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Abstract

Villares Holguin, Christian Deyvi; Kubrusly, Alan C. (Advisor); Ayala,
Helon V. H. (Co-Advisor). Mechanical Stress Estimation using
Guided Ultrasonic Waves and Machine Learning. Rio de Janeiro,
2022. 69p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Due to the acoustoelastic effect, Ultrasonic Guided Waves (UGWs)
have been used to estimate mechanical stress in a non-expensive and non-
destructively fashion. Machine Learning (ML) has been applied to map com-
plex waveforms to stress estimates, though important aspects, such as accuracy
and hardware consumption, have not been explored. Previously in the litera-
ture, there are also not many works on the use of unsupervised learning for
automatic labeling of samples with different stress states. Therefore, this thesis
presents two approaches, (i) the supervised approach aims to propose a data
modeling methodology that optimizes accuracy and computational implemen-
tation, for real-time ultrasonic based stress estimation and (ii) the unsuper-
vised approach aims at comparing unsupervised frameworks to label a small
dataset according to the stress state. For the former, shallow and deep learning
models with dimensionality reduction were evaluated, these models are created
and tested using a Monte-Carlo holdout procedure to evaluate their robustness
under different stress conditions. The results show that, using shallow mod-
els and Principal Component Analysis (PCA), an accuracy improvement and
hardware consumption as compared to the state of the art reported with deep
neural network models were obtained. For the latter, dimensionality reduction
methods: PCA and t-distributed stochastic neighbor embedding (t-SNE), are
used to extract features from UGWs signals with different stress levels. The
features are used to group the samples into low, medium and high stress states.
A qualitative and quantitative analysis of the results was performed. Consider-
ing the analysis of metrics for clustering, PCA performed the best clustering,
qualitatively, showing less overlapping of clusters than t-SNE. The two ap-
proaches used in this thesis, managed to extract meaningful features which
helped in both estimation and stress labeling, contributing to the creation of
more efficient ML models and in the problem of interpreting UGWs.

Keywords
Guided Wave Ultrassonic; Machine learning; Supervised learning;

Unsupervised learning; tensile stress estimation.
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Resumo

Villares Holguin, Christian Deyvi; Kubrusly, Alan C.; Ayala, Helon V.
H.. Estimação da tensão mecânica usando ondas ultrassônicas
guiadas e machine learning. Rio de Janeiro, 2022. 69p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia Univer-
sidade Católica do Rio de Janeiro.

Devido ao efeito acoustoelástico, as Ondas guiadas ultrassônicas (UGWs)
têm sido usadas para estimar a tensão mecânica com baixo custo de forma não
destrutiva. O Aprendizado de maquina (ML) tem sido aplicado para mapear
formas complexas de ondas para estimar a tensão mecânica, embora aspectos
importantes como precisão e consumo computacional não tenham sido explo-
rados. Na literatura também não há muito trabalho sobre o uso do aprendizado
não supervisionado para a rotulagem automática de amostras com diferentes
estados de tensão. Portanto, esta tese apresenta duas abordagens: i) a abor-
dagem supervisionada propõe uma metodologia de modelagem de dados que
otimiza a precisão e a implementação computacional, para a estimação da ten-
são baseada em UGWs em tempo real e ii) a abordagem não supervisionada
compara estruturas não supervisionadas para rotular um pequeno conjunto de
dados de acordo com o estado de tensão. Para o primeiro, foram avaliados
modelos de aprendizagem superficial e profunda com redução de dimensio-
nalidade, estes modelos são criados e testados usando um procedimento de
"hold-out" Monte-Carlo para avaliar sua robustez. Os resultados mostram que,
utilizando modelos superficiais e Análise de componentes principais (PCA),
foi obtida uma melhoria de precisão e no consumo de hardware em compa-
ração com o estado da arte com modelos de redes neurais profundas. Para o
segundo, métodos de redução de dimensionalidade: PCA e t-distributed sto-
chastic neighbor embedding (t-SNE), são usados para extrair características
de sinais UGWs. As características são usadas para agrupar as amostras em
estados de baixa, média e alta tensão. Uma análise qualitativa e quantitativa
dos resultados foi realizada, considerando a análise de métricas para agrupa-
mento, o PCA realizou o melhor agrupamento, qualitativamente, mostrando
menos sobreposição en grupos do que t-SNE. As duas abordagens utilizadas
nesta tese, conseguiram extrair características significativas que ajudam tanto
na estimativa quanto tanto na rotulagem de dados, contribuindo para a criação
de modelos de ML mais eficientes e no problema de interpretação de UGWs.

Palavras-chave
Ondas guiadas ultrassônicas; Aprendizado automático; Aprendizado

supervisionado; Aprendizado não-supervisionado; estimação de tração.

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



Table of contents

1 Introduction 13
1.1 Objectives 16
1.2 Contributions 16
1.3 Organization 17

2 Theoretical Background 18
2.1 Ultrasonic Guided Waves (UGW) 18
2.2 Machine Learning 21
2.3 Supervised Learning 21
2.4 Unsupervised Learning 25

3 Experimental Setup 31
3.1 Measurement Campaign 32

4 Improved Stress Estimation with Machine Learning and
Ultrasonic Guided Waves 36

4.1 Exploratory Analysis 36
4.2 Feature Extraction using PCA 38
4.3 Inputs for the Convolutional Neural Network 40
4.4 Resampling-Based Model Construction and Validation 41
4.5 Results 43
4.6 Discussion 49

5 Unsupervised Tensile Stress Estimation Using Ultrasonic
Guided Waves Signals in Plates 51

5.1 Feature Extraction using t-SNE 51
5.2 Results 51
5.3 Discussion 56

6 Conclusion and Future Works 57
6.1 Future Works 58

7 Bibliography 60

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



List of figures

Figure 2.1 Lamb waves, based on [44]. 18
Figure 2.2 Dispersion curves, the phase velocity for a 3-mm-thick
aluminum plate from 0 to 2.5 MHz. 20
Figure 2.3 Architectural model of ridge regression. 22
Figure 2.4 A schematic diagram of the support vector regression. 23
Figure 2.5 A flowchart of the k-means algorithm. 26

Figure 3.1 Experimental setup description. The lower plots illustrate the
excitation signal (left) and the received signals (right). 31
Figure 3.2 Excitation signal (sinc like signal with 2.5 MHz bandwidth)
and Spectrum. 32
Figure 3.3 Visual representation of all received signals with colors
associated with the strain perceived on the plate. All received signals refer
to the same time instant relative to the transmission. 33
Figure 3.4 Plot of four waveforms received under different stress conditions. 34
Figure 3.5 Histogram of the stress applied during all static experiments. 35

Figure 4.1 Cross-correlation matrix of all measurements made. 37
Figure 4.2 Cumulative explained variance of the principal components.
Only 9 out of almost 500 components are sufficient to obtain 95%. 38
Figure 4.3 Principal components obtained from all measurements made
(upper), ordered by ascending order of stress applied (lower). 39
Figure 4.4 Waveforms reshaped to images that can be fed to a CNN, by
varying the magnitude of stress applied. 40
Figure 4.5 Monte-Carlo holdout approach using grid search and repeated
5-fold cross-validation. 42
Figure 4.6 Summary of the workflow for the construction and validation
of the supervised models. 45
Figure 4.7 Distribution of the error for all holdout model predictions, in
ascending order of MSE (upper to lower). It is interesting to note that the
models perform differently depending on the stress condition. 46
Figure 4.8 Predictions made on all realizations for different holdout
cases, organized by different model classes. 47
Figure 4.9 Model sizes, represented by mean and standard deviation,
and respective MSE metrics in various holdout phases. Black dotted lines
denote the region, in this space, that the two best models perform better
with respect jointly to model performance and size. 48

Figure 5.1 Overview of the unsupervised stress estimation frameworks
used for data labeling 52
Figure 5.2 K-means clusters represented in the space composed by first
and second features derived from Principal Component Analysis (PCA),
where ⃝ is high stress, × is medium stress and □ is low stress. 53

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



Figure 5.3 Half violin plots and boxplots for stress distribution represen-
tation of all k-means clusters derived from PCA.Purple, green and yellow
colors represent cluster with low, medium and high stress states, respectively. 54
Figure 5.4 K-means clusters represented in the space composed by first
and second features derived from t-SNE, where ⃝ is high stress, □ is medium
stress and × is low stress. 55
Figure 5.5 Half violin plots and boxplots for stress distribution represen-
tation of all k-means clusters derived from t-SNE. Purple, green and yellow
colors represent cluster with low, medium and high stress states, respectively. 56

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



List of tables

Table 3.1 Transducer piezoelectric constructive characteristics 32

Table 4.1 Hyperparameter settings for the models tested in the present
work using repeated k-fold cross-validation and randomized search. 44
Table 4.2 Squared error statistics of holdout realizations for all models
tested, ordered in ascending order of MSE. 45
Table 4.3 Statistics for the model size in bytes for the models tested
in the present work using repeated k-fold cross-validation and randomized
search. Please note that LRG and CNN do not vary their sizes in each holdout
resample. 48

Table 5.1 Clustering evaluation metrics. 53

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



List of Abreviations

AI – Artificial Intelligence

ANN – Artificial Neural Network

CH – Calinski-Harabasz Index

CNN – Convolutional Neural Network

CSET – Center for Security and Emerging Technology

DB – Davies-Bouldin Index

DTR – Decision Tree Regression

KL – Kullback-Leibler

KNN – k-Nearest Neighbors Regression

LRG – Ridge Regression

ML – Machine Learning

MSE – Mean Squared Error

NDT – Non-Destructive Evaluation

PCA – Principal Components Analysis

PC – Principal Components

PZT – Piezoelectric Transducer

SC – Silhouette Coefficient

SHM – Structural Health Monitoring

SVR – Support Vector Regression

SVD – Singular Value Decomposition

RNN – Recurrent Neural Networks

RFR – Random Forest Regression

t-SNE – t-Distributed Stochastic Neighbor Embedding

UGW – Ultrasonic Guided Wave

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



Predicting the future isn´t magic,
it´s artificial intelligence

Dave Waters, .

