
to compare the ranking of combinations in refactored classes and in other
classes. With a confidence level of 95% and p-value smaller than 0.00001,
we obtained 0.90 as the correlation coefficient. This result indicates a strong
correlation between the two rankings, which means that we cannot use the
combinations of symptoms to differentiate degraded classes from
other classes. On the other hand, based on results from the literature
(e.g., (Abbes et al. 2011)), we believe that combinations of symptoms may
still be useful in other contexts, as we will describe in Section 5.5.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 144

Table 5.7: Top-10 combinations of symptoms in refactored classes
Position Combination # of Affected Classes
1 Long Statement-Insufficient Modularization 216
2 Complex Method-Insufficient Modularization 212
3 Magic Number-Insufficient Modularization 178
4 Long Statement-Deficient Encapsulation 145
5 Complex Conditional-Insufficient Modularization 135
6 Complex Method-Deficient Encapsulation 126
7 Long Statement-Unutilized Abstraction 111
8 Magic Number-Deficient Encapsulation 109
9 Complex Method-Unutilized Abstraction 102
10 Long Parameter List-Insufficient Modularization 99

5.5

Requirements for Recommending Root Canal Refactorings

Given the results presented in this chapter, we envision a technique for
automatically recommending refactorings for degraded classes. This technique
should take into consideration our insights on the density, diversity, and
combination of symptoms. Therefore, based on such insights, we elicited four
main requirements for the recommendation of refactorings. As illustrated by
Figure 5.3, requirements involve the activities of symptom collection, filtering
of refactoring candidates, prioritization of the most relevant candidates, and
summarizing of information about design problems. Below we present the
detailed description of each requirement.

Detecting
Symptoms

Filtering
Classes

Density and
Diversity of
Symptoms

Prioritizing
Classes

- Change
Frequency
- Combinations
- etc

Summarizing
Structural
Information

Recommending
Refactorings

Figure 5.3: Steps taken by a recommender technique based on our proposed
requirements

Collecting multiple symptom categories We observed in this study that,
according to the theory proposed by Sousa et al. (Sousa et al. 2018), we should
rely on two or more categories of symptoms to identify degraded classes. Each
symptom category will reveal design problem aspects in dependability-related

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 145

attributes that other symptom categories may not be able to capture. For ex-
ample, while most code smells investigated in this study are related to modifi-
ability and analyzability, the principle violations are mostly linked to modular-
ity and reusability. Our results showed that high density and diversity in both
symptom categories is usually associated with deep design problems that is dif-
ficult to fix even after successive refactorings. Therefore, a recommender tech-
nique should combine information about both symptom categories to provide
precise recommendations. In this study, we used only symptoms provided by
the Designite tool. However, recommendation techniques can implement their
own detection strategies or can be based on symptoms provided by other tools,
such as SonarQube (Campbell and Papapetrou 2013) and SpotBugs (SpotBugs
2019).

Filtering classes Due to several constraints, developers cannot waste time
with the analysis of classes that do not need to be refactored. Thus, developers
would benefit from a technique that automatically filters and selects only
the classes that have the greatest chance of presenting design problems. Our
findings revealed that combining density and diversity of symptoms such as
code smells and principle violations can be an effective strategy for selecting
degraded classes. The filter may consider only one category of symptom or
it may combine multiple symptom categories. Some state-of-the-practice tools
(e.g., SonarQube) already considers the density of symptoms to filter and to
prioritize elements for refactoring. However, our study shows that diversity
of symptoms should also be considered as degraded classes tend to present
higher diversity of symptoms. The combination of both information could make
filtering even more stringent, helping to save time for developers.

Prioritizing classes Even after filtering classes, there will be too many can-
didates for refactoring in medium- and large-sized systems. Thus, it is fun-
damental to prioritize the refactoring candidates according to their relevance.
Our study provided evidence that the core classes of the system should receive
special attention because they are often involved with the main changes made
throughout the system evolution. One of the characteristics that differenti-
ate these core classes is the change frequency. Thus, this information can be
used as a prioritization criterion for ranking the refactoring candidates. The
symptom combinations may also be explored as a criterion to prioritize refac-
toring candidates. For instance, degraded classes can be prioritized based on
the combinations of symptoms that developers, of the team, refactored more
often in previous projects and previous tasks. The effectiveness of this idea is

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 146

supported by findings from the literature (e.g., (Abbes et al. 2011)).

Depending on the context, other factors can also be taken into account to
prioritize classes for refactoring. For instance, developers may want to prioritize
refactoring of degraded classes that will be modified in future tasks. One of
the challenges for the implementation of this criterion is the identification of
which classes will be modified by future tasks. In our future work, we plan
to address this challenge using the strategy adopted by Kim et al. (Kim et
al. 2013) to locate bugs based on bug reports. We believe that our proposed
criteria could be helpful for generating more accurate rankings, since existing
prioritization criteria (e.g., (Vidal et al. 2016, Vidal et al. 2019)) are unable to
present consistent results for every system.

Summarizing design information One problem that often hinders the adop-
tion of automated tools is the difficulty in understanding, exploring, and com-
bining different symptoms. Knowing beforehand which combinations of symp-
toms are most recurrent, the tool can be prepared to explore the characteristics
of the most recurrent combinations, providing detailed information about the
types of design problems indicated by each combination. In addition, this infor-
mation may be used by the tool to recommend specific refactoring operations,
according to the refactoring operations that are usually associated with each
combination. To provide a more readable and easy to understand summary,
the recommender technique may apply an approach similar to the one designed
by Moreno et al. (Moreno et al. 2013). This summarized and readable design
information would help developers to reason about each degraded class and to
perform more effective refactorings.

Although we have focused our research mostly on maintainability, we believe
that these requirements can be applied in the context of other attributes, such
as reliability, security, and performance. We leave for future work the evaluation
of this technique in the context of maintainability and other dependability-
related attributes.

5.6

Threats to Validity

The first threat to validity is regarding our dataset. Analyzing data from eight
systems may not be enough for finding generalizable results. We mitigated this
threat by selecting systems with different characteristics, developed in different
platforms and with different practices. Another threat is related to the method
used to find the refactorings. For the systems of our industry partners, we may

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 147

have missed refactorings that were not remembered by the developers or did
not contain the searched keywords. To mitigate this threat, we asked for at
least two developers of each system to provide us a list of refactorings. All
participating developers have knowledge about refactoring and have worked in
the systems since their inception. Still related to the refactorings, it is possible
that a task description demonstrates the intention to remove design problems
but this does not occur in practice. We mitigate this threat by checking, with
the help of developers, whether there was any discrepancy between the task
description and the actual changes made.

In the context of open source systems, we may have missed several refactorings
after applying multiple filters. This may have influenced the number of outliers
observed in the set of non-refactored classes. However, this has helped us to
drastically reduce the possibility of false positives. In addition, we discarded
systems that had a very low number of refactored classes after the filters were
applied.

There is another threat related to the tools used for detecting symptoms.
Aspects such as precision and recall may have influenced the results of
this study. We mitigate this threat by selecting Designite, the only tool
we know that is capable of detecting the investigated symptoms both in
C# and in Java systems. Moreover, Designite has been used successfully in
other recent studies (Sharma et al. 2016, Alenezi and Zarour 2018). Finally,
there is a threat regarding reproducibility as we are not allowed to publish
detailed information about the refactorings and about the issue tracking
system of our industry partners. Thus, to mitigate this threat, we created
a replication package containing, among other information, the description of
each refactoring identified in their systems.

5.7

Conclusion

In this chapter, we investigated whether symptoms of design problems appear
with higher density and diversity in classes changed by refactorings. After
that, we investigated if refactorings have a positive impact on the density and
diversity of symptoms. We also investigated the combinations of symptoms
that often occur in classes that were changed by refactorings. To achieve our
goal, we conducted a case study involving two C# systems from our industry
partners and six open source Java systems.

Our results indicate that refactorings caused almost no positive impact on

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 5. On the Density and Diversity of Design Problem Symptoms in
Refactored Classes: A Multi-Case Study 148

the density and diversity of any category of symptom. Nevertheless, we also
observed that refactored classes have higher density and diversity of code
smells when compared to other classes in the target systems. This result
indicates that, despite not being removed by refactorings, some categories
of symptom may be indeed strong indicators of design problems. Based
on our insights, we proposed a set of four requirements for automatically
recommending refactorings. These requirements are related to the tasks of:
(1) symptom collection, (2) filtering, (3) prioritization, and (4) summarizing
of information about design problems. As future works, we aim at proposing
and evaluating a semi-automated technique based on the requirements for
recommending refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

6

Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation

Design problems (DPs) occur when quality attributes of a system are nega-
tively impacted. When due attention is not paid to DPs, the source code may
also become difficult to change. The previous chapters focused on investigat-
ing issues related to the identification of DPs using code smells as indicators.
Code smells are recurring structures in the source code that may represent
DPs (Section 2.6.1). However, previous chapters did not approach how to sup-
port developers in refactoring out DPs that are relevant to their projects and
contexts.

There are many catalogs and techniques for supporting the removal of code
smells through refactoring recommendations, which usually consist of single
refactorings such as a Move Method or an Extract Method. However, single
refactorings are often not enough for completely removing certain smell occur-
rences. Moreover, recent studies show that developers most often apply com-
posite refactorings – i.e., sequences of two or more refactorings – for removing
code smells. Despite showing the importance of performing composite refactor-
ings, most studies do not provide information on which composite refactoring
patterns are recurrent in practice. In addition, in Chapter 5, we found evidence
that refactorings performed in practice are often ineffective for removing DPs.
Such a finding is reinforced by recent refactoring studies (e.g., (Bibiano et al.
2019), (Cedrim et al. 2017)).

In this context, in a previous collaborative study (Sousa et al. 2020a), we
have identified 35 smell removal patterns that are frequent across multiple
open source systems. However, such a study has not explored how the removal
patterns could help developers to apply effective composite refactorings. Thus,
in this work, we propose a suite of new recommendation heuristics to help
developers in applying effective composite refactorings. These heuristics are
intended to remove three DP types, namely Complex Component, Scattered
Feature, and Feature Overload. The manifestation of such DPs are represented
here by the Complex Class, Feature Envy, and God Class smells, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 150

The justification of why we focused on these DPs and smells is given along
this chapter.

After designing the heuristics, we evaluated their effectiveness through a quasi-
experiment. This evaluation was conducted with 12 software developers and 9
smelly Java classes. Results indicate that developers considered our heuristics
effective or partially effective in more than 93% of the cases. In addition,
the evaluation helped us to identify multiple factors that contribute to the
acceptance or rejection of the refactoring recommendations. Based on these
factors, we defined new guidelines for the effective recommendation of smell-
removal composite refactorings. Such guidelines helped us to complement the
requirements identified in Chapters 3, 4, and 5.

The study presented in this chapter was published as conference paper at the
Brazilian Symposium on Software Engineering (SBES) (Oizumi et al. 2020).
The quality of this study was recognized by the Brazilian software engineering
community through the Distinguished Paper Award.

6.1

Introduction

The design of a system is often impacted by design problems due to the
code changes that are carried out throughout its evolution (MacCormack,
Rusnak and Baldwin 2006). As a result, maintaining the impacted code
elements can become increasingly difficult and error-prone. To avoid this and
other consequences, developers often need to take actions for identifying and
removing design problems.

To identify design problems, developers can rely on automatically detected
symptoms such as code smells (Lanza and Marinescu 2006, Fowler 1999). An
example of code smell is the God Class, which is a recurrent indicator for the
Feature Overload problem. Such a problem occurs when a class is large and
has too many responsibilities (Lanza and Marinescu 2006).

Refactoring is a popular technique that is often applied for removing
DPs (Fowler 1999). This technique consists of applying micro changes in the
source code design without impacting the system’s behavior (Fowler 1999). If
refactorings are carried out properly, the design quality of the system can be
improved, or at least maintained. However, in Chapter 5 we found evidence
that refactorings performed in practice are not always effective in removing
DPs.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 151

Existing catalogs and recommendation techniques (e.g., (Fowler 1999, Tsan-
talis, Chaikalis and Chatzigeorgiou 2018)) usually recommend only single
refactorings for removing DPs. However, besides not being enough for DP
removal, single refactorings are often linked to the introduction of new
DPs (Cedrim et al. 2017). Moreover, recent studies show that developers of-
ten apply more than one refactoring, even if they aim for small design im-
provements (Bibiano et al. 2019, Oizumi et al. 2019, Brito, Hora and Valente
2020, Tufano et al. 2015, Palomba et al. 2017). In this chapter, we call such
refactoring sequences as composite refactorings. Existing techniques for the
recommendation of composite refactorings usually provide recommendations
that involve re-designing the whole system (Alizadeh and Kessentini 2018).
However, refactoring a large number of classes is often not feasible in a real
project. Therefore, the literature still lacks techniques that assist developers
in the application of composite refactorings for preventing major DPs. Despite
making the importance of composite refactorings evident, existing studies pro-
vide little to no information on which composite refactoring patterns are ap-
plied in practice. Moreover, the literature still lacks guidelines for the effective
recommendation of composite refactorings.

Given the aforementioned limitations, in this chapter we propose and evaluate
three heuristics for composite refactoring recommendations. We are focused
in recommendations based on three code smell types, namely Complex Class,
Feature Envy, and God Class. Those smell types represent common forms of
DPs that developers often consider harmful (Palomba et al. 2014), and that
are early introduced with the creation of new code elements (Tufano et al.
2015).

To propose the heuristics, we relied on composite refactoring patterns that are
often associated with the removal of code smells. In our previous work (Sousa
et al. 2020a), we mined refactorings and code smells from 48 Java open
source projects to identify such patterns. After analyzing 104,505 refactorings,
we found the occurrence of 2,946 smell-removal composite refactorings. Such
investigation resulted in the identification of 35 patterns, being 9 for Feature
Envy, 11 for God Class, and 15 for Complex Class. In this work, for each smell
type, we selected and implemented one pattern in the form of a composite
refactoring recommendation heuristic.

The evaluation of our heuristics consisted of a quasi-experiment involving 12
software developers. We applied our heuristics to 9 Java smelly classes and
asked participants to evaluate the resulting recommendations. The partici-
pants had to evaluate the recommendations according to their effectiveness

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 152

in improving the design of the code. In addition, for each evaluated recom-
mendation, the participants provided a detailed feedback on the impact they
perceived. For the analysis of the provided feedback, we applied a qualitative
data analysis method. This analysis allowed us to assess the proposed heuris-
tics and to identify factors that contribute to the acceptance (or rejection) of
refactoring recommendations. Such factors helped us to propose new guidelines
for the effective recommendation of composite refactorings.

Our contributions can be summarized as follows: (1) we propose and evaluate
three heuristics that can be used to improve state-of-the-art refactoring rec-
ommendation tools; (2) participants of our study considered that the impact
of the evaluated recommendations was positive or partially positive in more
than 93% of the cases; (3) finally, we proposed guidelines that may improve
refactoring recommendation techniques.

6.2

Background and Related Work

6.2.1

Code Smells

Code smell is a surface indicator of deeper DPs in the software system (Fowler
1999, Sousa et al. 2020b, Palomba et al. 2014). In fact, the presence of code
smells can even indicate the need for a refactoring (Fowler 1999). An example
of code smell is the God Class, which indicates the Feature Overload DP.
A God Class usually impacts quality attributes such as modifiability and
extensibility.

To illustrate how a code smell manifests in the source code, let us consider the
LibraryMainControl class that contains multiple methods and attributes, as
shown in Listing 6.1.
public class LibraryMainControl {

...
private Float fineAmount ;
private Person user;
private Catalog catalog ;
private Item currentItem ;

public void doInventory () {...}

public void checkOutItem (Item item) {...}

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 153

public void checkInItem (Item item) {...}

public void addItem (Item item) {...}

public void deleteItem (Item item) {...}

public void printCatalog (Catalog catalog) {...}

public void sortCatalog (Catalog catalog) {...}

public void searchCatalog (String term) {...}
...

}

Listing 6.1: Partial view of the LibraryMainControl class

The LibraryMainControl class was flagged as God Class because it imple-
ments multiple features, which should be modularized in other classes. For ex-
ample, the methods printCatalog, sortCatalog, and searchCatalog should
be moved to the Catalog class as they are concerned with catalog-related
features.

In this study, we focus on three types of code smells, namely Complex
Class (Palomba et al. 2014), Feature Envy (Lanza and Marinescu 2006),
and God Class (Lanza and Marinescu 2006). Such smells are symptoms of
the Complex Component, Scattered Featured, and Feature Overload DPs,
respectively.

God Class and Complex Class are frequently considered relevant by developers
and there is evidence that Feature Envy and God Class reflect important
maintainability aspects (Yamashita and Moonen 2013). These three smells are
also of major severity if compared with many others, and their resolution would
eliminate/reduce other inner smelly structures (e.g., Long Method) (Abbes et
al. 2011, Cedrim et al. 2017). Finally, their removal usually requires at least
two refactorings (Sousa et al. 2020a, Bibiano et al. 2020).

6.2.2

Composite Refactoring

Refactoring consists in transforming the code design without changing the
functional behavior of the system (Fowler 1999). Thus, we consider that
refactoring is any design change that is aimed at improving quality attributes
of the system’s design. There are multiple refactoring types cataloged in the
literature (e.g., (Fowler 1999) and (Tsantalis et al. 2018)). Each refactoring

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 154

type is applied to perform a specific design transformation. For instance,
Extract Class aims at creating a new class with methods and attributes of
an existing class.

In Listing 6.1, existing catalogs and techniques (Fowler 1999, Tsantalis,
Chaikalis and Chatzigeorgiou 2018) would probably recommend the applica-
tion of Extract Class to solve the God Class smell. Although it is a correct
strategy for many cases, it might not be the most appropriate for the Library-
MainControl class. The reason is that the additional responsibilities of that
class would be better modularized into the Catalog and Item classes.

A composite refactoring (or batch refactoring) happens when two or more
related refactorings are applied to one or more code elements (Bibiano et al.
2019, Brito, Hora and Valente 2020, Palomba et al. 2017, Tufano et al. 2015,
Sousa et al. 2020a). The composites can be divided into two broader categories,
namely temporally-related composite (i.e., refactorings applied in the same
commit) and spatial composite (i.e., refactorings applied to structurally related
code elements, on the same commit or not) (Sousa et al. 2020a). Even though
some studies indicate that the composite refactorings are applied by a single
developer (Bibiano et al. 2019, Murphy-Hill, Parnin and Black 2012), there
are cases where the developers can work in groups to perform a composite
(Kim, Zimmermann and Nagappan 2014) (i.e. when they are applying large
design changes in the software system). For the LibraryMainControl class, a
suitable composite refactoring would be to perform multiple Move Method
refactorings, transferring methods from LibraryMainControl to the Catalog
and Item classes.

6.3

Smell Removal Patterns

In our previous work (Sousa et al. 2020a), we analyzed composite refactorings
from a dataset of 48 open source projects. Our results revealed composite refac-
toring patterns that are associated with the introduction or removal of code
smells. Such patterns served as basis for creating composite refactoring rec-
ommendation heuristics. Next, we summarize the research procedures and the
resulting patterns. More details are available in our replication package 1.

Procedures for Finding Patterns. Firstly, to identify code smell removal
patterns, we detected the code smells and the refactorings. We implemented
rule-based detection strategies for code smells (Lanza and Marinescu 2006)

1https://refactoringheuristics.github.io/

https://refactoringheuristics.github.io/
DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 155

Table 6.1: Refactoring patterns that often remove smells
Smell
Type Pattern

Extract Method, Move Method
Inline Method{n}, Extract Method{n}Feature

Envy Extract Method{n}, Move Attribute{n}
Move Method{n}
Pull Up Method{n}, Move Method, Pull Up MethodGod

Class Pull Up Method{n}
Extract Method{n}
Pull Up Method{n}, Move Method, Pull Up Method{n}Complex

Class Move Attribute{n}, Extract Method{n}

and used the the Refactoring Miner tool (Tsantalis et al. 2018) for detecting
refactorings. After that, we applied a synthesis strategy that is able to identify
both temporally-related composites and spatial composites (see Section 6.2.2).
After finding composite refactorings, we identified recurrent composite refac-
toring patterns related to the removal of Feature Envy, God Class, and Com-
plex Class. This identification was based on the frequency with which each
pattern resulted in the removal of each smell type.

Refactoring Patterns. Following the aforementioned method, we found
2,946 smell-removal composite refactorings. Then, we identified 35 smell re-
moval patterns, being 9 for Feature Envy, 11 for God Class, and 15 for Complex
Class. Table 6.1 shows a sub-set of the most frequent patterns for each smell
type. In the second column of Table 6.1 is the list of refactoring types that
compose each pattern. The {n} symbol after some refactoring types means
that the refactoring type was performed an n number of times in the analyzed
cases. Such number was varied in each occurrence.

Selection of patterns for heuristics implementation. In Table 6.1, we
highlighted in bold the smell removal patterns that were selected for the
implementation of our heuristics. We applied the following criteria for selecting
them. First, we opted for patterns that would be viable to implement using
state-of-the-art algorithms for automated refactoring (e.g., (Charalampidou
et al. 2017, Tsantalis, Chaikalis and Chatzigeorgiou 2018)). Second, we chose
the patterns involving the least number of different refactoring types. Thus,
we believe that the resulting recommendations would be easier to analyze
and understand. Finally, we selected patterns that would make sense for most
possible scenarios. This last criterion is important because there are patterns
that can only be applied for classes with inheritance (e.g., Pull Up Method{n}).
Given such restrictions, we selected Extract Method, Move Method for Feature
Envy, Move Method{n} for God Class, and Extract Method{n} for Complex
Class. In the next section, we present the heuristics that were implemented

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 156

based on such patterns.

6.4

Smell Removal Heuristics

In this section we present three heuristics for removing code smells. Each one
is focused in removing a particular type of code smell. They were derived
from the refactoring patterns presented in Section 6.3. As presented in that
section, there are many patterns that may be applied for removing code smells.
For instance, it is possible to remove a Complex Class by applying several
Push Down Methods or by applying a sequence of Extract Methods. Since our
objective in this study is to check the viability of deriving useful heuristics, we
implemented and evaluated only one pattern for each code smell type. Next,
we present details about each heuristic.

6.4.1

Feature Envy Removal

One of the most common patterns found for removing Feature Envy is
composed of Extract Method and Move Method. Although this sequence may
have been applied independently – i.e., the Move Method may have been
applied to a different method than the extracted one – many times when
developers were successful in removing Feature Envies, they first extracted the
foreign part of the method into a new one, and then moved the newly created
method to a different class. Thus, we define a Feature Envy removal heuristic
that always applies the Move Method to the extracted method. Formally, the
Feature Envy removal heuristic is composed of four parts: (i) identification of
method lines that are more interested in different class; (ii) extraction of these
lines into a new method; (iii) identification of the class that suits the newly-
created method; and (iv) application of a Move Method refactoring to move
the new method to the identified class.

