4 Modelo Experimental

O modelo experimental, elaborado durante este trabalho, buscou desenvolver uma estação piloto de tratamento de efluentes líquido, utilizando-se como base o conceito desenvolvido para o tratamento emergencial da bacia de rejeitos da Cia. Mercantil e Industrial Ingá. Além disso, o projeto piloto buscou implementar algumas inovações ao tratamento, tais como: **tecnológica**, através da automatização do sistema; **conceituais**, através da utilização de uma câmera de mistura pressurizada e da adição de um tratamento físico ao processo (membranas de filtração); **física**, por se tratar de uma estação compacta.

4.1. Componentes do Sistema

O sistema desenvolvido é composto por três bombas, uma câmara de mistura pressurizada, um tanque de armazenamento de água, um tanque de reagente e uma membrana de filtração (tratamento físico).

4.1.1. Bombas

As bombas utilizadas durante o estudo foram cedidas pela empresa DANCOR. Elas possuem as funções de bombear o efluente (B1) e o reagente (B2) para dentro da câmara de mistura, e realizar a limpeza da membrana de filtração através da retrolavagem (B_{retro}).

Através das características das bombas, mostradas na Tabela 4.1, é possível calcular o consumo médio de energia durante o funcionamento do sistema, e suas respectivas vazões de operação.

Tabela 4.1 – Características das bombas utilizadas no sistema

Bombas	Modelo	Potência	Voltagem	Fabricante
B1	CAM W-10	3,0 CV	220 V	DANCOR
B2	AP-3C	3/4 CV	220 V	DANCOR
B retro	AP-2R	1/4 CV	220 V	DANCOR

4.1.1.1. Consumo Médio de Energia

O consumo de energia de cada bomba pode ser calculado através de suas potências. Potência pode ser definida como a grandeza que determina a quantidade de energia cedida por uma fonte a cada unidade de tempo. A Tabela 4.2 mostra o consumo de energia de cada bomba por hora (kWh), e define o valor pago para essa operação, levando em conta as tarifas cobradas pela LIGHT em fevereiro de 2011.

Bombas	Poté	ència	Tempo	Consumo	D¢/b**
	CV kW		h	kWh	n⊋/∏°
B1	2,0	1,50	1	1,5	0,75
B2	3/4	0,56	1	0,5625	0,28
B retro	1/4	0,19	1	0,1875	0,09

Tabela 4.2 – Consumo médio de energia de cada bomba por hora.

4.1.1.2. Curva Característica

A curva característica de uma bomba é a expressão cartesiana de suas características de funcionamento.

A tabela de seleção das bombas, disponível no Catálogo Geral da DANCOR, estabelece a relação entre a altura manométrica (mca) e a vazão (m³/h) de cada bomba utilizada no estudo (Tabela 4.3).

BOMBA 1 -	CAM W-10	BOMBA	2 - AP-3C	BOMBA 2 - AP-3C	
AMT (mca)	Vazão (m³/h)	AMT (mca)	Vazão (m³/h)	AMT (mca)	Vazão (m³/h)
10	16,1	7	3,4	4	3,5
11	15,6	8	3,4	8	3,3
12	15,0	9	3,4	12	3,2
13	14,5	10	3,3	16	2,2
14	13,8	15	3,2	18	1,7
15	13,1	20	3,1	20	1,2
16	12,4	25	3,0	22	0,5
17	11,5	30	2,9	24	-
18	10,4	35	2,8	28	-
19	9,4	40	2,7	32	-
20	8,4	45	0,7		
21	7,5	50	-		
22	5,6			-	
23	4,4				
24	3,5				
25	-				
26	-				
27	-				

Tabela 4.3 – Relação entre a altura manométrica (AMT) e a vazão das bombas.

A partir desta relação, plota-se os dados da vazão no eixo x, e os dados da altura manométrica no eixo y, permitindo montar a equação da curva característica de cada bomba, através da linha de tendência gerada (uma utilidade gráfica que consiste em traçar uma linha que marque a tendência predominante num determinado período temporal) e determinar a vazão de operação em função da pressão de trabalho (altura manométrica) (Figuras 4.1, 4.2 e 4.3).

Figura 4.1 – Gráfico da curva característica da B1.

