
Fernando Vasconcelos da Senhora

Locally stress-constrained topology
optimization with continuously varying loading

direction and amplitude: Toward large-scale
problems

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Enge-
nharia Mecânica, do Departamento de Engenharia Mecânica da
PUC-Rio in partial fulfillment of the requirements for the degree
of Doutor em Engenharia Mecânica.

Advisor: Prof. Ivan Fábio Mota de Menezes

Rio de Janeiro
May 2022

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Fernando Vasconcelos da Senhora

Locally stress-constrained topology
optimization with continuously varying loading

direction and amplitude: Toward large-scale
problems

Thesis presented to the Programa de Pós–graduação em Enge-
nharia Mecânica da PUC-Rio in partial fulfillment of the requi-
rements for the degree of Doutor em Engenharia Mecânica. Ap-
proved by the Examination Committee:

Prof. Ivan Fábio Mota de Menezes
Advisor

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Emílio Carlos Nelli Silva
Universidade de São Paulo - USP

Prof. Americo Barbosa da Cunha Junior
Universidade Estadual do Rio de Janeiro - UERJ

Prof. Glaucio Hermogenes Paulino
Georgia Institute of Technology - GATECH

Prof. Anderson Pereira
Departamento de Engenharia Mecânica – PUC-Rio

Rio de Janeiro, May the 13th, 2022

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

All rights reserved.

Fernando Vasconcelos da Senhora

Bachelor’s in Mechanical Engineering with a minor in Mathe-
matics from the Pontifical Catholic University of Rio de Ja-
neiro. Completed a Master in Mechanical Engineering in the
Pontifical Catholic University of Rio de Janeiro.

Bibliographic data
Vasconcelos Senhora, Fernando

Locally stress-constrained topology optimization with
continuously varying loading direction and amplitude: Toward
large-scale problems / Fernando Vasconcelos da Senhora;
advisor: Ivan Fábio Mota de Menezes. – 2022.

131 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Engenharia Mecânica, 2022.

Inclui bibliografia

1. Engenharia Mecanica – Teses. 2. Otimização Topoló-
gica. 3. Restrições de Tensão. 4. Carregamento com Direção
Variável. 5. Carregamento com Amplitude Variável. 6. Pro-
blemas de Grande Escala. I. Mota de Menezes, Ivan Fabio.
II. Pontifícia Universidade Católica do Rio de Janeiro. Depar-
tamento de Engenharia Mecânica. III. Título.

CDD: 621

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

To all the ones we have lost.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The author
also acknowledge the financial support provided by the Brazilian agencies
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ),
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ),
and Tecgraf/PUC-Rio (Group of Technology in Computer Graphics), Rio de
Janeiro, Brazil.

I would like to thank my advisor Prof. Ivan Fábio Mota de Menezes for
whom I have nothing but the most profound admiration. Thank for all your
support, and for being a wonderful role model throughout these years. More
than an advisor, I consider you a dear friend that I hope to keep for the rest
of my life. I also want to thank Prof. Glaucio Paulino who also had a central
role in advising me through my PhD, your passion and dedication has truly
inspired me to become a better version of myself. Thank you for believing
in me, and for providing essential guidance in this journey. I would like to
thank the members of my committee Prof. Anderson Pereira, Prof. Americo
Cunha, and Prof. Emilio Silva for taking the time to read my work, and for
their insightful comments, suggestions, and discussions, that helped improve
the quality of my work.

Outside of the academic field, but not less important, I want to thank
my parents Fernando Rocha da Senhora, and Denise Bezerra Vasconcelos da
Senhora, my brother Leonardo Vasconcelos da Senhora, and all my family
(which is too extensive to name here). Your love and support is what made
this possible. I also want to thank all my friends for brightening up my days,
and making life more colorful and cheerful. I hope you all know how much you
mean to me.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Abstract

Vasconcelos Senhora, Fernando; Mota de Menezes, Ivan Fa-
bio (Advisor). Locally stress-constrained topology optimiza-
tion with continuously varying loading direction and am-
plitude: Toward large-scale problems. Rio de Janeiro, 2022.
131p. Tese de Doutorado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

In the field of structural optimization, Topology Optimization (TO) is
one of the most general techniques because it is able to generate complex
structures with intricate details for a wide range of problems. However, most
of the works in TO have focused on compliance-based design that does
not consider material strength in the design process leading to structures
that do not satisfy material failure requirements. In this work, we focus
on the stress-based design approach. We introduce stress constraints in the
optimization procedure to guarantee the structural integrity of the final
optimized design. This leads to a more natural formulation that addresses
a simple engineering question: What is the lightest structure able to withstand
its loads? We developed a large-scale GPU-based parallel stress-constrained
TO framework considering a continuous range of varying load directions to
answer this question and close the gap between TO and practical application.
The developed GPU-based C++/CUDA framework efficiently addresses the
main challenges of large-scale TO, filtering, optimization algorithm, and the
solution of the equilibrium equations, only requiring a moderately affordable
GPU hardware. At the same time, we obtain designs that are more suitable
for engineering applications by considering a continuous variable range of load
directions that more closely resemble real-life service loads using a worst-
case analytical approach. We present several numerical results, including 3D
problems with over 45 million local constraints providing detailed optimal
structures that demonstrate the capabilities of the techniques developed in
this work. The large-scale GPU framework, combined with the analytical
solutions for continuously varying load cases, has the potential to expand the
applications of TO techniques leading to improved engineering designs.

Keywords
Topology Optimization; Stress Constraints; Varying Loading Direction;

Varying Loading Amplitude; Large-Scale Problem.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Resumo

Vasconcelos Senhora, Fernando; Mota de Menezes, Ivan Fabio.
Otimização topológica com restrições locais de tensão e
variação contínua da direção e amplitude do carregamento:
aplicações em problemas de grande escala. Rio de Janeiro,
2022. 131p. Tese de Doutorado – Departamento de Engenharia
Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Otimização topológica (OT) é uma técnica de otimização estrutural
capaz de gerar projetos incrivelmente detalhados para uma grande gama de
problemas. No entanto, a maioria dos trabalhos de OT presentes na literatura
está focada em problemas de minimização de flexibilidade, que não consideram
a resistência dos materiais durante o processo de otimização, levando a soluções
que não satisfazem limites de falha do material. Neste trabalho, focamos em
problemas de OT baseados em tensão no qual introduzimos restrições de
tensão no problema de otimização, para garantir a integridade estrutural do
projeto final. A formulação de tensão de OT nos leva a um problema de
engenharia muito mais natural que nos remete à seguinte pergunta: Qual a
estrutura mais leve capaz de suportar as cargas as quais será submetida? Para
ajudar a responder essa pergunta e para trazer a OT para mais próximo de
aplicações reais, neste trabalho foi desenvolvido um sistema computacional
em paralelo, baseado em GPU, considerando uma carga que pode variar a
sua direção continuamente e capaz de resolver problemas de larga escala.
A implementação em GPU apresenta soluções eficientes para os principais
problemas de OT de larga escala, como o filtro, o algoritmo de otimização
e a solução das equações de equilíbrio. Ao mesmo tempo, ao considerar
uma carga variando continuamente que mais se aproxima das condições reais
de carregamento usando uma estratégia de pior cenário, obtém-se soluções
mais robustas e mais adequadas a aplicações de engenharia. Várias soluções
numéricas são apresentadas, incluindo problemas 3D commais de 45 milhões de
restrições de tensão, que demonstram a efetividade das técnicas desenvolvidas
neste trabalho. O sistema de larga escala baseado em GPU combinado com
as soluções analíticas para a variação contínua de carga, tem o potencial
de expandir o uso da OT na engenharia levando a novas e mais eficientes
estruturas.

Palavras-chave
Otimização Topológica; Restrições de Tensão; Carregamento com

Direção Variável; Carregamento com Amplitude Variável; Problemas de
Grande Escala.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Table of contents

1 Introduction and Motivation 17
1.1 Summary of the Main Contributions of This Work 19
1.2 Thesis Outline 21

2 Literature Review 22
2.1 Large-scale GPU 24
2.2 Continuously Varying Load Case 25

3 Stress-Constrained Topology Optimization Formulation 28
3.1 Basic Stress-constrained topology optimization formulation 28
3.1.1 Piecewise vanishing stress constraint 29
3.1.2 Stress Measure 30
3.2 Augmented Lagrangian Method (AL) 31
3.2.1 Augmented Lagrangian method for inequality constraints 33
3.2.2 Modified Augmented Lagrangian method and the Scale Factor η 34
3.2.3 Addressing non-convexity 35
3.3 Sensitivity analysis 35

4 Toward Large-Scale GPU-based Stress-Constrained Topol-
ogy Optimization 38

4.1 Large-Scale Filter in Parallel 38
4.1.1 Sequential Filter 40
4.2 Optimization Algorithm 42
4.3 Finite Element Analysis 45
4.3.1 Preconditioned Conjugated Gradient (PCG) 46
4.3.1.1 Matrix-Vector Product and Assembly-free Method 50
4.3.1.2 Optimized Local Stiffness Matrix Product 53
4.3.1.3 NP-Hardness 59
4.3.1.4 Branch-and-Bound Solution 61
4.3.1.5 Optimizing FLOPS Spent in Post-Multiplication Addition 64
4.3.1.6 FLOP Optimization of the BRICK8 Element Local Stiffness

Matrix 65
4.4 Numerical Results 66
4.4.1 L-Beam 67
4.4.2 Double-Decked Bridge 67
4.4.3 Victoria Amazonica 69
4.5 Computational efficiency 71

5 Continuously Varying Load Case 75
5.1 Multiple load direction 75
5.1.1 Case 1: Planar load varying 360o degrees 77
5.1.2 Case 2: Planar load with limited angle 80
5.1.2.1 Secondary Range of Admissible Angles 83
5.1.3 Case 3: Planar load varying 360o degrees plus a fixed load 83

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

5.1.4 Case 4: Multiple loads varying independently with different angles 85
5.1.4.1 Error Analysis of Critical Stress Upper Bound 89
5.1.4.2 Limiting the range of θ1 and θ2 90
5.1.4.3 Generalization to more than two independent loads 91
5.1.5 Case 5: Load varying in 3D 92
5.2 Generalization of load decomposition and varying load intensity 92
5.3 Critical Stress Sensitivity Analysis 93
5.3.1 Sensitivity of case 1 and case 2: Planar load varying in direction 94
5.3.2 Sensitivity of case 3: Planar load varying in direction plus a fixed

load 95
5.3.3 Sensitivity of case 4: Multiple Planar loads varying independently 96
5.3.4 Sensitivity of the Stress Components 96
5.4 Numerical Results 98
5.4.1 Double L-bracket 98
5.4.1.1 Double L-beam with two loads varying simultaneously 99
5.4.1.2 Double L-beam with one fixed load and a load varying in direction 99
5.4.1.3 Double L-beam with two loads varying independently 100
5.4.2 GE Jet Engine Bracket Challenge 101

6 Conclusions 108
6.1 Suggestions for Future Work 109

A FLOP Optimization Solution of the BRICK8 Element Local
Stiffness Matrix 124

B Compliance Minimization with Continuously Varying Loads130

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

List of figures

Figure 1.1 Concept map of the main contributions of this work. 19
Figure 1.2 Flowchart of a general Topology Optimization framework

displaying the contributions of this work on the many aspects
of the optimization procedure. 20

Figure 3.1 Plot comparing the piecewise vanishing stress constraint
[102] to the proposed modified piecewise vanishing stress con-
straint (Eq. (3-7)). 30

Figure 4.1 Error of the sequential filter in relation to the traditional
linear filter as a function of the ratio of the filter radius over the
local kernel radius. 42

Figure 4.2 Schematic of the effect of the traditional linear filter, the
local kernel, and the sequential filter over a 3D mesh. 43

Figure 4.3 Diagonal Square problem proposed by [102]. (a) Prob-
lem domain, design variables (Z1 and Z2), and boundary condi-
tions. (b) Optimization domain of the problem presented in Eq.
(4-8), displaying the feasible region, the constraints, the objec-
tive function, the global optimum, and the optimization path
performed by the AGD (24 iterations) and the MMA (32 iter-
ations) algorithm. In this plot, we can clearly see the smooth
path taken by the AGD, in comparison with the ragged and
oscillatory path taken by the MMA. 46

Figure 4.4 Node ordering and mesh data structure for efficient GPU
storage and access. 53

Figure 4.5 Coloring scheme for assembly-free parallel matrix-vector
product. 53

Figure 4.6 Schematic of the decision tree graph representing the
solutions of the Set Collapsing Problem. 63

Figure 4.7 Decision tree graph representing the solutions, and the
Branch-and-Bound procedure of problem in Eq. (4-27). 64

Figure 4.8 L-Beam problem and solutions; (a) Design domain ge-
ometry, and boundary conditions, with the supports being rep-
resented by the brown patches, and the loads being represented
by the red arrow. (b)-(d) Optimized structures for meshes with
2097152, 16777216, and 46656000 elements, and their respective
weights as a percentage of the total weight of the domain. 68

Figure 4.9 Double-Decked Bridge problem and solutions; (a) Design
domain geometry, and boundary conditions, with the supports
being represented by the brown patches, and the loads being rep-
resented by the red arrows. The symmetry planes of the design
domain are represented in green and blue. (b)-(d) Optimized
structures for meshes with 8847360, 29859840, and 47416320 el-
ements, and their respective weights as a percentage of the total
weight of the domain. 70

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Figure 4.10 Victoria Amazonica problem and solutions; (a) Speci-
men of the plant Victoria Amazonica in nature that inspired
the problem definition, and the complex underlying structure
of their leaves ; (b) Design domain geometry, and boundary
conditions, with the supports being represented by the brown
patches, and the loads being represented by the red arrows. The
symmetry planes of the design domain are represented in blue.
(c)-(d) Optimized structures for meshes with respective weights
as a percentage of the total weight of the domain. 72

Figure 4.11 Computational efficiency of (a) a matrix-vector opera-
tion, and (b) a PCG iteration using the proposed EbE optimized
local matrix product compared with a traditional EbE imple-
mentation, a cuSPARSE-based implementation, and a Matlab
implementation for varying number of DOFs. Each computa-
tional time is the average of 1000 executions. The red strike
marks the largest number of DOFs that we were able to com-
pute with each approach. We also display the average speedup
of the proposed EbE optimized local matrix product in relation
to the other approaches. 74

Figure 4.12 Efficiency of the TO procedure; (a) Computational time
of the stress constrained TO procedure as a function of the
number of elements for the L-Beam and Double-Decked Bridge
problem; (b) Computational time breakdown of the TO pro-
cedure showing that the linear system accounts for more than
99% of the total computational time; (c) Computational time
breakdown of the PCG algorithm per operation. 74

Figure 5.1 Schematic of all the load conditions, with loads varying
in direction, and magnitude, contemplated in the proposed
formulation. (a) Load varying 360o degrees forming a ellipsoid
domain in which the load varies, not only in direction, but
also in magnitude. (b) Load varying 360o degrees forming a
circular domain, in which the load varies only in direction. (c)
Load varying in a limited range of admissible directions. (d)
Load varying 360o degrees combined with a fixed load. (e) Two
loads varying independently in direction. (f) Load varying in 3D
directions. 76

Figure 5.2 Schematic of the domain of possible load cases in red and
the load vector basis in white for case 1, with (a) general load
basis vector, i.e. ‖Fx‖ 6=

∥∥∥Fy∥∥∥ forming a elliptic domain in which
the load varies, not only in direction, but also in magnitude, and
(b) load basis vectors with the same magnitude, i.e. ‖Fx‖ =

∥∥∥Fy∥∥∥
forming a circular domain, in which the load varies only in
direction. 78

Figure 5.3 Schematic of the domain of possible load cases in red
and the load vector basis in white (Fx) and black (Fy), with a
limited range of angles (θr), for case 2. 81

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Figure 5.4 Representation of the three cases of the limited angle
optimization problem. Case 1, in which the maximum lies
between the limited angle range ([−θr, θr]). Case 2, in which the
maximum and the minimum lie outside the limited angle range.
Case 3, in which the maximum lies outside and the minimum
lies inside the limited angle range. 82

Figure 5.5 Schematic displaying how to rotate the basis vectors (Fx
and Fy) to achieve any continuous range of admissible angles
desired. 82

Figure 5.6 Schematic of the secondary range of admissible angles
caused by the linearity of the state equations and the quadratic
behavior of the von Mises stress. 83

Figure 5.7 Schematic of the domain of possible load cases (red), the
load basis vectors (white) for the varying load and the fixed load
(green), for case 3. (a) general load basis vector, i.e. ‖Fx‖ 6=

∥∥∥Fy∥∥∥
forming an elliptic domain, and (b) load basis vectors with the
same magnitude, i.e. ‖Fx‖ =

∥∥∥Fy∥∥∥ forming a circular domain. 84
Figure 5.8 Schematic of the domain of possible load cases in red

and green, and the load vector basis in white for case 4. (a)
General load basis vector, i.e. ‖F1x‖ 6=

∥∥∥F1y

∥∥∥, and ‖F2x‖ 6=
∥∥∥F2y

∥∥∥
forming elliptic domains, and (b) load basis vectors with the
same magnitude, i.e. ‖F1x‖ =

∥∥∥F1y

∥∥∥ and ‖F2x‖ =
∥∥∥F2y

∥∥∥ forming
a circular domain. 86

Figure 5.9 Histogram generated using a sample of 100 million
uniformly distributed random stress basis vectors representing
the underlying probability distribution of the percent error (see
Eq. (5-45)) between the proposed upper bound, and the worst-
case stress. 91

Figure 5.10 Schematic of how to combine loads with varying with
independent angles to achieve a load that varies in 3D. 93

Figure 5.11 Load case 1 with different magnitudes and different
orientations for the load basis vectors Fx and Fy. 94

Figure 5.12 Double L-Bracket design considering a single load. (a)
Double L-Beam domain geometry; (b) Design optimized for a
fixed load angle equal to −90o for F1 and F2 ; (c) Maximum
stress of the design in (b) as we vary the load angle θ and the
stress map for this structure at selected load angles. 100

Figure 5.13 Double L-beam solutions with two loads varying simul-
taneously with an angle θ, with different ranges of admissible
angles (a)-(d), and their respective stress map envelope (e)-(h). 101

Figure 5.14 Maximum stress of the optimized designs of Fig. 5.13, as
we vary the load angle, and the volume fraction of these designs
in respect to the range of admissible load angles (θr) considered
in the optimization. 102

Figure 5.15 Double L-beam solutions with one fixed load (θ1, red
load), and one load varying in direction (θ2, green load), for
different angles of the fixed load (a)-(f), and their respective
stress map envelope (g)-(m). 103

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Figure 5.16 Maximum stress of the optimized designs of Fig. 5.15, as
we vary the angles of both the fixed load (θ1, red load in Fig.
5.15), and the load varying in direction (θ2, green load in Fig.
5.15). Blue regions of the contour plot indicate stress below the
stress limit. 104

Figure 5.17 Double L-beam solutions with two loads varying inde-
pendently in direction (θ1 and θ2, red and green load, respec-
tively), with different ranges of admissible angles (a)-(g), and
their respective stress map envelope (h)-(n). 105

Figure 5.18 Maximum stress of the optimized designs of Fig. 5.17, as
we vary the angles of both loads (θ1 and θ2, red and green load in
Fig. 5.17, respectively). Blue regions of the contour plot indicate
stress below the stress limit, and the white squares indicate the
range of admissible angles considered in the optimization. 106

Figure 5.19 GE jet engine challenge problem; (a) design domain with
the red regions indicating loading, and green regions indicating
support. (b) Volume fraction of the GE jet engine challenge
problem solutions displayed in (c)-(g) as we vary the load angle
range, θr. (c)-(g) Isometric, top, and bottom views, of the
optimized structures considering 0o, 15o, 30o, 60o and 90o load
angle range. 107

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

List of tables

Table 4.1 Input parameters for the L-Beam problem. 67
Table 4.2 Input parameters for the Double-Decked Bridge problem. 69
Table 4.3 Input parameters for the Victoria Amazonica problem. 71

Table 5.1 Input parameters for the 2D Double L-bracket problem. 99
Table 5.2 Volume fractions for the double L-beam designs of Fig.

5.15, considering a load varying in direction and a fixed load
with different angles. 100

Table 5.3 Input parameters for the 3D GE Jet Engine Bracket
Challenge problem. 102

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

List of Abreviations

AGD Adaptive Gradient Descent-based

AL Augmented Lagrangian

B&B Branch-and-Bound method

CG Conjugated Gradient

DOF Degrees of Freedom

EbE Element-by-Element approach

FEA Finite Element Analysis

FEM Finite Element Method

FLOPS Floating-Point Operations

GPU Graphic Processing Unit

MMA Method of Moving Asymptotes

MPVCs Mathematical Program with Vanishing Constraints

MPVSC Modified Piecewise Vanishing Stress Constraint

NP Non-Deterministic Polynomial Time

OC Optimality Criteria

PCG Preconditioned Conjugated Gradient

PVSC Piecewise Vanishing Stress Constraint

SAXPY Scalar ax plus y

SIMP Solid Isotropic Material with Penalization

TO Topology Optimization

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Tu te tornas eternamente responsável por
aquilo que cativas.

Antoine de Saint-Exupéry, O pequeno príncipe.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

1
Introduction and Motivation

Throughout human history, engineering design tools, from pen and
paper to computer aided design, have mostly played a passive role in the
design process. Most recently, however, structural optimization transforms
this paradigm by allowing the computer to design optimal structures with
minimal human interference. Not only that, structural optimization pushes
the limits of structural design achieving an unprecedented level of performance
and lightweightness. Among all of the existing techniques inside the structural
optimization field, topology optimization (TO) [15, 16] is one of the most
general because it is able to generate incredibly complex structures with
intricate details for a wide range of applications. With this technique, we
can design taller skyscrapers, safer cars, lighter airplanes that consume less
fuels, just to cite a few examples of the endless possibilities that TO provides.
However, most of the research in the field does not consider local failure criteria
in the design process, and/or only accounts for a limited number of load
cases in the optimization, which can lead to a structure that will break under
normal operating conditions. Furthermore, topology optimization problems are
computationally expensive, which prevents its widespread use to solve large-
scale problems that are essential for designing engineering structures (see Fig.
1.1 for the main challenges addressed in this work).

Most developments in topology optimization focus on compliance mini-
mization problems, which aim to find the stiffest structure for a given volume
constraint. Because no limits on material strength are imposed, structures de-
signed for minimum compliance do not necessarily withstand the applied loads,
making some of these designs unfeasible for practical applications. Therefore,
from a structural integrity standpoint, a more appropriate topology optimiza-
tion formulation should aim to find the lightest structure that resists the ap-
plied loads without exceeding the material strength at any point. In this work,
the material strength limitations are directly imposed in the TO formulation
through local stress constraints, while minimizing the total weight of the struc-
ture. This stress-constrained weight minimization formulation leads to a more
natural engineering design paradigm that generates practical optimized struc-
tures.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 1. Introduction and Motivation 18

Furthermore, to make use of the full potential of TO capabilities, it
is necessary to have a sufficiently refined mesh to represent the fine details
of the optimal structure, which means that the problem size rapidly grows
beyond our computational capabilities, specially for 3D problems. This creates
the need for efficient large-scale TO techniques. Using parallel processing, the
groundbreaking work [6] optimized an airplane wing using a mesh with over 1
billion elements, and by using such refined mesh they obtained a finely detailed
micro-structure improved design, which surpasses traditional airplane wing
design in weight, possibly saving billions of dollars in airplane fuel per year.
Currently, the record for the largest TO problem ever solved is held by [12]
with over 2.1 billion elements. However, to achieve such solution they required
the use of the Joliet-Curie Supercomputer for over 85 hours, which results in
a cost reaching hundredths of thousands of dollars. This high financial cost
prevents the implementation of such large-scale solution techniques by the
industry, limiting the impact of their research. This highlights the need for an
economically viable large-scale approach that can be implemented with far less
resources, and that can be widely applied by industry. Furthermore, both [6]
and [12] used a compliance-based formulation, which is significantly simpler to
solve.

At the same time, engineering structures are subjected to a multitude of
loads over their lifespan [99]. For example, aircraft are subjected to constantly
varying inertial loads; buildings are subjected to continuously-varying wind and
live loads, in addition to the structure’s self weight. These myriads of loading
conditions cause an equally countless number of stress distributions that should
be considered in design process to guarantee structural integrity. Nevertheless,
topology optimization typically focuses on structures with a single load case
or a small number of load cases, leading to designs that are over-fitted to an
artificial single loading condition, and that are not robust under the service
loads.

Currently, we lack an efficient implementation that can handle large-
scale stress-constrained TO problems accounting for realistic load cases, and
this has limited the application of topology optimization by the industry and
military alike. In this work, we intent to address this gap in the literature by
combining local failure criteria, large-scale TO with continuously varying load
conditions (see Fig. 1.1). The combination of these approaches will allow us to
design real life structures with practical applications and it will take topology
optimization one step closer to the industrial and commercial use.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 1. Introduction and Motivation 19

Stress Constrained
 Topology Optimization

GPU Parallel
Framework

Adaptive Gradient
Descent

Sequential
Filter

Local Stiffness Matrix
Product Optimization

Continuosly
Varying Load

Worst-Case
Oriented Stress

3D Varying Load

Figure 1.1: Concept map of the main contributions of this work.

1.1
Summary of the Main Contributions of This Work

This work focus on stress constrained TO to solve large-scale problems
with realistic loading conditions. To this end, we developed a GPU-based
parallel framework considering continuously varying load directions. In the
development of this framework, the unifying thread was the optimization
techniques and principles, which were used to improve the several aspects of a
typical TO procedure, as displayed in Fig. 1.2, e.g. optimization was used to
minimize the error of the sequential filter, to reduce the computational cost
of the local stiffness matrix product, and to find analytical solutions to the
worst-case oriented stress for continuously varying load case. To summarize,
the main contributions of this work are:

• a sequential filtering technique with a low memory footprint;

• an adaptive gradient-based optimization algorithm that can easily
be implemented in parallel;

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 1. Introduction and Motivation 20

Yes
No

Topology
Optimization

Apply Filter

Solve Equilibrium
 Equations

Design Update

Convergence?

Domain and Boundary
Conditions

Optimized
Structure

Objective function
 and Constraints

Sensitivity

Adaptive Gradient Descent

Sequential Filter

Local Stiffness Matrix
Product Optimization

Continuosly Varying Load

Worst-Case
Oriented Stress

GPU Parallel Framework

Figure 1.2: Flowchart of a general Topology Optimization framework display-
ing the contributions of this work on the many aspects of the optimization
procedure.

• a parallel GPU assembly-free preconditioned conjugated gradi-
ent solver for the Finite Element Analysis (FEA) with and optimized
local stiffness matrix product that can efficiently handle large-scale prob-
lems with unstructured meshes;

• the creation of the Set Collapsing Problem, which was mathemati-
cally proved to be NP-Hard;

• a specifically tailored Branch-and-Bound scheme that lead to a
solution, which reduced the number of floating point operations of the
local stiffness matrix product by more than half ;

• a worst-case scenario technique to incorporate continuously varying
load into stress-constrained TO based on analytical solutions that bound

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 1. Introduction and Motivation 21

the maximum stress caused by a range of admissible load angles. The
analytical solutions considered:

• a single load varying in a limited range of angles;
• a load varying in direction plus a fixed load;
• two or more loads varying independently in direction;
• a load varying in 3D in a limited range of angles;

1.2
Thesis Outline

The remainder of this thesis is organized as follows. Next Section (Sec-
tion 1.1) summarizes the main contributions of this work. Chapter 2 reviews
the existing literature on stress-constrained topology optimization consider-
ing large-scale parallel implementations and multiple load cases. Chapter 3
presents the stress-constrained TO formulation and the AL-based approach
used to handle the local stress constraints. Chapter 4 develops the large-scale
parallel GPU framework for stress-constrained TO, and provides numerical re-
sults that benchmark its efficiency. Chapter 5 describes the multiple load direc-
tion framework with detailed derivations of the proposed analytic solutions for
worst-case stress, and provides benchmark numerical examples obtained with
the proposed method. Finally, Chapter 6 presents the concluding remarks, and
discuss potential future works.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

2
Literature Review

Stress-constrained TO requires a large number of stress evaluation points,
and consequently a large number of stress constraints, to guarantee the
structural integrity of the final design, because stress are local by nature. The
large number of stress constraints demands high computational resources both
for the sensitivity evaluation, and for the optimization problem, which makes
the direct problem intractable [41].

To reduce the computational cost, most researchers have used aggrega-
tion techniques to combine all the local stress constraints into a single global
constraint (e.g., see [42, 76, 77, 103, 122, 124]). The global constraint approx-
imates the value of the maximum stress of the structure. The use of a global
measure of stress reduces the computational cost at the expense of losing con-
trol over the local behavior of stress [42, 74]. The ability of aggregation func-
tions to represent the local stress constraints depends on the number of con-
straints, and it can rapidly deteriorate as the number of constraints increases.
To circumvent this issue, some researchers have used clustering techniques, in
which the design domain is first divided in several sub-regions, each called a
cluster, and then an aggregation function (e.g., the p-norm) is used to ap-
proximate the maximum stress value in each cluster [58, 74, 90]. However, the
resulting topologies obtained using the aforementioned clustering techniques
strongly depend on the number of clusters and on the way the clusters are
defined. In general, it is expected that, as the number of clusters increases, one
gains control over the local stress. However, there is no clear relation between
the number of clusters and the quality of the optimized results [74].

