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Abstract. Implementing the event-driven paradigm is most commonly done using event
loops. In this study, we give an overview of the concepts surrounding the paradigm and
discuss the problems of having multiple event loops and the difficulties presented by block-
ing operations in an event based system. We then present the MPA system, a software
used for industrial automation, and debate the usage of events in its applications.
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Resumo. A implementacdo por tras da programacio orientada a eventos é mais co-
mumente feita usando lagos de eventos. Nesse estudo, nds apresentamos uma descrigao
dos conceitos por tras desse paradigma e discutimos sobre os problemas encontrados na
interacdo entre multiplos lacos de eventos e sobre as dificuldades inerentes a operagoes
bloqueantes em sistemas baseados em eventos. Nos também apresentamos o MPA, um
software usado na area de automacao industrial, e debatemos o uso de eventos em suas
aplicagoes.
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1 Introduction

In this paper, we discuss the event-driven programming paradigm. We provide a basic
description of its concepts and establish a common vocabulary to address them. It is
important to firmly ground each concept and its denominations, since most of the terms
of the event-driven paradigm are heavily overloaded. In our analysis, we focus on the
implementation details regarding event loops and the interactions between distinct loops.
Mainly, we discuss the difficulties of having two concurrent event loops running in the
same program and the problems of dealing with blocking operations inside single-threaded
event-driven programs.

In the second part of this paper, we analyze the MPA system (a software used for
industrial automation) as a case study to discuss the event-driven paradigm. We examine
the inner workings of the system in view of its two subsystems, the User Interface and
the Engine, both containing task schedulers that behave similarly to event loops. We
then provide suggestions as to what can be changed in the MPA system in order for it
to accommodate the event-driven programming paradigm. We make these suggestions
targeting specifically the Engine implementation and the visual language used to create its
automation programs.

2 Events

In some applications, the flow of execution is heavily dependent on external stimulus.
For example, in graphical user interfaces, programs must react to button presses and other
user actions. Likewise, in soft real-time systems, the behavior of a program is determined
by the occurrence of events that trigger the execution of callbacks. Instead of adopting
the standard procedural programming style, these applications typically follow the event-
driven paradigm. In this model, an event is an external occurrence such as a sensor reading,
a received message, or an user action. Moreover, events must be bound to handlers, that
is, callbacks that get executed once an event occurs. Due to this structure, the event-
driven paradigm is associated with inversion of control, as program execution does not
follow a sequential list of instructions determined by the programmer. Instead, execution
is controlled by a framework or runtime environment that reacts to events by calling
handlers.

For some types of programs, such as GUIs, using events facilitates the process of de-
veloping clearer programs, since there is a natural correspondence between user input
and resulting behavior with events and handlers. Also, for systems with soft real-time
or non-blocking I/O requirements, the event-driven paradigm can be an alternative to
thread-based models and the concurrency problems associated with it. Program archi-
tectures based on events are easier to scale and manage than ones that rely on directly
creating new threads. Additionally, in small scale programs, events can be a lightweight
replacement for the complexities of multithreading. Finally, events can also be used to
wrap blocking or time-consuming operations into non-blocking ones. Later in this section,
we will provide a more in-depth discussion on some of these usages.



2.1 Nomenclature

Before we continue, we will deviate a little from the main topic of this paper to address
the nomenclature confusion surrounding the word reactive. We use reactive to describe the
general flow of execution in event-driven programs, but the term has been used alongside
at least four other contexts in the programming world. Let’s analyze them.

e Functional reactive programming [3, 1] is a paradigm that focuses on the propagation
of change through continuous time-varying values (called behaviors). For instance,
when we define x = y 4+ z in a functional reactive program, if the values of y or z
ever change, then x will be updated to receive the new computed sum of y and z.
FRP programs also feature discrete occurrences in time such as button presses and
mouse clicks, called events. The dependency relations between behaviors, events,
and data guides much of the flow of execution in functional reactive programs and
defines the inversion of control inherent to the model. For this reason, FRP is also
called event-driven, but with higher level abstractions.

e Reactive programming libraries, such as ReactiveX [6], provide extensions over the
Observer pattern in order for programs to monitor and react to values that change
discretely over time. These tools allow imperative languages to behave in an event-
driven manner, while also featuring common functional traits such as map and filter
functions.