Figura 4.2 – Gráfico da curva característica da B2.

Dessa forma temos as seguintes equações da curva de cada bomba utilizada:

- B1: y = -0,009 x² 0,0235 x + 17,189
- B2: $y = 0,0001 x^2 0,0271 x + 3,5944$
- B3: y = -0,011 x² + 0,119 x + 3,1705

Onde y é a vazão de operação da bomba (m³/h) e x é a altura manométrica (mca) do sistema.

4.1.2. Câmara de Mistura, Tanque de Armazenamento e Tanque de Reagente

Tanto a câmara de mistura quanto o tanque de armazenamento foram fabricados pela DANCOR, através do processo de rotomoldagem, exclusivamente para este projeto, não estando disponível no mercado. A câmara de mistura tem uma capacidade de 250 litros e suporta uma pressão de até 6 atm. Já o tanque de armazenamento tem capacidade para 150 litros de água e opera em pressão atmosférica.

O tanque de reagente tem capacidade de 150 litros, o que permite a diluição do reagente, quando necessário. Ele foi fabricado pela FORTILEV e é feito de polietileno.

4.1.3. Membranas de Filtração

O processo físico utilizado para compor o sistema e aumentar a eficiência do tratamento foi a filtração por membranas. As membranas cedidas pelo fabricante COMETAS (Copenhagen Membrane Technology A/S), são feitas de silício carbono e possuem basicamente as mesmas características entre si, com exceção do tamanho de seus poros.

A membrana com porosidade de 0,04 μ m (AQQS-80-300-(2*2)-0,04) possui a mais alta seletividade e o menor fluxo entre as três. A membrana com porosidade de 1,00 μ m (AQQS-80-300-(2*2)-1,00) fica na faixa intermediária de seletividade e fluxo. E a membrana de 3,00 μ m (AQQS-80-300-(2*2)-3,00) possui a menor seletividade e o maior fluxo entre as três.

Pela Tabela 4.4, que aponta principais características das membranas, nota-se que elas são capazes de trabalhar em qualquer faixa de pH, a uma temperatura de até 800 °C, em qualquer concentração de cloro e a uma pressão máxima de 100 mca, o que permite que ela seja aplicada no tratamento de diferentes tipos de efluentes.

Parâmetro	Unidade	AQQS-80-300-(2*2)-0,04	AQQS-80-300-(2*2)-1,00	AQQS-80-300-(2*2)-3,00
Dimensão Canal	mm*mm	2*2	2*2	2*2
Área	m²	0,8	0,8	0,8
Diâmetro	mm	80	80	80
Comprimento	mm	300	300	300
Fluxo de Água (17,3 mca)	m³/h	7,0	11,0	13,0
Porosidade	μm	0,04	1,00	3,00
Material	-	Silício Carbono	Silício Carbono	Silício Carbono
Módulo	-	Tubular	Tubular	Tubular
Morfologia	-	Assimétrica	Assimétrica	Assimétrica
Tipo de Filtração	-	"Dead End"	"Dead End"	"Dead End"
Pressão Máxima	mca	100	100	100
Pressão Máxima Retrolavagem	mca	40	40	40
Concentração de Cloro Máxima	mg/l	ilimitada	ilimitada	ilimitada
Temperatura Máxima	°C	800	800	800
pH Máximo	- 1	0-14	0-14	0-14

Tabela 4.4 – Membranas disponíveis para o tratamento físico do sistema.

4.2. Descrição do Processo

O processo desenvolvido pode ser dividido em três etapas distintas. A primeira etapa é onde ocorre o tratamento químico do sistema, a partir da mistura entre o reagente e o efluente no tanque de mistura. A segunda etapa é o tratamento físico, através da passagem da mistura pelas membranas de filtração. A terceira e última etapa é o processo de retrolavagem ou o descarte do efluente tratado.

A retrolavagem é acionada a partir do momento em que a membrana mostra sinais de colmatação, através da queda de sua vazão de saída. Todo o material proveniente da limpeza da membrana é descartado pela parte inferior do tanque de mistura.

A Figura 4.4 mostra, esquematicamente, o funcionamento do sistema desenvolvido.

