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Abstract 

 

Valente, Thales Levi Azevedo; Gattass, Marcelo (Advisor). Santos, Paulo 

Ivson Netto Method for Automatic Detection of Stamps in Scanned 

Documents Using Deep Learning and Synthetic Data Generation by 

Instance Augmentation. Rio de Janeiro, 2022. 101p. Tese de Doutorado - 

Departamento de Informática, Pontifícia Universidade Católica do Rio de 

Janeiro. 

 

 

Scanned documents in business environments have replaced large volumes 

of papers. Authorized professionals use stamps to certify critical information in 

these documents. Many companies need to verify the adequate stamping of 

incoming and outgoing documents. In most inspection situations, people perform a 

visual inspection to identify stamps. Therefore, manual stamp checking is tiring, 

susceptible to errors, and inefficient in terms of time spent and expected results. 

Errors in manual checking for stamps can lead to fines from regulatory bodies, 

interruption of operations, and even compromise workflows and financial 

transactions. This work proposes two methods that combined can address this 

problem, by fully automating stamp detection in real-world scanned documents. 

The developed methods can handle datasets containing many small sample-sized 

types of stamps, multiples overlaps, different combinations per page, and missing 

data. The first method proposes a deep network architecture designed from the 

relationship between the problems identified in real-world stamps and the 

challenges and solutions of the object detection task pointed out in the literature. 

The second method proposes a novel instance augmentation pipeline of stamp 

datasets from real data to investigate whether it is possible to detect stamp types 

with insufficient samples. We evaluate the hyperparameters of the instance 

augmentation approach and the obtained results through a Deep Explainability 

method. We achieve state-of-the-art results for the stamp detection task by 

successfully combining these two methods, achieving 97.3% of precision and 

93.2% of recall. 

 

Keywords 

Stamp Detection; Deep Learning; Faster R-CNN; Scanned Documents; Instance 

Augmentation.  
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Resumo 
Valente, Thales Levi Azevedo; Gattass, Marcelo (Advisor). Santos, Paulo 

Ivson Netto Método para Detecção Automática de Carimbos em 

Documentos Escaneados Usando Deep Learning e Geração de Dados 

Sintéticos Através de Instance Augmentation. Rio de Janeiro, 2022. 

101p. Tese de Doutorado - Departamento de Informática, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

Documentos digitalizados em ambientes de negócios substituíram grandes 

volumes de papéis. Profissionais autorizados usam carimbos para certificar 

informações críticas nesses documentos. Muitas empresas precisam verificar o 

carimbo adequado de documentos de entrada e saída. Na maioria das situações de 

inspeção, as pessoas realizam inspeção visual para identificar carimbos. Assim 

sendo, a verificação manual de carimbos é cansativa, suscetível a erros e ineficiente 

em termos de tempo gasto e resultados esperados. Erros na verificação manual de 

carimbos podem gerar multas de órgãos reguladores, interrupção de operações e até 

mesmo comprometer fluxos de trabalho e transações financeiras. Este trabalho 

propõe dois métodos que combinados podem resolver esse problema, 

automatizando totalmente a detecção de carimbos em documentos digitalizados do 

mundo real. Os métodos desenvolvidos podem lidar com conjuntos de dados 

contendo muitos tipos de carimbos de tamanho de amostra pequena, com múltiplas 

sobreposições, combinações diferentes por página e dados ausentes. O primeiro 

método propõe uma arquitetura de rede profunda projetada a partir da relação entre 

os problemas identificados em carimbos do mundo real e os desafios e soluções da 

tarefa de detecção de objetos apontados na literatura. O segundo método propõe um 

novo pipeline de aumento de instâncias de conjuntos de dados de carimbos a partir 

de dados reais e investiga se é possível detectar tipos de carimbos com amostras 

insuficientes. Este trabalho avalia os hiperparâmetros da abordagem de aumento de 

instâncias e os resultados obtidos usando um método Deep Explainability. Foram 

alcançados resultados de última geração para a tarefa de detecção de carimbos 

combinando com sucesso esses dois métodos, alcançando 97.3% de precisão e 

93.2% de recall. 

 

Palavras-chaves  
Detecção de Carimbos; Aprendizagem Profunda; Faster R-CNN; 

Documentos Digitalizados; Aumento de Instâncias  
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1. Introduction 

Several sectors of society use stamps to authenticate documents, such as 

security, industrial, governmental, educational institutions, medical prescriptions, 

sales, bank checks, and postal mail [1-6]. The entities issue their documents through 

printing on solid paper, and stamps guarantee the authenticity of the content [1]. 

Nevertheless, it has been a common practice for these entities to migrate to 

paperless offices by digitizing documents, storing and maintaining them in large 

databases [2]. With digitization, institutions preserve their physical documents and 

provide information access, retrieval, and indexing services, including content 

extracted from stamps [1, 2, 7]. 

Stamps combine textual and graphical components [2-3]. Text components 

provide information such as location or who validated information. Graphic 

components are geometric shapes that usually vary depending on the type of stamp. 

Stamps can contain variable fields to manually fill in dynamic information, such as 

dates or signatures, and serve to authenticate the identity of an authorized 

professional or an organization [5]. Stamped official documents are often accepted 

without question, and the owner cannot deny the legal effects stated in the paper [5, 

8]. 

In most situations, people use their own eyes to identify stamps [4, 8]. The 

manual stamping checking is tiring, susceptible to errors, and inefficient time spent 

and expected results. Furthermore, some processes can take place in parallel and 

involve hundreds/thousands of pages that are immediately scanned. Errors in 

manual checking can lead to fines from regulatory bodies, interruption of 

operations, or even compromise of workflows and financial transactions. Often, 

there is no time or resources to perform manual, even predictive, checking [1]. 

Automatic stamp detection can reduce labor costs and alleviate all these presented 

problems. 

The literature presents several challenges to be overcome to perform 

automatic stamp detection. Stamps can have arbitrary orientation and any position 

within a page, which requires detection throughout the entire image [2-3, 5]. Stamps 

may have missing parts or overlapping areas with other elements on the page (text, 

manuscripts, or even other stamps) [1-2]. Stamps contain unpredictable patterns 

due to poor ink conditions, uneven surface contact, noise, or characteristics of the 

page itself [1-2, 4]. Thus, two impressions of the same stamp can look significantly 

different [5, 7]. Types of stamps can vary in color, shape, aspect ratio, size.
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For the past several years, object detectors based on Convolutional Neural 

Networks (CNN) have shown great results. The definition of the object-detection 

problem is to determine the location of the object in a given image (object location) 

and to which category each object belongs (object classification) [8]. Therefore, the 

stamp detection task can be reduced to the object detection task. So far, surveys 

found in the literature point to 2 main types of object detectors [9–12]. One-stage 

detectors give up accuracy to the detriment of lower consumption of computational 

resources. On the other way, two-stage detectors usually achieve better evaluation 

metrics, but require more computational power.  

Several techniques have been inserted into object-detection frameworks to 

reduce or even solve the effects of the challenges of this task. Dai et al. [12] 

developed the DCN (Deformable Convolutional Network), in which they improved 

convolutional networks by introducing the operations of deformable pooling and 

convolutions. These techniques increase the convolutional kernels' receptive field 

sampling and pooling operation through additional offsets automatically learned 

from the target task. Although this technique improves the object pose robustness, 

point of view, non-rigid deformations, occlusion, and overlapping [12-13], we 

found few works that explored this [8, 14–18]. 

Another module not much explored in the literature on object detection tasks 

is the Feature Pyramid Networks (FPN) [18]. FPN produces and combines feature 

maps at different hierarchical levels and spatial resolutions in-network. In other 

words, this module creates a rich semantic pyramid, with features at various scales 

and hierarchical levels, from a single input image scale and a single convolutional 

backbone. Thus, this technique circumvents the bias of high computational power 

in multi-scale image analysis, since at first, each image scale would have to be 

processed by the neural architecture backbone, increasing resource consumption. 

The literature highlights that FPN handles problems involving multi-scale, small 

objects or objects of varying sizes as well [12, 19]. 

Despite the improvements in neural networks and the application of 

knowledge transfer techniques from pre-trained weights, the lack of representative 

data is still a problem that negatively affects many researchers that use deep 

learning [12, 20]. A solution found in the literature is the data augmentation of 

images. However, Ribani & Marengoni [20] point out that although several 

promising image augmentation techniques have been developed in the literature, 

increasing data with very low representativeness can lead to overfitting. They also 

point out that randomly increasing data can intensify intrinsic imbalance and that 

defining which amounts are satisfactory is a challenge.  

Recently, instance augmentation research has been developed as another 

tool to address the lack of data [22-23]. Instance augmentation consists of 
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synthetically generating data from instances of objects of interest and real images. 

Changes that occur locally are new instances of the objects, which are “pasted” at 

the pixel level. Thus, instance augmentation provides a greater degree of fidelity at 

the global and local levels of the data. Instance augmentation can be wholly targeted 

to specific types of instances, taking new training data from a few images to a 

combinatorial level. In other words, with a single image containing a single object, 

it is possible to generate N new objects in a training image using instance 

segmentation. On the other hand, to create N objects with data augmentation, 

generating N images and changing the entire image is necessary. 

In addition to a reasonable amount of data, computational power is another 

prerequisite for developing solutions based on deep learning. The available 

resources and the number of experiments directly affect the time needed to develop 

a solution. Nevertheless, Deep learning experiments usually have a high 

computational and time cost.  In this sense, a concrete way to assess how a model 

can be improved or what effects additional training data would have been to use 

Deep Explainability techniques. Deep Explainability can improve debugging 

processes of models by using tools to recognize and understand failure cases or 

emphasize discovering problems that limit learning and inferring networks [23]. 

For example, visualization techniques in the space of features can help gain insights 

into changes in the model's behavior and how its predictions are affected in 

developing and testing a solution [24]. In this research, we use Deep Explainability 

to guide the performance of experiments using instance augmentation. 

Some state-of-the-art works found in the literature use FPN and DCN for 

detection tasks in different domains [8,14-15,17]. However, these jobs typically 

perform extensive testing to find the most suitable architecture, do not analyze 

failure cases, and do not exploit data augmentation. This research designs and 

develops a deep learning-based solution for stamp detection that uses FPN and 

DCN based on the characteristics of the data used. Model failure cases can be 

evaluated using visualization techniques from Deep Explainability. This 

assessment guides a proposed solution to work around the previously observed 

failure cases based on instance augmentation. The research was successful in all 

these steps, and the lessons learned and presented can be used in other object 

detection problems. 

1.1. Objective 

This section presents the general and specific objectives to be achieved 

during the development of this work. 
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1.1.1. General Objective 

The general objective of this work is to present a new computational method 

for the automatic detection of stamps in images of digitized documents, investigate 

which types of stamps are more difficult in detecting and propose a new method for 

data augmentation to solve the most difficult cases found. 

1.1.2. Specific Objectives 

To achieve the intended general objective, it was necessary to fulfill the 

following specific objectives: 

• Design the network architecture based on the advances found in the 

Deep Learning and Object Detection literature, but taking into 

account the limitations of computational resources and time to run the 

experiments; 

• Conduct experiments on the defined architecture evaluating the model 

through evaluation metrics commonly used in the literature; 

• Investigate which types of stamps the final model had more difficulty 

detecting through a Deep Explainability method. 

• Design and apply an instance augmentation algorithm over the types 

of stamps selected by the Deep Explainability to generate synthetic 

data from real pages and stamps. Also, verify if data augmentation can 

help to improve the detection of these types of stamps. 

1.2. Contributions 

We propose a state-of-the-art computational method capable of fully 

automating the detection of stamps in digitized documents, using a convolutional 

framework based on two stages for object detection. We also explore the new 

version of deformable modules proposed by Zhu et al. [25] and the use of FPN, 

modules that, as far as we know, have never been used for the stamp detection task.  

Through our method, we design a new neural network oriented to the 

difficulties found in stamps detection task problem. The method evaluated 469 

stamps distributed in 251 types. We only use 80 types of stamps for training. Still, 

we achieved 97.3% precision and 93.2% recall. We showed that our network could 

generalize knowledge and detect more than 3x of the types of stamps present in the 

training set. 

Among other points, this work presents the following contributions: 
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• We illustrate a path that replaces the “brute force testing” of 

architectures to solve object detection tasks. The network architecture 

design is guided by the relationship between the problems identified 

in our dataset and the challenges and solutions of the object detection 

task pointed out in the literature. With the strategy, we significantly 

minimized the amount of extensive testing; 

• As far as we know, this work is the first to propose a model combining 

Faster Region-Based Convolutional Neural Network (Faster R-CNN), 

DCN version 2, Residual Networks (Resnet) as resource extractor 

backbone and pyramidal network of features for the stamp detection 

task. FPN has been added to Faster R-CNN to use features in the top 

layers as well as in the shallow layers for detecting stamps of different 

sizes in scanned document images. 

• We propose an innovative greedy strategy for data splitting 

considering the distribution of stamps and their types globally (across 

the dataset) and locally (per document page image), which can also be 

helpful for other problems involving detecting multiple object types 

in images; 

• As far as we know, this work is the first to evaluate results obtained 

by the network through a Deep Explainability method that combines 

network feature extraction and dimensionality reduction techniques to 

generate a 3D visualization; 

• We propose a method for instance augmentation of stamp datasets 

from real data to investigate whether it is possible to detect stamp 

types with insufficient number of samples.  

• We achieved state-of-the-art results for the stamp detection task 

through the successful combination of: (1) classic and novel Data 

Engineering methods, (2) a novel Object Detection method that 

combine the recent advances of the Deep Learning literature and (3) 

a new Deep Explainability method used to debug the network and 

guide the hyperparameters selection. 

1.3. Work Organization 

In addition to this introductory chapter, there are 6 more chapters, which 

complete this thesis and are structured as follows: 

Chapter 2 presents work related to the detection of stamps and logos, which 

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA



19 

 

are similar in nature. This chapter also presents works that involve Object 

Detection, FPN networks and deformable networks. 

Chapter 3 presents theoretical review underlying this work to familiarize the 

reader with the main concepts used to build the method. 

Chapter 4 shows all the stages of development of this research, starting with 

the acquisition of documents, followed by the method developed to detect stamps 

in documents. We describe general information about the dataset, its construction 

process, challenges, our data analysis performed to guide the network design, the 

greedy strategy proposed for dividing the dataset, the performed experiments and 

the evaluation metrics. This chapter also presents the proposed method for 

generating synthetic stamp data. 

Chapter 5 presents the results achieved by applying the proposed method 

our dataset, the discussions, and some case studies of success and failure. 

Chapter 6 discusses some case studies of success and failure obtained by the 

proposed methods. 

In Chapter 7, the conclusions inferred about the methods are presented, 

together with the suggested future work to improve the research. 

Finally, the Appendix 1 briefly describes the concepts and nomenclature 

employed in this work in relation to neural networks and Appendix 2 presents extra 

experiments performed in this work.
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2. Related Works 

This chapter presents and briefly describes some of the works found in the 

literature related to the task of detecting stamps in documents. Since we found few 

works related to the problem of this research, we also investigated some works with 

the theme of stamp recognition and logo detection in images to add insights from 

these studies. Logos are graphic objects that have many properties in common with 

stamps. We also present works that used FPN networks of deformable modules to 

solve other tasks and that showed promising results. 

2.1. Stamp Detection 

Usually, computational techniques aimed at detecting and recognizing 

stamps involve two significant areas of computational research: image processing 

and machine learning. We can find research involving template matching, image 

registration, morphological operations such as skeletonization and thinning of 

binary images, invariant transformations based on edges, color space 

transformation, hough transform, grouping, connected components, extraction of 

geometric features, and classification using Support Vector Machines (SVM)  [1–

3, 5, 27]. 

Chen [26] conducted one of the first survey in stamp recognition. The work 

was limited to specific regions of the image and considered only circular and 

rectangular shapes, stamps without imperfections, 4 types, and 4 orientations. The 

detection step was performed manually. In Nourbakhsh et al. [5] the authors 

considered only one stamp class, with specific sizes, dimensions, font, and style, 

only 4 specific orientations. Also, they did not consider cases of stamps overlapping 

with other stamps. They achieved 82% accuracy when detecting the presence of 

stamps in 1,200 images. 

Roy et al. [4] the authors considered 12 types of stamps and circular and 

rectangular shapes. They did not assess how much they achieved in stamp detection 

task, but they did get 92.03% accuracy for the stamp recognition task on 127 

documents. Another work of Roy et al. [3] considered 12 types of stamps with 

circular or rectangular shapes. The method achieved 92.42% accuracy for 

recognizing stamps on 530 documents. The detection step achieved 100% precision 

at the cost of a very low recall, i.e., 20%. Their method is based on handcraft low 

features. 

The authors Micenková & Beusekom [1] evaluated their stamp detection 

method at two different image resolutions: 200 and 300 dots per inch (DPI). Its best 

result was achieved at 300 DPI: 83.4% recall and 83.8% accuracy on 320 images. 
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In this evaluation, they considered a single stamp class, black and without the 

presence of overlapping. When considering overlapping cases, his method achieved 

69% accuracy and 68% recall on 52 stamps. 

