REFERÊNCIAS BIBLIOGRÁFICAS

ALFANO, O.; BRANDI, R.; CASSANO, A. – Degradation kinetics of 2, 4 – D in water employing Hydrogen peroxide and UV radiation – Chemical Engineering Journal, 82, pp. 209- 218, 2001.

ALNAIZI, R.; AKGERMAN, A. – Advanced oxidation of phenolic compounds, Advances in Environmental Research, 4, pp. 233-244, 2000.

AMERICAN PUBLIC HEALTH ASSOCIATION ; Standard methods for the Examination of Water and Wastewater, 15^a ed, 1981.

ANDREOZZI, R.; CAPRIO, V.; MAROTTA, R. – Advanced oxidation processes (AOP) for water purification and recovery, Catalysis Today, 53, pp. 51 – 59, 1999.

ANDREOZZI, R.; CAPRIO, V.; MAROTTA, R.; RADOVNIKOVIC, A. -Ozonation and H₂O₂/UV treatment of clofibric acid in water: a kinetic investigation. Journal of Hazardous Materials, B103, 2003, pp.233-246.

AUGUGLIARO, V.; GÁLVEZ, J.; VÁSQUES, J.; LÓPEZ, E.; RODRIGUEZ, S.; MARCÌ, G. PALMISANO, L. SCHIAVELO, M.; RUIZ, S. –**Photocatalytic oxidation of cyanide in aqueous TiO₂ suspensions irradiated by sunlight in mild and strong oxidant conditions**, Catalysis Today , 54, 1999, pp. 245 – 253.

BAKES, M.; DAUDE - LAGRAVE, M. – Élimination des cyanures dans le eaux résiduares par le couple peroxyde d'hydrogen – hipoclorite de sodium, Galvano-organo, maio, 1976.

BALI, U- "Application of Box and Wilson experimental design method for the photodegradation of textile dyestuff with H2O2/UV process, Dyes and Pigments, n° 60, 2004, pp. 187-195.

BARD, A. – Eletroanalytical Chemistry: A Series of Advances, New York:M. Dekker, vol. 4, 1966

BELL, D.; FORTIER, J.; HAVENS, H. – "Apparatus and method for hydrolysis of cyanide containing liquids, US patent 5,160,637, novembro de 1992.

BELTRÁN, F.; GONZÁLEZ, M.; GONZÁLEZ, J. – Industrial wastewater advanced oxidation. Part I. UV radiation in the presence and absence of hydrogen peroxide, Water Research, vol. 31, n ° 10, 1997, pp. 2405 – 2414.

BETERMIER, B.; ALVAREZ, M.; NORRIS, R. – **Destruction of iron** cyanide complexes – US patent 4,446,029, maio de 1984.

BONAN, A. – Estudo cinético da oxidação de cianetos em efluentes com peróxido de hidrogênio, dissertação de mestrado, PUC-Rio, Rio de Janeiro, 1992.

BORREL, P. – Photochemistry: A Primer, Edward Arnold (publishers) Limited., Londer, 1973.

BOSE, P.; GLAZE, W.; MADDOX, D. – **Degradation of RDX by various** advanced oxidation process: 1- Reaction Rates, Water Research, vol. 32, n^o4, 1998, pp. 997 – 1004.

BRAILE, P. M.; CAVALCANTE, J. – Manual de tratamento de águas residuárias industriais, CETESB, 1993.

CARRILO-PEDROZA, F.; NAVA- ALONSO, F.; URIBE-SALAS, A. – Cyanide oxidation by ozone in cyanidation tailings: reaction kinetics, Materials Enginnering, vol. 13, n° 5, 2000, pp. 541 – 548.

CASTRO, S. H.; VERGARA, F.; SANCHÉZ, M.A. – Effluent Treatment in the Mining Industry, University of Concepcion, Capítulo 5, 1998.

CHU, - Modeling the quantum yield of herbicide 2,4-D decay in UV/H₂O₂ process, Chemosphere, n° 44, 2001, pp.935-941.