Figura 4.4 – Representação esquemática do sistema.

4.2.1. Tratamento Químico

É nesta etapa que ocorre a mistura entre o reagente e o efluente. A energia cinética criada a partir do bombeamento, entre o efluente e o reagente, provoca um turbilhonamento dentro do tanque de mistura. Este fenômeno aumenta a pressão dentro deste tanque, promovendo a aceleração da homogeneização da mistura e a conseqüente queda do tempo de reação.

A Figura 4.5 mostra o tanque de mistura montado no laboratório. A saída da retrolavagem abre somente durante a limpeza das membranas, permitindo que toda a sujeira saia pela parte inferior do tanque de mistura.

Figura 4.5 – Foto do tanque de mistura montado no laboratório, evidenciando as entradas do reagente e do efluente, a saída após a mistura e a saída da água da retrolavagem.

4.2.2. Tratamento Físico

O tratamento físico do processo é composto por membranas de filtração, que podem ser definidas como barreiras seletivas ao transporte de matéria e energia, entre duas fases (MALDONADO, 1991), e que restringe total ou parcialmente o transporte de uma ou várias espécies químicas presentes nessas fases (HABERT *et al.*, 2006).

A passagem do efluente através dessas membranas é realizada a partir do gradiente de pressão, formado pela diferença de pressão entre o tanque de mistura $(P_{tq.\ mistura} > P_{atm})$ e o tanque de armazenamento $(P_{tq.\ armazenamento} = P_{atm})$. A porosidade da membrana determina o tipo de filtração a ser realizado (micro-filtração ou ultra-filtração). E o tipo de filtração determina o gradiente de pressão necessário para o funcionamento do sistema.

A micro-filtração (MF) é o processo de separação por membranas que mais se aproxima da filtração clássica. Nela são utilizadas membranas porosas para separar partículas suspensas com diâmetros de 0,1 a 10,0 µm. Como essas membranas são relativamente abertas, as pressões empregadas como força motriz da separação são pequenas, variando da ordem de 0,2 a 2 bar (MALDONADO, 1991)

No processo de ultra-filtração (UF) os componentes da solução, dissolvidos ou não, podem ou não passar através da membrana em função dos seus tamanhos. As membranas de UF apresentam poros variando entra 0,01 e 0,1 µm. Como são membranas mais fechadas das que são utilizadas na MF, é necessário o uso de uma força motriz maior para se obter fluxos elevados. Geralmente o gradiente de pressão utilizado varia entre 1,0 e 10,0 bar (MALDONADO, 1991).

A Figura 4.6 mostra algumas espécies que podem ser filtradas de acordo com os diferentes diâmetros dos poros das membranas e os diferentes tipos de processo de filtração.

Figura 4.6 – Diferentes espécies que podem ser filtradas através de membranas com diferentes porosidades. FONTE: HABERT et al (2006).

A Tabela 4.5 mostra os processos de filtração por membranas que podem ser utilizados para cada tipo de membrana e o gradiente de pressão para cada tipo de processo.

Tabela 4.5 – Processos de filtração utilizados em cada uma das membranas disponíveis, e as respectivas forças motrizes para cada tipo de processo.

Membranas	Porosidade (µm)	Processo Filtração	ΔP (bar)	ΔP (atm)	ΔP (mca)
AQS-80-300-(2*2)-3,00	3,00	MF	0,2 - 2,0	0,197 - 1,97	2,04 - 20,39
AQS-80-300-(2*2)-1,00	1,00	MF	0,2 - 2,0	0,197 - 1,97	2,04 - 20,39
AQS-80-300-(2*2)-0,04	0,04	UF	1,0 - 10,0	0,987 - 9,87	10,20 - 101,97

As Figuras 4.7 e 4.8 mostram, respectivamente, a vista lateral e frontal da membrana AQS-80-300-(2*2)-1,00 utilizada no sistema. A Figura 4.9 mostra as membranas AQS-80-300-(2*2)-0,04 e AQS-80-300-(2*2)-1,00 encapsuladas, prontas para serem incorporadas ao sistema. A Figura 4.10 mostra a membrana AQS-80-300-(2*2)-3,00 instalada no sistema, e os dois manômetros utilizados para monitorar o gradiente de pressão do processo.