Concerning works that used deep learning, in Sharma et al. [2] the authors 

evaluated the use of one-stage and two-stage object detection frameworks. For the 

first type, they evaluated the application of the Yolov2 network. For the second 

type, they evaluated the application of the Faster R-CNN network with three 

different backbones (VGG16, VGG_M and ZF), separately. The best result was 

using the Faster R-CNN, achieving 89.2% average precision (AP) and 89.6% 

accuracy in detecting stamps in 60 test images. In Jun et al. [27] the authors 

proposed the use of Fast Region-Based Convolutional Neural Network (Fast R-

CNN) to detect elements in documents. Their method achieved 97% AP metric on 

53 pages of documents. 

2.2. Logo Detection 

Logo detection in real-world scenes has several similarities to the stamp 

detection problem. Logos have well-defined geometric shapes, may or may not 

have strings, and usually do not have well-defined locations and quantities in the 

image. However, logos usually have more textures and colors, and overlapping 

between them is rarer since they are usually associated with another object in the 

image to which they belong. Nevertheless, some conclusions obtained in this 

research can be used for the stamp detection problem. 

Palecek [28] applied, in different logo datasets, two-stage object detection 

frameworks such as Faster R-CNN and Mask R-CNN, and a one-stage object 

detection framework  (RetinaNet). Their final evaluation obtained better results 

using object detection frameworks based on two stages than frameworks based on 

one stage and segmentation networks. Song & Kurniawati [29] also compared the 

same types of object detection frameworks (two-stage and one-stage). They also 

evaluated a training base composition with only synthetic data, real data, and 

synthetic data. The best results were achieved using frameworks based on two 

stages in all experiments. Regarding the composition of the training base, the best 

result was composed using real and synthetic data. 

Bhunia et al. [30] evaluated the application of several deep network 

architectures in logo detection such as Yolo, Faster-RCNN, U-Net, SiameseFCN, 

CoFCN, SG-One. They observed that traditional frameworks have limited 

performance with little data in the training base, even using pre-trained weights, 

tending to overfit a few times. From there, they proposed a new architecture based 

on multi-scale feature analysis and residual connections, like networks such as FPN 

and ResNet. They also evaluated the performance of networks in a more open 
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scenario, that is, where the training set and the test set had utterly different samples 

and surpassed the results of previous architectures.  

Bhunia et al. [30] also evaluated the performance of networks in a more 

open scenario, that is, where the training set and the test set had utterly different 

samples. Although his method outperforms previous work in this more challenging 

scenario, his work achieved 89.2% AP in logo detection. Other limitations pointed 

out by the authors were problems with the imbalance between background and 

foreground information and detecting small size logos. Guo et al. [31] also had 

problems with small size logos in their work, although he achieved better results 

after applying data augmentation techniques and Faster R-CNN network 

architecture. 

2.3. FPN and Deformable Modules 

Works that combine FPN with deformable modules are not yet typical in 

any field. However, we found some works in different areas that used this 

combination. Overall, FPNs bring the advantage of multiscale hierarchical feature 

analysis, and deformable modules bring greater robustness to geometric 

transformations, overlap, and occlusion. 

Ren et al. [13] proposed a method based on Faster R-CNN combining 

multiscale feature analysis and deformable modules to perform object detection in 

remote sensing optical images and achieved better results than traditional 

architectures. Shi et al. [16] evaluated different architectures of deep networks for 

detecting marine organisms in videos. The authors concluded that the use of FPN 

brings much better results than object detectors that do not use it. They also point 

out that DCN has the advantage of making the model invariant to geometric 

transformations since the network generalizes the learning about these 

transformations based on the data itself. 

In their studies, Deng et al. [14] also found better results when combining 

FPN with deformable modules in their visual classification task of concrete cracks. 

Finally, Han et al. [6] compared one-stage and two-stage-based frameworks and 

FPN and DCN to analyze of airport remote sensing images. They got better results 

combining a 2-stage framework with FPN and DCN. 

2.4. Conclusions obtained from related work 

In general, works aimed at detecting stamps are difficult to compare. 

Authors usually present the results achieved in metrics but provide what they 

achieved in the number of images, not in numbers of stamps. The works usually use 

private data and, even in cases where they used the same database, the process of 
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dividing the data into training, validation, and testing groups (proportion and 

specific instances for each group) are different. We also have examples of works 

with minimal scope. 

The works focused on the other themes, logo detection and the use of FPN 

networks and deformable modules agree with the studies of Zhao et al. [9], Zou et 

al. [10] and Liu et al. [12], extensive object detection surveys. Object detection 

frameworks usually achieve better metrics, feature analysis at a hierarchical and 

multiscale level brings excellent gains, and the use of deformable modules brings 

greater robustness when the problem presents overlapping and geometric 

variations. Finally, we also verified that the literature points out significant gains in 

using synthetic data with real data in the training base
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3. Theoretical Background 

This chapter presents a theoretical review of the main topics related to 

artificial neural networks, deep explainability and image processing that are 

employed throughout this thesis. Appendix 1 contains an additional overview of 

more foundational concepts. 

3.1. Review of Detection and Classification Deep Networks 

This section introduces the main concepts about neural networks employed 

in our framework for stamp detection. 

3.1.1. Multi-Layer Perceptron 

In multilayer neural networks, the neurons are arranged in a layered fashion, 

in which a group of hidden layers separates the input and output layers [32]. 

Multilayer perceptron (MLP) is a fully connected multilayer neural network in its 

general form. A neuron in any network layer connects to all the neurons (nodes) in 

the previous layer. Signal flow through the network progresses in a forward 

direction, from left to right and on a layer-by-layer basis. The following three points 

highlight the basic features of MLP [33]: 

• The model of each neuron in the network includes a nonlinear 

activation function that is differentiable; 

• The network contains one or more layers that are hidden from both 

the input and output nodes; 

• The network exhibits a high degree of connectivity, which is 

determined by the synaptic weights of the network. 

The output neurons constitute the output layer of the network. The 

remaining neurons constitute hidden layers of the network. Thus, the hidden units 

are not part of the output or input of the network—hence their designation as 

“hidden.” The first hidden layer is fed from the input layer made up of sensory units 

(source nodes); the resulting outputs of the first hidden layer are in turn applied to 

the next hidden layer, and so on for the rest of the network [33].  

However, if the activation functions of all the hidden units in a network are 

linear, then for any such network, we can always find an equivalent network without 

hidden units. This follows from the fact that the composition of successive linear 

transformations is itself a linear transformation [34]. Equation 1 describes the 

output of a layer. 
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𝑦𝑙 =  𝜑(𝑊𝑙𝑦𝑙−1 + 𝑏𝑙) (1) 

Where 𝑦𝑙 is the output vector, 𝑊𝑙  the weights matrix of each neuron pair of 

layer l and l-1, and 𝑏𝑙  the bias term vector of each neuron in layer l. The Figure 1 

illustrates an architectural graph of an MLP.  

 

Figure 1: Architectural graph of a MLP. 

3.1.2. Traditional and Deformable Convolution Networks 

CNN are deep supervised machine learning algorithms. Two significant 

advantages can be highlighted from this deep network model: (1) excellent learning 

capacity, that is, making strong and mainly correct assumptions about the nature of 

the data and (2) being easy to train compared to neural networks with a similar 

number of layers [35]. CNN are applied in many problems, including extensive data 

analysis, computer vision and image analysis, speech recognition, natural language 

processing, and recommendation systems.  

CNN forgoes designing and extracting a handcrafted set of features and, 

instead, feeds data directly into the network. These networks mainly consist of 

many convolutional layers, interspersed with pooling layers that reduce the 

dimensionality of the input signal, and usually a few fully connected layers and a 

final classification layer. The convolutional layers can be thought of as a feature 

extraction subsystem, not designed or selected by algorithm developers but learned 

explicitly for the task at hand during the training process [36].  

Neurons that belong to the convolutional and completely connected layers 

are often combined with a bias and an activation function. The activation function 

of the neurons presented at the end of the completely connected layer can vary 

according to the type of problem in which the network is applied. However, the relu 

is the most used activation function in hidden layers since Krizhevsky et al. [35] 

proved that its mathematical simplicity allows the stochastic gradient descent to 
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converge up to 6 times faster compared to the sigmoid and tanh functions.   

Each convolutional layer consists of groups of 1D (for signals or sequences), 

2D (for images or spectrograms), or 3D (for videos or volumetric images) neurons 

called kernels. Sets of kernels in the convolutional kernel form filters, which extract 

characteristics whose internal values are adjustable synaptic weights. In other 

words, the convolutional filters are trainable features extractors. Signal units that 

pass from one layer to another are organized on feature maps.  

The filters define a small area (3x3, 5x5, 7x7 pixels). Each unit is connected 

to local patches in feature maps of the previous layer through the convolutional 

filters and is then passed through a nonlinearity (activation function). All units in a 

feature map share the same convolutional filter, and different feature maps in a layer 

use different convolutional filters. The shared filters reduce the number of 

connections, reducing training time and chances of overfitting. These factors speed 

up the learning and reduce the memory requirements for the network. Figure 2 

illustrates how convolution occurs in an image. 

DCNs are designed to handle critical challenges in visual recognition as 

geometric variations or model geometric transformations in object scale, pose, 

viewpoint, and part deformation [12]. By adding 2D offsets to the regular 

convolution grid in the standard convolution, deformable convolution sample 

features from flexible locations instead of fixed locations, allowing for the free 

deformation of the sampling grid. The spatial sampling locations in deformable 

convolution modules are augmented with additional offsets, learned from data, and 

driven by the target task [14].  

 

Figure 2: Convolution layer illustration. Source: [37]. 

 

A standard convolution consists of two steps: (1) Sampling using a regular 

grid 𝑅 over the input feature map X; and (2) summation of sampled values weighted 

by W.  The grid 𝑅 defines the convolution filter by size and dilation. For example, 

𝑅 = {(−1,1), (−1,0), . . . , (0,1), (1,1)} defines a 3×3 filter with dilation 1. We can 
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derive the standard convolution output of each position p on the output feature map 

Y, according to the following formula: 

 

𝑌(𝑝) = ∑ 𝑤𝑘

𝑘

𝑘=1

∙  𝑥(𝑝 + 𝑝𝑘), (2) 

In Zhu et al. [26], deformable convolution was defined by augmenting the 

regular grid 𝑅 with 2D offsets, where given a convolutional filter of K sampling 

locations, 𝑤𝑘 and 𝑝𝑘 denote the weight and pre-specified offset for the k-th 

location, respectively. For example, K = 9 and 𝑝𝑘 ∈ {(−1, −1), (−1, 0), . . . , (1, 

1)} defines a 3 × 3 convolutional filter of dilation 1. Let x(p) and y(p) denote 

the features at location p from the input feature maps x and output feature 

maps y, respectively. The modulated deformable convolution can then be 

expressed as: 

 

𝑌(𝑝) = ∑ 𝑤𝑘

𝑘

𝑘=1

∙  𝑥(𝑝 + 𝑝𝑘  +  ∆𝑝𝑘) ∙ ∆𝑚𝑘 , (3) 

where ∆𝑝𝑘 and ∆𝑚𝑘 are the learnable offset and modulation scalar for the 

k-th location, respectively. The modulation scalar ∆𝑚𝑘 lies in the range [0, 1], while 

∆𝑝𝑘 is a real number with unconstrained range.  

Figure 3 illustrates the difference between regular and deformable 

convolutions: the former's sample matrix is fixed and regular, whereas the latter's 

is unfixed and malleable. As a result, the receptive field used to perform dot product 

with the kernel is regular for the former, while for the latter, it is irregular. It is 

worth noting that the deformable convolution's sample matrix offset is chosen by 

an algorithm that can better learn the geometrical properties of the objects to be 

recognized. 

 

Figure 3: Deformable convolution layer illustration. Adapted from [14]. 
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3.1.3. Residual Networks 

In a CNN, the first layers represent low-level local features, such as edges, 

while deeper layers capture more complex and specific shapes [38]. The researchers 

believed that deeper networks should provide better results. However, experiments 

showed that the network performance did not behave as expected after adding a 

certain number of layers. The backpropagated error disappearance in higher levels 

of the network led some neurons to lose the ability to learn due to the lack of 

updating their connections. Repeated multiplication of small numbers made the 

backpropagated error infinitely small.  

The researchers have experimentally proven that adding layers made the 

method a complex optimization problem: when the model introduces more 

parameters, it becomes more challenging to train the network [38]. They observed 

that when the depth of the network increases, the precision reaches a saturation 

point and then degrades quickly. Unexpectedly, this degradation was not caused by 

overfitting, as adding more layers led to a more significant error even in the network 

training stage [39]. 

In 2015, He et al. [40] proposed the Resnet, a CNN developed by Microsoft 

and submitted to the Large-Scale Visual Recognition Challenge 2015 an object 

classification competition. The Resnet authors also proved that (1) extremely deep 

Resnets are easy to optimize, but “simple” counterpart networks (which stack 

layers) exhibit a higher training error when their depth increases; (2) Resnets can 

easily enjoy precision gains from increasing depth, producing results substantially 

better than previous networks. 

Resnet consists of stacked residual blocks linked via shortcut connections. 

Feedforward neural networks with "shortcut connections" can implement the 

formulation of F(x) + x. (Figure 4). Connections that bypass one or more layers are 

known as shortcut connections. The shortcut connections merely conduct identity 

mapping; their outputs are appended to the stacked layers' outputs. Shortcut identity 

links do not add any more parameters or computational complexity. Stocasthic 

gradient descent can still train the complete network end-to-end [41]. 

 

Figure 4: Residual learning: a building block. Source: [41]. 

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA



29 

 

3.1.4. Feature Pyramid Networks 

FPN is designed to improve the detection of multiscale objects by fusing the 

output of each layer of the backbone network in a top-to-down manner. It takes a 

single-scale image of arbitrary size as input and outputs proportionally sized feature 

maps at multiple levels in a fully convolutional fashion. Features are computed on 

each image scale independently, enabling a model to detect objects across an 

extensive range of scales. This process is independent of the backbone 

convolutional architectures [16-17, 19]. 

FPN combines the upper layer (used to acquire low-resolution but powerful 

semantical features) and the lower layer (used to acquire high-resolution but weak 

semantical features) through lateral connections to improve feature extraction 

capability.  Specifically, the feature pyramid architecture is composed of five 

feature maps denoted as {P2, P3, P4, P5, P6}, among which P2, P3, P4, and P5 are 

calculated by feature maps {C2, C3, C4, C5} with the lateral connection, 

respectively, and the max pooling operation of P5 generates P6 [8, 15].  

The overall network framework consists of a bottom-up pathway, a top-

down pathway, and lateral connections, as shown in Figure 5. The Bottom-up 

pathway is the feed-forward computation of the backbone ConvNet, which 

computes a feature hierarchy consisting of feature maps at several scales with a 

scaling step of 2 [18]. On the top-down pathway, the lateral connections merge 

feature maps by element-wise addition from the bottom-up pathway. The coarser-

resolution feature maps are upsampled by a factor of 2 (using nearest neighbor 

upsampling for simplicity). Convolutions 1x1 and 3x3 are applied in the ways. 

 

Figure 5: Schematic of the architecture from feature pyramid network (FPN). 

Adapted from: [14]. 

3.1.5. Faster R-CNN 

We can define a spatial location on computational vision as the smallest 

rectangle aligned to the axis that entirely involves an object. A good object detector 
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must be able to identify multiples and partially occluded objects in arbitrary scenes, 

be invariable to the scale, point of view, and orientation of the object, and on several 

locations. Object detection is a type of supervised learning problem that consists of 

predicting the class of one or more objects in the same image and delimiting the 

fairer bounding box that encompasses them.  

The object detection task has been by an increasing amount of attraction due 

to three main fronts: application, data, and technological developments [10, 12, 32, 

52–54]. Literature divides the ConvNets based approaches to object detection into 

two categories: two-stage detection framework and one-stage detection framework 

[10, 12, 32, 54]. The two-stage detection framework is slower in more accuracy, 

while a phase is faster but less accurate [9, 11, 54].  

Faster R-CNN is currently one of the usual representative methods in object 

detection [15]. This object detection framework is the first two-stage end-to-end 

unified deep learning detector that enables nearly cost-free region proposals. It 

shares convolutional features maps unifying Region Proposal Network (RPN) and 

Fast R-CNN algorithms, generating marginal cost for computing region proposals 

[45].  

This framework can be divided into four main parts: the backbone, Region 

Proposal Network (RPN), Region of Interest (ROI) Pooling layer, and a Fully-

Connected (FC) layer (Figure 6). The backbone serves as a feature extractor, 

extracting the semantic features from the input image and producing a feature map 

for the subsequent steps [15]. The backbone can be any convolutional network, and 

it processes the whole image with several convolutional and max-pooling layers to 

produce a convolutional feature map. 

 

Figure 6: Schematic of the architecture from Faster R-CNN. 

 

 The goal of RPN is to produce possible object regions called object 

proposals. RPN uses structs called anchors. Anchors are references boxes for 

encoding proposals. Let (x,y,w,h) and (𝑑𝑥,𝑑𝑦, 𝑑𝑤, 𝑑ℎ) be the bounding boxes of a 

proposal and an anchor, respectively. A proposal is parameterized as (𝑑𝑥, 
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𝑑𝑦, 𝑑𝑤, 𝑑ℎ) relative to an anchor, where (𝑑𝑥, 𝑑𝑦) is the displacement vector from 

anchor center (𝑥𝑎,𝑦𝑎) to proposal center (x,y) divided by anchor width and weight, 

respectively. The proposal's scaling factors in width and height concerning the 

anchors are (𝑑𝑥, 𝑑𝑦). The Figure 7 illustrates this relative encoding of proposal. 