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



1
Introduction

The area of Structural Health Monitoring (SHM) is a multidisciplinary
field that seeks to develop and implement methods to continuously monitor
the health of structures in order to prevent failures and their associated costs,
as well as to ensure safety [1]. Mechanical structures are constantly exposed
to dynamic loads caused by vibration, thermal variations and other causes
inducing fatigue failures [2, 3].
Stress estimation is particularly important in SHM applications [4], since its
occurrence is directly related to fatigue, which can lead to catastrophic events
when it exceeds safe levels. There are methods of evaluation of structures, and
these are divided into semi-destructive and non-destructive. In the first case,
which is not the focus of the present thesis, the most widely used is the hole
drilling method [5–8] which demands space to allocate a drilling device and
strain gauge rosettes, as well as presenting limitations regarding the thickness
of the structure under study and the proximity of multiple measurements [9].
Non-destructive Testing (NDT) for stress monitoring has been performed
recently. For instance, through i) the use of strain gauges [10, 11], but
presenting limited resolution as a drawback; ii) digital image correlation [12, 13]
which are not viable options for real-time continuous monitoring; iii) ultrasonic
signals which can be suitable for stress estimation due to the sensitivity of the
ultrasonic wave to the change of stress state of the medium [14–16].
Ultrasonic guided waves (UGWs) can be used to inspect wide areas, allowing a
continuous monitoring of the structures in service. It has sensitivity to surface
and internal defects, operating with inexpensive sensors in a wide frequency
range according to the frequency-band characteristic of the load [17, 18].
The basic principle of using ultrasound to measure stress relies on observing
subtle time-of-flight variations of a received pulse [19], since the propagation
speed of ultrasonic waves is a function of the medium stress, according to the
acoustoelastic theory [20, 21]. Ultrasonic guided waves propagate in several
modes, each of which may be dispersive, meaning that their propagating speeds
are frequency-dependent [22]. As opposed to bulk ultrasonic measurement,
guided waves show more complex stress-dependence behavior since each mode
presents a distinct sensitivity to stress, which also changes with frequency [23–
27].
Therefore, using ultrasonic responses for stress estimation with broadband
UGWs can be challenging by exploiting the direct underlying acoustoelastic

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



Chapter 1. Introduction 14

mechanism, since the received signal is altered in a nontrivial fashion being
composed of subtle stress-induced changes in a complex waveform pattern.
Nevertheless, they are fruitful to signal-processing techniques. For instance, the
time-reversal process has been used before for strain monitoring [28]. It uses
a signal response at null-stress as a reference for a time-reversed excitation,
which produced a focused signal, whose quality deteriorates as the stress levels
deviate from the reference.
Recently, the field of data-driven monitoring of mechanical systems, particu-
larly with Machine Learning (ML) methods, has received a great deal of at-
tention [29]. To mention a few recent research efforts, Vieira and Lambros [30]
applied an Artificial Neural Network (ANN) to evaluate plastic strain using
microstructures of metallic plates. Acoustic localization was performed in [31]
using ANNs for structural health monitoring. Wu et al. [32] proposed the use
of soft computing methods for enhancing digital image correlation methods for
strain estimation. Several supervised ML approaches have been tested in [33]
for fatigue prediction, showing overall better results for deep learning models.
In [34] the authors evaluate the application of Convolutional Artificial Neu-
ral Networks (CNNs) for automatic feature extraction and stress estimation
using elastic Lamb-wave measurements. In [35], wavelet Packet and Singular
Value Decomposition were used to extract features from Ultrasonic Guided
Wave (UGW) and fit a Support Vector Regressor model to estimate stress.
In [36], a reduced-order spectral finite element model was used to generate
UGW signals for the development of SHM systems based on deep recurrent
and convolutional neural networks. The authors also compared deep techniques
with conventional ML methods trained with handcrafted features, considering
the performance of SHM systems in frequencies not used for training, as well
as UGW signals corrupted with several Gaussian random noise levels to mimic
experimental data.
Many engineering applications do not favor supervised learning, either be-
cause i) they do not allow collecting data from a class (e.g., task failure data
Structural Health Monitoring (SHM)), generating imbalance problems; or ii)
they are extremely expensive for data labeling, by presenting classes that are
difficult to label or that do not represent a label very well [37]. These difficul-
ties can be overcome by using unsupervised learning for data labeling.
In recent years, the use of small data approaches for training Machine Learn-
ing (ML) methods has been identified in [38], showing four approaches:

– Transfer learning is a ML method, first training the model in a data-
rich environment, then “transferring” the features of the model to a task
where it has little data.
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– Data Labeling is an approach that starts with little labeled data, but
plenty of unlabeled data. This approach uses a number of methods to
make sense of the available unlabeled data, such as automatic generation
of labels (automatic labeling).

– Artificial data generation this approach seeks to extract the maxi-
mum amount of information from a small amount of data by creating
new data points or other related techniques.

– Bayesian methods that allow identifying which samples corroborate
the most to reduce the uncertainties of predictions.

All of these approaches can facilitate working with large amounts of unlabeled
data through automatic label generation. In the literature, there is a lack of
works related to unsupervised clustering methods for labeling mechanical stress
data, but there are some works related to clustering algorithms for damage
detection. For example, the use of k-medoids and DBSCAN algorithms to
detect and locate damage using the discrepancy matrix [39], the use of k-
means algorithm with emission acoustic signals for damage detection [40].
It can thus conclude that, the recent literature review reveals that stress
estimation based on ML and UGW techniques is becoming an attractive area
for researchers in the SHM field. Nevertheless, there are gaps in the literature
investigation, either in supervised or unsupervised learning, concerning the
following specific points:

(i) Supervised learning for stress estimation has not been fully explored
towards devising a proper data workflow for building robust and compu-
tationally efficient predictive models. i) The work [34] evaluated solely
the application of CNNs for the task, which was important for proving
the concept, but failed short to devise best practices, evaluate the model
using cross-validation to infer the model robustness, and also did not
perform any optimization of model size in any form. As stress estimation
should ideally be performed online and many times in a decentralized
fashion, the model construction process should also take this point into
account if the models are to be deployed using scarce, expensive, and
energy-limited embedded computational resources.

(ii) The role played by big data sets in the rise of Artificial Intelligence (IA)
in the last decade is undeniable, but small data approaches is an area
that has grown a lot recently, as reported by the Center for Georgetown
University’s Center for Security and Emerging Technology (CSET) [38].
These approaches help in situations where little or no labeled data is
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available. Transfer learning is being used more for the purpose of data
labeling, but no research was found using unsupervised approaches for
data labeling using UGWs signals for stress estimation.

This thesis aims to contribute to the aforementioned points.

1.1
Objectives

The main objectives of this thesis are: i) to develop and improve the
use of ML algorithms; ii) to constitute a framework for real-time ultrasonic-
based stress estimation, feature extraction process and training of ML models
through a supervised and unsupervised approach; and iii) to demonstrate
the potential of ML methods to assist for real-time ultrasonic-based stress
estimation and data labeling for UGWs in different values of stress.
To achieve the overall objectives of the thesis, the following steps were
performed: i) to propose a data modeling methodology that optimizes accuracy
and computational implementation, in order to devise best practices for
real-time ultrasound-based stress estimation; ii)propose the use of clustering
algorithms for data labeling; iii) to produce quantitatively and qualitatively
valid results for supervised and unsupervised models.

1.2
Contributions

In the supervised approach, the following contributions are made:

(i) A conceptually different data ingestion workflow than [34], with the use
of Principal Component Analysis (PCA) to extract the characteristics of
the guided wave signals, feeding shallow models.

(ii) It is used Monte-Carlo holdout with a repeated cross-validation model
validation procedure for supervised model evaluation and comparison.

(iii) All results were obtained taking into account model size, hardware
consumption and prediction error, which are important for the selection
of the ideal model.

In the unsupervised approach, the following contributions are made:

(i) Conventional dimensional reduction methods such as PCA and t-
Distributed Stochastic Neighbor Embedding (t-SNE) are used to extract
the characteristics of the guided wave signals, feeding a k-means cluster-
ing activity.
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(ii) Comparison of how conventional dimensional reduction techniques affect
the stress clustering task. A qualitative comparison was made with the
results obtained by each method.

(iii) All the frameworks used for the unsupervised labeling of stress states are
made considering small experimental data sets.

As a result of the aforementioned contributions to the field of SHM and ML,
two articles were written during the master’s period:

– One paper accepted in Experimental Mechanics, entitled “Improved
Stress Estimation with Machine Learning and Ultrasonic Guided Waves”,
vol 62, pp 237–251 (2022), that it is located in appendix.

– One paper to be submitted, entitled “Deep Unsupervised Tensile Stress
Estimation Using Ultrasonic Guided Waves Signals in Plates”.