An attractive approach to efficiently solve the stress-constrained TO
problem is the Augmented Lagrangian (AL) method [19, 20]. The AL method
directly handles the local stress constraints by adding them to the objective
function in the form of a penalty term that is updated at each optimization
step. Pereira et al. [91] used the AL method in the context of density-based
topology optimization using relaxed local stress constraints [28]. Although
promising, the strategy by Pereira et al. [91] appears to have difficulties find-
ing 0/1 solutions at the end of the optimization steps. The AL method was
also used by Emmendoerfer Jr. and Fancello, Emmendoerfer Jr. and Fancello

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 2. Literature Review 23

[43, 44] and by James et al. [62] in the context of the level set method. In the
approach by Emmendoerfer Jr. and Fancello, Emmendoerfer Jr. and Fancello
[43, 44], the AL method is used to treat the von Mises stresses as local quanti-
ties, and in the approach by James et al. [62], the AL method is used to enforce
volume constraints, while the local von Mises stress values are aggregated us-
ing a p-norm aggregation function. The approach by Emmendoerfer Jr. and
Fancello, Emmendoerfer Jr. and Fancello [43, 44] produces structures with
clear boundaries that satisfy the stress constraints locally, but the algorith-
mic parameters required for the evolution of the level set may change from one
problem to another, which undermines the robustness of their approach. More-
over, da Silva et al. [35] used the AL method for stress-constrained topology
optimization considering manufacturing uncertainties via eroded, intermediate
and dilated projections [106].

Another challenge in stress-constrained topology optimization problems
that has received a lot of attention is related to the phenomenon of singular
optima. This phenomenon was first reported by Sved and Ginos [112] in the
context of stress-constrained truss optimization. The singular optima means
that the stress-constrained optimization problem do not satisfy standard
constraint qualification, and Achtziger and Kanzow [7] classified this type of
optimization problem as a mathematical program with vanishing constraints
(MPVCs). Expading on the work by Achtziger and Kanzow [7], Hoheisel
and Kanzow [57] proposed several tailored versions of standard constraint
qualification for MPVCs. The phenomenon of singular optima was extensively
studied by other researchers [29, 67, 68, 69], and a thorough historical review
on the subject can be found in [97]. The issue of singular optima has been
alleviated by means of relaxation techniques such as the ε-relaxation [28].
Duysinx and Sigmund [42] modified the ε-relaxed constraint by Cheng and
Guo [28] for use in the context of density-based topology optimization. As an
alternative methodology to the ε-relaxation approach, Bruggi [25] proposed
the so-called qp-relaxation technique. Achtziger et al. [8] proposed a smooth-
regularization approach, and proved that this version of the problem satisfies
standard constraint qualification.

In this work, we apply a modified version of the approach proposed by
Senhora et al. [102], that uses an AL-based method with a modified vanishing-
constraint formulation. Their formulation is able to efficiently, and consistently
handle millions of constraints, which proved to be essential for the development
of this work.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 2. Literature Review 24

2.1
Large-scale GPU

Topology optimization is generally associated with a high computational
cost that stems from the solution of the equilibrium equations imposing the
physics of the problem (e.g., linear elasticity). The equilibrium equations are
most commonly solved through the finite element method (FEM), which
requires the discretization of the domain. For TO, the domain must be
sufficiently refined in order to represent small details of the structure, and
to accurately capture the physical behavior of the underlying structure. This
high discretization requirement dramatically increases the computational cost,
specially for 3D cases.

In order to address this high computational cost, the most popular
strategy has been the use of parallel computing techniques for TO. However,
as noted by Aage and Lazarov [3], the available literature on the subject
is scarce, and incomplete. Recently, Mukherjee et al. [87] provided a broad
review of the large-scale TO field state-of-the-art. Nonetheless, all the available
research follow a similar strategy of employing parallel iterative solvers to
obtain the solution of the equilibrium equation. Following this strategy, [3,
6, 12, 22, 37, 70, 82, 100, 105, 117], have implemented parallel frameworks
to solve the compliance minimization problem in TO. Meanwhile, Kim et al.
[66] solved a buckling-based problem, Aage et al. [5] focused on Stokes flow
problems, and Evgrafov et al. [46] solved compliant mechanism problems.
While all the previously mentioned works focused on CPU parallel processing,
[27, 39, 56, 83, 84, 85, 87, 93, 94, 96, 100, 101, 118, 121, 127] used a GPU
implementation achieving higher performance than their CPU counterparts,
which demonstrates the promising power of the GPUs for parallel processing.

Expanding on the GPU TO previously mentioned works, Zegard and
Paulino [127] provides an introduction to the challenges, and opportunities
of GPU based TO system while solving compliance minimization 2D prob-
lems. Challis et al. [27] developed a C++/CUDA implementation with the
Thrust library [13] to solve the inverse homogenization problem, and maxi-
mize the bulk modulus of a unit cell for an isotropic material. Martínez-Frutos
and Herrero-Pérez [83] used a multi-GPU scheme to solve robust compliance
minimization problems, i.e., compliance expectation minimization with uncer-
tainties in the inputs (e.g., load uncertainty), and used the multiple GPUs
for concurrent computations of the numerical approximation of the stochastic
variables. Martínez-Frutos and Herrero-Pérez [84] proposed an evolutionary
topology optimization framework using a fixed-grid FEM scheme, and anal-
ysed the influence of several preconditioners on the solution of the problem,

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 2. Literature Review 25

while Martínez-Frutos et al. [85] developed a similar work for density-based
TO to solve compliance, compliant, and heat-sink problems. Ramírez-Gil et al.
[94] addressed the multi-physics problem of designing a 3D electrothermome-
chanical actuator using GPU computing. In a similar multi-physics context,
Ramírez-Gil et al. [94] optimized a fluid mixer, and heat exchanger, by us-
ing a Lattice Boltzmann method in a multi-GPU setting, to reduce the high
computational cost associated to the fluid simulation. Also using a multi-GPU
scheme, Herrero-Pérez and Castejón [56] partitioned the domain so that each
partition was sent to a different GPU to be computed in parallel, and, with
that, they were able to solve problems with over 50 million elements, but the
cost of communication between GPUs negatively affected their speedup. On
the collaborative spirit of the TO field, and similar to [9, 113], which freely
shared educational codes, Schmidt and Schulz [101] developed a short and sim-
ple implementation of a GPU-based TO framework. In a similar trend, Duarte
et al. [39] implemented a general C++/CUDA TO code that supported both
CPU and GPU solutions, using both hexahedral and polygonal elements.

It is worth noting that the previously mentioned implementations are
problem specific, and the stress constrained TO problem introduces distinct
challenges that are not directly addressed by the previous mentioned works.
In fact, the stress constrained large-scale TO literature is extremely scarce.
And the only significant work found [75] uses CPU parallel processing to solve
problems with over 14 million elements. To address this gap in the literature,
we propose to implement a GPU-based parallel processing stress-constrained
TO framework, based on the AL method.

2.2
Continuously Varying Load Case

The simplest way to incorporate multiple load cases in a stress-
constrained TO formulation is to consider additional constraints for each load
case; however, each additional load case substantially increases the computa-
tional cost, rendering it impossible to account for continuously-varying loads.
Thus, this approach has typically been limited to no more than two fixed load
cases [38, 76, 80, 92, 102]. Alternatively, the problem with multiple load cases
has been formulated as an uncertainty in the load, which can be solved using
stochastic or worst-case oriented approaches [14, 114].

In the stochastic approach, the load is treated as a random variable fol-
lowing a known probability distribution, and the objective and/or constraints
of the optimization problem are modeled as statistical moments of random
functions or as probabilities. Stochastic models have been widely applied to

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 2. Literature Review 26

compliance-based TO problems [10, 40, 53, 54, 61, 73, 78, 115, 129], but more
moderately so for stress-based TO [36, 63, 79, 81]. Kanno and Takewaki [63]
studied the effects of multiple load directions with stress constraints in the
context of ground structure topology optimization using a probabilistic model
to generate a sample load that represents the possible load cases. Lógó et al.
[79] worked on the optimally conditions of multiple load cases and proposed a
probabilistic model to address the problem with trusses. Luo et al. [81] consid-
ered uncertainty in the material and in the load amplitude by using reliability
based topology optimization. Stochastic approaches, however, are troublesome
in practice because they demand large data samples to obtain accurate results,
which leads to high computational costs. The high computational cost can be
mitigated using surrogate models [34], but this increases the complexity of the
implementation. In addition, stochastic techniques can cause instability in the
optimization procedure [130].

On the other hand, worst-case oriented approaches are equivalent to
solving an optimization in the set of possible load cases in which the worst-
case is identified, and used as the objective and/or constraint function in the
TO problem. The solution to the worst-case oriented problem guarantees an
upper bound for the objective function (in the case of minimization problems),
and/or the satisfaction of the constraints for any load case considered in the
set of possible load cases. Thore et al. [114] provides a worst-case oriented
general framework for quadratic objective function and quadratic constraints
under load uncertainty by recasting the problem as a non-linear, semi-definite
programming problem which is then solved numerically. Young et al. [125],
and Xie and Steven [123] use an evolutionary structural optimization approach
and consider multiple load cases with stress constraints by computing a finite
element analysis for each load case. Csébfalvi [33] deals specifically with
uncertainty in load directions with an iterative approach. Holmberg et al.
[59] proposed a game theory approach to solve the worst-case oriented stress
constraints problems considering variation in the load direction; however,
because the problems are non-convex, the existence of solution to the game
proposed by Holmberg et al. [59] is not guaranteed, and they rely on empirical
observation of the numerical results.

In this work, we propose a worst-case oriented approach, but, unlike the
previously mentioned approaches, we use the linear state equations and the
bilinear properties of the von Mises stress to derive an analytic solution for
the worst-case stress caused by continuously-varying loads. We then use these
worst-case stresses as the local stress constraints in the TO problem. These
analytic solutions, which are one of the main contributions of this work, are

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 2. Literature Review 27

accurate, computationally efficient and guarantee the structural integrity of
the final design over the set of continuously varying loading conditions.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

3
Stress-Constrained Topology Optimization Formulation

The stress constrained TO problem has two main challenges:

1. Stress is a local quantity that must be satisfied point-wise, and, because
of that, one needs to impose a large number of constraints, leading to a
prohibitive computational cost;

2. The optimal solution of a stress-constrained problem generally lies on
a degenerated low-dimensional region of the solution domain. This
phenomenon is called singular optima.

To address these challenges, we employ an AL approach that preserves
the local nature of stress, and a variation of the piecewise vanishing constraint
[102] that can reach the singular optima. This formulation is efficient because
it only requires one adjoint vector computed trough the solution of a linear
system for the computation of the sensitivity, which is then used on a gradient-
based optimization algorithms. By treating the stress constraints locally, we
obtain optimized structures that satisfy all the stress constraints.

3.1
Basic Stress-constrained topology optimization formulation

This section presents a framework for the solution of stress-constrained
topology optimization problems based on the AL method. In this work, we fo-
cus on the stress constrained mass minimization described by the optimization
statement:

min
z

m(z) =
Ne∑
e=1

ρ̃e(z)ve

s.t.: gj(z) ≤ 0, j = 1, . . . , Nc

0 ≤ ze ≤ 1, e = 1, . . . , Ne

with: K(z)U = F

ρ̃(z) = H(Pz)

(3-1)

where m(z) is the mass (volume) of the structure, z is the vector of design
variables, ρ̃e is the density of element e defined using a filter operation and a

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 29

smooth Heaviside projection [120], ve is the area (for 2D problems) or volume
(for 3D problems) of element e, gj(z) is the j-th stress constraint, Nc is
the number of stress constraints, Ne is the number of elements in the finite
element mesh, and K(z)U = F is the FEM discretization of the linear elastic
equilibrium equation, which is solved numerically.

The physical density vector, denoted by ρ̃, is obtained by first applying
the density filter operator [23, 126], and then the Heaviside operation [120]
to the design variable z. The filter operation is computed by multiplying the
design variable vector z by the matrix P, whose entries Pij are defined as:

Pij = wijvj
Ne∑
k=1

wikvk

, with wij = max
[
0, 1− ‖xi − xj‖2

r

]s
, (3-2)

ρ = Pz (3-3)

where r is the filter radius, vj is the volume of element j, and ‖xi − xj‖2

represents the distance between the centroids, xi and xj, of elements i and j,
respectively. The order of the filter is defined by the filter exponent, s. Note
that, when s = 1, the polynomial filter reduces to the traditional linear filter
[23]. The filtered variables are then defined as ρ for convenient notation. After
we apply the filter operation, we perform the smooth Heaviside projection
[120]:

ρ̃ = H(Pz) = tanh (βη) + tanh(β(ρ− η))
tanh (βη) + tanh(β(1− η)) (3-4)

where η is the value of the threshold for the Heaviside function (in this work
η = 0.5), and β controls the sharpness of such function. The stiffness matrix,
K, is computed through a typical assembly process as:

K(z) =
Ne
A
e=1

ke, with ke = Eek0, (3-5)

Ee = εmin + (1− εmin)ρ̃pe (3-6)

where ke are the element stiffness matrices, εmin is the Ersatz parameter (in this
work εmin = 10−6), p is the SIMP penalization factor, k0 is the stiffness matrix
for a solid element, and Ee is the material interpolation stiffness function.

3.1.1
Piecewise vanishing stress constraint

In this work, we use a modified version of the piecewise vanishing stress
constraint (PVSC) [102] defined as:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 30

gj(z) =

ρ̃pj

 0.1
(
σvj
σlim
− 1

)
+
(
σvj
σlim
− 1

)2
 , if

σvj
σlim

> 1

0.1 ρ̃pj
(
σvj
σlim
− 1

)
, otherwise,

(3-7)

in which the exponent p is the SIMP penalization factor, σvj is the von Mises
stress at evaluation point j, and σlim is the stress limit. This exponent factor
p helps to regularize the behavior of the constraint by correlating it with the
behavior of the local stiffness matrix as a function of the density. We denote
this constraint as the modified piecewise vanishing constraint (MPVSC) and
we use it in the optimization statement in Eq. (3-1). Figure 3.1 displays the
behavior of the MPVSC in comparison to the PVSC as we vary the value of
σv/σlim. In this plot, we can see that the PVSC becomes flat, i.e. has a null
first derivative, for any value equal to or below 1, which can cause instability
in the optimization procedure. Meanwhile, the MPVSC never has a null first
derivative, leading to a more well-behaved problem formulation.

piecewise vanishing stress constraint
modified piecewise vanishing stress constraint

C
on

st
ra

in
t V

al
ue

Figure 3.1: Plot comparing the piecewise vanishing stress constraint [102] to
the proposed modified piecewise vanishing stress constraint (Eq. (3-7)).

3.1.2
Stress Measure

In order to have a consistent and meaningful stress measure, we define:

σ̃v = ρ̃0.5σv, (3-8)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 31

which we will use to evaluate the stress on the optimized structures. This stress
measure, σ̃v, was based on the qp-relaxation approach [25], and is computed
with the elastic properties of the solid material, using the apparent “local” von
Mises stress [41, 42].

3.2
Augmented Lagrangian Method (AL)

The AL method [19, 20, 88] is a numerical technique to solve constrained
optimization problems. In the AL method, the solution to a constrained
optimization problem is achieved by solving a series of unconstrained problems
that converge to the original solution. For instance, suppose that we want to
use the AL method to solve the optimization problem:

min
z∈Rn

f(z)

s.t.: hj(z) = 0 ∀j = 1, . . . , Nc

(3-9)

in which z is the vector of design variables, f(z) is the objective function,
hj(z) are the equality constraints, and Nc is the number of constraints. Using
the AL method, we transform the optimization problem in Eq. (3-9), into the
unconstrained optimization problem:

min
z∈Rn

J (k)(z) = f(z) +
Nc∑
j=1

λ(k)
j hj(z) + µ(k)

2 hj(z)2

 , (3-10)

where λ(k)
j is an estimate of the Lagrange multiplier of hj(z), µ(k) is a penalty

coefficient, and k indicates the k-th step of the AL method. Both λ(k)
j and µ(k)

are updated at every step k. The AL function, J (k)(z), is an approximation
of the Lagrangian of the constrained problem (3-9), but with the extra term
1
2µ

(k)hj(z)2.
The solution z(k) of the approximate sub-problem in Eq. (3-10) converges

to the solution z∗ of the original problem (3-9) as k → ∞, given that
the original problem satisfies some regularity conditions [88]. Particularly,
Bertsekas [20] proved that if both the objective function and the constraints are
continuous, the original problem has an optimum, and every sub-problem has
an optimum, then the sequence of optima points of the sub-problems converges
to an optimum point of the original problem. Assuming that problem (3-10)
is well-behaved, the first-order optimality condition states that:

∇J (k)(z(k)) = ∇f(z(k)) +
Nc∑
j=1

[
λ

(k)
j + µ(k)hj(z(k))

]
∇hj(z(k)) = 0. (3-11)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 32

Comparing Eq. (3-11) with the KKT optimality conditions for problem (3-9)
implies that:

λ∗j∇hj(z∗) ≈
[
λ

(k)
j + µ(k)hj(z(k))

]
∇hj(z(k)), (3-12)

from which we obtain:

λ∗j ≈ λ
(k)
j + µ(k)hj(z(k)) (3-13)

or

hj(z(k)) ≈
λ∗j − λ

(k)
j

µ(k) . (3-14)

Equation (3-13) provides a means for updating the Lagrange multipliers, λ(k)
j ,

at every step k, as follows:

λ
(k+1)
j = λ

(k)
j + µ(k)hj(z(k)), ∀j = 1, . . . , Nc. (3-15)

From Eq. (3-14), we observed that hj(z(k)) is proportional to λ∗j − λ
(k)
j

and inversely proportional to µ(k). Thus, a good estimation of the Lagrange
multipliers and a large value of µ(k) improve the convergence of AL methods
to a feasible solution (i.e., hj(z) = 0). In theory, when λ(k) is a good
estimate of the actual Lagrange multiplier vector, one can obtain a good
estimate of z∗ by solving problem (3-10). A proper value for µ(1) needs to
be chosen carefully because a relatively high initial value for this parameter
may lead to ill-conditioning of the optimization problem [19, p. 123]. The usual
recommendation found in the literature (e.g., see [19, 20, 88]) is to start with
a moderate value of µ(1) and gradually increase it according to:

µ(k+1) = αµ(k), (3-16)

where α > 1 is a constant. The value of α is also problem dependent and may
require empirical adjustment. To solve optimization problems using the AL
method, one needs to solve the unconstrained optimization statement (3-10)
at each step k and update both Lagrange multipliers λ(k)

j and penalty term µ(k),
using Eqs. (3-15) and (3-16), respectively. The procedure is repeated until some
convergence criterion is satisfied. The AL method presented here is designed
for equality constraints, and extended for inequality constraints in Subsection
3.2.1.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 33

3.2.1
Augmented Lagrangian method for inequality constraints

The procedure described in Section 3.2 is designed to solve optimiza-
tion problems with equality constraints. Here, we expand the AL method for
inequality constraints. Consider the following optimization problem with in-
equality constraints:

min
z∈Rn

f(z)

s.t.: gj(z) ≤ 0 ∀j = 1, . . . , Nc

l ≤ z ≤ u,

(3-17)

where l and u define the lower and upper bounds of the design variables,
respectively. Introducing slack variables, constraints gj(z) ≤ 0 are rewritten
as:

hj(z) = gj(z) + sj = 0, sj ≥ 0, j = 1, . . . , Nc. (3-18)

Consequently, the approximate sub-problem that needs to be solved at the
k-th step of the AL method is:

min
z, s

J (k)(z, s) = f(z) +
Nc∑
j=1

λ(k)
j

(
gj(z) + sj

)
+ µ(k)

2
(
gj(z) + sj

)2

s.t.: u ≤ z ≤ l

sj ≥ 0 ∀j = 1, . . . , Nc.

(3-19)

The minimization of J (k)(z, s) with respect to the slack variables is
obtained explicitly for any fixed z by solving the optimization problem:

min
sj

λ(k)
j

(
gj(z) + sj

)
+ µ(k)

2
(
gj(z) + sj

)2

s.t.: sj ≥ 0.
(3-20)

The optimization statement (3-20) is defined in terms of the slack variable,
sj, associated to constraint gj. As a result, its solution can be found in closed
form using the stationary conditions of the Lagrangian of (3-20), which leads
to:

sj = max

0,−
λ(k)

j

µ(k) + gj(z)

 ∀j = 1, . . . , Nc. (3-21)

Substituting Eq. (3-21) into Eq. (3-18) leads to:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 34

hj(z) = max
gj(z),−

λ
(k)
j

µ(k)

 ∀j = 1, . . . , Nc. (3-22)

Using Eq. (3-22), the inequality constraints gj(z) ≤ 0 of (3-17) can be
replaced by equality constraints, allowing the problem to be solved using
the procedure described for solving the equality-constrained problem (3-9).
As inferred from Eq. (3-22), the slack variables do not need to be computed
explicitly, facilitating the implementation of the AL method with inequality
constraints. One must recall that the Lagrange multiplier estimators, λ(k)

j ,
and the penalty factor, µ(k), remain constant for each AL sub-problem, and
thus the AL function is continuously differentiable (with respect to the design
variables) at each AL step. Despite the presence of the maximum function, the
AL function used with Eq. (3-22) is differentiable even at the points in which
gj(z) = −λ(k)

j /µ(k) ([20] p. 161).

3.2.2
Modified Augmented Lagrangian method and the Scale Factor η

We apply the AL method to solve the optimization problem in Eq. (3-1).
We introduce a slight modification to the AL method by introducing a scale
factor η that multiplies the penalty term of the AL function. The AL function
for the k-th sub-problem is:

J (k)(z) =
Ne∑
e=1

ρ̃eve + η
Nc∑
j=1

λ(k)
j hj(z) + µ(k)

2 hj(z)2

 (3-23)

in which hj(z) is defined as max
[
gj(z),−λ

(k)
j

µ(k)

]
, with gj(z) being the MPVSC

defined in Eq. (3-7). The scale factor η is introduced because the progress
towards a feasible solution using the traditional AL method depends on the
ratio between the original objective function and the penalty term of the AL
function. Therefore, the magnitude of the penalty term is highly dependent
on the number of constraints. In the context of topology optimization with
local stress constraints, the number of constraints increases with the number of
elements in the mesh. Through numerical experimentation, we found that if the
objective-to-penalty ratio in the AL function is kept approximately constant
and independent of the number of constraints, our AL formulation leads to
consistent optimization independent of the mesh size. To preserve this ratio
for different mesh sizes, we multiply the penalty term by the scale factor η,
which is given by:

η = 1/Nc, (3-24)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 35

where Nc is the number of constraints. The proposed scale factor η helped
us obtain consistent optimization results for a variety of problems solved in
the present study, in which the number of constraints ranged between a few
thousands to over 35 million.

3.2.3
Addressing non-convexity

The stress-constrained TO problem is non-convex. Consequently, it is
common for optimization algorithms to get trapped in local optima. To
mitigate this effect, and possibly escape from unfavorable local optima, we
adopt a common strategy with the AL method for non-convex problems that
is to restart the values of µ and λj when the optimization stagnates1 [19, 20, 88].
This approach allows us to achieve better results, i.e., designs with lower mass
ratio than that obtained when these parameters are not restarted. The effect
of restarting these parameters in the quality of the optimization results is
demonstrated in [102].

3.3
Sensitivity analysis

The stress-constrained topology optimization problem discussed in this
section is solved using gradient-based optimization algorithms. In order to
do so, sensitivity information for the AL function (3-23) is required. The
sensitivity of the AL function is computed using the chain rule as:

dJ (k)

dzj
=

Ne∑
i=1

∂J (k)

∂ρ̃i

dρ̃i
dρi

dρi
dzj

=

=
Ne∑
i=1

∂J (k)

∂ρ̃i

tanh (βη)
tanh (βη) + tanh(β(1− η))β

[
1− tanh2(β(ρi − η))

]
Pij

(3-25)

The term Pij in Eq. (3-25) is obtained from the relation ρ(z) = Pz and the
term ∂J (k)/∂ρi is obtained using Eq. (3-23), as follows:

∂J (k)

∂ρ̃i
= ∂

∂ρ̃i

Ne∑
e=1

ρ̃eve + η
∂

∂ρ̃i

Nc∑
j=1

[
λjhj(z) + µ

2hj(z)2
]
. (3-26)

For simplicity in the notation, we have dropped the superscript k in Eq. (3-26)
and in the subsequent equations of this section. The second part of Eq. (3-26),
which is related to the penalty term, is computed as:

1Stagnation is reached when the average change in the design variables between two
consecutive iterations is smaller than a given tolerance.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 36

∂

∂ρ̃i

Nc∑
j=1

[
λjhj(z) + µ

2hj(z)2
]

=
Nc∑
j=1

[
λj + µhj(z)

] ∂hj(z)
∂ρ̃i

. (3-27)

Using Eq. (3-7) and (3-22), the non-zero part of the sensitivity of constraints
hj is determined as follows:

∂hj(z)
∂ρ̃i

= ∂

∂ρ̃i
ρ̃pj
[
(σvj /σlim − 1)2 + 0.1(σvj /σlim − 1)

]
=pρ̃p−1

j δij
[
(σvj /σlim − 1)2 + 0.1(σvj /σlim − 1)

]
+

+
ρ̃pj
σlim

[
2(σvj /σlim − 1) + 0.1

] (∂σvj
∂U

)T
∂U
∂ρi

(3-28)

where δij is the Kronecker delta operator and U is the displacement vector
obtained from the equilibrium equation KU = F. The last part of Eq. (3-28)
corresponds to the sensitivity of the von Mises stress for the jth stress con-
straint. The adjoint method is used herein to avoid the expensive computation
of ∂U/∂ρ̃i [17, 31]. Differentiating the aforementioned equilibrium equation
with respect to the design variables, and assuming that f is independent of the
design variables, we obtain:

∂K
∂ρ̃i

U + K
∂U
∂ρ̃i

= 0 (3-29)

Substituting Eq. (3-28) into Eq. (3-27) and adding the expression in Eq. (3-29)
multiplied by the adjoint vector, ξ, leads to:

∂

∂ρ̃i

Nc∑
j=1

[
λjhj(z) + µ

2hj(z)2
]

=

Nc∑
j=1

[
λj + µhj(z)

]
pρ̃p−1

j δij
[
(σvj /σlim − 1)2 + 0.1(σvj /σlim − 1)

]
+

+
Nc∑
j=1

[
λj + µhj(z)

] ρ̃pj
σlim

[
2(σvj /σlim − 1) + 0.1

] (∂σvj
∂U

)T
∂U
∂ρ̃i

+

+ξT
(
∂K
∂ρ̃i

U + K
∂U
∂ρ̃i

)
,

(3-30)

Collecting all terms in Eq. (3-30) that multiply ∂U/∂ρ̃i and choosing ξ such
that these terms vanish from the sensitivity evaluation allows rewriting Eq.
(3-30) as:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 3. Stress-Constrained Topology Optimization Formulation 37

∂

∂ρ̃i

Nc∑
j=1

[
λjhj(z) + µ

2hj(z)2
]

=
[
λi + µhi(z)

]
pρ̃p−1

i

[
(σvj /σlim − 1)2+

+0.1(σvj /σlim − 1)
]

+ ξT
∂K
∂ρ̃i

U,
(3-31)

where ξ is the solution to the following adjoint problem:

Kξ = −
Nc∑
j=1

[
λj + µhj(z)

] ρ̃pj
σlim

[
2(σvj /σlim − 1) + 0.1

] ∂σVMj
∂U

(3-32)

The last term in Eq. (3-31) is obtained as ξT ∂K
∂ρ̃i

U = ξTi
∂ki
∂ρ̃i

Ui, where ξi, ki, and
Ui refer to element-wise quantities. Because we compute the element stiffness
matrices using Eq. (3-5), then:

∂ki
∂ρ̃i

= p(1− ε)ρ̃p−1
i k0. (3-33)

The final expression for the sensitivity of the AL function (3-23) is given by:

dJ (k)

dzj
=

Ne∑
i=1

{
vi + η

(
λi + µhi(z)

)
pρ̃p−1

i

[
(σvj /σlim − 1)2+

+0.1(σvj /σlim − 1)
]

+ p(1− ε)ρ̃p−1
i ξTi k0Ui

}
tanh (βη)

tanh (βη) + tanh(β(1− η))β
[
1− tanh2(β(ρ− η))

]
Pij

(3-34)

Note that using the adjoint vector, ξ, obtained from Eq. (3-32) greatly
reduces the cost of computing the sensitivity as compared to computing Eq.
(3-28) directly, which requires the computation of ∂U/∂ρ̃i for i = 1, . . . , Nc.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

4
Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization

Large-scale problems are essential for the general application of TO,
because they allow for the fully detail design of complex structures with high
physical accuracy. Furthermore, large-scale TO has pushed the boundary of
material design by enabling the direct optimization of the micro-structure. To
solve large-scale TO problems, we will implement parallel computing strategies
in a GPU framework. GPUs have thousands of cores that can process extensive
amounts of data in parallel, making them powerful devices for the solution of
large-scale TO problems.