RPN generates proposals via anchors by placing nine anchors centered at 

each point of the convolutional feature map. Three aspect ratios and three scales are 

used to recognize objects with multiple dimensions and add scaling variance, 

resulting in these nine anchors. The RPN predicts one proposal concerning each 

anchor based on 6 parameters to describe it: (𝑑𝑥,𝑑𝑦, 𝑑𝑤, 𝑑ℎ) relative to bounding 

box parameters and (𝑑𝑜𝑏𝑗,𝑑𝑏𝑔) relative to object/background class probabilities. 

Thus, nine proposals relative to these nine anchors centered at each point are 

predicted by giving 9x4-d relative box parameters and 9x2-d class probabilities 

(Figure 8). 

 

Figure 7: Relative encoding of the proposal. 

 

 

Figure 8: Illustration of RPN anchors parametrizations. 

 

After explaining the concept of anchors, we can describe the overview of 

the RPN algorithm. Firstly, RPN receives as input the convolutional feature map 
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computed by the backbone. Then, RPN predicts nine proposals relative to 9 anchors 

for all points of the convolutional feature map. Finally, it generates 36 and 18 

channels for box parameters and class probabilities, respectively. The final object 

proposals are generated for further processing by suppressing non-maximum 

proposals. 

The RPN architecture consists of three convolutional layers, as illustrated 

in Figure 9. The intermediate layer converts the input convolutional feature map to 

the one specifically for proposal generation. The regression layer predicts the box 

parameters of all proposals. Finally, the classification layer predicts the 

object/background probabilities of all proposals. 

 

Figure 9: RPN general architecture. 

 

The training overview for RPN is following:  

• Assign a label to each anchor. 

o Use Intersection over Union (IoU) for measuring box overlap to 

define the labels. 

o Positive anchors have IoU > 0.7 with any object. 

o Negative anchors have IoU < 0.3 for all ground-truth boxes. 

• Form a mini batch consisting of 256 anchors. 

o 128 positive (object) anchors. 

o 128 negative (background) anchors. 

• Minimize the defined loss function defined for Equation 4. 

o Optimization: stochastic gradient descent 
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 𝐿(𝑑(𝑖), 𝑝(𝑖)) = ∑𝑝 (𝑜𝑏𝑗)
𝑖

𝑖 

𝑥 𝐿𝑟𝑒𝑔(𝑑(𝑖),  𝑑 (𝑖))  + ∑𝐿𝑐𝑙𝑠

𝑖 

(𝑝(𝑖), 𝑝 (𝑖))  (4) 

where  𝑑 (𝑖) is the box parameters of the ground-truth box associated with 𝑖𝑡ℎ 

anchor, 𝑝 (𝑖) is the ground-truth class probability of the 𝑖𝑡ℎ anchor, (𝑑(𝑖), 𝑝(𝑖)) is the 

proposal parameters predicted by RPN via anchors, and 𝐿(. ) evaluates the loss of 

classification and regression of the parameters. 

After generating object proposals, we will go through how to use ROI 

pooling to extract the feature map of each proposal, which consists of three steps: 

ROI clipping, ROI division, and max pooling. The convolutional feature map is 

cropped according to the object proposal box using ROI clipping. The ROI feature 

clip is then divided into 7x7 grids using ROI division. To create a proposed feature 

map, max pooling is done to each channel of the grid. We acquire the 7x7x512 

convolutional feature map for an item proposal, which is flattened to a feature 

vector. 

Finally, like RPN, the FC layer has the objective of the predict regression 

offset and class probabilities for every proposal. It reduces feature dimensions to 

4096 by using two hidden layers. Then, there are two wholly linked branches for 

estimating regression offset and class probabilities. The regression branch predicts 

N+1 classes target boxes, each for a class label, including a background label. For 

example, if the number of classes is 2, the regression branch predicts 12 regression 

offsets: 8 for the classes and 4 for the background. The classification branch 

predicts the class probabilities for all class labels. 

The training overview for Faster R-CNN is following:  

• Select an image with its labels from the dataset 

• Flow through Faster R-CNN network to obtain: 

o RPN:  regression offset map and classification map (background or 

foreground) 

o FC Layer: object regression offset and class probabilities 

• Computer prediction loss for updating parameters 

o RPN: convolutional kernels using Equation 4 

o FC layer: weight matrices using Equation 5 
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 𝐿(𝑑(𝑖), 𝑝(𝑖)) = ∑(1.0 − 𝑝 (𝑏𝑔)
(𝑖) )

𝑖 

𝑥 𝐿𝑟𝑒𝑔(𝑑(𝑖),  𝑑 (𝑖))  

+  ∑𝐿𝑐𝑙𝑠

𝑖 

(𝑝(𝑖), 𝑝 (𝑖))  
(5) 

3.1.6. Knowledge Transfer 

The literature shows that transferring knowledge obtained by one network 

to another improves the performance of the latter. This improvement happens if the 

networks are designed and trained for different tasks. This knowledge transfer 

consists of getting the weights of neurons adjusted for a previous task and training 

on top of them to adjust the network to another task. Yosinski et al. [42] presents 

that even if this transfer occurs between training for different tasks, the results are 

still better than using random weights.  

In addition, to further improve the results, these weights can be readjusted 

in the training of the new task. These new settings allow the network to better adapt 

to the new input patterns. Two strategies were developed to transfer knowledge: (a) 

fine-tuning and (b) transfer learning. The first strategy consists of using the 

parameters of the pre-trained network as initial parameters for training with a new 

dataset rather than using random parameters. The second strategy consists of 

freezing a defined number of layers of the network in the training process.  

Deciding which techniques to transfer knowledge depends primarily on the 

difference between the nature of the pre-training data and the nature of the objective 

task data or the goal task. For example, transfer learning may be a good idea when 

transferring the style from one image to another image [46]. However, if the target 

dataset is small and the number of parameters is huge, fine-tuning the whole 

network may result in overfitting [32, 52]. Alternatively, the last few layers of the 

deep network can be fine-tuned while freezing the parameters of the remaining 

initial layers to their pre-trained values [32, 57, 58]. 

The literature encouraged us to use knowledge transfer to initialize the 

network weights. For example, Akçay et al. [49], in their task of detecting firearms 

in X-ray images, freezes the first layers and fine-tunes in the other layers of an 

AlexNet based network pre-trained with natural objects and achieved superior 

results to previous work. The experiments of Tajbakhsh et al. [48] considered 

several medical imaging applications and segmentation from three imaging 

specialties (radiology, cardiology, and gastroenterology). The authors assessed the 

performance of deep CNNs trained from scratch to CNNs that had been fine-tuned 

layer by layer and have proven that fine-tuning in a deep network is equal to or 

greater than training a network from scratch with images of the exact nature.  

The latter brings us greater motivation since the difference between medical 
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images and natural objects is proportional to our dataset with scanned documents 

and natural objects. Finally, these bibliographies also show us no definitive rule on 

what layers should be used in transfer learning or fine-tuning, even though it 

provides intuition. 

 

3.2. Deep Explainability 

Researchers and model developers have a strong understanding of deep 

learning techniques and a well-developed intuition surrounding model building. 

Their knowledge expedites key decisions in identifying the which types of models 

perform best on which types of data. These individuals wield mastery over models, 

e.g., knowing how to vary hyperparameters in the right fashion to achieve better 

performance. Their expertise helps them make quick judgments about which sorts 

of models work well with various types of data. These people have a knowledge of 

models, for example, understanding how to modify hyperparameters in the proper 

way to improve performance. 

However, the internal complexity and nonlinear structure of deep neural 

networks do the underlying decision-making processes for why these models are 

achieving such performance are challenging and sometimes mystifying to interpret 

[50]. It makes them opaque and black box models with an accuracy and 

interpretability tradeoff, i.e., more performing models are less interpretable [51]. 

Due deep networks has a black-box nature, researchers are developing methods 

focused into “open them” to produce better explanations and “see through the 

black-box” using phrases such as “opening and peering through the black-box”, 

“transparency,” and “interpretable neural networks” [50]. 

Because the underlying functioning of the deep networks is not evident, it 

becomes difficult to justify the outcomes of such models. It is necessary to bring in 

the explainable AI techniques to understand and explain such methods working and 

processes [35, 36]. As deep learning spreads across domains, it is of paramount 

importance that we equip users of deep learning with tools for understanding when 

a model works correctly, when it fails, and ultimately how to improve its 

performance [50].  

In general, systems are interpretable if humans understand and interpret 

their working mechanism and decision-making process by asking questions like 

why the system made a particular prediction? Why answer the interpretability 

aspect, and how justifies how the system came up to a specific decision answer the 

explainability part. ‘‘Interpretability is the degree to which a human can understand 

the cause of a decision and can consistently predict the model’s results’’. Deep 

neural nets lack interpretability [35, 37]. 
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Unfortunately, there is no universally formalized and agreed upon definition 

for explainability and interpretability in deep learning, which makes classifying and 

qualifying interpretations and explanations troublesome [50]. However, the 

literature often uses the keywords interpretability and explainability referring to 

similar concepts [24-25, 34]. Some works consider them to be concepts pointing in 

the same directions and as being interchangeable [33, 36]. For these reasons and for 

the sake of simplification, the minor variations between those terminologies are not 

highlighted in this study. We consider interpretability to be the foundation of 

explainability, and we use the terms interpretability, explainability, and 

understandability interchangeably. 

The system’s explanation should be human interpretable and 

understandable, mapping the human mental model to build trust, transparency, 

reliability for success and failure, and robust. Gaining meaningful knowledge and 

understanding of how and why the model arrived at a particular decision or outcome 

is crucial in model explainability, making it one of the important evaluation metrics 

[52].  

Explainability can facilitate the understanding of various aspects of a model, 

leading to insights that can be utilized by various stakeholders. Data scientists can 

be benefited when debugging a model or when looking for ways to improve 

performance. And, model risk analysts can challenge the model, in order to check 

for robustness and approving for deployment [24]. An explainable system can make 

potential failures easier to detect (with the help of domain knowledge).  it can help 

engineers pinpoint the root cause and provide a fix accordingly. Explainability does 

not make a model more reliable or its performance better, but it is an important part 

of formulation of a highly reliable system [53]. 

Belle & Papantonis [24] explain that through explainability developed 

approaches can help contribute to the following critical concerns that arise when 

deploying a product or taking decisions based on automated predictions. The 

authors list the following items:  

• Correctness: Are we confident all and only the variables of interest 

contributed to our decision? Are we confident spurious patterns and 

correlations were eliminated in our outcome? 

• Robustness: Are we confident that the model is not susceptible to 

minor perturbations, but if it is, is that justified for the outcome? In 

the presence of a missing or noisy data, are we confident the model 

does not misbehave? 

• Bias: Are we aware of any data-specific biases that unfairly penalize 
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groups of individuals, and if yes, can we detect and correct them? 

• Improvement: In what concrete way can the prediction model be 

improved? What effect would additional training data or an enhanced 

feature space have? 

• Transferability: In what concrete way can the prediction model for 

one application domain be applied to another application domain? 

What properties of the data and model would have to be adapted for 

this transferability? 

• Human comprehensibility: Are we able to explain the model’s 

algorithmic machinery to an expert? Perhaps even a lay person? Is that 

a factor for deploying the model more widely? 

The literature points that Explainability in deep neural nets can be 

introduced in three different model training and development stages: Before, during 

and after neural model training [25, 35, 38]. Explainability approaches applied on 

after training stage (defined with post-hoc or post-modelling) reflects the fact that 

inspect a model after the training is completed, thus they do not influence or 

interfere with the training process, they only audit the resulting model to assess its 

quality [24]. Methods applied in this stage are often data-driven or application-

driven and the internal workings of a model are not illustrated, but the focus is on 

the intuitive presentation and exploration of model output. Machine learning visual 

analytics has recently emerged as one of the most intriguing areas to make models 

more explainable, trustworthy, and reliable. Visual analytics plays a vital role in 

understanding the deep neural net models through several methods proposed for 

dimensionality reduction, line charts, and instance-based analysis [52]. In visual 

analytics explainability is provided through visual representations and feature 

visualization approaches to support model explanation, interpretation, debugging, 

and improvement. 

One application for visual analytics methods is the suggestion of potential 

directions for the model developer to explore [50]. It is essential to understand when 

a given instance can fail and how it fails because thereby researchers and developers 

can choose better directions to speed up solution improvement, quickly identify and 

fix problems within a model or dataset to improve overall performance. Developers 

can using visual analytics with tools on instance-level analysis using instances as 

unit tests for deep learning models testing a handful of well-known data instances 

to observe performance and acquiring insights to explains misclassified instances 

[33, 39, 40].  

Image features are mathematically represented as large tensors or 2D 
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matrices where each row may correspond to an instance and each column a feature. 

The most common technique to visualize these features is performing 

dimensionality reduction by projecting the features onto two or three dimensions - 

would mean computing (x, y) or (x,y,z) coordinates - for every data instance. The 

features dimensionality reduction can be realized using reduction technique used, 

e.g., principal component analysis (PCA) or t-distributed stochastic neighbor 

embedding (t-SNE)[33, 41].  

Sometimes, when viewing the features of misclassified objects, they appear 

deceptively like true positives in the feature space, even though the classification is 

incorrect in the image space. In other circumstances, features of misclassified 

objects may appear in the feature space to be different to true positives, leading to 

a false negative classification. Therefore, by seeing feature spaces of all classified 

objects (correctly classified and misclassified objects), developers may have a 

better intuitive understanding of recognition algorithms. 

This work developed an Explainability method after the model training 

stage based on Visual Analytics to provide potential insights and directions in 

choosing stamp types to be used in data augmentation experiments. The method is 

based on instance-level analysis, in which a trained model extracts the features of 

each instance, and the features are reduced using the PCA technique. The reduced 

characteristics are plotted on a graph, and the failure cases are selected to be used 

in our instance augmentation method to fix problems within a model or dataset to 

improve overall performance. 

3.3. Image Processing Operations 

This section presents some techniques of image processing used in our 

instance augmentation methodology. 

3.3.1. Thresholding 

Thresholding is one of the most basic forms of image segmentation. The key 

advantages of thresholding are its simplicity and minimal processing power 

requirements. It can be used to separate two regions (background and object) of an 

image with highly different histograms when the image contains a histogram with 

a bimodal distribution. The graphic shows a histogram with two peaks and one 

valley. 

The thresholding operation can be defined mathematically as follows. A 

threshold value 𝑇 is defined for an input image. As a result, the image will be 

divided into two groups: one with gray levels less than or equal to the threshold, 

which will receive values of 0; and another with gray levels greater than or equal to 
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the threshold, which will receive values of 1. According to Gonzalez & Woods [59], 

given an image 𝑓(𝑥, 𝑦) and the threshold 𝑇, we can obtain the thresholded image 

𝑔(𝑥, 𝑦) by the Equation 6: 

 
𝑔(𝑥, 𝑦)  =  {

1 𝑖𝑓 𝑓(𝑥, 𝑦)  >  𝑇
0 𝑖𝑓 𝑓(𝑥, 𝑦)  <  𝑇

  (6) 

 

where pixels labeled 1 correspond to objects and pixels labeled 0 correspond to 

background and T is a predefined threshold value.  

3.3.2. Mathematical Morphology 

Mathematical morphology is a tool used to extract image components 

helpful in representing and describing the shape of a region, such as borders, 

skeletons, and convex closure, through pre or post-processing, such as 

morphological filtering and thinning, and pruning. Morphology is related to the 

shape, and mathematical morphology describes or analyzes the shape of a digital 

object, most often rasterized [60-61]. 

Mathematical morphology uses the geometry of small connected sets of 

pixels to perform tasks useful in processing regions within images. These sets called 

structuring elements, interact with the objects in the image, modifying their shapes. 

Then, this technique also is used to count, or mark connected regions in images, fill 

in small holes, and smooth or reduce borders. 

The principles that define the nature of the transformation to which objects 

are submitted when applying morphological operations are shape, dimensions of 

the structuring element, and type of operation performed. In a binary image where 

the background is black, the objects consist of sets of connected white pixels, and 

each pixel is an element represented by its coordinates (x, y). Then, basic set theory 

operations are applied between these objects, and a structuring element translates 

onto the image. 

The simplest morphological operations are the erosion and dilation 

operations. In binary images, the dilatation operation images can be defined by 

Equation 7, in which the erosion of A by B is the set of all points z so that B, 

translated by z, is contained in A [59]. In other words, the erosion of A by B is then 

the set of all x displacements such that A overlaps with at least one non-null 

element, which A is the original image and B are called structuring element. 

 𝐴 ⊝ 𝐵 =  {𝑧 | (𝐵)𝑧  ⊆ 𝐴}  (7) 

Let �̂� be the reflection of B around its origin, followed by a translation of 

this reflection into z. The dilation operation on binary images is defined by the 
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Equation 8, in which the dilation of A by B is the set of all displacements, z, of so 

that �̂� and A overlap by at least one element [59]. 