Figura 4.7 – Vista lateral da membrana de filtração AQS-80-300-(2*2)-1,00

Figura 4.8 – Vista frontal da membrana de filtração AQS-80-300-(2*2)-1,00

Figura 4.9 – Membranas AQS-80-300-(2*2)-0,04 e AQS-80-300-(2*2)-1,00 encapsuladas, antes de serem incorporadas ao sistema.

Figura 4.10 – Membrana AQS-80-300-(2*2)-3,00 instalada no sistema, junto com os manômetros responsáveis pelo monitoramento do fluxo do processo e do fluxoda retrolavagem.

4.2.3. Retrolavagem

O tanque de retrolavagem (Figura 4.11) tem a função de armazenar o efluente após o tratamento químico e físico, para que ele possa ser utilizado no processo de limpeza das membranas de filtração.

Figura 4.11 – Foto do tanque de armazenamento evidenciando a entrada, a saída do efluente, a bomba de retrolavagem e o fluxo de retrolavagem.

A retrolavagem é acionada assim que a vazão após o tratamento físico apresenta uma queda significativa, que não garanta a eficiência do processo (podendo variar para cada tipo de tratamento). Para Barbosa (2009) o fluxo restabelecido após a retrolavagem deve ser o mais próximo do fluxo inicial, enquanto durar a vida útil da membrana. A Figura 4.12 apresenta o comportamento do fluxo dentro de uma membrana com a ação da retrolavagem, e sem a ação da retrolavagem.

Figura 4.12 – Representação do comportamento do fluxo ao longo do tempo numa membrana, com a ação da retrolavagem e sem a ação da retrolavagem. FONTE: NÓBREGA (1998) apud BARBOSA (2009).

4.3. Automação do Sistema

A automação do sistema foi elaborada e desenvolvida no Laboratório de Hidráulica da PUC-Rio. O *software* utilizado foi o *Lab View*, desenvolvido pela *National Instruments*, que permite virtualizar os instrumentos do sistema para a sua medição e visualização remota. Ou seja, com o seu auxílio é possível acionar as três bombas, monitorar as pressões do sistema, e ainda calcular o volume de efluente e reagente bombeado, assim como o volume de água utilizado durante a retrolavagem.

O monitoramento das pressões do sistema é de extrema importância para o seu correto funcionamento. Através das pressões da bomba 1 e 2 e de suas equações (item 4.1.1.2) é possível calcular a vazão do efluente tratado e do reagente utilizado.

O aumento da pressão na câmara de mistura e na entrada da membrana de filtração significa queda no fluxo do sistema, indicando a necessidade da retrolavagem. O monitoramento da pressão da bomba de retrolavagem permite calcular o volume de água gasto neste processo.

Os testes da automação do sistema apenas foram feitos em laboratório. O efluente era água da CEDAE, que era bombeada tanto pela bomba 1, quanto pela bomba 2. Dessa maneira só foi possível avaliar o correto funcionamento do *software*, através do acionamento das bombas e das medições das pressões.

Figura 4.13 – Interface do software automação Lab View.

4.4. Avaliação da Vazão das Membranas de Filtração

A avaliação da eficiência das membranas de filtração do sistema foi realizada com a água do Rio Rainha (Figura 4.14), por se trata de um corpo hídrico que vem sendo poluído há bastante tempo, principalmente pela Favela da Rocinha, e que percorre o *campus* da PUC-Rio.

Figura 4.14 – Foto aérea da localização do Rio Rainha. FONTE: GOOGLE EARTH.

Para a captação da água do Rio Rainha foi necessário a construção de um flutuador como mostrado na Figura 4.15-a. Em volta da estrutura do flutuador foi costurada uma rede com dimensões 2 mm x 2 mm, formando uma espécie de gradeamento, para que se evitasse a entrada de sólidos grosseiros no sistema. A Figura 4.15-b mostra o flutuador no rio, e a Figura 4.15-c mostra o flutuador sendo colocado no Rio Rainha.

Figura 4.15 a – Foto do flutuador evidenciando seu gradeamento; b – Foto do flutuador e a bomba 1 nas águas do Rio Rainha; c – Foto da colocação da bomba 1 e do flutuador no Rio Rainha.