CISNEROS, R. L.; ESPINOZA, A. G.; LITTER, M. I. –**Photodegradation of na azo dye of textile industry**, Chemosphere, n^o 48, 2002, pp. 393-399. COSTA, A. C. – **Degradação de cianetos por hipoclorito de sódio**, CETEM / CNPq, Rio de Janeiro, 1991.

CRITTENDEN, J. C.; HU, S.; HAND, D.; GREEN, S. – A kinetic model for H₂O₂/UV process in a completely mixed batch reactor, Water Research, Vol. 33, n^o.10, 1999, pp. 2315-2328.

CETESB, Decreto nº 8468, lei nº 997, de 8 de setembro de 1976

DEZOTTI, M. Curso de "Técnicas de Controle Ambiental em Efluentes Líquidos" oferecido pelo Programa de Engenharia Química da COPPE/UFRJ, de 4 de maio a 30 de setembro de 1998.

EL-DEIN, A.; LIBRA, J.; WIESMANN, U. – Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation, Chemosphere, n^o 52, 2003, pp. 1066-1077.

EVANS, F.; UPTON, M. W. –**Studies on singlet oxygen in aqueous solution. Part 4. The spontaneous and catalysed decomposition of hydrogen peroxide**, Journal of Chemical Society Dalton Trannsaction, 1985, pp.2525 – 2528.

FONSECA, V. –**Estudo da fotodegradação de corantes reaticos por oxidação com H₂O₂ fotoativado com radiação ultravioleta** – Dissertação de mestrado, UFRJ, Programa de Pós-graduação em Tecnologia dos Processos Químicos e Bioquímicos, Rio de Janeiro, 2003.

FRESENIUS, W.; QUENTIN, K.; SCHNEIDER, W.; Water Analysis, Springer-Verlag, 1988.

GALBACS, Z. M.; CZÁNYI, L. J. – Alkali induced decomposition of hydrogen peroxide; Journal of Chemical Society – Dalton Transaction, 1983, pp. 2353 – 2357.

GALINDO, C.; KALT, A. – UV-H2O2 oxidation of monoazo dyes in aqueous media: a kinetic study, Dyes and Pigments, 40, 1998, pp. 27-35.

GRANATO, M. – Utilização de aguapé no tratamento de efluentes com cianetos, CETEM / CNPq, Rio de Janeiro, 1995.

GRIFFITH, A.; KNORRE, H.; GOS, S.; HIGGINS, R. –**The detoxification of gold-mill tailings with hydrogen peroxid**e; Journal of American Institute of Mining and Metallurgy, vol. 87, n°9, setembro, 1989, pp. 279 – 283.

GROSHART, E. – "Waste cyanide control process", Metal Finishing, novembro, 1988.

GUROL, M. – Modeling of H_2O_2/UV process for water treatment in a continuous flow stirred - tank reactor, Proc. Annu. Cont. Am. Water Woks Assoc. (Water Research new decade), 1991

HAGER, D.; PETERSON, R. –**Modular self- cleaning oxidation chamber**, Patente americana 5227140, julho, 1993.

HOECKER, W.; MUIR, D. – **Degradation of cyanide**, The AusIMM Adelaide Branc, Research Development in extractive metallurgy, 1987, pp. 29-36

http://www.chemkeys.com/bra/md/ede_5/ldpdad_1/ldpdad_1.htm, acessado em 15 de outubro de 2003.

http://www.usace.army.mil/publications/eng-tech-ltrs/etl1110-1-161/a-a.pdf, acessado em 15 de outubro de 2003.

INCE, N.; APIKYAN, I. – Combination of activated carbon adsorption with light-enhanced chemical oxidation via hydrogen peroxide, Water Research, vol. 34, n^o 17, 2000, pp. 4169 – 4176.

KOREN, D.- Cyanide use and management in the gold industry", VI Southern Hemisphere Meeting on Mineral Technology, Maio, 2002, Rio de Janeiro.

KU, Y.; WANG, L.; SHEN, Y. – **Decomposition of EDTA in aqueous** solution by UV/H_2O_2 process, Journal of Hazardous Materials, 60, 1998, pp. 41 – 55.