 𝐴⨁𝐵 =  {𝑧 | (�̂�)𝑧⋂ 𝐴 ≠ 0}  (8) 

The dilation operation (Equation 7) increases the volume of objects present 

in the image by expanding their borders, filling gaps, or connecting objects. On the 

other hand, the erosion operation (Equation 8) reduces the volume of objects, being 

widely used to remove small objects or disconnect objects. 

There are still other morphological operations, which consist of applying 

sequences of the morphological operators of erosion and dilation. An opening is the 

execution of an erosion followed by dilation using the same structuring element in 

an image and is defined by Equation 9. The other operation, known as closing, 

consists of an expansion sequence followed by erosion and is defined by Equation 

10. 

 𝐴 ∘ 𝐵 =  (𝐴 ⊝ 𝐵)⨁𝐵  (9) 

 

 𝐴 ∙ 𝐵 =  (𝐴⨁𝐵) ⊝ 𝐵 (10) 

3.3.3. Image Rotation 

Simple methods of rotating sometimes cropped/cut sides of an image, which 

leads to a half image. This work uses a method to safely rotate an image without 

cropping/cutting sides of an image so that the entire image will include in rotation. 

To achieve it, the method consists of the following step-by-step: 

• Firstly, get the height and width of the image. 

• Locate the center of the image. 

• Compute the 2D rotation matrix using Equation 11 and Equation 12. 

• Extract the absolute sin and cos values from the rotation matrix. 

• Calculate the new height and width of the image and update the values 

of the rotation matrix to ensure that there is no cropping. 

• Apply the matrix rotation on the image. 

The Equation 11 is defined by: 

 
𝑀 =  [

𝛼 𝛽 (1 − 𝛼)𝑐𝑥 − 𝛽𝑐𝑦

−𝛽 𝛼 𝛽𝑐𝑥 + (1 − 𝛼)𝑐𝑦
] (11) 
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where: 

 𝛼 =  𝑠𝑐𝑎𝑙𝑒 ⋅ 𝑐𝑜𝑠𝜃 
𝛽 =  𝑠𝑐𝑎𝑙𝑒 ⋅ 𝑠𝑖𝑛𝜃 

 (12) 

and (cx, cy) are the coordinates along which the image is rotated or the 

center of image, 𝜃 is the rotation angle and 𝑠𝑐𝑎𝑙𝑒 is a scale factor to resize the image 

as well.
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4. Materials and Methods 

This section presents the materials used in this research. We will explain 

the details of the hardware, software, and technologies and present the dataset 

used to develop our method.  

4.1. Development and Experimental Setup 

With the evolution and popularization of Graphics Processing Units (GPU), 

they have been the leading hardware for executing deep learning-based techniques. 

Following this technological trend, in this research, the following hardware 

configuration was used for the experiments: 

- Computer1 

• Processor: Intel® Core™ 2 Extreme CPU X9500, 3.0Ghz; 

• Graphics cards: Integrated to the motherboard; 

• Persistent storage:1000GB, 3,5" 7200 RPM, 64MB Cache, SATA III; 

• Volatile storage: 4GB RAM; 

• Operational system: Windows 10 Enterprise x64. 

- Computer2 

• Processor: Intel(R) Xeon(R) CPU @ 2.20GHz, 3.0Ghz; 

• Graphics cards: NVIDIA® Tesla P100® 16GB, NVIDIA® Tesla® 

K80 12 GB, NVIDIA® Tesla® P100 12GB; 

• Volatile storage: 13GB RAM; 

• Operational system: Ubuntu 18.04.3 LTS. 

The Computer1 was used to develop the image labeler software, dataset 

building, and evaluation of the results. The Computer was used on Google 

Colaboratory, more commonly referred to as “Colab”. Colab is a research project 

for prototyping machine learning models on powerful hardware options such as 

GPUs. It provides a serverless Jupyter notebook environment for interactive 

development. Colab is free to use like other G Suite products [84]. We used Colab 

to execute the network (training, evaluation, and test steps). 

In Computer1, we use MATLAB [85] along with its Computer Vision 

System Toolbox for the segmentation software development, dataset segmentation, 
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data preparation, and evaluation of the results. This toolbox provides algorithms 

and applications for designing and simulating computer vision systems and image 

and video processing. 

In Computer2, the network was executed using the Facebook AI Research's 

(FAIR) Detectron2 [86]. Detectron2 is a flexible and extensible platform 

implemented in Pytorch [87] an available under the Apache 2.0 license. Detectron2 

provides fast training on single or multiple GPU servers and includes high-quality 

implementations of state-of-the-art object detection algorithms. PyTorch is an 

open-source machine learning framework that allows researchers and practitioners 

to iterate rapidly on model design and experiments. shows that PyTorch has been 

one of the most widely used frameworks in academia and that its use has seen a 

marked growth in its use in recent years. 

4.2. Software for Annotation Process 

The annotation process of the objects of interest is performed manually. A 

system for 2D image labeling was developed in this work using a Matlab tool. The 

software developed was used in the dataset annotation process. On the main screen 

(Figure 10), the user can perform seven main actions. They are: 

 

 Figure 10: The main screen of the software developed for dataset annotation. 
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• Open image: when selecting the option to open an image, the user 

selects a document page in .jpg format to which he wants to segment 

the objects of interest. 

• Select object type: through this action, the user indicates which object 

type will be segmented: stamp or signature. 

• Enable Region Selection: The user will move or resize the region 

selection rectangle when performing this action. The enclosed area 

corresponds to the targeting area. 

• Enable zoom/translation: The user will be allowed to perform scale 

and translation transformations on the image when selecting this 

option. This option is helpful to assist in object segmentation 

accuracy. 

• Save Object: When selecting this option, the coordinates of the 

selected region and the selected object type are saved in json format 

in a file in the same folder on the page. The file name will be the same 

as the page name. If the file does not already exist, the software creates 

it. If it already exists, the software adds the new data to the file. In 

addition, a message indicating the saved data and file folder is 

displayed to the user on a message screen. 

• Perform a search of all pages that contain a specific stamp 

• Make changes to annotations. Users can correct labeling or readjust 

segmentation windows. 

Once the stamp location is indicated, memorizing, or even typing the stamp 

type is impractical due to the number of types within the dataset. A screen for 

selecting the stamp type was developed, where the user visually indicates the type 

of stamp annotated in a kind of image gallery. The software highlights the most 

frequently annotated types to facilitate the user's visual search of the type.. In 

addition, the user can compare the stamp located on the page and the type of stamp 

selected in the labeling software. Figure 11 illustrates the scenario described. It is 

easy to notice that some stamps are demarcated in blue and have thicker 

demarcation than others. The thickest demarcation is the stamp "c3" (HEB 136). 

The software has a third screen: the search screen. The primary function of 

the search screen is to reuse the knowledge gained in previous moments in the base 

annotation process. This screen was widely used in the process of data cleaning and 

marking correction. Figure 12 illustrates the screen. In (1), the user selects which 
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subset of the database he wants to view. Region (2) presents the page's index, and 

the total of pages containing the object searched within a database subset. 

Region (3) presents the visualization window and interaction with the 

selected page. Region (4) presents the category and subcategory of an object 

selected by the user. Finally, regions (5) and (6) are for navigating through the pages 

contained in a selected database and displaying the name of the subcategory of the 

closest object searched.  

 

Figure 11: Illustration of the most frequent stamp types highlighted in screen 2 (on 

the right). The stamp segmented and the stamp selected in the gallery are shown for 

visual comparison before saving the data (on the screen left). 

 

 

Figure 12: Search screen illustration. 
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4.3. Method Proposed for Stamp Detection 

4.3.1. Image Acquisition 

We used documents provided by a private multinational manufacturing 

company. The dataset has 33 scanned documents in PDF format that together 

contain a total of 2230 pages. We divide each document and convert its pages to 

image files. The final configuration chosen was 300 DPI in RGB color and jpg 

format. Therefore, each page has dimensions 2438 x 3542 on portrait orientation 

and 3542 x 2438 on landscape orientation, width, and height, respectively, and 24 

bits depth.  

Although the dataset contains structured pages, most of the pages are semi-

structured. Structured data has a regular structure and semi-structured data arises 

when the source does not impose a rigid structure [61]. However, in practice, 

stamps are often applied with some randomness, even in cases where there is a 

specific region. Our dataset contains 1880 stamps distributed on 251 classes. Page 

images usually have more than one instance of stamps (multiplicity at the instance 

level). Besides, pages with more than one example contain multiple stamp types 

(multiplicity at the type of level). About 8 people participated in the annotation 

process using software developed in this proposal. Each person is responsible for a 

different portion of the dataset, and, at end of process, 1 additional people 

performed a final evaluation on all annotations.  

4.3.2. Preprocessing and Splitting 

Data collection and annotation procedures may generate many object 

detection problems because they are stressful and error susceptible tasks. The 

literature points that missing, incorrect, and duplicate values directly affect the 

performance of several machine learning algorithms. Thus, data cleaning is a 

necessary, labor-intensive, and time-consuming procedure [63-64]. 

This method follows a dataset preparation pipeline to provide detailed 

inspection, cleaning, and validation of the data. This pipeline contains three main 

phases and nine stages. Figure 13 illustrates the steps flowchart. 

The first phase consists of class cleaning (steps (1) to (4) in Figure 13), 

which aims to select duplicate and "fake classes". First, we manually cluster the 

stamps from the shape and then map the codes within the clusters. Then we perform 

a new clustering manually - this time from stamps checker code. Next, we remove 

the annotations and classes corresponding to duplicates and fake classes identified. 

These two clusters are necessary since stamps in our dataset can have, at the same 

time, both the same distinct code and shape as well as specific codes and identical 
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shapes. It is, one stamp type is identified by both shape and code. 

 

Figure 13: Flowchart of each main phases and its respective steps of the data 

preparation. 

 

On data cleaning (steps (5) to (6) in Figure 13), we perform the annotations 

correction, which consists of adjusting the annotation bounding box, observing not 

annotated stamps or classes not identifying, and removing wrong annotations. We 

filter color pages, "free" of objects of interest, extreme low-quality pages, and 

rotated pages or with rotated stamps (stamps with angles greater than 0 degrees). 

Rotated pages are adjusted according to the complementary rotation angle (i.e., 90, 

180, or 270 degrees). 

The final phase (steps 8-9 in Figure 13) consists in splitting the dataset into 

the training, validation, and testing sets. We designed a greedy algorithm to split 

the dataset to overcome these difficulties and used it in other tasks that present 

similar problems. The algorithm has three main goals. The first objective is to 

maximize the number of instances in the training group since the training group 

should have the most examples. The second objective is maximizing the diversity 

of stamp types in the test group. We desire to observe the capacity of the proposed 

method to generalize the detection of stamps for types and situations not yet seen 

by the network, a scenario certainly expected in real cases. Finally, we want the 

validation group to have the diversity of stamp types as close as possible to the test 

group, ensuring that both groups are close concerning diversity. 

However, achieving these three goals simultaneously is not a simple task, 

and dividing the pages randomly is not the most suitable option given the stamps 

multiplicity in type and instance per page, imbalance, and lack of data. These facts 

make the process of dividing the data set into a combinatorial problem with infinite 

possibilities. Our algorithm overcomes these difficulties and guarantees the three 

desirable goals. Besides, we ensure that the test group covers all superficial 

characteristics such as shape, size, color, similarity, location, and multiplicity. We 
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maintain the imbalance in the training set since one of the objectives of this study 

is to observe how our method behaves, considering this complexity. 

In summary, the algorithm works as follows. We first work on the pages 

with more instances and different types of stamps, placing them in the test, 

validation, and training groups, respectively. We keep a record of the classes 

already inserted in each group, and we use intersection operation to check if any 

stamp types belonging to the current page have been added or not in the groups. 

Thus, we guarantee the highest number of the kinds for the two first groups, obeying 

the order of priority. After filling the first two groups, we insert the remaining pages 

in the training group. Our dataset splitting algorithm is present in Algorithm I.  

 

4.3.3. Network Design 

Testing network architectures is a time-consuming step. We follow a 

procedure to optimize the network architecture design based on the characteristics 

of the dataset used. The data characteristics refer to the qualitative property-data 

resolution, diversity of examples of the same class, well-defined acquisition 

protocol, occluding, noisy, and missing values/parts. In the following sections, we 

present our method for qualitative analysis, which is possible to apply to any object 

detection task and the projected architecture based on the proposed analysis. 

4.3.3.1. Qualitative Analysis 

Qualitative analysis has two steps: simple and complex features analysis. In 

this step, we verify and describe the data properties and associate them with the 
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potential of the deep learning resources to direct the network architecture choice. 

In other words, we searched the literature for the most suitable techniques to deal 

with each challenging characteristic of our dataset. We propose an architecture to 

contemplate all the challenge from the solutions found. 

Figure 14 summarizes our proposed method, while the following sections 

demonstrate its application to our dataset. The challenging characteristic of our 

dataset and its respective suitable techniques are listed below: 

1. Color. We consider color pages the pages without white background. We 

consider color stamps those with color edges. Stamps are poor in texture, 

limiting colors to their contours and/or page color. As shown in Figure 14 

(1), stamps and pages can appear in any combination of shades of gray 

and color. The literature shows that transfer learning handles with it [64]. 

2. Shape is a low-level feature almost as simple as edges. A stamp can 

contain at least two of a simple shape (i.e., circle, triangle, squad), a 

figure, or a string of characters (see Figure 14 (2)). We use transfer 

learning by freezing the initial layers of a pre-trained CNN as a proper 

low-level feature extractor. To use DCNs also handles well with it [12]. 

 

Figure 14: Method proposed for dataset analysis. The qualitative analysis step 

serves as a guide for choosing network architecture.  

 

3. Intra-class similarity. Stamps can have identical shapes but only a 

similar string of characters. The shape corresponds to different roles, 

while the string distinguishes between unique individuals (see Figure 14 

(3)). 

4. Size/scale/aspect ratio. Since the acquisition of documents does not vary 

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA



50 

 

in distance, zoom, or point of view, these characteristics are invariant 

between stamps of the same class. However, size can vary between 

different classes of stamps, as illustrated in Figure 14 (4). Most stamp 

classes occupy regions of approximately 100x100 pixels and aspect ratio 

1, reaching values of approximately 360x170 pixels and aspect ratio more 

than 2. Literature shows that FPN and anchor-based deep frameworks can 

successfully handle objects of different sizes, scales, and aspect ratios [12, 

65].  

5. Location. The large diversity of page templates and the fact that people 

do not always stamp in the expected field make it impractical to rely on 

consistent stamp locations. A stamp can appear in any position on the 

page. For example, Figure 14 (5) illustrates two pages with the same 

template but stamped in different ways. Both RPN-based and 

Classification/Regression-based frameworks handle location [9, 65].  

6. Multiplicity. It is not known a priori which or how many pages have 

stamps. When stamps occur, a priori both the amount is unknown and 

which classes exist. Figure 14 (6) illustrates a multiplicity case, where two 

pages with the same template present different amounts of stamps. Again, 

RPN-based frameworks can adequately handle this feature [9, 65]. 

7. Overlap / occlusion. The literature highlights it as a recurring problem 

that increases detection complexity [9, 12, 54, 65]. A stamp can be 

isolated, overlapping another stamp, or overlapping other structures (i.e., 

text blocks, general text, manuscripts), as illustrated in Figure 14 (7). 

DCNs handles well with it [8, 11]. 

8. Orientation. Peoples usually do not pay attention to orientation when 

stamping a document. However, it is reasonable to expect that stamps are 

not upside down, that is, at an angle between 90 and 270 degrees. Other 

angles may occur, but only rarely. Figure 14 (8) illustrates rotated 

examples of triangle stamps. 

9. Low-quality. Image degradation in visual recognition tasks is a well-

known problem in the literature [12, 66-67]. Stamps in this condition can 

have missing parts due to reduced acquisition quality, noise, or several 

overlaps. These problems cause intra-dissimilarity between examples of 

the same class and can lead to the miss classification. We characterize as 
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noise any element on an object stamp that does not belong to its body. 

Figure 14 (9) illustrates cases of low-quality stamps which have 

overlapping and missing parts. 

4.3.3.2. Network Architecture 

As a result of the analysis of the qualitative characteristics of the dataset, a 

deep neural network architecture never applied to the stamp problem is proposed in 

this work. Figure 15 illustrates the proposed architecture. 

As opposed to using common CNNs, working with deep frameworks for 

object detection brings the advantage of not working with sliding windows 

manually. Therefore, firstly our network receives as input the entire image. Then, a 

CNN backbone performs hierarchical features extraction. Our backbone consists of 

a pre-trained Resnet model on the COCO dataset to use all benefits of knowledge 

transfer (Section 3.2.6). Residual connections from Resnets are used for addressing 

vanishing/exploding gradients in profound models [41].  

 

Figure 15: Proposed network architecture designed using our qualitative analysis.  

 

The two first modules from Resnet are freezing to address qualitative 

problem 2 (shape), and the others are fine-tuned for the extractor parameters to 

better adapt to the problem we propose to solve. We use deformable convolution 

on the 4th module to address qualitative problems 2 and 7 (shape, 

occlusion/overlapping). Then, the hierarchical features extracted from all modules 

are combined using FPN to get richer semantics by building multi-scale features at 

various semantic levels - and handling quality problem 4 (dimensions problems).  

