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Maritime Fleet Size and Mix
● Stochastic and deterministic optimization models for the cabotage tanker fleet size and mix decisions.

● 1 final project (Santos, 2015), 2 conference papers (Vieira et al., 2016; Santos et al., 2017), 1 journal 

article (Vieira et al., 2017) and 1 prize (Vieira et al., 2016).

PLSVs Scheduling
● Heuristics and optimization models for ship scheduling.

● 1 conference paper (Cunha et al., 2017) and 1 journal article (Cunha et al., 2018).

Oil Rigs Scheduling
● Simulation, heuristics and optimization model for offshore rigs scheduling.

● 1 conference paper (Santos et al., 2017) and 1 master thesis (Santos, 2018)
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Introduction - The Rig Scheduling Problem

Oil rigs are the most important resources in the Exploration and Production of Oil and Gas.

Use mainly in drilling, completion, workover and abandonment.

(complex, expensive and risky operations)

The Rig Scheduling Problem (RSP) emerges as the decision-making

process to determinate which rigs will attend which wells and when.



Systematic Literature Review
The Rig Scheduling Problem

Article “A Systematic Literature Review for the Rig Scheduling Problem: classification and 
state-of-the-art” currently in revision (R1) for the Computers and Chemical Engineering. 
(Qualify paper)

Analysis of 128 papers from Scopus (67/3248), WOS (35/551) and Google Scholar (citation links).
Proposes a classification and taxonomy.

Main findings:
• Trend for models considering the uncertainty of the rig scheduling problems:

Stochastic/robust models, simulation-optimization, dynamic programming and data-driven 
optimization.

• Need for models closer to the demands of the industry:
Realistic objective functions, heterogeneous fleets, use of real data and 
validation/implementation of results.



Systematic Literature Review
The Rig Scheduling Problem – New Classification

The Rig Scheduling Problem (RSP) main attributes:



Systematic Literature Review
The Rig Scheduling Problem – New Classification

The Rig Scheduling Problem (RSP) main attributes: Focus of this study:

The Workover Rig Scheduling 

Problem



Workover Rig Scheduling Problem
Assumptions

A set of offshore wells, each one requiring a specific workover operation with a release date.
A set of heterogenous rigs is available for hiring with eligibilities and different durations.

Objectives:

• Fleet size:
Select rigs to hire minimizing the fleet costs.

• Wells service:
Select wells to served minimizing the oil production loss.

• Scheduling:
Allocate a well to a rig that can serve it.
Select when the well will be served by the rig minimizing the oil production loss.



Sets:
• 𝑖, 𝑗 ∈ 𝐽: 𝑤𝑒𝑙𝑙𝑠

• 𝑘 ∈ 𝐾: 𝑤𝑒𝑙𝑙𝑠

Parameters:

• 𝑙𝑖: oil production loss.

• 𝑎𝑖: release date.

• 𝑑𝑖
𝑘: processing time.

Workover Rig Scheduling Problem
Deterministic Model

● Several formulations were developed and tested for the 

deterministic model.

● We propose a formulation based in a routing model.

Main Variables:

• 𝑋𝑖𝑗
𝑘 : If rig k goes from 

well i to well j.

• 𝑆𝑖: Starting time of 

task i.

• 𝑍𝑘: If rig k is hired or 

not.

Auxiliary Variables:

• 𝑋1𝑖
𝑘: If rig k enters 

well i.

• 𝑋2𝑖
𝑘: If rig k leaves 

well i.

• 𝑊𝑖: If well i is served.
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Can be infeasible 

when simulating the 

deterministic model 

decisions for the 

rigs hired and wells 

served
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Main Variables:

• 𝑋𝑖𝑗
𝑘 : If rig k goes from 

well i to well j.

• 𝑆𝑖: Starting time of 

task i.

• 𝑍𝑘: If rig k is hired or 

not.

Auxiliary Variables:

• 𝑋1𝑖
𝑘: If rig k enters 

well i.