Each step of this heuristic poses a different challenge. The first one is that we
need to identify lines of the Feature Envy method that are more interested in
a different class other than the one they are contained in. It is not trivial
to recommend lines of code to be extracted from a method because the
section of code to be removed must execute a particular functionality in a way
that the removal of the whole section makes sense. Several studies propose
different techniques to accomplish the objective of discovering extract method
opportunities (Tsantalis, Chaikalis and Chatzigeorgiou 2018, Charalampidou
et al. 2017). The technique proposed by Charalampidou et al. (Charalampidou

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 157

et al. 2017) is based on the functional relevance of the combined lines. They
introduce an approach that aims at identifying source code chunks that
collaborate to provide a specific functionality and propose their extraction
as separate methods. Since their approach fits well with our first part for
recommending Feature Envy removal, we adopt it.

Therefore, to accomplish the first part of this heuristic, we implemented the
approach proposed by Charalampidou et al. (Charalampidou et al. 2017). As
described in their paper, they propose an approach called SRP-based Extract
Method Identification (SEMI). In particular, their approach recognizes frag-
ments of code that collaborate for providing functionality by calculating the
cohesion between pairs of statements. The extraction of such code fragments
can reduce the size of the initial method, and subsequently increase the cohe-
sion of the resulting methods. In our scope, we implemented their technique
and treated this component as a black box, where the input is a method and
the output is a set of line intervals that can be extracted.

By having these possible intervals, we have several possibilities to recommend
extraction. However, only having these intervals is not enough to remove the
Feature Envy, since we do not want to recommend an extraction that would
still maintain the smell that we already had. Therefore, we run a verification
step for each interval. We simulate the removal of such lines by disregarding
their influence on the Feature Envy detection. Hence, we test, for each interval,
if its removal would lead to a Feature Envy. If the removal of a single interval is
not enough to remove the Feature Envy, then we look for a combination of two
intervals. We keep increasing the number of intervals until we have a Feature
Envy removal possibility. After completing this step, we can move on for the
second part of the heuristic: Extract Method refactoring.

After the aforementioned step, we can test if there is still a Feature Envy.
Unfortunately, the newly-created method could still have the Feature Envy.
However, we have to leverage in the fact that we know its lines are cohesive
and can be moved together to a different class. In this way, we check which
class this new method relates to the most, either by method calls or attribute
use. After discovering this class, we can recommend a Move Method refactoring
of the newly-created method to this discovered class.

Therefore, our first heuristic is completed by executing the four described
steps. We first recommend an Extract Method by combining our code smell
detection strategy with the SEMI approach. After extracting the method, we
can recommend a Move Method by examining the method calls and attributes

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 158

use of the newly-created method. In this way, we reproduce programmatically
the composite-smell pattern Extract Method, Move Method presented in Sec-
tion 6.3. Notice that we do not only reproduce the removal pattern; we instead
execute a verification to make sure that the composite would be able of remov-
ing the smells. The combination of the verification with the knowledge about
the removal patterns is what increases the chance of our heuristic to get rid of
a Feature Envy.

6.4.2

God Class Removal

As presented in Section 6.3, Move Methods play a central role on God Class
removals. God Class is a class that assumes several responsibilities in a system.
If we distribute these responsibilities (i.e., methods) over several classes in
the system, the developer can remove the smell (Section 6.3). Indeed, to
perform this distribution, we found that developers can apply different types
of refactorings; for instance, he can apply a composite composed of Move
Method{n}. Hence, the heuristic we implemented to remove God Class is based
on method-moving refactorings.

According to the rules of God Class detection (Bavota et al. 2015), a class has
this smell if its cohesion is lower than the average of the system, and it contains
more than 500 lines of code. This threshold can be tailored to particular
projects or modules by using machine learning techniques (Hozano et al. 2017).
Thus, for each method in the class, we identify a suitable class to which we
move it. We used the same strategy presented in Section 6.4.1 to identify
the destination class of the method. We keep recommending Move Methods
until the God Class is removed. However, such operations can create new God
Classes in the system (Sousa et al. 2020a). Therefore, before recommending a
Move Method, we check if the destination class would become a God Class. If
so, we change the recommendation to the second most suitable class.

It is worth mentioning that we find the suitable class by counting the number
of method calls and accesses to attributes. For instance, let us assume that
a particular method m calls 3 methods and accesses 2 attributes from class
A. In this case, the “bonding factor” of m to A is 5. Let us assume the same
method m calls 4 methods from the class B, leading to a bonding factor of
4. Now, assume our heuristic recommended to move m to A, but A would be
transformed into a God Class if this occurs. In this case, the heuristic would
recommend the method-moving change to class B, since in this case, B would
still be smell-free.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 159

In summary, the second heuristic is a sequence of Move Methods. However,
it also uses the smell-detection strategy to understand when the target class
would not be a God Class anymore. Additionally, the smell detection strategy
is used to prevent the creation of new code smells after the recommended
refactoring.

6.4.3

Complex Class Removal

In our studies, we consider a class as Complex Class if it has at least one method
having a high cyclomatic complexity (CC) (Lanza and Marinescu 2006). So,
the strategy to remove such smell is related to the reduction of the complexity
of methods with high CC. As presented in Section 6.3, developers often apply
Extract Methods to remove such complex structures. Hence, the heuristic to
remove Complex Class is composed of four parts: identify all methods with high
CC, identify Extract Method opportunities to reduce the complexity, evaluate
the identified opportunities, and recommend Extract Methods.

The first part is composed of our code smell detection strategy, which finds
all Complex Methods in a particular Complex Class. After finding them, we
use the SEMI approach presented in Section 6.4.1 to generate possible line
intervals to be extracted. After identifying such intervals, we need to evaluate
the identified opportunities. For each interval found, we simulate its removal
and compute what would be the new complexity of the method. When we
find a interval (or a set of intervals) that reduces the complexity, we start
recommending the Extract Methods.

Therefore, after running the steps of this heuristic, our tool can identify pieces
of code that can be extracted to reduce the complexity of the methods found.
After the recommendation of a composite of Extract Methods, we can distribute
the complexity of the class into several smaller methods, getting rid of the
original Complex Class. It is worth mentioning the recommended extractions
can pose a risk and create new code smells, such as a new Feature Envy. If
this occurs, we can trigger the Feature Envy removal heuristic to improve the
composite by removing the introduced smell.

6.5

Empirical Evaluation: Study Design

This section presents the design of a quasi-experiment (Shadish, Cook and
Campbell 2001). This experiment was designed to evaluate the three proposed

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 160

heuristics.

6.5.1

Goal and Research Question

We hypothesize that our heuristics (Section 6.4) can be effective in real
scenarios. Thus, our goal is to evaluate the smell-removing heuristics regarding
their effectiveness in improving the source code design quality. To achieve this
objective, we observed how the heuristics perform in real scenarios to evaluate
their effectiveness. Thus, our quasi-experiment involved software developers
and industry systems. To avoid bias, we applied the heuristics to projects that
were not used to find the composite refactoring patterns (Section 6.3).

Our first research question – RQ1: Are the smell-removing heuristics effective
in improving the code design quality? – is intended to assess the effectiveness of
our heuristics in helping developers to combat design degradation. To address
RQ1, we first applied the heuristics steps on different smelly code elements.
Each heuristic comprises some steps (Section 6.4), and the application of each
step in a code element delivers a new code state. In this way, we documented
each code state obtained as a result of the application of each heuristic step.
After this, we compiled all the results and asked for the evaluation of software
developers. They had to evaluate the code states and inform us about their
opinion concerning the impact of the code changes on the design quality. After
this, we conducted quantitative and qualitative analysis.

The second research question – RQ2: Why do developers accept or reject a
composite refactoring recommendation? – aims to characterize the factors that
lead to the acceptance or rejection of refactoring recommendations. These fac-
tors are relevant to smell removal recommendations in general (not only ours),
but they have never been investigated in previous studies. To answer this ques-
tion, we relied on the qualitative analysis of responses provided by developers
in the quasi-experiment. We applied systematic procedures to find and catego-
rize the reasons that led participants to accept or reject the recommendations.
Such procedures led us to build an initial set of guidelines related to the ac-
ceptance or rejection of refactoring recommendations. More details about the
qualitative data analysis procedures are provided in Section 6.5.3.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 161

6.5.2

Experimental Tasks

To evaluate the heuristics, our quasi-experiment was composed by three main
activities, described as follows.

Activity 1: Sample Selection and Heuristics Execution. Since our objective
is to evaluate the heuristics, we had to execute them in different classes
affected by the studied code smells, then we selected 3 different classes for
each smell. Then, we executed each of the proposed heuristics in the contexts
of three classes containing the corresponding smells. We selected three classes
for each smell, so that the experiment’s participants could have the proper
time to inspect each one of the 9 recommended composites. Also, we selected,
for each smell, classes from three distinct projects. Besides that, we chose
classes implemented with different purposes, from log-in services to classes
that manage students data from an educational institution. Since our goal
here was not to compare different heuristics, we decided to select classes with
varying complexity and degradation characteristics. This helped us to evaluate
the heuristics in heterogeneous scenarios. We then executed the heuristics for
each sample. As presented in Section 6.4, each heuristic produces as output a
list of recommended refactorings.

Activity 2: Recruitment and Characterization of Subjects. We invited 20
software developers to participate in this study, among which 12 met the
minimum requirements and agreed to participate. We asked the developers
to fill out a questionnaire to gather their information, including educational
level, professional experience with software development in terms of years,
experience with Java programming (in years), and whether they were familiar
with code smells and refactoring or not. The data collected during this activity
was used to understand if the participants met the minimum requirements
needed to participate in the experiment. Since all code examples are in Java,
the participants have to be able to read and understand the code. They also
need to know how to refactor a piece of code. Otherwise, it would be very
hard for them to understand the heuristics steps, invalidating their answers.
Screen shots of the questionnaire are available in our replication package.
Table 6.2 presents the data regarding the participants’ years of experience
with software development, years of experience with Java, and number of
Java developed projects. Most participants have industry experience with
software development, and with the Java language. Only one participant has

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 162

no experience in industry. Nevertheless, such a participant does not pose a
threat to the study due to his/her experience with code smells and refactoring
research.

Table 6.2: Participants’ characterization data
Answer Median Average Std. Dev. Max Min
Years of programming experience 4 5.5 4.6 15 0
Years of experience with Java 1 2.8 3.9 14 0
Number of Java developed projects 1 5.4 13.4 50 0

Activity 3: Experiment Execution. As mentioned before, we executed the
heuristics’ steps on 9 different smelly classes. Each execution led us to a
sequence of refactorings, implicating in several code changes. Each participant
had to evaluate each sequence of refactorings generated for each one of the
9 classes. Hence, each participant had to visualize and evaluate 9 composite
refactorings. After visualizing each composite, the participants had to answer
the following question:

What is your opinion about the impact of the sequence of refactorings on
the design quality?

As we can see, this question does not involve the term code smell. Although
the heuristics had been derived from relationships between composites and
code smells, we are ultimately interested in improving the design quality. If
developers feel that the code had its design quality improved by our heuristics,
this is one more evidence that code smells are, in fact, good estimators to
measure the design quality. In other words, we can keep developing heuristics
focused in code smells because, in the end, the design quality can be improved
by their removal.

Table 6.3: Possible answers during the quasi-experiment
Answer Description
Positive The design quality has improved
Intermediate There are benefits, but I think there is room for improvement
Negative The design quality has decreased

The participants had to choose between Positive, Intermediate, and Negative as
an answer to the provided question. In each case, they had to provide a detailed
feedback to justify the answer. Table 6.3 presents the three possible answers
that each participant had to give for each one of the nine presented composites.
In any case, they had always to provide a justification for the answer in an open
text field, so we can use it to better understand their answers. We developed a

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 163

web application in order to present composites and to collect the developers’
answers.

6.5.3

Qualitative Data Analysis

One of our goals in this study was to discover and understand the reasons
that lead a refactoring recommendation to be (partially) accepted or rejected
by developers. Therefore, we asked the participants to explain the reasons for
classifying a recommendation as positive, negative, or intermediate. Thus, the
experiment provided us with a robust material for building an initial set of
guidelines that would be helpful for providing effective recommendations. To
identify the guidelines, we have adapted procedures that are commonly used in
qualitative data analysis methods such as the Grounded Theory (Lazar, Feng
and Hochheiser 2017). To avoid bias, three researchers participated in this
analysis, conducting discussions whenever necessary. Below we present details
about our procedures.

Coding the data. Open coding is a commonly applied procedure to extract
relevant codes from textual content. Thus, we started our analysis with open
coding, following the recommendations of Lazar et al. (Lazar, Feng and
Hochheiser 2017). Before identifying and extracting the codes, we defined three
types of textual sentences that we were interested in. The first type comprises
sentences indicating positive motivations that contribute to the acceptance of
a recommendation. The second type includes sentences that indicate negative
motivations regarding a recommendation; thus, contributing to its rejection.
Finally, for the last type, we included sentences related to suggestions of
improvement for the recommendations. We are interested in this last type
of sentence because we observed that participants provided several relevant
suggestions during the experiment. This occurred even when they considered
recommendations to be positive or intermediate. Based on the extracted and
classified sentences, we identified codes that briefly described each relevant
sentence.

Creation of categories and relationships. After identifying the codes, we
searched for relevant categories of codes. The categories were created through
the analysis and exhaustive comparison of the different codes. This allowed
us to identify similar codes that were repeated in the responses of different
participants and, therefore, resulted in the creation of categories. Besides that,
we also identified the relationships that exist among the different categories,
which is an important step in a qualitative data analysis.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 164

Synthesis and description of the guidelines. In this last step, we analyzed
the categories and relationships created to synthesize and describe our guide-
lines in the form of factors that are often related to the acceptance or rejection
of refactoring recommendations. Given the number of participants, it was not
possible to reach theoretical saturation. However, the data provide a significant
contribution for refactoring recommendation techniques and tools.

6.6

Evaluation Results

6.6.1

Effectiveness of Recommendations

Each participant evaluated 9 refactoring recommendations produced by our
smell removal heuristics (Section 6.4). In each evaluation, they had to inform
their opinion about the impact of the composite on the design quality. Table 6.4
summarizes the data regarding the answers given by the participants. The
first column shows the smell type that was targeted by each recommendation,
while the second column shows the name of the smelly class. The number of
classifications (positive, intermediate or negative) provided by the participants
in each case are summarized in the 3rd, 4th and 5th columns of Table 6.4.

Most of the recommendations were considered positive or intermedi-
ate. The majority of participants considered most recommendations as being
positive (74%) or intermediate (20%) (Table 6.4). Only few recommendations
were considered negative by some developers (6%). For 4 out of 12 recom-
mendations, no negative classification was provided. This acceptance rate is
slightly higher than that of other similar techniques. Bavota et al. (Bavota
et al. 2014), for example, reported a study in which more than 70% of their
recommendations were considered meaningful.

Suggestions for improving the recommendations. As described in Sec-
tion 6.5.3, after executing the quasi-experiment, we also conducted a qualita-
tive data analysis. For all recommendations, at least one participant suggested
some improvement. Despite having received only one negative classification,
the heuristic for Feature Envy received the highest number of suggestions for
improvement (12), followed by Complex Class (9) and God Class (5).

One of the most recurring suggestions was related to the provision of additional
information regarding the proposed refactorings and regarding the design
quality. Some of the participants who had little experience with refactoring

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 165

had difficulty in understanding the design changes caused by the refactorings.
In addition, the participants raised the need for some support to visualize the
impact of refactorings on design quality. We further discuss this suggestion in
Section 6.6.3.

Positive and negative sentences in the detailed feedback. To avoid
bias, we analyzed the detailed feedback from the participants for finding sen-
tences that indicate positive and negative aspects of the recommendations
(Section 6.5.3). We identified, for each recommendation, the number of par-
ticipants that: wrote only positive sentences, only negative sentences, both
positive and negative sentences, and did not write any relevant sentences for
this analysis. We also identified the total number of positive sentences and the
number of negative sentences found in each detailed feedback. We included
such results in our replication package 2.

In this analysis, we observed that the percentage of classifications with only
positive sentences (59%) is significantly smaller than the percentage of positive
classifications (74%). This happened because, even classifying the recommen-
dations as positive, some participants wrote feedback indicating that there were
negative aspects that could be improved. Similarly, certain recommendations
classified as intermediate contained only negative sentences. Thus, looking from
this alternative perspective, the percentage of intermediate and negative feed-
back is higher, i.e., 14% and 12% respectively. Still, if we look at the total
number of sentences, we can see that the number of positive sentences (128)
is significantly higher than the number of negative sentences (50). In addition,
this result does not invalidate the classifications provided by the participants
because, even when writing about aspects that could be improved, the partic-
ipants considered the recommendations to be positive or intermediate. Next,
we present details about the recommendations for each type of smell.

6.6.2

Impact of Recommendation Heuristics

We did not compare our heuristics with existing ones, since previous stud-
ies detect different types of code smell and use different detection strategies
(Section 6.5). However, in this section, we present the results for each recom-
mendation heuristic and discuss how they can be used for improving existing
tools. For this purpose, we used the JDeodorant tool (Tsantalis, Chaikalis and
Chatzigeorgiou 2018) as an example. JDeodorant is a well known tool that is

2https://refactoringheuristics.github.io/

https://refactoringheuristics.github.io/
DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 166

Table 6.4: Summarized results of the quasi-experiment
Code
Smell Class Pos. Int. Neg.

Complex
Class

Clause 6 4 2
GenericTranspalBean 11 0 1
DiarioClasseService 10 2 0

Feature
Envy

IngressoUniversidadeService 7 5 0
Media 10 2 0
UserFactory 10 1 1

God
Class

MatriculaAcademicaService 7 4 1
LibraryMainControl 10 2 0
EmployeeUtils 9 1 2

All 80 (74%) 21 (20%) 7 (6%)
able to detect and recommend refactorings for six code smell types. Like us,
JDeodorant is able to recommend refactorings for Feature Envy and God Class
but not for Complex Class.

Support for Removing Complex Class. JDeodorant does not have any
heuristic for detecting and removing Complex Classes. Thus, our heuristics
could be incorporated by JDeodorant to make it possible to recommend
composite refactorings that remove Complex Class. As presented in Table 6.4,
our heuristic for Complex Class presented satisfactory results for most classes.
Nevertheless, for the Clause class, our recommendation was considered positive
only by 6 out of 12 participants. When looking at the detailed feedback, 3
participants wrote only positive sentences, 2 wrote only negative sentences,
and 6 wrote both positive and negative sentences.

The Clause class was flagged as Complex Class because of the method
toCriterion, which has a high cyclomatic complexity. This method is composed
of a chain of ifs, leading to low code readability. As presented in Section 6.4.3,
the heuristic recommends a list of Extract Methods to distribute the complexity.
In this particular case, the heuristic recommended two Extract Methods. The
Complex Class was removed because the class no longer has methods with high
cyclomatic complexity.

However, the legibility of the created methods is still not good, as considered
by some participants. They suggested a complete rewrite of this method by
using different data structures and even a different object model design to
implement the same functionality. Unfortunately, the heuristics are not able
to recommend that, since the suggested changes are not part of our composite
refactoring patterns. Thus, a total reshape is probably the best solution for the
case. Nevertheless, in the perspective of 10 participants, the recommendation

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 167

achieved some improvements, while still having room for making the class
structurally better. Below we quote the feedback of one participant regarding
this difficult case.

“...I do agree the method is less complex, but the complexity was merely
spread into the other two methods...” – Feedback about the Clause class
refactoring.

If we look at the recommendations provided by the JDeodorant tool, a different
type of recommendation could be provided for the Clause class. JDeodorant
supports the recommendation of the Replace Type code with State/Strategy
refactoring when there is a State Checking smell. In fact, one of the participants
recommended this refactoring for the Clause class. Therefore, the solution
proposed by the JDeodorant tool would be the most appropriate in this case.
It is important to note that, as mentioned earlier, we would not be able to
recommend such refactoring because we have not identified refactoring patterns
for State Checking smells.

Despite this unfavorable case, our Complex Class heuristic is relevant for other
cases. Most participants mentioned that it was able to significantly reduce the
complexity of the GenericTranspalBean and DiarioClasseService classes. In
these cases, complexity was caused by the presence of conditionals and nested
loops. Thus, the recommendation of Extract Methods was adequate to reduce
complexity and improve readability of the code.

Feature Envy Affecting the Implementation of Multiple Methods.
The heuristic of JDeodorant for removing Feature Envies consists of recom-
mending Move Methods for each of the affected classes. As observed in our
study, Move Method is indeed applied by developers during the removal of a
Feature Envy. However, in many cases, the sole execution of this refactoring
is not enough. The reason is that the envious code may be within a method
mixed with non envious code. Therefore, we conjecture that JDeodorant rec-
ommendations could be improved by our heuristic. Besides recommending the
Move Method for fully envious methods, JDeodorant would also be able to
address more complex scenarios based on the recommendation of composite
refactorings. In such cases, our heuristic for Feature Envy, would help devel-
opers to remove Feature Envies that impact the implementation of multiple
methods.

In fact, the heuristic for Feature Envy removal was the most successful one
in our quasi-experiment. Only one participant gave a negative answer, while 8

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 168

answers were intermediate, and 27 were positive. These results gave us confi-
dence about the removal patterns we found. We were able to derive a heuristic
that was able to remove the smell very often, according to the participants.
The developer we quote below is one of the intermediate answers.

“I believe the refactorings improved the code, but its readability is still
not perfect. I believe the constructor is still large.” – Participant with 4
years of experience

In this case, the participant agrees the heuristic was positive, but there is
a suggestion to keep improving the source code. Most of the intermediate
answers mention the need for more refactorings in order to reach an ideal
state. However, most of those improvements were not closely related to the
purpose of the heuristic being evaluated. The most experienced participant
said:

“I agree with the proposed refactorings. They were enough to remove the
code smell.” – Participant with 14 years of experience.

Removing God Class without a New Class. For removing a God Class,
JDeodorant recommends the creation of a new class through the Extract
Class refactoring. This heuristic is effective when a new class is necessary.
Nevertheless, there are scenarios in which the God Class contains methods
and attributes that could be placed in an existing correlated class. Thus, our
heuristic for God Class could present effective recommendations for developers
in such scenarios. As described in Section 6.4, in such cases, our heuristic is
able to remove God Classes without introducing new ones and without the
creation of new classes.

In the three cases that we presented to the participants, we recommended
several Move Methods to remove the God Class. All three classes are very large
and contains thousands of lines and dozens of methods. Even in these highly
complicated scenarios, the heuristics achieved 7 intermediate, 26 positive, and
only 3 negative answers. Interestingly, not even a single one developer criticized
a proposed Move Method. There were no complaints regarding the suggested
refactorings. All complaints were related to the continuity of the improvements,
i.e., the developers were expecting more Move Methods to solve the problem,
as the one we quote below.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 169

“This class still needs more refactorings, because I think it still contains
several responsibilities.” – Participant with 1 year of experience.