KURBUS, T.; MARECHAL, A. M.; VONCINA, D. B.- Comparison of H_2O_2/UV , H_2O_2/O_3 and H_2O_2/Fe^{2+} processes for the decolorisation of vinilsulphone reactive dyes, Dyes and Pigments, no 58, 2003, pp. 245-252.

KURBUS, T.; MARECHAL, A. M.; SLOKAR, Y. M. –The study of the effects of variables on H_2O_2/UV decoloration of vinilsulphone dye: part II, Dyes and Pigments, n^o 54, 2002, pp. 67-78

LEAHY, C. – The oxidation by peroxides of cyanide complexes and related species, Tese de DSc., University of London, Londres, 1990.

LIMA, A. – Tratamento de efluentes com peróxido de hidrogênio fotoativado com radiação ultravioleta, dissertação de mestrado, PUC-Rio, Rio de Janeiro, 1998

LOPEZ, A.; BOZZI, A.; MASCOLO, G.; KIWI, J. – Kinetic investigation on UV and UV/H2O2 degradation of pharmaceutical intermediates in aqueous solutions, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156, pp. 121-126.

MALIK, P. K.; SANYAL, S. K. – Kinetics of decolourisation of azo dyes in waste water by UV/H₂O₂ process, Separation and Purification Technology, 2003

MARSDEN, J.; HOUSE, I. – The **Chemistry of Gold Extraction**, Ellis Horwood Limited, 1993, pp. 478-505

MOSHER, J.; FIGUEROA, L. –**Biological oxidation of cyanide: A viable treatment option for the mineral processing industry**?, Minerals Engineering, vol. 9, n^o 5, 1996, pp 573–581.

MUNTER, R – Advanced Oxidation Processes – Current Status and Prospects, Proc. Estonian Sci. Chem., 50 (2), 2001, pp. 59-80.

NEAMTU, M.; SIMINICEANU, I.; KETTRUP, A –**Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H₂O₂ oxidation – Dyes and Pigments, n^o53, 2002, pp. 93-99.**

NEAMTU, M.; SIMINICEANU, I.; KETTRUP, A. – Kinetics of nitromusk compounds degradation in water by ultraviolet radiation and Hydrogen peroxide, Chemosphere, 40, 2000, pp. 1407 – 1410.

ÖGÜTVEREN, Ü.; TÖRÜ, E.; KOPARAL, S. –**Removal of cyanide by anodic oxidation for waste water treatment**, Water Research, n^o 8, 1999, pp. 1851 – 1856. OSSEO-ASSARE, K.; XUE, T.; CIMINELLI, V. – Solution Chemistry of Cyanide Leaching Systems; Precious Metals: Mining, Extraction and Processing, AIME, New York. 1984.

OTHMER, D. F.; KIRK, R. E.; MARK, H. F.; MCKETTA, J. J. - **Encyclopedia of Chemical Technology, 2^a.** Ed., New York: Interscience, 1973.

OWHEILER, O. A. – Química Inorgânica, vol. 1, Editora Edgar Blücher, Ltda., 1973, pp. 244 – 261.

PATIL, Y. B.; PAKNIKAR, K. M. – Development of a process for biodetoxification of metal cyanides from waste waters", Process Biochemistry, 35, 2000, pp. 1139 – 1151.

RADER, W.; SOLUJIC, L.; MILOSAVLJEVIC, E.; HENDRIX, J.; NELSON, J. – Photocatalytic detoxification of cyanide and metals cyano species from precious metal from mill effluents – Environmental Pollution, vol. 90, n° 3, 1995, pp. 331–334.

RAJESHWAR, K.; IBANEZ, J. - Environmental eletrochemistry – fundamentals and its applications in pollution abatment, Academic Press 1997.

Resolução CONAMA nº 20, artigo 21º, de 18 de julho de 1986

SCHIAVELLO, M. - Photoeletrochemistry, Photocatalyst and Photoreactors. Fundamentals and Developments, Publishing Company, 1984.

SCHILLER , J. E. – **Removal of cyanide and metals from mineral processing waste waters**; US Department of Interior, Bureau of Mines, Report Investigation no 8836, 1983.