After the process performed by the backbone, the RPN uses the feature map 

extracted from the entire image and automatically learns to propose regions and 

dimensions of promising to object bounding boxes, handling with quality problems 

4, 5 and 6 (dimensions, location, and multiplicity). The proposed regions are 

dimensioned using ROI pooling, which solves the problem of fixed image size 
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requirements for the FC module. After passing them through two FC layers, the 

features are fed into the sibling classification and regression branches. The 

classification branch calculates the probability of a proposal belonging to the stamp 

type, and the regression layer coefficients are used to improve the predicted 

bounding boxes. Section 4.3.5 provides information about the experiments and the 

reason for the specific configuration of the backbone used. 

4.3.4. Evaluation 

We evaluated the results achieved by the proposed method using several 

metrics commonly employed in the literature related to stamp detection and object 

detection tasks. These metrics aim to measure the performance and robustness of 

the proposed architecture as satisfactory or not, in addition to helping to identify 

positive and negative points for future improvements of this work in the training, 

validation, and testing phases.   

The metrics use the concepts of true positives (TP - stamps correctly 

detected), false positives (FP – background incorrectly detected as a stamp), and 

false negatives (FN – stamps not detected). It is important to note that a true 

negative (TN) result does not apply in the object detection context, as there is an 

infinite number of bounding boxes that should not be detected within any given 

image [68]. 

- Score. Value in the range [0,1] obtained by the classification branch of the 

network, showing the probability of an object belonging to a particular type. 

- IoU. Value representing the area of overlap (intersection) between the bounding 

box 𝐵𝑝 provided by the network and the ground-truth bounding box 𝐵𝑔𝑡, divided 

by the union area. 

 
𝐼𝑂𝑈 =  

𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
 (13) 

- Precision is expressed as the number of TP divided by the total number of 

predicted cases (TP and FP). 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14) 

- Recall is expressed as the number of TP divided by the number of positive cases 

(TP and FN) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

- F-score is the harmonic mean of accuracy and recall 
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𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (16) 

- Average Precision (AP) is the most commonly used metric on object detection 

tasks [11]. Fixed a single IOU threshold; it summarizes the precision x recall 

curve obtained from analyzing different score values into a single value. The AP 

is obtained by interpolating the precision at each level, taking the maximum 

precision whose recall value is greater or equal than 𝑅𝑛+1 [68]. Mathematically, 

we have: 

 𝐴𝑃 = ∑(𝑅𝑛+1 − 𝑅𝑛)𝑃𝑖𝑛𝑡𝑒𝑟(𝑅𝑛+1)

𝑛

 (17) 

where, 

 𝑃𝑖𝑛𝑡𝑒𝑟(𝑅𝑛+1) = 𝑚𝑎𝑥𝑅:𝑅≥𝑅𝑛+1
𝑃(𝑅) (18) 

- Average Recall (AR) is the maximum recall given a fixed number of detections 

per image, averaged over all categories and IOU thresholds [68]. 

- AF-score is a custom metric of this work, evaluate AP and AR equally f-score 

evaluate precision and recall. 

4.3.5. Experiments 

Hyperparameters settings control the behavior of the learning algorithm, but 

they are not adapted automatically. Adjusting hyperparameters on the training set 

is not desirable because the learning process always chooses the maximum possible 

model capacity, resulting in overfitting. Additionally, tuning hyperparameters 

model several times based on performance's model test set can quickly result in 

overfitting to this set, even though the model is never directly trained on it. This 

phenomenon is known as information leaks because when the hyperparameters are 

choosed based on the model's performance on the evaluation set, some information 

about the evaluation data leaks into the model [69].  

Simple hold-out validation solves this problem, which a portion of the 

training set is separated for model evaluation on the hyperparameters adjustment 

process. This new division must adhere to the same guidelines as the previous one. 

Thus, evaluating a model using this strategy divides the available data into three 

sets: training, validation, and test. Each of the three sets must be chosen 

independently: The validation set must be different from the training set to obtain 

good performance in the optimization stage and, and the test set must be different 

from both to obtain a reliable estimate of the valid error rate [62] . Once the model 

is ready, it is evaluated one final time on the test data [69]. 
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Supervised training was conducted using mini-batch stochastic gradient 

descent (MBSGD) and standard backpropagation algorithm to determine the global 

minimum. We used as regularization methods the mini-batch stochastic gradient 

descent (MBSGD), batch normalization and weight decay, techniques widely 

discussed in Neapolitan & Jiang [32]. We fixed the designed architecture network 

for all experiments. In applying the framework, we select the default configuration 

as the start point and conduct several experiments varying the parameters. The best 

results were achieved using the values shown in Table 1. 

The hyperparameters values are selected for testing using grid search [70], 

the most well-known technique in which a set of values is selected for each 

hyperparameter. In the most straightforward implementation of the grid search, all 

combinations of selected values of the hyperparameters are tested to determine the 

best choice [32]. For reducing the number of tests, the parameters are tested one to 

one: when testing a value for a parameter, the result gets worse, the previous value 

is fixed, and a new parameter is testing. We search a balance between bias 

(underffiting) and variance (overffiting). The model with the optimal predictive 

capability is the one that leads to the best balance between bias and variance, which 

gives the smallest average training and generalization error at the same time [42–

44, 71]. We use simple hold-out validation [69]. 

Table 1: Main parameters tested in the experiments. 

Parameters Values 

Minimum size image train 1200 

Minimum size image test 1200 

Learning rate 0.01 

Momentum 0.9 

Weight decay 0.3 

Freeze backbone stages 1,2 

Deformed backbone stages 4 

Mini-Batch 512 
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We control the weights update step experimenting learning rate on values 

0.1, 0.01 and 0.001, values suggested in Andrew [88]. For weight decay technique, 

we use the values 0.1, 0.3 and 0.5. Weight decay acts as a capacity hyperparameter: 

increasing this parameters decreasing the complexity of the model leading to a 

simpler model and preventing overfitting [32]. We experiment momentum values 

0.9 and 0.999 for penalizes useless “sideways” oscillations (steep steps). The 

literature point that this allows the use of more significant steps in the correct 

direction without causing overflows or “explosions” in the lateral direction, 

resulting in an accelerated learning process [32]. 

We used batch normalization technique to address the vanishing and 

exploding gradient problems and reduce covariate shifts. In covariate shift, the 

parameters change of the hidden inputs change during training from early layers to 

last layers, and it causes slower convergence during training because the training 

data for later layers are not stable. Bach Normalization adaptively normalizes data 

even as the mean and variance change over time during training. It works by 

internally maintaining an exponential moving average of the batch-wise mean and 

variance of the data seen during training and allows dropout technique to be omitted 

[42, 69-70]. The batch normalization layers are tested frozen, fine-tuning from pre-

trained model, and full training all of them.  

The literature points that the common values used in MBSGD technique are 

powers of 2 as the size of the mini-batch, because this choice often provides the 

best efficiency on most hardware architectures [32]. So, we experiment values in 

the range of 32 to 512.  For stages using DCN and transfer learning, we experiment 

with all possibilities. We experiment with the interval of 2 to 4 stages for DCN and 

1 to 5 stages for transfer learning. The experiments are conducted individually, first 

the transfer learning stages for finding the best freezing layers configuration. Then, 

the DCN stages are tested. To conduct the experiments, firstly, using DCN would 

combinatorically increase the number of tests. For each one, the stages are testing 

one to one and combining them.  

We use 10k epochs on all experiments rather than using early stopping 

because the literature points that in this technique the iterative optimization method 

is terminated early without converging to the optimal solution on the training data 

[32]. Another disadvantage of the early stopping technique is that the number of 

epochs is more of a parameter to be adjusted. In the first stage of our analysis, we 

empirically observed that the models did not achieve significant improvements in 

the results in around 10k (a large number) of epochs. 

We observe AP and AR metrics to define the best network settings and 

hyperparameters value using hold-out evaluation. Analyzing the experiments 

evaluation process using graphics generated by Tensorboard, we observe a 
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significant interval of epochs for network converging and several peaks 

configurations (Figure 16(a) and 16(b)). 

(a) 
 

(b) 

Figure 16: Graphic produced on the Tensorboard for the AP50 metric obtained from 

the application of the network on validation set. (a) Experiment shows best value 

on epoch 1800. (b). Experiment shows best value on epoch 4100. 

 

For tiebreaker criteria, we evaluate the AF-score evaluation metric, and we 

choose a single model. We consider all object sizes and 100 detections per image. 

We base our choices on the following points: 

• The pages have stamps in several sizes. 

• The same page can contain more than ten stamps. 

• A minimum of 50% IOU is sufficient for the stamp detection 

problem. 

Then, we apply the model again on the validation group, and we evaluate 

the predictions obtained using precision and recall metrics considering different 

values for the score and IoU. In this stage, we choose the two best possible 

configurations concerning each of the metrics.  

The final evaluation for measuring the network performance is conducted 

on possible fixed thresholds as default in a decision-making situation. We 

experiment all combinations considering the values 0.5, 0.7 and 0.9 for score and 

0.05, 0.5 and 0.7 for IoU. We selected two (score, IoU) values: one prioritizing 

correct inference and one prioritizing detected stamps even with a higher false-

positive index. In the end, we apply to the test based on both the model and the 

thresholds selected. The following section presents and discusses the results 

obtained from the experiments. 

4.4. Method Proposed for Stamp Instance Augmentation 

One of the most significant drawbacks of using a state-of-the-art detection 
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system is the number of annotations needed to train it because finding a large 

labeled dataset containing instances in a particular task is often unlikely. One of the 

ways found in the literature to overcome this bias is using data augmentation 

techniques to generate synthetic data to feed the training of neural networks. 

However, models trained with this synthetic data have difficulty generalizing to real 

data due to changing image statistics [21].  

A more challenging situation is when there are too few certain classes in the 

training base. In this case, data augmentation can become ineffective due to the lack 

of representation of these classes. A simple way to significantly improve the data 

efficiency of object detection is using an augmentation procedure that is more 

object-aware, both in terms of category and shape. 

Instance augmentation is a form of synthetic data generation based on data 

augmentation by generating objects of interest instead of complete images. This 

method has several advantages. It combines information from multiple images in 

an object-aware manner by copying objects from one image and pasting them onto 

another image. This method can lead to a combinatorial number of new training 

data, with multiple possibilities for: 

• Choices of the pair of source images from which instances are 

copied, and the target image on which they are pasted; 

• Choices of object instances to copy from the source image; 

• Choices of where to paste the copied instances on the target image. 

The large variety of options when utilizing this data augmentation method, 

the large variety of options allow for lots of exploration on how to use the technique 

most effectively. Instance augmentation has the potential to create challenging and 

novel training data for free. 

The critical insight for using instance augmentation is that state-of-the-art 

detection methods-based regions, like Faster-RCNN, care more about local region-

based features for detection than the global scene layout. For example, a stamp 

detector cares about the stamp's visual appearance and blending with the 

background, not where the stamp occurs on the page. [22] shows that while global 

consistency is essential, only ensuring patch-level realism while composing 

synthetic datasets should go long to train these detectors. They use the term patch-

level realism to observe that the bounding box containing the pasted object looks 

realistic to the human eye. In this section, this work proposes a instance 

augmentation by only copying the exact pixels corresponding to an object instead 

of all pixels in the object's bounding box to ensure the patch-level realism of the 

object. 

The proposed approach for generating new data using Instance 
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Augmentation is very simple. Instances of the classes to be augmented are manually 

segmented from their original pages. Then, binary masks of the selected instances 

are generated using image processing techniques thresholding and image negation. 

Then instances and masks transform based on the addition of noise, rotation, or 

morphological operations in some combination. Finally, the object's pixels are 

pasted into the image using the binary mask as a reference. Figure 17 illustrates the 

steps described here. The following section details the procedure of the proposed 

method for Stamps Instance Augmentation. 

4.4.1. Instance Augmentation Procedure  

After applying the stamp detection method on the images of document 

pages, we get all the detected stamps. We get the undetected stamps by comparing 

the network responses to dataset manual annotations. Thus, the first step of the 

proposed synthetic data generation procedure is to observe undetected stamp types 

containing few samples in the training set. Types with few training samples are 

more difficult for the network to detect due to the lack of representation. 

To identify the types of stamps with few samples, the model obtained 

through the stamp detection method analyzes the document pages and extracts the 

characteristic maps them. Then, the regions corresponding to each stamp are 

extracted, identifying those detected and those not detected through the 

combination of the obtained characteristic maps and the manual markings. 

 

Figure 17: Proposed method for Stamps Instance Augmentation.   
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After obtaining characteristics of the detected and undetected stamps, the 

PCA [72-73] technique reduces the dimension of the characteristics to the three-

dimensional space. The reduced instances feature of all stamps are plotted to 

perform a visual analysis of the stamps. Undetected stamps are identified as more 

isolated in the plot, representing the most difficult stamps for the obtained model to 

detect.  

Once the most challenging types are selected, the generation process starts. 

First, some cases of stamps from the selected types are extracted based on manual 

annotations. Once segmented, noises are manually removed (structures that do not 

belong to the stamp, such as table lines, parts of other stamps, and handwritten 

words). This cleaning is necessary since when performing the gluing process, the 

noises not removed will join with the noises already present in the region to be 

glued and may mischaracterize the new stamp generated. 

After extracting the stamp instances, the masks are generated using image 

processing techniques such as thresholding and image negation. Then, a lottery 

decides which perturbations or combinations of perturbations will be applied to 

generate each new stamp. These disturbances are performed to add statistical 

variability in the synthetic instances. The method generates datasets for every 

possible combination of transformations, that is, all combinations involving the 

addition of Gaussian noise, rotation, erosion, and dilation. 

The method applies Gaussian noise with a mean of 0.1 and a variance of 

0.3. The masks used for the morphological transformations were 3x3 masks, using 

only one interaction on the instances. These values were established empirically by 

observing the generation of several datasets visually. The rotations were established 

for the angles [345, 350, 355, 5, 20, 25] and with probabilities of p = [0.05, 0.15, 

0.30, 0.30, 0.15, 0.05] for each angle, respectively. This probability setting 

prioritizes angles close to the object's natural angle (angle 0) since larger rotation 

angles are less likely to occur in documents based on observations made in the 

dataset. Figure 18 illustrates the angle draw distribution for 1000 trials. 

The data generation process for each type of stamp follows the following 

step-by-step: 

• For each type of stamp 

o For each page image 

▪ Draw a stamp instance 

▪ Draw the probability of transformations taking place. 

If it is favorable, while it is favorable 

• Apply a transformation from the list of 

transformations 
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• Divide the chance of a new transformation 

happening by 2. 

• Remove the applied transformation from the 

current list 

 

Figure 18: Illustration of the distribution of the draw of angles for 1000 attempts.   

Finally, the process of pasting the instances is performed. Each page is 

gridded to have 12 stamps. We only use stamp-free pages to ensure full control over 

data generation. The AND binary operation is applied between the instance and the 

mask to extract only the stamp pixels. The method extracts a region of interest 

(ROI) – (grid cell) contained in the page, and then it applies an AND binary 

operation using the ROI and the negative of the mask to extract the background 

pixels. Then, it adds the pixels extracted from the ROI to the pixels extracted from 

the stamp. Finally, it pastes the resulting image into the cell corresponding to the 

ROI. The method repeats this process until it fills the page. 

4.4.2. Experiments 

The results are analyzed by applying the model to the validation base and 

3D visualization. The three most isolated points in the generated graph and one of 

the random undetected instances were selected. More isolated points on the graph 

represent the most difficult instances for the network to detect. Figure 19 illustrates 

the scenario discussed. The points highlighted in yellow represent the stamp 

instances selected for studies and experiments using the proposed Instance 

Augmentation method. 

We evaluated different scenarios, as several stamp quantities per page, page 

quantities, transformation combinations, and stamp locations. Experiments were 

also performed cleaning the instances, not cleaning the instances, and combining 

them. The experiments were controlled, adding the generation of only one stamp 
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type at a time. In other words, given stamps A, B, and C, experiments are first 

conducted until stamp A is successfully detected. After that, stamp B is added. This 

process is repeated until the synthetic base contains all the selected stamp types. 

 

Figure 19: 3D visualization illustrating the four instances selected (on yellow color) 

for the Instance Augmentation experiments.   

 

We observed two issues in our experiments. The first question is whether 

the generated instances helped the network to detect similar instances in the 

validation base and how much improvement there was in the detection. We assess 

this “how much” by assessing whether the network provided a higher score. The 

score represents the percentage of how much such an instance is a stamp for the 

network. The second point is whether there was an improvement in the values of 

the evaluation metrics used. Figure 20 illustrates the results for the AP50 metric in 

the 1699 epoch based on validation for 7 experiments. Each of the 7 illustrated 

experiments has different Instance Augmentation settings. Curves have been 

smoothed at a rate of 50% for better visualization. The experiment with name 1 

achieved the best AP50 value for this epoch.
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5. Results 

5.1. Stamp Detection 

This section presents and discusses the results obtained with the proposed 

method regarding the detection of stamps. 