1.3
Organization

The rest of the thesis is structured as follows: Chapter 2 introduces the
general concepts necessary for understanding the data source and the descrip-
tion of the automatic learning models; Chapter 3 presents the description of
the experimental setup; Chapter 4 presents the construction and validation
of shallow models for estimation of stress, data ingestion workflow with ex-
ploratory analysis of data and feature extraction using PCA. It is explained
the validation and the construction of the models, which use a Monte-Carlo
holdout procedure with a k-fold repeated random hyperparameter. Resulting
plots for all procedures are also shown, followed by a brief discussion of the
obtained results; Chapter 5 details, the features extraction methods and the
clustering methods that were used for estimation of stress. Resulting plots for
all procedures are also shown, followed by a brief discussion of the obtained
results. Finally, in chapter 6, the research is summarized, presenting the con-
clusions and giving guidelines for further implementations in order to improve
the proposed method.

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



2
Theoretical Background

This chapter is dedicated to introduce basic concepts and describe the
methods used in this thesis. This chapter is organized as follows: Section 2.1 in-
troduces the basic concepts of ultrasonic guided waves; Section 2.2 introduces
the concept of Machine Learning; Section 2.3 presents the definition of Super-
vised Learning and describes some supervised models; Section 2.4 presents the
definition of unsupervised learning and describes some unsupervised models.

2.1
Ultrasonic Guided Waves (UGW)

UGW are ultrasonic waves that propagate through bonded structural
media. One of the most common types of guided waves is the Lamb wave.
This kind of guided wave is widely used in structural health monitoring and
damage detection, because they can propagate long distances in the plate
[41–43].

Figure 2.1: Lamb waves, based on [44].

Lamb waves are composed of several reflected waves, propagating along a ho-
mogeneous plate, as schematically shown in Fig. 2.1. Also, a Lamb wave prop-
agates in symmetric or antisymmetric modes. The rise of the modes depend on
frequency, i.e. as frequency increases, more modes of transportation arise, and
there are countless numbers of them [28]. All of them are dispersive. Which
means that the speed of propagation depends on the frequency [22]. Lamb
wave motion has asymptotic behavior at low frequency and at high frequency
[45]. At low frequency, the symmetric mode resembles axial waves, while the
antisymmetric mode resembles bending waves. At high frequency, both the
fundamental symmetric and antisymmetric waves tend to the Rayleigh waves,
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Chapter 2. Theoretical Background 19

as the particle motion is strong at surfaces and decays rapidly in thickness,
show no dispersion and the same wave speed as the Rayleigh wave [22].

The propagation of each guided wave mode is dictated by its dispersion
curves. The dispersion curve is the locus of pairs wavenumber and frequency, or
phase speed and frequency in which propagation of a given wave mode occurs.
It describes the propagation characteristics of Lamb waves and the natural
resonance of a material [22, 45]. In order to obtain the dispersion curve for
Lamb waves, one has to solve the Rayleigh-Lamb equations [22], either for a
symmetric Eq. 2-1 or antisymmetric Eq. 2-2 mode that propagate in a plate
of thickness 2h, given respectively by:

tan(qh)
tan(ph) = − 4k2pq

(q2 − k2)2 (2-1)

tan(qh)
tan(ph) = −(q2 − k2)2

4k2pq
(2-2)

the parameters p and q are defined by p2 = ω2

(cL)2 −k2 and q2 = ω2

(cT )2 −k2, where
ω is angular frequency, k is wavenumber, cL is the bulk longitudinal velocity
and cT is the bulk shear velocity. There is no analytical solution for Eqs. 2-2
and 2-1 which require a numerical solution. The group speed is defined as

cg = dω

dk
(2-3)

where k is the wavenumber and ω is the angular frequency. The phase speed
is defined as

cp = ω

k
(2-4)

In Fig. 2.2 it is shown the lamb wave dispersion curve, presented as a plot of
the phase speed versus the frequency-thickness product of an aluminum plate
for frequencies up to 2.5 MHz. Also, it shows the kinds of waves that could
propagate in the plate, i.e., there are symmetric (line blue) and antisymmetric
(line red) modes that propagate in the plate, the firsts of each mode are
denominated fundamentals S0 and A0, respectively, and they propagate at
any frequency, as show in the Fig. 2.2. In addition, there are more symmetric
modes, such as S1, S2, S3, and antisymmetric modes as A1, A2, A3, which are
named according to their appearance.
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Chapter 2. Theoretical Background 20

Figure 2.2: Dispersion curves, the phase velocity for a 3-mm-thick aluminum
plate from 0 to 2.5 MHz.

2.1.1
Acoustoelastic effect in guided waves

Acoustoelasticity is the theory that rules the dependence of the prop-
agation related phenomena of acoustic waves with elastic deformation in a
solid, and an interesting phenomenon of such interaction is the change of wave
velocities due to initial stresses or initial deformations in a preformed body,
generally known as acoustoelastic effect [46].
The prior knowledge of the acoustoelastic behavior of the material under the
stress state that it may be subject to is important, so is required to draw at-
tention to excitation of guided waves and their modes. Usually, one works at
low-frequency, before the cut-off frequency of higher-order modes, so there are
fewer propagating modes [34] or with a single guided wave mode [47, 48]. Due
to this phenomenon, time-of-flight change of waves is caused, which makes the
measurement of stress with ultrasonic waves possible.
When several guided wave modes propagate simultaneously, which happens
due to a broadband excitation, for instance, the received signal is composed
by the superposition of the modes’ signal which, depending on several factors,
such as, the receiver position and excitation signals, can mix in the received
signal [28, 49]. A broadband signal generates modes that present different
stress-induced time shifts, including modes that may be even virtually non-
sensitive to stress, which does not contribute to stress monitoring. However,
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other modes may present considerable stress sensitivity, that somehow com-
pensate for it. For instance, it has been observed that higher-order modes,
close to their cut-off frequency, show a very intense speed variation [24].
The received signal becomes even more complex in the presence of features
in the structure, such as defect, end reflection, or thickness variation, which
produces scattering or mode-conversion.

2.2
Machine Learning

ML is generally considered to be a subfield of artificial intelligence [50].
It is defined as the use of various algorithms to teach computers to identify
patterns in data which can be used for predicting future scenarios. ML provides
computers with the ability to learn without being explicitly programmed [51].
ML can be divided into 4 types [52]: i) supervised learning; ii) unsupervised
learning; iii) semi-supervised learning; iv) reinforced learning, the first two
of which will be explained in the following sections. Before going into the
definition of supervised learning, a data-driven model is defined, as follows:

ŷ = f(X; θ), (2-5)

where ŷ ∈ Rn is the estimated value of the output y, X ∈ Rn×p is the
independent variable or the vector of inputs for the model f(·) : Rn × Rp 7→
Rn, and θ is the vector that contains all the parameters that are obtained
throughout the learning procedure. The structure of the model f(·) depends
on its class, as explained in Sec. 2.3.

The error may be then defined as

e = y − ŷ, (2-6)

and is frequently used in the training stage to learn the parameters with
optimization methods based on metrics such as the mean squared error:

MSE = 1
|T |

|T |∑
i=1

e2
i , (2-7)

where T is the number the data points.
In the following, it is discussed the learning problem, together with the models
used for evaluating the model construction procedure.

2.3
Supervised Learning

The general goal of supervised machine learning is to build f(·), that is,
to define its structure and free-parameters θ, based on measurements made on
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(X, y) such that it can generalize well and predict ŷ on unseen data [53]. In
the following, it is presented the supervised methods used in this thesis:

• Ridge Regression (LGR)

Ridge regression shrinks the regression coefficients by imposing a penalty
on their size [54]. In other words, the model is represented by

yi = xi,∗β + ϵi = β1xi,1 + ... + βpxi,p + ϵi (2-8)

where β = (β1, ..., βp)T is the regression parameter, and Fig. 2.3 shows
the architecture of the model based on [55].

The ridge regression estimator minimizes the ridge loss function [54],
which is defined as:

β̂ridge = arg min
β

(
N∑

i=1
(yi − β0 −

p∑
j=1

xijβj)2 + λ
p∑

j=1
β2

j ) (2-9)

this loss function is the traditional sum of squares augmented with ridge
penalty defined by: λ

∑p
j=1 β2

j where λ is the penalty parameter.

Figure 2.3: Architectural model of ridge regression.

It is maybe the simpler predictive model there is, as the output is
solely the linear combination of the inputs, and works well under the
assumption that the patterns are linearly separable [54].

• Support Vector Regression (SVR)

Among the most robust and precise machine learning methods [56], the
SVR has an efficient training procedure. The goal of support vector-
based training is to create hyperplanes that are placed in the input
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space to optimize the margins for pattern separation [57], using the
one-dimensional example in Fig. 2.4 based on [58]. The SVR model
construction problem is defined as

minw,ξ,ξ∗

[1
2w⊺w + C

∑
i ξi + ξ∗

i

]
(2-10a)

subject to


ŷi − yi ≤ ϵ + ξi,

yi − ŷi ≤ ϵ + ξ∗
i ,

ξi, ξ∗
i ≥ 0, i = 1, · · · , n,

(2-10b)

where ŷ = f(xi, θ) = w⊺ϕ(xi) + b is the model prediction, w, b ∈ θ

are the model parameters, C is the regularization factor, ξ, ξ∗ ensures
that it penalizes the samples that are ϵ farther away from y, where the
optimal hyperplane has a size 2ϵ and ϕ(xi) = γK(xi − x′

i) is the kernel
function that maps the input vector which is typically defined as radial
basis functions, higher-order polynomials, sigmoid, or linear functions,
and they may also be customized [58].

Figure 2.4: A schematic diagram of the support vector regression.

The SVR model estimation problem in (2-10) may be solved more
conveniently by its dual formulation, for details see e.g. [59] or more
recent developments in [60].