The GPU-based parallelization of the TO procedure encounters three
main challenges: the filter, the optimization algorithm, and the solution of
the equilibrium equations by means of the FEM. In the next Sections we will
address each of these challenges individually to achieve a parallel GPU scheme
capable of solving large-scale stress constrained TO problems.

4.1
Large-Scale Filter in Parallel

The filter [24, 26, 107, 128] is an important part of every TO framework,
because it solves two practical problems of TO [18]:

1. Checkerboard patterns: The filter prevents checkerboard patterns
in the solution. Checkerboard patterns appear due to the numerical
discretization of the domain, and the use of low order elements in the
FEA, which overestimate the stiffness-to-weigh ratio of such patterns;

2. Minimum length-scale: The filter controls the minimum length-scale
of the TO result, i.e. the filter prevents structural features smaller than a
certain size (determined by the choice of filter radius), which is important
from manufacturing point of view, because small structural features are
troublesome to manufacture in practice.

The filter solve this problems by restricting the space of admissible den-
sity distribution to that of continuous and smooth fields. This restriction to

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 39

continuous and smooth fields is accomplished by applying a convolution op-
eration of a continuous function, with local support, over the design variable
distribution, ensuring the smoothness of the convoluted output. The convolu-
tion operation is described by equation:

ρ(x) = k ? z =
∫
k(τ)z(x− τ)dτ (4-1)

in which ρ is the filtered density field, k is the kernel function, ? is the
convolution operation, z is the design field, x is the position variable, and
τ is the convolution variable. The most common filter kernel used is the linear
hat kernel given by the equation:

k(x) = max
0,

(
1− ‖x‖2

R

) . (4-2)

The most traditional, and computationally efficient way to apply the
filter operation is, as previously described in Section 3.1, pre-computing the
discretized convolution parameters given in Eq. 3-2, and writing them in a
sparse filter matrix format. The filter operation is then reduced to a simple
matrix-vector operation which can be done in O(n2) time, in which n is the
size of the vector (in this case the number of design variables). However,
the problem with this approach is the memory requirement to store such
sparse filter matrix. Each row ”i” of this matrix has to store the distance
between element ”i” and its neighbors for which such distance is smaller
than the filter radius. Considering a 3D case with homogeneous mesh, the
average characteristic size1 of an element follows a O(1/n1/3) trend for a given
fixed domain. We can then estimate the number of neighbor elements that fall
inside the filter radius by diving the volume of a sphere of such radius by the
characteristic volume of the elements given by the cube of the characteristic
size:

O

 4
3πR

3(
1

n1/3

)3

 = O (n) . (4-3)

Considering that the filter matrix has n rows, the memory requirements,
for such matrix, grows with O(n2). The quadratic growth of the memory
requirement rapidly becomes prohibitive, as we deal with large-scale problems,
specially for GPUs, which have considerably limited memories. To give an idea
of how fast the memory requirement can grow, notice that, a filter that requires
only 100 MB with a mesh of 100,000 elements, would require almost 10 GB

1Characteristic size here refers to a measure of length-scale that represents the geometry
of the element, e.g. the side length of a cube

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 40

with a mesh of 1 million elements, and almost 1 TB with a mesh of 10 million
elements.

Because of this issue, alternatives to the pre-computation and storage
of the filter matrix have been proposed. One approach is to directly compute
the convolution operation using discrete Fourier Transform (DFT) algorithms,
which can be performed with significantly limited memory. However, such
algorithms are not computationally efficient, as they present an asymptotic
complexity of O(n3 log3(n)) (3D). Other techniques replace the convolutional
filter, with a filter based on elliptic PDEs [65, 72, 119], more specifically an
Helmholtz-like PDE:

−R2∇2ρ+ ρ = z (4-4)

In the PDE Filter approach, Eq. 4-4 is solved to obtain the filtered
variable ρ. The main advantage of this approach is the limited memory
requirement, and the efficiency, which is dictated by the algorithms used
to solve the PDE that can be implemented in parallel. However, the PDE
filter introduces further complexity to the formulation, both theoretically and
implementation-wise. The approach that we propose in Section 4.1.1 combines
limited memory requirements and efficiency, while being remarkably simple to
implement.

4.1.1
Sequential Filter

The sequential filter combines the idea of PDE filter technique, and
the pre-computed filter matrix convolution. Similar to the pre-computed filter
matrix, we pre-compute a sparse matrix that represents a discrete convolution
of the density field with a continuous locally supported kernel function. The
difference is that we choose the kernel function such that its support is
restricted to the elements in the immediate vicinity of an element. Because
of this limited support of the kernel, we only need to store the neighboring
elements of each element. Once we have this local filter matrix, we apply it to
the density field repeatedly, similar to a "time" evolution of a time-dependent
PDE. This accomplishes an extended smoothing effect that approximates a
convolution with a kernel function reaching a larger support region comparable
to traditional filtering techniques. However, unlike the traditional filtering
techniques, the memory requirements for this technique grows linearly with
the problem size, O(n), because we only store a fixed number of neighbours
for each element. Mathematically, this sequential filter operation is equivalent
to a sequence of convolutions, i.e.:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 41

ρ =
r iterations︷ ︸︸ ︷

k ? k ? · · · ? k ?z (4-5)

in which ρ is the filtered density field, k is the kernel function, ? is the
convolution operation, z is the design field, and r is the number of iterations of
the convolution. The associative properties of the convolution operation allow
us to compute the term k?k?· · ·?k, i.e. the r iterations of the convolution of the
kernel k with itself. This computation is done for analysis purposes only, since
pre-computing this term would result in a computational cost comparable to
the traditional filter. We propose the following equation to estimate the number
of iterations r of the kernel:

r =
a(R

Rk

)b (4-6)

where Rk is the radius of action of the local kernel k, R is the radius of effect
that we want to achieve, and a and b are numerical parameters. The parameters
a and b are determined by minimizing the mean absolute error of the sequential
filter in relation to the traditional linear filter that we would like to replicate.
In order to evaluate the error we choose discrete values of R/Rk ranging from
2 to 14. We then minimize the mean absolute error of these points using the
Nelder-Mead simplex search algorithm [89]. Solving this minimization problem
lead us to the following equation for r:

r =
1.07

(
R

Rk

)2.14
 (4-7)

Figure 4.1 displays the mean absolute error obtained using this formu-
lation for different values of R/Rk. From this plot we can see that the error
decreases with the value of R/Rk. This is because the local filter acts like a
discretization of the linear filter, and as we increase the value of R/Rk, we
obtain a finer discretization.

Figure 4.2 illustrates the term k ? k ? · · · ? k in 3D, in comparison with a
linear kernel, considering r iterations computed with Eq. (4-7). The example
shown in Fig. 4.2 considers a cube of side length 2, a radius R = 1, and a radius
for the local kernel Rk = 0.15, meaning that this local kernel was applied 44
times.

Algorithm 1 displays the procedure to implement the sequential filter
and it has as inputs the matrix representation, Pk, of the local kernel k,
the vector of design variables z, the desired equivalent radius of the linear
filter R, and the radius of the local kernel Rk. Considering that the local
kernel radius is proportional to the element characteristic size, and that

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 42

1.4 4 6 8 10 12 14
3

4

5

6

7

8
10 -6

Kernel
Radius

()

Filter Radius
()

Figure 4.1: Error of the sequential filter in relation to the traditional linear
filter as a function of the ratio of the filter radius over the local kernel radius.

the characteristic size of an element is proportional to 1/n1/3, we have that
Rk ∝ 1/n1/32, and, consequently, r = O(n2.14/3). Meaning that we have to
perform r = O(n2.14/3) matrix-vector products of the local filter matrix with
the design variables. However, notice that the local filter matrix has a fixed
number of non-zero components at each row, meaning that, due to its sparsity,
we can compute the matrix-vector product in O(n) operations. Considering
this, the asymptotic analysis of the efficiency of the sequential filter algorithm
give us an rO(n) = O(n2.14/3n) = O(n5.14/3) < O(n2) performance. In practice,
the cost of the sequential filter is negligible when compared to the cost of the
FEA required in each TO iteration. Another advantage of the sequential filter
is the easiness to change the filter radius R, which, in the sequential filter
algorithm, just required a change in the input of the algorithm, in contrast to
traditional filter approaches that would require the full re-computation of the
filter matrix.

4.2
Optimization Algorithm

The optimization algorithm is responsible for optimizing the structure by
updating the design variables, and it is at the core of any TO implementation.
The most traditional optimization algorithms for TO are the Optimality
Criteria (OC) [55, 86, 98], and the Method of Moving Asymptotes (MMA)

2∝ is the mathematical symbol for proportional to.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 43

0

0.001

(a) Linear Filter (b) Local Kernel (c) Sequential Filter

2 2

2
=1 =0.15

=6.67 (applied 44 times)

Figure 4.2: Schematic of the effect of the traditional linear filter, the local
kernel, and the sequential filter over a 3D mesh.

Algorithm 1 Sequential Filter Algorithm
1: procedure Sequential_Filter(Pk, z, R, Rk)
2: ρ← z
3: for i = 0 to

⌊(
R/Rk

)2⌋ do
4: ρ← Pρ
5: end for
6: return ρ
7: end procedure

[4, 109, 110]. The OC is very limited, and can only solve optimization problems
with one constraint, for which said constraint must be active at the optimum.
Furthermore, the OC can be very unstable for problems with high non-linearity,
and the optimization path generated by the OC can only transverse a sub-
space of the design domains in which the constraint is active, making it
extremely susceptible to local optima for non-convex problems. Some other OC
based algorithms have been developed that can accommodate more than one
constraint, such as the ZPR [131], but they suffer from the same shortcomings.
Despite this disadvantages, the OC and OC-like methods are still very popular,
because of their efficiency, and easiness to implement for compliance problems
that tend to be particularly well-behaved.

On the other hand, the MMA is a very powerful and general optimization
algorithm that can handle a wide range of different optimization problems.
Because of the freely available MMA codes provided by the author of [110], the
MMA is widely disseminated in the TO community. However, the general and
powerful capabilities of the MMA come at a high computational cost, because
the MMA generates a convex approximated optimization problem that needs
to be solved iteratively. This iterative inner solve, which can be significantly
expensive, determines the update of the design variables. Several MMA-based
approaches have been developed, such as the GCMMA [111], which guarantees
the convergence of the algorithm, the TRMMA [60], which presents improved

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 44

convergence, and the EMMA [21], which incorporate second order information,
but none of them address the high computational cost.

Because of the previously mentioned difficulties associated with the
OC and the MMA, a different algorithm was necessary for the large-scale
solution of stress constrained TO problems. For this reason, we developed a
adaptive gradient descent-based (AGD) approach that is efficient, simple to
implement, and easily parallelizable. Notice that we handle the constraints
of the optimization problem with the Augmented Lagrangian method, and,
therefore, we are left with an unconstrained optimization problem. Algorithm
2 describes the main steps of the proposed algorithm.

Algorithm 2 Adaptive Gradient Descent
1: procedure Modified_Gradient_Descent(z, f , df/dz, fold1, fold2,

zmin, zmax, α, move, norm0)
2: if (fold1 − fold2)(f − fold1) < 0 then
3: α← max(0.25α, 10−6)
4: else
5: α← min(1.25α, 1)
6: end if
7: mr ← move (zmax − zmin)

8: df ←
α

norm0

df

dz
9: z← max(max(min(min(z− df , z + mr), zmax), z−mr), zmin)
10: fold2 ← fold1
11: fold1 ← f
12: end procedure

In Algorithm 2, z are the design variables, f is the value of the objective
function, df/dz is the gradient of the objective function in respect to the design
variables, fold1 and fold2 are the values of the objective function in the last two
iterations, zmin and zmax are the lower and upper bound of the design variables
respectively, α is adaptive parameter that damps oscillation by controlling the
size of the step taken by the optimizer, move is move limit (generally set to
0.05), and norm0 is a normalizing parameter for the gradient. The value of this
normalizing parameter is set to norm0 =

∥∥(df/dz)0
∥∥

2 /move, in which (df/dz)0

is the gradient at the first iteration of the optimization. For some problems, it
might be beneficial to update the value of norm0 every 50 iterations or so to
accelerate convergence.

To compare the performance of the proposed AGD algorithm with the
MMA, we will solve the diagonal square problem proposed by [102]. The
problem domain is represented in Fig. 4.3(a), in which we have a four element

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 45

square mesh fixed at the lower left element, with a load applied at the upper
right node. The elements at the anti-diagonal have a fixed density of 1 (i.e. solid
passive zone), while the density of the two elements in the main diagonal are
the design variables of the problem. The mathematical optimization statement
of the diagonal square problem is displayed in Eq. (4-8). Figure 4.3(b) displays
the design domain of this problem in which we can see the feasible region, the
constraints, the objective function, and the optimization path performed by
the AGD (Blue) and the MMA (Gray) algorithms. We can see that the AGD
describes a smooth path towards the optimum taking a total of 24 iterations,
while the MMA presents a more ragged and oscillatory behavior towards the
optimum taking a total of 32 iterations.

min
(Z1,Z2)

Z1 + Z2

s.t.: g1 = σV1
σlim
− 1 ≤ 0, Z1 > 0

g2 = σV2
σlim
− 1 ≤ 0, Z2 > 0

0 ≤ ρi ≤ 1, i = 1, 2
with: K(Z1, Z2)U = F,

(4-8)

4.3
Finite Element Analysis

The FEA is the most computationally expensive part of the TO proce-
dure. As it is demonstrated trough numerical experiments in Section 4.5 (see
Fig. 4.12(b)), the computational cost of the FEA easily surpass 99% of the
total computational time. Not only that, the solution of the FEA also requires
a substantial amount of RAM memory, which can be the limiting factor for
the size of problems one is able to solve. Therefore, this is the most crucial
part of the implementation when dealing with large-scale TO problems.

In this work, we are only considering a linear elastic model for the
mechanical behavior of the structure, and therefore, the FEA comes down
to the solution of a single linear system per iteration, which is represented by
the stiffness matrix.3 To solve this linear system, the use of direct methods
(e.g. Cholesky, LU decomposition) rapidly become prohibitive because of high
memory requirements, and, therefore, we will resort to iterative methods, more
specifically, the preconditioned conjugated gradient method (PCG) [51, 104,
p. 628]. The PCG presents several advantages over other linear system solver:

3For a detailed explanation of the FEA method, and the computation of the stiffness
matrix see [95].

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 46

1

1

Z2

Z1

P

45o

Z2

Z1

AGD
MMA
Constraint g1
Constraint g2

Feasible Region

Global optimum
Objective Function

(a) (b)

Figure 4.3: Diagonal Square problem proposed by [102]. (a) Problem domain,
design variables (Z1 and Z2), and boundary conditions. (b) Optimization
domain of the problem presented in Eq. (4-8), displaying the feasible region, the
constraints, the objective function, the global optimum, and the optimization
path performed by the AGD (24 iterations) and the MMA (32 iterations)
algorithm. In this plot, we can clearly see the smooth path taken by the AGD,
in comparison with the ragged and oscillatory path taken by the MMA.

• PCG is an iterative solver, meaning that we do not need to decompose
the stiffness matrix, leading to a lower RAM memory requirement;

• PCG finds the best solution at each step in the subspace that it has
explored. That is, for step k, and initial guess u0, PCG will have the
best solution possible for the problem in the Krylov subspace K(K; u0) =
span{u0,Ku0, . . . ,Kku0};

• PCG only requires three types of operations, dot product, vector
add/subtract, and matrix vector product, which can be easily imple-
mented in parallel.

A disadvantage of the PCG method is that it only guarantees convergence
for symmetric positive definite matrices. However, the system that we are
trying to solve, generated by linear elastic FEA, are indeed symmetric and
positive definite, meaning that this limitation of the PCG is not a issue for us.

4.3.1
Preconditioned Conjugated Gradient (PCG)

In this Section we will provide more details about the Preconditioned
Conjugated Gradient method. First we will give a brief introduction to the

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 47

Conjugated Gradient method (CG), and then we will discuss the importance of
the preconditioner that easily extends the CG method to the PCG method. CG
is a linear solver that belongs to the class of iterative Krylov methods. Methods
of this class search for the best solution in the Krylov subspace of the problem.
The Krylov subspace is generated by the matrix that represents the linear
system, and by a initial guess of the solution. To solve the system KU = f
through the PCG method, we iteratively solve a sequence of optimization
problems:

min
U∈Kk(K,r0)

φ(U) = 1
2UTKU−UTF, (4-9)

in which r0 = KU0 − F, U0 is a initial guess, and Kk(K, r0) is the Krylov
subspace defined as:

Kk(K, r0) = span
{
r0, Kr0, K2r0, K3r0, · · · , Kk−1r0

}
Notice that the only change from the optimization problem (4-9) of

iteration k to iteration k + 1 is the Krylov subspace that defines the solution
domain of the problem. Another special property of optimization problem (4-9)
is that, if matrixK is positive-definite, the optimization problem is convex, and
therefore has only one solution, because the second derivative of the objective
function (i.e. the Hessian of the problem) is the matrix K itself. This means
that any critical point of the objective function f(U) is a solution to the
optimization problem. To identify critical points we compute the first derivative
of f(U), and set it equal to zero:

∂φ(U)
∂U

= KU− F = 0, (4-10)

demonstrating that a critical point of f(U) is also a solution to the linear
system KU = f . To solve the optimization problem in Eq. (4-9), we can make

use of the fact that the iterations of the solution domains Kk(K, r0), form a
sequence of nested subspaces, i.e.:

K0(K, r0) ⊂ K1(K, r0) ⊂ · · · ⊂ Kk(K, r0).

Furthermore, we can iteratively define an orthonormal basis for the sequence
of nested subspaces. Let Vk−1 = {v0,v1, · · · ,vk−1} be and orthonormal basis
for Kk−1(K, r0), then an orthonormal basis of Kk(K, r0) can be created by
orthonormalizing Kk−1r0 with respect to the set vk−1, and then adding the
orthonormal resulting vector, vk, to that set Vk = Vk−1 ∪ {vk}. This sequence
of orthonormal basis also gives us a formula to find the optimum of the

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 48

optimization problem in Eq. (4-9):

U(k)
? = U(k−1)

? − µkvk (4-11)

To find the value of µk, we compute:

∂φ(U(k)
?)

∂µ
= − (vk)T K

(
U(k−1)
? − µkvk

)
+ (vk)T F = 0 (4-12)

µk =
(vk)T

(
KU(k−1)

? − F
)

(vk)T K (vk)
= (vk)T vk

(vk)T K (vk)
(4-13)

To prove that the optimum of the optimization problem in Eq. (4-9)
is of the form displayed in Eq. (4-11), suppose that there exist a point
Û(k)
? = U(k)

? − αu, with u ∈ Kk−1, such that φ
(

Û(k)
?

)
< φ

(
U(k)
?

)
. Then

we can compute the optimal value of α in the same way that we computed the
optimal value of µk:

∂φ(Û(k)
?)

∂α
= − (u)T K

(
U(k)
? − αu

)
+ (u)T F = 0 (4-14)

α =
(u)T

(
KU(k)

? − F
)

(u)T Ku
(4-15)

The term in the numerator between parenthesis, rk =
(
KU(k−1)

? − F
)
, has

the special property of being orthogonal to the subspace Kk−1 (see [116,
p. 296]). Therefore, if rk ⊥ Kk−1, and u ∈ Kk−1, we have that α = 0, and
Û(k)
? = U(k)

? . Proving that Eq. (4-11) is the optimum. For more details on
the conjugated gradient, please refer to [51, 104, p. 628]. The mathematical
formulation described before leads to Algorithm 3.

Each iteration of the CG algorithm requires the computation of one
matrix-vector product, two dot products, and three scalar ax plus y
(SAXPY) operations. From all of the previously mentioned operations, the
matrix-vector product is the most expensive, and it is responsible for most of
the computational time spent in each iteration. Furthermore, the dot product
and SAXPY operations are straightforward, therefore, in the next Sections
we will focus our efforts in optimizing the matrix-vector operation. For the
dot product and SAXPY operations we used the standard and highly efficient
cuBLAS library [1]4.

4cuBLAS is a highly efficient CUDA library that provides GPU-accelerated linear algebra
routines.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 49

Algorithm 3 Conjugated gradient algorithm
1: procedure Conjugated Gradient(K, F, U0)
2: r0 := F−KU0
3: p0 := r0
4: k := 0
5: ω0 := rk · rk
6: while norm(rk) > Tol do
7: qk := Kpk
8: µk := ωk/ (pk · qk)
9: Uk+1 := Uk + µkpk

10: rk+1 := rk − µkqk
11: ωk+1 := rk+1 · rk+1
12: βk := ωk+1/ωk
13: pk+1 := rk+1 + βkpk
14: k := k + 1
15: end while
16: end procedure

Another matter that deserves attention is the convergence of the CG
algorithm, i.e. how the error of the approximate solution changes in each
iteration. Fortunately, we have an analytical expression that bounds the error
of the solution at each iteration developed by [116, p. 299]:

∥∥∥U? −U(k)
∥∥∥

K
≤ 2

∥∥∥U? −U(0)
∥∥∥

K

{κ2(K)
}1/2 − 1{

κ2(K)
}1/2 + 1

k (4-16)

where k2 is the condition number of the input matrix. Unfortunately, this
upper bound on the error is dependent on κ2, meaning that ill-conditioned
matrices might require a large number of iterations to achieve a satisfactory
convergence. To improve the condition number of a matrix, preconditioners are
generally applied to the system. The idea of preconditoning is to transform the
system KU = f as:

M1KM2Y = M1F, with M−1
2 U = Y (4-17)

in which M1 is the left preconditioner and M2 is the right preconditioner.
If the condition number of the resulting matrix M1KM2 is better than the
condition number of K, we are able to greatly reduce the number of iterations
necessary to solve the system. The final solution can then be obtained by
solving M−1

2 U = Y. From this, we can derive a set of requirements for a good
preconditioner:

1. The preconditioners M1 and M2 must improve the condition number of
K;

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 50

2. The preconditioner must be easy to compute, that is, the computational
cost of applying the preconditioner cannot be greater than the compu-
tational cost saved by the reduction of the number of iterations;

3. The preconditioners must be memory efficient to be able to handle large-
scale problems.

The GPU framework makes requirements 2 and 3 more complicated,
because, not only the preconditioner must be easy to compute, but it must
be easy to compute in parallel, and we have to deal with the limited memory
available for the GPU. For this reason, we chose to use the simple and efficient
Jacobi preconditioner defined by M1 = M2 = diag(K)−1/2, in which diag(K)
designates a diagonal matrix composed of the main diagonal of K. To apply the
preconditioner, however, it is not necessary to the directly compute M1KM2.
We can incorporate the preconditioner by defining the matrix M = M1M2, as
shown in Algorithm 4 (for more details see [51, p. 651]):

Algorithm 4 Preconditioned conjugated gradient algorithm
1: procedure Preconditioned Conjugated Gradient(K, F, U0,M)
2: r0 := F−KU0
3: z0 := Mr0
4: p0 := r0
5: k := 0
6: ω0 := zk · rk
7: while norm(rk) > Tol do
8: qk := Kpk
9: µk := ωk/ (pk · qk)

10: Uk+1 := Uk + µkpk
11: rk+1 := rk − µkqk
12: zk+1 := Mrk+1
13: ωk+1 := zk+1 · rk+1
14: βk := ωk+1/ωk
15: pk+1 := zk+1 + βkpk
16: k := k + 1
17: end while
18: end procedure

4.3.1.1
Matrix-Vector Product and Assembly-free Method

This Section explains the computation of the matrix-vector product
necessary for the PCG algorithm. In order to perform such matrix-vector
product operation in large-scale problems, we adopt an assembly-free method
[11]. An assembly-free method does not require the full assembly of the matrix

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 51

representing the linear system. This is beneficial because the assembly of the
matrix generally demands a large amount of RAM memory even when state-
of-the-art sparse representations are used, and, not only that, the memory
requirement grows with O(n2) which quickly prevents the assembly of the
matrix for large-scale problems. This means that methods that require the
assembled matrix, such as direct method (e.g. Cholesky, LU decomp), are
severely limited for large-scale systems.

To compute a matrix-vector product, or any other operation using an
assembly-free method, one must consider such operation as the composition
of several smaller operations. For example, if A = B + C + D + E, one could
compute Ax as Bx+Cx+Dx+Ex, and in this way, the explicit computation
of A = B + C + D + E is not necessary. In simple cases, the advantage of
computing Bx +Cx +Dx +Ex, instead of just summing up the matrices that
compose A, and computing Ax directly might not be apparent. However, when
matrix A presents clear patterns, or formation rules, assembly-free methods
can be extremely efficient. Luckily, the stiffness matrix that comes from the
linear elastic FEM presents a formation pattern that can be exploited for
the computation of the matrix-vector product. The formation pattern can be
clearly seen when we examine the global stiffness matrix definition as:

K(z) =
Ne
A
e=1

ke

in which the symbol
Ne
A
e=1

represents the assembly process of the global stiffness
matrix. In this equation, we see that the stiffness matrix is nothing more than
the sum of the contributions of the local stiffness matrix ke of each finite
element of our mesh. We will use the individual contributions of the local
stiffness matrix to compute an the assembly-free matrix-vector product in what
is called an Element-by-Element approach (EbE) [39]. Furthermore, if we use
a uniform mesh, i.e. all of the mesh elements have the same geometry, we only
need to compute one local stiffness matrix, significantly reducing the amount
of memory, and computation required for the solution of the linear system.
For this reason we chose to restrict our meshes to one single type of element,
the hexagonal element (Brick 8) displayed in Fig. 4.4. In the particular case of
TO, each element of the mesh is also associated to a optimization ze variable
that controls its stiffness Ee(z). Therefore the assembly process becomes:

K(z) =
Ne
A
e=1
Ee(z)ke,

but since Ee(z) is a scalar we can still exploit this formation pattern for

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 52

an assembly-free matrix-vector product operation. Notice that, to perform
such operation, we need to know the

Ne
A
e=1

, i.e. how each local stiffness matrix
contributes to the global stiffness matrix. This information tell us how the
entries of the matrices ke are summed up to form the entries of K, and this
information depends on the connections of the elements of the mesh, i.e. which
elements share a node, and how many degrees of freedom (DOF) each node
has (3 DOF’s for each in the linear elastic case). If we are dealing with a
structured mesh, i.e. a mesh for which we can derive a simple formation
rule that tell us the connection between elements, we do not need to store
any connectivity information, and the DOF contribution of each local ke can
be computed on demand. However, this severely restricts the geometry of
the domain that we can optimize. A workaround would be defining passive
zones, i.e. elements which we do not account for in the optimization, but this
strategy wastes a lot of resources on this passive zones that can, for some
geometries, account for more than 5 times the elements in the active zone.
Therefore, to extend our capabilities to non-trivial geometric domains, we store
the connectivity of the mesh in a data structured that can be easily accessed
and used during the assembly-free matrix-vector product. Since we are using
an element-based approach, i.e. we compute the contribution of each local
stiffness matrix associated with each element, our mesh data structure is also
element-based, and for each element we store the nodes associated to it. For
the Brick 8 element that we will use to compose our mesh, each element has 8
nodes that we need to store. However, we can reduce the number of nodes that
we need to store by half (from 8 to 4) if we use a simple node index numbering
rule:

• The indexes of the top nodes of an element is equal to the indexes of the
bottom nodes plus one.

This rule can be visualized in Fig. 4.4. With this rule, we only need to store
the bottom nodes for each element, and we can easily compute the top nodes.
The indexes of the bottom 4 nodes can be stored using a int4 CUDA data
type, which groups the information of 4 regular int variables together for fast
coalesced memory access.

Using the parallel processing power of the GPU, we can compute the
contribution of several local elements to the global matrix in the assembly-free
method at the same time, which greatly speeds up the computation of the
matrix-vector product. However, when we compute the contribution of each
element in parallel, two different processors might try to add the contribution
of their respective elements to the same DOF at the same time. That will

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 53

h i

j k

h +1 i + 1

j +1 k +1
Element

Index
Node
Index

Int4 Array
Index

Mesh Data Structure

1 1

.........

0 0h i j k 0 0 0 0

h i j k 1 1 1 1

0

0

00

0

0

0

0

 0 1

Figure 4.4: Node ordering and mesh data structure for efficient GPU storage
and access.

Figure 4.5: Coloring scheme for assembly-free parallel matrix-vector product.

happen when the elements being computed by two different processors share
a node. When two processors try to write to the same memory space (a.k.a.
the same DOF) at the same time, we have what is called a race condition [52],
which can severely slow down computation, because one of the processors has
to wait for the other to finish writing to that memory space so that it can
then itself use that memory space as well. To avoid this race condition we use
a mesh coloring scheme [39]. In this mesh coloring scheme, we color the mesh
such that elements with the same color do not share a node. After the mesh is
colored, we can send the elements of each color to be processed in parallel, one
color at the time, and with this, we avoid the race condition, as exemplified in
Fig. 4.5.