These results are exciting because it shows a difference between what we
consider God Class, and what some developers think. According to our God
Class detection rules, the target classes were not affected by the smell anymore
after the refactorings, while the developers still think it is. In this case, we could
change the rule to be more severe on the God Class detection. For instance,
we can reduce the threshold of the number of lines a class must have to be
classified as God Class. If we change the threshold, the heuristic would continue
to suggest Move Methods, and the unsatisfied developers might be satisfied if
we use the new rule. Most developers agree that the outcome is positive, as
the one we quote below:

“I believe the class was very confusing before the refactorings. Now, after
the refactorings, the class is way easier to understand and maintain.” –
Participant with 2 years of experience.

Upon data analysis, we can say that the evaluated heuristics are indeed
effective in removing code smells. Even with some preliminary heuristics, we
were able to achieve a high acceptance from the developers. In this way, it
seems worthwhile to follow the path of improving and creating more heuristics.
Nevertheless, we do not believe that existing heuristics should be replaced by
our heuristics. We also do not expect our heuristics to show satisfactory results
in any case. The reason is that, despite finding several composite refactoring
patterns, we implemented heuristics corresponding only to one pattern per
type of smell. Thus, as discussed above, our results show that state-of-the-art
recommendation tools can, in fact, benefit from our results.

6.6.3

Guidelines: Improving Recommendations

Based on our qualitative analysis, we were able to identify several factors
that contributed to the developers classifying our recommendations as positive,
intermediate, or negative. These factors compose the answer for our RQ2. In
fact, we believe these factors can be more useful than just explaining why the
participants accepted or rejected a composite refactoring recommendation. In
this sense, we relied on these factors to propose a set of guidelines that can help
other researchers to propose recommendation heuristics. These guidelines may

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 170

increase the chance of developers perceive techniques for composite refactoring
recommendations as useful.

From the participants’ feedback, we extract 128 positive sentences, 50 negative
sentences, and 26 improvement suggestions (see our replication package 3).
Following systematic procedures (Section 6.5.3), we analyzed the sentences and
identified multiple recurring codes that resulted in the creation of 16 factors
that contribute to the acceptance and 11 factors that cause the rejection of
refactoring recommendations. Next, we present guidelines related to the most
relevant factors.

Refactoring need and impact must be clear. A prominent factor noted in
this study was related to convincing developers that they should conduct the
proposed refactorings. To achieve such objective, we noted that: (1) the need
for refactoring must be clear, (2) the effect of the refactorings in the design
quality must be evident, and (3) the developer must agree that the resulting
design is significantly better than before the refactorings.

Regarding the need for composite refactoring, just informing the existence of
a smell is usually not enough, except in cases where the degradation is severe.
For the common cases, we noted that, the developer must be also informed
both about the metrics that indicate the presence of the smell and about
the quality attributes that are being impacted. In the experiment, we did
not provide such information as we would like the participants to judge the
recommendations without any influence on our part. However, our results show
that providing such information is essential for composite recommendations to
be accepted.

Understanding the impact of composite refactorings on the code’s design also
proved to be a fundamental factor. Participants made constant mentions of
design principles and quality attributes that were improved. The quality at-
tributes that were frequently mentioned are the following: Legibility, Maintain-
ability, and Reusability. To our surprise, legibility was the most cited quality
attribute, even for when removing smells like God Class and Feature Envy,
which usually involves significant changes to the code design. Besides that,
there were mentions to design principles such as cohesion, coupling and sepa-
ration of responsibilities.

Proposed composites should be intuitive. We also observed that the
more intuitive the refactorings are, the more likely the developer is to accept

3https://refactoringheuristics.github.io/

https://refactoringheuristics.github.io/
DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 171

them. This is not always possible to achieve because in some cases the
removal of a smell may require composite refactorings that are not always
easy to understand, especially for less experienced developers. Therefore, as
discussed above, providing information about the code design and the impact
of refactorings is essential. For less experienced developers, it may also be
necessary to explain what type of design change each recommended refactoring
will perform in the code.

Resulting design should not be worse than before. Even after the
composite refactoring, the developer may consider that the code design has not
improved, or became worse than before. This may happen when the composite
removes a smell but introduces others. Such scenario may occur with God Class
removal recommendations, for example. While the God Class refactorings have
the potential to improve the separation of concerns, in some cases they may also
result in the introduction of Lazy Class smells. Finally, the recommendation
technique must also be able to remove all relevant smell occurrences from the
refactored class. Developers are often not satisfied when a particular smell is
removed, but others remain in the class. Thus, it is fundamental to assess
the impact of a composite before its recommendation. In our case, we had
heuristics for only three smell types, so we were unable to identify and remove
other types of smells that already exist or that have been introduced during
refactorings.

Developer-driven customization is fundamental. Developers can often
disagree with the smells detected by the recommendation technique. They
can also believe that the smell has not been completely removed after the
recommended composite. This occurs because code smell detection is highly
sensitive to the developer (Hozano et al. 2017, Pecorelli et al. 2020) and to
other contextual factors (Oliveira et al. 2017, Oliveira et al. 2020). Thus, we
believe that customized detection strategies should be used for each project or
for each development team. There are, indeed, techniques based on Machine
Learning that try to provide customized smell detection (e.g., (Hozano et al.
2017)). However, their effectiveness is still far from ideal.

In conclusion, the factors discussed above answer our research question RQ2.
They are related to technical and human issues. Such factors can be useful to
improve existing techniques and to propose new techniques, since they show
what developers believe is important in a composite refactoring recommenda-
tion technique.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 172

6.7

Threats to Validity

This section presents some threats that could limit the validity of our findings.
For each threat, we present the actions taken to mitigate their impact on
the research results. The first threat to validity is related to the number
of participants in the study. We have selected a sample of 12 participants,
which may not be enough to achieve conclusive results. Nevertheless, our data
analysis was mainly based on a qualitative method that does not require
a large number of participants to achieve scientifically relevant results (Yin
2015).

The second threat is related to possible misunderstandings during the study.
Participants may have conducted the study differently from what we asked.
To mitigate this threat, we wrote thorough instructions in a web page and
encouraged them to reach us in case of any doubt. We highlighted that our
help would be limited to only clarifying the study in order to avoid bias
in the results. In addition, the open answers may have been biased by the
objective question, since it allowed only three response options. Nevertheless,
our qualitative analysis involving the content of the open answers provided
evidence that they were not influenced by the objective question.

In this experiment, we opted for not comparing our recommendations with a
baseline. The reason is that existing refactoring recommendation techniques
do not detect the same types of code smells that we are using in this study.
Moreover, the detection strategies for the smell types in common are different.
As a result, the baseline technique could detect different types of code smells
in the classes used in our experiment. To mitigate this threat, we based our
study on an in-depth qualitative data analysis.

Finally, there is a threat concerning the selected classes and composites. The
complexity of the code and the refactorings may have caused the participants
to not perform the experiment properly. To mitigate such threat, we described
each class thoroughly, and we were very careful to explain what was going
on on each step of the generated composites. In addition, we only selected
participants with a minimum knowledge about Java, code smell and refactor-
ing.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 6. Recommending Composite Refactorings for Design Problem
Removal: Heuristics and Evaluation 173

6.8

Conclusion

In this chapter, we proposed and evaluated three refactoring heuristics for
removing code smells. Towards their evaluation, we executed and reported
a quasi-experiment. Results show that the heuristics are promising, leading
to interesting and well-evaluated recommendations. Such results encourage
the use of our heuristics for the creation or improvement of recommendation
systems.

Although we got a high number positive answers, we still got a reasonable
number of intermediate ones (20% of all the answers). Thus, it is worthwhile
to work towards the reduction of this number since we could increase the de-
velopers’ satisfaction. To do this, we can explore more of the removal patterns
(Section 6.3) and the guidelines (Section 6.6.3). As a future work, we intend
to build and evaluate a composite refactoring recommendation tool based on
findings from this study and also based on the existing literature.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

7

OrganicRef: Towards Effective and Context-Sensitive Refac-
toring of Features

Software projects are commonly composed by multiple features, which repre-
sent functional and non-functional requirements of the project. Each feature
should be properly modularized in the project’s design. However, some design
decisions may result in Design Problems (DPs) caused by the incorrect modu-
larization of features. An example of such DPs is the Scattered Feature, which
occurs when a feature is scattered in multiple non-cohesive elements. When
DPs are not properly handled, the project may become difficult to maintain
and evolve. Therefore, developers need to remove existing DPs through refac-
torings. However, deciding where and how to refactor remains a challenging
task.

As we observed in Chapter 5, developers often perform refactorings with
little to no impact on design quality. Not rarely, the inherent complexity of
DPs removal may considerably hamper developers in identifying and applying
the most effective sequences of refactorings. Moreover, developers tend to
avoid the complete redesigning of a project. In fact, they tend to focus
on refactoring delimited contexts, which are often related to the features
being changed or improved. Therefore, developers would benefit from context-
sensitive refactoring recommendations. Nevertheless, there is still a lack of
recommendation techniques that address aforementioned challenges.

Therefore, in this chapter we took into consideration our findings from Chap-
ters 3, 4, 5 and 6 to propose the OrganicRef technique. OrganicRef is intended
to help developers in spotting and refactoring feature-related DPs in delim-
ited contexts. The DPs are identified through information extracted from the
project’s design and source code. OrganicRef uses a topic modeling algorithm
for finding existing features in the project. Then, OrganicRef combines fea-
tures information with internal quality measures and code smells to find DPs.
For creating refactoring recommendations, OrganicRef relies on a new refac-
toring recommendation strategy, which combines refactoring heuristics with
search-based optimization. We evaluated OrganicRef with an empirical study

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 175

involving open-source projects. Our results show that, when compared to a
baseline – which includes part of the heuristics of Chapter 6, OrganicRef sig-
nificantly improves the design quality of delimited contexts through effective
refactoring recommendations. The implementation of OrganicRef as well as
the study data are fully available for researchers and practitioners.

The main results presented in this chapter were submitted as a full paper to the
International Conference on Software Maintenance and Evolution (ICSME).
In this chapter we present analyzes and results that were not included in such
submission. Therefore, in the future we intend to submit an extension of the
ICSME paper to an international software engineering journal.

7.1

Introduction

Design Problems (DPs) occur when stakeholders make decisions that nega-
tively impact quality attributes such as modifiability, modularity, and the like
(Li, Avgeriou and Liang 2015, Lim, Taksande and Seaman 2012). Software
systems may be discontinued or redesigned when DPs are allowed to persist
(MacCormack, Rusnak and Baldwin 2006). In addition, the introduction of
DPs is linked to: (1) the rejection of contributions in open source projects
(Oliveira, Valente and Terra 2016), and (2) increased costs in industrial soft-
ware projects (Curtis, Sappid and Szynkarski 2012). Therefore, DPs should be
properly handled by software developers.

The identification of DP usually occurs through symptoms such as internal
code measures and code smells (Sousa et al. 2018). Refactoring (Fowler 1999) is
a practice adopted by many developers to remove DPs. Nevertheless, deciding
where and how to refactor is far from trivial. Software projects often suffer
massive changes, preventing their developers from keeping track of the source
code locations impacted by DPs. Moreover, there is evidence that even when
the locations of DPs are known, refactorings performed in practice may be
unable to completely remove them (Chapter 5). In fact, developers consider
that better techniques are necessary for tasks such as identification and removal
of DPs (Rebai et al. 2020, Lim, Taksande and Seaman 2012, Ernst et al.
2015).

Given such a need, there are multiple techniques for assisting developers to
identify and remove DPs through refactoring recommendations (Rebai et al.
2020, Alizadeh et al. 2019, Ouni et al. 2017, Lin et al. 2016, Xiao et al. 2016).
There are also guidelines for building refactoring recommendation techniques

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 176

and tools (Tsantalis, Chaikalis and Chatzigeorgiou 2018, Bavota et al. 2014).
However, our previous chapters have shown the importance and necessity of
requirements that are still not widely met by existing techniques.

Therefore, in this chapter we propose a new recommendation technique called
OrganicRef. Our proposed technique aims to address three key requirements
as described below.

Consideration of Heterogeneous Information. Refactoring recommenda-
tions should be generated and provided based on multiple and diverse symptoms.
Each DP is usually related with multiple symptom types, which should be
considered for effectively detecting DPs and generating refactoring recommen-
dations (Oizumi et al. 2020, Oizumi et al. 2019, Oizumi et al. 2016). Moreover,
before refactoring, developers need to understand the relations of such symp-
toms with DPs and their negative consequences (Sousa et al. 2018, Sousa et
al. 2017). Without understanding such relations, the developer may not be
confident enough to conduct refactorings.

Context-Sensitive Detection. Recommendation techniques should provide
mechanisms to filter the recommendations to a specific context. To provide
refactoring recommendations, a technique need to rely on the detection of DP
symptoms. However, detecting DP symptoms and generating recommenda-
tions for the whole project is not an effective strategy (Oizumi et al. 2019, Al-
izadeh and Kessentini 2018, Rebai et al. 2020, Vidal et al. 2019). In fact,
developers usually avoid changing code elements that are out of their context
of interest (Alizadeh and Kessentini 2018, Alizadeh et al. 2019c). Therefore,
recommendations should be focused in a specific context, helping developers
to spend less effort with design improvements. An example of context is the
set of elements being changed in a task. In such a context, the changed el-
ements are usually determined by the features being introduced or changed
in the task. Therefore, the recommendation technique should be able to pro-
vide recommendations aimed at improving such elements and their respective
features.

Effective Recommendations. Developers need assistance for effectively
removing DPs through refactorings. The removal of a DP usually involves the
execution of a sequence of multiple refactorings (Oizumi et al. 2020, Sousa et al.
2020a, Cedrim 2018). Despite refactoring sequences being widely investigated
in the literature – e.g., (Brito, Hora and Valente 2020), (Bibiano et al. 2020),
(Bibiano et al. 2019), (Sousa et al. 2020a), there is evidence that many
refactorings performed in practice are not effective (Cedrim 2018, Rebai et al.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 177

2020). As a result, DPs end up not being completely removed. Moreover, some
refactorings may even worsen the design quality (Sousa et al. 2020a, Cedrim
2018). Some of the reasons for the lack of effectiveness are that developers
usually (1) perform incomplete refactorings (Bibiano et al. 2019, Bibiano et al.
2020) and (2) select combinations of refactorings that are not the most effective
for their context (Rebai et al. 2020, Alizadeh and Kessentini 2018).

OrganicRef is able to work with either developer-defined or auto-detected
contexts. The DPs are detected through information extracted from the
project’s design and source code. From the project’s design, OrganicRef uses
a topic modeling (Silva, Galster and Gilson 2021) algorithm to extract the
distribution of features across the project’s elements. Then, it relies on the
source code to collect quality measures and code smells. To provide effective
refactorings, we have designed a new refactoring recommendation heuristic
based on feature modularity. OrganicRef combines our new heuristic with two
heuristics inspired by state-of-the-art techniques.

Finally, we use search-based optimization to create and evolve multiple possi-
ble recommendations. Search-based optimization is a discipline that employs
search algorithms to find (sub-)optimal solutions for complex problems (Mo-
han, Greer and McMullan 2016). In this study, we selected two search-based
algorithms: NSGA-II (Deb et al. 2002) and MOSA (Ulungu et al. 1999, Fraire
et al. 2020, Kessentini, Dea and Ouni 2017). Such algorithms showed good
results in recent refactoring recommendation studies (e.g., (Kessentini, Dea
and Ouni 2017) and (Alizadeh et al. 2019b)). Moreover, they were the best
performing ones in our preliminary evaluations. Given the characteristics of
OrganicRef, we selected Feature Overload and Scattered Feature (Garcia et al.
2009) as the target design problems of our evaluation. Feature Overload oc-
curs when a design element implements multiple unrelated features. Finally,
Scattered Feature is the result of a feature being implemented by different and
non-cohesive design elements.

To enable OrganicRef evaluation, we implemented a reference tool and con-
ducted an empirical study involving six industry-strength open-source projects.
Our evaluation relied on both quantitative and qualitative analysis. The results
show that OrganicRef is able to significantly improve feature modularization
even when information about features is not fully accurate. We also observed
that NSGA-II presented the best results based on our evaluation criteria. It
was able to consistently reduce the number of DP symptoms and the lack
of cohesion in the context’s elements of all target projects. Thus, NSGA-II
presented the best improvement of feature modularization.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 178

Top Degraded
Elements

Developer
Driven

Context
Selection

Quality
Evaluation

Feature-based
Symptoms Code Smells Internal Quality

Measures

Features
Detection

LDA Topic
Modeling

Refactoring
Generation

Feature-based
Heuristics

Traditional
Heuristics

Refactoring
Optimization

NSGA-II MOSA SA

Refactoring
Recommendation

Technique
Overview

Figure 7.1: Overview of the OrganicRef technique
In a nutshell, in this work we: (1) proposed a new refactoring recommendation
technique focused on key requirements from the literature; (2) implemented
an open-source reference tool, which is fully available for researchers and
practitioners; and (3) conducted an empirical study following the recommended
open science policies.

7.2

OrganicRef: Components, Algorithms and Heuristics

The goal of OrganicRef is to provide effective context-sensitive support for
refactoring feature modularization problems. We designed OrganicRef based
on the results of our previous studies (Chapters 3 to 6) and existing literature
about feature-related DPs and refactoring (e.g., (Rebai et al. 2020, Sousa et al.
2020a, Kessentini, Dea and Ouni 2017, Tsantalis, Chaikalis and Chatzigeorgiou
2018)). Figure 7.1 provides an overview of the core components of OrganicRef.
The components are represented with the UML notation for components while
rectangles represent their underline heuristics and algorithms. Dependencies
between components, heuristics and algorithms are represented by arrows. In
the next sub-sections, we describe all elements that compose OrganicRef as
well as the relations between them.

7.2.1

Features Detection and Context Selection

One of the differences of OrganicRef from other similar techniques is that it
goes beyond traditional symptoms. OrganicRef is able to detect symptoms
and recommend refactorings based on information about feature modulariza-
tion. Each feature is intended to represent a functional or non-functional re-
quirement of the target project. The features may be automatically detected

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 179

based on different approaches, such as using topic modeling (Oizumi et al.
2016, Bavota et al. 2013).

Using the feature detection component, OrganicRef is able to automatically
collect semantic information which is often not possible only with traditional
metrics and code smells. As a result, we expect OrganicRef to better identify
possible DPs with heterogeneous symptoms.

We decided to include this component because of evidence from the litera-
ture that DP identification requires heterogeneous symptoms (Sousa et al.
2018, Sousa et al. 2017). In fact, there is an increasingly number of tech-
niques relying on multiple and diverse information for generating recommen-
dations (Nyamawe et al. 2019, Rebai et al. 2020, Yamanaka et al. 2021).

As illustrated in Figure 7.1, we relied on a Topic Modeling algorithm for
finding features. For this task, we used the Machine learning for language
toolkit (Mallet) (McCallum 2002)1. Mallet is a Java toolkit that provides
the implementation of several machine learning algorithms applied to textual
data. Among the available algorithms, we decided to use their Latent Dirichlet
Allocation (LDA) parallel topic modeling implementation. LDA was selected
because it was previously applied in multiple software engineering studies
as demonstrated by a recent literature review (Silva, Galster and Gilson
2021).

Feature Identification and Association. After building a topic model,
OrganicRef maps each topic to a feature. Each feature is represented by the
most frequent tokens occurring in its corresponding topic. After that, Organi-
cRef assigns the features to the source code Types (Classes, Enumerates, and
Interfaces) and Methods (including constructors). It does not consider code
elements of fine granularity, such as blocks or statements, as OrganicRef is
focused on DPs of coarser granularity. OrganicRef uses the textual representa-
tion of the code element for inferring up to N features, where N is an arbitrary
value defined when running OrganicRef. In this study, after a trial and error
process, we defined N = 6.

Context Selection. OrganicRef also allows the definition of a context for
finding the DPs and generating refactoring recommendations. The context
is defined on demand, according to the objectives of the developers. An
example of context is the set of elements changed by the developer during
a task. We included this component because there is evidence that developers

1Version 202108.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 180

usually avoid refactoring code elements that are out of their context of
interest (Alizadeh and Kessentini 2018, Alizadeh et al. 2019, Alizadeh et al.
2019c). Moreover, developers tend to overlook long lists of symptoms and
refactoring recommendations.

For this study, we defined a general purpose context selection strategy which
consists of the top ten code elements with higher chance of being impacted
by DPs. For instrumenting our selection strategy, we decided to rely on the
number of DP symptoms. This decision is based on evidence that DP usually
manifest themselves through multiple symptoms (Sousa et al. 2018, Oizumi et
al. 2016). Therefore, this heuristic is expected to select the elements that are
more likely to need feature modularization refactorings.

7.2.2

Quality Evaluation

Given the code elements provided by the previous component, in this compo-
nent we conduct a quality assessment based on feature-related DP symptoms.
OrganicRef is extensible enough for allowing the use multiple symptom types.
In this study, we selected three types of symptoms, namely Internal Quality
Measures, Code Smells, and Feature-based Symptoms.

Internal Quality Measures represent relevant characteristics for the design
of a project. For the detection of Feature Overload and Scattered Feature,
we selected the following measures: Coupling Dispersion, Coupling Intensity,
Cyclomatic Complexity, Lack of Cohesion, Number of Clients, Number of
Methods, Number of Fields, and Number of Statements. Such measures
provide us with information about different design characteristics that may
be impacted by the occurrence of Feature Overload or Scattered Feature.

Code Smells are surface symptoms of DPs in the source code (Fowler 1999).
Smells can be automatically detected through different heuristics. In Organi-
cRef, we rely on the use of rule-based heuristics (Marinescu, 2004). The rules
are based on the internal quality measures presented earlier. We selected such
heuristics because they are often used by state-of-the-art techniques to find DP
symptoms. In this study, we focused in the following smells types: Complex
Class, Dispersed Coupling, Feature Envy, God Class, Large Class, and Lazy
Class. Those smell types were selected because of their relation with feature
modularization. Details about the detection rules and thresholds are available
in our replication package.

Feature-based Symptoms indicate elements related to the lack of feature modu-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 181

larization. We defined two heuristics for feature-based symptoms, namely Fea-
ture Concentration and Feature Dispersion. The selection of such heuristics is
justified by their direct relation with our target DPs (i.e., Feature Overload
and Scattered Feature). The heuristics for finding feature-based symptoms in
OrganicRef are based on the output generated by the Feature Detection com-
ponent. Below we present a short description of our detection heuristics:

– Feature Concentration. In this heuristics OrganicRef analyzes the fea-
tures detected for each class in the project. Then it selects the ones that
have a number of features higher than the median number of features
per class in the project. Such classes are marked as candidates for the
Feature Overload DP.

– Feature Dispersion. For finding Scattered Feature candidates, this heuris-
tics iterates over all features detected in the project. Then, for each fea-
ture, OrganicRef finds the classes implementing it. Among such classes,
the heuristic selects the ones in which the feature is not the predomi-
nant one. The predominance is based on the probability of association
between the feature and the class. This probability is determined by the
Topic Modeling algorithm.