• 𝑋2𝑖
𝑘: If rig k leaves 

well i.

• 𝑊𝑖: If well i is served.
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Solution: Data-

driven joint chance 

constrained 

approach



Workover Rig Scheduling Problem
Data-driven joint chance constrained approach

Methodology:

Data preparation
• Data cleaning

• Text Mining to treat 

qualitative data

• Task Classification using 

clustering methods

• Tool: R.

Predictive Models
• Task Duration estimation 

(duration, log, norm)

• Regressions models (GLM and 

Ridge)

• Best distribution for residuals

• Tool: R.

Joint Chance-

Constrained Model
• Representation of the probability

• Non-linear deterministic equivalent

• Stochastic programming with linear 

model.

• Scenario Generation techniques

• Tools: Julia and Gurobi.



The workover rig scheduling environment is full of uncertainties 
(durations, dates, occurrence, workover properties).

Workover Rig Scheduling Problem
Data preparation and prediction

How can we predict 

the workover 

durations?



Workover Rig Scheduling Problem
Data preparation



Workover Rig Scheduling Problem
Data preparation



Workover Rig Scheduling Problem
Data preparation



Workover Rig Scheduling Problem
Data prediction

Objective: Predict the duration of the tasks.

Regression models:

● Generalized Linear Model Regression

● Ridge Regression

Variations of the dependent variable:

● Duration.

● log(Duration).

● Normalized Duration.

Cross-validation with several distributions (gaussian, poisson and gamma).

Samples sizes: 479 (in) and 103 (out).



Workover Rig Scheduling Problem
Data prediction

Final regression model:

● Ridge Regression:

log 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ~𝑊𝑒𝑙𝑙𝐷𝑒𝑝𝑡ℎ + 𝑆𝑢𝑏𝑝𝑜𝑜𝑙 + 𝐵𝑎𝑠𝑖𝑛 + 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠45 + 𝑅𝑖𝑔𝑇𝑦𝑝𝑒

● Reformulating the regression to WRSP notation:

log 𝑑𝑖
𝑘 ~ 𝛼 ∙ 𝐷𝑒𝑝𝑡ℎ𝑖 + 𝛽𝑖 ∙ 𝑃𝑜𝑜𝑙𝑖 + 𝛾𝑖 ∙ 𝐵𝑎𝑠𝑖𝑛𝑖 + 𝛿𝑖 ∙ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑖 + 𝜑𝑘 ∙ 𝑇𝑦𝑝𝑒𝑘

𝑑𝑖
𝑘~exp 𝛼 ∙ 𝐷𝑒𝑝𝑡ℎ𝑖 + 𝛽𝑖 ∙ 𝑃𝑜𝑜𝑙𝑖 + 𝛾𝑖 ∙ 𝐵𝑎𝑠𝑖𝑛𝑖 + 𝛿𝑖 ∙ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑖 + 𝜑𝑘 ∙ 𝑇𝑦𝑝𝑒𝑘 + 𝜀

𝑑𝑖
𝑘~ ሚ𝑑𝑖

𝑘 = መ𝑑𝑖
𝑘 + 𝜀

Where:

𝜀 can be 

estimated



Workover Rig Scheduling Problem
Joint Chance-Constrained Model

Basic representation

Joint chance-

constrained
Probability 1-α of the well i

duration respects the start of 

the next task start in the same 

rig.



Workover Rig Scheduling Problem
Joint Chance-Constrained Model

Basic representation

Joint chance-

constrained
Probability 1-α of the well i

duration respects the start of 

the next task start in the same 

rig.How to represent this 

probability?



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model

Initial representation:



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model

Initial representation:

MINLP deterministic 

equivalents:



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model

Initial representation:

MINLP deterministic 

equivalents:

If 𝜀~𝑁(𝜇, 𝜎), still MINLP:



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model

Initial representation:

MINLP deterministic 

equivalents:

If 𝜀~𝑁(𝜇, 𝜎), still MINLP:

Solution for a MILP representation of the 

Joint Chance-constrained model via 

regression?