As Figuras 4.16, 4.17 e 4.18 mostram o sistema instalado em campo, às margens do Rio Rainha. E a Figura 4.19 mostra o sistema sendo utilizado para os testes no Rio Rainha.

Figura 4.16 – Membrana de Filtração montada em campo.

Figura 4.17 – Tanque de Armazenamento montado em campo.

Figura 4.18 – Câmara de mistura e tanque de reagente montados em campo.

Figura 4.19 – Sistema sendo operado no Rio Rainha.

Durante esta fase não foi utilizado qualquer tipo de reagente, apenas a água do rio era bombeada para dentro do sistema. O teste realizado utilizou a membrana de 1,0 µm (AQQS-80-300-(2*2)-1,00) a uma pressão de 18 mca.

O método utilizado para calcular a vazão foi o método volumétrico, que se baseia no tempo gasto para que um determinado fluxo de água ocupe um recipiente com volume conhecido. Eram realizadas 3 repetições para cada medição.

A vazão inicial do sistema foi de 0,149 m³/h. Após 10 minutos de teste, esta vazão já tinha caído para 0,05 m³/h, sendo realizada a primeira retrolavagem. Após a retrolavagem, a vazão inicial voltou para 0,111 m³/h, e de novo, depois de 10 minutos ela já havia caído para 0,037 m³/h. Depois da segunda retrolavagem, a vazão retornou a 0,086 m³/h, e quando foi medida após 10 minutos já tinha caído para 0,029 m³/h. Após a terceira retrolavagem a vazão da membrana retornou para 0,053 m³/h e após 10 minutos já tinha caído para 0,071 m³/h.

Tabela 4.6 – Vazão do sistema x Tempo de Operação.

Тетро	(min.)	0	10	0 +1R	10 + 1R	0 + 2R	10 + 2R	0 + 3R	10 + 3R
Vazão	(m³/h)	0,149	0,05	0,111	0,037	0,086	0,029	0,053	0,017
0 + 1R - primeiro minuto após a primeira retrolavagem									

0 + 2R - primeiro minuto após a segunda retrolavagem

0 + 3R - primeiro minuto após a terceira retrolavagem

A Figura 4.20 mostra as vazões de saída do sistema alcançadas em relação ao tempo. Por ele, nota-se que a membrana vem perdendo vazão ao longo do tempo de uso, e mesmo depois a realização das retrolavagens ela não recuperar sua vazão original. Vale destacar que os picos representam os momentos após a retrolavagem.

Figura 4.20 – Vazões de saída x tempo de operação.

Para entender a perda de vazão do sistema, foram realizadas análises de sólidos em suspensão da água no Laboratório de Hidráulica da PUC-Rio. Foi constatado que a água na entrada no sistema continha em média 3.400 mg/l de sólidos em suspensão. Após a passagem pela membrana de filtração, esse número reduzia, em média, para 1.400 mg/l.

Segundo o fabricante das membranas, o fluxo de água, a uma pressão de 17,3 mca, na membrana AQQS-80-300-(2*2)-1,00 deveria ser de 11 m³/h (Tabela 4.4).

Diante desta situação, o engenheiro da COMETAS, Kenneth Johansen, veio ao Brasil para averiguar o que estava acontecendo e dar uma solução para o problema. O primeiro fato constatado foi que o tipo de filtração realizado por este tipo de membrana, *dead-end filtration*, não é adequada para efluentes com grandes quantidades de sólidos em suspensão.

Neste tipo de filtração, a filtração é efetuada pela passagem de uma solução de alimentação, sob pressão, em uma direção perpendicular ao meio filtrante. Neste caso, toda a solução atravessa a membrana criando uma única corrente de saída (MALDONADO, 1991). As partículas se acumulam na superfície da membrana ou no seu interior, e a pressão requerida para manter o fluxo aumenta, até o ponto onde a membrana deva ser trocada ou limpa (BAKER, 2004). Para este tipo de filtração, Johansen recomendou que se utilize apenas efluentes com menos de 20 mg/l de sólidos em suspensão.

Figura 4.21 – Representação esquemática do tipo de filtração dead-end filtration. FONTE: JOHANSEN (2009)*.