7.2.3

Refactoring Generation Heuristics

This component is responsible for generating the refactorings that will improve
feature modularization in a given context. OrganicRef uses this component to
generate an initial set of recommendations based on multiple heuristics inspired
by existing state-of-the-art refactoring recommendation techniques (Bavota
et al. 2013, Tsantalis, Chaikalis and Chatzigeorgiou 2018, Fokaefs et al.
2011, Oizumi et al. 2020). Although the selection of heuristics is flexible, we
selected the following initial set of heuristics for this study:

Move Method. With this heuristic OrganicRef finds the suitable class for
moving a method by counting the number of calls and accesses to fields. For
instance, let us assume that a particular method m calls 3 methods and accesses
2 attributes from class A. In this case, the bonding factor of m to A is 5. The
same method m calls 4 methods from the class B, leading to a bonding factor of
4. Thus, our heuristic generates a Move Method recommendation for moving
m to A. We also store the information that B is another candidate for the
move. As a result, we can later, during the optimization process, change the
target of this Move Method from A to B.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 182

This Move Method heuristic was recently proposed by Oizumi et al. (Oizumi
et al. 2020) and showed good results in their evaluation. The rationale behind
this heuristic is that a class with the highest bound factor can be the best
candidate for cohesively receiving the moved method.

Extract Class. The Move Method refactoring may not be the best option
for all cases. Therefore, we also included an Extract Class heuristic. For
generating Extract Class refactorings, OrganicRef uses an heuristic inspired
by the one proposed by Fokaefs et al. (Fokaefs et al. 2011). In summary,
OrganicRef uses a hierarchical clustering algorithm for finding groups of fields
and methods that can be extracted. The heuristic starts by including each
method and fields in separated clusters. Then, the clusters are compared and
merged based on the Jaccard distance metric. This process continues through
multiple iterations until no clusters can be merged. As a result, our heuristic
recommends extracting the smaller clusters of fields and methods.

Feature-based Move Element. This heuristic is inspired by the MethodBook
technique (Bavota et al. 2013), which relies on topic modeling for finding
Move Method candidates. Similarly to them, OrganicRef identifies multiple
candidates for receiving a method based on feature similarity. In this case, we
only include as candidates the classes for which the predominant feature is
the same of the method. The heuristic generates the Move Method targeting a
randomly selected class among the available candidates. The other candidates
are store for being used later in the refactoring optimization process.

Feature-based Extract Class. OrganicRef also includes a heuristic for generating
Extract Class refactorings based on feature information. This heuristics selects
the classes that contain two or more features and recommends the extraction of
methods implementing the non-predominant features of the class. Besides the
methods, it also selects the fields used only by the extracted methods.

Aforementioned heuristics were selected because they generate well suited
refactorings for feature modularization problems. We are aware that other
refactoring types could be used for improving modularization. Nevertheless,
we decided to focus on a small set of refactorings to facilitate the evaluation
and improvement of OrganicRef.

7.2.4

Search-based Refactoring Optimization

OrganicRef is also able to apply a search-based algorithm (Harman et al.
2012) for recommending to the developer the refactorings that do not include

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 183

ClassB

EC [

fields {f1, f2, f3}

methods {m1, m2}

]

ClassA

MM {m1->ClassD}

MM {m2->ClassF}

MF {f1->ClassD}

MF {f2->ClassF}

ClassC

MM {m1->ClassE}

EC [

fields {f1, f2}

methods {m2, m3}]

ClassD

No Refactorings

0 1 2 3

Solution Representation

Add Element
to Extract methods { m1, m2, m3 }

Mutation
Example

Figure 7.2: Example of solution representation and search operator
violations and that best improve the source code structure according to our
set of quality characteristics. OrganicRef builds an initial population based on
the combination of aforementioned heuristics in a given context. This approach
differs from other approaches that usually build a random initial population.
The advantage of our approach is that the optimization already start with
“good” solutions. Therefore, the optimization effort may be lower.

Our optimization problem is represented by a refactoring sequence vector.
Each vector position contains the refactorings applied to a context’s element.
Each element may contain zero to many recommended refactorings. Figure 7.2
shows an illustrative example of solution. It is possible to see that position
zero corresponds to the refactorings for ClassA, which are two move meth-
ods and two move fields. We opted for this non-conventional representation
because it allows OrganicRef to focus the optimization effort in the selected
context.

We use search operators specific to feature modularization to change and
improve solutions, as presented next.

Replace Refactoring Type will try to change the type of refactoring being
applied to a given element. For instance, let’s take the solution presented in
Figure 7.2. The Move Method and Move Field refactorings for ClassA can be
replaced by an Extract Class refactoring with the same methods and fields that
were being moved. Add refactoring to Element is intended to complement
the refactorings for a given element. In the example of Figure 7.2, this

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 184

operator is applied for including method m3 to the Extract Class refactoring
at ClassB.

Remove Refactoring aims at removing a refactoring from the solution. It
can remove an entire refactoring or part of it. In the case of Extract Class, it can
remove one of the elements that were being extracted. Finally, Change Move
Target changes the target of a Move Method based on the candidates for
receiving it (see Move Method heuristics above). The new target for the Move
Method is randomly selected when there are more than one candidate.

For evaluating the solutions, we defined five objective functions. Four of them
are related to feature modularization and one aims at reducing the number
of recommended refactorings. All of them are minimization objectives and are
defined next.

Quality Measures. Similarly to many of the search-based refactoring tech-
niques (e.g., (Alizadeh et al. 2019)), one of our objective functions is composed
by the sum of quality measures divided by the number of measures. In our case,
we selected the measures presented in Section 7.2.2. The only exception is the
Lack of Cohesion measure, which is in a separated objective.

Lack of Cohesion. We decided to consider lack of cohesion as a separated
objective due to its direct relation with feature modularization. Despite being
often criticized due to its lack of accuracy, it provides a complementary
perspective for our feature modularization technique.

Density of Symptoms. The density of symptoms is also often applied as
a objective function for search-based refactoring techniques. In OrganicRef,
we follow the same approach of Kessentini et al. (Kessentini, Dea and Ouni
2017), defining the density of symptoms objective function as the number
of Symptoms After Refactoring divided by the number of Symptoms Before
Refactoring.

Number of Features per Element. Since the goal of OrganicRef is to
improve feature modularization, we included this objective function that
measures the impact of each solution on the number of features per element in
the project. This objective is similar to the previous one and is calculated as
the sum of features per Class after refactoring divided by the sum of features
per class before refactoring.

Number of Refactorings. Another import aspect of the refactorings is to
achieve the desired improvement with the smaller number of refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 185

Therefore, this objective function is calculated as the number of refactoring
operations recommended by the solution.

OrganicRef allows the use of any optimization algorithm provided by the
JMetal framework. It is also possible to implement custom optimization
algorithms based on the reusable structure of JMetal. Therefore, during the
conception of OrganicRef, we could test different options of optimization
algorithms.

After our tests, we selected two algorithms for creating our refactoring rec-
ommendation strategies. The first algorithm is the Multi-Objective Simulated
Annealing (MOSA). MOSA is a multi-objective version of Simulated Anneal-
ing. Besides presenting good results in our preliminary evaluations, MOSA has
also presented better results than SA in a closely related study (Kessentini,
Dea and Ouni 2017). In addition to MOSA, we also selected the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002).

The aforementioned search operators were applied as mutation operators in
NSGA-II, whereas the crossover operator consists in randomly exchanging
vector elements between two solutions to generate two new solutions. To our
surprise, NSGA-II was more effective in our tests than NSGA-III (Deb and Jain
2014). It was not expected because NSGA-III tends to present better results
when we use more than three objective functions. As we previously described,
OrganicRef relies on the use of five objective functions. Despite having selected
these two algorithms, future studies can be conducted to carry out more in-
depth comparisons between the different optimization algorithms.

Besides the strategies based on MOSA and NSGA-II, we created a third
strategy, which we call SIMPLE. This strategy consists of using our refactoring
generation heuristics without optimization. The idea behind this strategy
is to provide a comparison parameter for the solutions generated by the
optimization-based strategies. The SIMPLE strategy always creates a set of
five different solutions. The first four solutions are the result of applying each
of our refactoring generation heuristics in isolation. For example, one of the
solutions will be the result of applying our Move Methods heuristic for all
elements within the selected context. The last solution is the result of randomly
combining the refactoring heuristics (e.g., Move Methods for ClassA, Extract
Class for ClassB, etc). Finally, we also defined a BASELINE strategy which
is similar to the SIMPLE strategy. The only difference is that the BASELINE
does not use feature-related heuristics for generating the recommendations.
Our intention with this heuristic is to evaluate our feature-driven refactoring

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 186

heuristics.

7.3

Study Design

For evaluating the proposed technique, we designed a multi-case study based on
industry-strength open source projects. The goal of this study is to evaluate the
effectiveness of refactoring sequences recommended by OrganicRef to improve
feature modularization. To guide our evaluation, we defined the following
research questions.

RQ1. What is the effectiveness of feature-driven strategies when compared
to a baseline?

The idea behind RQ1 is to evaluate whether our refactoring heuristics in com-
bination with search-based optimization can improve the recommendation of
refactorings for feature modularization. Therefore, we want to verify if the
OrganicRef feature-driven heuristics and optimization operators can signifi-
cantly improve the quality of the recommendations compared to non-optimized
ones.

For answering RQ1, we evaluated the effectiveness of search-based algorithms
for generating refactoring recommendations when compared to a baseline
(see Section 7.2.4). These rule-based strategies were selected because they
presented promising results for the removal of Feature Overload and Scattered
Feature symptoms in previous studies (Tsantalis, Chaikalis and Chatzigeorgiou
2018, Oizumi et al. 2020, Colanzi et al. 2014).

RQ2. What are the characteristics of solutions provided by Organi-
cRef ?

For answering RQ2, we compared the solutions generated by each strategy.
Such a comparison was made based on the fitness of generated solutions and
on a manual evaluation performed by ourselves (more details on Section 7.3.4).
The idea behind RQ2 is to understand how the use of feature-driven heuristics
and search-based algorithms impacted on the characteristics of generated
solutions. Such an investigation is necessary to understand which aspects of the
technique contributed for our goal and which ones should be improved.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 187

Table 7.1: Target projects
Project Domain # Commits # PRs Release

Dubbo RPC framework 5356 4702 3.0.6
Fresco Image Library 3150 407 2.6.0
Jenkins CI Server 31686 6351 2.319.3
OkHttp HTTP client 5072 3457 3.14.0
RxJava Async Library 5969 3678 3.1.0
Spring Security Security Library 10142 1865 5.6.0

7.3.1

Target Projects

We selected a set of six industry-strength open source projects for our study.
For composing this set, we selected projects that (1) are implemented in the
Java programming language; (2) use pull request reviews as a mechanism to
receive and evaluate contributions; (3) have at least 1,000 commits; (4) are at
least five years old, and (5) are currently active.

We applied the first criterion once our tool is able to work with source
code written in Java. The second allowed us to identify projects potentially
concerned with code and design quality. Finally, we adopted the last three
criteria to avoid selecting projects with reduced complexity, barely changed,
and discontinued.

After applying the aforementioned criteria, there were several candidates to
filter out. Therefore, we opted by cherry-picking projects widely known and
employed in the software industry. From them, we tried to compose a diverse
sample of projects from different domains and purposes. We understand that
exploring this diversity is important to our study because it allows us to
evaluate the proposed technology over a heterogeneous set of features and
design decisions that may influence the required refactorings. Besides, we
also picked projects considerably varying in the number of commits, pull
requests, and age. These characteristics may be associated with different levels
of degradation. Table 7.1 describes the six projects selected for our study.
One can see that the set of target projects includes well-known libraries and
frameworks.

Selection of Releases. After selecting the target projects, we selected the
releases to compose the sample for evaluation. Except for the OkHttp project,
we selected the last stable release of the target projects, as presented in the
last column of Table 7.1. For OkHttp, we selected the last release developed
in Java.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 188

7.3.2

Execution Settings

We executed the planned evaluation on a Linux server running over a machine
having 95 GB of primary memory, 1TB of storage, and Xeon Silver 2.2GHz
(20 threads) CPU.

Topic Modeling. We configured the LDA Topic Modeling algorithm in a trial
and error process, achieving the following configuration: two parallel threads,
1,500 iterations, optimization interval of 10, burn-in period of 20, no symmetric
alpha, 50 topics, and 0.15 as the minimum proportion of a topic. We also
defined a cleaning procedure to remove any character different from letters
(A-Z) and numbers (0-9). For identifying the token to be ignored, we employed
the default list of stop words in English provided by Mallet combined with the
list of Java keywords.

We applied above configuration for all target projects, without any specific
customization. We are aware that this is not the ideal scenario, since the
effectiveness of LDA Topic Modeling depends on fine-tuning its parameters for
each project. Nevertheless, using a default configuration helps us to evaluate
OrganicRef in the worst case scenario.

Recommendation Strategies. For each strategy employed, we ran 30 in-
dependent executions of OrganicRef by target projects, storing the results.
This amount of executions was necessary for finding the best results given
the non-deterministic nature of topic modeling and search-based optimization.
Moreover, this practice follows guidelines proposed in the technical literature
on search-based optimization (Arcuri and Briand 2014, Colanzi et al. 2020).
Next, we present the configurations adopted for each search-based algorithm.
Those configurations were initially defined based on the ones used by similar
techniques (e.g., (Kessentini, Dea and Ouni 2017, Alizadeh et al. 2019b)) and
were adapted during our tests.

NSGA-II Configuration. For running NSGA-II, we adopted the following
configuration: (1) 10,240 maximum fitness evaluations, (2) crossover proba-
bility of 0.2, (3) mutation probability of 0.8, (4) five objective functions (see
Section 7.2), and (5) population size of 128 solutions.

MOSA Configuration. For the MOSA algorithm, we adapted the imple-
mentation provided in the work of Fraire Huacuja et al. (Fraire et al. 2020).
We defined the following configuration: (1) initial temperature of 100, (2) fi-
nal temperature of 0.01, (3) 0.98 alpha, (4) five objective functions (see Sec-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 189

tion 7.2), and (5) population size of 128 solutions. Search operators described
in Section 7.2 were applied as neighborhood operators.

7.3.3

Data Collection Procedures

For running OrganicRef and collecting the results of the executions in each
target project, we followed the systematic and automated procedures described
below.

1) Topic modeling training. Using the configurations described in Sec-
tion 7.3.2, we ran the Mallet tool for training our topic models. Since our
target projects are from different domains, we opted to create a single model
per project. The input is composed by the source code files of the target project
and the result is topic model. In the next step, we use the topic model of each
project in OrganicRef for the identification of features based on topic infer-
ence.

2) OrganicRef execution. For this study, we implemented all the refac-
toring recommendation strategies in the same tool. It means that OrganicRef
contains both the baseline and the feature-driven strategies, which allows us to
perform comparisons based on the same quality measures. For any recommen-
dation strategy, OrganicRef provides the list of solutions together with their
respective recommended refactorings and fitness values. Moreover, it provides
information about the design quality – i.e., measures and symptoms – before
and after performing the recommended refactorings.

For each target project, we ran OrganicRef and collected the aforementioned
results for 30 executions of each recommendation strategy evaluated in this
study.

7.3.4

Quantitative and Qualitative Analysis

For answering our research questions, we defined the following data analysis
procedures.

Selection of best solutions. Given that our analysis is based on five
objective-functions, for all strategies, we selected the non-dominated solu-
tions (Coello et al. 2007) across the 30 executions. The non-dominated solu-
tions are those for which there is no other solution that presents better fitness
to all objectives.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 190

Comparing Strategies. For comparing MOSA, NSGA-II and the baseline
across all projects, we relied on multiple quality impact criteria. Such criteria
were used to evaluate the generated solutions based on the differences before
and after applying the recommended refactorings. For this purpose, we selected
the following criteria: (1) number of symptoms, (2) number of features per
element, and (3) lack of cohesion. For all criteria, we performed a quantitative
analyses based on descriptive statistics and on the Mann-Whitney U test.

Manual Evaluation. Besides the quantitative analyses, we selected a reduced
subset of recommendations to be manually analyzed by four collaborators. The
collaborators were selected from our network of contacts and have previous
experience conducting research related to DPs and refactoring. To avoid too
much cognitive effort in understanding different projects, we selected only
recommendations addressing the OkHttp project. This project was selected
because of our collaborator’s previous experiences studying it. Moreover, as
we will discuss in Section 7.4.2, the different strategies evaluated in this study
presented similar results for OkHttp. Therefore, we consider that this project
serves as an appropriate benchmark for OrganicRef.

Analysis Procedures. For conducting the analysis, we provided each collab-
orator with three solutions. Two of them were generated by the MOSA and
NSGA-II strategies. The other one was generated by the BASELINE strat-
egy and was included only to verify that the collaborators did not carry out
a biased evaluation. Each collaborator received the three solutions in differ-
ent orders. Moreover, they were not aware of which strategy generated each
solution.

We asked the collaborators to evaluate the solutions in the provided order
focusing in three quality criteria, namely soundness, viability, and quality
impact. Besides that, we informed them that the solutions were aimed at
improving feature modularization. They were allowed to spend as much time as
necessary for doing the analysis without communicating to each other. Finally,
their feedback was sent through a discursive response form.

By performing the aforementioned analysis, we could understand better the
results of the quantitative analysis, improving the discussion of the study
findings.

7.4

Evaluation Results

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 191

7.4.1

On the Quality Impact of Feature-driven Strategies

For answering RQ1, we analyzed the effectiveness of four refactoring recom-
mendation strategies from different perspectives. As described in the previous
sections, we are comparing the use of feature-driven strategies to a rule-based
strategy (BASELINE).

In Table 7.2 we summarize three quality criteria for non-dominated solutions
generated with each strategy. The BASELINE and SIMPLE strategies are
represented by the BL and SP acronyms, respectively. All the quality criteria
presented in Table 7.2 are calculated exclusively for the selected contexts (i.e.,
top 10 degraded elements of each project). All the presented values are the
medians obtained from the non-dominated solutions.

Table 7.2: Median quality impact of non-dominated solutions on the top 10
degraded elements

Smell Difference # Features Difference LCOM DifferenceProject BL SP MOSA NSGA-II BL SP MOSA NSGA-II BL SP MOSA NSGA-II
Fresco -6 -23 -16 -23 -1,5 -7 -4 -7 0,0468 -0,2043 -0,0723 -0,2212
RxJava -15 -35 -13 -37 -2 -10 -5,5 -11 -0,0544 0,0151 0,0415 -0,0747
Jenkins -24 -27 -21 -29 -4 -5 -5 -6 -0,0261 -0,0923 -0,0921 -0,1378
Spring Security -5 -19 -17 -19 0 -5 -5 -4 0,0007 -0,0913 -0,0469 -0,1145
Dubbo -11 -24 -11 -23 -1 -2 -2 -1 0,1247 -0,1452 -0,0475 -0,1972
OkHttp -6,5 -26 -20 -27 1 -3 -4 -4 -0,0741 -0,2193 -0,1549 -0,2541
All -10,5 -26 -16 -26 -2 -5 -4 -6 -0,0202 -0,114 -0,066 -0,151

The second main column of Table 7.2 presents the difference on the number
of DP symptoms after applying the recommended refactorings. In the third
main column we present the difference on the sum of features per element.
Finally, the last main column contains the difference of the Lack of Cohesion
measure in the selected contexts. For all criteria, a negative value means that
the evaluated quality indicator improved after the refactorings. We highlight
in bold the best results of each criterion in each project.

DP Symptoms Reduction. For most projects, it is possible to observe that
the SIMPLE and NSGA-II strategies presented the best results regarding DP
symptom reduction. MOSA was not the best in any of the projects. However,
with the exception of Dubbo, its results were very close to the ones presented
by SIMPLE and NSGA-II. The BASELINE strategy, on the other hand, only
presented a considerable reduction of symptoms for the Jenkins project.

We also applied the Mann Whitney U Test to compare the medians for each
strategy. The results show, with 95% of confidence, that SIMPLE and NSGA-II
are statistically different from the ones for BASELINE and MOSA.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 192

Impact on the Number of Features per Element. For the feature
reduction criterion, the differences between the compared strategies were
smaller. Nevertheless, the NSGA-II strategy presented the best results for four
out of six projects. On the other hand, MOSA and SIMPLE outperformed
NSGA-II results for the Dubbo and Spring Security projects. Finally, besides
the BASELINE being the worst performing strategy in all cases, it also
increased the number of features per element in the OkHttp project.

Lack of Cohesion Reduction. As far as feature modularization is concerned,
another key evaluation criteria is the Lack of Cohesion measure. It is possible
to observe in Table 7.2 that NSGA-II was the best performing strategy for all
evaluated projects. In this criteria, the results for SIMPLE and MOSA were
not as close to NSGA-II results as in the previous criteria.

Impact on Coupling Measures. Besides the evaluation criteria presented
in Table 7.2, another relevant aspect for feature modularization is the coupling
of the refactored elements. Therefore, in Figure 7.3, we summarize the impact
of each strategy in two coupling measures namely, Coupling Intensity and
Coupling Dispersion. The former is calculated as the higher number of method
calls and field uses that a class has with another one, while the latter counts
the number of different classes that a class depends on. The values presented
in Figure 7.3 are the medians for all projects.

For Coupling Intensity, MOSA presented the best impacting with a median
intensity reduction close to six. On the other hand, when we consider Coupling
Dispersion, NSGA-II outperformed all the other strategies. Such a result is
aligned with the previous one, since a higher coupling dispersion may be linked
to the lack of feature modularization.

Finding 1. NSGA-II presented the best results based on our evaluation
criteria. It was able to consistently reduce the number of symptoms and
the lack of cohesion in the context’s elements of all target projects. More-
over, in most projects it provided the highest reduction of features imple-
mented by context’s elements, benefiting feature modularization.

Computing Time. As presented in Table 7.3, we also measured the median
computing time for each strategy. As we expected, the computing time for
BASELINE and SIMPLE is negligible, taking less than half a minute for all
cases. On the other hand, the median computing time for MOSA was far from
ideal. With the exception of the Fresco and OkHttp projects, for all cases
MOSA took nearly one hour. For the Dubbo project, it was 1 hour and 14

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 193

-6

-4

-2

0

BASELINE SIMPLE MOSA NSGA-II

Coupling Intensity Coupling Dispersion

Figure 7.3: Median impact of non-dominated solutions on coupling measures
minutes.

If we think about integrating OrganicRef into a software production flow, the
computing times for MOSA can be considered prohibitive. In this sense, the
NSGA-II strategy proved to be much more promising. It took less than four
minutes in the best case, and less than sixteen minutes in the worst case.
Although these values are still high when compared to the BASELINE and
SIMPLE strategies, NSGA-II impact on a production flow would be much
smaller than that presented by MOSA. In addition, this waiting time can pay
off given the positive impact caused by the recommendations generated by the
NSGA-II (see Section 7.4.1).