SERPONE, N. – Photochemical reduction of gold (III)on semiconductors dirpersions of TiO₂ in the presence of CN⁻ ions: The disposal of CN⁻ by treatment with hydrogen peroxide, Journal of Eletrochemistry, 36, 1987, pp. 373 - 388.

SHARPE, A. G. – The chemistry of cyano complexes of the transitions metals, Academic Press Inc. Londres, 1976

SIMOVIC, L. – Kinetics of natural degradation of cyanide from gold mill effluents, M. Eng. Thesis, Mc Master University, Hamilton, Ontario, Canadá, 1984.

SKOOG, D. A.; WEST. D. M.; HOLLER, F. – Analytical Chemistry – an Introduction, Saunders College Pblishing, 1994, 6^a ed., pp. 383 – 419.

SMITH, A.; MUDDER, T. – The chemistry and treatment of cyanidation wastes, Mining Journal Books Ltd., Londres, 1991.

SPALEK, O.; PASEKA, J. –Kinetics of the decomposition of hydrogen peroxide in alkaline solutions, Journal of Inorganig Chemistry – Faraday Transactions, 1982, pp. 2349 – 2359.

STEPNOWISKI, P.; SIEDLECKA, E. M.; BEHREND, P.; JASTORFF, B. – Enhanced photodegradation of contaminants in petroleum refinery wastewater, Water Research, 36, 2002, pp. 2167-2172.

SUNDSTROM, D. W.; KLEI, H.; NALETTE, D.; WEIR, B. –Destruction of halogenated aliphatic by ultraviolet catalyzed oxidation with hydrogen peroxide, Hazard. Waste Hazard. Materials 3, 101, 1986.

SUPPAN, P. - **Principles of Photochemistry**, Chemical Society, Londres, 1973.

TEIXEIRA, L. A.; TAVARES, L. Y. – **Detoxificação de Efluentes contendo cianeto com peróxido de hidrogênio**, Anais do XIV Encontro Nacional de Tratamento de Minérios e Hidrometalurgia, 9 a 12 de setembro de 1990, Salvador, pp. 925 - 934

TEIXEIRA, L; TAVARES, L.; SILVA, M. – **Destruição de cianetos pelo uso combinado de peróxido de hidrogênio e UV solar**, Relatório interno laboratório de tecnologia ambiental, DCMM, PUC-Rio, março, 1994.

TENDULKAR, S. R.; AGNIHOTRI, V. G.- Use of hydrogen peroxide in treatment of cyanide; Special article – National Peroxide Ltd.

TUCKER, S. J.- Cyanide waste detoxification, Effluent and water treatment journal, Insight on INTEROX, outubro, 1987, pp. 42-48

ULMANN'S ENCICLOPEDIA, vol A8, 1991, pp. 171 – 172.

VENKATADRI, R.; PETERS, E.; - Chemical oxidation technologies: ultraviolet light/ hydrogen peroxide, Fenton's reagent, and titanium dioxide assisted photocatalysis, Hazardous waste and hazardous material, vol. 10, n° .2, 1993, pp 107 - 149.

WANG, G.; HSIEH, S.; HONG, C. – **Destruction of humic acid in water by UV light-catalysed oxidation with hydrogen peroxide**, Water Research, vol. 34, n ° 15, 2000, pp. 3882 – 3887.

WATSON, M. - **Pollution Control in Metal Finishing**, Moyes Data Corporation, Inglaterra, 1973.

YOUNG, C. A.; JORDAN, T. S. – "Cyanide Remediation: Current and Past Technologies, 10th Annual Conference on Hazardous Waste Research, pp. 104-129.

RESULTADOS OBTIDOS NOS TESTES DE OXIDAÇÃO NO FOTORREATOR

	[CN]	рН	UV	H ₂ O ₂ /CN
Experimento	А	В	С	D
L	100	9,5	0	1
A	300	9,5	0	1
В	100	11	0	1
AB	300	11	0	1
С	100	9,5	28 W	1
AC	300	9,5	28 W	1
BC	100	11	28 W	1
ABC	300	11	28 W	1
D	100	9,5	0	3
AD	300	9,5	0	3
BD	100	11	0	3
CD	100	9,5	28 W	3
ABD	300	11	0	3
ACD	300	9,5	28 W	3
BCD	100	11	28 W	3
ABCD	300	11	28 W	3