e Reactive systems [5] is a denomination for systems that are responsive (provide
quick and consistent response times), resilient (responsive in face of failure), elastic
(adapted to varying workloads), and message driven. The term describes the desired
characteristics of software for the current needs of the industry, without imposing on
how these programs should be developed.

e Real-time computing (RTC) defines software that must abide to real-time constraints.
RTC languages such as Esterel [2] and Céu [7] follow the synchronous reactive pro-
gramming paradigm. In these languages, the notion of time is abstracted into logical
ticks, with computations between ticks being assumed instantaneous. Albeit heavy
and restrictive, this assumption allows synchronous reactive programs to appear de-
terministic in face of concurrent events and, therefore, be easier to reason about.
Moreover, SRP languages commonly provide statements that allow programs to wait
on a given condition, synchronize concurrent executions, send/receive messages, etc.

As we have seen, reactive has become an overloaded term, and the same is true for
event-driven. Many tools, libraries, and languages have been called event-driven. Since
this is such a general denomination, we could certainly analyze these models in terms of
events and handlers. However, we must not confuse the higher level abstractions with
the core of the concept. In essence, event-driven programs operate in terms of events and
handlers, and that is it. This core model is the subject of our research in this paper, and
we will consider these characteristics when referring to the event-driven paradigm from
now on.



2.2 Implementation

Most systems that support events rely at their core on an event loop. An event loop
continuously checks for the occurrence of events and arranges for the execution of bound
handlers. Event loops are low-level constructions and, for this reason, can sometimes be
hidden from the programmer. For example, in some GUI programming libraries, the pro-
grammer does not need to explicitly manipulate the loop. The library will take care of
starting, stopping or closing the loop when required, and the user needs only to code han-
dlers and register them for events. Some other libraries, however, explicitly expose the loop
and allow programmers to handle it freely. Moreover, event loops can be single or multi-
threaded. A single-threaded loop checks for events, queues the appropriate handlers, runs
queued handlers, and repeats the process. Multithreaded loops can run multiple handlers
concurrently and/or use multiple threads to continuously check for events internally.

That being said, how are events implemented in event loops? In the Unix world, where
“everything is a file descriptor”, events almost always represent some kind of I/0, and
we deal with them using a select-like operation'. A select call monitors the status of
multiple file descriptors at once, waiting until one or more of them become “ready” for some
class of I/O operation [8]. It receives as parameters a set of file descriptors and a timeout
indicator, and blocks until one or more of the file descriptors can be used or the timeout
elapses. If the timeout is set to zero, the function checks the file descriptors and returns
immediately. In a standard single-threaded event loop, all events get processed until the
system blocks in a select operation waiting for external events. In multithreaded versions,
one thread can be in charge of handling the select while others run the handlers and the
main loop. These implementations work well, but lead to some issues when dealing with
interactions between multiple event loops. In the following subsections, we discuss these
problems.

2.2.1 The problem with multiple event loops

There is no easy way to merge calls to select from two distinct codebases without
altering the codebases internally. For instance, imagine you have an event-oriented program
with a main loop that uses a select-like operation to perform non-blocking 1/0 on files.
When a read or write is complete, the loop guarantees the proper handlers will be queued to
run. Sometime during development, you are forced to use a third-party library to deal with
TCP connections. This library also uses select and an event loop to provide non-blocking
operations. How do you integrate your original loop with the one from the library? The
fact is, depending on how these loops are implemented, you won’t be able to merge them
without making some compromises.

The problem we described only exists because selects are hidden inside the imple-
mentation of event loops and cannot be directly manipulated by programmers. This char-
acteristic is essential to the event-driven model since it guarantees inversion of control and
allows non-blocking operations to behave as expected. If the programmer were himself in
charge of the call to select, he would be able to arbitrarily insert events in the list of

!There are multiple incarnations of select-like operations across operating systems: epoll for Linux,
kqueue for BSD, IOCP for Windows, etc. For simplicity, when referring to select-like or select in this
paper, we are referring to this class of operation. Moreover, we assume that a select operation is unique
in each OS, or at least that all file descriptors operate interchangeably with them. For example, Linux has
the epoll and poll functions, buth both can operate on the same file descriptors.



events to be observed. In this case, we wouldn’t be able to assume the programmer would
not (incorrectly) block execution on I/0O.