Finding 2. While the computing time is still not ideal, the NSGA-II
strategy can be viable given its consistently positive impact.

Table 7.3: Median computing time (in minutes) for generating solutions
Project Computing Time (Minutes)

BASELINE SIMPLE MOSA NSGA-II
Fresco 0,0478 0,0766 22,1735 3,9935
RxJava 0,1502 0,1879 63,1804 14,7194
Jenkins 0,1438 0,1978 64,5497 12,1198
Spring Security 0,1139 0,1576 58,7528 13,3737
Dubbo 0,1622 0,2133 74,6844 15,9935
OkHttp 0,0508 0,1474 21,0723 3,2373
All 0,1288 0,1774 62,2587 12,4134

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 194

NFEAT

NREF

0.98

0.985

0.99

0.995

1

1.005

1.01

BASELINE
SIMPLE

MOSA
NSGA−II

0.99
1

1.01

0 20 40 60 80 100 120 140 160

D
E

N
S

IT
Y

Figure 7.4: Partial view of the solution space for the Fresco project

7.4.2

Solution Space Analysis

Given the results observed for our quality impact criteria, in this section we
analyze how the solutions obtained by each strategy are disperse in the solution
space. For doing so, we selected three objective functions, namely Number of
Features per Element (NFEAT), Number of Refactorings (NREF), and Density
of Symptoms (DENSITY). The NFEAT and DENSITY objectives are direct
indicators of impact on feature modularization. The NREF objective provides
an overview of the required effort for applying each solution in practice. We
discuss all the objectives in the next section.

Solution Space for Fresco. In Figure 7.4 we present a partial view of the
solutions generated by each strategy. In this graph we position the solutions
based on the three objective functions: NFEAT (x axis), NREF (y axis), and
DENSITY (z axis).

We can observe that the solutions generated by the NSGA-II strategy are close
to the ones generated by the SIMPLE strategy. Nevertheless, when we focus
our analysis to the best solutions – i.e., the ones with objectives closest to
zero, it is possible to see that NSGA-II is significantly better. In fact, there
are only NSGA-II solutions with the simultaneously minimization of Density

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 195

NFEAT

NREF

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 1.006

BASELINE
SIMPLE

MOSA
NSGA−II

 0.99

 1

 0 50 100 150 200 250

D
E

N
SI

T
Y

Figure 7.5: Partial view of the solution space for the Dubbo project

and NFEAT. Besides that, NSGA-II is able to improve Density and NFEAT
with less refactorings than the SIMPLE solutions. This result is extremely
important because it shows that NSGA-II is the strategy that is most aligned
with OrganicRef ’s goal, which is to improve feature modularization with the
smaller possible number of refactorings.

When we compare the solutions of NSGA-II and MOSA, we can observe that
NSGA-II was able to better explore the search space, resulting in a higher
diversity of solutions in terms of our objective functions. This may be explained
by the fact that NSGA-II uses crossover and mutation operators to perform the
intensification and diversification, which are the two driving forces of genetic
algorithms (Goldberg 1989).

While the BASELINE solutions presented the best NREF results, their results
on the objective “number of features” are among the worst ones. In addition,
their best impact on the number of DP symptoms is far from reaching the best
results of other strategies for the same objective.

Solution Space for Dubbo. Figure 7.5 presents the solution space for the
Dubbo project. In this and in the next figures, we follow the same structure
and present the same objectives as presented for the Fresco project.

Dubbo shows a solution space that is similar to the one observed in the

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 196

NFEAT

NREF

0.975

0.98

0.985

0.99

0.995

1

1.005

BASELINE
SIMPLE

MOSA
NSGA−II

0.99

1

0 10 20 30 40 50 60 70 80 90

D
E

N
S

IT
Y

Figure 7.6: Partial view of the solution space for the Jenkins project

Fresco project. The main difference is that the performance of the BASELINE
strategy was significantly worse than the performance of all other strategies.
Even when considering only the solutions with smaller NREF, all other
strategies presented better DENSITY and NFEAT. Finally, in this project,
most MOSA solutions performed worse than NSGA-II solutions regarding the
DENSITY objective.

Solution Space for Jenkins. Figure 7.6 presents the solution space for the
Jenkins project. Jenkins was the only project for which all strategies presented
close results regarding symptoms and features reduction. Such an outcome
becomes more evident in Figure 7.6, where we can observe that solutions are
much closer than in the Fresco project. It is also possible to observe that
NSGA-II values for the DENSITY and NFEAT objectives are significantly
worse when compared to the previous case.

When we focus our analysis to the DENSITY and NFREF objectives, it is
possible to see that MOSA performed much better than NSGA-II. MOSA
was able to present the best reduction of symptoms – i.e., best impact on
the DENSITY objective, among all evaluated strategies. Moreover, MOSA
also managed to keep the number of refactorings objective below 40 in most
solutions. Such a result was also similar in the other projects.

When we look at the NFEAT objective, NSGA-II still presented the best

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 197

results, while the other strategies were not able to significantly reduce the
number of features per element. We attribute this result to the ability of
NSGA-II to explore a more diverse set of solutions. On the other hand,
the performance of NSGA-II in this case was worse than that presented for
other projects regarding the NFEAT objective. In addition, the best NSGA-
II solutions for NFEAT require a considerable amount of refactorings (more
than 50), which may be impracticable considering the number of refactored
elements (top-10 degraded elements).

Therefore, we conjecture that our strategies that use feature-based heuristics
were significantly affected by the quality of the topic model generated for the
Jenkins project. In such a case, MOSA was still able to reduce traditional
symptoms (i.e., those that are not feature-based).

Solution Space for RxJava. Figure 7.7 presents the solution space for the
RxJava project. In this case, we can observe that MOSA also performed better
regarding the DENSITY objective.

Interesting enough, this was the only project for which the BASELINE
approach presented a larger set of non-dominated solutions. This means
that our rule-based refactoring heuristics generated more diverse solutions.
However, the graph shows that after a certain number of refactorings the
BASELINE solutions are worse than all the others for the DENSITY and
NFEAT objectives.

Solution Space for Spring Security and OkHttp. Figures 7.8 and 7.9
present the solution space for the Spring Security and OkHttp projects,
respectively. In both cases, we can observe that MOSA, NSGA-II, and SIMPLE
solutions are very close when considering the first half of the NREF axis.
For such solutions, MOSA performed a bit better regarding the DENSITY
objective.

For both Spring Security and OkHttp, NSGA-II tended to improve its impact
on DENSITY and NFEAT as the number of refactorings increased. Neverthe-
less, as we already discussed, a large number of refactorings may make such
solutions not feasible in practice.

To summarize, our analysis here revealed that NSGA-II is able to explore a
larger search space when compared to the other strategies. Consequently, it
provided more opportunities for finding solutions that significantly improve
feature modularization.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 198

NFEAT

NREF

 0.992

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 1.006

BASELINE
SIMPLE

MOSA
NSGA−II

 1

 0 10 20 30 40 50 60

D
E

N
SI

T
Y

Figure 7.7: Partial view of the solution space for the RxJava project

NFEAT

NREF

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1.002

BASELINE
SIMPLE

MOSA
NSGA−II

 1

 0 10 20 30 40 50 60

D
E

N
SI

T
Y

Figure 7.8: Partial view of the solution space for the Spring Security project

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 199

NFEAT

NREF

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

BASELINE
SIMPLE

MOSA
NSGA−II

 1

 0 20 40 60 80 100 120

D
E

N
SI

T
Y

Figure 7.9: Partial view of the solution space for the OkHttp project

The downside of NSGA-II is that, for some projects, the best improvements of
DENSITY and NFEAT required a large number of refactorings. On the other
hand, when we consider only solutions with smaller NREF values, NSGA-II is
able to outperform the other ones either in the improvement of DENSITY or
NFEAT.

For some cases (Jenkins, RxJava, and Spring Security) MOSA presented a
better impact on the DENSITY objective. It also tended to restrict its solutions
to a smaller number of refactorings in all cases. However, the NFEAT results
shows that NSGA-II tends to be better than MOSA. Thus, we conclude that
NSGA-II is the best strategy for achieving OrganicRef ’s goal.

Finding 3. NSGA-II better fits the OrganicRef ’s goal. Due to the
global search performed by NSGA-II, it is able to explore a larger search
space when compared to the other strategies. As a result, it significantly
improved the solutions of most projects.

7.4.3

Best Solutions Analysis

Since NSGA-II and MOSA presented the best results in our previous analysis,
we need to better understand the role of optimization algorithms in the

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 200

performance of OrganicRef. Thus, in this section we analyze the best solutions
of both MOSA and NSGA-II. As we previously mentioned (Section 7.3.4), the
selection of best solutions is based on the Euclidean Distance (i.e., distance
from the ideal solution).

In Table 7.4 we show the fitness values before (original) and after (refactored)
applying the best solution for each project (lines) and strategy (sub-columns).
It is possible to observe that, for the same project, some fitness values in the
original project vary between MOSA and NSGA-II. This happens because the
DENSITY and NFEAT objective functions vary across different executions.
Such a variation is caused by the topic modeling algorithm, which is not
deterministic.

High impact on the DENSITY and NFEAT objectives. In Section 7.4.2,
we explored the solution space of each strategy with a focus in the DENSITY,
NFEAT and NREF objectives. In Table 7.4, we show the DENSITY and
NFEAT of best solutions in the second and third columns, respectively. For all
our target projects, both of them were consistently improved after applying the
best solutions. This means that, even without applying any type of weight to
the objective functions, the MOSA and NSGA-II strategies had a high impact
on DENSITY and NFEAT. This result shows that our refactoring heuristics
and our mutation operators were able to act directly on the modularization of
features.

Negative impact on the LCOM objective. In Table 7.4, we highlight
in red the fitness values that were worsened after applying the refactorings.
Therefore, it is possible to observe that fitness values were improved or kept
the same in most cases. The most negatively impacted objective function was
the LCOM (fourth main column), with five cases with MOSA and three with
NSGA-II. This shows that improving the LCOM objective with our heuristics
and strategies is challenging. As OrganicRef only supports Move Method,
Move Field and Extract Class, we believe that LCOM effective improvement
may require the inclusion of other types of refactoring such as Extract Method.
On the other hand, as we discussed in Section 7.4.1, our recommendations
improved the cohesion of elements in the selected context. Another possibility
to justify the negative impact on LCOM is a possible negative correlation with
the DENSITY or FEAT objectives, which deserves further investigation.

Low to no impact on Quality Measures. In the last main column of Ta-
ble 7.4, we show the fitness values for the Quality Measures (QMEASURES)
objective function, which aggregates multiple quality measures. Such measures

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 201

are also used for detecting part of the DP symptoms. Therefore, we would
expect both the DENSITY and QMEASURES objective functions to be cor-
related. Nevertheless, as one can see in Table 7.4, in most cases QMEASURES
was kept unchanged, while DENSITY was improved for all cases. We conjec-
ture that this lack of correlation is due to the fact that we also use feature-
based symptoms. Consequently, our feature-driven heuristics combined with
optimization algorithms are able to significantly impact feature-based symp-
toms, while their impact on traditional symptoms (i.e., those related to the
QMEASURES objective) turns out to be less.

Table 7.4: Fitness values before (original) and after (refactored) applying the
best solution

Project DENSITY NFEAT LCOM QMEASURES
MOSA NSGA-II MOSA NSGA-II MOSA NSGA-II MOSA NSGA-II

Fresco Original 3.445 3.384 1.804 1.773 0.565 0.565 0.057 0.057
Refactored 0.995 1.000 1.001 1.007 0.567 0.566 0.061 0.056

RxJava Original 3.580 3.121 1.988 2.032 1.304 1.304 0.062 0.062
Refactored 0.995 0.999 0.998 1.001 1.302 1.300 0.062 0.062

Jenkins Original 2.990 3.073 1.484 1.533 0.485 0.485 0.032 0.032
Refactored 0.981 0.998 1.000 1.001 0.487 0.485 0.032 0.032

Spring
Security

Original 3.224 3.224 1.674 1.654 0.551 0.551 0.053 0.053
Refactored 0.998 0.998 1.000 1.000 0.552 0.552 0.053 0.053

Dubbo Original 3.218 3.297 1.753 1.790 0.540 0.540 0.061 0.061
Refactored 1.000 0.999 1.002 1.004 0.542 0.545 0.060 0.060

OkHttp Original 3.581 3.581 1.725 1.725 0.676 0.676 0.105 0.105
Refactored 1.007 0.981 1.013 1.017 0.682 0.668 0.104 0.104

Number of Refactorings. In Table 7.5 we show the number of refactorings
for the best solutions generated by the MOSA and NSGA-II strategies. It is
possible to see that most of them were similar – between 8 and 10 refactorings.
Such a number of refactorings is aligned with the number of elements in our
selected context (i.e., top-10 degraded elements). Thus, we consider that the
amount of refactorings recommended by the best solutions is adequate for the
amount of degraded elements in our selected context.

Table 7.5: Number of refactorings for the best solutions
Number of RefactoringsProject MOSA NSGA-II

Fresco 11 8
RxJava 8 10
Jenkins 9 9
Spring Security 8 8
Dubbo 9 10
OkHttp 14 9

Finding 4. Considering only the best solutions, both NSGA-II and
MOSA presented closed results for all objective functions. However, con-
sidering the impact on the LCOM objective together with the computing

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 202

time and diversity of solutions, NSGA-II keeps being the best performing
strategy. More importantly, the NSGA-II results show that our refactoring
heuristics and our mutation operators can recommend refactoring opera-
tions that directly improve the modularization of features and reduce the
density of symptoms.

7.4.4

Qualitative Evaluation of Recommendations

As a last step of our evaluation, we recruited four collaborators to analyze
the best solutions for the MOSA and NSGA-II strategies in the OkHttp
project. Below, we summarize our observations regarding relevant aspects of
each strategy. All analyzed solutions are in our replication package.

A recurring observation of the different evaluators is that feature-driven solu-
tions – i.e., generated by MOSA and NSGA-II strategies – contained one or
more refactorings that were suitable for the goal of feature modularization. In
the analyzed cases, with a few exceptions, the heuristics for Extract Class pre-
sented sound and viable recommendations. We also recurringly observed that
many of the refactoring candidates were indeed suffering from feature modu-
larization problems. For such cases, our perception is that the proposed refac-
torings proved capable of (partially) improving feature modularization.

Best solution of MOSA strategy. The best solution generated by MOSA
for OkHttp is composed by 14 refactoring operations (6 Extract Classes and
8 Move Methods) applied to 9 different classes. This means that this strategy
was able to improve 9 out of 10 classes from the top-10 degraded elements.
Below we present a quotation from one of the evaluators:

QT1. Overall, the refactorings can improve feature modularization. How-
ever, in some cases some moved methods or extracted classes are not nec-
essary. Some move methods were unrelated to the target class feature. As
far as class extractions are concerned, the tool suggested extracting some
methods that should stay in the class as they were related to the class’
main feature.

Given the feedback above, we performed an additional analysis of the code
elements mentioned by the author of QT1. For the unnecessary refactorings,
we noticed that the effectiveness of MOSA was directly impacted by the topic
model quality. In our manual analysis, we observed that a recommendation

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 203

may move elements to distant and unrelated components. We also found cases
in which generic terms (e.g., cancel) induced the technique to move methods
to classes implementing totally unrelated features.

For example, one recommendation consisted of moving the cancel method
from the RealCall class to the RealWebSocket.CancelRunnable class. The target
class is a lazy class with just one method. However, the functionality provided
by the moved method has not relation with RealWebSocket.CancelRunnable.
In fact, RealCall.cancel() is concerned with canceling a http request, while
RealWebSocket.CancelRunnable is aimed at canceling a thread. Therefore,
despite the textual similarities between the method and the target class, this
recommendation would not make sense in practice.

Thus, a direct solution to the problem presented above is to require some
inspection and improvement of the topic model by the developers. Such an
improvement should be performed before using the topic model as an input in
OrganicRef. Moreover, this kind of problem may rarely occur in projects where
certain good practices for choosing code elements names are followed.

Next, we present quotations related to the Extract Class refactorings generated
with the MOSA strategy:

QT2. I agree with the extract class of ‘okhttp3.internal.platform.Platform’.
Multiple methods should be placed in other classes, since they deal with fea-
tures like logging and protocol communication between layers of security.
However the ‘findPlatform’ method should stay in the class.

QT3. I agree with the extract method from ‘okhttp3.HttpUrl’. It has
multiple methods related to encoding, which should be placed in a different
class.

QT4. On the ‘HttpUrl’, extractions make sense because the extracted
methods are not directly related to the ‘HttpUrl’ feature. These methods
only helps to manipulate URLs. For example, the methods ‘percentDecode’,
‘get’, ‘parse’, and ‘canonicalize’ only manipulate Buffer and Strings. How-
ever, the methods ‘defaultPOrt’, ‘get’, ‘url’ may be kept on the ‘HttpURL’
class because they are directly related to the class.

From quotations QT2 to QT4, we can notice that using MOSA, OrganicRef
was able to generate sound and viable recommendations which would improve

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 204

feature modularization in the refactored classes. In the case of QT3 and QT4,
different evaluators reached similar conclusions with independent analyses.
However, as revealed in quotation QT5 presented below, in some cases the
recommended Extract Class also failed to correctly identify the features being
realized in the class. Possible workarounds may involve inspections of topic
models and certain ID naming practices in the software project as already
mentioned above.

QT5. I disagree with extracting a class from ‘okhttp3.Headers’. Most of
the methods are related to the building of the headers.

Best solution of NSGA-II strategy. Now let us move on to the NSGA-II
strategy. Its best solution was composed by 9 refactoring operations (8 Extract
Classes and 1 Move Method) applied to 9 different classes. In this case, we can
get more evidence that our Extract Class heuristics are the best performing
ones. The following quotations (QT6 and QT7) provide us with more awareness
about that:

QT6. Extract Class on ‘Transmitter’ class is recommended because this
class implements many responsibilities and the recommended extractions
are related to a single responsibility, the Response feature. Thus, it is indi-
cated to extract these fields and methods to another class. Indeed, ‘Trans-
mitter’ needs many refactorings to improve its feature modularization be-
cause its a God Class.

QT7. The ‘Transmitter’ class indeed can be extracted. The methods are
related to connections. Thus, they could be better modularized.

However, we also observe that, similarly to MOSA, NSGA-II suffered from
inaccurate feature identification. This fact becomes more evident from QT8
below:

QT8. Extract Class on class ‘Builder’ does not make much sense because
these attributes and methods are related to building a response. Thus,
it is not appropriate to extracting these fields and methods to another
class.

For avoiding the limitations presented above, we envision the improvement of
OrganicRef with the specification of design constraints. As a result, we expect
to avoid creating recommendations that would not be allowed by the projects

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 205

intended design. Another alternative is to improve the feature-driven heuristics
to consider complementary information like locality (the component in which
the classes are implemented) and syntactic dependencies for filtering target
candidates for moving elements.

This was, indeed, an expected limitation since we ran our evaluation in the
worst scenario regarding the topic model quality (see Section 7.3.2). We created
the models for all projects using the same generic configuration without
customizing parameters or stop-words. Therefore, we conjecture that the
recommendations could be improved in case we had better topic models.

Additional Steps Required. There were also some cases for which applying
the recommended refactorings would require extra steps, from the developer,
besides the ones described in the recommendations. For example, some move
methods would require the implementation of additional method calls as
mentioned for a recommendation from NSGA-II:

QT9. Compilation errors may happen because some extracted methods
use internal methods (from the source class), then the developer need to
updated the extracted class to call these methods.

Given this observation, we conjecture that one way we can help developers
more effectively is through the (semi-)automated application of recommended
refactorings. That way, developers do not have to worry about extra, purely
manual steps during refactoring application.

Summing up, our observations altogether indicate that the results presented
by OrganicRef are promising. There are indeed limitations, as discussed above,
but these limitations can be addressed by some guidelines for feature model
inspections and be better investigated by future studies. The costs of topic
model inspections are unlikely to be prohibitive as performing coarse grained
refactorings without such a support is certainly much more costly. Moreover,
previous work revealed that many mistakes of feature mapping in the source
code can be automatically repaired (Nunes et al. 2014). As new evaluations
and improvements are carried out, we believe that OrganicRef can evolve to
the point of being useful in practice.

Finding 5. The quality of solutions generated by OrganicRef depends
directly on adequately configuring and training a topic model for feature
identification. However, even in the worst case scenario, OrganicRef was
able to generate sound and viable recommendations. On the other hand,

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 206

we need to improve our Move Method and Move Field heuristics since
they presented some undesirable results.

7.4.5

Threats to Validity

The settings of the detection algorithms/heuristics are a common threat to the
validity for empirical studies evaluating recommender techniques. To mitigate
this threat, we initially followed the same configurations applied by state-of-
the-art studies. Then, we followed a trial and error process for tuning each
parameter.

Our technique relies on the automated detection of DP symptoms, which may
result in false negatives and false positives. Therefore, the quantitative analysis
of the recommendations generated by the tool is subject to this threat. We
mitigated it by conducting a later manual and individual validation over a
reduced subset of the generated recommendations.

As in the case of DPs, the rules and thresholds employed for detecting code
smells can be also considered threats to validity. We opted to not perform
additional validations over the detected smells once OrganicRef relies on
automatically detected symptoms of code smells. Thus, the manual validation
of these symptoms does not directly address our research goal. Alternatively, we
employed consolidated rules and thresholds employed in previous work.

We curated a set composed by six open source projects to analyze, which
may raise questions on the representativeness of our study sample and the
replicability of the study findings. We mitigate this threat by establishing a
systematic process for selecting active and relevant projects written in Java.
As a result, we depicted a small but diverse sample of projects varying in
architecture, size, and domain.

We compared OrganicRef with a baseline defined and implemented by our-
selves. We are aware that, ideally, we should compare our technique to state-
of-the-art techniques. However, we are not aware of any similar already ex-
isting technology with the same goal fully available for comparison. Differ-
ently from OrganicRef, most of the refactoring recommendation techniques are
not focused exclusively on feature modularization problems. To mitigate this
threat, we created a baseline inspired by existing recommendation techniques.
In addition, our implementation and data are fully available in the replication

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 207

package. Therefore, other researchers can verify, reproduce and replicate this
study.

Finally, another threat is the selection of the search-based algorithms and
their parameter settings. We used MOSA that is employed in a closely related
work (Kessentini, Dea and Ouni 2017) and NSGA-II that is one of the
best genetic algorithms to deal with more problems impacted by multiple
objectives (Colanzi et al. 2020). We adopted canonical parameter settings
and parameters used in related work. Due to the multi-objective nature of
NSGA-II, the solutions may converge to a different set of local optimum
(i.e., refactoring recommendations) in each run, without finding the global
optimum. To mitigate any bias, we set the execution of the algorithm to 30
independent runs, what is recommended for optimization studies (Arcuri and
Briand 2014, Colanzi et al. 2020).