• Decision Tree Regression (DTR)
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A DTR model is composed of nodes and leaves and may be represented
as [61]

ŷ = f(x; θ) =
∑

k

ck1(x∈Rk) (2-11)

where ck is the k-th regression target coefficient obtained for each non-
overlapping region Rk, which are high-dimensional rectangles of the input
space. Both ck, Rk are defined through an iterative process that aims at
maximizing the success of partitions used in the training samples on each
node of the tree, such as the MSE or Friedman MSE. The size of the tree
is controlled by its maximum depth, and also with the number of features
in the input space used in each leaf for splitting.

• Random Forest Regression (RFR)

The random forest models have been proposed by Breiman [62]. The RFR
is an ensemble of individual simpler DTR models by using bootstrap,
which consists of random sampling data with replacement, and randomly
selected features.

The RFR ensemble model is created as the following. Firstly, for each
bootstrap drawn from the original dataset, it randomly selects a subset of
the total features. Thus, each bootstrap is used to create a specialized tree
for a random subset of the input space. The final prediction is output by
simple average aggregation of the individual trees. Introductory material
about tree-based models with computational code can be found in [61].

• k-Nearest neighbors Regression (KNN)

The KNN model is an instance-based inference mechanism, meaning that
it does not need any training process for model construction. It simply
stores all training data and during the inference stage, it compares the
input to that of the k-nearest neighbors. The output of the model is
the simple sum weighted of the output values for each of the k-nearest
neighbors.

The only hyperparameters of the model are the number of k neighbors
to consider when calculating the output and the neighboring metric. The
KNN may be costly to run, since for each inference a norm metric should
be calculated for the whole training set, which in many cases may render
its use unfeasible. For details regarding KNN modeling, see e.g. [63] and
a recent review in [64].

• Convolutional Neural Networks (CNN)
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A fully connected Artificial Network Neural (ANN), summarily speaking,
may be represented by a nested function composition as

ŷ = g1 ◦ · · · ◦ gN(X) (2-12)

where gi(·) is the i-th activation function of the N layers calculated using
learned parameters such as weights and biases. A deep convolutional
artificial neural Convolutional Neural Network (CNN) is a special class
of artificial neural network Artificial Neural Network (ANN), where
typically the first layers of the network in (2-12) are constructed using
convolution operators and many hidden layers. The convolution filter
masks, as well as each of the weights and biases of such layers, are
also learned throughout the training stage. This is very convenient since
it may be interpreted as a joint feature and model joint construction,
which made the application of CNN to highly complex and data-hungry
problems such as image processing very common. The parameters are
usually defined using stochastic gradient descent-based algorithms, such
as Adam [65], employed in the present thesis. A gentle introduction on
the topic of deep learning is given in [66], while recent reviews on deep
learning are stated in [67, 68], and a position paper by its creators can
be found at [69].

2.4
Unsupervised Learning

Unsupervised learning is a type of ML, in which the main goal is to
discover hidden and interesting patterns in the unlabeled data. The difference
from supervised learning is that one does not need the output values to compare
a prediction [52]. In the following, it is presented the unsupervised methods
used in this thesis:

• Clustering

Clustering is the process that involves automatically discovering the
natural grouping of input data, which can be a valuable information
if you are looking for underlying meaning [70].

• K-means:
The k-means is an unsupervised learning algorithm used for cluster-
ing data, by finding groups with similar characteristics. The k-means
algorithm can be summarized in the following steps [70]:
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(i) Choose “k” centroids, where “k” is the number of clusters
provided.

(ii) Selects “k” centroids at random locations among the data.
(iii) Calculate the Euclidean distance between each point and the

centroid. Each point is then assigned to the nearest cluster,
taking the minimum distance.

(iv) Isolate the clustered points along with their respective centroid,
calculate the mean data point in the cluster and move the
previous centroid to the location of the mean.

(v) Repeat until convergence or until the maximum iteration limit
has been reached.

In Fig. 2.5, a flowchart of the k-means algorithm is shown.

Figure 2.5: A flowchart of the k-means algorithm.

• Clustering Performance

∗ Silhouette Coefficient (SC) The Silhouette Coefficient (SC)
or silhouette score is a metric that analyzes how well a point
fits into a cluster. SC is defined by [50, 70]:
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SC = b − a

max(a, b) (2-13)

where a is the mean intra-cluster distance, i.e., is the mean
distance between each point within a cluster, b is the mean
inter-cluster distance, i.e., the mean of the nearest cluster
distance for every sample. SC ranges from -1 to +1. A coefficient
close to +1 means that the clusters are well separated from each
other and are clearly distinguishable, while a coefficient close
to 0 means that it is close to the cluster boundary, and finally
a coefficient close to −1 means that clusters are assigned in the
wrong way [50].

∗ Calinski-Harabasz Index (CH) Calinski-Harabasz Index
(CH) evaluates the cluster validity based on the sum of the
inter-cluster and the intra-cluster dispersion for all clusters,
where dispersion, in this case, is the sum of the square of
distances [71, 72]. For a dataset E of size n, clustered in k

clusters, CH is defined:

CH = (n − k)
(k − 1)

tr(Bk)
tr(Wk) (2-14)

where tr(Bk) is a trace of the inter-cluster dispersion matrix and
tr(Wk) is a trace of the intra-cluster dispersion matrix defined
by:

Wk =
k∑

q=1

∑
x∈Dq

(∥x − cq∥2) (2-15a)

Bk =
k∑

q=1
nq(∥cq − cE∥2) (2-15b)

with Dq the set of points in the cluster q, cq is the center of
the cluster q, cE the center of E, and nq the number of points
in the cluster q. A higher value of the CH index means that
the clusters are dense and well separated, although there is no
“acceptable” cut-off value.

∗ Davies-Bouldin Index (DB) The goal of Davies-Bouldin
Index (DB) is to maximize the distance between clusters and
at the same time tries to minimize the distance between points
in a cluster [73, 74].
The DB is defined as:

DB = 1
k

k∑
i=1

max
i ̸=j

Rij (2-16)
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where Rij is a measure of how good the clustering scheme is
defined by:

Rij = si + sj

dij

(2-17)

where si is the average distance between each point of cluster i

and the centroid of that cluster, dij is the distance between
cluster centroid i and j, and k is the number of clusters.
The closer to zero its value, the better the partition. The
computation of DB is simpler than that of SC.

• Dimensionality Reduction

Dimensionality reduction is an unsupervised learning technique, which
produces a more compact and easily interpretable representation of the
data. This process helps to simplify the modeling of complex problems,
eliminate redundancy and reduce the possibility that the model will
overfit and therefore include results that do not match. One application
of this technique is feature selection and feature extraction [70]. In the
following, two methods of dimensionality reduction used in this thesis
are introduced:

• Principal Components Analysis (PCA) The PCA can be used
to perform dataset dimensionality reduction. The vast applications
of PCA in many different areas are reviewed in [75], together with
a deeper analysis of the matrix operations. Consider the following
singular value matrix decomposition (SVD) [76]

X = UΣV ⊺ (2-18)
where U ∈ Rn×n, V ∈ Rp×p have orthonormal columns and, for the
case that n < p,

Σ =
[
diag(ς1, . . . , ςp) 0

]
, (2-19)

is a matrix with diagonal elements in descending order of magnitude
and zero elsewhere.
The m principal components (PC) of the matrix X may be retrieved
by

XR = [V ⊺
:mX⊺]⊺ (2-20)

where V:m are the m first columns of V and XR ∈ Rn×m represents
the reduced dimension matrix containing the principal components.
As the coefficients of Σ are ordered and U, V have orthonormal
columns, the SVD may be interpreted as a matrix approximation
method. For defining a hard threshold for m, one may measure
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the approximation effectiveness of a set of the most informative
principal components by the amplitude of ςi. As in [75], let

S =
n∑

i=1
ς2
i (2-21)

represent the cumulative sum of all components in the diagonal of
Σ and

Sm =
m∑

i=1
ς2
i (2-22)

denote the cumulative sum of the m components that have higher
amplitude in Σ. One can measure

Em = Sm

S
· 100%, (2-23)

which is referred to as explained variance, representing the ratio of
the cumulative sum of the squared values of the variances. Being
so, one may set a threshold of e.g. Em > 95% in the data so that
this amount of variance is present in the matrix approximation.
PCA provides interesting results for modeling, particularly when
m << p. This means that much fewer dimensions are needed to
approximate the original X, as the data-driven modeling procedure
greatly benefits of such summarizing procedure in many cases by
avoiding dealing with redundant information during the training
procedure.

• t-distributed stochastic neighbor embedding (t-SNE)
t-SNE was developed in 2008 [77] and is an unsupervised nonlinear
dimensionality reduction technique that is commonly used in data
exploration and visualization of high dimensional data.
Consider the input data set (high dimensional) is

D = (x1, x2, ..., xN) (2-24)

and a function
d(xi, xj) = ∥xi − xj∥ (2-25)

that computes a Euclidean distance between a pair of points. The
t-SNE constructs two probability distributions, the first is a Gaus-
sian distribution over the pairs of points in the high dimensional
space [78, 79]:

pi|j =
exp (−d(xi,xj)2

2σ2
i

)∑
k ̸=i exp (−d(xi,xk)2

2σ2
i

)
(2-26)

where σi is the variance of the Gaussian that is centered on the
data point xi. The conditional probabilities are symmetrized by
averaging the two probabilities:
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pij = pj|i + pi|J

2N
(2-27)

this is done in the high dimensional space to obtain final similarities
in this space. Each point in the high-dimensional space is mapped
to a low-dimensional space, obtaining a set that is

E = (y1, y2, ..., yN) (2-28)

with yi ∈ Rs (typical values for s are 2 or 3). The mapping is based
on the similarity pairwise of the points in the high-dimensional
space. Where it is obtained a set (low dimensional), that is, E =
(y1, y2, ..., yN) with yi ∈ Rs (typical values for s are 2 or 3). Having
low-dimensional counterparts yi and yj of the high-dimensional data
points xi and yj, it calculates the joint probability over the pairs of
points in the low-dimensional space, using heavy-tailed Student-t
distribution [78, 79] with one degree of freedom:

qij = (1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1 . (2-29)

To find the low-dimensional data representation that minimizes the
mismatch between P and the joint probability distribution Q based
on Student-t, a gradient descent method based on Kullback-Leibler
divergence (KL) is used:

KL(P∥Q) =
∑
i ̸=j

pij log pij

qij

(2-30)

One can enumerate the following advantages of t-SNE.