4.3.1.2
Optimized Local Stiffness Matrix Product

The essence of the assembly-free global stiffness matrix product operation
is the local stiffness matrix product, which is computed in parallel. Therefore,

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 54

the efficiency of this local stiffness matrix computation is directly related to
the efficiency of the assembly-free operation. Our goal in this Section is to
make the local stiffness matrix product as efficient as possible, and to explain
that, we are going to use a simple example. Imagine we have the following
matrix-vector product that we are trying to compute:

y1

y2

y3

y4

y5

=

a a a −b −b
−a −a c c c

c c a a c

a −a c b b

−a −a −a b b

x1

x2

x3

x4

x5

(4-18)

Notice that this matrix has only 3 distinct terms a, b and c, and we can use this
to our advantage. Let us focus on the first row of the matrix, which represents
the following Eq.:

y1 = a x1 + a x2 + a x3 − b x4 − b x5 (4-19)

In this Eq. (4-19), we have to perform 5 multiplications, and four additions
to compute the value of y1, which sums up to a total of 9 floating-point
operations (FLOPS). However, if we reorganize this Eq. (4-19) making use
of the distributive property of multiplication:

y1 = a (x1 + x2 + x3)− b (x4 + x5), (4-20)

we can reduce the number of multiplication required to compute the value of
y1 from 5 to only 2, which reduces the total number of FLOPS to 6. If we do
the same for all the rows in the Eq. we get:

y1 = a (x1 + x2 + x3)− b (x4 + x5)
y2 = −a (x1 + x2) + c (x3 + x4 + x5)
y3 = c (x1 + x2 + x5) + a (x3 + x4)
y4 = a (x1 − x2) + c x3 + b (x4 + x5)
y5 = −a (x1 + x2 + x3) + b (x4 + x5),

(4-21)

which reduces the total number of FLOPS of this matrix-vector product from
45 to 31. So far we only reduced the number of operations row-wise, but we
have several repeated terms across different rows that we can pre-compute to
reduce the number FLOPS even further. Let us define the following terms:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 55

t1 = (x1 + x2 + x3) t2 = (x4 + x5) t3 = (x1 + x2)
t4 = (x3 + x4 + x5) t5 = (x1 + x2 + x5)

t6 = (x3 + x4) t7 = (x1 − x2) t8 = (x3),

(4-22)

then we can redefine Eqs. (4-21) as:

y1 = a t1 − b t2
y2 = −a t3 + c t4

y3 = c t5 + a t6

y4 = a t7 + c t8 + b t2

y5 = −a t1 + b t2

(4-23)

The computation of the t∗ terms cost us 10 FLOPS, and to compute Eqs. (4-23)
cost us an extra 17 FLOPS, which give us a total of 27 FLOPS. This simple
example demonstrates the idea of how to optimize a matrix-vector product.
We can go a step further and optimize the formation of the t∗ terms. To see
this, notice that we can write the formation of these terms as a matrix-vector
product as well, i.e.:

t1

t2

t3

t4

t5

t6

t7

t8

=

1 1 1 0 0
0 0 0 1 1
−1 −1 0 0 0
0 0 1 1 1
1 1 0 0 1
0 0 1 1 0
1 −1 0 0 0
0 0 1 0 0

x1

x2

x3

x4

x5

, (4-24)

and we can optimize this computation in a similar manner by defining the
following terms:

s1 = x1 + x2 s2 = s1 + x3 s3 = x3 + x4 (4-25)

With the terms defined above in Eq. (4-25), we can compute the terms from
Eq. (4-22) as:

t1 = s2 t2 = x4 + x5 t3 = s1 t4 = x5 + s3

t5 = x5 + s1 t6 = s3 t7 = x1 − x2 t8 = x3
(4-26)

By using the terms of Eq. (4-25), to compute the terms of Eq. (4-26), we can
reduce the total number of FLOPS to 25. Therefore, by simply rearranging

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 56

the operations we can reduce the matrix-vector product from 45 FLOPS to 25
FLOPS, which yields a 45% reduction in computational cost.

This 5X5 matrix example is simple enough that we can analyse it by
hand, and figure out an efficient arrangement to compute the output of the
matrix-vector product. However for the 24X24 local stiffness matrix, or other
more complex matrix-vector product, we need a systematic procedure to find
the best way to compute the matrix-vector product. In other words, we want
to find a set of additions, and multiplications that minimizes the number of
FLOPS necessary to compute the output of a given matrix-vector product.
In this general form, we could have terms, such as t1 = x1 + x2 + x3, that
are formed by the addition of three values. However, in terms of number of
FLOPS, this is equivalent to computing t0.5 = x1 + x2, and t1 = t0.5 + x3. As
a matter of fact, any term that is composed by the addition of more than two
terms can be decomposed in a series of terms formed by adding two numbers.
These terms that are composed by adding only two terms are, therefore, the
"pairs" of our problems, which we can use to form any other term. This means
that we can reduce our problem of finding a set of additions, to that of finding
a set of "pairs" that minimizes the number of FLOPS.

The input of our problem is, therefore, a set of sets, that represent
the matrix of the matrix-vector product, a comparison function, and a cost
function. The set of sets is generated from the matrix such that, for each row,
all the components of the input vector that are multiplied by the same value
form a set, e.g. for the matrix in Eq. (4-18), the first row would give us the
sets {x1, x2, x3} and {x4, x5}, the second row would give us the sets {x1, x2}
and {x3, x4, x5}, and so on, until we get the whole set of sets:

G =
{
{x1, x2, x3} , {x4, x5} , {x1, x2} , {x3, x4, x5} , {x1, x2, x5} ,

{x3, x4} , {x1,−x2} , {x3}
} (4-27)

The comparison function takes as inputs two "pairs", and outputs a logical
True if they are equal according to a specified rule, and False otherwise. In
the specific problem that we are interested, i.e. minimize the number of FLOPS
spent in addition, the comparison function is:

C
({
xα, xβ

} {
xγ , xθ

})
=
(
xα == xγ ∧ xβ == xθ

)
∨
(
xα == −xγ ∧ xβ == −xθ

)
(4-28)

in which ∧ and ∨ are the symbols for the logical operations "and" and "or",
respectively. To understand why the need for such comparison function see the
two Eqs. in the following example:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 57

y1 = x1 + a (x2 + x3)
y2 = x1 + a (−x2 − x3)

(4-29)

The two Eqs. are different, because the second terms (x2 + x3), and (−x2 − x3),
however, we can rewrite the second Eq. as:

y2 = x1 − a (x2 + x3) , (4-30)

which preserves the number of operations (FLOPS) necessary to compute y2,
but show us that we can re-utilize the term (x2 + x3) computed in the first
equation. The cost function, L give us the cost of forming a specific "pair",
and for this case L

({
xα, xβ

})
= 1, is constant for any

{
xα, xβ

}
, because the

cost of adding two terms in the "pair" is always the same. We use definition
of a cost function here, instead of simply instating a cost of 1 to each pair for
the sake of generality, and the possibility to expand this scheme to other types
of operation cost minimization. Once these inputs are specified, we can define
a series of algorithmic operations in the input G presented in the sequence of
instructions below:

1. Initialize a counter p = i+1 such that i is the largest index of xi contained
in all the sets in G;

2. If possible, choose a "pair",
{
xα, xβ

}
, from a set of G. If is not possible

to choose a pair, terminate;

3. Search all the sets in G for the pair
{
xα, xβ

}
using the comparison

function. If the comparison function returns True, remove the "pair"{
xα, xβ

}
and replace it by the term xp. We will call this operation

collapsing the "pair"
{
xα, xβ

}
into xp;

4. Remove from G, all sets with one or less elements, and increase the
counter p = p+ 1.

5. If G is not empty return to step 2, otherwise terminate.

These set of instructions will always terminate, because each iteration
collapses at least one "pair", and the number of "pair" in the input is finite. We
are going to demonstrate this sequence of instructions on the example input
of Eq. (4-27), that represent the matrix-vector product of Eq. (4-18), i.e.:

Iteration 0: Initialize p = 6

G(0) =
{
{x1, x2, x3} , {x4, x5} , {x1, x2} , {x3, x4, x5} , {x1, x2, x5} ,

{x3, x4} , {x1,−x2} , {x3}
}

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 58

Iteration 1: Chosen "pair" {x1, x2}, p = 6

G(1) =
{
{x6, x3} , {x4, x5} , {x3, x4, x5} , {x6, x5} , {x3, x4} , {x1,−x2}

}
Iteration 2: Chosen "pair" {x6, x3}, p = 7

G(2) =
{
{x4, x5} , {x3, x4, x5} , {x6, x5} , {x3, x4} , {x1,−x2}

}
Iteration 3: Chosen "pair" {x4, x5}, p = 8

G(3) =
{
{x3, x8} , {x6, x5} , {x3, x4} , {x1,−x2}

}
Iteration 4: Chosen "pair" {x3, x8}, p = 9

G(3) =
{
{x6, x5} , {x3, x4} , {x1,−x2}

}
Iteration 5: Chosen "pair" {x6, x5}, p = 10

G(3) =
{
{x3, x4} , {x1,−x2}

}
Iteration 6: Chosen "pair" {x3, x4}, p = 11

G(5) =
{
{x1,−x2}

}
Iteration 7: Chosen "pair" {x1,−x2}, p = 12

G(7) = {} Terminate

This give us the sequence of "pairs":

x6 = {x1, x2} , x7 = {x6, x3} , x8 = {x4, x5} , x9 = {x3, x8} ,

x10 = {x6, x5} , x11 = {x3, x4} , x12 = {x1,−x2} ,

or more compactly written, P =
{
{x1, x2} , {x6, x3} , {x4, x5} ,

{x3, x8} , {x6, x5} , {x3, x4} , {x1,−x2}
}
, which coincides with the forma-

tion of the terms in Eqs. (4-25) and (4-26). The problem is then to find
the sequence of "pairs" P =

{{
xα1 , xβ1

}
,
{
xα2 , xβ2

}
, · · ·

{
xαn , xβn

}}
, that

terminates the sequence of instructions above, and minimizes the total cost
T (P) =

n∑
i=1

L
({
xαi , xβi

})
. We will call this problem the Set Collapsing prob-

lem. The "pairs" of this problem’s solution are the terms t? that we need to
form to minimize the number of FLOPS of the additions necessary to compute
the matrix-vector product of the input.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 59

4.3.1.3
NP-Hardness

Unfortunately, this problem is NP-Hard [48], which means that a poly-
nomial time solution algorithm is unlikely to exist. To proof that this problem
is NP-Hard, we are going to reduce the Vertex Cover problem [64], which is
known to be NP-Hard, into the Set Collapsing problem, outlined above, in
polynomial time. In the Vertex Cover problem, we have as an input a Graph
G = (V,E), and the problem is to find the smallest subset, V , of vertex of
this graph, such that for every edge eij ∈ E, we have that either the vertex vi,
or the vertex vj (or both), are in the subset V , i.e. every edge must have at
least one of the vertices on its extremes in the subset V . The reduction of the
Vertex Cover problem into the Set Collapsing problem is outlined in the steps
below:

1. As input we have a graph G = (V,E), with V = {v1, v2, · · · , vn}, and
E =

{
ei1j1 , ei2j2 , · · · , eimjm

}
in which the term eij represents an edge

between vertices vi, and vj;

2. We perform the reduction to the Set Collapsing problem by creating m
sets gk, one for each edge, such that gk =

{
x0, xik , xjk

}
, in which the

indexes ik, and jk come from the edge eikjk5. This will be the sets of
the G = {g1, g2, · · · , gm} that will serve as input to the Set Collapsing
problem. The comparison and loss function used will be the same as
define in the previous Section;

3. We solve the Set Collapsing problem with the input above. We
now interpret the solution of the Set Collapsing problem P ={{
xi1 , xj1

}
,
{
xi2 , xj2

}
, · · · ,

{
xip , xjp

}}
, to obtain a solution to the origi-

nal Vertex Cover problem. To do this, first discard all the pairs
{
xiK , xjK

}
in P for which one of the elements has its index (either ik or jk) greater
than the number of vertices n. This will discard any pairs that has an
element that was created by collapsing a pair of existing elements. From
each of the remaining pairs

{
xiK , xjK

}
choose the greatest index among

the two of them, q = max(iK , jK), and add the corresponding vertex xq
to the covering subset V . The subset V formed this way is a minimum
vertex cover.

Now we will prove that this procedure give us the solution to Vertex
Cover problem, and that the subset V formed this way is a minimum vertex

5Notice that the element x0 has no vertex counterpart, and it is exclusively used in the
reduction.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 60

cover. First, see that each element of the input G has 3 elements, and that two
different sets have, at most, two elements in common, x0, and possibly another
element xi 6. This means that after a set is collapsed, the remaining set has
two elements, and this new set is not the same as any other set, current or
possibly generated in future collapses. To see this more clearly, we can separate
the collapse in four cases, and for any arbitrary two sets we have:

Case 1: g1 =
{
x0, xi1 , xj1

}
and g2 =

{
x0, xi2 , xj2

}
, with xi1 = xi2 (the cases in

which xj1 = xj2 , or xi1 = xj2 , or xj1 = xi2 are analogues), and we are collapsing
xn+1 = {x0, xi1}. From this we get the new sets:

g1 =
{
xn+1, xj1

}
, and g2 =

{
xn+1, xj2

}
Since xj1 6= xj2 , we have that g1 6= g2.

Case 2: g1 =
{
x0, xi1 , xj1

}
and g2 =

{
x0, xi2 , xj2

}
, with xi1 = xi2 , and we are

collapsing xn+1 =
{
x0, xj1

}
. From this we get the new sets:

g1 = {xn+1, xi1} , and g2 =
{
x0, xi2 , xj2

}
The two sets are clearly different because they have different number of
elements, but not only that, any future collapse can only replace pairs with a
new element xn+r with r > 1, meaning that xn+1 6= xn+r. Therefore g1 6= g2.

Case 3: g1 =
{
x0, xi1 , xj1

}
and g2 =

{
x0, xi2 , xj2

}
, with xi1 = xi2 , and we are

collapsing xn+1 =
{
xi1 , xj1

}
. From this we get the new sets:

g1 = {xn+1, x0} , and g2 =
{
x0, xi2 , xj2

}
The collapse of the pair in the first set cannot cause a collapse in the second
set because xj1 = xj2 , and for the same argument stated in the previous case
regarding the formation of new element, the two sets will never be equal.
Therefore g1 6= g2.

Case 4: g1 =
{
x0, xi1 , xj1

}
and g2 =

{
x0, xi2 , xj2

}
, with xi1 6= xi2 , and we are

collapsing a pair in the first set. This case is trivial, and for the same argument
stated in case 2 regarding the formation of new element, the two sets will never
be equal. Therefore g1 6= g2.

6If two sets had all 3 of the elements they would represent the same edge counted twice.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 61

This tell us that the solution, P of the Set Collapsing problem is composed
by u + m pairs, m being the number of edges, and u being the number of
elements in the vertex cover subset V , i.e. s collapses that reduce the 3-element
sets in G to m 2-element sets, and those m 2-element sets which are themselves
pairs. Notice that all of these new m 2-element sets will have a new element
xn+r with r > 1 and, therefore, will not be a part of the solution to the Vertex
Cover Problem. Imagine now that there exist a subset cover, V̂ of size û, that is
smallest than the solution , V of size u (û < u), obtained through the reduction
procedure outlined. From this new solution, V̂ , we can create a new solution
P̂ to the Set Collapsing problem by considering the pairs {x0, xk} for each
xk ∈ V̂ . These pairs would collapse all the 3-element sets in G, because the
3-element sets are formed based on the n edges, and the subset V̂ is a vertex
cover. We then add the remaining collapsed 2-element sets to this solution P̂ ,
which will give us a total number of pairs equal to û+m < u+m contradicting
the assumption that P is the solution to the Set Collapsing problem, proving
that V is the solution to the Vertex Cover Problem.

4.3.1.4
Branch-and-Bound Solution

The fact that the Set Collapsing problem is NP-Hard tell us that a
polynomial time algorithm is unlikely to exist. However, we can still solve the
problem using non-polynomial time algorithms, more specifically we will use
the Branch-and-Bound method (B&B) [32, 71] to obtain the optimal solution.
In the B&B algorithm, we create a tree that systematically represent all the
possible solutions of the problem. We then search the branches of this tree for
the best solution, and while we are searching, we prune unfavorable branches,
i.e. we limit our search to favorable solutions, by using appropriate upper
and lower bounds. The pruning of the tree can greatly reduce the number
of possible solutions that need to be evaluated, and this becomes important
once we analyse the asymptotic number of possible solutions. The asymptotic
number of possible solution to this problem, for an input G = {g1, g2, · · · , gn},
is given by:

O(G) =
n∏
i=1

|gi|∏
j=2

j!
2!(j − 2)! =

n∏
i=1

|gi|∏
j=2

j(j − 1)
2 = O((|gmax|!(|gmax|−1)!)n) (4-31)

where |gi| indicates the number of elements of gi, and |gmax| is the number of
elements of the largest set in G. This indicates that the number of solutions
grows incredibly fast, e.g. the asymptotic number of solutions for the example
problem in Eq. (4-27) is 486, but if you duplicate the number of sets (keeping

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 62

the same number of elements for each duplicated set) it grows to 236196, if
instead, we add one set with 8 elements the number of possible solutions grows
to 771573600. From this, it is evident that checking every possible solution
becomes impractical extremely fast, and pruning the tree plays a critical role
in finding an optimal solution. Now we will describe the details of the B&B
algorithm that we will use to solve this problem. The first part is to define the
tree that represents all the possible solutions. To build this tree we will use a
recursive formation rule:

1. Start with a root node. For the first set of the input G with two or more
elements compute all possible pairs. Each possible pair will be a new
node of the tree connected to the root, and will represent the choice to
include the respective pair in the solution;

2. For each new node, collapse the pair related to that node, add that pair
to the solution set P and remove any set in G with less than two elements.
If G is empty, P represents a solution, otherwise, for each node, return
to the first step with the new G and the current node as root.

The resulting tree allow us to systematically search the solution space
for the optimal solution. A schematic of such tree is displayed in Fig. 4.6. Each
node of the tree amounts to solving a sub-problem generated by collapsing a
pair, leading to a recursive description of the problem. Searching every branch
of the tree, however, would amount to a brute force approach, which, according
to the previous discussion of the complexity of problem, would be impractical
even for small-sized problems. The second part of the B&B algorithm, pruning,
significantly reduces the number of branches that we need to check to find the
optimal solution. In order to prune we need to conceive a function, b(G), such
that b(G) ≤ T (P) for all possible solutions, P , of G, i.e. this function b(G) is a
lower bound on the objective function to all possible solutions of G.

To use this bound to prune the tree, observe that each node i has a
partial solution Pi, obtained by systematically adding the pairs represented
by the nodes that lead to the current node i, and a sub-problem Gi generated
by collapsing all the pairs in said partial solution. By adding the cost of the
partial solution of a node to the lower bound of the sub-problem associated to
said node, li = T (Pi) + b(Gi), we get a lower bound on the objective function
of all possible solutions emanating from that node. If we compare this value to
the best solution that we found thus far, Popt? , we can estimate how favorable
a branch of tree might be, moreover, if T (Popt?) ≤ li, we can guarantee that
any solution emanating from that node will not be better than our current

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 63

Figure 4.6: Schematic of the decision tree graph representing the solutions of
the Set Collapsing Problem.

best solution. Therefore, we do not need to search any edge going out of that
node, effectively pruning the tree of irrelevant branches.

This highlights the importance of choosing a good lower bound function.
The tighter the bound, i.e. the closest b(G) is to the minimal value of
T (P), the more branches we will be able to prune, reducing significantly
the computational cost. The bounding function chosen for our problem is the
number of unique sets in G. To demonstrate that this is a lower bound, note
that any unique set will have at least one pair that can be associated to it. More
precisely, if there existed a solution with less pairs than unique sets, it would
mean that a set was completely collapsed by pairs contained in other sets. In
order for that to happen, either the collapsed set, gc, must be equal to another
set, which is not possible by assumption, or, gc is contained in another set, gi,
larger than itself (‖gc‖ < ‖gi‖). We regard that even if gc is the combination
of two or more smaller sets, we can still associate an unmatched pair to it,
because the collapsed pairs will generate new elements such that the pairing
of these new elements will, eventually, not be in any smaller set. Returning to
the case gc (gi, we can associate gc to the pair, which will completely collapse
(i.e. the pair that will make gc collapse to a single element), and associate to
gi, the pair that will completely collapse it, which will be different because
‖gc‖ < ‖gi‖, and this concludes the proof.

To exemplify the effectiveness of this bounding function, we display, in
Fig. 4.7, the solution tree of the example problem in Eq. (4-27), highlighting
the checked solutions in comparison to all existing solutions.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 64

Root node
Choice node
Leaf node

Pruned branches
Checked branches
Solution

Figure 4.7: Decision tree graph representing the solutions, and the Branch-
and-Bound procedure of problem in Eq. (4-27).

4.3.1.5
Optimizing FLOPS Spent in Post-Multiplication Addition

We have effectively optimized the number of FLOPS spent in pre-
multiplication additions in the matrix-vector product. Similarly, we can reduce
the number of FLOPS spent in the post-multiplication addition operations,
and we can do this using the same framework. To do this, we simply write
each multiplied t? term as a new input to a matrix-vector product, e.g. for
Eqs. (4-23), we can write:

m1 = a t1 m2 = b t2 m3 = a t3 m4 = c t4

m5 = c t5 m6 = a t6 m7 = a t7 m8 = c t8,
(4-32)

and then redefine the computation of the output y vector as the matrix-vector
product:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 65

y1

y2

y3

y4

y5

=

1 −1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1
−1 1 0 0 0 0 0 0

m1

m2

m3

m4

m5

m6

m7

m8

(4-33)

The first thing we highlight is that we can reuse the multiplied terms m1

and m2, that appears in more than one row. More than that, if we perform the
same optimization procedure on this matrix, we arrive at the following terms:

n1 = m1 −m2 n2 = −m3 +m4 n3 = m5 +m6 n4 = m2 +m7 +m8,

(4-34)

reducing the computation of the Eqs. (4-23) to:

y1 = n1

y2 = n2

y3 = n3

y4 = n4

y5 = −n1

(4-35)

With this step of optimizing the post-multiplication addition, we can reduce
the total number of FLOPS to 20, which corresponds to a 55% reduction of
the number of operations.

4.3.1.6
FLOP Optimization of the BRICK8 Element Local Stiffness Matrix

The local stiffness matrix is defined by the geometry of the elements
of the mesh, and the constitutive matrix of the material considered in the
optimization. In order to save memory, and increase computational efficiency
we restrict ourselves to a single element geometry, a regular hexahedron (Brick8
element). The regular hexahedron element presents several advantages: the
regular hexahedron tessellates the 3D space, i.e. it can fill up a volume, it
is stable for linear elastic FEM, it presents a higher accuracy computation
of stress over tetrahedral elements, and presents several symmetries that we
can explore to reduce the cost of computing the local stiffness matrix-vector
product. The formula to compute such local stiffness matrix is given by Eq.
4-36:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 66

Klocal = l
E

(1 + ν)(1− 2ν) (νKν + Kc) (4-36)

where l is the side length of the element, E is the Young’s modulus, ν
is the Poisson ratio, and the two matrices, Kν and Kc, are displayed in
Eqs. A-6 and A-7. Notice that the local stiffness matrix Klocal has a linear
dependency on E, and l, and, therefore, these two variables have no influence
over the optimization of the local stiffness matrix product. If we analyse the
contribution of the term (νKν + Kc), we notice that this term only has 10
distinct absolute values, which are:

k1 = 0.021 k2 = 0.028 k3 = 0.042 k4 = 0.056
k5 = 0.028− 0.083ν k6 = 0.021− 0.083ν k7 = 0.042− 0.17ν
k8 = 0.056− 0.083ν k9 = 0.069− 0.083ν k10 = 0.22− 0.33ν

(4-37)

If we compare the number of distinct values to the total number of
components in the local stiffness matrix, 24 · 24 = 576, we realize that the
number of distinct value is incredible low. This low number of distinct values
is due to the symmetries of the geometry of the element Brick8, the isotropic
behavior of the material, and the regularity of the linear elastic model. This
possibly indicates that we can significantly reduce the number of FLOPS spent
in the matrix-vector product of this matrix. The FLOP optimized solution of
the BRICK8 element local stiffness matrix obtained using the B&B algorithm
described in Section 4.3.1.4 is presented in Appendix A.

4.4
Numerical Results

This Section presents numerical results obtained using the techniques
described in this Chapter through a C++/CUDA implementation of the AL-
based stress constrained TO formulation. The implementation was run in a
machine with 24 Intel Xeon CPUs, 251 GB of RAM, and a NVIDIA Titan
Xp GPU with 12 GB of RAM. The problems presented here, consisting of a
benchmark 3D L-Beam, a Double-Decked Bridge, and a Victoria Amazonica
plant (a.k.a. Victoria-Regia) inspired domains, verify the effectiveness of
the proposed techniques. The computational efficiency of the framework is
discussed in the following Section.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 67

4.4.1
L-Beam

The L-Beam problem is arguably the most traditional stress-constraint
TO benchmark problem, because of the sharp corner in its domain’s geometry
that causes a stress concentration, which needs to be avoided in the final
design. In this Section, we solve a 3D version of the L-Beam problem to verify
the effectiveness of the implementation in avoiding stress concentration. The
solutions presented here also provide a base for comparison for past, and future
works. The numerical parameters7 for this problem are displayed in Table 4.1.
The domain and boundary conditions of the L-Beam are displayed in Fig.
4.8(a). Figures 4.8(b)-(d) present the optimized structure of the L-Beam for
different mesh sizes, and we can see that all the solutions avoid the sharp
corner of the L-Beam domain. Interestingly, the solution displayed in Fig. 4.8(c)
presents a considerably different geometry. The difference in geometry is due to
the non-convexity of the optimization problem that has several local minima,
i.e. several different solutions; nonetheless , we can see that the different results
are somewhat equivalent because they present similar values for the objective
function, i.e. the weight.

Table 4.1: Input parameters for the L-Beam problem.
Parameter Description Value

E0 Young’s modulus 200 GPa
ν Poisson’s ratio 0.25
σlim Stress limit 350 MPa
F Applied load 700 kN
r Filter radius 0.015

4.4.2
Double-Decked Bridge

This Section presents the numerical results for the Double-Decked Bridge
problem for which the domain and boundary conditions are described in Fig.
4.9(a). The numerical parameters for this problem are displayed in Table 4.2.
The Double-Decked Bridge problem was chosen for two main reasons: First, it
is a fully 3D problem, meaning that it cannot be obtained by the extrusion of a
2D domain; and, second, it has several sharp corners that cause stress concen-
tration and have to be avoided in the final design. Furthermore, the solutions
of this problem (Fig. 4.9(b)-(d)) present a great amount of complexity, with
several small-scale features. These detailed structures require meshes with a

7Material properties of general steel taken from https://www.matweb.com/search/
datasheet.aspx?bassnum=MS0001&ckck=1.

https://www.matweb.com/search/datasheet.aspx?bassnum=MS0001&ckck=1
https://www.matweb.com/search/datasheet.aspx?bassnum=MS0001&ckck=1
DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 68

0.1 m

0.6 m

0.4 m

0.6 m0.4 m

0.06 m

Number of
Elements
(millions)

2.1

16.8

46.7

weight = 36.4%

weight = 36.5%

weight = 38.4%

(a)

(c)

(d)

(b)

Figure 4.8: L-Beam problem and solutions; (a) Design domain geometry,
and boundary conditions, with the supports being represented by the brown
patches, and the loads being represented by the red arrow. (b)-(d) Optimized
structures for meshes with 2097152, 16777216, and 46656000 elements, and
their respective weights as a percentage of the total weight of the domain.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 69

considerable number of elements to be precisely represented, highlighting the
importance of large-scale problems. In the optimized structures of Fig. 4.9(b)-
(d) we can also notice an increase in complexity, which we believe is caused
by the finer meshes increased capabilities of representing fine details of the
structure.

Table 4.2: Input parameters for the Double-Decked Bridge problem.
Parameter Description Value

E0 Young’s modulus8 200 GPa
ν Poisson’s ratio 0.25
σlim Stress limit 350 MPa
F Applied load 980 MN
r Filter radius 0.25

4.4.3
Victoria Amazonica

The Victoria Amazonica (a.k.a. Victoria-Regia) is the largest species
of water lily in the world, with leaves reaching up to 3 meters in diameter,
and supporting up to 40 kilograms in its surface. Their leaves are able
to withstand such tremendous weight because of their intricate structure
hiding underneath the surface of the water (see Fig. 4.10(a)). Inspired by
this evolutionary optimized structure, we proposed the disk like domain, and
boundary conditions displayed in Fig. 4.10(b) to try to mimic the Victoria
Amazonica underlying structure. Although the whole disk domain is used
during the optimization, we impose symmetry in design as indicated by the
3 symmetry planes in Fig. 4.10(b). We also have one element thick solid
passive zone in the top layer of the domain (where we apply the loads) to
simulate the leaf itself. Loads 1 and 2 increase linearly in magnitude with the
radial coordinate, while Load 3 is homogeneously distributed throughout the
surface. Each load case is applied separately. Unlike the previous examples
that start with homogeneous initial guess of 0.5 for the design variable, this
example starts with a heterogeneous random initial guess following a uniform
distribution in the range of [0.3, 0.7]. This random initial guess breaks the radial
symmetry, which promotes the "branching" of the structure, and solutions with
lower overall weight.