7.5

Concluding Remarks

In this chapter we proposed and evaluated the OrganicRef technique. Organi-
cRef is intended to provide effective and context-sensitive refactoring recom-
mendations for feature modularity. Despite the vast literature about refactor-
ing recommendation, our proposed technique has a number of characteristics
that are not found in state-of-the-art techniques.

First, to the best of our knowledge, OrganicRef is the first technique that
provides feature-driven refactoring recommendations, which do not require the
complete redesign of the refactored project. For enabling our evaluation, in
this study we focused in creating recommendations for the top ten degraded
elements. Nevertheless, OrganicRef allows the use of different heuristics for
restricting DP symptoms and refactoring recommendations to the developer’s
context of interest.

Besides having novel characteristics, OrganicRef also incorporates character-
istics that showed to be effective in other studies. For example, we designed
OrganicRef to provide optimized refactoring recommendations based on the
use of search-based algorithms. Such a characteristic is important for exploring
the vast search space of the refactoring problem.

Our evaluation helped us to validate the design decisions behind OrganicRef.
Moreover, the results show that optimized recommendations have the advan-
tage of better improving the context’s elements without negatively impacting
other elements.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 7. OrganicRef: Towards Effective and Context-Sensitive Refactoring of
Features 208

As future work, we envision the improvement of the feature detection compo-
nent through the use of information extracted from other project’s artifacts
(e.g., issue tracking system). We also intend to include heuristics that use more
refactoring types, such as Move Class and Extract Method. Finally, we intend
to conduct more robust studies to evaluate and improve our technique.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

8

Conclusion

The early identification and refactoring of DPs is fundamental to maintain
the structural quality of complex and long-lived systems. Therefore, there is a
growing need for better techniques and tools to help developers and reviewers
to tackle the incidence of design problems. In this work, we contributed to
this matter through the proposal and evaluation of a technique that provides
refactoring recommendations for removing DPs. In the next sections, we
revisit this thesis contributions (Section 8.1), summarize our publications and
collaborations (Section 8.2), and point out directions for future studies (Section
8.3).

8.1

Revisiting our Contributions

To make our contributions clear, in this section we revisit and summarize
the main contributions of each chapter. As we describe below, each of our
studies provided significant contributions towards our main goal of providing
effective support for developers in the identification and refactoring of design
problems.

Effective identification of design problems. In Chapter 3 we started our
contributions with a deep investigation on how to provide effective support for
DP identification. For performing this investigation, we conducted two eval-
uations. The first one was a quasi-experiment involving professional software
developers. This evaluation revealed that developers report much less false
positives when reasoning about multiple and correlated DP symptoms. Never-
theless, we also found several aspects that should be improved in order to help
developers in using the information provided by the DP symptoms. Besides
that, we also conducted a qualitative evaluation focused on human-computer
interaction. For this evaluation, we relied on the Communicability Evaluation
Method (De Souza and Leitão 2009). As a result, we observed that the effec-
tiveness of DP identification is directly impacted by the way symptoms are
presented in a tool.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 8. Conclusion 210

Evaluation of strategies for ranking and filtering refactoring can-
didates. In Chapter 4, we continued our investigations towards to goal of
providing effective support for DP identification. In fact, in the previous chap-
ter we observed that even using combinations of symptoms, developers still
need support to focus their analyzes in specific contexts. Thus, we conducted
a collaborative study in which we proposed and evaluated a set of filtering and
prioritization criteria for refactoring candidates. Our results showed that no
criteria is consistently effective across different software projects. However, our
evaluations also showed that the Flood Criterion – which consists of combin-
ing multiple correlated symptoms – is the best criterion among the evaluated
ones. Therefore, this criterion can be a default choice when developers are not
entirely sure about their context of interest.

Relation of refactorings with DPs and their symptoms. In Chapter
5 we investigated the relation of symptoms, DPs, and refactorings through
a multi-case study involving C# and Java projects. In summary, such an
investigation showed that, in practice, refactored classes tend to present higher
density and diversity of symptoms. Such a result provided additional evidence
towards the theory that DPs should be identified through multiple and diverse
symptoms (Sousa et al. 2018).

Impact of refactorings in practice. Nevertheless, our results also revealed
that refactorings performed in practice produce little to no impact on DP
symptoms. As a matter of fact, such a result is corroborated by multiple stud-
ies, which indicate that performing effective refactorings is challenging (Cedrim
et al. 2017), (Bibiano et al. 2019), (Bibiano et al. 2020).

Initial requirements for refactoring recommendation. Given the limita-
tions of refactorings performed in practice, as a final contribution of Chapter
5, we identified an initial set of requirements for refactoring recommenda-
tion techniques. Among the requirements, we highlight the following. First,
for increasing its effectiveness, besides considering the density of symptoms,
a technique should also rely on the use of diverse symptom types for finding
refactoring candidates. Second, each project and developer may have different
contexts of interest for refactoring. For instance, to find highly degraded ele-
ments in the project, a developer may rely on the agglomeration flood criterion
proposed in Chapter 4. Nevertheless, there may be other contexts of interest
such as the elements involved in a current or future task. Thus, a recommenda-
tion technique should provide a flexible approach for filtering and prioritizing
elements based on the developer’s context of interest.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 8. Conclusion 211

A rule-based refactoring recommendation technique. In Chapter 6 we
proposed and evaluated a refactoring recommendation technique. Such a tech-
nique is focused in creating recommendations for the removal of three DP
types: Feature Overload, Scattered Feature, and Complex Component. For
achieving such an objective, our proposed technique relies on automatically
detected code smells and on rule-based heuristics. Such heuristics were devel-
oped based on a previous study, in which we investigated recurrent refactor-
ing patters that occur in open source projects. Our evaluation showed that
our heuristics can be successful in multiple scenarios. However, it revealed
several aspects that should be improved for generating effective recommenda-
tions.

A feature-driven and context-sensitive recommendation technique.
In Chapter 7 we proposed and evaluated the OrganicRef technique. Such
a technique was designed based on state-of-the-art evidence, which includes
the results presented in our previous studies. More specifically, OrganicRef
is designed to address four key requirements for refactoring recommenda-
tion techniques, which are (1) consideration of heterogeneous information, (2)
context-sensitive detection, (3) feature awareness, and (4) effective recommen-
dations.

Based on aforementioned requirements, OrganicRef is intended to help devel-
opers in spotting and refactoring feature-related DPs in delimited contexts.
The DPs are detected through information extracted from the project’s de-
sign and source code. OrganicRef uses a topic modeling algorithm for finding
existing features in the project implementation. Then, OrganicRef combines
features information with internal quality measures and code smells to find
DPs. For creating refactoring recommendations, OrganicRef relies on a new
refactoring recommendation strategy, which combines refactoring heuristics
with search-based optimization.

OrganicRef Evaluation. We evaluated OrganicRef with an empirical study
involving open-source projects. Our results show that, when compared to a
baseline, OrganicRef significantly improves the design quality of delimited
contexts through effective refactoring recommendations.

Open Science Contributions. Besides all the aforementioned results and
contributions, in this thesis we also made an effort for following the modern
open science standards. All of our empirical studies include replication pack-
ages containing the study’s artifacts.

Besides that, we also made available all the tools developed and improved

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 8. Conclusion 212

Table 8.1: Direct contributions of this thesis
Publication Qualis
Oizumi et al.: OrganicRef: Towards Effective and Context-Sensitive Refactoring of Features.
ICSME 2022 (submitted). A2

Oizumi et al.: On the identification of design problems in stinky code:
Experiences and tool support. JBCS 2018. A2

Oizumi et al.: Recommending Composite Refactorings for Smell Removal:
Heuristics and Evaluation. SBES 2020 [Distinguished Paper Award]. A3

Oizumi et al.: On the density and diversity of degradation symptoms in refactored
classes A multi-case study. ISSRE 2019. A3

Eposhi, Oizumi, et al.: Removal of design problems through refactorings
Are we looking at the right symptoms? ICPC Negative Results Track 2019. A3

Vidal, Oizumi, et al.: Ranking architecturally critical agglomerations of code smells.
Science of Computer Programming 2019. A4

Oizumi, W. N. Recommendation of Refactorings for Improving
Dependability Attributes. ISSREW 2019. B1

during this PhD research. As presented in Chapter 3, we improved and
evaluated the Organic tool, which was initially developed during my master’s
research (Oizumi et al. 2016, Oizumi et al. 2015). Organic implementations is
fully available 1 as an open source tool and has been already used by other
researchers.

Finally, as a last contribution, we created a new reference tool for the Or-
ganicRef technique. We consider that making OrganicRef ’s source code avail-
able is a considerable contribution for the search-based refactoring community.
Despite the existence of multiple studies and techniques in the search-based
refactoring literature, the vast majority are based on closed source tools. There-
fore, we consider that our tool can contribute significantly to the refactoring
researchers. In addition to being a viable baseline for future studies, Organi-
cRef ’s code can also be extended and improved for addressing new require-
ments.

8.2

Publications and Collaborations

This PhD research resulted in seven papers (six publications and one submis-
sion) at diverse conferences and journals. Such papers are listed in Table 8.1.
Table 8.2 presents the list of papers resulting from collaborations that are
indirectly related to this thesis. As one can see in both tables, this research
resulted in high quality papers (mostly Qualis A1-A4).

As evidenced by our publications (Table 8.2), we collaborated with multiple
researchers on studies related to topics such as DPs, code smells, refactoring,
code review, search-based software engineering, and software architecture.
Besides collaborating with colleagues from the Opus Research Group, we

1https://opus-research.github.io/tools.html

https://opus-research.github.io/tools.html
DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 8. Conclusion 213

also worked with researchers from: Carnegie Mellon University, UNICEN
University - Argentina, University of Maringá (UEM), and State University
of Goiás (UEG).

Such collaborations proved to be fundamental for the development of this the-
sis. As we showed in Chapter 4, our long-term collaboration with UNICEN’s
researchers has allowed us to deeply investigate different criteria for prioritizing
and filtering candidates for refactoring. Such an investigation help us to bet-
ter understand the requirements for refactoring recommendation techniques.
Moreover, we also collaborated with our colleagues from the Opus Research
Group in a large scale mining software repositories study. As a result, we were
able to propose and evaluate a refactoring recommendation technique (Chapter
6).

In summary, as we presented in this section, throughout this thesis we were
able to carry out several studies and collaborations that resulted in multiple
publications. Furthermore, as discussed in the previous section, the OrganicRef
technique opens up several possibilities for future studies. Therefore, in the
following section we discuss some of these possibilities.

8.3

Future Work

Empirical studies with OrganicRef. In Chapter 7, we proposed and
evaluated the OrganicRef technique. Although we consider our evaluation
robust, there is still a need for further studies involving OrganicRef. For
instance, we conducted a manual evaluation of recommendations generated
by OrganicRef. Nevertheless, there is a need for an evaluation involving
professional software developers. Moreover, it would be interesting to evaluate
OrganicRef in the context of software companies and their closed-source
projects. Finally, we explored the use of two search-based algorithms, namely
MOSA and NSGA-II. However, we may want to further explore the use of
other algorithms, such as NSGA-III.

Support for removing more DP types. Although our studies involved
the support for identifying and removing multiple DP types, OrganicRef was
initially designed to focus on the Feature Overload and Scattered Feature
problems. Therefore, future studies may extend OrganicRef to support the
identification and removal of additional DP types. This may require the
detection of more DP symptoms and also the inclusion of more refactoring
types. Examples of such refactorings types include, Extract Method and Move

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 8. Conclusion 214

Table 8.2: Publications indirectly related to this thesis
Publication Qualis
Sousa et al.: Identifying Design Problems in the Source Code: A Grounded Theory.
ICSE 2018: 921-931 [IEEE/ACM Distinguished Paper Award]. A1

Uchôa et al.: Predicting Design Impactful Changes in Modern Code Review:
A Large-Scale Empirical Study. MSR 2021. A1

Sousa et al.: Characterizing and Identifying Composite Refactorings: Concepts,
Heuristics and Patterns. MSR 2020. A1

Fernandes et al.: Refactoring effect on internal quality attributes:
What haven’t they told you yet?. IST 2020. A1

Uchôa et al.: How Does Modern Code Review Impact Software Design Degradation?
An In-depth Empirical Study. ICSME 2020. A2

Oliveira et al.: Evaluating Smell Patterns for Refactoring Opportunities.
SBES 2022 (under submission). A3

Sousa et al.: When Are Smells Key Symptoms of Refactoring Opportunities?
A Study of 50 Software Projects. ICPC 2020 [Invited to a Special Issue of EMSE]. A3

Oliveira et al.: Applying Machine Learning to Customized Smell Detection:
A Multi-Project Study. SBES 2020. A3

Mello et al.: Do Research and Practice of Code Smell Identification Walk Together?
A Social Representations Analysis. ESEM 2019. A3

Mello et al.: Investigating the Social Representations of the Identification of Code Smells
by Practitioners and Students from Brazil. SBES 2019. A3

Sousa et al.: How Do Software Developers Identify Design Problems?
A Qualitative Analysis. SBES 2017: 54-63. A3

Madrigar et al.: OPLA-Tool-ASP: A Tool to Prevent Architectural Smells
in Search-based Product Line Architecture Design. JSERD 2021. B1

Oliveira et al.: On the Prioritization of Design-Relevant Smelly Elements
A Mixed-Method, Multi-Project Study. SBCARS 2019 [Best Paper Award]. B1

Perissato et al.: On Identifying Architectural Smells in Search-based
Product Line Designs. SBCARS 2018. B1

Oizumi et al.: Revealing Design Problems in Stinky Code
A Mixed-method Study. SBCARS 2017 [2nd Best Paper Award]. B1

Madrigar et al.: Prevenção de Anomalias Arquiteturais na Otimização de Projeto
de Linha de Produto de Software. CIbSE 2020 [Best Paper Candidate]. B2

Class.

Improvements in feature identification. As we observed in Chapter 7, the
topic model quality directly impacts the effectiveness of OrganicRef. Therefore,
we envision future studies focused in improving the detection of features. For
performing such improvements, we can continue relying on topic modeling
or we may explore other approaches for feature identification. For example,
our topic modeling strategy may be enhanced through the use of textual
information extracted from other software artifacts, such as the issue tracking
system. We may also adapt existing approaches, such as the use of automated
tests for features identification (Carvalho et al. 2020).

Intended design awareness. In our early literature investigations, we ob-
served that little to no technique considers the intended design of a project for
recommending refactorings. The intended design of a software project deter-
mines which structure the implementation should follow (Bass et al. 2003, Gurp
and Bosch 2002, Terra et al. 2012, Hickey and Cinnéide 2015). It is important
to guide and help developers in preserving the quality attributes (Bass et al.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Chapter 8. Conclusion 215

2003, Gurgel et al. 2014, Barbosa and Garcia 2017, Terra et al. 2012, Hickey
and Cinnéide 2015). Not taking the intended design into account may result
in recommendations that violate it. However, such a need did not emerge as
a requirement during our empirical studies. Consequently, we decided to not
include it in the first version of OrganicRef. Nevertheless, as we observed in
our qualitative analysis in Chapter 7, design-awareness could indeed be use-
ful for improving the quality of refactoring recommendations. Thus, we let
the inclusion and investigation of such an relevant requirement as a future
work.

Automatic application of refactoring recommendations. Finally, de-
spite automatically generating refactoring recommendations, OrganicRef is
still unable to automatically apply the recommendations in the source code.
Such an ability is desired to facilitate the adoption of OrganicRef in prac-
tice. However, this is not a trivial task. Therefore, future studies may focus on
the development of efficient approaches for the automated application of the
recommendations generated by OrganicRef.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references

[Abbes et al. 2011] ABBES, M.; KHOMH, F.; GUEHENEUC, Y. ; ANTONIOL,
G.. An empirical study of the impact of two antipatterns, blob
and spaghetti code, on program comprehension. In: PROCEED-
INGS OF THE 15TH EUROPEAN SOFTWARE ENGINEERING CONFER-
ENCE; OLDENBURG, GERMANY, p. 181–190, 2011.

[Abid et al. 2020] ABID, C.; ALIZADEH, V.; KESSENTINI, M.; FERREIRA, T.
D. N. ; DIG, D.. 30 years of software refactoring research: a
systematic literature review. arXiv preprint arXiv:2007.02194, 2020.

[Alenezi and Zarour 2018] ALENEZI, M.; ZAROUR, M.. An empirical study
of bad smells during software evolution using designite tool.
i-Manager’s Journal on Software Engineering, 12(4):12–27, Apr 2018.

[Alizadeh and Kessentini 2018] ALIZADEH, V.; KESSENTINI, M.. Reduc-
ing interactive refactoring effort via clustering-based multi-
objective search. In: PROCEEDINGS OF THE 33RD ASE, p. 464–474,
New York, NY, USA, 2018. ACM.

[Alizadeh et al. 2019] ALIZADEH, V.; KESSENTINI, M.; MKAOUER, W.; OCIN-
NEIDE, M.; OUNI, A. ; CAI, Y.. An interactive and dynamic search-
based approach to software refactoring recommendations. IEEE
Transactions on Software Engineering, p. 1–1, 2018.

[Alizadeh et al. 2019b] ALIZADEH, V.; OUALI, M. A.; KESSENTINI, M. ;
CHATER, M.. Refbot: intelligent software refactoring bot. In: 2019
34TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED
SOFTWARE ENGINEERING (ASE), p. 823–834. IEEE, 2019.

[Alizadeh et al. 2019c] ALIZADEH, V.; FEHRI, H. ; KESSENTINI, M.. Less is
more: From multi-objective to mono-objective refactoring via
developer’s knowledge extraction. In: 2019 19TH INTERNATIONAL
WORKING CONFERENCE ON SOURCE CODE ANALYSIS AND MANIP-
ULATION (SCAM), p. 181–192, 2019.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 217

[Arcoverde et al. 2013] ARCOVERDE, R.; GUIMARÃES, E.; MACÍA, I.; GARCIA,
A. ; CAI, Y.. Prioritization of code anomalies based on archi-
tecture sensitiveness. In: 2013 27TH BRAZILIAN SYMPOSIUM ON
SOFTWARE ENGINEERING, p. 69–78, Oct 2013.

[Arcuri and Briand 2014] ARCURI, A.; BRIAND, L.. A Hitchhiker’s guide to
statistical tests for assessing randomized algorithms in software
engineering. Software Testing, Verification and Reliability, 24(3):219–250,
2014.

[Azadi, Fontana and Taibi 2019] AZADI, U.; ARCELLI FONTANA, F. ; TAIBI, D..
Architectural smells detected by tools: a catalogue proposal. In:
INTERNATIONAL CONFERENCE ON TECHNICAL DEBT (TECHDEBT
2019), 2019.

[Barbosa and Garcia 2017] BARBOSA, E. A.; GARCIA, A.. Global-aware rec-
ommendations for repairing violations in exception handling.
IEEE Transactions on Software Engineering, 44(9):855–873, Sept 2018.

[Bass et al. 2003] BASS, L.; CLEMENTS, P. ; KAZMAN, R.. Software Archi-
tecture in Practice. Addison-Wesley Professional, 2003.

[Bavota et al. 2013] BAVOTA, G.; OLIVETO, R.; GETHERS, M.; POSHY-
VANYK, D. ; DE LUCIA, A.. Methodbook: Recommending move
method refactorings via relational topic models. IEEE Transac-
tions on Software Engineering, 40(7):671–694, 2013.

[Bavota et al. 2014] BAVOTA, G.; DE LUCIA, A.; MARCUS, A. ; OLIVETO,
R.. Recommending Refactoring Operations in Large Software
Systems, p. 387–419. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[Bavota et al. 2014] BAVOTA, G.; GETHERS, M.; OLIVETO, R.; POSHY-
VANYK, D. ; LUCIA, A. D.. Improving software modularization
via automated analysis of latent topics and dependencies. ACM
Trans. Softw. Eng. Methodol., 2014.

[Bavota et al. 2015] BAVOTA, G.; DE LUCIA, A.; DI PENTA, M.; OLIVETO,
R. ; PALOMBA, F.. An experimental investigation on the innate
relationship between quality and refactoring. Journal of Systems
and Software, 107:1–14, 2015.

[Besker, Martini and Bosch 2017] BESKER, T.; MARTINI, A. ; BOSCH, J..
Time to pay up: Technical debt from a software quality per-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 218

spective. In: PROCEEDINGS OF THE XX IBEROAMERICAN CONFER-
ENCE ON SOFTWARE ENGINEERING, BUENOS AIRES, ARGENTINA,
MAY 22-23, 2017., p. 235–248, 2017.

[Bibiano et al. 2019] BIBIANO, A. C.; FERNANDES, E.; OLIVEIRA, D.; GARCIA,
A.; KALINOWSKI, M.; FONSECA, B.; OLIVEIRA, R.; OLIVEIRA, A. ;
CEDRIM, D.. A quantitative study on characteristics and effect
of batch refactoring on code smells. In: 13TH ESEM, p. 1–11, 2019.

[Bibiano et al. 2020] BIBIANO, A. C.; SOARES, V.; COUTINHO, D.; FERNAN-
DES, E.; CORREIA, J. A. L.; SANTOS, K.; OLIVEIRA, A.; GARCIA, A.;
GHEYI, R.; FONSECA, B.; RIBEIRO, M.; BARBOSA, C. ; OLIVEIRA, D..
How does incomplete composite refactoring affect internal qual-
ity attributes? In: PROCEEDINGS OF THE 28TH INTERNATIONAL
CONFERENCE ON PROGRAM COMPREHENSION, ICPC ’20, p. 149–159,
New York, NY, USA, 2020. Association for Computing Machinery.

[Booch 2004] BOOCH, G.. Object-Oriented Analysis and Design with
Applications (3rd Edition). Addison Wesley, Redwood City, CA, USA,
2004.

[Brito, Hora and Valente 2020] BRITO, A.; HORA, A. ; VALENTE, M. T..
Refactoring graphs: Assessing refactoring over time. In: 2020
IEEE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALY-
SIS, EVOLUTION AND REENGINEERING (SANER), p. 367–377, 2020.

[Brown et al. 1998] BROWN, W. J.; MALVEAU, R. C.; MCCORMICK III, H. W.
; MOWBRAY, T. J.. Refactoring software, architectures, and
projects in crisis, 1998.

[Campbell and Papapetrou 2013] CAMPBELL, G.; PAPAPETROU, P. P..
SonarQube in action. Manning Publications Co., 2013.

[Carvalho et al. 2020] CARVALHO, L.; GARCIA, A.; COLANZI, T.; ASSUNÇÃO,
W.; PEREIRA, J.; FONSECA, B.; RIBEIRO, M.; LIMA, M. ; LUCENA, C..
On the performance and adoption of search-based microservice
identification with tomicroservices. In: 36TH INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (IC-
SME) [TO APPEAR], Sep 2020.