– It is a non-linear dimensionality reduction algorithm, also it is mostly
used in visualization of data that has high dimension [70].

– It can interpret nonlinear relationships between features, which PCA
does not perform well [77].

– It is able to preserve the local structure of the data, i.e. points that are
close to each other in the high-dimensional data set will tend to be the
same in the low dimension data.
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3
Experimental Setup

In this section, the experimental setup and the ultrasonic signals are
described. The experimental data used in this work were obtained previously
and also used in [28, 49]. This data were provided by the authors for the
development of the thesis.
The experimental setup used is shown in Fig.3.1, this is composed of a 3 mm
thick, 800 mm long and 100 mm wide aluminum plate. The plate is mounted
on a bridge structure, where the left end is screwed to the structure and the
right end is fastened to a moving support with brackets that prevents the
plate from twisting when it is subjected to different stress values. Ultrasonic
waves are generated by applying an excitation signal to the left piezoelectric
transducer (Tx), bonded to the plate’s surface and propagate within the plate,
being received at the right piezoelectric transducer (Rx) also bonded to the
plate’s surface. As reference, the actual strain value is measured by a resistive
strain gauge (G) placed in the center of the plate.

Transmitted
pulse

Received
signal

Stress( )σ
Tx Rx

G

Tx Rx

700 mm

800 mm

1
0
0
 m

m

3 mm

Figure 3.1: Experimental setup description. The lower plots illustrate the
excitation signal (left) and the received signals (right).

The piezocomposite transducers used were constructed by cutting a piezoelec-
tric ceramic (PZ37 from Ferropem) in one direction, making parallel bars, and
filling the space between the bars with polymer, which makes this transducer
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have lower impedance and a wider frequency band than the simple ceramic
transducer. Table 3.1 summarizes the constructive characteristics of the trans-
ducer, showing its respective resonance frequency and dimensions [28].

Table 3.1: Transducer piezoelectric constructive characteristics

Nominal
frequency

(MHz)

Ceramic
thickness

(mm)

Element
width
(mm)

Polymer
width
(mm)

Pitch
(mm)

2.2 0.65 0.1 0.04 0.14

The commercial ultrasound equipment (Open System, Lecoeur Electronique,
Chuelles, France) was used to generate and receive arbitrary ultrasonic signals,
this equipment has a 12-bit analog to digital converter receiver. The sampling
frequency was set as 10 MHz. Each run measured 8192 samples of waveform
data, which amounts to 819.1 µs of total run time. The acquisition window for
the signals starts at 130 µs, which is the time that the first wave modes arrive,
and consequently ends at 949.1 µs.
The excitation signal is a sinc like signal with a 2.5 MHz bandwidth, which
is shown in Fig. 3.2. It generates ultrasonic waves in the plate and due to the
broadband excitation signal, several guided waves modes propagate within the
plate and are then received at the opposite transducer.

Figure 3.2: Excitation signal (sinc like signal with 2.5 MHz bandwidth) and
Spectrum.

3.1
Measurement Campaign

The measurement of received signal was carried out as follows. The
excitation signal were applied to the transducer Tx, which generated guided
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waves in the plate. Those propagate and were received by transducer Rx, as
depicted in Fig. 3.1. Stress was applied in discrete steps, while emission and
reception of the ultrasonic waves were carried out. This loading and acquisition
process was repeated four times. In each of them, the stress levels could be
different, as well as the number of acquired signals samples in each stress level.
In total, 499 different runs were collected by varying the applied stress.
The received signals are shown in Fig. 3.3, which are identified by colors related
to the level of stress applied on the plate, with colors varying from red to
dark blue. These signals are composed of different modes of guided waves
created within the plate structure, as seen in the dispersive curve Fig. 2.2,
and reflections, which mix in the time-domain. These reflections are caused
because the transmitter and receiver transducers are positioned close to the
plate’s end. The superposition of the signals at the reception renders received
signal interpretation complicated, as can be seen in Fig. 3.3.
It is worth highlighting that no pre-analysis of the sensitivity of predominantly
generated modes, due to the excitation signal, were performed since it was
adopted here a purely data-driven approach.

Figure 3.3: Visual representation of all received signals with colors associated
with the strain perceived on the plate. All received signals refer to the same
time instant relative to the transmission.

Fig. 3.4 shows the received signal in more detail by dividing the time axis into
shorter windows. As can be seen, the difference is quite subtle and is more
evident in some time instants. Additionally, due to the aforementioned stress-
dependence behavior, where different modes exhibit distinct sensitivity, one
can notice that the waveform variation is more evident in some time instants.
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Figure 3.4: Plot of four waveforms received under different stress conditions.

In Fig. 3.5 shows the histogram of the stress values measured throughout the
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test campaign, which spans from 0 to about 150 µm/m, which corresponds to
about 10MPa of tensile stress.
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Figure 3.5: Histogram of the stress applied during all static experiments.

As can be seen, the difference between received signals is quite subtle due to
the aforementioned stress-dependence behavior, being more evident in some
time instants. These differences make the use of ML models possible, as will
be shown in the following chapters, since these models are able to identify such
differences which could not be easily perceived by human analysis.

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



4
Improved Stress Estimation with Machine Learning and Ul-
trasonic Guided Waves

This chapter presents the results of the supervised approach, they cor-
respond to the contribution of the published paper entitled: ’Improved Stress
Estimation with Machine Learning and Ultrasonic Guided Waves’ [18]. This
section is divided as follows: Section 4.1 presents an exploratory analysis of
the ultrasonic signals for each stress value; Section 4.2 presents the feature
extraction procedure using PCA; Section 4.3 presents the creation of image
patches for each measurement as inputs of the CNN; Section 4.4 presents con-
struction and validation of the shallow models; Section 4.5 presents the results
obtained by shallow models and PCA; Section 4.6 presents a brief discussion
of the topic.
In the present chapter, the focus is on mapping the measured signals of ultra-
sonic guided waves traveling through the medium to the stress to which it is
subjected. Thus, as explained in Section 2.3, X is constructed according to the
waveforms, using dimensionality reduction for the shallow models, and y is the
respective stress measurement. The interest here lies in building a predictive
model that may be then deployed to perform stress estimation with guided
waves measurements.

4.1
Exploratory Analysis

The measurements of various stress conditions are analyzed in the
following. The resemblance and consequent difficult interpretation of the raw
waveforms detailed in Fig. 3.4 show that they carry information regarding the
stress, at certain time intervals, which differ depending on the stress amplitude,
in a nontrivial way. This is due to the different stress-dependence of the several
guided wave modes within the received signal, according to the acoustoelastic
effect, which is inherently low sensitive in metal [22]. Additionally, due to the
complicated nature of the received signal in the present case, with potential
several modes and reflected waves. One can also see that the measurements are
most of the time similar, without regards to the stress applied, as the differences
occur at certain time chunks. Hence, the task at hand is non-trivial, in which
low-stress variation is distributed within the whole waveform. This information
is confirmed in Fig. 4.1, which shows the cross-correlation matrix when all the
measurements are pair-wise compared.
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The Pearson correlation coefficient is defined as [80]:

r = sXY

(sX)(sY ) (4-1)

where s2
XY = 1

n−1
∑n

i=1(xi − x̄)(yi − ȳ) the sample covariance between X and
Y , and sX and sY the sample standard deviation X and Y , respectively. The
correlation indexes are close to unity most of the time, denoting the similarity
of the signals measured under different stress conditions. Note in this figure
that the stress measurements are sorted in ascending order, so that it is clear
that the Pearson value (defined in Eq. 4-1) decreases monotonically when the
stress is increased. It is shown, thus, that the stress is directly related to the
cross-correlation of the raw waveform signals. Therefore, despite the small
magnitude of stress and the intrinsic low-sensitivity nature, the signal indeed
carries information about the applied stress.

Figure 4.1: Cross-correlation matrix of all measurements made.

It was seen thus that the analysis of the waveforms is nontrivial to bare eye
and that the waveforms measurements are correlated with the stress applied.
The challenge for an online monitoring tool, though, remains in the creation
of data pipelines that will ensure fast and accurate predictions. The first step
towards the creation of a model is the feature extraction step, which is devised
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next. It is worth mentioning that this is a crucial part in order to reduce the
dimensionality of the model and retail only the components that are most
sensitive to stress.
In the present thesis, it is important to automatically select the parts of
the waveforms that are not redundant for stress estimation and will help
to drastically reduce the size of the shallow predictive models. It is for this
reason that it was decided to use PCA, that is important to hinder the
difficulties posed by the curse of dimensionality problem, for details see e.g. [53].
Moreover, as the waveforms have collinear parts in different stress conditions,
dimensionality reduction will avoid unstable parameter estimates in the model
construction optimization procedure for shallow models [61].

4.2
Feature Extraction using PCA

The feature extraction process is related to the creation of useful and
non-redundant information that can be fed for the construction of predictive
models. Principal component analysis is used to this end, directly on the matrix
created with all waveforms. Note that this has been obtained without using any
information of stress, thus this process is referred to as an entirely data-driven
procedure.
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Figure 4.2: Cumulative explained variance of the principal components. Only
9 out of almost 500 components are sufficient to obtain 95%.