Figures 4.10(c), and (d) display the optimized structure for two different
mesh sizes containing 1.5 million and 16.8 million elements. The optimized
structure mimics the radial features of the Victoria Amazonica leaf, but do not
present the thin shells that seem to run along its circumference. We theorize
that this is because the main function of such circumferential shell is to trap

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 70

10 m

12 m

50 m5 m 5 m

Symmetry

3 m 9 m 3 m

4 m

Number of
Elements
(millions)

8.8

29.9

47.4

weight = 15.4%

weight = 15.0%

weight = 15.2%

(a)

(b)

(c)

(d)

Figure 4.9: Double-Decked Bridge problem and solutions; (a) Design domain
geometry, and boundary conditions, with the supports being represented by
the brown patches, and the loads being represented by the red arrows. The
symmetry planes of the design domain are represented in green and blue. (b)-
(d) Optimized structures for meshes with 8847360, 29859840, and 47416320
elements, and their respective weights as a percentage of the total weight of
the domain.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 71

air underneath the leaf to help keep it afloat, and do not play a significant
structural role. Considering this fact, the resemblance between our optimized
structures and the structure of the Victoria Amazonica leafs show us once again
the power that evolution plays in the optimization of living organisms, and
demonstrates the capabilities of our framework to obtain optimal structures.

Table 4.3: Input parameters for the Victoria Amazonica problem.
Parameter Description Value

E0 Young’s modulus 1 Pa
ν Poisson’s ratio 0.25
σlim Stress limit 0.75 Pa
F1 Load 1 100 N
F2 Load 2 100 N
F3 Load 3 100 N
r Filter radius 0.20

4.5
Computational efficiency

In this Section we will evaluate the computational efficiency of the
proposed GPU framework, and compare it with other freely-available GPU
libraries. All the tests were performed using a machine with 24 Intel Xeon
CPUs, 251 GB of RAM, and a NVIDIA Titan Xp GPU with 12 GB of RAM9.
The computational times displayed are an average of 1000 executions in order
to obtain an accurate measure of performance.

We will start by evaluating the efficiency of the implemented matrix-
vector product, because this the most essential part of the framework, and
the operation with the greatest contribution of this work. The matrix-vector
product efficiency is measured using several matrices generated from the FEM
ranging from 810,000 to 154,436,544 DOFs (rows/columns). The results are
displayed in Fig. 4.11(a) where we compare 4 different frameworks:

1. The proposed EbE optimized local matrix product;

2. The traditional EbE approach using the full local matrix product;

3. An implementation using the cuSPARSE library [2]10;

4. An implementation using the Matlab GPU library.
9The computational time is highly dependent on the hardware used to run the imple-

mentation, but the same trend is expected for reasonably similar GPU architectures.
10cuSPARSE is a highly efficient CUDA library that provides GPU-accelerated linear

algebra routines for general sparse matrices

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 72

4 cm

Symmetries

4 cm

40 cm

Load 1 Load 2

Load 3

Isometric View
without Top Layer

Top View with
 Transparent Top Layer

Botton View with
 Side View Cross-Section

Number of
Elements
(millions)

1.5

16.8

(a) (b)

(c)

weight = 16.5%

weight = 13.9%

(d)

Figure 4.10: Victoria Amazonica problem and solutions; (a) Specimen of the
plant Victoria Amazonica in nature that inspired the problem definition,
and the complex underlying structure of their leaves ; (b) Design domain
geometry, and boundary conditions, with the supports being represented
by the brown patches, and the loads being represented by the red arrows.
The symmetry planes of the design domain are represented in blue. (c)-(d)
Optimized structures for meshes with respective weights as a percentage of
the total weight of the domain.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 73

In this results, we can see that, not only the proposed framework 1
provides a considerable speedup when compared to frameworks 2 (X1.6 speed
up), 3 (X2.8 speed up), and 4 (X3.3 speedup), but also the EbE approach
allow us to solve problems almost 20 times bigger than the cuSPARSE
implementation, and almost 50 times bigger than the Matlab implementation.
As expected, due to the sparsity pattern of the matrices, we see a linear relation
between the number of DOFs and the computational time.

Next, we compare the efficiency of the PCG in each framework (except
for framework 2 11), and the results are displayed in Fig. 4.11(b). In this
results, we can see that the speedup of the proposed framework is even greater,
reaching a X3.8 speedup compared to 3, and a X25.3 speedup compared to 4.

Finally, we evaluate the performance of the TO procedure using the
proposed EbE optimized local matrix product (1) for the L-Beam, and the
Double-Decked Bridge12. The results are displayed in Fig. 4.12(a) in which
we can see a non-linear increase in computational time with the number of
elements in the mesh. This non-linear increase is due to the higher number
of PCG iterations required for convergence of the linear systems solutions.
Furthermore, we also see the problem’s influence, i.e. L-Beam vs Double-
Decked Bridge, on the computational time, because of the geometry of the
domains that affects the condition number of the linear systems. Figure 4.12(b)
also display a breakdown of the computational time of the TO showing that
more than 99% of the computational time is spent on the solution of the
linear system. In addition, Figure 4.12(c) displays the breakdown of the PCG
algorithm per operation demonstrating that the matrix-vector multiplication
accounts for 70% of the total time, which emphasizes the importance of the
matrix-vector product performance.

11We do not evaluate the efficiency of the PCG using framework 2 because the only
difference between framework 1 and 2 is the EbE matrix-vector product.

12We do not display the data from the Victoria Amazonica example because it has 3 load
cases while the other examples have only one load case, and that would skew the resulting
computational time.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 4. Toward Large-Scale GPU-based Stress-Constrained Topology
Optimization 74

0

8.6

17.0

0

3.3

154.4

159

102

DOF (Millions)

Ti
m

e
(m

s)

Speedup
X1.6

X2.8
X3.3

Matrix-vector Product

154.40

0 3.3

72

36

141

DOF (Millions)

X3.8

X25.3

PCG Iteration

Optimized Matrix-Vector Product cuSPARSE
MatlabTraditional Matrix-Vector Product

(a) (b)

8.68.6

Figure 4.11: Computational efficiency of (a) a matrix-vector operation, and
(b) a PCG iteration using the proposed EbE optimized local matrix product
compared with a traditional EbE implementation, a cuSPARSE-based imple-
mentation, and a Matlab implementation for varying number of DOFs. Each
computational time is the average of 1000 executions. The red strike marks the
largest number of DOFs that we were able to compute with each approach. We
also display the average speedup of the proposed EbE optimized local matrix
product in relation to the other approaches.

99%

>1%

Linear System
Other

TO Computational
Time Breakdwon

Ti
m

e
(h

)

4729.916.88.82.10
16
58

232
254

869

734

Number of Elements (Millions)

Matrix-vector

SAXPY
Dot Product
Preconditioner

70%

16%

8% 6

PCG Computational
 Time Breakdown

 per operation

(a) (b) (c)

L-Beam
Double-Decked Bridge

Figure 4.12: Efficiency of the TO procedure; (a) Computational time of the
stress constrained TO procedure as a function of the number of elements
for the L-Beam and Double-Decked Bridge problem; (b) Computational time
breakdown of the TO procedure showing that the linear system accounts
for more than 99% of the total computational time; (c) Computational time
breakdown of the PCG algorithm per operation.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

5
Continuously Varying Load Case

In this chapter, we focus on loads that vary in direction and magnitude,
while retaining a fixed location of application. Figure 5.1 exemplifies all the
load varying cases contemplated in this work, i.e. loads varying in direction
and magnitude (Fig. 5.1(a)), loads varying only in direction (Fig. 5.1(b)),
loads varying in a limited range of directions (Fig. 5.1(c)), loads varying in
direction combined with fixed loads (Fig. 5.1(d)), two or more loads varying
independently (Fig. 5.1(e)), and loads varying in 3D (Fig. 5.1(f)). We formulate
the stress constrained topology optimization problem such that the local stress
constraints account for the load variability in a worst-case oriented approach.
That is, the stress constraints consider the maximum stress generated by the
loads in a set of possible load directions. We derive analytic expressions that
represent the maximum stress in this set of load directions. The formulation is
tailored for linear elasticity (state equation) and we adopt a von Mises stress
measure.

To handle the large number of constraints inherent to the local stress
constraints problem we use the AL-based approach described in Chapter
3. We highlight that although this work focuses on stress constraints, the
analytic expressions derived here can be applied to any topology optimization
problem with bilinear functions and linear state equations (see Appendix B
for derivations related to compliance minimization).

5.1
Multiple load direction

In this work, the direction of the loads applied to the TO domain are
controlled by a variable θ ∈ Γ, that represents the angle of the load application,
and by the set Γ that represents the set of all possible angles. Each load
direction, a.k.a. load angle θ ∈ Γ, induces a distinct stress state in the
optimized structure. To prevent structural failure, we have to consider the
maximum stress induced by all possible load angles, θ ∈ Γ , i.e. the critical
stress:

σ̃vj = sup
{
σvj (z,θ) | θ ∈ Γ

}
(5-1)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 76

(a) General Case
=

(b) Particular Case
=

(d) Varying Load plus
a fixed Load

(c) Load varying in a
limited range

(e) Two loads varying
independently

(f) Load varying in 3D

Figure 5.1: Schematic of all the load conditions, with loads varying in direction,
and magnitude, contemplated in the proposed formulation. (a) Load varying
360o degrees forming a ellipsoid domain in which the load varies, not only
in direction, but also in magnitude. (b) Load varying 360o degrees forming a
circular domain, in which the load varies only in direction. (c) Load varying in a
limited range of admissible directions. (d) Load varying 360o degrees combined
with a fixed load. (e) Two loads varying independently in direction. (f) Load
varying in 3D directions.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 77

where σvj (z,θ) is the von Mises stress at the centroid of the element j of the
finite element mesh, which depends on the design variables, z, i.e. the structure,
and the load direction, θ . We can cast the problem of finding the critical stress
generated by θ as an optimization problem:

max
θ∈Γ

σvj (z,θ)

with: K(z)U = F(θ)
(5-2)

In other words, we are interested in the critical angles, θcrj , that cause the
highest stress in the structure. Notice that, each stress evaluation point j,
and, therefore, each constraint will have a particular critical angle. Using the
critical angles, θcjr, j = 1, ..., Nc, we can analytically derive a worst-case stress
constraint for each constraint, gj, j = 1, ..., Nc, in the TO problem. In the next
sections, we derive solutions for the problem in Eq. (5-2) considering different
sets of admissible load angles, that is, different domains, Γ.

5.1.1
Case 1: Planar load varying 360o degrees

We begin by deriving the solution for the problem in Eq. (5-2) considering
a single force with direction that can vary 360o 1, i.e., θ ∈ Γ = [−π, π]. We
start by writing the load as the sum of two vectors weighted by cosine and sine
functions:

F(θ) = Fx cos(θ) + Fy sin(θ) (5-3)

where the load basis vectors, Fx and Fy, are two linearly independent vectors
that compose the space of admissible loads. We highlight that Fx and Fy do
not need to be aligned with the x-axis or the y-axis, or to have the same
magnitude. The load basis vectors just need to be able to span the space of
possible load cases. Figure 5.2 displays a schematic of the domain of possible
loads, and the load basis vectors.

Due to linearity of the underlying physics (linear elasticity), we can
compute the solution to the state equations using the load basis vectors as:

U = K−1F(θ) =
(
K−1Fx

)
cos(θ) +

(
K−1Fy

)
sin(θ) (5-4)

By defining Ux = K−1Fx and Uy = K−1Fy, we can compute the stress as:
1We choose the domain as Γ = [−π, π] instead of the more obvious Γ = [0, 2π] because

of the definition of the inverse tangent used in this paper, which has an image in the range
Γ = [−π, π].

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 78

=

(a) General Case
=

(b) Particular Case
=

Figure 5.2: Schematic of the domain of possible load cases in red and the
load vector basis in white for case 1, with (a) general load basis vector, i.e.
‖Fx‖ 6=

∥∥∥Fy∥∥∥ forming a elliptic domain in which the load varies, not only in
direction, but also in magnitude, and (b) load basis vectors with the same
magnitude, i.e. ‖Fx‖ =

∥∥∥Fy∥∥∥ forming a circular domain, in which the load
varies only in direction.

σ = DBU = DB
(
Ux cos(θ) + Uy sin(θ)

)
σ = σx cos(θ) + σy sin(θ)

(5-5)

where D and B are the constitutive and strain-displacement matrices, re-
spectively, in the finite element setting. We defined the stress components as
σx = DBUx and σy = DBUy, which allow us to compute the von Mises stress
as:

σv =
{
σTVσ

}1/2
=
{[

σx cos(θ) + σy sin(θ)
]T

V
[
σx cos(θ) + σy sin(θ)

]}1/2

σv =
{
txx cos2(θ) + tyy sin2(θ) + 2 txy cos(θ) sin(θ)

}1/2

(5-6)

where V is the von Mises matrix, and we defined the quadratic stress terms
txx = σT

x Vσx, tyy = σT
y Vσy, and txy = σT

x Vσy to simplify the expression.
Notice that txx, tyy and txy do not depend on θ. We simplify Eq. (5-6) using
trigonometric identities:

σv =
{
txy sin (2 θ) + 0.5

[(
txx − tyy

)
cos (2 θ) + txx + tyy

]}1/2

(5-7)

We change the definition of the objective function in Eq.(5-2) to the
squared von Mises stress. Squaring the von Mises stress simplifies further
computations, and, because the von Mises stress is non-negative, squaring
it will not change the solution to the maximization problem. Therefore, the
optimization problem for the critical load angle can then be written as:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 79

max
θ∈Γ

[
σv(z, θ)

]2
with: K(z)Ux = Fx, K(z)Uy = Fy

(5-8)

To find the analytic solution to the optimization problem in Eq. (5-8) we
differentiate the objective function with respect to θ, and set it equal to zero
to find the critical points, i.e.:

∂ (σv)2

∂θ
= 2txy cos (2 θ)−

(
txx − tyy

)
sin (2 θ) = 0 (5-9)

Eq. (5-9) solutions are of the form:

θcr =

1
2 tan−1

(
2 txy, txx − tyy

)
+ k π for k ∈ Z

1
2 tan−1

(
−2 txy, tyy − txx

)
+ k π for k ∈ Z

(5-10)

where tan−1 (·, ·) is the two-value-argument inverse tangent that considers
the appropriate quadrant in the computation of the inverse of the tangent. We
denote the first and second set of solutions, in Eq. (5-10), as θcrmax and θcrmin,
respectively. Notice that all elements of the set θcrmax achieves the same value
for the objective function, independently of the value of k, and the same is
true for θcrmin. Therefore, from now on, we will assume k = 0, meaning that the
solution will always lie in the interval [−π, π]. To classify these two critical
points, θcrmax and θcrmin, we will use the second derivative:

∂2 (σv)2

∂θ2 = −4 txy sin(2 θ)− 2 (txx − tyy) cos(2 θ) (5-11)

We can use the trigonometric identities:

sin(tan−1(a, b)) = a

{a2 + b2}1/2

cos(tan−1(a, b)) = b

{a2 + b2}1/2 ,
(5-12)

to obtain the value of the second derivative at θcrmax and θcrmin:

∂2 (σv)2

∂θ2

∣∣∣∣∣
θ=θcrmax

=
−8 t2xy − 2 (txx − tyy)2{
4t2xy + (txx − tyy)2

}1/2 (5-13)

∂2 (σv)2

∂θ2

∣∣∣∣∣
θ=θcrmin

=
8 t2xy + 2 (txx − tyy)2{
4t2xy + (txx − tyy)2

}1/2 (5-14)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 80

Notice that the second derivative in θcrmax is always non-positive, while the
second derivative in θcrmin is always non-negative, meaning that θcrmax is a local
maximum, and θcrmin is a local minimum. Furthermore, the objective function
is periodic, with the period equal to half of the domain of the optimization
problem, and the objective function is smooth, which means that the global
maximum, and global minimum are necessarily critical points. Since θcrmax and
θcrmin are the only two critical points in the optimization domain, we have
that θcrmax is a global maximum, and θcrmin is a global minimum. Therefore, the
solution to optimization problem in Eq. (5-8) is:

θ? = θcrmax = 1
2 tan−1

(
2 txy, txx − tyy

)
(5-15)

We substitute the expression of θ? into Eq. (5-7) of the von Mises stress
to obtain the expression for the critical stress:

σ̃v =
{
txy sin (2 θ?) + 0.5

[(
txx − tyy

)
cos (2 θ?) + txx + tyy

]}1/2

(5-16)

This critical stress σ̃v is used in the stress constraints in Eq. (3-7) to solve
the topology optimization problem. This critical stress constraint guarantees
that the von Mises stress will be below the stress limit for any load angle in
the domain Γ in the optimized structure.

5.1.2
Case 2: Planar load with limited angle

In this section, we focus on the case of a planar load varying in direction
within a limited range of angles, θ ∈ Γ =

[
θlow, θup

]
, contained inside [−π, π].

This case is of practical interest because the range [−π, π] might be too
conservative for some applications, i.e. it might consider load directions that
do not occur in practice leading to an over-design of the structure making it
unnecessarily heavier. Therefore, the introduction of an adjustable range of
angles for the load allows for more flexibility in the framework.

First, we will consider the special instance where the angle range is
centered at θ = 0 described as [−θr, θr], and displayed in Fig. 5.3. Then we will
show how to generalize this special instance of angle range to any interval of
the form

[
θlow, θup

]
. To consider this special instance of angle range, we adapt

the optimization problem in Eq. (5-8) by including a constraint in the value
of θ:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 81

max
θ∈Γ

σv(z, θ) =
{
txy sin (2 θ) + 0.5

[(
txx − tyy

)
cos (2 θ) + txx + tyy

]}1/2

s.t.: θ2 − θ2
r ≤ 0

with: K(z)Ux = Fx, K(z)Uy = Fy
(5-17)

Figure 5.3: Schematic of the domain of possible load cases in red and the load
vector basis in white (Fx) and black (Fy), with a limited range of angles (θr),
for case 2.

We can divide the solution of this problem into two instances, either the
critical point θcrmax lies in the interval [−θr, θr], or it lies outside the interval
[−θr, θr]. If the critical point θcrmax lies in [−θr, θr], then θcrmax, as defined in Eq.
(5-15), is the optimum point of this problem.

However, if θcrmax /∈ [−θr, θr], the optimum point is either −θr or θr,
because we proved that the only other form of critical point of this problem
is a global minimum. To determine which of −θr or θr is the optimum of the
problem, first notice that the objective function is periodic, with a period of
π. Therefore, we only have to focus in intervals smaller than

[
−π/2, π/2

]
; any

larger interval will necessarily contain θcrmax because of the periodicity of the
objective function. We can further sub-divide the instance of θcrmax /∈ [−θr, θr]
into the cases in which [−θr, θr] lies between θcrmin and θcrmax and the case in
which θcrmin lies in the interval

[
−π/2, π/2

]
.

In the case [−θr, θr] lies between θcrmin and θcrmax, we can use the fact that
the objective function is monotonic in the interval between θcrmin and θcrmax to
conclude that the maximum is the point, −θr or θr, that is closest to θcrmax. In
the case θcrmin is in the interval [−θr, θr], we can use the fact that the objective
function is symmetric with respect to θcrmin to conclude that the farthest point
from θcrmin inside [−θr, θr] is the maximum, which, consequently, is also the
point that is closest to θcrmax. For a clear visualization of the proof outlined
above see Fig. 5.4. We can express all of this cases in a simple expression for
the solution to the optimization problem in Eq. (5-17) as:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 82

θ? = min
max

[
1
2 tan−1

(
2 txy, txx − tyy

)
, −θr

]
, θr

 (5-18)

Case 1 Case 2 Case 3

Figure 5.4: Representation of the three cases of the limited angle optimization
problem. Case 1, in which the maximum lies between the limited angle range
([−θr, θr]). Case 2, in which the maximum and the minimum lie outside the
limited angle range. Case 3, in which the maximum lies outside and the
minimum lies inside the limited angle range.

To generalize this solution for any value of
[
θlow, θup

]
, we take advantage

of the freedom that we have to choose the basis vectors Fx and Fy (for more
details see section 5.2). We use this freedom to rotate Fx and Fy, by the angle
θup + θlow

2 , so that Fx lies in the middle of the interval
[
θlow, θup

]
, and we set

θr = θup − θlow
2 , so that the interval [−θr, θr] matches the original interval[

θlow, θup
]
, as illustrated in Fig. 5.5. With this change of basis, the problem of

finding σ̃v in the interval
[
θlow, θup

]
is the same as finding σ̃v in the interval

[−θr, θr] with the rotated Fx and Fy.

upp low+
2

r = upp low-
2

upp

low

Figure 5.5: Schematic displaying how to rotate the basis vectors (Fx and Fy)
to achieve any continuous range of admissible angles desired.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 83

5.1.2.1
Secondary Range of Admissible Angles

If we obtain a solution that satisfy the stress constraints for a range of
[−θr, θr], then the solution will also satisfy the stress criteria for θ′ = θ + π,
in which θ ∈ [−θr, θr]. This secondary range of admissible load angles occurs
because the state equations are linear and the von Mises stress equation is the
square root of a bilinear function. This idea comes naturally if one realizes
that inverting the direction of the loads generates the same von Mises stress
distribution. To see this clearly, notice that, if we replace θ by θ′ + π in the
objective function of Eq. (5-17), we obtain:

σv(z, θ′) =
{
txy sin (2 θ + 2π) + 0.5

[(
txx − tyy

)
cos (2 θ + 2π) + txx + tyy

]}1/2
, (5-19)

but sin (2 θ + 2π) = sin (2 θ) and cos(2 θ + 2π) = cos(2θ), which means that
the expression in Eq. (5-19) is numerically equivalent to the expression in Eq.
(5-17). This secondary range of admissible load directions is illustrated in Fig.
5.6.

Figure 5.6: Schematic of the secondary range of admissible angles caused by
the linearity of the state equations and the quadratic behavior of the von Mises
stress.

5.1.3
Case 3: Planar load varying 360o degrees plus a fixed load

In this section, we discuss the case in which we have a load varying 360o

degrees, plus a fixed load that does not varies in direction. A practical example
that demonstrates the utility of this case is a bridge that is subjected to the
self-weight load, which is always in the downward direction, plus a simplified
load caused by the wind, which can vary in direction. In this case, we can
express the loads as:

F(θ) = Fx cos(θ) + Fy sin(θ) + Ff (5-20)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 84

where Ff is the load basis vector associated with the fixed load applied to the
structure. Figure 5.7 displays an schematic of this load case. We can similarly
define Uf = K−1Ff , and σf = DBUf , where Uf and σf are the displacement,
and stress component caused by the fixed load, respectively. We can then derive
an expression for the von Mises stress (similar to Case 1 in Section 5.1.1), i.e.:

(a) General Case
=

(b) Particular Case
=

Figure 5.7: Schematic of the domain of possible load cases (red), the load basis
vectors (white) for the varying load and the fixed load (green), for case 3. (a)
general load basis vector, i.e. ‖Fx‖ 6=

∥∥∥Fy∥∥∥ forming an elliptic domain, and
(b) load basis vectors with the same magnitude, i.e. ‖Fx‖ =

∥∥∥Fy∥∥∥ forming a
circular domain.

σv =
{
txx cos2(θ) + tyy sin2(θ) + 2 txy cos(θ) sin(θ) + 2 txf cos(θ)+

tff + 2 tyf sin(θ)
}1/2 (5-21)

in which we further define the extra quadratic stress terms tff = σT
f Vσf ,

txf = σT
x Vσf , and tyf = σT

y Vσf . In this form, Eq. (5-21) has no clear optima,
so we apply the Weierstrass variable substitution [108], also known as half-
angle tangent substitution:

sin(θ) = 2u
1 + u2 cos(θ) = 1− u2

1 + u2 , (5-22)

which leads to the expression:

σv =
{

1
(u2 + 1)2

[
(txx + tff − 2 txf)u4 + 4(tyf − txy)u3+

+2(tff + 2 tyy − txx)u2 + 4(tyf + txy)u+ txx + 2 txf + tff
]}1/2

(5-23)

Now, we have to solve the related optimization problem:

max
u∈R

[
σv(z, u)

]2
with: K(z)Ux = Fx, K(z)Uy = Fy, K(z)Uf = Ff

(5-24)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 85

In order to find the solution to the problem in Eq. 5-24, we look for
the critical points by differentiating the objective function with respect to the
optimization variable and finding the roots of such expression:

∂(σv(z, u))2

∂u
= 4(txy − tyf)u4 + 8(txx − tyy − txf)u3

(u2 + 1)3 +

+−24 txyu2 + 4(tyy − txx − txf)u+ 4 txy + 4 tyf
(u2 + 1)3 = 0

(5-25)

Notice that the denominator is never zero, and, therefore, we can find the
roots of the above expression by looking exclusively to the numerator, which
is a fourth order polynomial. The roots of a fourth order polynomial have
closed expressions based on the rationals of the polynomial. These expressions
are too extensive to be displayed here, but can easily be found in literature
[45, 47]. Numerical experiments demonstrate that the maximum is attained
at different roots depending on the values of the coefficients of the equation.
Thus, we add a stress constraint for each root of Eq. (5-25). This means that
our optimization problem will have four times the number of constraints of
the original problem; however, only the constraints associated with the actual
optima of the expression of the von Mises stress will be active at the optimal
points, and our numerical experiments demonstrate that the AL formulation is
able to accommodate the extra number of constraints without any detriment
to the final solution. With this, the value for the critical von Mises stress is:

σ̃v =
{

1
((u?)2 + 1)2

[
(txx + tff − 2 txf)(u?)4 + 4(tyf − txy)(u?)3+

+2(tff + 2 tyy − txx)(u?)2 +4(tyf + txy)(u?) + txx + 2 txf + tff
]}1/2

(5-26)

where u? are the roots of the fourth degree polynomial displayed in Eq. (5-25).

5.1.4
Case 4: Multiple loads varying independently with different angles

In this section, we address the case in which we have several loads varying
independently of each other. In this case, the variable that controls the angle
of the loads, θ, is a vector in [−π, π]n, where n is the number of loads, and
each component of this vector controls the angle of a different load. First, we
develop a solution to this problem based on the simple case of n = 2, i.e., two
loads with two independent angles, and then we generalize the solution for an
arbitrary number of loads, n. Let θ1 and θ2 be the first and second components
of θ. Also, let F1 and F2 be the forces that vary in direction with θ1, and θ2,
respectively. Figure 5.8 displays a schematic of this load case. We can write

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 86

each force as the sum of linearly independent components as before:

F = F1(θ1) + F2(θ2) (5-27)

F1(θ1) = F1x cos(θ1)+F1y sin(θ1) F2(θ2) = F2x cos(θ2)+F2y sin(θ2) (5-28)

(a) General Case
=

(b) Particular Case
=

Figure 5.8: Schematic of the domain of possible load cases in red and green,
and the load vector basis in white for case 4. (a) General load basis vector,
i.e. ‖F1x‖ 6=

∥∥∥F1y

∥∥∥, and ‖F2x‖ 6=
∥∥∥F2y

∥∥∥ forming elliptic domains, and (b) load
basis vectors with the same magnitude, i.e. ‖F1x‖ =

∥∥∥F1y

∥∥∥ and ‖F2x‖ =
∥∥∥F2y

∥∥∥
forming a circular domain.

We can then perform a similar derivation as in Section 5.1.1 to obtain:

U1x =
(
K−1F1x

)
, U1y =

(
K−1F1y

)
, U2x =

(
K−1F2x

)
, U2y =

(
K−1F2y

)
and the respective stresses:

σ1x = DBU1x, σ1y = DBU1y, σ2x = DBU2x, σ2y = DBU2y.