[Cedrim 2018] CEDRIM, D.. Understanding and improving batch refac-
toring in software systems. PhD thesis, Ph. D. dissertation, Informatics
Department, PUC-Rio, Brazil, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 219

[Cedrim et al. 2016] CEDRIM, D.; SOUSA, L.; GARCIA, A. ; GHEYI, R.. Does
refactoring improve software structural quality? a longitudinal
study of 25 projects. In: PROCEEDINGS OF THE 30TH BRAZILIAN
SYMPOSIUM ON SOFTWARE ENGINEERING, p. 73–82. ACM, 2016.

[Cedrim et al. 2017] CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.;
SOUSA, L.; DE MELLO, R.; FONSECA, B.; RIBEIRO, M. ; CHÁVEZ,
A.. Understanding the impact of refactoring on smells: A
longitudinal study of 23 software projects. In: PROCEEDINGS OF
THE 2017 11TH JOINT MEETING ON FOUNDATIONS OF SOFTWARE
ENGINEERING, ESEC/FSE 2017, p. 465–475, New York, NY, USA, 2017.
ACM.

[Charalampidou et al. 2017] CHARALAMPIDOU, S.; AMPATZOGLOU, A.;
CHATZIGEORGIOU, A.; GKORTZIS, A. ; AVGERIOU, P.. Identifying
extract method refactoring opportunities based on functional
relevance. IEEE Transactions on Software Engineering, 2017.

[Chatzigeorgiou and Manakos 2014] CHATZIGEORGIOU, A.; MANAKOS, A..
Investigating the evolution of code smells in object-oriented
systems. Innovations in Systems and Software Engineering, 10(1):3–18,
2014.

[Chávez et al. 2017] CHÁVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM,
D. ; GARCIA, A.. How does refactoring affect internal quality at-
tributes?: A multi-project study. In: PROCEEDINGS OF THE 31ST
BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING, SBES’17, p.
74–83, New York, NY, USA, 2017. ACM.

[Ciupke 1999] CIUPKE, O.. Automatic detection of design problems in
object-oriented reengineering. In: PROCEEDINGS OF TECHNOL-
OGY OF OBJECT-ORIENTED LANGUAGES AND SYSTEMS - TOOLS
30 (CAT. NO.PR00278), p. 18–32, Aug 1999.

[Coello et al. 2007] COELLO, C. A. C.; LAMONT, G. B.; VAN VELDHUIZEN,
D. A. ; OTHERS. Evolutionary algorithms for solving multi-
objective problems, volumen 5. Springer, 2007.

[Colanzi et al. 2014] COLANZI, T. E.; VERGILIO, S. R.; GIMENES, I. M. S. ;
OIZUMI, W. N.. A search-based approach for software product
line design. In: PROCEEDINGS OF THE 18TH INTERNATIONAL
SOFTWARE PRODUCT LINE CONFERENCE - VOLUME 1, SPLC ’14, p.
237–241, New York, NY, USA, 2014. Association for Computing Machinery.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 220

[Colanzi et al. 2020] COLANZI, T. E.; ASSUNÇÃO, W. K. G.; VERGILIO, S. R.;
FARAH, P. R. ; GUIZZO, G.. The Symposium on Search-Based
Software Engineering: Past, Present and Future. Information and
Software Technology, 127:106372, 2020.

[Curtis, Sappid and Szynkarski 2012] CURTIS, B.; SAPPIDI, J. ; SZYNKARSKI,
A.. Estimating the size, cost, and types of technical debt.
In: PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON
MANAGING TECHNICAL DEBT, MTD ’12, p. 49–53, Piscataway, NJ, USA,
2012. IEEE Press.

[De Souza and Leitão 2009] DE SOUZA, C. S.; LEITÃO, C. F.. Semiotic
engineering methods for scientific research in hci. Synthesis
Lectures on Human-Centered Informatics, 2(1):1–122, 2009.

[Deb and Jain 2014] DEB, K.; JAIN, H.. An evolutionary many-objective
optimization algorithm using reference-point-based nondomi-
nated sorting approach, part i: Solving problems with box con-
straints. IEEE Transactions on Evolutionary Computation, 18(4):577–601,
2014.

[Deb et al. 2002] DEB, K.; PRATAP, A.; AGARWAL, S. ; MEYARIVAN, T.. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
Trans. Evolutionary Comp., 6(2):182–197, 2002.

[Easterbrook et al. 2008] EASTERBROOK, S.; SINGER, J.; STOREY, M.-A. ;
DAMIAN, D.. Selecting Empirical Methods for Software Engi-
neering Research. Springer London, London, 2008.

[Emden and Moonen 2002] EMDEN, E.; MOONEN, L.. Java quality assur-
ance by detecting code smells. In: PROCEEDINGS OF THE 9TH
WORKING CONFERENCE ON REVERSE ENGINEERING; RICHMOND,
USA, p. 97, 2002.

[Eposhi et al. 2019] EPOSHI, A.; OIZUMI, W.; GARCIA, A.; SOUSA, L.;
OLIVEIRA, R. ; OLIVEIRA, A.. Removal of design problems through
refactorings: Are we looking at the right symptoms? In: PRO-
CEEDINGS OF THE 27TH INTERNATIONAL CONFERENCE ON PRO-
GRAM COMPREHENSION, ICPC ’19, p. 148–153, Piscataway, NJ, USA,
2019. IEEE Press.

[Ernst et al. 2015] ERNST, N. A.; BELLOMO, S.; OZKAYA, I.; NORD, R. L. ;
GORTON, I.. Measure it? manage it? ignore it? software practi-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 221

tioners and technical debt. In: PROCEEDINGS OF THE 2015 10TH
JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING,
ESEC/FSE 2015, p. 50–60, New York, NY, USA, 2015. ACM.

[Fokaefs et al. 2011] FOKAEFS, M.; TSANTALIS, N.; STROULIA, E. ; CHATZI-
GEORGIOU, A.. Jdeodorant: identification and application of ex-
tract class refactorings. In: 2011 33RD INTERNATIONAL CONFER-
ENCE ON SOFTWARE ENGINEERING (ICSE), p. 1037–1039, May 2011.

[Fowler 1999] FOWLER, M.. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley Professional, Boston, 1999.

[Fraire et al. 2020] FRAIRE HUACUJA, H. J.; SOTO, C.; DORRONSORO, B.;
SANTILLÁN, C. G.; VALDEZ, N. R. ; BALDERAS-JARAMILLO, F..
AMOSA with Analytical Tuning Parameters and Fuzzy Logic
Controller for Heterogeneous Computing Scheduling Problem,
p. 195–208. Springer International Publishing, Cham, 2020.

[Freeman and David 2004] FREEMAN, P.; DAVID, H.. A science of design for
software-intensive systems. Communications of the ACM, 47(8):19–
21, 2004.

[Garcia et al. 2009] GARCIA, J.; POPESCU, D.; EDWARDS, G. ; MEDVIDOVIC,
N.. Identifying architectural bad smells. In: CSMR09; KAISER-
SLAUTERN, GERMANY. IEEE, 2009.

[Garcia et al. 2009b] GARCIA, J.; POPESCU, D.; EDWARDS, G. ; MEDVI-
DOVIC, N.. Toward a catalogue of architectural bad smells. In:
Mirandola, R.; Gorton, I. ; Hofmeister, C., editors, ARCHITECTURES FOR
ADAPTIVE SOFTWARE SYSTEMS, p. 146–162, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[Garcia et al. 2013] GARCIA, J.; IVKOVIC, I. ; MEDVIDOVIC, N.. A compar-
ative analysis of software architecture recovery techniques. In:
PROCEEDINGS OF THE 28TH IEEE/ACM INTERNATIONAL CONFER-
ENCE ON AUTOMATED SOFTWARE ENGINEERING; PALO ALTO, USA,
2013.

[Girba, Ducasse and Lanza 2004] GÎRBA, T.; DUCASSE, S. ; LANZA, M.. Yes-
terday’s weather: Guiding early reverse engineering efforts by
summarizing the evolution of changes. In: 20TH IEEE INTERNA-
TIONAL CONFERENCE ON SOFTWARE MAINTENANCE, 2004. PRO-
CEEDINGS., 2004.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 222

[Godfrey and Lee 2000] GODFREY, M.; LEE, E.. Secrets from the monster:
Extracting Mozilla’s software architecture. In: COSET-00; LIMER-
ICK, IRELAND, p. 15–23, 2000.

[Goldberg 1989] GOLDBERG, D. E.. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley Longman Publishing
Co., Inc., USA, 1st edition, 1989.

[Guimaraes, Garcia and Cai 2014] GUIMARAES, E.; GARCIA, A. ; CAI, Y.. Ex-
ploring blueprints on the prioritization of architecturally rel-
evant code anomalies. In: 2014 IEEE 38TH ANNUAL COMPUTER
SOFTWARE AND APPLICATIONS CONFERENCE, 2014.

[Guimaraes et al. 2018] GUIMARAES, E.; VIDAL, S.; GARCIA, A.; DIAZ PACE,
J. ; MARCOS, C.. Exploring architecture blueprints for priori-
tizing critical code anomalies: Experiences and tool support.
Software: Practice and Experience, 48(5):1077–1106, 2018.

[Gurgel et al. 2014] GURGEL, A.; MACIA, I.; GARCIA, A.; VON STAA, A.;
MEZINI, M.; EICHBERG, M. ; MITSCHKE, R.. Blending and reusing
rules for architectural degradation prevention. In: PROCEEDINGS
OF THE 13TH INTERNATIONAL CONFERENCE ON MODULARITY,
MODULARITY ’14, p. 61–72, New York, NY, USA, 2014. Association for
Computing Machinery.

[Gurp and Bosch 2002] VAN GURP, J.; BOSCH, J.. Design erosion: prob-
lems and causes. Journal of Systems and Software, 61(2):105 – 119,
2002.

[Harman and Jones 2001] HARMAN, M.; JONES, B. F.. Search-based soft-
ware engineering. Information and Software Technology, 43(14):833 –
839, 2001.

[Harman and Tratt 2007] HARMAN, M.; TRATT, L.. Pareto optimal search
based refactoring at the design level. In: PROCEEDINGS OF
THE 9TH ANNUAL CONFERENCE ON GENETIC AND EVOLUTIONARY
COMPUTATION, GECCO ’07, p. 1106–1113, New York, NY, USA, 2007.
Association for Computing Machinery.

[Harman et al. 2012] HARMAN, M.; MCMINN, P.; DE SOUZA, J. T. ; YOO,
S.. Search Based Software Engineering: Techniques, Taxonomy,
Tutorial, p. 1–59. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 223

[Herman, Melancon and Marshall 2000] HERMAN, I.; MELANCON, G. ; MAR-
SHALL, M. S.. Graph visualization and navigation in informa-
tion visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, Jan 2000.

[Hickey and Cinnéide 2015] HICKEY, S.; CINNÉIDE, M. O.. Search-based
refactoring for layered architecture repair: An initial investiga-
tion. In: PROC. 1ST NORTH AMERICAN SEARCH BASED SOFTWARE
ENGINEERING SYMPOSIUM, 2015.

[Hozano et al. 2017] HOZANO, M.; GARCIA, A.; ANTUNES, N.; FONSECA, B.
; COSTA, E.. Smells are sensitive to developers! on the efficiency
of (un)guided customized detection. In: 2017 IEEE/ACM 25TH
INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION
(ICPC), p. 110–120, May 2017.

[ISO-IEC 25010 2011] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION.
ISO-IEC 25010: 2011 Systems and Software Engineering-
Systems and Software Quality Requirements and Evaluation
(SQuaRE)-System and Software Quality Models. ISO, 2011.

[Kazman et al. 2015] KAZMAN, R.; CAI, Y.; MO, R.; FENG, Q.; XIAO, L.;
HAZIYEV, S.; FEDAK, V. ; SHAPOCHKA, A.. A case study in locat-
ing the architectural roots of technical debt. In: PROCEEDINGS
OF THE 37TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGI-
NEERING - VOLUME 2, ICSE ’15, p. 179–188, Piscataway, NJ, USA, 2015.
IEEE Press.

[Kessentini, Dea and Ouni 2017] KESSENTINI, M.; DEA, T. J. ; OUNI, A.. A
context-based refactoring recommendation approach using sim-
ulated annealing: Two industrial case studies. In: PROCEEDINGS
OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFER-
ENCE, GECCO ’17, p. 1303–1310, New York, NY, USA, 2017. Association
for Computing Machinery.

[Kim, Zimmermann and Nagappan 2014] KIM, M.; ZIMMERMANN, T. ; NA-
GAPPAN, N.. An Empirical Study of Refactoring Challenges
and Benefits at Microsoft. IEEE Transactions on Software Engineering,
40(7):633–649, 2014.

[Kim et al. 2013] KIM, D.; TAO, Y.; KIM, S. ; ZELLER, A.. Where should
we fix this bug? a two-phase recommendation model. IEEE
Transactions on Software Engineering, 39(11):1597–1610, Nov 2013.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 224

[Kumar and Kumar 2011] KUMAR, M. R.; KUMAR, R. H.. Architectural
refactoring of a mission critical integration application: A case
study. In: PROCEEDINGS OF THE 4TH INDIA SOFTWARE ENGINEER-
ING CONFERENCE, ISEC ’11, p. 77–83, New York, NY, USA, 2011. ACM.

[Lacerda et al. 2020] LACERDA, G.; PETRILLO, F.; PIMENTA, M. ;
GUÉHÉNEUC, Y. G.. Code smells and refactoring: A ter-
tiary systematic review of challenges and observations. Journal
of Systems and Software, 167:110610, 2020.

[Lanza and Marinescu 2006] LANZA, M.; MARINESCU, R.. Object-Oriented
Metrics in Practice. Springer, Heidelberg, 2006.

[Lazar, Feng and Hochheiser 2017] LAZAR, J.; FENG, J. H. ; HOCHHEISER,
H.. Research methods in human-computer interaction. Morgan
Kaufmann, 2017.

[Le et al. 2018] LE, D. M.; LINK, D.; SHAHBAZIAN, A. ; MEDVIDOVIC, N..
An empirical study of architectural decay in open-source soft-
ware. In: 2018 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE
ARCHITECTURE (ICSA), p. 176–17609, April 2018.

[Li, Avgeriou and Liang 2015] LI, Z.; AVGERIOU, P. ; LIANG, P.. A systematic
mapping study on technical debt and its management. Journal
of Systems and Software, 101:193 – 220, 2015.

[Lim, Taksande and Seaman 2012] LIM, E.; TAKSANDE, N. ; SEAMAN, C.. A
balancing act: What software practitioners have to say about
technical debt. IEEE Software, 29(6):22–27, Nov 2012.

[Lin et al. 2016] LIN, Y.; PENG, X.; CAI, Y.; DIG, D.; ZHENG, D. ; ZHAO, W..
Interactive and guided architectural refactoring with search-
based recommendation. In: PROCEEDINGS OF THE 2016 24TH
ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF
SOFTWARE ENGINEERING, FSE 2016, p. 535–546, New York, NY, USA,
2016. Association for Computing Machinery.

[MacCormack, Rusnak and Baldwin 2006] MACCORMACK, A.; RUSNAK, J. ;
BALDWIN, C.. Exploring the structure of complex software
designs: An empirical study of open source and proprietary
code. Manage. Sci., 52(7):1015–1030, 2006.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 225

[Macia 2013] MACIA, I.. On the Detection of Architecturally-Relevant
Code Anomalies in Software Systems. PhD thesis, Pontifical Catholic
University of Rio de Janeiro, Informatics Department, 2013.

[Macia et al. 2012] MACIA, I.; ARCOVERDE, R.; GARCIA, A.; CHAVEZ, C. ;
VON STAA, A.. On the relevance of code anomalies for identifying
architecture degradation symptoms. In: CSMR12, p. 277–286, March
2012.

[Macia et al. 2012a] MACIA, I.; ARCOVERDE, R.; CIRILO, E.; GARCIA, A. ;
VON STAA, A.. Supporting the identification of architecturally-
relevant code anomalies. In: ICSM12, p. 662–665, Sept 2012.

[Macia et al. 2012b] MACIA, I.; GARCIA, J.; POPESCU, D.; GARCIA, A.;
MEDVIDOVIC, N. ; VON STAA, A.. Are automatically-detected
code anomalies relevant to architectural modularity?: An ex-
ploratory analysis of evolving systems. In: AOSD ’12, p. 167–178,
New York, NY, USA, 2012. ACM.

[Mariani and Vergilio 2017] MARIANI, T.; VERGILIO, S. R.. A systematic re-
view on search-based refactoring. Information and Software Technol-
ogy, 83:14–34, 2017.

[Marinescu, 2004] MARINESCU. Detection strategies: metrics-based
rules for detecting design flaws. In: PROCEEDINGS OF 20TH
IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE
(ICSM); CHICAGO, USA, p. 350–359, 2004.

[Martin 2002] MARTIN, R.. Agile Principles, Patterns, and Practices.
Prentice Hall, New Jersey, 2002.

[Martin 2008] MARTIN, R. C.. Clean Code: A Handbook of Agile Soft-
ware Craftsmanship. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1 edition, 2008.

[Martin and Martin 2006] MARTIN, R. C.; MARTIN, M.. Agile Principles,
Patterns, and Practices in C# (Robert C. Martin). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2006.

[Mattmann et al. 2006] MATTMANN, C.; CRICHTON, D.; MEDVIDOVIC, N.
; HUGHES, S.. A software architecture-based framework for
highly distributed and data intensive scientific applications.
In: PROCEEDINGS OF THE 28TH INTERNATIONAL CONFERENCE

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 226

ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING ACHIEVE-
MENTS TRACK; SHANGHAI, CHINA, p. 721–730, 2006.

[McCallum 2002] MCCALLUM, A. K.. Mallet: A machine learning for
language toolkit (2002), 2002.

[McIntosh et al. 2014] MCINTOSH, S.; KAMEI, Y.; ADAMS, B. ; HASSAN,
A. E.. The impact of code review coverage and code review
participation on software quality: A case study of the qt,
vtk, and itk projects. In: PROCEEDINGS OF THE 11TH WORKING
CONFERENCE ON MINING SOFTWARE REPOSITORIES, p. 192–201,
Hyderabad, India, 2014.

[Moha et al. 2010] MOHA, N.; GUEHENEUC, Y.; DUCHIEN, L. ; MEUR, A. L..
Decor: A method for the specification and detection of code
and design smells. IEEE Transaction on Software Engineering, 36:20–
36, 2010.

[Mohan, Greer and McMullan 2016] MOHAN, M.; GREER, D. ; MCMULLAN,
P.. Technical debt reduction using search based automated
refactoring. Journal of Systems and Software, 120:183–194, 2016.

[Moreno et al. 2013] MORENO, L.; APONTE, J.; SRIDHARA, G.; MARCUS,
A.; POLLOCK, L. ; VIJAY-SHANKER, K.. Automatic generation
of natural language summaries for java classes. In: 2013 21ST
INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION
(ICPC), p. 23–32, May 2013.

[Murphy-Hill, Parnin and Black 2012] MURPHY-HILL, E.; PARNIN, C. ; BLACK,
A. P.. How we refactor, and how we know it. IEEE Transactions on
Software Engineering, 38(1):5–18, Jan 2012.

[Murphy-Hill and Black 2008a] MURPHY-HILL, E.; BLACK, A. P.. Seven
habits of a highly effective smell detector. In: PROCEEDINGS
OF THE 2008 INTERNATIONAL WORKSHOP ON RECOMMENDATION
SYSTEMS FOR SOFTWARE ENGINEERING, RSSE ’08, p. 36–40, New
York, NY, USA, 2008. ACM.

[Murphy-Hill and Black 2008b] MURPHY-HILL, E.; BLACK, A. P.. Refactoring
tools: Fitness for purpose. IEEE Software, 25(5):38–44, Sep. 2008.

[Murphy-Hill and Black 2010] MURPHY-HILL, E.; BLACK, A. P.. An interac-
tive ambient visualization for code smells. In: PROCEEDINGS OF

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 227

THE 5TH INTERNATIONAL SYMPOSIUM ON SOFTWARE VISUALIZA-
TION; SALT LAKE CITY, USA, p. 5–14. ACM, 2010.

[Nguyen et al. 2011] NGUYEN, T. T.; NGUYEN, H. V.; NGUYEN, H. A. ;
NGUYEN, T. N.. Aspect recommendation for evolving software.
In: ICSE’11, p. 361–370, New York, NY, USA, 2011. ACM.

[Nunes et al. 2014] NUNES, C.; GARCIA, A.; LUCENA, C. ; LEE, J.. Heuristic
expansion of feature mappings in evolving program families.
Software: Practice and Experience, 44(11):1315–1349, 2014.

[Nyamawe et al. 2019] NYAMAWE, A. S.; LIU, H.; NIU, N.; UMER, Q. ; NIU,
Z.. Automated recommendation of software refactorings based
on feature requests. In: 2019 IEEE 27TH INTERNATIONAL REQUIRE-
MENTS ENGINEERING CONFERENCE (RE), p. 187–198. IEEE, 2019.

[Oizumi 2019] NALEPA OIZUMI, W.. Recommendation of refactorings
for improving dependability attributes. In: 2019 IEEE INTER-
NATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING
WORKSHOPS (ISSREW), p. 89–92, 2019.

[Oizumi et al. 2014a] OIZUMI, W.; GARCIA, A.; COLANZI, T.; FERREIRA, M.
; STAA, A.. When code-anomaly agglomerations represent ar-
chitectural problems? An exploratory study. In: PROCEEDINGS
OF THE 2014 BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING
(SBES); MACEIO, BRAZIL, p. 91–100, 2014.

[Oizumi et al. 2014b] OIZUMI, W.; GARCIA, A.; SOUSA, L.; ALBUQUERQUE,
D. ; CEDRIM, D.. Towards the synthesis of architecturally-
relevant code anomalies. In: PROCEEDINGS OF THE 11TH WORK-
SHOP ON SOFTWARE MODULARITY; MACEIO, BRAZIL, p. 39–52,
2014.

[Oizumi et al. 2015] OIZUMI, W.; GARCIA, A.; COLANZI, T.; STAA, A. ; FER-
REIRA, M.. On the relationship of code-anomaly agglomerations
and architectural problems. Journal of Software Engineering Research
and Development, 3(1):1–22, 2015.

[Oizumi et al. 2016] OIZUMI, W.; GARCIA, A.; SOUSA, L. S.; CAFEO, B.
; ZHAO, Y.. Code anomalies flock together: Exploring code
anomaly agglomerations for locating design problems. In: PRO-
CEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON SOFT-
WARE ENGINEERING, ICSE ’16, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 228

[Oizumi et al. 2017] OIZUMI, W.; SOUSA, L.; GARCIA, A.; OLIVEIRA, R.;
OLIVEIRA, A.; AGBACHI, O. I. A. B. ; LUCENA, C.. Revealing design
problems in stinky code: A mixed-method study. In: PROCEED-
INGS OF THE 11TH BRAZILIAN SYMPOSIUM ON SOFTWARE COM-
PONENTS, ARCHITECTURES, AND REUSE, SBCARS ’17, p. 5:1–5:10,
New York, NY, USA, 2017. ACM.