Figura A.1 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: $[CN^-] = 100 \text{ ppm}$

entais:
$$[CN^{-}] = 100 \text{ ppm}$$

 $pH = 9,5$
 $UV = 0 \text{ w}$

 $[H_2O_2]/[CN^-] = 1:1$


```
pH = 9,5

UV = 0 w

[H_2O_2]/[CN^-] = 1:1
```


Figura A.3 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: $[CN^-] = 100 \text{ ppm}$

$$pH = 11$$

 $UV = 0 w$
 $[H_2O_2]/[CN^-] = 1:1$

Figura A.4 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: $[CN^-] = 300 \text{ ppm}$

pH = 11 UV = 0 w $[H_2O_2]/[CN^-] = 1:1$

Figura A.5 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: $[CN^-] = 100 \text{ ppm}$

Figura A.6 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: $[CN^-] = 300 \text{ ppm}$

: [CN] = 300 ppm pH = 9,5 UV = 28 W $[H_2O_2]/[CN^-] = 1:1$

Figura A.7 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: $[CN^-] = 300 \text{ ppm}$

$$pH = 11$$

 $UV = 28 W$
 $[H_2O_2]/[CN^-] = 1:1$

5

60

3.86 64

80

100

tempo (min)

1

140

160

180

200

120

Figura A.8 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: [CN⁻] = 300 ppm

50,00

0,00 0

$$pH = 11$$

UV = 28 W
 $[H_2O_2]/[CN^-] = 1:1$

20

40

Figura A.9 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais

300,00

225,00

192,86 150,00

128,<u>57</u>

107,14

75,00

42,86

16,07

6,43

3,86

3,64

1,71

 $pH_{final} = 9,4$

120

UV = 0 W[H₂O₂]/[CN⁻] = 3:1

Figura A.11 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: [CN⁻] = 100 ppm

$$PH = 11$$

 $UV = 0$
 $[H_2O_2]/[CN^-] = 3:1$

pH = 9,5 UV = 28 W $[H_2O_2]/[CN^-] = 3:1$

Figura A.13 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: [CN⁻] = 300 ppm

$$pH = 11$$

 $UV = 0 W$
 $[H_2O_2]/[CN^-] = 3:1$

Experimento	ACD			
[CN] - ppm	t (min)			
300,00	0			
150,00	5			
85,71	10			
25,71	15			
6,43	20			
0,00	30			

Figura A.14 - Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: [CN⁻] = 300 ppm

pH = 9,5 UV = 28 W $[H_2O_2]/[CN^-] = 3:1$

Experimento	BCD			
[CN] - ppm	t (min)			
100	0			
60,00	5			
30,00	10			
10,00	15			
2,00	20			
0,70	25			
0,00	30			

pH_{final} =9,5

Figura A.15 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimenta

is:
$$[CN^{-}] = 100 \text{ ppm}$$

pH = 11

$$UV = 28 W$$

[H₂O₂]/[CN⁻] = 3:1

Figura A.16 – Curva de decaimento da concentração de cianeto em função do tempo. Condições experimentais: [CN⁻] = 100 ppm

 $\begin{array}{l} pH = 9,5 \\ UV = 28 \ W \\ [H_2O_2]/[CN^-] = 3:1 \end{array}$

Ponto central	Exp 1	Exp 2	Exp 3
t (min)	[CN] - ppm	[CN] - ppm	[CN] - ppm
0	200,00	200,00	200,00
5	140,00	140,00	133,33
10	120,00	120,00	122,22
15	110,00	120,00	100,00
20	80,00	100,00	77,78
25	70,00	80,00	66,67
30	60,00	70,00	55,56
40	60,00	60,00	33,33
50	40,00	40,00	11,11
60	30,00	30,00	0,00
90	18,00	18,00	0,00
	$pH_{final} = 9,9$	$pH_{final} = 9,9$	$pH_{final} = 10$