Given the situation where we have multiple selects and cannot alter the loop imple-
mentation, there are some suboptimal solutions to the merging problem. First, we can
resort to polling. Event loops usually have a step function that runs the loop body once
without blocking (zero timeout on select). In order to integrate multiple loops, we could
iterate through each of them calling step and then sleep for a short time before repeating
the process. However, this is the same as busy waiting. If the sleep timeout is too short,
we burden the CPU. If it is too long, the program ends up being not very responsive.
Alternatively, both loops could run in separate threads and signal their events to a main
thread. This solution is good for performance, but introduces the problems of dealing with
threads and shared memory (e.g. avoiding data races and synchronizing execution flows).
We can avoid memory sharing issues by “faking” message passing. For example, one thread
could write into a pipe to signal an event while the main select watches over that pipe’s
file descriptor. It is clear, however, that this would diminish performance. Moreover, in
both solutions threads would become a program requirement, which could prove a problem
to strictly single-threaded loops.

If we had some control over the APIs of the loops, we could try to solve the multiple-
selects problem in another manner. With loops providing ways for programmers to
manipulate (list, add, remove) the set of file descriptors of their select calls, we could
redirect the work of one loop to another and, therefore, run only one loop. However, we
would also have to register the internal handler for each added file descriptor, because, for
example, a loop that only deals with TCP connections may not know how to behave when
receiving file descriptors for pipes. Depending on the language and the implementation of
the libraries, engineering a solution to this problem could prove to be a large programming
project in itself.

2.2.2 Event loops and blocking operations

What if you already have an event loop and need to integrate it with blocking or time
consuming operations? How do you prevent these operations from jamming single-threaded
loops? The straightforward solution is to use a thread pool [4]. Blocking operations can be
called on worker threads that signal the event loop with the results when finished. Then,
the results get passed as arguments to the appropriate handlers. This method allows
blocking operations to behave as non-blocking. Besides, the fact that they are running in
separate threads is merely an implementation detail unbeknownst to the programmer at
higher abstraction levels.

The 1ibuv C library uses this mechanism to deal with I/O operations on files. Since the
library is available to multiple operating systems, its developers chose not to use straight
non-blocking operations for files due to the incongruencies between the available APIs.
Using threads was the alternative.

We showcase some of 1ibuv’s capabilities in the example in Listing 1, where we read a
file and print its contents. First, as seen in line 9, 1ibuv explicitly requests the programmer
to start (run) the main loop. It also allows the user to stop and resume the execution of
the loop. To open the file, 1ibuv provides the uv_fs_open function, that, as other file
system functions in the library, rececives a callback to be executed when the operations
finishes. The onOpen function (line 14) simply calls the uv_fs_read function passing



uv_buf_tx* buf;
uv_fs_t openReq, readReq;
uv_loop_t* loop;

int main() {
<initialize buffer>
loop = uv_default_loop();
uv_fs_open(loop, &openReq, "path", O_RDONLY, O, onOpen);
uv_run (loop, UV_RUN_DEFAULT);
<cleanup>
return O;

}
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void onOpen(uv_fs_t* req) {
assert (req->result >= 0);
uv_fs_read (loop, &readReq, req->result, buf, 1, -1, onRead);

}

A
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void onRead(uv_fs_t* req) {
if (req->result == 0) {
uv_fs_t closeReq;
uv_fs_close(loop, &closeReq, openReq.result, NULL);
else if (req->result > 0) {
printf ("%s", buf.base);
else {
<error>
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Listing 1: Using libuv

the onRead callback. The onRead function can either print what was read (line 24) or
close the file after EOF (lines 20 to 22). Note that, when calling uv_fs_close, NULL was
passed as an argument instead of a callback. In such cases, libuv handles the function
call synchronously. Execution of the program flows as follows: the loop starts and blocks
waiting for the file to open; when the file is opened, onOpen is called; then, the loop blocks
waiting for the file to be read; when the file is read, onRead is called, first to print what
was read, then to close the file; finally, the loop ends and uv_run returns because there are
no other registered events.