[Oizumi et al. 2018] OIZUMI, W.; SOUSA, L.; OLIVEIRA, A.; GARCIA, A.; AG-
BACHI, A. B.; OLIVEIRA, R. ; LUCENA, C.. On the identification of
design problems in stinky code: experiences and tool support.
Journal of the Brazilian Computer Society, 24(1):13, Oct 2018.

[Oizumi et al. 2019] OIZUMI, W.; SOUSA, L.; OLIVEIRA, A.; CARVALHO, L.;
GARCIA, A.; COLANZI, T. ; OLIVEIRA, R.. On the density and
diversity of degradation symptoms in refactored classes: A
multi-case study. In: IEEE 30TH INTERNATIONAL SYMPOSIUM ON
SOFTWARE RELIABILITY ENGINEERING (ISSRE), October 2019.

[Oizumi et al. 2020] OIZUMI, W.; CEDRIM, D.; SOUSA, L.; BIBIANO, A. C.;
OLIVEIRA, A.; GARCIA, A. ; TENORIO, D.. Recommending compos-
ite refactorings for smell removal: Heuristics and evaluation. In:
34TH BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING (SBES),
2020.

[Oliveira, Valente and Terra 2016] SILVA, M. C. O.; VALENTE, M. T. ; TERRA,
R.. Does technical debt lead to the rejection of pull requests?
In: PROCEEDINGS OF THE 12TH BRAZILIAN SYMPOSIUM ON INFOR-
MATION SYSTEMS, SBSI ’16, p. 248–254, 2016.

[Oliveira et al. 2017] OLIVEIRA, R. F.; DA SILVA SOUSA, L.; DE MELLO,
R. M.; VALENTIM, N. M. C.; LOPES, A.; CONTE, T.; GARCIA, A. F.;
DE OLIVEIRA, E. C. C. ; DE LUCENA, C. J. P.. Collaborative identifi-
cation of code smells: A multi-case study. In: 39TH IEEE/ACM IN-
TERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFT-
WARE ENGINEERING IN PRACTICE TRACK, ICSE-SEIP, p. 33–42, 2017.

[Oliveira et al. 2020] OLIVEIRA, R. F.; DE MELLO, R. M.; FERNANDES, E.;
GARCIA, A. ; LUCENA, C.. Collaborative or individual identifica-
tion of code smells? on the effectiveness of novice and profes-
sional developers. Inf. Softw. Technol., 120, 2020.

[Ouni et al. 2017] OUNI, A.; KESSENTINI, M.; Ó CINNÉIDE, M.; SAHRAOUI,
H.; DEB, K. ; INOUE, K.. More: A multi-objective refactoring rec-

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 229

ommendation approach to introducing design patterns and fix-
ing code smells. Journal of Software: Evolution and Process, 29(5):e1843,
2017.

[Paixão et al. 2020] PAIXÃO, M.; UCHÔA, A.; BIBIANO, A. C.; OLIVEIRA, D.;
GARCIA, A.; KRINKE, J. ; ARVONIO, E.. Behind the Intents: An
In-Depth Empirical Study on Software Refactoring in Modern
Code Review, p. 125–136. Association for Computing Machinery, New
York, NY, USA, 2020.

[Palomba et al. 2014] PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO,
R. ; LUCIA, A. D.. Do they really smell bad? a study on developers’
perception of bad code smells. In: 2014 IEEE INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION, p.
101–110, Sept 2014.

[Palomba et al. 2017] PALOMBA, F.; ZAIDMAN, A.; OLIVETO, R. ; DE LUCIA,
A.. An exploratory study on the relationship between changes
and refactoring. In: 2017 IEEE/ACM 25TH ICPC, p. 176–185. IEEE,
2017.

[Pecorelli et al. 2020] PECORELLI, F.; PALOMBA, F.; KHOMH, F. ; DE LU-
CIA, A.. Developer-driven code smell prioritization. In: INTERNA-
TIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, 2020.

[Perry and Wolf 1992] PERRY, D. E.; WOLF, A. L.. Foundations for the
study of software architecture. SIGSOFT Softw. Eng. Notes,
17(4):40–52, Oct. 1992.

[Peruma et al. 2022] PERUMA, A.; SIMMONS, S.; ALOMAR, E. A.; NEWMAN,
C. D.; MKAOUER, M. W. ; OUNI, A.. How do i refactor this?
an empirical study on refactoring trends and topics in stack
overflow. Empirical Software Engineering, 27(1):1–43, 2022.

[Pinto and Kamei 2013] PINTO, G. H.; KAMEI, F.. What programmers say
about refactoring tools?: An empirical investigation of stack
overflow. In: PROCEEDINGS OF THE 2013 ACM WORKSHOP ON
WORKSHOP ON REFACTORING TOOLS, WRT ’13, p. 33–36, New York,
NY, USA, 2013. ACM.

[Prates et al. 2000] PRATES, R. O.; DE SOUZA, C. S. ; BARBOSA, S. D. J..
Methods and tools: A method for evaluating the communica-
bility of user interfaces. interactions, 7(1):31–38, Jan. 2000.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 230

[Rachow 2019] RACHOW, P.. Refactoring decision support for develop-
ers and architects based on architectural impact. In: 2019 IEEE IN-
TERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COM-
PANION (ICSA-C), p. 262–266, March 2019.

[Ran et al. 2015] MO, R.; CAI, Y.; KAZMAN, R. ; XIAO, L.. Hotspot pat-
terns: The formal definition and automatic detection of archi-
tecture smells. In: SOFTWARE ARCHITECTURE (WICSA), 2015 12TH
WORKING IEEE/IFIP CONFERENCE ON, p. 51–60, May 2015.

[Ratzinger, Fischer and Gall 2005] RATZINGER, J.; FISCHER, M. ; GALL, H..
Improving evolvability through refactoring, volumen 30. ACM,
2005.

[Rebai et al. 2020] REBAI, S.; KESSENTINI, M.; ALIZADEH, V.; SGHAIER,
O. B. ; KAZMAN, R.. Recommending refactorings via commit
message analysis. Information and Software Technology, 126:106332,
2020.

[Ricci et al. 2011] RICCI, F.; ROKACH, L. ; SHAPIRA, B.. Introduction to
Recommender Systems Handbook, p. 1–35. Springer US, Boston,
MA, 2011.

[Rizzi et al. 2018] RIZZI, L.; FONTANA, F. A. ; ROVEDA, R.. Support for
architectural smell refactoring. In: PROCEEDINGS OF THE 2ND
INTERNATIONAL WORKSHOP ON REFACTORING, IWoR 2018, p. 7–10,
New York, NY, USA, 2018. Association for Computing Machinery.

[Rosik et al. 2008] ROSIK, J.; LE GEAR, A.; BUCKLEY, J. ; ALI BABAR, M.. An
industrial case study of architecture conformance. In: PROCEED-
INGS OF THE SECOND ACM-IEEE INTERNATIONAL SYMPOSIUM ON
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, p. 80–
89, 2008.

[Sant’Anna et al. 2007] SANT’ANNA, C.; FIGUEIREDO, E.; GARCIA, A. ; LU-
CENA, C.. On the modularity assessment of software architec-
tures: Do my architectural concerns count. In: PROC. INTER-
NATIONAL WORKSHOP ON ASPECTS IN ARCHITECTURE DESCRIP-
TIONS (AARCH. 07), AOSD, 2007.

[Schach et al. 2002] SCHACH, S.; JIN, B.; WRIGHT, D.; HELLER, G. ; OFFUTT,
A.. Maintainability of the linux kernel. Software, IEE Proceedings -,
149(1):18–23, 2002.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 231

[Shadish, Cook and Campbell 2001] SHADISH, W. R.; COOK, T. D. ; CAMP-
BELL, D. T.. Experimental and Quasi-Experimental Designs for
Generalized Causal Inference. Houghton Mifflin, 2 edition, 2001.

[Sharma 2020] SHARMA, T.. A taxonomy of software smells, Mar. 2020.

[Sharma and Spinellis 2018] SHARMA, T.; SPINELLIS, D.. A survey on soft-
ware smells. J. Syst. Softw., 138:158 – 173, 2018.

[Sharma et al. 2016] SHARMA, T.; MISHRA, P. ; TIWARI, R.. Designite: A
software design quality assessment tool. In: PROCEEDINGS OF
THE 1ST INTERNATIONAL WORKSHOP ON BRINGING ARCHITEC-
TURAL DESIGN THINKING INTO DEVELOPERS’ DAILY ACTIVITIES,
BRIDGE ’16, p. 1–4, New York, NY, USA, 2016. ACM.

[Silva, Galster and Gilson 2021] SILVA, C. C.; GALSTER, M. ; GILSON, F..
Topic modeling in software engineering research. Empirical Soft-
ware Engineering, 26(6):1–62, 2021.

[Silva, Tsantalis and Valente 2016] SILVA, D.; TSANTALIS, N. ; VALENTE,
M. T.. Why we refactor? confessions of github contributors. In:
PROCEEDINGS OF THE 2016 24TH ACM SIGSOFT INTERNATIONAL
SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING, FSE
2016, p. 858–870, New York, NY, USA, 2016. ACM.

[Soares et al. 2002] SOARES, S.; LAUREANO, E. ; BORBA, P.. Implementing
distribution and persistence aspects with aspectj. In: PROCEED-
INGS OF THE 17TH ACM CONFERENCE ON OBJECT-ORIENTED PRO-
GRAMMING, SYSTEMS, LANGUAGES, AND APPLICATIONS; SEATTLE,
USA, p. 174–190. ACM Press, 2002.

[Sousa et al. 2017] SOUSA, L.; OLIVEIRA, R.; GARCIA, A.; LEE, J.; CONTE, T.;
OIZUMI, W.; DE MELLO, R.; LOPES, A.; VALENTIM, N.; OLIVEIRA, E.
; LUCENA, C.. How do software developers identify design prob-
lems?: A qualitative analysis. In: PROCEEDINGS OF 31ST BRAZIL-
IAN SYMPOSIUM ON SOFTWARE ENGINEERING, SBES’17, 2017.

[Sousa et al. 2018] SOUSA, L.; OLIVEIRA, A.; OIZUMI, W.; BARBOSA, S.;
GARCIA, A.; LEE, J.; KALINOWSKI, M.; DE MELLO, R.; FONSECA, B.;
OLIVEIRA, R.; LUCENA, C. ; PAES, R.. Identifying design problems
in the source code: A grounded theory. In: PROCEEDINGS OF THE
40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING,
ICSE ’18, p. 921–931, New York, NY, USA, 2018. ACM.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 232

[Sousa et al. 2020a] SOUSA, L.; CEDRIM, D.; GARCIA, A.; OIZUMI, W.; BIB-
IANO, A. C.; TENORIO, D.; KIM, M. ; OLIVEIRA, A.. Characteriz-
ing and identifying composite refactorings: Concepts, heuristics
and patterns. In: 17TH INTERNATIONAL CONFERENCE ON MINING
SOFTWARE REPOSITORIES (MSR), 2020.

[Sousa et al. 2020b] SOUSA, L.; OIZUMI, W.; GARCIA, A.; OLIVEIRA, A.;
CEDRIM, D. ; LUCENA, C.. When are smells indicators of architec-
tural refactoring opportunities: A study of 50 software projects.
In: PROCEEDINGS OF THE 28TH INTERNATIONAL CONFERENCE ON
PROGRAM COMPREHENSION, ICPC ’20, p. 354–365, New York, NY,
USA, 2020. Association for Computing Machinery.

[SpotBugs 2019] SPOTBUGS. Spotbugs: Find bugs in java programs,
May 2019.

[Suryanarayana, Samarthyam and Sharma 2014] SURYANARAYANA, G.;
SAMARTHYAM, G. ; SHARMA, T.. Refactoring for Software
Design Smells: Managing Technical Debt. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2014.

[Taylor et al. 2009] TAYLOR, R.; MEDVIDOVIC, N. ; DASHOFY, E.. Software
Architecture: Foundations, Theory, and Practice. Wiley Publish-
ing, 2009.

[Terra and Valente 2009] TERRA, R.; DE OLIVEIRA VALENTE, M. T.. A de-
pendency constraint language to manage object-oriented soft-
ware architectures. Softw., Pract. Exper., 39(12):1073–1094, 2009.

[Terra et al. 2012] TERRA, R.; VALENTE, M. T.; CZARNECKI, K. ; BIGONHA,
R. S.. Recommending refactorings to reverse software architec-
ture erosion. In: 2012 16TH EUROPEAN CONFERENCE ON SOFT-
WARE MAINTENANCE AND REENGINEERING, p. 335–340, 2012.

[Trifu and Marinescu 2005] TRIFU, A.; MARINESCU, R.. Diagnosing design
problems in object oriented systems. In: WCRE’05, p. 10 pp., Nov
2005.

[Tsantalis, Chaikalis and Chatzigeorgiou 2018] TSANTALIS, N.; CHAIKALIS, T.
; CHATZIGEORGIOU, A.. Ten years of jdeodorant: Lessons learned
from the hunt for smells. In: 2018 IEEE 25TH SANER, p. 4–14. IEEE,
2018.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 233

[Tsantalis et al. 2018] TSANTALIS, N.; MANSOURI, M.; ESHKEVARI, L. M.;
MAZINANIAN, D. ; DIG, D.. Accurate and efficient refactoring
detection in commit history. In: PROCEEDINGS OF THE 40TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE
’18, p. 483–494, New York, NY, USA, 2018. ACM.

[Tufano et al. 2015] TUFANO, M.; PALOMBA, F.; BAVOTA, G.; OLIVETO, R.;
DI PENTA, M.; DE LUCIA, A. ; POSHYVANYK, D.. When and why
your code starts to smell bad. In: PROCEEDINGS OF THE 37TH
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ICSE
’15, New York, NY, USA, 2015. ACM.

[Ulungu et al. 1999] ULUNGU, E. L.; TEGHEM, J.; FORTEMPS, P. ; TUYT-
TENS, D.. Mosa method: a tool for solving multiobjective com-
binatorial optimization problems. Journal of multicriteria decision
analysis, 8(4):221, 1999.

[Vidal, Marcos and Díaz Pace 2014a] VIDAL, S. A.; MARCOS, C. ; DÍAZ PACE,
J. A.. Analyzing the history of software systems to predict class
changes. In: IEEE BIENNIAL CONGRESS OF ARGENTINA (ARGEN-
CON), 2014.

[Vidal, Marcos and Díaz Pace 2014b] VIDAL, S.; MARCOS, C. ; DÍAZ PACE,
J. A.. An approach to prioritize code smells for refactoring.
Automated Software Engineering, p. 1–32, 2014.

[Vidal, Marcos and Díaz-Pace 2016] VIDAL, S. A.; MARCOS, C. ; DÍAZ-PACE,
J. A.. An approach to prioritize code smells for refactoring.
Automated Software Engg., 23(3):501–532, Sept. 2016.

[Vidal et al. 2015] VIDAL, S.; VAZQUEZ, H.; DIAZ-PACE, J. A.; MARCOS, C.;
GARCIA, A. ; OIZUMI, W.. JSpIRIT: a flexible tool for the analysis
of code smells. In: 2015 34TH INTERNATIONAL CONFERENCE OF
THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), p. 1–6, Nov
2015.

[Vidal et al. 2016] VIDAL, S.; GUIMARAES, E.; OIZUMI, W.; GARCIA, A.;
PACE, A. D. ; MARCOS, C.. Identifying architectural problems
through prioritization of code smells. In: SBCARS16, p. 41–50,
Sept 2016.

[Vidal et al. 2018] VIDAL, S.; ZULLIANI, S.; MARCOS, C.; PACE, J. ; OTHERS.
Assessing the refactoring of brain methods. ACM Transactions on

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 234

Software Engineering and Methodology (TOSEM), 27(1):2, 2018.

[Vidal et al. 2019] VIDAL, S.; OIZUMI, W.; GARCIA, A.; PACE, A. D. ; MAR-
COS, C.. Ranking architecturally critical agglomerations of code
smells. Science of Computer Programming, 182:64 – 85, 2019.

[Wettel and Lanza 2008] WETTEL, R.; LANZA, M.. Visually localizing de-
sign problems with disharmony maps. In: PROCEEDINGS OF THE
4TH ACM SYMPOSIUM ON SOFTWARE VISUALIZATION, p. 155–164.
ACM, 2008.

[Wong et al. 2011] WONG, S.; CAI, Y.; KIM, M. ; DALTON, M.. Detecting
software modularity violations. In: IN PROCEEDINGS OF THE
33RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING;
HONOLULU, USA, p. 411–420, 2011.

[Xiao et al. 2016] XIAO, L.; CAI, Y.; KAZMAN, R.; MO, R. ; FENG, Q.. Iden-
tifying and quantifying architectural debt. In: PROCEEDINGS
OF THE 38TH INTERNATIONAL CONFERENCE ON SOFTWARE EN-
GINEERING, ICSE ’16, p. 488–498, New York, NY, USA, 2016. ACM.

[Yamanaka et al. 2021] YAMANAKA, J.; HAYASE, Y. ; AMAGASA, T.. Rec-
ommending extract method refactoring based on confidence of
predicted method name, 2021.

[Yamashita and Moonen 2012] YAMASHITA, A.; MOONEN, L.. Do code
smells reflect important maintainability aspects? In: ICSM12, p.
306–315, 2012.

[Yamashita and Moonen 2013] YAMASHITA, A.; MOONEN, L.. Do develop-
ers care about code smells? an exploratory survey. In: 2013
20TH WORKING CONFERENCE ON REVERSE ENGINEERING (WCRE),
p. 242–251, Oct 2013.

[Yamashita et al. 2015] YAMASHITA, A.; ZANONI, M.; FONTANA, F. A. ; WAL-
TER, B.. Inter-smell relations in industrial and open source
systems: A replication and comparative analysis. In: SOFT-
WARE MAINTENANCE AND EVOLUTION (ICSME), 2015 IEEE INTER-
NATIONAL CONFERENCE ON, p. 121–130, Sept 2015.

[Yin 2015] YIN, R. K.. Qualitative research from start to finish. Guilford
publications, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

Bibliography references 235

[Young 2005] YOUNG, T. J.. Using aspectj to build a software product
line for mobile devices. MSc dissertation. In: UNIVERSITY OF
BRITISH COLUMBIA, DEPARTMENT OF COMPUTER SCIENCE, p. 1–
6, 2005.

[Zimmermann 2017] ZIMMERMANN, O.. Architectural refactoring for the
cloud: a decision-centric view on cloud migration. Computing,
99(2):129–145, Feb 2017.

[de Souza et al. 2009] DE SOUZA, C. S.; LEITÃO, C. F.. Semiotic engineer-
ing methods for scientific research in hci. Synthesis Lectures on
Human-Centered Informatics, 2(1):1–122, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1712686/CA

	Identification and Refactoring of Design Problems in Software Systems
	Resumo
	Table of contents
	Introduction
	Motivating Example
	Problem Statement and Research Questions
	Summary of Contributions
	Thesis Outline

	Background and Related Work
	Software Design and Quality Attributes
	Design Problems
	Design Problem Symptoms
	Refactoring
	Search-Based Software Engineering
	Related Work
	Symptoms of Design Problems
	Impact of Refactoring on Symptoms
	Refactorings for Removing Design Problems
	Refactoring Recommendation and its Requirements
	Secondary and Tertiary Studies on DPs and Refactoring

	On the Identification of Design Problems in Stinky Code: Experiences and Tool Support
	Introduction
	Contextualization
	Basic Concepts
	Identifying Design Problem in Stinky Code

	Organic: A Tool for the Analysis of Stinky Code
	Study I: Quasi-Experiment
	Study Design
	Experimental Procedure
	Software Projects and Participant Selection
	Quantitative Analysis Procedure
	Qualitative Analysis Procedure

	Results and Analysis
	Do Agglomerations Improve Precision?
	How to Improve Design Problem Identification?

	Threats to Validity

	Study II: Communicability Evaluation of Organic
	Study Design
	Test Scenario
	Environment and Infrastructure
	Post-study Interview

	Data Analysis and Evaluation Procedure
	Results and Interpretation
	Communicability Issues of Organic
	Communicability Strengths of Organic

	Threats to Validity

	Concluding Remarks

	Filtering and Ranking Design-Related Agglomerations of Code Smells
	Introduction
	Agglomerations as Pointers to Design Problems
	Formal Definition of Code-smell Agglomerations
	Illustrative Example
	Detecting Individual Code Smells
	Types of Agglomerations

	Prioritization Approach
	Agglomeration Relevance
	Design Concerns
	Modifiability Scenarios
	History of Changes
	Agglomeration Flood

	Study Settings
	Research Question and Hypothesis
	Target Applications
	Data Collection and Analysis

	Empirical Evaluation
	Does Agglomeration Relevance Help?
	Do Design Concerns Help?
	Do Modifiability Scenarios Help?
	Does Change History Help?
	Does Agglomeration Flood Help?
	Overall Conclusion
	Threats to Validity

	Study with Novice Developers
	Study Settings
	Results
	Discussion
	Threats to Validity

	Concluding Remarks

	On the Density and Diversity of Design Problem Symptoms in Refactored Classes: A Multi-Case Study
	Introduction
	Background
	Design Problem
	Design Problem Symptoms
	Refactoring

	Study Design
	Goal and Research Questions
	Target Systems
	Data Collection and Analysis

	Results
	Density and Diversity as Consistent Indicators
	Low Reduction of Symptoms After Refactoring
	Combinations as Indicators of Design Problems?

	Requirements for Recommending Root Canal Refactorings
	Threats to Validity
	Conclusion

	Recommending Composite Refactorings for Design Problem Removal: Heuristics and Evaluation
	Introduction
	Background and Related Work
	Code Smells
	Composite Refactoring

	Smell Removal Patterns
	Smell Removal Heuristics
	Feature Envy Removal
	God Class Removal
	Complex Class Removal

	Empirical Evaluation: Study Design
	Goal and Research Question
	Experimental Tasks
	Qualitative Data Analysis

	Evaluation Results
	Effectiveness of Recommendations
	Impact of Recommendation Heuristics
	Guidelines: Improving Recommendations

	Threats to Validity
	Conclusion

	OrganicRef: Towards Effective and Context-Sensitive Refactoring of Features
	Introduction
	OrganicRef: Components, Algorithms and Heuristics
	Features Detection and Context Selection
	Quality Evaluation
	Refactoring Generation Heuristics
	Search-based Refactoring Optimization

	Study Design
	Target Projects
	Execution Settings
	Data Collection Procedures
	Quantitative and Qualitative Analysis

	Evaluation Results
	On the Quality Impact of Feature-driven Strategies
	Solution Space Analysis
	Best Solutions Analysis
	Qualitative Evaluation of Recommendations
	Threats to Validity

	Concluding Remarks

	Conclusion
	Revisiting our Contributions
	Publications and Collaborations
	Future Work

	Bibliography references