Stochastic programming / Scenarios



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model

Scenario Generation

(Monte Carlo 

Simulation)

Scenario Reduction

(Wasserstein distance)

Two-stages 

stochastic model

Two-stages stochastic programming approach:



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model

Two-stages stochastic programming approach:

New set:

• 𝜔 ∈ Ω (Scenarios)

First stage variables:

• 𝑊𝑖: wells attended

• 𝑍𝑘: rigs hired

+ Auxiliary variables used for better relaxation

Second stage variables:

• 𝑋𝑖𝑗
𝑘𝜔: “travels”

• 𝑆𝑖
𝜔: well start

• 𝑉𝑖𝑗
𝑘𝜔: slack variable for constraint relaxation.

• 𝑌𝑖
𝜔: well i feasibility.



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model

Two-stages stochastic programming approach:

Joint 

Chance-

constrained

Second stage First stage

Slack variable relax the uncertainty

Slack variable use counts as Infeasible

Slack variable only for when X=1

Infeasible probability less the 1-𝛼



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model: stochastic approach

V (slack variable) = 

0

Y (infeasible) = 0



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model: 
stochastic approach

Slack variable=0

V (slack variable) = 

0.6429

Y (infeasible) = 1



Slack variable=0

V (slack variable) = 0.6429

Y (infeasible) = 1

V (slack variable) = 1

Y (infeasible) = 1

Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model: 
stochastic approach



Slack variable=0

V (slack variable) = 0.6429

Y (infeasible) = 1

V (slack variable) = 1

Y (infeasible) = 1

Penalties are used in the objective function 
to assure that 𝑉𝑖𝑗

𝑘𝜔 and 𝑌𝑖
𝜔 are minimum.

Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model: 
stochastic approach



Workover Rig Scheduling Problem
Joint Chance-Constrained Model via Regression Model: stochastic approach

Model is able to optimize in reasonable time different sizes of instances with 30 scenarios.

*30 scenarios seems enough for Wasserstein Distance.

Instances x Computational efforts: More tests are still needed!

Scenarios Jobs Rigs Horizon Seed Density Status Gap Time (s) UB (M) LB (M)

30 21 5 360 1234 0.3 OPTIMAL 0.919% 55
111.8

1 110.78

30 21 5 360 1234 0.7 OPTIMAL 0.954% 23
108.0

7 107.04

30 21 10 360 1234 0.3 OPTIMAL 0.000% 49 93.01 93.01

30 21 10 360 1234 0.7 OPTIMAL 0.126% 49 94.84 94.72

30 31 5 360 1234 0.3 OPTIMAL 0.650% 301
271.5

8 269.82

30 31 5 360 1234 0.7 OPTIMAL 0.955% 456
200.0

5 198.14

30 31 10 360 1234 0.3 TIME_LIMIT 4.793% 900
176.8

0 168.32

30 31 10 360 1234 0.7 OPTIMAL 0.647% 196
161.4

9 160.45



Next steps (thesis)

Instances Classification:

○ Several instances were generated, yet they aren’t grouped according to its properties.

Exhaustive experiments with these instances.

Scenario generation and reduction:

○ Monte Carlo Simulation

○ Wasserstein distance

Simulation-optimization to check if confidence level is respected. 



Next steps (collaboration with Aalto)

Deterministic formulations for the WRSP.

○ Several formulations were developed. Exhaustive tests with them is possible.

Branch-price-and-cut formulation that allows to solve the MINLP joint chance-

constrained models.



Future studies

Testing others data classification and prediction methods with the joint 

chance-constrained model.

○ Neural networks, machine learning...

Simu-heuristics approaches for the problem.

Insertion of the regression optimization models in the joint chance-constrained 

model.

Closed-loop data-driven optimization under uncertainty.
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