The von Mises stress can then be computed as:

σv =
{
t1xx cos2(θ1) + t1yy sin2(θ1) + t1xy sin(θ1) cos(θ1)+

+t2xx cos2(θ2) + t2yy sin2(θ2) + t2xy sin(θ2) cos(θ2)+
+2sxx cos(θ1) cos(θ2) + 2syy sin(θ1) sin(θ2)+

+ 2sxy cos(θ1) sin(θ2) + 2syx sin(θ1) cos(θ2)
}1/2

(5-29)

By defining the quadratic stress terms as:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 87

t1xx = σ1xVσ1x t1yy = σ1yVσ1y t1xy = σ1xVσ1y

t2xx = σ2xVσ2x t2yy = σ2yVσ2y t2xy = σ2xVσ2y

sxx = σ1xVσ2x syy = σ1yVσ2y

sxy = σ1xVσ2y syx = σ1yVσ2x

(5-30)

we further simplify Eq. (5-29), using trigonometric identities, to obtain:

σv =
{
t1xy sin (2 θ1) + 0.5

[(
t1xx − t1yy

)
cos (2 θ1) + t1xx + t1yy

]
+

t2xy sin (2 θ2) + 0.5
[(
t2xx − t2yy

)
cos (2 θ2) + t2xx + t2yy

]
+

(
sxy + syx

)
sin

(
θ1 + θ2

2

)
+
(
sxx − syy

)
cos

(
θ1 + θ2

2

)
+

(
syx − sxy

)
sin

(
θ1 − θ2

2

)
+
(
sxx + syy

)
cos

(
θ1 − θ2

2

)
1/2

(5-31)

We then have to solve the related optimization problem:

max
θ∈Γ

[
σv(z,θ)

]2
with: K(z)U1x = F1x, K(z)U1y = F1y

K(z)U2x = F2x, K(z)U2y = F2y

(5-32)

This optimization problem is more complicated than the previous ones,
and we were not able to obtain an analytic solution for its solution; however,
we can obtain an analytic upper bound on the objective function. Again, we
square the von Mises stress in the objective function to eliminate the square
root on the right-hand side, because it does not influence the solution of the
optimization problem. We then decompose the expression of the squared von
Mises stress into three parts:

ξ1 = t1xy sin (2 θ1) + 0.5
[(
t1xx − t1yy

)
cos (2 θ1) + t1xx + t1yy

]
ξ2 = t2xy sin (2 θ2) + 0.5

[(
t2xx − t2yy

)
cos (2 θ2) + t2xx + t2yy

]
ξ12 =

(
sxy + syx

)
sin

(
θ1 + θ2

2

)
+
(
sxx − syy

)
cos

(
θ1 + θ2

2

)
+

(
syx − sxy

)
sin

(
θ1 − θ2

2

)
+
(
sxx + syy

)
cos

(
θ1 − θ2

2

)
(5-33)

The maximum of the sum of these terms is less than or equal to the sum
of the maximum of each term. Therefore, we compute the maximum of each

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 88

term and use the sum of the three terms as an upper bound on the critical
stress. The expressions for ξ1 and ξ2 resemble Eq. (5-8), which we have already
derived a solution for. Thus, we have:

ξ?1 = t1xy sin (2 θ?1) + 0.5
[(
t1xx − t1yy

)
cos (2 θ?1) + t1xx + t1yy

]
ξ?2 = t2xy sin (2 θ?2) + 0.5

[(
t2xx − t2yy

)
cos (2 θ?2) + t2xx + t2yy

] (5-34)

with:

θ?1 = 1
2 tan−1

(
2 t1xy, t1xx − t1yy

)
θ?2 = 1

2 tan−1
(

2 t2xy, t2xx − t2yy
) (5-35)

To find a solution for the ξ12 term, we substitute u = θ1 + θ2

2 and

v = θ1 − θ2

2 into the expression for ξ12 in Eq. (5-34), and separate ξ12 in
two terms, ξ12u + ξ12v, each containing only terms with u, or v:

ξ12u =
(
sxy + syx

)
sin (u) +

(
sxx − syy

)
cos (u)

ξ12v =
(
syx − sxy

)
sin (v) +

(
sxx + syy

)
cos (v)

(5-36)

Differentiating the expressions in Eq. (5-36) and setting them equal to zero,
we find the following critical points:

ucr =

tan−1

(
sxy + syx, sxx − syy

)

tan−1
(
−(sxy + syx), −(sxx − syy)

)

vcr =

tan−1

(
syx − sxy, sxx + syy

)

tan−1
(
−(syx − sxy), −(sxx + syy)

)
(5-37)

We denote the first solutions in Eq. (5-37) ucrmax and vcrmax and the second
solutions ucrmin and vcrmin. By taking second derivatives with respect to u and v
and evaluating them at the critical points, we find:

∂2 ξ12

∂u2

∣∣∣∣∣
u=ucrmax

= −
{(
sxy + syx

)2
+
(
sxx − syy

)2
}1/2

(5-38)

∂2 ξ12

∂u2

∣∣∣∣∣
u=ucrmin

=
{(
sxy + syx

)2
+
(
sxx − syy

)2
}1/2

(5-39)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 89

∂2 ξ12

∂v2

∣∣∣∣∣
v=vcrmax

= −
{(
sxy − syx

)2
+
(
sxx + syy

)2
}1/2

(5-40)

∂2 ξ12

∂v2

∣∣∣∣∣
v=vcrmin

=
{(
sxy − syx

)2
+
(
sxx + syy

)2
}1/2

(5-41)

The second derivatives of ξ12 with respect to u and v are always non-positive
at u = ucrmax and v = vcrmax and always non-negative at u = ucrmin and v = vcrmin,
meaning that the point (ucrmax, vcrmax) is a local maximum, (ucrmin, vcrmin) is a local
minimum, and (ucrmax, vcrmin) and (ucrmin, vcrmax) are saddle points. Since these are
the only critical points in the domain and the function is smooth and periodic,
(ucrmax, vcrmax) is the global maximum and (ucrmin, vcrmin) is the global minimum.
Therefore, the maximum point of ξ12 is:

u? = tan−1
(
sxy + syx, sxx − syy

)
v? = tan−1

(
syx − sxy, sxx + syy

)
,

(5-42)
and the maximum is:

ξ?12 =
(
sxy + syx

)
sin (u?) +

(
sxx − syy

)
cos (u?)

+
(
syx − sxy

)
sin (v?) +

(
sxx + syy

)
cos (v?)

(5-43)

To obtain the upper bound, σ̂v, for σ̃v, we sum ξ?1 , ξ?2 and ξ?12, i.e.:

σ̂v =
{
ξ̃1 + ξ̃2 + ξ̃12

}1/2
={

t1xy sin (2 θ?1) + 0.5
[(
t1xx − t1yy

)
cos (2 θ?1) + t1xx + t1yy

]
+

t2xy sin (2 θ?2) + 0.5
[(
t2xx − t2yy

)
cos (2 θ?2) + t2xx + t2yy

]
+(

sxy + syx
)

sin (u?) +
(
sxx − syy

)
cos (u?) +(

syx − sxy
)

sin (v?) +
(
sxx + syy

)
cos (v?)

}1/2

(5-44)

By using the upper bound, σ̂v, in the stress constraints, we can guarantee
that the stress will be below the limit for any of the possible load cases.

5.1.4.1
Error Analysis of Critical Stress Upper Bound

The use of an upper bound on the worst-case stress constraint leads to
an overestimation of the actual maximum stress caused on the structure by the
loads. This overestimation of the stress can lead to an over design resulting in

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 90

structures that have extra unnecessary material. Therefore, the more accurate
this upper bound is, i.e. the closer it is to the actual worst-case stress, the less
extra unnecessary material the optimal structure will have. To evaluate the
accuracy of such upper bound, we generated a sample of 100 million uniformly
distributed random stress basis vectors (σ1x, σ1y, σ2x, σ2y), and computed
an percent error (see Eq. (5-45)) comparing the worst-case stress with the
proposed upper bound using these random stress basis vectors. The result of
such statistic analysis of the error is displayed in Fig. 5.9 in the form of a
histogram. In this histogram, we see that the mean error was 3.18% with an
1.8 standard deviation, and that the maximum percent error was 12.8%. We
also notice that this probability distribution is skewed to the left, indicating
that the error rarely attains values close to this maximum error. With this
analysis, we show that the percent error is moderate, and that the proposed
upper bound is significantly accurate.

To verify that this sample of 100 million random stress basis vectors
is representative of the underlying probability distribution, we performed a
numerical convergence analysis by starting with a sample of 10 million and
increasing its size, 10 million by 10 million, until we reached the 100 million
sample size. We also generated 10 different samples of 100 million elements,
which proved to be numerically identical. With this two numerical experiments,
we guaranteed that the sample size used was large enough to provide us with
an trustworthy representation of the underlying probability distribution.

The use of an upper bound on the worst-case stress constraint brings up
the need to evaluate the accuracy of such upper bound. Ideally, the closer such
upper bound is to actual worst-case stress the better will, because

Percent Error (%) =
∣∣∣∣∣∣{ξ

?
1 + ξ?2 + ξ?12}

1/2 − σvcr
σvcr

∣∣∣∣∣∣× 100 (5-45)

in which {ξ?1 + ξ?2 + ξ?12}
1/2 is the proposed upper bound for the worst-case

stress, and σvcr is the worst-case stress.

5.1.4.2
Limiting the range of θ1 and θ2

If we want to restrict the range of one, or both load angles, we can do so by
restricting each expression in Eq. (5-33) individually, and applying the solution
presented in Section 5.1.2. Furthermore, we can construct the admissible range
for u and v based on θ1r and θ2r as

[
−0.5(θ1r + θ2r), 0.5(θ1r + θ2r)

]
for both u

and v, in which [−θ1r, θ1r] and [−θ2r, θ2r] are the range of admissible angles for
θ1 and θ2, respectively. With this limited range we have:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 91

0 2 4 6 8 10 12

0.05

0.10

0.15

0.20

0.25

Histogram Max Error = 12.8%
Standard Deviation = 1.8Mean = 3.18%

Percent Error (%)

Pr
ob

ab
ilit

y

Figure 5.9: Histogram generated using a sample of 100 million uniformly
distributed random stress basis vectors representing the underlying probability
distribution of the percent error (see Eq. (5-45)) between the proposed upper
bound, and the worst-case stress.

θ?1 = min
{

max
[

1
2 tan−1 (2 t1xy, t1xx − t1yy

)
, −θ1r

]
, θ1r

}

θ?2 = min
{

max
[

1
2 tan−1 (2 t2xy, t2xx − t2yy

)
, −θ2r

]
, θ2r

}

u? = min
{

max
[

tan−1 (sxy + syx, sxx − syy
)
, −0.5(θ1r + θ2r)

]
, 0.5(θ1r + θ2r)

}
v? = min

{
max

[
tan−1 (syx − sxy, sxx + syy

)
, −0.5(θ1r + θ2r)

]
, 0.5(θ1r + θ2r)

}
(5-46)

5.1.4.3
Generalization to more than two independent loads

To generalize this approach for an arbitrary number of loads represented
by an arbitrary number of angles θi, notice that the interactions between the
loads in Eq. (5-29) occurs pairwise, because the expression of the von Mises
stress is bilinear. Therefore, we can obtain a similar estimation for the upper
bound of the von Mises stress by separating the terms that depend exclusively
on θi and the cross terms between θi and θj for i 6= j, and then summing them
all together. Equation (5-47) displays this approach for a general number n of
angles θi, in which the terms ξi and ξij are expressed in Eq. (5-33) by replacing

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 92

the appropriate indexes:

σ̂v =

n∑
i=1

ξi +
n∑

j=i+1
ξij

1/2

(5-47)

in which the indexes i, j = 1, ..., n refer to the angles θi and θj that control the
loads Fi and Fj, respectively.

5.1.5
Case 5: Load varying in 3D

The last case presented in this work is for 3D problems in which the loads
can vary, not only in a plane, but also in out-of-plane directions, representing a
whole surface of possible load directions. To account for these out-of-plane load
components, we combine two loads varying independently in direction (with
θ1 and θ2), with the appropriate basis, using the derivations of case 4. As
seen in Fig. 5.10(a), by combining two independent loads with basis that form
orthogonal planes, we obtain a 3D load surface that accounts for out-of-plane
load components. Furthermore, by combining independent loads of different
forms we can obtain different 3D load surfaces (5.10 (b) and (c)). Notice that,
by setting one of the basis (Fy) to zero in Fig. 5.10(b) and (c), we obtain a
load that only varies in intensity, from −Fx to Fx, in a fixed direction.

5.2
Generalization of load decomposition and varying load intensity

All of the methodology developed in the previous section is based on
decomposing the load into load basis vectors that we can use to obtain upper
bounds to the worst-case von Mises stress. However, no assumption was made
about the direction or magnitude of these basis vectors (other than the basis
vectors being linearly independent). Consequently, the previously obtained
solutions are valid even if Fx and Fy have different magnitudes, or if Fx and
Fy are not aligned with the x and y axis. If we change the magnitude of Fx in
relation to Fy, we obtain a domain of load cases that forms an ellipse instead
of a circle, as it is displayed in Figures 5.11(a) and (b). We can also rotate this
ellipse by rotating the basis vectors, as displayed in Figures 5.11 (c) and (d).2

This arbitrary choice of load basis vectors allows us to consider a wider set
of load domains. This freedom to choose the load basis vector provides extra
flexibility to the framework, making it possible for the designer to define load
cases in which a specific load direction is more relevant than the others.

2We use this property in Case 2 (Section 5.1.2) to shift the range of admissible angles
to be centered around the origin.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 93

Figure 5.10: Schematic of how to combine loads with varying with independent
angles to achieve a load that varies in 3D.

5.3
Critical Stress Sensitivity Analysis

In this section we present the sensitivity analysis in respect to the design
variables of the expressions derived in section 5.1 for the worst-case multiple
load directions formulation. The sensitivity information is necessary because
the topology optimization problem is solved using gradient-based optimization
algorithms [30]. We will also provide proof of the differentiability of the
worst-case stress analytical expression presented previously. To compute the
sensitivity information, we will use the chain rule starting by differentiating
the AL function:

dJ (k)

dzj
= ∂J (k)

∂M(z)
∂M(z)
∂zj

+
Ne∑
i=1

∂J (k)

∂gi

∂gi
∂zj

= dM(z)
dzj

+
Ne∑
i=1

(λ(k)
i +µ(k)gi)

dgi
dzj

(5-48)

The derivation of the sensitivity analysis for the AL stress constrained for-
mulation without considering continuously varying load cases is presented in
Section 3.3, and can be used as support for the following derivations. We will

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 94

Figure 5.11: Load case 1 with different magnitudes and different orientations
for the load basis vectors Fx and Fy.

now focus on the derivative of the critical stress constraints, because their
formulation is one of the main contribution of this work:

dgi
dzj

= ∂gi
∂zj

+ ∂gi
∂σ̃vi

∂σ̃vi
∂zj

(5-49)

The partial derivative of the constraint in respect to the design variable is
simple to compute, and it can be written as:

∂gi
∂zj

= pρ̃p−1
i

[
(σvj /σlim − 1)2 + 0.1(σvj /σlim − 1)

] ∂ρi
∂zj

(5-50)

Next, if we expand the second term with the derivation of the constraint in
respect to the von Mises stress, we obtain:

∂gi
∂σ̃vi

∂σ̃vi
∂zj

=
ρpj
σlim

[
2(σvj /σlim − 1) + 0.1

] ∂σ̃vi
∂(σc)i

∂(σc)i
∂zj

, (5-51)

where the term (σc)i represent the stress components of each sub-case, in which
the index c represent the associated stress component, and the index i represent
the associated constraint. For each different case displayed in Section 5.1 of the
main manuscript, we have a different expression for ∂σ̃vi

∂(σc)i
, therefore, Sections

5.3.1, 5.3.2, and 5.3.3, will present the derivation of this term for each of the
cases. The derivation of the term ∂(σc)i

∂zj
is very similar for all cases, and,

because of this, its derivation will be presented in the end, in Section 5.3.4.

5.3.1
Sensitivity of case 1 and case 2: Planar load varying in direction

In this Section we will display the sensitivity for the first and second cases.
We display the sensitivity for these two cases together because the sensitivity
of both cases is practically identical. As a matter of fact, case 1 can be thought
of as a sub-case of case 2 for which the limiting angle is θr = π. The expression
for this case is derived in Sections 5.1.1 and 5.1.2, and it is displayed here again
to help the reader follow the sensitivity derivations:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 95

σ̃v =
{
txy sin (2 θ?) + 0.5

[(
txx − tyy

)
cos (2 θ?) + txx + tyy

]}1/2

(5-52)

with:

θ? = min
{

max [θcr1 , −θr] , θr
}

(5-53)

We decompose the derivative of σ̃v using the chain rule as:

dσ̃vi
d(σc)i

= ∂σ̃vi
∂(σc)i

+ ∂σ̃vi
∂θ?

∂θ?

∂(σc)i
(5-54)

However, notice that ∂σ̃vi
∂θ?

= 0, because if θ? = −θr or θ? = θr then θ? does not
depend on zj, and if θ? = θcrmax then θ? is a critical point of the expression for
the von Mises stress then ∂σ̃vi

∂θ?
= 0 by the definition of θcrmax. Therefore, we only

need to compute:

∂σ̃vi
∂(σc)i

= 1
2σ̃vi

[
sin(2 θ?) ∂txy

∂(σc)i
+ 0.5(1 + cos(θ?)) ∂txx

∂(σc)i
+ 0.5(1− cos(θ?)) ∂tyy

∂(σc)i

]
(5-55)

5.3.2
Sensitivity of case 3: Planar load varying in direction plus a fixed load

This Section presents the derivation of the sensitivity of case 3, a planar
load varying 360o degrees in direction plus a fixed load. The expression for
this cases is derived in Section 5.1.3. The expression for the critical stress is
displayed again here to facilitate the sensitivity derivations:

σ̃v =
 1[

(u?)2 + 1
]2 [(txx + tff − 2 txf)(u?)4 + 4(tyf − txy)(u?)3

+2(tff + 2 tyy − txx)(u?)2 +4(tyf + txy)(u?) + txx + 2 txf + tff
]}1/2

(5-56)

where u? are the critical points of the expression above in relation to u?. We
decompose the derivative of σ̃v using the chain rule:

dσ̃vi
d(σc)i

= ∂σ̃vi
∂(σc)i

+ ∂σ̃vi
∂u?

∂u?

∂(σc)i
(5-57)

Similar to the previous case, we have that∂σ̃
v
i

∂u?
= 0, because u? is a critical

point of the expression for the von Mises stress by definition. Therefore, the
sensitivity for this case reduces to:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 96

∂σ̃vi
∂(σc)i

= 1
2σ̃vi

[
(u?)2 + 1

]2
{[

(u?)4 − 2 (u?)2 + 1
] ∂txx
∂(σc)i

+ 4 (u?)2 ∂tyy
∂(σc)i

+
[
(u?)4 + 2 (u?)2 + 1

] ∂tff
∂(σc)i

− 4
[
(u?)3 − (u?)

] ∂txy
∂(σc)i

−2
[
(u?)4 − 1

] ∂txf
∂(σc)i

+ 4
[
(u?)3 + (u?)

] ∂tyf
∂(σc)i

}
(5-58)

5.3.3
Sensitivity of case 4: Multiple Planar loads varying independently

This Section presents the derivation of the sensitivity of case 4, displayed
in Section 5.1.4, in which we have multiple loads varying independently in
direction. In order to simplify the expression, we will split the computation
of the sensitivity, and consider the sensitivity of ξ1, ξ2 and ξ12 separately.
The expressions for ξ1 and ξ2 are identical to the expression for a single load
varying in direction for which the sensitivity has already been computed in
Section 5.3.1. Therefore, we refrain from repeating it here and we will focus
on the sensitivity of ξ12. We have that:

dξ12

d(σc)i
= ∂ξ12

∂(σc)i
+ ∂ξ12

∂u?
∂u?

∂(σc)i
+ ∂ξ12

∂v?
∂v?

∂(σc)i
(5-59)

Similar to previous cases, u? and v? are critical points of the expression for ξ12,
and, consequently, ∂ξ12

∂u?
= 0 and ∂ξ12

∂v?
= 0. The remaining term reads:

dξ12

d(σc)i
= ∂ξ12

∂(σc)i
=
[
cos (u?) + cos (v?)

] ∂sxx
∂(σc)i

+
[
cos (v?)− cos (u?)

] ∂syy
∂(σc)i

+

[
sin (u?)− sin (v?)

] ∂sxy
∂(σc)i

+
[
sin (u?) + sin (v?)

] ∂syx
∂(σc)i
(5-60)

The full expression of the sensitivity for this case is:

dσ̃vi
d(σc)i

= 1
2σ̃vi

[
∂ξ1

∂(σc)i
+ ∂ξ2

∂(σc)i
+ ∂ξ12

∂(σc)i

]
(5-61)

where the expressions for ∂ξ1
∂(σc)i and ∂ξ2

∂(σc)i are the same as the expression for
the sensitivity of case 1.

5.3.4
Sensitivity of the Stress Components

In order to compute the sensitivity of any of the cases displayed in this
work, it is necessary to compute the sensitivity of the quadratic stress terms
(e.g. ∂ txx/∂ σc, ∂ tyy/∂ σc and ∂ txy/∂ σc for case 1). The sensitivity of the

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 97

quadratic stress terms follows a basic formula, for all the cases displayed in
this work. Therefore, the sensitivity for an arbitrary quadratic stress terms is
derived in this Section, and it can be used for any of the cases presented. Let
Υab be the quadratic stress terms generated by Υab = σaVσb, e.g. in case 1,
Υxy = txy = σxVσy. Then we have that:

∂Υab

∂σc
= ∂σa
∂σc

Vσb + σaV
∂σb
∂σc

(5-62)

in which σc is a stress component. Now we focus on the derivation of the stress
component in respect to the design variable, written as:

∂(σc)i
∂zj

= ∂(σc)i
∂Ulm

∂Ulm
∂zj

(5-63)

where the the index c of the variable σc represents the stress component
associated with that variable, and the outermost index i of (σc)i represents
the constraint associated with the i-th stress constraint. Furthermore, the first
index l of the term Ulm represents the displacement generated by the load basis
vector Fl, while the second index m represents the degrees of freedom of the
displacement vector. The term ∂Ulm

∂zk
is computed using the adjoint method.

In the adjoint method, we differentiate the equilibrium equations associated
to our problem considering all the load basis vectors:

∂

∂zj
(KnlUlm − Fnm) = ∂Knl

∂zj
Ulm +Knl

∂Ulm
∂zj

= 0 (5-64)

Because the above Eq. is equal to zero, we can multiply it by a factor ξ, and
add it to our sensitivity equation (Eq. 5-48), without altering its value. For
simplicity, we only show the relevant terms of Eq. (5-48), i.e. we ignore the
terms related to the objective function and the partial derivative ∂gi

∂zj
, and

focus only on the terms related to ∂gi
∂σ̃vi

∂σ̃vi
∂zj

. So, we have:

∂J (k)

∂σ̃vi

∂σ̃vi
∂zj

=
Ne∑
i=1

(λ(k)
i + µ(k)gi)

∂gi
∂σ̃vi

∂σ̃vi
(∂σc)i

∂(σc)i
∂Ulm

∂Ulm
∂zj

+ ξnm

(
∂Knl

∂zj
Ulm +Knl

∂Ulm
∂zj

)
(5-65)

If we collect the terms containing ∂Ulm
∂zj

:

∂J (k)

∂σ̃vi

∂σ̃vi
∂zj

=

 Ne∑
i=1

(λ(k)
i + µ(k)gi)

∂gi
∂σ̃vi

∂σ̃vi
(∂σc)i

∂(σc)i
∂Ulm

+ ξnmKnl

 ∂Ulm
∂zj

+ ξnm
∂Knl

∂zj
Ulm

(5-66)

We can then set the value of factor ξnm so that the term in brackets becomes
zero. In order to do that we have to solve the Eq.:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 98

Knlξnm =
Ne∑
i=1

(λ(k)
i + µ(k)gi)

∂gi
∂σ̃vi

∂σ̃vi
(∂σc)i

∂(σc)i
∂Ulm

(5-67)

Therefore, we have to solve the system Knl of linear equations form right-hand
sides, where m is the number of load basis vectors, which depends on the load
case of interest. Once we have calculated ξnm, we can compute this part of the
sensitivity as:

∂J (k)

∂σ̃vi

∂σ̃vi
∂zj

= ξnm
∂Knl

∂zj
Ulm (5-68)

5.4
Numerical Results

This Section presents numerical results obtained through an implementa-
tion of the formulations to handle continuously varying load cases described in
this work3. The numerical results presented here, which consist of the 2D dou-
ble L-bracket, and the 3D bracket from the General Electric (GE) jet engine
bracket challenge 4, verify the effectiveness of the proposed formulation.

5.4.1
Double L-bracket

In this Section we present the results obtained for the double L-bracket
domain, displayed in Fig. 5.12(a), considering two loads varying simultaneously
with the same angle (case 1 and 2, Sections 5.1.1 and 5.1.2), one fixed load
and one load varying in angle (case 3, Section 5.1.3), and two loads varying
independently of each other (case 4, Section 5.1.4). The numerical parameters
for this problem are displayed in Table 5.1. In Fig. 5.12(b), we display the
solution obtained for a fixed load with a load angle of θ = −90o to serve as
a base for comparison with the other load cases. We also use this solution
to exemplify the importance of considering multiple load directions in the
design. In Fig. 5.12(c), we display this solution’s maximum stress as we vary
the load angle. Notice that the stress limit is only satisfied for the angle
θ = −90o that was considered during the optimization, and for the angle
θ = −90o + 180o = 90o. 5 Furthermore, the plot shows that small changes in

3The 2D numerical results were obtained through a Matlab implementation, and the 3D
numerical results were obtained through the C++/CUDA implementation. The Hardware
used to run this problems consists of computer with an i7-4930k CPU at 3.40 GHz and 64
GB of RAM and a NVIDIA GEFORCE GTX 1080 Ti GPU running on a 64-bit operating
system

4https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
5The angle θ = 90o satisfies the stress limit because of the linearity of the equilibrium

equations and the symmetry of von Mises stress formulation, as explained in Section 5.1.2.1,
which is also the reason for the symmetry of the plot.

https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 99

the load angle cause a drastic increase in the maximum stress meaning that
this structure is highly susceptible to failure due to small deviations of the
load direction.

Table 5.1: Input parameters for the 2D Double L-bracket problem.
Parameter Description Value

E0 Young’s modulus 1 Pa
ν Poisson’s ratio 0.3
σlim Stress limit 100 Pa
L Double L-bracket length 1.6 m
t Thickness 1 m
F1 Applied load 1 N
F2 Applied load 1 N
d Load distribution length 0.06 m
r Filter radius 0.015 m
– Mesh size 220,000 Q4 Elements

5.4.1.1
Double L-beam with two loads varying simultaneously

Figure 5.13 displays the design obtained for the double L-beam consider-
ing two loads varying with the same angle θ for different ranges of admissible
angle. We can see that, as we increase the range of admissible angles, we ob-
tain designs with more material, and greater complexity. To verify that the
structure can withstand the load directions considered in the design, we plot,
in Fig. 5.14, the maximum stress of each design as we vary the load direction.
We can see that the design that considers a single load direction (θr = 0), ex-
periences a drastic increase in the maximum stress as we vary the load angle θ.
On the other hand, by imposing a limited angle range as low as 15o (blue line
in plot), we reduce the peak of maximum stress outside the admissible range.
We also plot the volume fraction of each design as we increase the range of ad-
missible load angles θr, on the top right of Fig. 5.14. As expected, the volume
fraction increases as we increase the value of θr, because of the extra structural
complexity necessary to accommodate the additional load directions.

5.4.1.2
Double L-beam with one fixed load and a load varying in direction

Figure 5.15 displays the design obtained obtained for the double L-beam
considering one load varying with angle θ combined with a simultaneous fixed
load. We can see that the results present a clear asymmetry regarding the
vertical center line, caused by the different load conditions on each side of the
double L-beam. To verify the effectiveness of the approach, we plot contours

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 100

0.4 m

0.6 m

0.4 m0.6 m 0.6 m

d

F1F2

(b) Structure and Load (c) Plot of maximum stress and stress maps

(a) Double L-Beam domain

Figure 5.12: Double L-Bracket design considering a single load. (a) Double L-
Beam domain geometry; (b) Design optimized for a fixed load angle equal to
−90o for F1 and F2 ; (c) Maximum stress of the design in (b) as we vary the
load angle θ and the stress map for this structure at selected load angles.

of the maximum stress of each structure as we vary both load directions (Fig.
5.16). In these contour plots, we can see the blue regions, which correspond
to regions where the maximum stresses are below the stress limit, align with
the load conditions for which we design the structures. We also display the
volume fraction of each design in Table 5.2. We choose to display the volume
in a table, instead of a plot, as we did for the other cases, because, for this
case, we do not have a clear progression of volume, since we vary the fixed load
direction, and not the range of admissible angles.

Table 5.2: Volume fractions for the double L-beam designs of Fig. 5.15,
considering a load varying in direction and a fixed load with different angles.

Fixed Angle
0o 30o 60o 90o 120o 150o

Volume Fraction 0.235 0.280 0.298 0.302 0.286 0.247

5.4.1.3
Double L-beam with two loads varying independently

Figure 5.17 displays the design obtained obtained for the double L-beam
considering two loads varying independently in direction with angles θ1 and θ2.
This combination of loads generates designs that are completely different from
the designs in Fig. 5.13, in which the loads vary simultaneously with the same
angle. The difference in design demonstrates the influence of this load case.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 101

(a) Structure for
θ ∈ [-105, -75]

(b) Structure for
θ ∈ [-120, -60]

(c) Structure for
θ ∈ [-150, -30]

(d) Structure for
θ ∈ [-180, -0]

Primary range of admissible angles Secondary range of admissible angles

(e) Stresses for
θ ∈ [-105, -75]

(f) Stresses for
θ ∈ [-120, -60]

(g) Stresses for
 θ ∈ [-150, -30]

(h) Stresses for
 θ ∈ [-180, -0]

1.0
0.8
0.6
0.4
0.2
0

Figure 5.13: Double L-beam solutions with two loads varying simultaneously
with an angle θ, with different ranges of admissible angles (a)-(d), and their
respective stress map envelope (e)-(h).