Having 499 measurements with 8192 samples each, a 499 x 8192 matrix is
created, where each line represents a single experiment run with a different
stress configuration. The cumulative explained variance up to 95% of the
principal components is shown in Fig. 4.2, which turned out to be 9 for the
present dataset. As seen previously, it is known that only a few time intervals
are important to detect stress changes. The principal component analysis
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allows automating the interval selection process that would be required if one
would like to analyze the waveforms directly, in a data-driven and automated
fashion. The use of such a method is important in the context of predictive
modeling for monitoring applications, as it allows optimizing the inference
process and build more effective models, as will be seen in the results.
Figure 4.3 depicts the normalized principal components obtained when it
consider up to 95% of cumulative explained variance, normalized in the range
[−1, 1]. Observe that, in contrast with Fig. 3.4, all dimensions are sensitive
to the stress applied to the plate. Such dimensionality reduction is important
since unimportant features will deteriorate the learning process, [81] and have
made it possible to greatly improve both the accuracy and memory use of the
models.
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Figure 4.3: Principal components obtained from all measurements made (up-
per), ordered by ascending order of stress applied (lower).
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4.3
Inputs for the Convolutional Neural Network

One of the great advantages of CNNs is that they do not require any
feature extraction process. For validation, the results are compared with [34]
and for that end, the same modeling procedure they did is implemented here
so that fair comparison is possible.
Therefore, image patches were created for each measurement. The procedure
was carried out as follows: each measurement originally acquired vector is
reshaped into a squared single-channel image. A pre-processing step was
necessary for our case, as the number of samples was 8,192, which is not square-
rooted to an integer, so the measurements are linearly interpolated so that the
final measurements are duplicated to a total of 16,384 samples. This extended
and interpolated waveform was then reshaped to a 128x128 image, which can
then be fed to a CNN. Fig. 4.4 shows some examples of the image patches
constructed on the basis of the guided waves measurements.
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Figure 4.4: Waveforms reshaped to images that can be fed to a CNN, by varying
the magnitude of stress applied.

It is possible to see that the waveform images are quite similar, turning the es-
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timation of stress based on this quantity nontrivial, as shown in Fig. 3.4. This
fact justifies the construction of the models that can ideally perform stress
estimation from nontrivial patterns automatically by ingesting and relating
input-output tuples in a mathematical mapping.
In comparison to the construction procedure for shallow models, it is high-
lighted that the CNN uses a higher dimensional input vector, doubled in terms
of the number of samples. This procedure was followed for the following rea-
sons.

– The CNN architecture was built to deal with squared-sized images, as in
[34], and the same was done for fair comparison;

– Decreasing the number of samples to 4,096 (64 x 64 image patches) would
involve smaller Nyquist frequencies;

– Applying PCA to the interpolated waveforms ends up at the same
reduced-dimensions matrix if compared to the original waveforms. The
explained variance was virtually the same and when each element of the
reduced-order matrices were compared the R2 coefficient was very close
to unity. The reason is that the interpolation adds even more redundant
information for the feature reduction process, which ends up at the same
reduced input matrices when using PCA. Hence, there is no difference
in building a model with the reduced-order inputs using 8,192 or 16,384
samples. The simpler procedure with the original waveforms was opted
for the construction of the shallow models.

4.4
Resampling-Based Model Construction and Validation

The model construction and validation procedure is made with a repeated
5-fold cross-validation scheme for defining the hyperparameters and a Monte-
Carlo holdout model test [82], as summarized in Fig. 4.5. The procedure is
detailed as follows:

(i) A: In this part the acquisition of waveforms under different stress
conditions is performed, this procedure is described in the Chapter 3.

(ii) B: The signal is conditioned for feature extraction based on PCA which
then generates the whole input-output dataset pairs.

(iii) C: The overall dataset is resampled many times to be randomly split into
train and test datasets with different realizations. The training dataset
is used for constructing the models, which are evaluated against many
realizations throughout the repeated 5-fold cross-validation procedure.
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Typical hyperparameter distributions are set for the model and, for each
set of sampled hyperparameters, the best one is taken, according to the
cross-validation, to analyze its performance in the test dataset. This
procedure is repeated many times in a Monte Carlo evaluation. During
the repeated 5-fold procedure, the hyperparameters are optimized using
a randomized search procedure [83]. Such a procedure allows evaluating
how the model performs in many different train/test combinations,
having the hyperparameters tuned with cross-validation.

(iv) D: MSE values, model sizes and hardware consumption are obtained for
each model tested.

Figure 4.5: Monte-Carlo holdout approach using grid search and repeated 5-
fold cross-validation.
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It is important to mention that the procedure, aims at evaluating which
model performs better in different regions of the holdouts, and that a final
model would, ideally, be constructed using all available data. Moreover, as the
measuring process is expensive, by replicating the holdout resampling enriches
the operating envelope that the test set contains without sacrificing the analysis
on robustness by avoiding to use few test samples.

4.5
Results

In the present section, it is shown the results of the predictive model
construction for stress monitoring. In summary, the analysis is depicted here
as follows. As detailed in Fig. 4.5, it is employed a random search procedure for
evaluating several different hyperparameters on each resampling for holdout
test. Then, the outcomes of each iteration are analyzed on distinct holdout
sets, which enables fair comparison among different operating conditions. The
model accuracy and complexity are also given to establish the best compromise
between performance and resource usage. All results were generated in Python
using sci-kit learn [84] for the shallow models and metrics, and TensorFlow [85]
for implementing the CNN architecture used in [34] which is used in this work
as the baseline.

4.5.1
Model Validation Settings

One hundred holdouts were used for all models using randomized resam-
pling with 50% split. Being so, 100 realizations were analyzed of the models
on different train-test dataset splits and store all holdout predictions in order
to evaluate the predictive performance of the models statistically. Since there
are 499 input-output pairs, the models are tested in approximately 25,000
input-output tuples. Shallow models are created using 5-fold cross-validation
repeated 20 times, and the hyperparameters are defined using a randomized
grid search strategy for 40 realizations of the distributions. Table 4.1 shown
the all values of hyperparameters of each model, all these were used for con-
struction of models. For details on the Monte Carlo holdout test with repeated
5-fold cross-validation, see Subsection 4.4.
The CNN is created without cross-validation, as the hyperparameters are taken
from [34] for the sake of comparison. Additionally, the repeated 5-fold random-
ized grid search strategy would require excessive computational resources. The
architecture given in [34] for stress estimation and used here for comparison
is inspired in LeNet-5 architecture [86], having 2 convolutional layers with 30
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3x3 filters and average pooling each, followed by 2 fully connected hidden lay-
ers with 56 and 28 neurons each. The training is run for 100 epochs using
mini-batches of size 16, having learning rates set as 10−2, 10−3, 10−4, 10−5

successively for refining the final model. The CNN models use the 128 x 128
image-based features as described in Section 4.3. All the other models tested,
that is, the shallow models, use the features obtained by the PCA feature di-
mensionality reduction method given in Section 4.2. The Fig. 4.6 shows that
only the shallow models were constructed and validated using a Monte-Carlo
hold-out procedure, unlike for the CNN where it was created with architecture
and parameters given of [34].

Table 4.1: Hyperparameter settings for the models tested in the present work
using repeated k-fold cross-validation and randomized search.

Model Hyperparameter Distribution/option
LRG α Log-uniform

[10−1, 103]

SVR

C Log-uniform
[10−1, 103]

γ Log-uniform
[10−4, 100]

ϵ Log-uniform
[10−4, 101]

Kernel Linear, polynomial,
radial basis functions,
sigmoid

Degree
(polynomial kernel)

Uniform integer
{2, 3, ..., 5}

DTR
Criterion MSE, Friedman MSE
Splitter Best, random

Maximum features Uniform [0, 1]

kNN
No. of neighbors Uniform integer

{2, 3, ..., 100}
Weights Uniform, distance

RFR
No. of estimators Uniform integer

{2, 3, ..., 100}
Criterion MSE, MAE

Maximum features Uniform [0, 1]
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Figure 4.6: Summary of the workflow for the construction and validation of
the supervised models.

4.5.2
Error Analysis

The precision of the models obtained for stress estimation is investigated
hereafter. The quantitative error prediction results in holdout are presented in
Table 4.2, which is ordered in ascending magnitude of MSE.
It is possible to see that all models have obtained reasonable median values,
and that the best model in terms of overall MSE is the SVR. CNN, which is the
second-best model by MSE, obtains an increase of 9% compared to the MSE
value of SVR, as shown in the last column of Table 4.2. The SVR associated
with PCA feature extraction can improve the MSE metric by a considerable
margin, reinforcing the importance of efficiency both in terms of accuracy and
model construction time and inference, as the SVR is considerably faster to
build and run than the CNN.

Table 4.2: Squared error statistics of holdout realizations for all models tested,
ordered in ascending order of MSE.