Para efluentes com grande quantidade de sólidos em suspensão, Johansen sugeriu que se utilizassem membranas que realizassem a *cross-flow filtration*, onde a corrente de alimentação, pressurizada, flui paralelamente à superfície da membrana. Uma parcela dessa corrente atravessa a membrana, deixando para trás as partículas rejeitadas, que se juntam à parcela remanescente da corrente de alimentação. Como existe um fluxo contínuo paralelo à superfície da membrana, o acúmulo de soluto rejeitado é minimizado em duas correntes de saída: a que passou através da membrana (permeado livre de partículas) e a corrente concentrada remanescente (concentrado contendo as partículas) (MALDONADO,1991 e BAKER, 2004). Ele

acrescenta que esse tipo de filtração pode receber efluentes com até 700 mg/l de sólidos em suspensão.

Figura 4.22 – Representação esquemática do tipo de filtração cross-flow filtration. FONTE: JOHANSEN (2009)*.

O problema da colmatação das membranas é comentado na literatura. Alguns autores, como Barbosa (2009) e Habert *et al.* (2006), sugerem alguns métodos para minimizar este problema, tais como: o pré-tratamento da solução de alimentação através de tratamento térmico, correção de pH, cloração, adsorção com carvão ativado e a pré-filtração, e a utilização de agentes químicos durante a retrolavagem, para melhorar sua eficiência, tais como hidróxido de sódio, ácido fosfórico e cloreto de sódio.

Os testes no Rio Rainha serviram para mostrar que o sistema possui a limitação de tratar efluentes que possuam níveis de sólidos em suspensão maiores que 20 mg/l. Dessa forma, ficou evidente a necessidade de algum tipo tratamento prévio do efluente, antes do seu encaminhamento ao sistema.

4.5. Utilização do Tratamento Prévio para Melhoria da Eficiência do Sistema

Esta etapa consistiu na avaliação de dois diferentes tipos de reagentes (carbonato de cálcio e hipoclorito de sódio) a serem utilizados pelo projeto piloto no tratamento do chorume do Aterro Municipal de Gramacho.

A Environmental Protection Agency, dos Estados Unidos, define o chorume como sendo um líquido que tenha percolado através de resíduos sólidos e tenha extraído, dissolvido ou carregado materiais contidos nestes. Giordano (2003) diz que "o chorume é um líquido (98% de água) composto por matéria orgânica (0,5%) de várias funções e compostos inorgânicos (1,5%)."

4.5.1. Coleta e Preservação da Amostra

As amostras foram coletadas na lagoa de chorume do Aterro Municipal de Gramacho, segundo a metodologia padronizada no método de coleta e preservação de amostras SM-1060 do *Standards Methods for the Examination of Water and Wastewater* (APHA, AWW, WEF, 1998).

Figura 4.23 – Amostra sendo coletada na lagoa do Aterro Municipal de Gramacho no dia 09/10/2010.

4.5.2. Caracterização das Amostras

As metodologias aplicadas para as análises físico-químicas e biológicas são recomendadas pelo *Standards Methods for the Examination of Water and Wastewater* (APHA, AWW, WEF, 1998).

Os aparelhos utilizados para a medição do pH, do oxigênio dissolvido, condutividade, sólidos dissolvidos e temperatura, baseiam-se no método potenciométrico. Já o turbidímetro, utilizado para medir a turbidez do chorume, baseia-se no método nefelométrico (Tabela 4.7).

Parâmetro	Aparelho	Modelo	Fabricante	Método	Metodologia
Temperatura	Intelligent Meter	PH-1500	Instrutherm	Potenciométrico	SM-2550 (B)
Turbidez	Turbidímetro	TB-1000P	Tecnopon	Nefelométrico	SM-2130 (B)
рН	pHâmetro	PH-206	Lutron	Potenciométrico	SM-4500 H+ (B)
Condutividade	Intelligent Meter	PH-1500	Instrutherm	Potenciométrico	SM-2510 (A)
Sólidos Dissolvidos	Intelligent Meter	PH-1500	Instrutherm	Potenciométrico	SM-2540
Oxigênio Dissolvido	Intelligent Meter	PH-1500	Instrutherm	Potenciométrico	SM-4500 (B)

Tabela 4.7 – Características dos aparelhos utilizados para determinados parâmetros.