3 MPA

MPA is an industrial automation system used to develop and run applications that
implement process control algorithms. It uses visual programming languages such as Se-
quential Function Charts (SFC — IEC 61131) and spreadsheet-like tables to provide pro-
gramming and documenting tools to engineers. It is also used for reference and monitoring
purposes by plant operators and other professionals responsible for supervising processes.
In its essence, an MPA application is a collection of user-implemented diagrams and plant
parametrization data. We will use the MPA system as a basis to discuss the event-driven
paradigm.



3.1 Event loops in the MPA implementation

We can divide the MPA system in two subsystems: the User Interface (often called the
IDE) and the Execution Engine. The User Inteface allows users to develop, compile and
manage their flowchart-based applications, also acting as a control panel during execution.
The Execution Engine is responsible for effectively loading and running the compiled ap-
plication code. It connects to and operates actionable systems, such as pumps and valves,
according to the logic of the application’s diagrams. Regarding the flow of execution, the
Interface and the Engine run in different processes, and can even run in different machines.
For this reason, they communicate with each other using CORBA. The Engine reports to
the Interface the current state of the diagrams’ execution, and the Interface can signal the
Engine to pause, resume, or stop execution while allowing the user to monitor the state
of any given diagram. Essentially, the User Interface is a passive subsystem that reacts to
commands from the user and the Execution Engine.

The Interface and the Engine use third-party libraries containing hidden event loops
that cannot be manipulated by the programmer. Both use the OiL? library as their
CORBA object request broker. The OiL loop uses the cosocket? library to monitor sockets
over a select-like operation. The User Interface, additionally, uses the IUP* library when
building its GUI (graphical user interface). Let’s analyze how these multiple loops interact.

In the Interface, the IUP loop is in control of the flow of execution. It periodically
calls the step function of its OiL instance to manage remote CORBA calls. Basically,
the Interface uses the polling technique we described previously to integrate its two event
loops. Because the MPA system has soft real-time requirements, a modest level of delay
when reaching external systems is not a problem; thus, the polling technique mentioned in
2.2.1 can be used without burdening the CPU or degrading the application. Nevertheless,
the developers were restricted to this method of solving the “two event loops” problem
because they did not have access to system threads or the inner workings of the IUP loop.

Additionally, the Execution Engine has its own scheduler of cooperative threads (corou-
tines) to manage diagram execution. A flowchart diagram, along with other sub-entities,
can be mapped to different threads in the scheduler. Each time one of these threads per-
form I/0, the scheduler adds the thread to a “pending 1/O” queue. When all threads get
blocked in this manner, the scheduler opens its connection with the industrial plant and
performs (synchronously) the required I/O operations in a single batch®. Once that is
done, the scheduler wakes the “pending 1/0” threads.

The scheduler in the Engine only yields control to its Oil. loop (and, therefore, only
receives messages from the User Interface) when a sleep operation from the flowchart is
executed. It recovers control as soon as the time of the sleep operations expires. As
currently implemented, the diagram scheduler has priority over the OiL loop. In fact, if
the current diagram does not sleep, the User Interface will never be updated with the state
of the execution. Moreover, the Interface’s monitoring facilities (pause, resume, etc.) will
not work since the Engine will never receive these commands. The MPA team is currently
exploring the usage of event-based programming in the visual language as an alternative

’http://webserver2.tecgraf .puc-rio.br/ maia/oil

Shttps://github.com/renatomaia/cothread

“http://webserver2.tecgraf.puc-rio.br/iup

5Performing these operations in a single batch is important because accessing the industrial plant is
costly. Better to do all at once than constantly request to access the industrial plant.



to requiring sleep operations and loops in all diagrams. We discuss these (among other)
options in the following subsection.

3.2 Suggestions

One of the main issues with the current implementation of the MPA system is diagram
complexity. Large applications demand diagrams to contain several loops and sleep oper-
ations combined, which can often become a problem for maintainability and the general
understanding of the flow of execution. In essence, diagrams become too coupled and less
cohesive as size increases. Our goal is to ensure low coupling and high cohesion, no matter
diagram size. For that, we suggest implementing event-based constructs in the diagram’s
visual language and in the MPA Engine.

Aiming to decrease complexity levels in diagrams configures as a quality-of-life improve-
ment for those who have to develop and maintain MPA applications. Perhaps this reason
alone would not merit the development effort required to implement events. However, as
we explained in earlier sections, there is also the issue of loops being required to contain
sleep operations, or else there is no communication with the plant and the User Interface.
This is a more serious problem, since it can lead to apparently correct diagrams that do
not perform as expected. As we will further explain, implementing events can solve both
the sleep requirement and diagram complexity issues, which is why we recommend it.