After the data acquisition, annotation, and pre-processing steps, we apply 

the algorithm proposed in Section 4.3.2 to perform the dataset division. In the 

training set, we use 87 types of stamps distributed on 1173 instances. In the 

validation set, we use 130 types of stamps distributed on 234 instances. Finally, in 

the test set, we use 251 types of stamps distributed on 473 instances of stamps. The 

proportion of stamp types among sets is about 1/1.5/3. The proportion of stamp 

instances among sets is about 5/1/2. In the training set, we used the number of stamp 

types 3x more than the test set. Table 2 shows the final division and proportions of 

the dataset. 

 

Figure 20: Results for the AP50 metric in the 1699 epoch based on validation 

for 7 experiments with several Instance Augmentation settings.  The epoch is 

highlighted in the chart.         

 

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA



63 

 

     

Table 2: Distribution of training, validation, and test sets. 

 Total Train Validation Test 

Types 251 87 130 251 

Instances 1880 1173 234 473 

 

In the best benchmark, we reduce the input images to approximately three 

times smaller than the original size, keep the batch normalization layers frozen, and 

use convolutional deformable layers only in stage 3 of the resnet. We apply transfer 

learning using the pre-trained weights on the COCO dataset in all backbone layers. 

We freeze the first two stages of the backbone and fine-tune the remaining 

parameters. Early stopping is not the most suitable option for stopping criteria in 

our experiments. The experiments also noticeably showed that the proposed 

architecture has good generalization capacity and excellent performance 

concerning overfitting. The cost of training time per experiment is about six hours 

using Tesla K80 graphics card and three hours using Tesla P100 graphics card. 

Figure 21 illustrates the loss curves about the training base and the 

validation base for six different experiments using the proposed architecture. It is 

possible to observe that the loss on the validation base decays until a point and after 

it stabilizes. The curvature of validation has fewer oscillations because it is 

calculated over fewer frequently than the loss on the training database. This strategy 

allows us to study the behavior in more epochs of training and perform a greater 

number of experiments since training takes much time. 

Table 3 presents the best results obtained from the validation and test sets 

using COCO evaluation metrics [11] on network training time. We show the 

number of classes, the number of stamps, the AP50, the AR, and the AF-score. In 

general, Table 3 shows that the network achieves promisors AP50 and AR. What 

explains the bias between the two measures is that the AR measure analyzes results 

considering more IoU proportions than the AP50 measure. This fact is also one of 

the reasons for we chose to analyze the model using the metrics precision and recall 

considering fixed values of IoU and Score.  

We perform this last evaluation through different combinations of 

thresholds for the scores belonging to the predictions and IoU with the manual 

markings, which we establish based on empirical assessments. Finally, we select 

the two best thresholds (the best precision and the best recall obtained) and apply 

the model, configuration, and thresholds selected on the test group. 
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(a) (b) 

  

(c) (d) 

 

 

(e) (f) 

Figure 21: Loss curves about the training base and the validation base for six 

different experiments using the proposed architecture. 
 

Table 3: COCO evaluation metrics and AF-score achieved by the best model from 

experiments. The hyperparameters values are specified in Table 1. 

 Types Instances AP AR AF-score 

Validation 130 234 98.4 80.9 88.8 

Test 251 473 92.8 75.5 83.7 

 

Table 4 shows the results achieve for precision and recall metrics and their 

respective thresholds in which we test after the choice of the best model. We 

highlight the best results for each metric. The model achieves better accuracy when 

considering at least IoU 5% and Score 90%, and better recall when considering at 

least IoU 5% and Score 70%. The Table shows a direct relationship between the 

precision and recall metrics and the score and IoU thresholds: precision is directly 
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proportional to the value of the score, and the recall is inversely proportional to the 

amount of the IoU. Additionally, we observe a trade-off between precision and 

recall, where maximizing one of these metrics usually means decreasing the other. 

The table shows that considering 5% for IoU and 70% for recall the method 

achieved a more equilibrated relationship between precision and recall. These 

observations are essential when analyzing the requirements for a future commercial 

application. 

Finally, Table 5 presents the values achieved by the network for the F-score 

metric using the thresholds for Score and IoU. We highlight the two best results and 

the averages obtained on the validation and test sets. The Table shows that we 

consider all the thresholds we reach the average values above 95% for the metric f-

score on validation dataset. On test set, we reach 95% for the metric f-score 

considering 5% of IoU and 70% of score. 

Table 4: Precision and recall values achieved using several thresholds for the IOU 

and score measures. We highlight the two best configurations used. 
 

% Precisão-Recall 

Group IoU/Score 50 70 90 

Validation 5 95.4 – 97.0 96.6 – 96.2 99.1 – 95.3 

50 95.0 – 96.6 96.1 – 95.7 99.0 – 95.0 

70 95.0 – 95.2 96.0 – 95.0 99.1 – 94.0 

Test 5 - 98.0 – 92.1 99.3 – 90.0 

 

Table 5: Values achieved for f-score metric using several thresholds for the IOU 

and score measures. We highlight the two best configurations used. 
 

% F-Score 

Grupo IoU/Score 50 70 90 

Validation 5 96.2 96.4 97.2 

50 95.8 95.9 97.0 

70 95.1 96.2 96.5 

Test 5 - 95.0 94.4 

  
Table 6 shows the results achieved by best model applied in the test group 

when analyzing the detected and the undetected stamps belonging to types present 

in the training group. We also show detected and undetected stamps belonging to 

absent types in the training group. We achieved detection of 97% of the 236 stamps 

belonging to types present in the training group, and we detected 90% of the stamps 
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belonging to absent types in the training group. Figures 22(a) and 22(b) illustrate in 

a 3D graph the distribution of test set instances presented, in numbers, in Table 6. 

Figure 22(a) shows the distribution of detected stamps, and Figure 22(b) shows the 

distribution of undetected stamps. Instances represented by a red circle belong to 

classes absent from the training group, and instances represented by a blue square 

belong to classes present in the training group. 

Table 6: Results in detecting instances of test group stamps, which belong to types 

present and away in the training group. 

 Detected stamps  

Trainning set Yes No Total % 

Present 229 7 236 97% 

Absent 212 23 235 94% 

 

 
(a)                          (b) 

Figure 22: Illustration in a 3D graph the distribution of test set instances. Instances 

represented by a red circle belong to classes absent from the training group, and 

instances represented by a blue square belong to classes present in the training 

group. 

 

Table 7 shows the same analysis as Table 6 concerning stamp types instead 

of stamp instances. We detected 98% of the 87 types present in the training group. 

Regarding the absent types in the training group, we detected 93% of the 152 types 

present in the training group. 

Table 7: Results in the detection of stamp types from the test group, and which 

belong to types present and absent in the training group. 

Detected stamps types 

Trainning set Yes No Total % 

Present 85 2 87 98 

Absent 152 12 164 93 
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With the results illustrated in Tables 6 and 7, we conclude that our approach 

can detect stamps and stamp types if they belong to the training base, even if there 

are few instances. Even in stamp types never seen before by the network, our 

approach achieved good generalization ability. In addition to these results, we have 

conducted further experiments with recently proposed network architectures. Our 

findings do not show any significant improvements in terms of the evaluated 

metrics. For a detailed overview of these experiments, please refer to Appendix 2. 

5.2. Instance Augmentation 

Figure 23 illustrates the reduced features of the stamp instances using PCA 

corresponding to the validation set and plotted on a three-dimensional graph. Blue-

colored objects represent detected instances. Yellow objects represent instances 

whose types are undetected and used for synthetic data generation. In our 

experiments, the synthetic data generated fed training set only. We can see that the 

undetected instances are more isolated on the graph, while the detected instances 

tend to be centered on a point. 

 

Figure 23: Illustration of the reduced characteristics using PCA of detected and 

undetected instances plotted on a three-dimensional graph. In blue, the instances 

detected by the network. Undetected instances are red, and instances selected for 

synthetic data generation experiments are yellow. 

 

The experiments using synthetic data start after selecting the first type of 

stamp. Figure 24 illustrates the type of stamp selected for the initial experiments 

and the respective instance in the graph. Figures 24(a), 24(b), 24(c), and 24(d) 

illustrate the results obtained. In the experiments, ten pages are generated, varying 

the amount, and using clean and noisy stamps. Considering the biggest stamp and 

the portrait and landscape layout of the pages, we experiment to generate 2, 6 and 

12 stamps per page. Our experiments found that generating 12 instances per page 

helped the network to detect the selected class. Then, setting the number of 

instances per page to 12, we verified that cleaning up the instances to be pasted 

helped the network to detect the selected class. 

Successful setup of experiments performed with the first selected stamp type 
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is applied to the other stamp types. After application to all types, the method did 

not obtain satisfactory results for only one of the types. New experiments using 

double the number of pages (and instances) for this type showed improved results. 

In other words, we generated 20 synthetically pages for the type that failed and ten 

pages for the others—however, the method neither achieved success nor any 

improvement in detection for a specific instance. A compelling reason for this 

stamp instance is not detected because it has several missing parts (referring to digit 

237). Figure 25 highlights the undetected instance in yellow and presents the new 

results. Apart from this case, all stamps corresponding to the synthetically 

generated types were detected. 

 

(a)  

 

(b) 

 

(c) 

 

(d) 

Figure 24: (a) Location of selected stamp instance. (b) Stamp not detected after 

generating two clean instances per page. (c) Stamp detected after generating 12 

clean instances per page. (d) Stamp not detected after generating 12 instances, no 

cleaning, per page. 

 

We relied on the results achieved and shown in Tables 4 and 5 to evaluate 

the experiments performed with Instance Augmentation. We evaluated the new 

experiments using synthetic data generation considering the setting of thresholds in 

which we obtained a more balanced relationship between the values of precision 

and recall, that is, 5% of IoU and 70% of Score, together with the best F-score 

achieved. Table 8 shows the ten best results achieved based on validation using the 

new experiments' precision, recall, and f-score metrics. The table also compares the 

result obtained in the test. Overall, all experiments using the proposed augmentation 

method had better results. 
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Figure 25: Single instance not detected by the network after generating synthetic 

data of selected stamps. Highlighted in yellow color the problematic stamp 

instance. Highlighted in black color an example of the same type without any 

problems. 

 

Table 8:  Comparison between the previous and new the results achieved for 

validation and test sets using the proposed method for Instance Augmentation. 

Set Experiment Precision Recall F-score 

Validation 

Experiment 0 (no 

augmentation) 
96.2 96.2 96.4 

Experiment 1 98.3 98.3 98.3 

Experiment 2 98.7 97.9 98.3 

Experiment 3 97.5 98.7 98.1 

Experiment 4 97.5 98.7 98.1 

Experiment 5 97.9 97.9 97.9 

Experiment 6 98.3 97.4 97.8 

Experiment 7 98.3 97.4 97.8 

Experiment 8 97.4 97.9 97.6 

Experiment 9 97 98.3 97.6 

Experiment 10 97 97.9 97.4 

Test 
No augmentation 98 92.1 95 

augmentation 97.3 93.8 95.5 
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6. Discussion 

6.1. Stamp Detection 

We evaluate different situations in the test set to perform a detailed analysis 

of the network's performance. We consider three different points of view, illustrated 

in Figures 26, 27 e 28. The manual marking is the highlight in red and the network 

marking in green. In lilac and blue colors, we highlight undetected stamps and false 

positives detected by the network, respectively. Stamps with only green marking 

mean 100% of IoU. 

 
(a) Illustration of a page where the network 

detects multiple stamps of different 
geometric shapes, and similar types such 
as the stamps heb292, heb294, and 
heb294r. 

 

 
(b) Illustration of a page where the 

network 
detects stamps with geometric 
shapes, 
overlays/occlusions, and low visual 
quality. 

 
(c) Illustration of a page where the network detects stamps with the presence of 

overlapping and distant locations. 

Figure 26: First point of view of case studies of the application of the neural network 

for stamp detection, where we highlight cases of success within the context of some 

simple (shape, intra-similarity, location, multiplicity) and complex 

(overlap/occlusion, quality, and rotation) features in the dataset. 

 

In Figure 26, we illustrate case studies of the application of the neural 

network for stamp detection, where we highlight cases of success within the context 

of some simple (Figure 26(c) - shape, intra-similarity, location, multiplicity) and 

complex features in the dataset (Figures 26 (a) and (b) - overlap/occlusion, quality, 
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and rotation). Another particular case is the successful hexagon-shaped stamps 

detection (Figure 26 (c)). Despite this stamp group having a low number of types 

in the dataset, it has two similar features to the circular group: the proximity 

between the shape and similar internal texts. This fact explains the success in 

detecting hexagon-shaped stamps. 

In our second analysis, we compare the application of the two thresholds for 

Score in the test group. Figure 27 illustrates 2 cases of pages applying different 

thresholds of scores. This figure presents the same conclusions obtained from Table 

3. That is, when we increase the score threshold, the precision increases. However, 

if we choose to be more flexible and consider stamps where the network scored 

lower, we increase the recall at the cost of decreasing the precision. This can be 

observed by comparing Figure 27(a) against Figure 27(c) and Figure 27(b) against 

Figure 27(d). 

 
(a) 

 
(b)  

 

  
(c)  

  
(d)  

Figure 27: Second point of view of case studies of the neural network application 

for stamp detection, where we highlight divergences between the thresholds applied 

in the test group. Cases (a) and (b) consider scores above 90% and cases (c) and (d) 

consider scores above 70%. 

 

In the last point of view of case studies, we observe some cases of stamp 

types that our model has difficulty detecting. The first case consists of stamps that 

do not have surrounding or internal geometric shapes (Figures 28(a) and Figure 

28(c)), which can be easily confused with a background (example: other texts 
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printed on pages). The second case consists of triangular-shaped stamps. However, 

stamps with the shape "triangle" have a low number of types and instances within 

the dataset, which also are distributed between the three sets: training, testing, and 

validation. Furthermore, there is no other stamp type in which the "triangle" shape 

has a high degree of similarity for take feature sharing. 

Figure 28 (c) points to some cases. This Figure highlights 3 specific 

instances plotted using our Deep Explainability method using PCA (Section 4.4.1). 

These 2 cases do not have examples in the training or validation set. The default 

behavior we observe is that cases with few examples or low similarity with other 

stamp classes tend to appear further away in the graph. Figure 28(c) also illustrates 

that the highlighted cases are present as examples of undetected instances in Figures 

28 (a) and (d). 

 
(a) 

 
(b) 

 

 
 (c) 

 

 
(d) 

Figure 28: Second point of view of case studies of the application of the neural 

network for stamp detection, where we highlight cases of types in which the 

network had difficulties in detecting stamps. 
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Finally, we also observe cases in which our model mistook a few 

manuscripts containing the string "heb" with stamps, as shown in Figure 28(b). We 

believe that it occurs due to the large number of stamps that have this string 

internally. Stamps containing the string "heb" are in the most stamp types within 

the dataset (circle, rectangle, triangle, or square). We observe that the network has 

learned not only the geometric features but also the textual patterns that belong to 

stamps. 

6.2. Instance Augmentation 

The proposed method of generating synthetic stamp data based on instance 

augmentation showed promising and satisfactory results. The most difficult types 

of stamps were selected to generate data and perform the experiments. The 

methodology had problems detecting only one type of stamp selected in the 

experiments performed. For this case, new experiments are conducted.  

Table 9 presents the Score metric in detecting each instance of the type of 

stamp that the network failed in detection. The higher the score, the better the 

network confidence in predicting a stamp.  We evaluated the use of more pages for 

generation and the influence of different combinations of transformations in the 

instances. The network confidence when detecting the stamp’s instances in which 

the detection failed is indicated for each experiment scenario. 

The results obtained show that applying only rotation in synthetic instances 

does not significantly improve the results. Best results are achieved by applying 

data transformations through morphological operations. Overall, the morphological 

erosion operation proved to be the most promising. Increasing the number of pages 

brought significant improvements in most experiments.  

The new investigations conducted did not reach the detection of the specific 

instance that has missing parts. The numbering contained in the stamps are striking 

characteristics, and the network is not trained using instances without the 

numbering that make up the body of the stamp. This fact explains why increasing 

the number of pages, or any combination of data transformations does not change 

the network's trust for this instance. In a real scenario, the correct thing to do is to 

consider this case as invalid since the omission of the check digit should not occur. 

Another point to consider is related to the number of instances generated. 

We show that it may be necessary to have a more significant number of instances 

for certain types of stamps. The following factors can explain this fact. First, some 

types of stamps share characteristics, such as shape or strings, which one of the 

main advantages of deep networks: the sharing of features. Thus, the network may 

not have difficulties detecting a new type of stamp or one with few instances if it is 

like some dense base training. A small additional amount can be evaluated if data 
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generation is needed to improve results. 

Table 9: Score in detecting each instance of the type of stamp that the network failed 

in detection. 

 10 pages 20 pages 

Transformation/ 

Instance 

    

Dilatation 11.9% 0% 95.2% 0% 

Erosion 95.4% 0% 95.7% 0% 

Rotation 9.0% 0% 6.3% 0% 

Dilatation, Erosion 9.5% 0% 87.0% 0% 

Dilatation, Rotation 5.2% 0% 75.2% 0% 

Erosion, Rotation 52.8% 0% 44.4% 0% 

Dilatation, Erosion, Rotation 27.5% 0% 97.8% 0% 

 

However, as shown in Table 9, cases may require a more considerable 

amount of synthetically generated data, as it belongs to a type of stamp that 

configures itself as an outlier: there is no shape to share, and the digits can be easily 

confused with typed texts. Another case that would require a more significant 

number of generated instances is the stamp that presents a triangular shape in Figure 

28 (a). This type does not have any example in the training base or other similar 

classes, so it was not possible to perform experiments with this specific type. 