As Figuras 4.24 e 4.25 mostram, respectivamente, a medição do pH, da condutividade e temperatura sendo realizadas. As Figuras 4.26 e 4.27 mostram a medição do oxigênio dissolvido e dos sólidos dissolvidos sendo realizadas. A Figura 4.28 mostra a medição da turbidez sendo realizada no turbidímetro de bancada.

Figura 4.24 – Medição do pH do chorume bruto.

Figura 4.25 – Medição da condutividade e da temperatura do chorume bruto.

Figura 4.26 – Medição do oxigênio dissolvido.

Figura 4.27 - Medição da quantidade de sólidos dissolvidos.

Figura 4.28 – Medição da turbidez.

As análises físico-químicas da DQO, fósforo total, nitrogênio total, nitrogênio amoniacal, cloreto total e potássio total foram realizadas utilizando-se de um fotômetro modelo *Spectoquant NOVA 60*, de fabricação da MERK. As reações colorimétricas foram feitas com o auxílio de *kits* específicos para cada parâmetro, desenvolvidos com base em metodologias internacionais (Tabela 4.8).

Parâmetro	Unidade	Método	Metodologia MERCK	Metodologia
DQO	mg/l	Fotométrico	SOL. A - 1.14538.0065 SOL. B - 1.14682.0495	SM-5220 (D)
Fósforo Total	mg/l	Fotométrico	1.148.480.002	SM-4500 P (E)
Nitrogênio Total	mg/l	Fotométrico	1.145.370.001	EM ISSO 11905-1
Nitrogênio Amoniacal	mg/l	Fotométrico	1.147.390.001	SM-4500 NH3 (D)
Cloreto Total	mg/l	Fotométrico	1.148.970.002	SM-4500 CL [−] (E)
Potássio Total	mg/l	Fotométrico	1.006.140.001	-

Tabela 4.8 – Metodologias referentes aos kits utilizados na caracterização do chorume.

Para todas as análises feitas no fotômetro, eram realizadas duplicadas e utilizadas as médias encontradas, para dessa forma, garantir uma melhor precisão. As Figuras 4.29 e 4.30 mostram, respectivamente, as análises da concentração de fósforo total e de potássio total no chorume sendo realizadas no fotômetro *Spectroquant* NOVA 60.

Figura 4.29 – Análise de fósforo total sendo realizada.

Figura 4.30 – Análise de potássio total sendo realizada.

A Tabela 4.9 mostra o resultado das análises do chorume bruto coletado no dia 09/10/2010, na lagoa de chorume no Aterro Municipal de Gramacho, que foram realizadas no Laboratório de Hidráulica da PUC-Rio,

Tabela 4.9 – Caracterização físico-química da amostra de chorume bruto coletada no dia 09/10/2010.

Parâmetro	Unidade	Chorume Bruto Amostra (09/10/2010)
Temperatura	°C	22,60
Turbidez	UNT	6,50
рН	-	9,92
Condutividade	mS	34,00
Sólidos Dissolvidos (SDT)	mg/l	22.670
DQO	mg/l	10.400
Oxigênio Dissolvido	mg/l O2	8,00
Fósforo Total	mg/l PO4-	21,90
Nitrogênio Total	mg/l	4.700
Nitrogênio Amoniacal	mg/l	-
Cloreto Total	mg/l CL-	3.900
Potássio Total	mg/l K	2.760

O alto valor da DQO encontrado no chorume do Aterro Municipal de Gramacho representa a alta concentração de matéria orgânica. Quanto mais elevada a DQO maior a biodegrabilidade do chorume.

Outro dado que chama atenção é a quantidade de sólidos dissolvidos presente no chorume. Esse número pode ser entendido não só como materiais inertes, mas também como frações de matéria orgânica proveniente da decomposição.

A alta condutividade encontrada revela a presença de sais no chorume, indicando de maneira indireta a quantidade de poluentes presentes.