RESULTADOS OBTIDOS NOS TESTES DE OXIDAÇÃO PRELIMINARES

Exp	$[CN]_i$	Pot. lâmp	[H ₂ O ₂]:[CN]	t(h)	pH_i	[CN] _f	$pH_{\rm f}$	$[H_2O_2]_f$
1	180 ppm	45W	1:1	1	10	19,7 ppm		
				2		1,8 ppm	9,4	
				3		0,35 ppm	8,6	25
				4		0,16 ppm	8,4	+/-10
2	180 ppm	45W	1:1	3	11	0,25		
3	180 ppm	45W	sem	3	10	88,7 ppm	10,7	
				4		88,7 ppm		
4	180 ppm	Sem	1:1	4	10	46,1 ppm	10	
5	180 ppm	45W	3:1	4	11	0,18 ppm	8,4	
6	180 ppm	45W	3:1	4	10	0,17 ppm	8,4	Elevada
7	180 ppm	30W	1:1	4	11	0,35 ppm	9,4	
8	180 ppm	30W	1:1	4	10	0,27 ppm	8,7	
9	180 ppm	30W	3:1	3	10	0,27 ppm	9,0	
				4		0,14 ppm		

MODELO APLICADO EM CADA EXPERIMENTO

Cód	ъН	UV	H.O./CN [−]	[CN⁻]₀	$[H_2O_2]_0$	10 ³ x k _H	10 ⁶ x k _C	10 ⁶ x <u>k</u> _C			
Cou	μι	W		pr	om		min ⁻¹				
BC	11	28	1,00	100	100		570	459			
BCD	11	28	3,00	100	300		500	284			
ABC	11	28	1,00	300	300		180	284			
ABCD	11	28	3,00	300	900	2.00	110	67			
C	9,5	28	1,00	100	100	2,00	1200	1268			
CD	9,5	28	3,00	100	300		800	785			
AC	9,5	28	1,00	300	300		100	785			
ACD	9,5	28	3,00	300	900		180	186			
					$r^{2}_{mod} =$	0,960					
					- <i>l</i> a	$hg k_{\rm C} = 0,2940$	x pH + 0,00104	41 x [H ₂ O ₂] _o			

EQUIPAMENTO EMPREGADO NOS TESTES DE OXIDAÇÃO

Figura A.4.1- Foto do sistema fotorreator/equipamento de refrigeração

Figura A.4.2- Foto do equipamento de refrigeração

Figura A.4.3 - Foto do fotorreator.

DETALHAMENTO DA ANÁLISE ESTATÍSTICA DOS RESULTADOS

5.1

Planejamento Experimental

O planejamento experimental é a especificação detalhada das condições operacionais dos testes experimentais, com o objetivo de determinar a influência de variáveis selecionadas nos resultados de um sistema ou processo. Este planejamento é uma ferramenta importante pois permite:

- Aumentar a eficiência dos experimentos;
- Atribuir valores às influentes de modo a otimizar os resultados obtidos e minimizar os efeitos da variabilidade sobre o desempenho do processo;
- Extrair do sistema em estudo o máximo de informação útil, fazendo um número mínimo de experimentos;
- Fortalecer as conclusões obtidas (MONTGOMERY, 1999; FONSECA, 2003);

Após a escolha das variáveis experimentais e de seus respectivos níveis, selecionou-se a variável de resposta. No presente estudo, a variável de resposta selecionada foi velocidade de oxidação inicial por fornecer informações úteis sobre o processo em questão. A velocidade de oxidação inicial é dada por:

$$V = \frac{CN_1 - CN_0}{t_1 - t_0}$$

PUC-Rio - Certificação Digital Nº 9924929/CA

5.1.1

Análise das variâncias (ANOVA)

A análise das variâncias (ANOVA) é um método para testar a igualdade de 3 ou mais médias populacionais, baseado na análise das variâncias amostrais. Este método permite uma análise dos fatores e interações entre estes que são estatisticamente significativos no processo. A ANOVA considera que não existe diferença entre as médias e pelo menos uma das médias é diferente das demais. Valem as seguintes suposições quando testamos a hipótese de que três ou mais amostras provêm de populações com a mesma média:

- As populações tem distribuições normais;
- As populações têm a mesma variância.
- As amostras são aleatórias e mutuamente independentes.