Model Mean Standard
Deviation

Min. 1st
quartile

Median 3rd
quartile

Max. % MSE
increase

SVR 10.33 57.77 0.00 0.11 0.55 2.32 922.72 -
CNN
[34]

11.32 62.14 0.00 0.22 1.05 3.46 908.05 9.56

RFR 11.72 61.79 0.00 0.04 0.22 1.12 1103.29 13.47
KNN 11.94 67.05 0.00 0.04 0.21 1.00 1079.43 15.56
LRG 12.62 61.96 0.00 0.34 1.62 5.74 902.45 22.13
DTR 18.01 144.68 0.00 0.02 0.12 0.43 8988.69 74.32

The information of the errors in holdout is given in Fig. 4.7, where raincloud
plots [87] of the errors are shown, which are represented in ascending order
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from the largest to the smallest MSE value. Those show the distribution of the
errors in all holdouts. Apart from the allusions made before concerning the
MSE, it is also added that the models have similar distributions and there is
a considerable amount of large errors made by the worst models in terms of
MSE, as it is shown in Fig. 4.7.
Also, interestingly, the models perform differently in sections of error ampli-
tudes. This may shed light on how to further improve the stress estimation
procedure, as in future work one might implement a final model that inter-
prets the outputs of all models so that an even more accurate stress estimation
method is devised.

Figure 4.7: Distribution of the error for all holdout model predictions, in
ascending order of MSE (upper to lower). It is interesting to note that the
models perform differently depending on the stress condition.

The stress predictions versus the real measured values are given in Fig. 4.8.
One can readily relate it with the information given both in Table 4.2 and Fig.
4.7. It is possible to see that the SVR model can provide accurate results in
terms of stress estimation using the PCA feature space reduction technique
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and improved error metrics when compared to previous work published [34].
In the following, the analysis is extended not only to precision but also to
model size that is generally related to inference time, model creation/update
computational resources, and hardware consumption for real-time use.

Figure 4.8: Predictions made on all realizations for different holdout cases,
organized by different model classes.

4.5.3
Model Size Analysis

In order to evaluate the model size, the hard disk space is measured
in bytes taken to store all variables needed to perform inference. Table 4.3
summarizes the numerical values in bytes of all models tested. The LRG and
CNN are highlighted, since they do not change their sizes throughout each
holdout because LRG size is defined by the number of inputs, which is fixed to
the resultant number of principal components, and the CNN size is the same
as in [34]. As it is an instance-based model, KNN has the same size for almost
all holdouts, the only difference here is due to the random non-exact 50% split
of 499 input-output tuples. In this table, it can be seen that SVR, which is the
most accurate model proposed herein, takes 2 orders of magnitude less space
to store than CNN, which is the second most accurate model. It represents
a great advantage of the modeling workflow herein presented. The smaller
model is the LRG, however, the cheapest model to embed implies 22% greater
error as shown in Table 4.2. The SVR and LGR present the best trade-off
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among precision and hardware consumption, and both use the same modeling
philosophy based on PCA proposed originally in this paper.

Table 4.3: Statistics for the model size in bytes for the models tested in the
present work using repeated k-fold cross-validation and randomized search.
Please note that LRG and CNN do not vary their sizes in each holdout
resample.

Model Mean or
actual value

Standard
deviation

Min. 1st
quartile

Median 3rd
quartile

Max.

LRG 1,083 - - - - - -
SVR 18,647 5,360 5,716 16,470 21,802 22,371 22,435
KNN 26,179 0.20 26,179 26,180 26,180 26,180 26,180
DTR 33,139 132 32,824 33,080 33,208 33,217 33,347
RFR 1,503,233 375,483 473,854 1,266,619 1,576,439 1,796,660 2,014,926
CNN
[34]

6,110,720 - - - - - -

Such trade-off can be seen if one compares the MSE and the mean size in
bytes of the models, as depicted in Fig. 4.9, which is hereafter referred, the
model construction precision-size decision space. Here it can be seen that the
precision-size decision space can be divided into Pareto-optimal solutions and
dominated solutions [88] and, in this case, the SVR and LRG models dominate
all other models being a better design decision in terms of error and hardware
consumption. Black dotted lines denote the region, in this space, that the two
best models perform better with respect jointly to model performance and size,
i.e. SVR presents the minimal error and LRG presents the minimal hardware
consumption of the all models.
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Figure 4.9: Model sizes, represented by mean and standard deviation, and
respective MSE metrics in various holdout phases. Black dotted lines denote
the region, in this space, that the two best models perform better with respect
jointly to model performance and size.
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4.6
Discussion

The supervised approach was inspired by the results obtained in [34]
using CNNs that are aimed towards the joint investigation of accuracy and
overall model complexity. When compared to previous work, it devised a dif-
ferent feature extraction method that enabled us to, not only produce more
accurate predictive models but also to dramatically decrease the model size.
The best models found in terms of accuracy and model size are SVR and LRG,
in strong contrast with previously reported results in [34] based on CNNs for
the process of stress estimation, as it has been demonstrated.
It is recognized that the CNNs have powerful data-driven automatic feature
extraction mechanisms and, maybe going through an exhaustive architecture
search [89], one might find a better network than the one used in [34] which
had their results reproduced here using the signals of this thesis. However, non-
destructive evaluation methods that use ultrasonic guided waves as an indirect
measuring principle, such as data-driven stress estimation, are characterized
by real-time use, sampling at high-frequency rates, and distributed sensing. In
such a scenario, naturally, the accuracy is important, but so is the model size
and its related complexity, as a large enough model may produce unfeasible
computational implementations. From the workgroup experience in embed-
ding ANNs on hardware [90], even small networks can occupy considerably
large chunks of expensive hardware and consume scarce power in such scenar-
ios. In this regard, it was also tested feedforward architectures with up to 8
layers and 16 neurons each with PCA feature space reduction, obtained MSE
of 18.55 which is greater than the last model show in Tab. 4.2. For this reason,
feedforward architectures were nor considered in this thesis, because they are
no superior to the CNN architecture from [34] in terms of model accuracy.
In the literature, the embedding of machine learning models in FPGA has seen
an increased interest in the community (see e.g. [91–95] to cite a few), fueled
mainly by the internet of things in the past decade or two [96]. Such embed-
ded implementation is still necessary for a successful practical application to
analyze model complexity. As this is a fast-paced moving research field, soon
it might be possible to efficiently embed such huge deep neural network model,
which will enable optimized CNNs for stress estimation using fewer hardware
resources. In any case, as of now, the current practice will not be able to move
from conceptual models to real-world applications if this aspect is not consid-
ered throughout the model design and data ingestion process, as proposed in
the present thesis.
Lastly, it was shown that the models perform differently in regions of error
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amplitude. This fact can be explored in the creation of novel data ingestion
workflows, having in mind that the models produce uncorrelated errors, using
stacking ensembles for example. When compared to other signal processing
approaches, such as the use of a reference null-stress signal to perform a time-
reversed excitation [28], the use of the present data-driven approaches allows
more assertive information for monitoring and the overall decision-making pro-
cess, as it directly maps waveform to stress estimates.
In this thesis, ML algorithms were applied to estimate the mechanical defor-
mation applied to an aluminum plate. Thus, a working path is proposed for
the use of supervised learning, using a stage of extraction of characteristics
of the data, and then entering them as input for the supervised models. A
comparison was carried out using metrics such as the MSE and the size of the
model, which showed an improvement in performance with the SVR model
when compared to the use of the CNN architecture that is available in the
literature [34].
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5
Unsupervised Tensile Stress Estimation Using Ultrasonic
Guided Waves Signals in Plates

The present chapter presents the result of the unsupervised approach,
that corresponds to PCA and t-SNE methods reported in the contribution
to be submitted entitled: ’Deep Unsupervised Tensile Stress Estimation Using
Ultrasonic Guided Waves Signals in Plates’. This section is organized as follows:
Section 5.1 presents the feature extraction procedure using t-SNE; Section 5.2
presents the results obtained using the PCA and t-SNE methods; Section 5.3
presents a brief discussion of the topic.

5.1
Feature Extraction using t-SNE

For the t-SNE approach, the dimensionality reduction was made through
TSNE function also from Sklearn package for Python [84], considering the
parameters: 4 embedded space components, perplexity of 50, 1,000 optimiza-
tion iterations, learning rate of 10 and exact method for gradient calculation.
Therefore, the t-SNE feature extraction produced a dataset of 499 × 4 reduced
dimensions.

5.2
Results

In this section, the results achieved by each unsupervised learning tech-
nique used in this thesis are shown, regarding the ability to extract representa-
tive features to feed a k-means clustering. For all approaches, the unsupervised
tensile stress estimation through k-means clustering was made with KMeans
function from Sklearn package for Python [84], considering as parameters: 3
clusters, 100 centroids configuration explored up to 400 iterations, being these
initialized by k-means++ method. Fig. 5.1 shows an overview of the unsuper-
vised stress estimation frameworks used for data labeling. Three phases are
shown and explained as follows:

– Data acquisition: Acquisition of the ultrasonic waveform, as described
in chapter 3

– Features Extraction: PCA and t-SNE methods were used to find char-
acteristics associated with the stress state of the plate. In order to per-
form the PCA, raw signals were considered. It was decided not to apply
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any pre-processing technique, seeking to avoid any data mischaracteri-
zation. However, having obtained the principal components, the reduced
dataset was normalized between [-1, 1] and for performing the t-SNE,
a preprocessing technique was employed, where the raw data set was
normalized between [-1,1].

– Clustering result: The k-means clustering algorithm was used for data
labeling and was performed using the extracted features to feed k-means,
where three clusters could be perceived.

Figure 5.1: Overview of the unsupervised stress estimation frameworks used
for data labeling

Table 5.1 shows the result of cluster evaluation metrics. These were used
to evaluated clustering performance and when the ground truth labels are
not known. Cluster evaluation metrics were explained in Section 2.4 and
summarized below for convenience.

– Silhouette Coefficient (SC):is a metric that analyzes how well a point fits
into a cluster. The value of SC ranges from −1 to 1. If coefficient close
to +1 means that the clusters are well separated from each other, but if
coefficient close to 0 means that it is close to the cluster boundary, and
finally if coefficient close to −1 means that clusters are assigned in the
wrong way.