To verify the effectiveness of the approach, we plot contours of the maximum
stress of each structure as we vary both load directions (Fig. 5.18) in which the
white squares in the contour plot represent the set of admissible angles that
we consider in the optimization. As mentioned in Section 5.1.4, the approach
for loads varying independently is based on an upper bound for the maximum
stress, which results in a feasible region (blue region), that is larger than the
range of admissible angles considered in the optimization. This is most evident
in Fig. 5.18 (f), which displays the maximum stress for the case with a 300o

range of possible load directions. For such case, we can see that the maximum
stress is satisfied for every possible combination of load directions. This means
that we might possibly design lighter structures that satisfy the stress limit for
the range of angles that we considered in the optimization. However, this extra
region of feasibility provides a certain degree of safety to the structure. We also
display, in Fig. 5.18(h), the volume fraction of the final structure in regards
to the range of admissible angles, and we can see a trend of increasing volume
fraction as we increase the range of angles considered in the optimization, as
expected.

5.4.2
GE Jet Engine Bracket Challenge

In this Section we present the results obtained for the GE Jet Engine
Bracket Challenge domain, displayed in Fig. 5.19(a). The domain is subjected
to a load case that can vary in 3D, obtained using the combination of two load

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 102

0
1

2

3

4

5

6

7

8

9

10

11

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

30 60 90 120 150

1

2

0

1

2

3

4

5

6

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150

15 45 60 75 90300
0.13

0.15

0.17

0.19

r

Figure 5.14: Maximum stress of the optimized designs of Fig. 5.13, as we vary
the load angle, and the volume fraction of these designs in respect to the range
of admissible load angles (θr) considered in the optimization.

cases varying independently, contained in perpendicular planes. We proposed
this as a Benchmark problem for stress-constrained TO with continuously
varying 3D loads. The numerical parameters for this problem are displayed in
Table 5.3. Figures 5.12(c)-(g) displays the solutions as we gradually increase
the range of admissible load directions from 0o to 15o, 30o, 60o and 90o. As we
increase the load angle range, we obtain solutions with more volume distributed
in a shell-like structure to withstand the extra load directions. The volume
fractions of the structures are displayed in Fig. 5.19(b), where we see the
expected trend of increasing volume with the increase of the range of admissible
angles.

Table 5.3: Input parameters for the 3D GE Jet Engine Bracket Challenge
problem.

Parameter Description Value
E0 Young’s modulus 1 Pa
ν Poisson’s ratio 0.25
σlim Stress limit 2.5 Pa
F1 Applied load 100 N
F2 Applied load 100 N
r Filter radius 2.5
– Mesh size 3,727,159 Elements

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 103

Figure 5.15: Double L-beam solutions with one fixed load (θ1, red load), and
one load varying in direction (θ2, green load), for different angles of the fixed
load (a)-(f), and their respective stress map envelope (g)-(m).

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 104

Figure 5.16: Maximum stress of the optimized designs of Fig. 5.15, as we vary
the angles of both the fixed load (θ1, red load in Fig. 5.15), and the load
varying in direction (θ2, green load in Fig. 5.15). Blue regions of the contour
plot indicate stress below the stress limit.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 105

(a) Structure for
θ ∈ [-105, -75]

(b) Structure for
θ ∈ [-120, -60]

(c) Structure for
θ ∈ [-150, -30]

(d) Structure for
θ ∈ [-180, 0]

1.0
0.8
0.6
0.4
0.2
0

(f) Structure for
 θ ∈ [-240, 60]

(g) Structure for
θ ∈ [-270, 90]

(e) Structure for
θ ∈ [-210, 30]

(h) Stresses for
 θ ∈ [-105, -75]

(i) Stresses for
 θ ∈ [-120, -60]

(j) Stresses for
 θ ∈ [-150, -30]

(k) Stresses for
 θ ∈ [-180, 0]

(m) Stresses for
 θ ∈ [-240, 60]

(n) Stresses for
 θ ∈ [-270, 90]

(l) Stresses for
 θ ∈ [-210, 30]

Figure 5.17: Double L-beam solutions with two loads varying independently in
direction (θ1 and θ2, red and green load, respectively), with different ranges of
admissible angles (a)-(g), and their respective stress map envelope (h)-(n).

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 106

(a) Max stress for
θ ∈ [-105, -75]

(b) Max stress for
θ ∈ [-120, -60]

(c) Max stress for
θ ∈ [-150, -30]

(d) Max stress for
θ ∈ [-180, 0]

(f) Max stress for
 θ ∈ [-240, 60]

(g) Max stress for
θ ∈ [-270, 90]

(e) Max stress for
θ ∈ [-210, 30]

(h) Volume Fraction
for optimized designs

r

Figure 5.18: Maximum stress of the optimized designs of Fig. 5.17, as we
vary the angles of both loads (θ1 and θ2, red and green load in Fig. 5.17,
respectively). Blue regions of the contour plot indicate stress below the stress
limit, and the white squares indicate the range of admissible angles considered
in the optimization.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 5. Continuously Varying Load Case 107

Isolmetric View Top View

Bottom ViewFront View

Back View

Left View Right View

(a) (b)

17.9 cm

10.8 cm

6.3 cm

Support Load region

0 15 30 60 90

Vo
lu

m
e

0.063

0.077

0.099

0.117
0.124

o o o o o

Load Range

-1

1

0

0

1

0
-1

(c) = 0o

-1

1

0

0

1

0
-1

(d) = 15o

-1

1

0

0

1

0
-1

(e) = 30o

-1

1

0

0

1

0
-1

(f) = 60o

-1

1

0

0

1

0
-1

(g) = 90o

Figure 5.19: GE jet engine challenge problem; (a) design domain with the red
regions indicating loading, and green regions indicating support. (b) Volume
fraction of the GE jet engine challenge problem solutions displayed in (c)-(g)
as we vary the load angle range, θr. (c)-(g) Isometric, top, and bottom views,
of the optimized structures considering 0o, 15o, 30o, 60o and 90o load angle
range.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

6
Conclusions

Stress-constrained topology optimization leads to designs that are more
suitable to engineering applications, because it incorporates material limita-
tions that are essential for real-life applications in the design process. In this
work, we expanded on the the existing stress-constrained TO techniques by
developing large-scale, GPU-based parallel computing techniques, and an effi-
cient and consistent technique to consider a continuous range of load angles in
the TO formulation. To handle the large number of stress constraints, we adopt
an AL-based technique that was able to efficiently solve problems with over
46 million constraints (Double-Decked Bridge problem, Fig. 4.9, and L-Beam
problem, Fig. 4.8). For the formulation of the stress constraint, and to address
the associated singular optima phenomena, we present a modified piece-wise
vanishing stress constraint that is more stable than previous formulations.

The AL-based stress-constrained TO high computational cost was ad-
dressed by the development of a C++/CUDA GPU parallel computing frame-
work, that allowed the solution of large-scale problems. The large-scale stress-
constrained TO lead to the development of:

• a sequential filtering technique with a low memory footprint;

• an adaptive gradient-based optimization algorithm that can easily
be implemented in parallel;

• and a parallel GPU assembly-free preconditioned conjugated
gradient solver for the FEA with and optimized local stiffness matrix
product that can efficiently handle large-scale problems with unstruc-
tured meshes.

The optimization of the local stiffness matrix product was accomplished by the
creation of a new optimization problem, the Set Collapsing Problem, which
was mathematically proved to be NP-Hard. The problem was then solved
by a specifically tailored Branch-and-Bound scheme. The solution reduced
the number of floating point operations by more than half. These techniques
allowed us to solve several numerical examples (L-Beam, Double-decked
bridge, the Victoria-Regia, and the GE jet engine bracket) with over 47 million
constraints, demonstrating the effectiveness of the framework. The numerical

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 6. Conclusions 109

examples provided insight on large-scale optimized structures, and served as
base of comparison for the efficiency of the GPU implementation.

Continuing in our path to achieve more practical optimized design, we
considered a continuous range of load angles in stress-constrained TO that
more closely resemble realistic load scenarios. The technique to incorporate
the continuously varying load is based on a worst-case scenario approach in
which we find analytical solutions that bound the maximum stress caused by
a range of admissible load angles. We developed analytical solutions for:

• a single load varying in a limited range of angles;

• a load varying in direction plus a fixed load;

• two or more loads varying independently in direction;

• a load varying in 3D in a limited range of angles.

The technique is extremely flexible, supporting a wide variety of load
conditions, including loads that vary in intensity. This wide variety of load
conditions provides engineers with the tools to design structures that are
a better fit to practical requirements. As demonstrated by the numerical
examples, designs optimized considering only one fixed load are extremely
sensitive to variations in the load angle, and small variations in the load
direction, which are common in real life situations, can cause severely high
stresses, meaning that the structure might fail in practice. On the other
hand, considering a range of load angles, instead of a single fixed load,
leads to significantly different optimized structure that are closer to realistic
engineering components, and are robust under variations of the load direction.
Additionally, the technique developed here can be used for any TO problem
with objective, and/or constraint functions that have a primarily bi-linear
form (such as compliance), and linear state equations (see Appendix B for
a compliance minimization formulation).

6.1
Suggestions for Future Work

In this Section we discuss possible future research, and extensions of the
techniques developed in this work:

• Multi-GPU: The large-scale parallel GPU implementation developed
in this work is limited to a single device (i.e. a single GPU), which
limits the potential of the implementation by the capabilities of the
GPUs available on the market. By incorporating Multi-GPU support into
the implementation we could possibly efficiently solve larger problems.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Chapter 6. Conclusions 110

However, a Multi-GPU framework presents many challenges due to the
time consuming exchange of information between GPUs. Ideally, this
communication between GPUs should be minimized, and the appropriate
Hardware is necessary (NV-Link) to make this communication as efficient
as possible.

• Multi-Grid: The PCG method performance is heavily dependent on
the condition number of the input matrix. Unfortunately, the condition
number of the stiffness matrix in TO problems quickly degenerates as
the optimization progresses. This leads to significant increase in compu-
tational time for the solution of the equilibrium equations. To circumvent
this issue, the use of preconditioners can greatly improve the condition
number of the underlying problem. The Multi-Grid preconditioner is,
potentially, the most promising option in the parallel GPU framework,
because it has a high degree of parallelization, and a low memory foot-
print. The implementation of a Multi-Grid PCG could greatly improve
the efficiency of the current framework.

• Closer Upper bound for 3D varying Load: The upper bound of the
stress used for the 3D varying load case could potentially be improved by
the use of approximations of the trigonometric functions. A better upper
bound would improve the accuracy of the TO solution, and enable us to
obtain lighter structures that more closely satisfy the stress constraints.

• Loads varying location: In real life structures, loads can vary, not only
in direction, but also in location, e.g. a truck crossing a bridge imposes a
load that transverse the whole length of said bridge. The development of
a worst-case stress analytical solution for a load varying in location would
greatly improve the capabilities of TO as a design tool for engineers.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography

[1] cublas library. https://developer.nvidia.com/cublas. Accessed:
2022-04-11.

[2] cusparse library. https://developer.nvidia.com/cusparse. Ac-
cessed: 2022-04-11.

[3] AAGE, N.; LAZAROV, B. S.. Parallel framework for topology opti-
mization using the method of moving asymptotes. Structural and
Multidisciplinary Optimization, 47(4):493–505, 2013.

[4] AAGE, N.; LAZAROV, B. S.. Parallel framework for topology opti-
mization using the method of moving asymptotes. Structural and
multidisciplinary optimization, 47(4):493–505, 2013.

[5] AAGE, N.; POULSEN, T. H.; GERSBORG-HANSEN, A. ; SIGMUND, O..
Topology optimization of large scale stokes flow problems. Structural
and Multidisciplinary Optimization, 35(2):175–180, 2008.

[6] AAGE, N.; ANDREASSEN, E.; LAZAROV, B. S. ; SIGMUND, O.. Giga-
voxel computational morphogenesis for structural design. Nature, 550
(7674):84–86, 2017.

[7] ACHTZIGER, W.; KANZOW, C.. Mathematical programs with vanish-
ing constraints: optimality conditions and constraint qualifications.
Mathematical Programming, 114(1):69–99, Jul 2008.

[8] ACHTZIGER, W.; HOHEISEL, T. ; KANZOW, C.. A smoothing-
regularization approach to mathematical programs with vanishing
constraints. Computational Optimization and Applications, 55(3):733–767,
Jul 2013.

[9] ANDREASSEN, E.; CLAUSEN, A.; SCHEVENELS, M.; LAZAROV, B. S.
; SIGMUND, O.. Efficient topology optimization in matlab using 88
lines of code. Structural and Multidisciplinary Optimization, 43(1):1–16,
2011.

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusparse
DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 112

[10] ASADPOURE, A.; TOOTKABONI, M. ; GUEST, J. K.. Robust topology
optimization of structures with uncertainties in stiffness–application
to truss structures. Computers & Structures, 89(11-12):1131–1141, 2011.

[11] AUGARDE, C.; RAMAGE, A. ; STAUDACHER, J.. An element-based
displacement preconditioner for linear elasticity problems. Computers
& structures, 84(31-32):2306–2315, 2006.

[12] BAANDRUP, M.; SIGMUND, O.; POLK, H. ; AAGE, N.. Closing the
gap towards super-long suspension bridges using computational
morphogenesis. Nature Communications, 11(2735), 2020.

[13] BELL, N.; HOBEROCK, J.. Thrust: A productivity-oriented library for
cuda. In: GPU COMPUTING GEMS JADE EDITION, p. 359–371. Elsevier,
2012.

[14] BEN-TAL, A.; NEMIROVSKI, A.. Robust optimization – methodology
and applications. Mathematical Programming, 92(3):453–480, May 2002.

[15] BENDSØE, M. P.. Optimization of Structural Topology, Shape, and
Material. Springer, 1995.

[16] BENDSØE, M. P.; KIKUCHI, N.. Generating optimal topologies in
structural design using a homogenization method. Computer Methods
in Applied Mechanics and Engineering, 71(2):197–224, 1988.

[17] BENDSØE, M. P.; SIGMUND, O.. Topology optimization: Theory,
methods and applications. Springer Berlin Heidelberg, 2003. DOI:
10.1007/978-3-662-05086-6.

[18] BENDSOE, M. P.; SIGMUND, O.. Topology optimization: theory,
methods, and applications. Springer Science & Business Media, 2003.

[19] BERTSEKAS, D. P.. Nonlinear Programming. Athena Scientific, 2nd
edition, 1999.

[20] BERTSEKAS, D. P.. Constrained Optimization and Lagrange Mul-
tiplier Methods (Optimization and Neural Computation Series).
Athena Scientific, 1 edition, 1996.

[21] BLETZINGER, K.-U.. Extended method of moving asymptotes based
on second-order information. Structural optimization, 5(3):175–183,
1993.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 113

[22] BORRVALL, T.; PETERSSON, J.. Large-scale topology optimization in
3D using parallel computing. Computer Methods in Applied Mechanics
and Engineering, 190(46):6201–6229, 2001.

[23] BOURDIN, B.. Filters in topology optimization. International Journal
for Numerical Methods in Engineering, 50(9):2143–2158, 2001.

[24] BOURDIN, B.. Filters in topology optimization. International journal
for numerical methods in engineering, 50(9):2143–2158, 2001.

[25] BRUGGI, M.. On an alternative approach to stress constraints
relaxation in topology optimization. Structural and Multidisciplinary
Optimization, 36(2):125–141, 2008.

[26] BRUNS, T. E.; TORTORELLI, D. A.. Topology optimization of non-
linear elastic structures and compliant mechanisms. Computer meth-
ods in applied mechanics and engineering, 190(26-27):3443–3459, 2001.

[27] CHALLIS, V. J.; ROBERTS, A. P. ; GROTOWSKI, J. F.. High resolu-
tion topology optimization using graphics processing units (gpus).
Structural and Multidisciplinary Optimization, 49(2):315–325, 2014.

[28] CHENG, G. D.; GUO, X.. ε-relaxed approach in structural topology
optimization. Structural Optimization, 13(4):258–266, 1997.

[29] CHENG, G. D.; JIANG, Z.. Study on topology optimization with stress
constraints. Engineering Optimization, 20(2):129–148, 1992.

[30] CHOI, K. K.; KIM, N.-H.. Structural sensitivity analysis and optimiza-
tion 1: linear systems. Springer Science & Business Media, 2004.

[31] CHRISTENSEN, P.; KLARBRING, A.. An Introduction to Structural
Optimization. Solid Mechanics and Its Applications. Springer Netherlands,
2008.

[32] CLAUSEN, J.. Branch and bound algorithms-principles and examples.
Department of Computer Science, University of Copenhagen, p. 1–30, 1999.

[33] CSÉBFALVI, A.. Structural optimization under uncertainty in loading
directions: Benchmark results. Advances in Engineering Software, 120:
68 – 78, 2018. Civil-Comp - Part 2.

[34] CUELLAR, N.; PEREIRA, A.; MENEZES, I. F. ; CUNHA, A.. Non-
intrusive polynomial chaos expansion for topology optimization using

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 114

polygonal meshes. Journal of the Brazilian Society of Mechanical Sciences
and Engineering, 40(12):1–18, 2018.

[35] DA SILVA, G. A.; BECK, A. T. ; SIGMUND, O.. Stress-constrained topol-
ogy optimization considering uniform manufacturing uncertainties.
Computer Methods in Applied Mechanics and Engineering, 344:512–537,
2019.

[36] DA SILVA, G.; BECK, A. T. ; CARDOSO, E. L.. Topology optimization
of continuum structures with stress constraints and uncertainties in
loading. International journal for numerical methods in engineering, 113(1):
153–178, 2018.

[37] DE STURLER, E.; LE, C.; WANG, S. ; PAULINO, G.. Large scale topology
optimization using preconditioned krylov subspace recycling and
continuous approximation of material distribution. AIP Conference
Proceedings, 973(February 2008):279–284, 2008.

[38] DÍAZ, A. R.; BENDSØE, M. P.. Shape optimization of structures
for multiple loading conditions using a homogenization method.
Structural Optimization, 4(1):17–22, 1992.

[39] DUARTE, L. S.; CELES, W.; PEREIRA, A.; M MENEZES, I. F. ; PAULINO,
G. H.. Polytop++: an efficient alternative for serial and parallel
topology optimization on cpus & gpus. Structural and Multidisciplinary
Optimization, 52(5):845–859, 2015.

[40] DUNNING, P. D.; KIM, H. A. ; MULLINEUX, G.. Introducing loading
uncertainty in topology optimization. AIAA journal, 49(4):760–768,
2011.

[41] DUYSINX, P.; BENDSØE, M. P.. Topology optimization of continuum
structures with local stress constraints. International Journal for
Numerical Methods in Engineering, 43(8):1453–1478, 1998.

[42] DUYSINX, P.; SIGMUND, O.. New developments in handling stress
constraints in optimal material distribution. In: PROCEEDINGS OF
THE 7TH AIAA/USAF/NASA/ISSMO SYMPOSIUM ON MULTIDISCI-
PLINARY ANALYSIS AND OPTIMIZATION, volumen 1, p. 1501–1509,
1998.

[43] EMMENDOERFER JR., H.; FANCELLO, E. A.. A level set approach
for topology optimization with local stress constraints. International
Journal for Numerical Methods in Engineering, 99(2):129–156, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 115

[44] EMMENDOERFER JR., H.; FANCELLO, E. A.. Topology optimization
with local stress constraint based on level set evolution via reaction-
diffusion. Computer Methods in Applied Mechanics and Engineering, 305:
62–88, 2016.

[45] EULER, L.. Elements of Algebra. J. Johnson and Company, 2 edition,
1810.

[46] EVGRAFOV, A.; RUPP, C. J.; MAUTE, K. ; DUNN, M. L.. Large-scale
parallel topology optimization using a dual-primal substructuring
solver. Structural and Multidisciplinary Optimization, 36(4):329–345, 2008.

[47] FAUCETTE, W. M.. A geometric interpretation of the solution of the
general quartic polynomial. The American Mathematical Monthly, 103
(1):51–57, 1996.

[48] GAREY, M. R.; JOHNSON, D. S.. Computers and intractability, volumen
174. freeman San Francisco, 1979.

[49] GIRALDO-LONDOÑO, O.; PAULINO, G. H.. A unified approach for
topology optimization with local stress constraints considering
various failure criteria: von mises, drucker–prager, tresca, mohr–
coulomb, bresler–pister and willam–warnke. Proceedings of the Royal
Society A, 476(2238):20190861, 2020.

[50] GIRALDO-LONDOÑO, O.; AGUILÓ, M. A. ; PAULINO, G. H.. Local
stress constraints in topology optimization of structures subjected
to arbitrary dynamic loads: a stress aggregation-free approach.
Structural and Multidisciplinary Optimization, 64(6):3287–3309, 2021.

[51] GOLUB, G. H.; VAN LOAN, C. F.. Matrix computations. JHU press,
2013.

[52] GRAMA, A.; KUMAR, V.; GUPTA, A. ; KARYPIS, G.. Introduction to
parallel computing. Pearson Education, 2003.

[53] GUEST, J. K.; IGUSA, T.. Structural optimization under uncertain
loads and nodal locations. Computer Methods in Applied Mechanics
and Engineering, 198(1):116 – 124, 2008. Computational Methods in
Optimization Considering Uncertainties.

[54] GUO, X.; ZHANG, W. ; ZHANG, L.. Robust structural topology
optimization considering boundary uncertainties. Computer Methods
in Applied Mechanics and Engineering, 253:356 – 368, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 116

[55] HASSANI, B.; HINTON, E.. A review of homogenization and topology
optimization iii—topology optimization using optimality criteria.
Computers & structures, 69(6):739–756, 1998.

[56] HERRERO-PÉREZ, D.; CASTEJÓN, P. J. M.. Multi-gpu acceleration
of large-scale density-based topology optimization. Advances in
Engineering Software, 157:103006, 2021.

[57] HOHEISEL, T.; KANZOW, C.. Stationary conditions for mathematical
programs with vanishing constraints using weak constraint qualifi-
cations. Journal of Mathematical Analysis and Applications, 337(1):292 –
310, 2008.

[58] HOLMBERG, E.; TORSTENFELT, B. ; KLARBRING, A.. Stress con-
strained topology optimization. Structural and Multidisciplinary Opti-
mization, 48(1):33–47, 2013.

[59] HOLMBERG, E.; THORE, C.-J. ; KLARBRING, A.. Game theory ap-
proach to robust topology optimization with uncertain loading. Struc-
tural and Multidisciplinary Optimization, 55(4):1383–1397, 2017.

[60] HU, X.; LI, Z.; BAO, R.; CHEN, W. ; WANG, H.. An adaptive method
of moving asymptotes for topology optimization based on the trust
region. Computer Methods in Applied Mechanics and Engineering, 393:
114202, 2022.

[61] JALALPOUR, M.; GUEST, J. K. ; IGUSA, T.. Reliability-based topology
optimization of trusses with stochastic stiffness. Structural Safety, 43:
41 – 49, 2013.

[62] JAMES, K.; LEE, E. ; MARTINS, J.. Stress-based topology optimization
using an isoparametric level set method. Finite Elements in Analysis
and Design, 58:20 – 30, 2012.

[63] KANNO, Y.; TAKEWAKI, I.. Robustness analysis of trusses with
separable load and structural uncertainties. International Journal of
Solids and Structures, 43(9):2646 – 2669, 2006.

[64] KARP, R. M.. Reducibility among combinatorial problems. In:
COMPLEXITY OF COMPUTER COMPUTATIONS, p. 85–103. Springer,
1972.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 117

[65] KAWAMOTO, A.; MATSUMORI, T.; YAMASAKI, S.; NOMURA, T.; KON-
DOH, T. ; NISHIWAKI, S.. Heaviside projection based topology opti-
mization by a pde-filtered scalar function. Structural and Multidisci-
plinary Optimization, 44(1):19–24, 2011.

[66] KIM, T. S.; KIM, J. E. ; KIM, Y. Y.. Parallelized structural topology
optimization for eigenvalue problems. International Journal of Solids
and Structures, 41(9-10):2623–2641, 2004.

[67] KIRSCH, U.. Optimal topologies in truss structures. Computer Methods
in Applied Mechanics and Engineering, 72(1):15–28, 1989.

[68] KIRSCH, U.. On singular topologies in optimum structural design.
Structural Optimization, 2(3):133–142, 1990.

[69] KIRSCH, U.; TAYE, S.. On optimal topology of grillage structures.
Engineering with Computers, 1:229–243, 1986.

[70] LABANDA, R.. Mathematical programming methods for large-scale
topology optimization problems PhD Thesis. PhD thesis, 2015.

[71] LAWLER, E. L.; WOOD, D. E.. Branch-and-bound methods: A survey.
Operations research, 14(4):699–719, 1966.

[72] LAZAROV, B. S.; SIGMUND, O.. Filters in topology optimization
based on helmholtz-type differential equations. International Journal
for Numerical Methods in Engineering, 86(6):765–781, 2011.

[73] LAZAROV, B. S.; SCHEVENELS, M. ; SIGMUND, O.. Topology opti-
mization with geometric uncertainties by perturbation techniques.
International Journal for Numerical Methods in Engineering, 90(11):1321–
1336, 2012.

[74] LE, C.; NORATO, J.; BRUNS, T.; HA, C. ; TORTORELLI, D.. Stress-
based topology optimization for continua. Structural and Multidisci-
plinary Optimization, 41(4):605–620, 2010.

[75] LEADER, M. K.; CHIN, T. W. ; KENNEDY, G. J.. High-resolution
topology optimization with stress and natural frequency constraints.
AIAA Journal, 57(8):3562–3578, 2019.

[76] LEE, E.; JAMES, K. A. ; MARTINS, J. R. R. A.. Stress-constrained
topology optimization with design-dependent loading. Structural and
Multidisciplinary Optimization, 46(5):647–661, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 118

[77] LIAN, H.; CHRISTIANSEN, A. N.; TORTORELLY, D. A. ; SIGMUND,
O.. Combined shape and topology optimization for minimization of
maximal von mises stress. Structural and Multidisciplinary Optimization,
55(5):1541–1557, 2017.

[78] LIU, J.; WEN, G.. Continuum topology optimization considering
uncertainties in load locations based on the cloud model. Engineering
Optimization, 50(6):1041–1060, 2018.

[79] LÓGÓ, J.; BALOGH, B. ; PINTÉR, E.. Topology optimization consid-
ering multiple loading. Computers & Structures, 207:233 – 244, 2018.
CIVIL-COMP 2017.

[80] LOPES, C. G.; DOS SANTOS, R. B. ; NOVOTNY, A. A.. Topologi-
cal derivative-based topology optimization of structures subject to
multiple load-cases. Latin American Journal of Solids and Structures, 12
(5):834–860, 2015.

[81] LUO, Y.; ZHOU, M.; WANG, M. Y. ; DENG, Z.. Reliability based
topology optimization for continuum structures with local failure
constraints. Computers & Structures, 143:73 – 84, 2014.

[82] MAHDAVI, A.; BALAJI, R.; FRECKER, M. ; MOCKENSTURM, E. M..
Topology optimization of 2D continua for minimum compliance
using parallel computing. Structural and Multidisciplinary Optimization,
32(2):121–132, 2006.

[83] MARTÍNEZ-FRUTOS, J.; HERRERO-PÉREZ, D.. Large-scale robust
topology optimization using multi-gpu systems. Computer Methods
in Applied Mechanics and Engineering, 311:393–414, 2016.

[84] MARTÍNEZ-FRUTOS, J.; HERRERO-PÉREZ, D.. Gpu acceleration for
evolutionary topology optimization of continuum structures using
isosurfaces. Computers & Structures, 182:119–136, 2017.

[85] MARTÍNEZ-FRUTOS, J.; MARTÍNEZ-CASTEJÓN, P. J. ; HERRERO-
PÉREZ, D.. Efficient topology optimization using gpu computing
with multilevel granularity. Advances in Engineering Software, 106:47–
62, 2017.

[86] MICHELL, A. G. M.. Lviii. the limits of economy of material in frame-
structures. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 8(47):589–597, 1904.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 119

[87] MUKHERJEE, S.; LU, D.; RAGHAVAN, B.; BREITKOPF, P.; DUTTA, S.;
XIAO, M. ; ZHANG, W.. Accelerating large-scale topology optimiza-
tion: State-of-the-art and challenges. Archives of Computational Meth-
ods in Engineering, 28(7):4549–4571, 2021.

[88] NOCEDAL, J.; WRIGHT, S. J.. Numerical Optimization. Springer, 2
edition, 2006.

[89] OLSSON, D. M.; NELSON, L. S.. The nelder-mead simplex procedure
for function minimization. Technometrics, 17(1):45–51, 1975.

[90] PARIS, J.; NAVARRINA, F.; COLOMINAS, I. ; CASTELEIRO, M.. Block
aggregation of stress constraints in topology optimization of struc-
tures. Advances in Engineering Software, 41(3):433–441, 2010.