5.1.2

Graus de liberdade

De tratamento: (número de variáveis -1)

Total: (número total de experimentos -1)

De resíduo: (número total de experimentos – 1) - (número de variáveis –1)

5.1.3

Teste F

O estudo da distribuição F é feito pela análise da variância dada pela tabela ANOVA. O valor de F é dado pela razão de duas variâncias amostrais.

Em seguida, compara-se o valor de F calculado com o valor de F tabelado (**tabela A.5.1**), ao nível de significância estabelecido e com (número de variáveis -1) graus de liberdade no numerador e [(número total de experimentos -1) - (número de variáveis -1)] no denominador. Ou seja, o F_{crítico} é obtido pela interseção do número de graus de liberdade do fator com o número do grau de liberdade do erro.

5.1.4

Teste t de student

Uma outra maneira de identificar a significância dos fatores é o teste t de "Student". Esta análise é feita através da comparação entre o valor calculado e o valor de t_{crítico}. O valor de t calculado pelo programa é obtido através da razão entre o coeficiente e o erro padrão (da tabela original). O valor de t_{crítico} é obtido através do número de graus de liberdade dos experimentos, num nível de confiança de 95 %, estabelecido no modelo do programa. Para que o efeito de um fator ou interação seja considerado significativo, o valor de t calculado deve ser maior que o valor de t_{crítico}.

5.1.5 Modelo GLZ

O modelo linear generalizado (Generalized Linear Model) é uma generalização de um modelo linear geral (como, por exemplo, o Visual General Linear Model (VGLM), regressão múltipla e o ANOVA). Na sua forma mais simples um modelo linear especifica a relação linear entre uma variável dependente (ou de resposta), variável Y, e uma série de variáveis previstas pelo modelo, a série X. Assim:

$$Y = b_0 + b_1 X_1 + \dots b_k X_k$$

Nesta equação, b_0 é o coeficiente de regressão no ponto que intercepta os eixos e os valores de b_i são coeficientes de regressão (para variáveis 1 a k) calculados dos dados fornecidos.

PUC-Rio - Certificação Digital Nº 9924929/CA

14 54	1	2	ю	4	5	9	7	Degi 8	rees of Free 9	dom for the 10	Numerator 12	$r(v_1)$ 15	20	24	30	40	09	120	8
	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	18.51	00.61	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.5
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.8
4	17.71	6.94	6.59	6:39	6.26	6.16	60.9	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.0
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.2
9	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.6
2	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.2
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.5
6	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.7
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.5
Ξ	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.4
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.3
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.2
enin 4	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.1
IS non	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.0
9 I e	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.0
12	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.9
1 10	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.9
61 110D	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.8
50 50	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.8
01 21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.8
53	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.7
53	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	16.1	1.86	1.81	1.7
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.7
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.7
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	66'1	1.95	1.90	1.85	1.80	1.75	1.6
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.6
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	16.1	1.87	1.82	1.77	1.71	1.6
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.6
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.6
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.5
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.55	1.43	1.35	1.2
8	100	00 0	010																

Tabela A.5.1 - Tabela empregada no teste F

			II.	Percent	age Point	s of the t	Distributio	on ^a		
α										
ν	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	.289	.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	.277	.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	.271	.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	.267	.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.86
6	.265	.727	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.019	4.785	5.408
8	.262	.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.04
9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.78
10	.260	.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.58
11	.260	.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.43
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.22
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.14
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.07
16	.258	.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.01
17	.257	.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.96
18	.257	.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.92
19	.257	.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.88
20	.257	.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.85
21	.257	.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.81
22	.256	.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.79
23	.256	.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.76
24	.256	.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.74
25	.256	.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.72
26	.256	.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.70
27	.256	.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.69
28	.256	.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.67
29	.256	.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.65
30	.256	.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.64
40	.255	.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.55
60	.254	.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.46
120	.254	.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.37
00	.253	.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.29

 ν = degrees of freedom.

^a Adapted with permission from *Biometrika Tables for Statisticians*, Vol. 1, 3rd edition, by E. S. Pearson and H. O. Hartley, Cambridge University Press, Cambridge, 1966.

Tabela A.5.2 – Tabela empregada no teste t de student