Segundo Carlsson-Ekvall e Morrison (1995), a presença de cloretos contribui para o aumento da toxicidade, pois ocorre a diminuição de emissão de luz quando este íon está presente em grande quantidade na amostra, devido à formação de complexos com íons de metais dissolvidos

4.5.3. Definição do Reagente

Para a definição do reagente a ser utilizado no tratamento de chorume do Aterro Municipal de Gramacho, utilizou-se o ensaio *Jar Test*. Este ensaio, realizado no laboratório, simula a reação entre o efluente e o reagente, utilizando-se de diferentes doses, diferentes velocidades de agitação e diferentes tempos de reação. Dessa forma é possível se obter a dosagem ótima para o tratamento do efluente em questão.

A realização do ensaio do *Jar Test* com o chorume foi feita no Laboratório de Hidráulica da PUC-Rio. Neste caso, para os dois reagentes, utilizou-se o tempo e agitação de 60 minutos e de decantação de 30 minutos. A rotação utilizada foi de 260 rpm (máxima do equipamento), para que simulasse de maneira mais parecida a agitação obtida no tanque de mistura.

O primeiro reagente a ser misturado foi o carbonato de cálcio (barrilha) nas doses de 10 mg/l, 50 mg/l, 100 mg/l e 250 mg/l. No segundo momento, misturou-se o hipoclorito de sódio nas doses de 25 mg/l e 50 mg/l.

As análises físico-químicas de todas as misturas foram realizadas de maneira análoga às análises químicas do chorume bruto. A Tabela 4.10 mostra o resultado dessas análises, comparando-as com os resultados das análises do chorume bruto.

Parâmetros	Unidade	Chorume Bruto		Jar-Teste - Barrilha				Jar-Teste - Hipoclorito de Sódio	
		09/10/2010	10 mg/l	50 mg/l	100 mg/l	250 mg/l	25 mg/l	50 mg/l	
Temperatura	°C	22,60	23,00	22,90	22,80	22,70	21,70	21,60	
Turbidez	UNT	6,50	4,30	4,50	4,50	4,60	4,40	4,60	
рН	-	9,92	9,61	9,56	9,58	9,55	10,04	10,12	
Condutividade	mS	34,00	32,60	32,40	33,40	37,60	31,80	33,00	
Sólidos Dissolvidos (SDT)	mg/l	22.670	21.730	21.600	22.270	24.930	21.200	21.870	
DQO	mg/l	10.400	8.900	9.000	9.500	8.300	10.100	11.800	
Oxigênio Dissolvido	mg/l O2	8,00	9,30	8,70	9,10	7,30	18,70	19,90	
Fósforo Total	mg/l PO4-	21,90	24,12	21,93	22,00	23,40	23,30	22,80	
Nitrogênio Total	mg/l	4.700	5.800	4.600	5.800	2.200	2.600	3.200	
Cloreto Total	mg/l CL-	3.900	4.300	3.500	4.200	3.900	3.750	3.600	
Potássio Total	mg/l K	2.760	2.660	2.630	2.670	2.310	2.380	2.260	

Tabela 4.10 – Resultados das análises do chorume bruto, e do chorume após o Jar Test realizado com barrilha e hipoclorito de sódio em diferentes dosagens.

Pelos dados da Tabela 4.10, percebe-se que em nenhum dos casos, os reagentes provocaram algum efeito positivo na qualidade do chorume bruto. Os parâmetros analisados variaram muito pouco, e todos se mantiveram próximos dos valores brutos.

A partir desses resultados obtidos, a utilização do projeto piloto se mostrou inviável, pois o chorume se mostrou praticamente inalterado mesmo após a aplicação dos dois reagentes escolhido (carbonato de cálcio e hipoclorito de sódio).

Esta etapa serviu para mostrar a dificuldade de se tratar chorume. A dificuldade do tratamento deste tipo de efluente também foi observada por outros autores, como Tartari (2003) que mostrou a ineficiência do tratamento do chorume do Aterro Sanitário de Novo Hamburgo e Giordano (2002) que mostrou a dificuldade e complexidade neste tipo de tratamento no Aterro Metropolitano de Gramacho.

Isto mostra a importância de estudos serem realizados neste campo, principalmente, pelos aterros sanitários serem a principal técnica de descarte de resíduos urbanos utilizada no Brasil.