Diagrams in the MPA system use loops and sleeps to repeat monitoring patterns. For
example, imagine an application that checks the temperature in a container every five
seconds and opens an emergency valve if the container gets too hot. If we had event-driven
programming, we could easily model the check temperature scenario as an event, with a
corresponding (small) diagram as its handler. Also, we could use the Interface to program
events to be triggered once every z seconds. In this case, we would be effectively taking
advantage of and reusing the loop behind the implementation of the event-driven paradigm,
while also eliminating sleeps by creating a repeater construct for the system. This improves
the complexity of diagrams by dividing MPA applications into multiple small diagrams,
instead of a single central one. Naturally, it is easier to manage multiple small diagrams
than one monolithic one. Additionally, to eliminate sleep requirements, we could use the
nature of event loops to add fixed plant and Interface checks at each x loop steps. It is
easy to parameterize such operations, as they would behave like repeated handlers. These
changes would force the application to always yield to check on incoming messages from
the plant or the Interface, without having to rely on users.

As to the implementation of these changes in the MPA system, we must address some
specific points separately:

e First, diagrams must be parameterizable. For example, for the check temperature
event, a container instance must be provided as an argument to the event. In turn,
the diagram will receive this container as a parameter. This is a basic property of
the event-driven paradigm.

e The essential building block (literally) to be added to the visual language is the trigger
block. As the name implies, it triggers an event and may receive values as arguments
to be passed to the corresponding handler. This block allows a big diagram to be
compressed into a small one that controls trigger stages for multiple events.



e The trigger block must trigger events asynchronously and events must be prereg-
istered to handlers in the Interface. When an event is triggered, the event loop
internally queues its diagram for execution.

e Repeaters set handlers to be triggered once every x seconds. We can choose between
providing a repeater native to the inner working of the event loop, or implementing
it using a loop with a sleep and a trigger. Either way, it must be hidden from the
user.

e Despite the addition of repeaters, the sleep block can be left mostly unchanged. A
sleep basically yields back to the loop. The loops resumes once at least x seconds
have passed. (The "at least" part is important, since there is no way to guarantee
exact time, as other handlers can take an arbitrary number of seconds to execute.)

e As to the Lua implementation, some changes would need to be done to the current
scheduler that uses the cothreads library. Mainly, we would need to modify its event
loop to work with priorities in order to schedule diagrams and internal events sep-
arately. The interaction with the plant and the Interface would remain poll based,
as we explained earlier. We cannot define plant events because communication with
the plant is costly. If the plant itself could send monitoring messages, then we could
add plant events to the event loop.

It is important to say we don’t need to use events to deal with the sleep requirement,
instead we can insert "artificial sleeps" in the diagram. We could accomplish that by
running a path analysis algorithm in the diagram. For every path with no explicit sleep,
we would need to insert an implicit sleep. This guarantees interaction with the plant and
Interface always occurs, regardless of user error. Essentially, this is a solution that does
not alter the MPA architecture.

Finally, we note that early in our experiments with the MPA system, we tried to imple-
ment a new diagram block to perform the trigger action. We soon realized this would not
be a trivial task, mainly due to the project’s complexity and to our insufficient understand-
ing of the code’s architecture. For this reason, we changed our approach to the research
and chose to study the implementation of the system and interview its developers and
maintainers. With the knowledge gathered from those meetings and analysis, we were able
to describe and contextualize the functioning of the MPA system as presented in the pre-
vious section. We then started to think about the problems and demands associated with
the MPA system and whether or not the event-driven paradigm would be recommended to
address them. As it turned out, events would be a great fit. In the previous paragraphs,
we presented the results of our research and our suggestions for future development. Im-
plementing these suggestions is a large programming endeavor that requires rewriting and
refactoring a great part of the project’s code. On top of the event-related changes, some of
this process may involve developing new methods of communication between the Engine
and the User Interface (e.g. REST based APIs and message queuing protocols), while also
updating the usage of older programming techniques (e.g. using callbacks instead of soft-
ware components when dealing with streams of information). That being said, we believe
this study will serve as reference for future work with events in the MPA system.
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