– Calinski-Harabasz Index (CH): evaluates the cluster validity based on the
sum of the inter-cluster and the intra-cluster dispersion for all clusters.
A higher value of the CH index means that the clusters are dense and
well separated, although there is no “acceptable” cut-off value.

DBD
PUC-Rio - Certificação Digital Nº 2012717/CA



Chapter 5. Unsupervised Tensile Stress Estimation Using Ultrasonic Guided
Waves Signals in Plates 53

– Davies-Bouldin Index (DB): The goal of DB is to maximize the distance
between clusters and minimize the distance between points in a cluster.
The closer to zero its value, the better the partition.

Table 5.1: Clustering evaluation metrics.

Approach SC CH DB
PCA 0.258 103.721 1.907
t-SNE 0.462 923.679 0.866

5.2.1
PCA approach

For the PCA approach, the feature extraction was performed in order
to obtain 95% of explained variance, which totaled 9 principal components as
described in Section 4.2. Table 5.1 shows that the PCA approach presented the
worst result, for having SC farthest from 1, the smallest CH and DB farthest
from zero. The first two principal components obtained by applying PCA were
used to project the data onto a two-dimensional plane and to observe the
clustering performed by the K-means algorithm, as shown in the following
figure:

Figure 5.2: K-means clusters represented in the space composed by first and
second features derived from PCA, where ⃝ is high stress, × is medium stress
and □ is low stress.
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A visual analysis driven by Fig. 5.2 reveals that: i) the PCA clustering approach
was able to sort classes with low, medium and high tensile stress groups,
represented by ⃝, × and □, respectively; ii) the first principal component
represents the microstrain variation very well, indicating an almost linear
relation with the microstrain. Fig. 5.3 shows that, despite having the worst
metrics, the outliers do not reach any other quartiles and the high-stress cluster
presents a smaller spread.

Figure 5.3: Half violin plots and boxplots for stress distribution representation
of all k-means clusters derived from PCA.Purple, green and yellow colors
represent cluster with low, medium and high stress states, respectively.

5.2.2
t-SNE approach

Table 5.1 shows that the t-SNE approach presented the SC value closer
to unity, the higher CH and DB value closer to zero.
The first two principal components obtained by applying t-SNE were used
to project the data onto a two-dimensional plane and observe the clustering
performed by the K-means algorithm, as is shown in the Fig. 5.4, this figure
reveals that: i) t-SNE approach was also able to sort classes with low, medium
and high tensile stress groups, represented by ⃝, × and □, respectively; ii)
the second t-SNE feature represents stress variation very well, indicating an
almost linear relation with stress.
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Figure 5.4: K-means clusters represented in the space composed by first and
second features derived from t-SNE, where ⃝ is high stress, □ is medium stress
and × is low stress.

Fig. 5.5 illustrates that, despite a better performance according to the evalu-
ation metrics, the outliers almost reach other clusters quartiles and that the
high-stress cluster present a higher spread, both in comparison with PCA ap-
proach.
A qualitative analysis of the results is shown in Fig. 5.2 and 5.4, where clusters
are represented in the two-dimensional space composed of the first two features
of each approach, where the stress is represented from high to low with a color
variation from purple to yellow, respectively. Fig. 5.3 and 5.5 show the stress
distribution presented by each cluster, where purple, green and yellow colors
represent cluster with low, medium and high stress states, respectively.
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Figure 5.5: Half violin plots and boxplots for stress distribution representation
of all k-means clusters derived from t-SNE. Purple, green and yellow colors
represent cluster with low, medium and high stress states, respectively.

5.3
Discussion

The result for the unsupervised approach were presented in Section 5.2,
which shows that the clustering evaluation metrics would be a good indication
to define the best approach and order results from best to worst as: t-SNE, for
presenting higher CH and lower DB in relation to PCA, which presented the
worst value for all metrics. However, a qualitative analysis is also important,
since PCA presents a greater order of magnitude for the first principal
components and, when the data is scaled between [−1, 1], the distances used
to calculate the evaluation metrics become equally important.
Therefore, a qualitative analysis of the problem reveals that the PCA approach
presented a less scattered high-stress cluster, which is an interest group
in real applications. Furthermore, the PCA approach presented well-defined
cluster boundaries, being the method in which the groups overlap less, as
their outliers are closer to the clusters median. The PCA method has a
simpler and less computational costly implementation, also presenting a lesser
outcome variation, since Singular Value Decomposition (SVD) driven PCA is
a deterministic method.
The acquired results indicate that all unsupervised features extraction and
clustering frameworks proposed in this thesis may be used to fill the literature
gap, being able to separate samples as low, medium and high stress groups,
allowing large dataset samples to be automatically labeled and making this
activity less costly for future works involving large UGW datasets.
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Conclusion and Future Works

This thesis deals with supervised and unsupervised approaches to esti-
mate the tensile stress using guided wave signals. In the supervised approach
it was shown that a model construction based on PCA and shallow learning
provides better results, when compared to previous works, on the stress esti-
mation problem using ultrasonic guided waves both in terms of accuracy and
model size.
Specifically, it was proposed a conceptually different data ingestion workflow
than [34], by employing dimensionality reduction together with shallow mod-
els. The models herein proposed presented an 10% improved result, in terms
of MSE, when compared to [34]. This result is interesting as it also puts into
context the extensive recent use of deep models for systems monitoring. The
models herein proposed are also considerably more efficient in terms of memory
use, having improvements up to three orders of magnitude and still deliver-
ing better predictions. Improving the model size ensures that the hardware
usage for the models is also optimized for expensive and resource-constrained
real-time monitoring tools, which has a major impact on the productivity and
practical use of these experimental methods.
It is worth mentioning that the signals were acquired from a laboratory setup,
these signals were used to train and assess the model. However, due to the
nature of the received waveforms with several modes and some reflection, and
the good performance of the model in stress prediction, mostly due to the
dimensionality reduction, through keeping only the most significant principal
components, indicates that the model should well generalize; though retrain
may be necessary should the final measurement setup be considerably differ-
ent if compared to the one used to train the models. Additionally, one should
highlight that the present thesis was restricted to tensile stress applied along
the longitudinal direction of the plate, which is a relatively simple stress state.
Since the guided waves velocity variation also depends on the direction of ap-
plied stress [48] and its nature such as bending stress [97], shear or hydrostatic
pressure [98], one could, in principle, use the present models to not only pre-
dict the stress magnitude but also its direction or natures. Since different stress
states induce changes on the guided wave modes in quite a different way, for
instance introducing strong variations at specific frequencies [98] or coupling
between Lamb and SH modes, this points towards the promising possibility of
using the presents models, with such a broadband excitation, to estimate the
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full stress state, in addition to its magnitude.
In the unsupervised approach, a gap was found in the literature, regarding the
use of unsupervised learning to label samples for stress estimation applications,
within the area of SHM. Therefore, it sought to compare different unsupervised
learning frameworks to extract features from UGW signals and cluster them,
promoting their separation according to stress state.
The results show that by using both PCA and t-SNE in the feature extrac-
tion stage, it was possible to coherently cluster the samples according to stress
state, which could be used for labeling large datasets in future work.
The comparison of the conventional dimensional reduction techniques was
quantitatively and qualitatively driven, the latter being necessary to confirm
the results, PCA is more efficient in grouping the samples compared to t-SNE.
The results show that PCA is able to separate the groups of stresses defined
as low, medium and high stress, with a small overlapping between the medium
and low groups, while, with t-SNE, there is overlapping in the three groups
causing the samples to be rounded. The use of PCA was highlighted for this
application, which is an algebraic method with low computational cost for
small data sets, while t-SNE has a much higher computational cost.
Stress estimation using machine learning has been only employed in few works
and there are many important research topics that are not devised thus far in
the specialized literature. The use of more efficient model construction proce-
dures can be devised, by using different feature space reduction such as system
identification [99] and unsupervised learning [100], or taking advantage of the
behavior of the models analyzed herein concerning the performance on differ-
ent error amplitudes for the construction of model ensembles [101, 102]. For
the real-time implementation of such frameworks in dedicated embedded hard-
ware, FPGAs [103–105] and GPUs [106–109] have delivered important results
recently which may also be used in the context of stress estimation to provide
feasible implementations for practical applications.

6.1
Future Works

The present results suggest some step towards the implementation of a
more robust and accurate real-time system.

– Use the models tested in this thesis with another data set, for example,
another frequency, another distance between transducers, etc, in order
to evaluate their performance and compare them with the results shown
in this thesis.
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– Use the spectrum of the signals, instead of the signals in the time domain,
to compare the results with those obtained in the thesis, in order to find
an improvement.

– The use of more efficient model construction procedures can be devised,
by using different feature space reduction such as system identification
[99] and unsupervised learning [100], or taking advantage of the behavior
of the models analyzed herein concerning the performance on different
error amplitudes for the construction of model ensembles [101, 102].

– Research based on physical phenomena, with analysis on the phase of
the signals as pre-analysis to improve the results and also as justification
of the results of the present work. This can be useful for generalization
with signals of a slightly different nature.

– Implementation of real-time systems using dedicated embedded hard-
ware, as FPGAs [103–105] and GPUs [106–109], have delivered important
results recently. It can thus be used in the context of stress estimation
to provide feasible implementations for practical applications.

– The results obtained by the unsupervised approach were produced from
a small set of strain-labeled ultrasonic signals, showing that the proposed
frameworks were able to coherently cluster the samples according to
strain state, which may allow automatically labeling large datasets and
making this activity less expensive for future work involving large UGW
datasets. As discussed in [38] one of the approaches is data labeling, this
work is suited to this approach which could be an important tool for
SHM applications if it is further developed.
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