Therefore, the number of instances generated by type must account for prior 

knowledge of the dataset, considering characteristics such as the number of groups 

and instances that share certain features and the realization and evaluation 

experiments. The generation must have a balanced character since a generation 

tending to infinity can cause the data to be unbalanced concerning certain types of 

stamps, leading the learning to a bias about the majority type. 

Table 8 presents the new results obtained for the validation and test groups 

after applying the proposed data augmentation method. The Table shows that 

overall, the network obtained improvements with greater emphasis on the 

validation group. This result is expected for several reasons. First, the experiments 

analyze the results obtained using the validation group. Although we hit these same 

types in the test group, we cannot guarantee that other types of stamps will not be 
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harmed concerning the selected training period. The ideal scenario is to generate 

synthetic data balancing the distribution of all types of stamps. 

Another justification is that the types of stamps for generating synthetic data 

were selected based on our knowledge of the validation basis. This makes it 

possible to target the network better to hit the types contained in the validation base. 

However, it is still very hard to successfully detect types of stamps in the test base 

that are not contained in either the validation set or the training set by generating 

synthetics. However, this work shows the feasibility of generating synthetic 

instances for the types of stamps in which the network fails to detect in controlled 

environments. The method even allows commercial applications to detect stamps 

in documents with types of standardized stamps. 

6.3. Comparison with Related Works 

In this section, it is presented a comparison of the results of this work with 

other related works. These are shown in Table 10, that presents information about 

the databases used by other researchers and the performance metrics about their 

methods.  

It is difficult to compare the works due to the variability in the databases 

used, the number of classes, distribution of instances by classes, and metrics used.  

However, we can observe that our work has several highlights concerning 

related works. First, we provide information about the number of types present in 

our dataset. Our dataset comprises a quantity of types much higher than the number 

of types in the related works that provide this information. This shows how difficult 

our task is. We use a reasonable number of instances compared to the other works. 

However, our work has a much lower instance/class ratio, another point that shows 

our task's difficulty. 

We build our database from documents that leading with information, 

acquisition process, and distributions from a world real business scenario. Overall, 

even when looking at more metrics we achieved superior values. Finally, we are 

the only work that provided a method for dataset augmentation based on Instance 

Augmentation.  
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   Table 10: Precision and recall values achieved after applying the data 

augmentation proposed method. 

Authors Object Types Instances AP50 Precision Recall Acc. 

[4] Stamp 12 127    92 

[3] Stamp 19 530  100 20  

[1] Stamp  400  84 83  

[74] Stamp    22.54 97.61  

[2] Stamp   89.6    

[27] Stamp   89.2    

[75] Stamp  918 81   97 

[28] Logo 32 6810 65.8    

[29] Logo 32 3940 66.35    

[30] Logo 32 2240 66.9 92.8 96.5  

Ours Stamp 251 1878 92.8 98 92.1  

Ours 

(augmentation) 
Stamp 251 1878 94.3 97.3 93.8  
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7. Conclusion 

This work presented a computational method capable of fully automating 

the stamps detection in scanned documents. First, we described a detailed procedure 

for the exploratory dataset analysis. Second, we proposed an innovative greedy 

strategy to generate training data that considers issues with dataset imbalance. We 

presented the successful application of transfer learning and fine-tuning techniques 

using a pre-trained deep network over a complex real-world dataset. The results 

demonstrate the importance of dataset analysis to guide the choice of object 

detection framework and the data splitting strategy proposed in this work. 

The neural network could generalize knowledge to up to 3x more classes 

than those present during training through our method. The algorithm achieved up 

to 99% precision, 94% recall, and 95.0% average f-score in the final test procedure. 

We can conclude that the developed solution can successfully improve the 

efficiency and accuracy of an otherwise manual and labor-intensive verification 

process. 

This work paves the way for additional research in object detection, 

imbalanced datasets, and stamp recognition. Future work could apply our proposed 

dataset analysis method to improve the performance of learning algorithms in other 

domains. Another investigation would be to generate synthetic data using image 

processing and Siamese networks to improve dataset imbalance. We also intend to 

continue this research to recognize different types of stamps using one or more 

networks for different classes and/or groups of classes. 

This work also presents a methodology for generating synthetic stamp data 

on pages based on instance augmentation. We combine morphological operations, 

noise addition, and rotation operation. The method first pinpoints the most complex 

cases for the trained model to detect. After analyzing and selecting the most difficult 

instances, the method generates instances, pixel by pixel, through image processing 

algorithms. The method is successful in detecting all selected stamp types. 

New experiments were performed for the more complex stamp type to 

evaluate the combinations of the transformations applied to the instances and the 

increase in the number of pages in the generation. Overall, the method achieved 

better results by increasing the number of pages. We note that the least essential 

operation among those evaluated for synthetic data generation is the rotation 

operation. A single instance was not detected. However, due to the instance has 

uncharacterized, the ideal is it be considered invalid and disregarded in future 

experiments. The final evaluation showed that the method works, and instances 

should be generated in adequate quantities for the type of stamp chosen. Synthetic 

instances must conform to the selected stamp type. 
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Appendix 1 

 

1. Supervised Training 

Supervised learning algorithms are learning algorithms that learn to 

associate some input with some output, given a training set of examples of x inputs 

and y outputs [70]. The algorithm receives data formed by expected input and 

output pairs and automatically looks for a function that maps the inputs to their 

respective outputs. The search is adjusted through feedback signals resulting from 

measurements that determine the distance between the current output of the 

algorithm and the expected output [69]. 

The literature categorizes  supervised learning problems mostly are 

categorized into "regression" and "classification" problems [34, 35]. In a regression 

problem, the algorithm seeks to predict the results on a continuous output, which 

means that it is looking for a function that maps the input variables to some 

continuous function. In a classification problem, the algorithm seeks to predict the 

results in a discrete output. In other words, this is looking for a function that maps 

input variables into discrete categories. 

1.1. Linear Regression 

The primary objective of regression analysis is to calculate a model that tries 

to represent the underlying relationship between continuous (dependent) variables 

and independent (explanatory) variables. Linear regression is a type of regression 

that uses a linear function to predict this relationship [76].  

The linear regression is considered parametric in nature which means that it 

makes assumptions about the dataset. These assumptions are as follows: 

• The dependent variables (y) and independent variables (x) have a 

linear and additive relationship. The term "linear" refers to the fact 

that the change in y caused by a unit change in x is constant. The 

term "additive" refers to the fact that the influence of x on y is 

unaffected by other variables. 

• No correlation between x is permitted. Correlation between x result 

in multicollinearity. When variables are correlated, the model's 

ability to discern the true influence of x on y becomes extremely 

challenging. For example, the size of a house in meters and feet are 

correlated. 
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• The error terms ϵ must have constant variance. When the variance 

of ϵ, monitored over different values of an independent variable (x), 

is non-constant, we say that the dataset suffers from 

Heteroskedasticity. The Figure 29 shows am example of dataset with 

Heteroskedasticity. 

• The ϵ must be uncorrelated, i.e., the error ϵt at the time t cannot be 

used to determine the error ϵt+1 at the time t+1. The presence of 

correlation in error terms is called Autocorrelation. Autocorrelation 

drastically affects the regression coefficients and standard error 

values since they are based on the assumption of uncorrelated error 

terms. 

• The distributions of y and ϵ must be normal. 

 

Figure 29: Example of a dataset with Heteroskedasticity. Adapted from: [89]. 

 

Due to the presence of these assumptions, linear regression is quite 

constraining. That is, a linear regression model's performance depends on the 

fulfillment of these assumptions. If the dataset satisfies them, the model produces 

satisfactory results. Otherwise, it struggles to achieve good results.  

The literature classifies linear regression into two types: univariate or simple 

linear regression and multivariate or multiple linear regression [37-38]. They will 

be explained in more detail in the following sections. 

1.1.1. Univariate Linear Regression 

 

The simplest type of linear regression is univariate linear regression. As the 

name univariate suggests, it is used to determine the relationship between a single 

independent variable and a single dependent variable [78]. In this case, the model 

that represents the relationship between these variables is a linear function. 

Given a dataset of m samples, where the ith sample is composed of a single 

DBD
PUC-Rio - Certificação Digital Nº 1721472/CA



87 

 

independent variable xi and a single dependent variable yi that varies as xi does, 

the univariate linear regression model is as follows: 

 
𝛼 + 𝛽 × 𝑥𝑖 + 𝜖𝑖 (19) 

where:  

• Yi is the estimated value of the ith sample of the dataset. It should 

be as close as possible to the real value of the dependent variable yi 

• α is known as the constant term or the intercept (also is the measure 

of the y-intercept value of the regression line) 

• β is the coefficient term or slope of the intercept line 

• 𝜖𝑖 is the error: a random component of the regression handling the 

residue, i.e. the lag between the estimation and actual value of the 

dependent parameter.  

α and β are known as coefficients. That said, 𝑌𝑖 is estimated by two parameters: 

1. The core parameter term, not random in nature, 𝛼 + 𝛽 × 𝑥𝑖. 

2. The random component, 𝜖𝑖. 

After hypothesizing that y is linearly related to x, the next step would be 

estimating the parameters α and β. By doing this, we try to make Y the best possible 

estimate of the real data y. By mentioning the “best possible” and not the “perfect” 

estimate, we acknowledge that there is an error (ϵ) in this estimation. 

It is important to know that error (ϵ) is an inevitable part of the prediction-

making process. No matter how powerful the algorithm we choose, there will 

always remain an irreducible error. Although we can't eliminate the ϵ term, we can 

still try to reduce it to the lowest.  

To do estimate the best α and β, and thus reduce ϵ to a minimum, the first 

step is to calculate the prediction error, i.e a measure of how different the estimated 

values 𝑌𝑖 from the real values 𝑦𝑖 is. A common measure is the sum of squares of 

error of the estimation Y, i.e. sum of squares of ϵ𝑖 values. The equation is as 

follows: 

 

𝐸(𝛼, 𝛽)  =  ∑ 𝜖𝑖
2  = ∑(𝑌𝑖  −  𝑦𝑖)

2

𝑛

𝑖=1

 (20) 

The prediction error E must minimized so that the estimated values Y must 

be as close as possible of the real values y. This is achieved by finding the best 

parameters α and βi. So how do we find the best parameters? There are several 

techniques to do this, but for the means of the method of this doctoral dissertation 
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the optimization technique used to minimize the prediction error is the gradient 

descent. The gradient descent method will be explained in the neural networks 

section. 

1.1.2. Multivariate Linear Regression 

A dependent variable guided by a single independent variable is usually not 

enough in real-world scenarios. For example, if we want to estimate the price of a 

house, we won’t use a single variable like the number of rooms. There are other 

factors like how old the house, its size, location, etc. For such scenarios, we have 

the multivariate linear regression.  

The multivariate linear regression is quite like the univariate linear 

regression model, but with multiple independent variables contributing to estimate 

the dependent variable. Hence, there are multiple coefficients to determine and 

more complex computation due to the added variables.  

The equation of multivariate linear regression is not so different from the 

univariate one, but it considers more independent variables. It can be represented 

by: 

𝑌𝑖 = 𝛼 + 𝐵1𝑥𝑖
(1)

+ 𝐵1𝑥𝑖
(2)

+. . . +𝐵𝑛𝑥𝑛
(𝑛)

 (21) 

where: 

• 𝑌𝑖 is the estimate of 𝑖𝑡ℎ sample of the dependent variable y 

• 𝑥𝑖𝑗 denotes the 𝑗𝑡ℎ independent variable/feature of the 𝑖𝑡ℎ sample of the 

dataset  

• n is the number of independent variables 

Similarly, the cost function is as follows,   

𝐸(𝛼, 𝐵1, . . . , 𝐵𝑛) =
1

2𝑚
 ∑(𝑦𝑖  −  𝑌𝑖)

𝑚

𝑖=1

 (22) 

As we can see, the equation or the cost function is a simple generalization 

of the univariate linear regression. Now the error must be minimized to find the best 

estimate of Y. As explained in the section of univariate linear regression, the neural 

networks section will explain in more details how this is done using gradient 

descent. 

1.2. Classification 

The goal in classification is to take an input vector 𝑥 and assign it to one of 
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𝐾 discrete classes 𝐾 where 𝐾 = 1,… , 𝐶. The input space is divided into decision 

regions called decision boundaries [34]. For now, we will focus on the binary 

classification problem in which a single target t ∈ {0, 1} such that t = 1 represents 

class 𝐶1 and t = 0 represents class 𝐶2. In other words, the classification model 

predict discrete class labels using posterior probabilities that lie in the range y = (0, 

1) [34]. To achieve this, we consider a generalization of the model described in 

Equation 1, in which we transform the linear function of w using a nonlinear 

function 𝜑(·) so that: 

 
𝑦(𝑥) = 𝜑( 𝑦(𝑥, 𝑤) ) (23) 

where 𝑦(𝑥) is the probability of an input 𝑥 belongs to class 𝑘 = 1. 

1.3. Train, validating and test sets 

The central challenge in machine learning is that we must perform well on 

new, previously unseen inputs—not just those on which our model was trained. The 

ability to perform well on previously unobserved inputs is called generalization 

[70]. However, after just a reasonable number of epochs, machine learning models 

began to overfit the present data, and their performance on never-before-seen data 

started stalling (or worsening) compared to their performance on the training data. 

It is the reason that training data is unable to evaluate the model. 

Therefore, the desirable dataset generating method uses a probability 

distribution to create the training and test data subsets. We commonly establish a 

series of assumptions referred to as the i.i.d assumptions. These assumptions 

include that each dataset's examples are unrelated to one another and that the train 

and test sets are equally dispersed, taken from the same probability distribution 

[70]. After that, the machine learning algorithm optimizes the model using training 

data, and the model final is evaluated using the test data. Under this process, the 

factors that determine the model’s performance are its ability to make the training 

error small and make the gap between training and test error small [70]. 

However, the model tuning process involves optimizing additional machine 

learning algorithms settings called model hyperparameters. Hyperparameters 

settings control the behavior of the learning algorithm, but they are not adapted 

automatically. Adjusting hyperparameters on the training set is not desirable 

because the learning process always chooses the maximum possible model 

capacity, resulting in overfitting. Additionally, tuning hyperparameters model 

several times based on performance's model test set can quickly result in overfitting 

to this set, even though the model is never directly trained on it. This phenomenon 

is known as information leaks because when the hyperparameters are adjusted 
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based on the model's performance on the evaluation set, some information about 

the evaluation data leaks into the model [69].  

Simple hold-out validation solves this problem, which a portion of the 

training set is separated for model evaluation on the hyperparameters adjustment 

process. This new division must adhere to the same guidelines as the previous one. 

Thus, evaluating a model using this strategy divides the available data into three 

sets: training, validation, and test. Each of the three sets must be chosen 

independently: The validation set must be different from the training set to obtain 

good performance in the optimization stage and, and the test set must be different 

from both to obtain a reliable estimate of the valid error rate [62]. Once the model 

is ready, it is evaluated one final time on the test data [69]. 

1.4. Error Analysis 

Model evaluation provides assessing how appropriate the model is to gain 

insight into the real-world system. Therefore, system designers have to strike the 

right balance between learning the training set and minimizing the difference 

between training and the test errors [79].  The capacity of a model is its ability to 

accommodate a wide range of functions. Models with limited capacity may struggle 

to fit the training set, while models with high capacity may be overfitted by 

memorizing training set features that are not useful on the test set. 

Two central challenges in machine learning are underfitting and overfitting, 

and we control whether a model is more likely to overfit or underfit by altering its 

capacity. Underfitting occurs when the model cannot obtain a sufficiently low error 

value on the training set. Overfitting occurs when the training and test errors gap is 

too large [70]. The model is underfitting at the beginning of training because the 

algorithm has no model fit patterns in the training data. After a certain number of 

iterations, the model starts to memorize all the training data patterns, and 

generalization stops improving: the model is starting to overfit [69]. 

Overfitting and underfitting are often understood in the trade-off between 

bias and variance in machine learning. To improve the performance of the algorithm 

further, we need to be able to reduce the bias while at the same time also reducing 

the variance. The bias is the error caused by the model's simplifying assumptions, 

whereas variance increases with the model complexity. Therefore, the model with 

the optimal predictive capability is the one that leads to the best balance between 

bias and variance, which gives the smallest average training and generalization 

error at the same time [42–44, 71]
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2. Artificial Neural Networks 

2.1. Introduction 

The human nervous system contains cells, which are referred to as neurons. 

The neurons are connected to connecting regions called synapses. The strengths of 

synaptic connections often change in response to external stimuli, and these 

changes are how learning takes place in living organisms. Artificial networks are 

models designed as abstractions of brain theory in understanding different aspects 

of biological neural network learning. An artificial neural network computes a 

function of the inputs by propagating the computed values from the input neurons 

to the output neuron(s) and using the weights as intermediate parameters. Learning 

occurs by changing the weights connecting the neurons [42-43, 79]. 

 The most straightforward neural network is referred to as the perceptron. 

This neural network contains a single input layer and an output node. We identify 

three essential elements of the neural model: (1) synapses are characterized by 

weight or strength of its own; (2) linear combiner sum the input signals, weighted 

by the respective synaptic strengths; (3) activation function limits the amplitude of 

the output of a neuron [42-43]. Figure 30 illustrates an example of a neural model. 

 

Figure 30: Model of an artificial neuron. 

 

The signal 𝑥𝑗 is the input signal 𝑥 of the synapse 𝑗 connected to neuron 𝑘. 

The 𝑢𝑘 value is the linear combination of each input signal multiplied by 

respectively synaptic weight 𝑤𝑘𝑗. The result of the linear combination is called 

potential activation. 𝜑𝑘(·) is the activation function in the neuron k, which control 

the output behavior. And 𝑦𝑘 is the final output signal of the neuron. In mathematical 

terms, we may describe the neuron model as: 
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𝑢𝑘 = ∑𝑤𝑘𝑗

𝑚

𝑗=1

𝑥𝑗 (24) 

and: 

 𝑦𝑘 = 𝜑𝑘(𝑢𝑘 + 𝑏𝑘) (25) 

A bias 𝑏𝑘 applies the effect of increasing or lowering the potential activation 

of neuron, modifying 𝑢𝑘 by an affine transformation in the manner illustrated in 

Figure 28. We can observe several that Equation 21, in Linear Regression Section, 

and Equation 23 are equivalents; they perform the same computation. We can 

observe it also in Equations 22 and Equation 24. Artificial neurons can compute 

regression or classification and choosing the appropriate activation function is 

enough for it.  

 

Figure 31: Illustration of bias modifying a potential neuron activation by an affine 

transformation. 

 

Perceptron is the simplest artificial network, which k = 1. It is worth noting 

that the perceptron has two layers, even though the input layer does not do any 

calculation and merely communicates the feature values. The number of layers in a 

neural network does not include the input layer. Because the perceptron has just 

one computational layer, it is classified as a single-layer network [32]. 

2.2. Activation Function 

The differentiable activation functions enabled the use of the 

backpropagation method for computing the gradient of the error function 

concerning the weights, which enabled the use of the gradient descent algorithm to 

compute the optimal weights [63]. Different choices of activation functions can be 

used to simulate different types of models used in machine learning. If the target 

variable to be predicted is real, then it makes sense to use the identity activation 
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function, and the resulting algorithm is the same as regression. If it is desirable to 

predict a probability of a binary class, it makes sense to use a sigmoid function for 

activating the output node so that the prediction ŷ indicates the probability that the 

observed value, 𝑦, of the dependent variable is 1 [32]. 

The most basic activation function 𝜑𝑘(·) is the identity or linear activation 

often used in the output node when the target is a real value (regression tasks). The 

sigmoid activation outputs a value in (0, 1), which helps perform computations that 

should be interpreted as probabilities (binary classification tasks). The relu 

activation the activation is thresholded at zero, but is the activation function most 

used in neurons of more complex networks because was found a greatly accelerated 

time (e.g. a factor of 6) in the converge of these networks [42, 45, 70]. 

Taking 𝑣𝑘 =  𝑢𝑘 + 𝑏𝑘 for simplifications, the identity, sigmoid and relu 

activation functions can be expressed the Equation 25, 26, and 27, respectively. The 

Figures 32(a), 32(b), and 32(c) illustrate the behavior these functions. 

 
𝜑𝑘(𝑣𝑘) = 𝑣𝑘 (26) 

 

𝜑𝑘(𝑣𝑘) =
1

1 + 𝑒−𝑣𝑘
 (27) 

 
𝜑𝑘(𝑣𝑘) = max (0, 𝑣𝑘) (28) 

 
(a) 

 
(b) 

 
(c) 

Figure 32: (a) Identity activation function. (b) Sigmoid activation function. (c) Relu 

activation function. 
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2.3. Loss Function 

Regression and classification algorithms need to adjust their params when 

the input processing result is not equal to the output target value. These machine 

learning algorithms calculate the difference between input and respectively 

desirable output and use it for parameter adjusting to accomplish the adjusts. The 

goal is to minimize the error obtained. The algorithm calculates the error through 

functions called loss, error, or cost function [43, 70-71].  

The minimum for which the value of the error function is smallest is called 

the global minimum, while other minima are called local minima [71]. The loss 

function needs are continuously differentiable concerning the weight vector w, and 

this should have few or no local minima and be a convex function [33]. Loss 

function ability the machine algorithm to measure its performance and decide how 

it evaluates its parameters. The loss function localization on artificial neural 

network parameters adjusting is illustrated in Figure 33. 

There are many other possible choices of error function which can also be 

considered, depending on the application. For regression problems, the fundamental 

goal is to model the conditional distribution of the output variables conditioned on 

the input variable. Therefore, the use of a sum-of-squares error function is motived. 

For classification problems, the goal is to model the posterior probabilities of class 

membership conditioned on the input variables. For it, more appropriate error 

functions can be considered [71]. 

 

Figure 33: (a) Identity activation function. (b) Sigmoid activation function. (c) Relu 

activation function. 

 

For example, consider a simple linear regression task with numeric outputs. 

It requires a simple sum-of-squares error function for an input with prediction 𝑦 

and target 𝑡. Let us take the Equation 28 in a simplified form, and we calculate it 
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for an entire dataset as: 

 

𝐸 =  
1

2N
 ∑(𝑦𝑛

𝑁

𝑛=1

− 𝑡𝑛)2  (29) 

On binary classification problems, a standard loss function used is cross-

entropy. Cross-entropy is a quantity from the field of Information Theory that 

measures the distance between probability distributions or, in this case, between the 

ground-truth distribution and the predictions [69]. However, it is essential to 

mention that different choices of error function arise from different assumptions 

about the form of the conditional distribution [71]. The more suitable may be 

chosen according to the task.  

Using cross-entropy loss by an instance n, we can calculate the error as: 

 

 
𝐸𝑛 = {

− log(𝑦𝑛) 

− log(1 − 𝑦𝑛)

𝑖𝑓 𝑡𝑛 = 1

𝑖𝑓 𝑡𝑛 = 0
 (30) 

 

The Figure 34(a) and 34(b) illustrate the behavior of first and second 

conditions, respectively. The intuition is that when 𝑦𝑛 = 0 but 𝑡𝑛 = 1 the resulting 

cost is large, and little if both are equals. The same logic is true when 𝑦𝑛 = 1 but 

𝑡𝑛 = 0.  

 
(a) 

 
(b) 

Figure 34: Cross entropy conditions. (a) 𝒕𝒏 = 𝟏. (b) 𝒕𝒏 = 𝟎. 

 

For all samples of a dataset D, we can combine these two conditions as: 

 

𝐸 =  
1

𝑁
 [∑𝑡𝑛

𝑁

𝑖=1

log 𝑦𝑛 + (1 − 𝑡𝑛) log(1 − 𝑦𝑛)] (31) 

  

  =  

       (    )
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The intuition this way is that if  𝑡𝑛 = 0, only the second term of the sum 

influences in the loss. If  𝑡𝑛 = 1, only the first term of the sum influences in the 

loss.  

2.4. Hyperparameters Tuning 

One challenging and time-consuming step of designing neural networks is 

defining and tuning their hyperparameters to find the optimal configuration. 

Hyperparameters are settings that can be used to control the behavior of the learning 

algorithm. Its values are adapted manually or by external algorithms since it is not 

appropriate to learn on the training set because it is challenging to optimize  [70]. 

Networks designers spend many times repeatedly modifying the model, train it, 

evaluating validation data (not the test data, at this point), modifying it again, and 

repeating until the model is as good as it can get. The process of optimizing 

hyperparameters typically looks like this [69]. 

• Choose a set of hyperparameters; 

• Build the corresponding model; 

• Fit it to the training data and measure the final performance on the 

validation data; 

• Choose the next set of hyperparameters to try; 

• Repeat; 

• Eventually, measure performance on your test data. 

It is essential to observe that hyperparameters should not be tuned using the 

same data used for gradient descent. Instead, a portion of the data is held out as 

validation data, and the model's performance is tested on the validation set with 

various choices of hyperparameters. This type of approach ensures that the tuning 

process does not overfit the training data set (while providing poor test data 

performance)[32]. Some common hyperparameters to set are:  

▪ Learning rate 

It controls the weights update step. When it is small, the transient response 

of the algorithm is overdamped. When employing high learning rates, a positive 

feedback loop might occur in which big weights cause large gradients, which then 

cause a significant update to the weights. When it exceeds a specific critical value, 

the algorithm becomes unstable (i.e., it diverges) [43, 70]. 

Another adverse event where a high learning rate is used is the problem of 

dying neurons on relu activation functions. In such a case, the pre-activation values 

of the relu can jump to a range where the gradient is 0 irrespective of the input. In 
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other words, high learning rates can “knock out” relu units. In such cases, the relu 

might not fire for any data instance. Once a neuron reaches this point, the loss 

gradient concerning the weights just before the relu will always be zero. In other 

words, the weights of this neuron will never be updated further during training [32]. 

▪ Momentum 

Momentum has beneficial effects on the algorithm learning behavior, 

addressing local minima and convergence speed. Local minimum can occur 

because of small learning rate, small but consistent gradients, or noisy gradients, 

and in the face of high curvature. The momentum term preventing the learning 

process from terminating in a local minimum by moving each step based not only 

on the current slope value but also on the past updates. By accumulating an 

exponentially decaying moving average of past gradients, the momentum term 

sometimes acts as a friction parameter, smoothing zigzagging moves [42-43, 69- 

70]. 

Therefore, the learning process is moment-based is better because it gives 

greater preference to consistent directions over multiple steps (horizontal steps) and 

penalizes useless “sideways” oscillations (steep steps). This allows the use of more 

significant steps in the correct direction without causing overflows or “explosions” 

in the lateral direction, resulting in an accelerated learning process [32]. Equation 

31 can express the weights update using gradient descent with momentum: 

 𝑉𝑛 =  𝛽𝑉𝑛−1 + (1 − 𝛽)𝑑𝑤 

𝑊 = 𝑊 −  𝛼𝑉𝑛 
(32) 

▪ Regularization 

Regularization is one of the central concerns of machine learning, and it 

consists of any modification we make to a learning algorithm intended to mitigate 

overfitting [70]. In general, it is more desirable to use complex models (e.g., more 

extensive neural networks) with regularization rather than simple models without 

regularization. Weight regularization is a type of regularization that constrains on a 

network's complexity by forcing its synaptic weights to take values close to zero 

[43, 69]. It penalizes large (absolute) values of the parameters more than small 

values [32].  

This work uses a particular weight regularization called weight decay or L2 

regularization. The cost added is proportional to the square of the value of the 

weight coefficients (the L2 norm of the weights) [69]. The λ value is used to control 

the strength of weight decay, which acts as a capacity hyperparameter. Increasing 

or decreasing the value of λ controls the complexity of the model leads to a simpler 
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model. This parameter provides greater flexibility by providing a tunable parameter 

chosen in a data-driven manner [32].   

This way we can update the Equations COST by: 

 

 

𝐸 = 
1

𝑁
 [∑𝑡𝑛

𝑁

𝑖=1

log 𝑦𝑛 + (1 − 𝑡𝑛) log(1 − 𝑦𝑛)] + 𝜆 ∑𝑤𝑗
2

𝐷

𝑗=0

 (33) 

where D is the dimensionality of network parameters, 𝑤𝑗 is the value of parameter 

𝑗, and λ is the control hyperparameter of regularization. For any given weight in the 

neural network, the updates are defined using gradient descent: 

 𝑤𝑗 = 𝑤𝑗(1 −  𝛼𝜆) −  𝛼𝑑𝑤𝑗 (34) 

   

2.4.1. Batch Normalization 

Batch normalization is a method of adaptive reparameterization, motivated 

by the difficulty of training profound models, and can be applied to any input or 

hidden layer in a network. This method can address the vanishing and exploding 

gradient problems and reduce covariate shifts. In covariate shift, the parameters 

change of the hidden inputs change during training from early layers to last layers, 

and it causes slower convergence during training because the training data for later 

layers are not stable. Bach Normalization adaptively normalizes data even as the 

mean and variance change over time during training. It works by internally 

maintaining an exponential moving average of the batch-wise mean and variance 

of the data seen during training [42, 69-70]. 

In batch normalization, the idea is to add additional “normalization layers” 

between hidden layers that resist this type of behavior by creating features with 

somewhat similar variance [32]. According to Goodfellow et al. [70], Let H be a 

mini batch of activations of the layer to normalize. To normalize H, we replace it 

with:  

 
𝐻′ = 

𝐻 − µ

σ
 (35) 

 

where µ is a vector containing the mean of each unit and σ is a vector containing 

the standard deviation of each unit. Within each row, the arithmetic is elementwise, 

so 𝐻𝑖,𝑗 is normalized by subtracting µ𝑗 and dividing by σ𝑗. The rest of the network 

then operates on 𝐻′ in the same way that the original network operated on H. At 

training time,  
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µ =  

1

m
∑𝐻𝑖 ,

𝑖

 (36) 

 

And 

 
σ =  √𝛿 + 

1

m
∑ (𝐻 − µ)𝑖

2 ,

𝑖

 (37) 

 

where δ is a small positive value such as 10−8 imposed to avoid encountering the 

undefined gradient of √𝑧 at z = 0. Crucially, we back-propagate through these 

operations to compute the mean and the standard deviation and apply them to 

normalize H. At test time, µ and σ may be replaced by running averages collected 

during training time. This allows the model to be evaluated on a single example 

without using definitions of µ and σ that depend on an entire mini batch [70].
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Appendix 2 

 

1. Extra Experiments 

We performed new tests combining more complex architectures and 

other cost functions to assess whether the latter could improve the results. We 

keep the rest of the network parameters unchanged. The L2 and GIOU cost 

functions did not improve the results in our experiments. Regarding the new 

architectures used, we experimented with deeper architectures based on 

resnet100, cascade architectures, and inceptions modules (configuring 

cascade and resnexts in Table 3, respectively). The literature points out that 

waterfall architectures can improve results in an object detection task by 

evaluating different IoU thresholds between network predictions and manual 

markings [65]. The inceptions modules [80] combines the extraction of 

different resolutions from feature maps. The optimized combination of these 

modules offers greater power to extract features and, at the same time, reduce 

the number of parameters to be trained by the network. 

We believe that the L2 cost function did not bring better results due to 

the complexity of our database, especially concerning the different cases of 

overlap and the variety of classes with few samples, which are configured in 

outliers. According to [65], the L2 cost function is not a good choice when there 

are outliers in the database. The GIOU cost function was designed for the 

network to evaluate better cases in which there is no overlap between the 

network predictions and the manual markings belonging to the dataset [81]. 

However, we did not obtain better results using this metric. Regarding the 

other architectures tried, the best result obtained only 2% more than our 

previous result. 

Derformable Transformers [82] is an end-to-end object detector that is 

efficient and fast converging. It converges on a few epochs compared to other 

object detectors and uses multi-scale deformable attention modules, an 

efficient mechanism for processing image feature maps. Focal loss [83] is 

pointed out in the literature as an efficient cost function addressed to the 

extreme foreground-background class imbalance. However, we believe that 

this cost function did not show significant improvement due to RPN internally 

minimizing this imbalance problem's effects [12], [56]. 

Table 11 shows our best result achieved without using Instance 

Augmentation and the results obtained from the new experiments performed. 

We compare the results on the application of the different experiments based 
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on validation. We evaluated the AF-score metric by combining COCO AP50 and 

Recall metrics. At first, the results showed us that the new experiments did not 

provide significant improvements. In our preliminary analysis performed 

visually, we verified that the new experiments were not successful, almost 

always related to the same classes of the previous experiments: those that do 

not have examples in the training group. We will further investigate this fact 

by generating similar synthetic data from original examples in future works. 

   Table 11: Comparison of the results for stamps dectection using different network 

architectures and cost functions from extra experiments. 

    Metrics (%)  

  backbone / loss Priority AP50 Recall F1 

Baseline Backbone size resnet50 / L1 
AP50 0.984 0.809 0.888 

Recall 0.984 0.809 0.888 

           

New 

tests 

ResNet50 

resnet50 / L2 
AP50 0.984 0.778 0.869 

Recall 0.982 0.803 0.884 

resnet50 / GIOU 
AP50 0.977 0.769 0.861 

Recall 0.973 0.799 0.877 

resnet50_cascade / L1 
AP50 0.983 0.788 0.875 

Recall 0.975 0.822 0.892 

resnet50_cascade / GIOU 
AP50 0.978 0.757 0.853 

Recall 0.965 0.794 0.871 

resnet50_deformable 

transformers / Focal 

AP50 0.970 0.815 0.886 

Recall 0.970 0.815 0.886 

 ResNet100  

resnet100 / L1 
AP50 0.983 0.786 0.874 

Recall 0.975 0.815 0.888 

resnetx100 / L1 
AP50 0.985 0.785 0.874 

Recall 0.976 0.819 0.891 

resnext101 / GIOU 
AP50 0.986 0.791 0.878 

Recall 0.808 0.966 0.880 

resnetx100_cascade / L1 
AP50 0.987 0.806 0.887 

Recall 0.986 0.841 0.908 
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