[91] PEREIRA, J. T.; FANCELLO, E. A. ; BARCELLOS, C. S.. Topology opti-
mization of continuum structures with material failure constraints.
Structural and Multidisciplinary Optimization, 26(1-2):50–66, 2004.

[92] PICELLI, R.; TOWNSEND, S.; BRAMPTON, C.; NORATO, J. ; KIM, H. A..
Stress-based shape and topology optimization with the level set
method. Computer Methods in Applied Mechanics and Engineering, 329:
1–23, 2018.

[93] RAM, L.; SHARMA, D.. Evolutionary and gpu computing for topology
optimization of structures. Swarm and evolutionary computation, 35:
1–13, 2017.

[94] RAMÍREZ-GIL, F. J.; SILVA, E. C. N. ; MONTEALEGRE-RUBIO, W..
Topology optimization design of 3d electrothermomechanical ac-
tuators by using gpu as a co-processor. Computer Methods in Applied
Mechanics and Engineering, 302:44–69, 2016.

[95] REDDY, J. N.. Introduction to the finite element method. McGraw-Hill
Education, 2019.

[96] ROKICKI, J.; OTHERS. Adjoint lattice boltzmann for topology op-
timization on multi-gpu architecture. Computers & Mathematics with
Applications, 71(3):833–848, 2016.

[97] ROZVANY, G. I. N.. On design-dependent constraints and singular
topologies. Structural and Multidisciplinary Optimization, 21(2):164–172,
2001.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 120

[98] ROZVANY, G. I.. Structural design via optimality criteria: the Prager
approach to structural optimization, volumen 8. Springer Science &
Business Media, 2012.

[99] SARKISIAN, M.. Designing tall buildings: Structure as architecture.
2012.

[100] SCHMIDT, S.; SCHULZ, V.. A 2589 line topology optimization code
written for the graphics card. Computing and Visualization in Science,
14(6):249–256, 2011.

[101] SCHMIDT, S.; SCHULZ, V.. A 2589 line topology optimization code
written for the graphics card. Computing and Visualization in Science,
14(6):249–256, 2011.

[102] SENHORA, F. V.; GIRALDO-LONDONO, O.; MENEZES, I. F. ; PAULINO,
G. H.. Topology optimization with local stress constraints: a stress
aggregation-free approach. Structural and Multidisciplinary Optimiza-
tion, 62(4):1639–1668, 2020.

[103] SHARMA, A.; MAUTE, K.. Stress-based topology optimization using
spatial gradient stabilized XFEM. Structural and Multidisciplinary
Optimization, 57(1):17–38, 2018.

[104] SHEWCHUK, J. R.; OTHERS. An introduction to the conjugate
gradient method without the agonizing pain, 1994.

[105] SHUN, W.; DE, S. E. ; H., P. G.. Large-scale topology optimization
using preconditioned Krylov subspace methods with recycling. Inter-
national Journal for Numerical Methods in Engineering, 69(12):2441–2468,
2008.

[106] SIGMUND, O.. Manufacturing tolerant topology optimization. Acta
Mechanica Sinica, 25(2):227–239, 2009.

[107] SIGMUND, O.. Materials with prescribed constitutive parameters:
an inverse homogenization problem. International Journal of Solids and
Structures, 31(17):2313–2329, 1994.

[108] SPIVAK, M.. Calculus on manifolds. A modern approach to classical
theorems of advanced calculus. W. A. Benjamin, Inc., New York-
Amsterdam, 1965.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 121

[109] SVANBERG, K.. The method of moving asymptotes (mma) with
some extensions. In: OPTIMIZATION OF LARGE STRUCTURAL SYS-
TEMS, p. 555–566. Springer, 1993.

[110] SVANBERG, K.. The method of moving asymptotes—a new method
for structural optimization. International journal for numerical methods
in engineering, 24(2):359–373, 1987.

[111] SVANBERG, K.. Mma and gcmma, versions september 2007. Opti-
mization and systems theory, 104, 2007.

[112] SVED, G.; GINOS, Z.. Structural optimization under multiple loading.
International Journal of Mechanical Sciences, 10(10):803–805, 1968.

[113] TALISCHI, C.; PAULINO, G. H.; PEREIRA, A. ; MENEZES, I. F. M..
PolyTop: a Matlab implementation of a general topology optimiza-
tion framework using unstructured polygonal finite element meshes.
Structural and Multidisciplinary Optimization, 45(3):329–357, 2012.

[114] THORE, C. J.; HOLMBERG, E. ; KLARBRING, A.. A general framework
for robust topology optimization under load-uncertainty including
stress constraints. Computer Methods in Applied Mechanics and Engi-
neering, 319:1 – 18, 2017.

[115] TOOTKABONI, M.; ASADPOURE, A. ; GUEST, J. K.. Topology opti-
mization of continuum structures under uncertainty–a polynomial
chaos approach. Computer Methods in Applied Mechanics and Engineer-
ing, 201:263–275, 2012.

[116] TREFETHEN, L. N.; BAU III, D.. Numerical linear algebra, volumen 50.
Siam, 1997.

[117] VEMAGANTI, K.; LAWRENCE, W. E.. Parallel methods for optimality
criteria-based topology optimization. Computer Methods in Applied
Mechanics and Engineering, 194(34-35):3637–3667, 2005.

[118] WADBRO, E.; BERGGREN, M.. Megapixel topology optimization on
a graphics processing unit. SIAM review, 51(4):707–721, 2009.

[119] WALLIN, M.; IVARSSON, N.; AMIR, O. ; TORTORELLI, D.. Consistent
boundary conditions for pde filter regularization in topology opti-
mization. Structural and Multidisciplinary Optimization, 62(3):1299–1311,
2020.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 122

[120] WANG, F.; LAZAROV, B. S. ; SIGMUND, O.. On projection meth-
ods, convergence and robust formulations in topology optimization.
Structural and Multidisciplinary Optimization, 43(6):767–784, 2011.

[121] WU, J.; DICK, C. ; WESTERMANN, R.. A system for high-resolution
topology optimization. IEEE transactions on visualization and computer
graphics, 22(3):1195–1208, 2015.

[122] XIA, Q.; SHI, T.; LIU, S. ; WANG, M. Y.. A level set solution to the
stress-based structural shape and topology optimization. Computers
& Structures, 90:55–64, 2012.

[123] XIE, Y.; STEVEN, G. P.. Optimal design of multiple load case
structures using an evolutionary procedure. Engineering computations,
1994.

[124] YANG, R. J.; CHEN, C. J.. Stress-based topology optimization.
Structural Optimization, 12(2):98–105, 1996.

[125] YOUNG, V.; QUERIN, O. M.; STEVEN, G. ; XIE, Y.. 3D and multiple
load case bi-directional evolutionary structural optimization (beso).
Structural optimization, 18(2-3):183–192, 1999.

[126] ZEGARD, T.; PAULINO, G. H.. Bridging topology optimization and
additive manufacturing. Structural and Multidisciplinary Optimization,
53(1):175–192, 2016.

[127] ZEGARD, T.; PAULINO, G. H.. Toward gpu accelerated topology
optimization on unstructured meshes. Structural and multidisciplinary
optimization, 48(3):473–485, 2013.

[128] ZEGARD, T.; PAULINO, G. H.. Bridging topology optimization and
additive manufacturing. Structural and Multidisciplinary Optimization,
53(1):175–192, 2016.

[129] ZHANG, W.; KANG, Z.. Robust shape and topology optimization
considering geometric uncertainties with stochastic level set pertur-
bation. International Journal for Numerical Methods in Engineering, 110
(1):31–56, 2017.

[130] ZHANG, X. S.; DE STURLER, E. ; PAULINO, G. H.. Stochastic sampling
for deterministic structural topology optimization with many load
cases: Density-based and ground structure approaches. Computer
Methods in Applied Mechanics and Engineering, 325:463 – 487, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Bibliography 123

[131] ZHANG, X. S.; PAULINO, G. H. ; RAMOS JR, A. S.. Multimaterial topol-
ogy optimization with multiple volume constraints: Combining the
zpr update with a ground-structure algorithm to select a single ma-
terial per overlapping set. International Journal for Numerical Methods
in Engineering, 114(10):1053–1073, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

A
FLOP Optimization Solution of the BRICK8 Element Local
Stiffness Matrix

After running the B&B algorithm described in Section 4.3.1.4 to optimize
the number of FLOPs in the BRICK8 element local stiffness matrix (See Eq.
(4-36)) product, we obtain the following set of optimal pairs:

t25 = U10 + U13 t26 = U5 + U14 t27 = U6 + U12

t28 = U7 + U16 t29 = U2 + U17 t30 = U3 + U9

t31 = U4 + U19 t32 = U11 + U20 t33 = U1 + U22

t34 = U8 + U23 t35 = U18 + U24 t36 = U15 + U21

t37 = U9 − U24 t38 = U17 − U23 t39 = U9 − U18

t40 = −U16 + U22 t41 = −U7 + U22 t42 = −U8 + U17

t43 = −U12 + U21 t44 = −U14 + U20 t45 = U12 − U15

t46 = U13 − U19 t47 = U10 − U19 t48 = −U11 + U14

t49 = −U3 + U18 t50 = −U3 + U24 t51 = U1 − U16

t52 = U2 − U23 t53 = U6 − U15 t54 = −U6 + U21

t55 = −U4 + U13 t56 = U5 − U20 t57 = U5 − U11

t58 = −U4 + U10 t59 = −U2 + U8 t60 = U1 − U7

t61 = t37 + t38 t62 = t39 + t40 t63 = t41 + t42

t64 = t43 + t44 t65 = t45 + t46 t66 = t47 + t48

t67 = −t38 + t49 t68 = −t40 + t50 t69 = t51 + t52

t70 = −t44 + t53 t71 = −t46 + t54 t72 = t55 + t56

t73 = t53 + t57 t74 = t45 + t58 t75 = t48 + t55

t76 = t49 + t59 t77 = t39 + t60 t78 = t42 + t51

t79 = t43 − t57 t80 = t54 − t58 t81 = t47 + t56

t82 = t37 − t59 t83 = t50 − t60 t84 = t41 + t52

(A-1)

with these pairs, we can compute the multiplied terms:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Appendix A. FLOP Optimization Solution of the BRICK8 Element Local Stiffness
Matrix 125

m1 = k1 U1 m2 = k6 U1 m3 = k9 U1 m4 = k10 U1

m5 = k1 U2 m6 = k6 U2 m7 = k9 U2 m8 = k10 U2

m9 = k1 U3 m10 = k6 U3 m11 = k9 U3 m12 = k10 U3

m13 = k1 U4 m14 = k6 U4 m15 = k9 U4 m16 = k10 U4

m17 = k1 U5 m18 = k6 U5 m19 = k9 U5 m20 = k10 U5

m21 = k1 U6 m22 = k6 U6 m23 = k9 U6 m24 = k10 U6

m25 = k1 U7 m26 = k6 U7 m27 = k9 U7 m28 = k10 U7

m29 = k1 U8 m30 = k6 U8 m31 = k9 U8 m32 = k10 U8

m33 = k1 U9 m34 = k6 U9 m35 = k9 U9 m36 = k10 U9

m37 = k1 U10 m38 = k6 U10 m39 = k9 U10 m40 = k10 U10

m41 = k1 U11 m42 = k6 U11 m43 = k9 U11 m44 = k10 U11

m45 = k1 U12 m46 = k6 U12 m47 = k9 U12 m48 = k10 U12

m49 = k1 U13 m50 = k6 U13 m51 = k9 U13 m52 = k10 U13

m53 = k1 U14 m54 = k6 U14 m55 = k9 U14 m56 = k10 U14

m57 = k1 U15 m58 = k6 U15 m59 = k9 U15 m60 = k10 U15

m61 = k1 U16 m62 = k6 U16 m63 = k9 U16 m64 = k10 U16

m65 = k1 U17 m66 = k6 U17 m67 = k9 U17 m68 = k10 U17

m69 = k1 U18 m70 = k6 U18 m71 = k9 U18 m72 = k10 U18

m73 = k1 U19 m74 = k6 U19 m75 = k9 U19 m76 = k10 U19

m77 = k1 U20 m78 = k6 U20 m79 = k9 U20 m80 = k10 U20

m81 = k1 U21 m82 = k6 U21 m83 = k9 U21 m84 = k10 U21

m85 = k1 U22 m86 = k6 U22 m87 = k9 U22 m88 = k10 U22

m89 = k1 U23 m90 = k6 U23 m91 = k9 U23 m92 = k10 U23

m93 = k1 U24 m94 = k6 U24 m95 = k9 U24 m96 = k10 U24

m97 = k5 t25 m98 = k8 t25 m99 = k5 t26 m100 = k8 t26

m101 = k5 t27 m102 = k8 t27 m103 = k5 t28 m104 = k8 t28

m105 = k5 t29 m106 = k8 t29 m107 = k5 t30 m108 = k8 t30

m109 = k5 t31 m110 = k8 t31 m111 = k5 t32 m112 = k8 t32

m113 = k5 t33 m114 = k8 t33 m115 = k5 t34 m116 = k8 t34

m117 = k5 t35 m118 = k8 t35 m119 = k5 t36 m120 = k8 t36

(A-2)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Appendix A. FLOP Optimization Solution of the BRICK8 Element Local Stiffness
Matrix 126

m121 = k2 t61 m122 = k3 t61 m123 = k4 t61 m124 = k7 t61

m125 = k2 t62 m126 = k3 t62 m127 = k4 t62 m128 = k7 t62

m129 = k2 t63 m130 = k3 t63 m131 = k4 t63 m132 = k7 t63

m133 = k2 t64 m134 = k3 t64 m135 = k4 t64 m136 = k7 t64

m137 = k2 t65 m138 = k3 t65 m139 = k4 t65 m140 = k7 t65

m141 = k2 t66 m142 = k3 t66 m143 = k4 t66 m144 = k7 t66

m145 = k2 t67 m146 = k3 t67 m147 = k4 t67 m148 = k7 t67

m149 = k2 t68 m150 = k3 t68 m151 = k4 t68 m152 = k7 t68

m153 = k2 t69 m154 = k3 t69 m155 = k4 t69 m156 = k7 t69

m157 = k2 t70 m158 = k3 t70 m159 = k4 t70 m160 = k7 t70

m161 = k2 t71 m162 = k3 t71 m163 = k4 t71 m164 = k7 t71

m165 = k2 t72 m166 = k3 t72 m167 = k4 t72 m168 = k7 t72

m169 = k2 t73 m170 = k3 t73 m171 = k4 t73 m172 = k7 t73

m173 = k2 t74 m174 = k3 t74 m175 = k4 t74 m176 = k7 t74

m177 = k2 t75 m178 = k3 t75 m179 = k4 t75 m180 = k7 t75

m181 = k2 t76 m182 = k3 t76 m183 = k4 t76 m184 = k7 t76

m185 = k2 t77 m186 = k3 t77 m187 = k4 t77 m188 = k7 t77

m189 = k2 t78 m190 = k3 t78 m191 = k4 t78 m192 = k7 t78

m193 = k2 t79 m194 = k3 t79 m195 = k4 t79 m196 = k7 t79

m197 = k2 t80 m198 = k3 t80 m199 = k4 t80 m200 = k7 t80

m201 = k2 t81 m202 = k3 t81 m203 = k4 t81 m204 = k7 t81

m205 = k2 t82 m206 = k3 t82 m207 = k4 t82 m208 = k7 t82

m209 = k2 t83 m210 = k3 t83 m211 = k4 t83 m212 = k7 t83

m213 = k2 t84 m214 = k3 t84 m215 = k4 t84 m216 = k7 t84

(A-3)

After that, we can optimize the sum of the post-multiplication terms to
obtain:

n1 = m97 −m104 n2 = m99 −m116 n3 = m101 −m118

n4 = m103 −m98 n5 = m105 −m112 n6 = m107 −m120

n7 = m109 −m114 n8 = m111 −m106 n9 = m113 −m110

n10 = m115 −m100 n11 = m117 −m102 n12 = m119 −m108

(A-4)

Finally, we arrive at the following optimized equations:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Appendix A. FLOP Optimization Solution of the BRICK8 Element Local Stiffness
Matrix 127

f1 = −m85 +m121 +m170 −m135 −m74 −m184 −m15 +m4 + n1

f2 = −m65 +m125 +m174 −m163 −m78 −m212 −m43 +m8 + n2

f3 = −m33 +m129 +m178 +m203 −m82 +m156 −m59 +m12 + n3

f4 = −m73 +m133 +m182 −m123 −m86 −m172 −m3 +m16 + n4

f5 = −m53 +m137 +m186 −m151 −m90 −m200 −m31 +m20 + n5

f6 = −m45 +m141 +m190 +m215 −m94 +m168 −m71 +m24 + n6

f7 = −m61 +m145 +m194 −m159 −m50 −m208 −m39 +m28 + n7

f8 = −m89 +m149 +m198 −m139 −m54 −m188 −m19 +m32 + n8

f9 = −m9 +m153 +m202 +m179 −m58 +m132 −m83 +m36 + n3

f10 = −m49 +m157 +m206 −m147 −m62 −m196 −m27 +m40 + n9

f11 = −m77 +m161 +m210 −m127 −m66 −m176 −m7 +m44 + n10

f12 = −m21 +m165 +m214 +m191 −m70 +m144 −m95 +m48 + n6

f13 = −m37 −m193 −m146 +m207 −m26 +m160 −m63 +m52 + n9

f14 = −m17 −m197 −m150 +m187 −m30 +m140 −m91 +m56 + n5

f15 = −m81 −m201 −m154 −m131 −m34 −m180 −m11 +m60 + n11

f16 = −m25 −m205 −m158 +m195 −m38 +m148 −m51 +m64 + n7

f17 = −m5 −m209 −m162 +m175 −m42 +m128 −m79 +m68 + n2

f18 = −m93 −m213 −m166 −m143 −m46 −m192 −m23 +m72 + n12

f19 = −m13 −m169 −m122 +m183 −m2 +m136 −m87 +m76 + n4

f20 = −m41 −m173 −m126 +m211 −m6 +m164 −m67 +m80 + n10

f21 = −m57 −m177 −m130 −m155 −m10 −m204 −m35 +m84 + n12

f22 = −m1 −m181 −m134 +m171 −m14 +m124 −m75 +m88 + n1

f23 = −m29 −m185 −m138 +m199 −m18 +m152 −m55 +m92 + n8

f24 = −m69 −m189 −m142 −m167 −m22 −m216 −m47 +m96 + n12

(A-5)

The whole computation considering the calculation of all the intermediate
terms costs 492 FLOPS (216 multiplications and 276 additions). Meanwhile,
the direct computation of the matrix-vector product would cost 1128 FLOPS
indicating a reduction of 56% on the total number of operations.

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Appendix A. FLOP Optimization Solution of the BRICK8 Element Local Stiffness
Matrix 128

K
ν

=
0.

08
3

 −
4

0
0

0
2

2
1

0
1

0
−

2
0

0
0

−
2

1
1

0
1

0
0

1
−

1
−

1
0

−
4

0
−

2
0

0
0

1
1

2
0

2
0

0
−

2
−

1
1

−
1

0
1

0
1

1
0

0
0

−
4
−

2
0

0
−

1
−

1
1

0
−

2
0

2
2

0
0

1
1

0
0

1
1

0
1

0
−

2
−

2
−

4
0

0
0

2
0

1
0

−
1

1
−

1
0

0
0

2
1

1
1

1
0

0
2

0
0

0
−

4
0

−
2

0
2

0
1

1
1

1
−

1
0

0
−

2
−

1
1

0
0

1
0

2
0

0
0

0
−

4
0

−
2

0
1

−
1

1
0

1
1

−
2

2
0

−
1

0
1

0
0

1
1

0
−

1
0

−
2

0
−

4
0

0
0

2
−

2
1

0
0

1
−

1
1

0
0

2
1

1
0

0
1

−
1

2
0

−
2

0
−

4
0

−
2

0
0

0
1

0
1

1
0

0
0

2
−

1
1

1
1

1
1

0
2

0
0

0
−

4
2

0
0

0
0

1
−

1
0

1
−

2
−

2
0

0
−

1
1

0
2

0
1

0
1

0
−

2
2

−
4

0
0

1
1

−
1

1
0

0
1

−
1

0
0

0
−

2
−

2
0

−
2

0
1

−
1

2
0

0
0

−
4

0
−

1
1

0
0

1
0

1
1

1
0

0
2

0
2

0
−

1
1

1
−

2
0

0
0

0
−

4
1

0
1

0
0

1
0

−
1

1
2

−
2

0
0

0
2

1
1

0
1

0
0

1
−

1
1

−
4

0
0

0
2

−
2

1
0

−
1

0
−

2
0

0
0

2
−

1
1

1
0

1
0

1
1

0
0

−
4

0
−

2
0

0
0

1
−

1
2

0
−

2
−

2
−

2
0

0
−

1
1

0
0

1
−

1
0

1
0

0
−

4
2

0
0

1
1

1
0

2
0

1
−

1
0

0
0

−
2

1
1

−
1

1
0

0
0

−
2

2
−

4
0

0
0

2
0

1
0

1
1

1
1

0
0

2
−

1
1

0
0

1
0

2
0

0
0

−
4

0
−

2
0

−
2

0
1

−
1

0
−

1
1

2
−

2
0

1
0

1
0

0
1

−
2

0
0

0
0

−
4

0
2

0
−

1
1

1
1

0
0

1
−

1
−

1
0

0
−

2
1

1
0

1
0

1
0

−
2

0
−

4
0

0
0

2
2

0
1

0
1

1
0

0
0

−
2
−

1
1

−
1

0
1

1
2

0
2

0
−

4
0

−
2

0
0

0
0

1
1

0
1

2
2

0
0

1
1

−
1
−

1
1

0
−

2
0

0
0

−
4
−

2
0

0
1

1
1

1
0

0
1

−
1

0
0

0
2

0
2

0
1

0
−

1
0

−
2
−

2
−

4
0

0
−

1
1

0
0

1
0

1
1

−
1

0
0

−
2
−

2
0

2
0

1
1

2
0

0
0

−
4

0
−

1
0

1
0

0
1

0
1

1
−

2
2

0
0

−
2

0
1

−
1

1
2

0
0

0
0

−
4

(A-6)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Appendix A. FLOP Optimization Solution of the BRICK8 Element Local Stiffness
Matrix 129

K
c

=
0.

02
1

 11
.0

2.
0

2.
0

−
2.

6
−

2.
0

−
2.

0
−

3.
3

−
2.

0
−

1.
0

1.
3

2.
0

1.
0

1.
3

1.
0

2.
0

−
3.

3
−

1.
0

−
2.

0
−

2.
6

−
1.

0
−

1.
0

−
1.

3
1.

0
1.

0
2.

0
11
.0

2.
0

2.
0

1.
3

1.
0

−
2.

0
−

3.
3

−
1.

0
−

2.
0

−
2.

6
−

2.
0

1.
0

1.
3

2.
0

1.
0

−
1.

3
1.

0
−

1.
0

−
2.

6
−

1.
0

−
1.

0
−

3.
3

−
2.

0
2.

0
2.

0
11
.0

2.
0

1.
0

1.
3

1.
0

1.
0

−
1.

3
1.

0
2.

0
1.

3
−

2.
0

−
2.

0
−

2.
6

−
2.

0
−

1.
0

−
3.

3
−

1.
0

−
1.

0
−

2.
6

−
1.

0
−

2.
0

−
3.

3
−

2.
6

2.
0

2.
0

11
.0

−
2.

0
−

2.
0

1.
3

−
2.

0
−

1.
0

−
3.

3
2.

0
1.

0
−

3.
3

1.
0

2.
0

1.
3

−
1.

0
−

2.
0

−
1.

3
−

1.
0

−
1.

0
−

2.
6

1.
0

1.
0

−
2.

0
1.

3
1.

0
−

2.
0

11
.0

2.
0

2.
0

−
2.

6
−

2.
0

2.
0

−
3.

3
−

1.
0

−
1.

0
−

1.
3

1.
0

−
1.

0
1.

3
2.

0
1.

0
−

3.
3

−
2.

0
1.

0
−

2.
6

−
1.

0
−

2.
0

1.
0

1.
3

−
2.

0
2.

0
11
.0

−
1.

0
2.

0
1.

3
−

1.
0

1.
0

−
1.

3
2.

0
−

1.
0

−
3.

3
2.

0
−

2.
0

−
2.

6
1.

0
−

2.
0

−
3.

3
1.

0
−

1.
0

−
2.

6
−

3.
3

−
2.

0
1.

0
1.

3
2.

0
−

1.
0

11
.0

2.
0

−
2.

0
−

2.
6

−
2.

0
2.

0
−

2.
6

−
1.

0
1.

0
−

1.
3

1.
0

−
1.

0
1.

3
1.

0
−

2.
0

−
3.

3
−

1.
0

2.
0

−
2.

0
−

3.
3

1.
0

−
2.

0
−

2.
6

2.
0

2.
0

11
.0

−
2.

0
2.

0
1.

3
−

1.
0

−
1.

0
−

2.
6

1.
0

−
1.

0
−

3.
3

2.
0

1.
0

1.
3

−
2.

0
1.

0
−

1.
3

−
1.

0
−

1.
0

−
1.

0
−

1.
3

−
1.

0
−

2.
0

1.
3

−
2.

0
−

2.
0

11
.0

−
2.

0
−

1.
0

1.
3

1.
0

1.
0

−
2.

6
1.

0
2.

0
−

3.
3

2.
0

2.
0

−
2.

6
2.

0
1.

0
−

3.
3

1.
3

−
2.

0
1.

0
−

3.
3

2.
0

−
1.

0
−

2.
6

2.
0

−
2.

0
11
.0

−
2.

0
2.

0
−

1.
3

−
1.

0
1.

0
−

2.
6

1.
0

−
1.

0
−

3.
3

1.
0

−
2.

0
1.

3
−

1.
0

2.
0

2.
0

−
2.

6
2.

0
2.

0
−

3.
3

1.
0

−
2.

0
1.

3
−

1.
0

−
2.

0
11
.0

−
2.

0
1.

0
−

3.
3

2.
0

1.
0

−
2.

6
1.

0
−

1.
0

−
1.

3
−

1.
0

−
1.

0
1.

3
−

2.
0

1.
0

−
2.

0
1.

3
1.

0
−

1.
0

−
1.

3
2.

0
−

1.
0

1.
3

2.
0

−
2.

0
11
.0

−
1.

0
2.

0
−

3.
3

−
1.

0
1.

0
−

2.
6

−
2.

0
1.

0
−

3.
3

−
2.

0
2.

0
−

2.
6

1.
3

1.
0

−
2.

0
−

3.
3

−
1.

0
2.

0
−

2.
6

−
1.

0
1.

0
−

1.
3

1.
0

−
1.

0
11
.0

2.
0

−
2.

0
−

2.
6

−
2.

0
2.

0
−

3.
3

−
2.

0
1.

0
1.

3
2.

0
−

1.
0

1.
0

1.
3

−
2.

0
1.

0
−

1.
3

−
1.

0
−

1.
0

−
2.

6
1.

0
−

1.
0

−
3.

3
2.

0
2.

0
11
.0

−
2.

0
2.

0
1.

3
−

1.
0

−
2.

0
−

3.
3

1.
0

−
2.

0
−

2.
6

2.
0

2.
0

2.
0

−
2.

6
2.

0
1.

0
−

3.
3

1.
0

1.
0

−
2.

6
1.

0
2.

0
−

3.
3

−
2.

0
−

2.
0

11
.0

−
2.

0
−

1.
0

1.
3

−
1.

0
−

1.
0

−
1.

3
−

1.
0

−
2.

0
1.

3
−

3.
3

1.
0

−
2.

0
1.

3
−

1.
0

2.
0

−
1.

3
−

1.
0

1.
0

−
2.

6
1.

0
−

1.
0

−
2.

6
2.

0
−

2.
0

11
.0

−
2.

0
2.

0
1.

3
−

2.
0

1.
0

−
3.

3
2.

0
−

1.
0

−
1.

0
−

1.
3

−
1.

0
−

1.
0

1.
3

−
2.

0
1.

0
−

3.
3

2.
0

1.
0

−
2.

6
1.

0
−

2.
0

1.
3

−
1.

0
−

2.
0

11
.0

−
2.

0
2.

0
−

2.
6

2.
0

2.
0

−
3.

3
1.

0
−

2.
0

1.
0

−
3.

3
−

2.
0

2.
0

−
2.

6
−

1.
0

2.
0

−
3.

3
−

1.
0

1.
0

−
2.

6
2.

0
−

1.
0

1.
3

2.
0

−
2.

0
11
.0

1.
0

−
2.

0
1.

3
1.

0
−

1.
0

−
1.

3
−

2.
6

−
1.

0
−

1.
0

−
1.

3
1.

0
1.

0
1.

3
1.

0
2.

0
−

3.
3

−
1.

0
−

2.
0

−
3.

3
−

2.
0

−
1.

0
1.

3
2.

0
1.

0
11
.0

2.
0

2.
0

−
2.

6
−

2.
0

−
2.

0
−

1.
0

−
2.

6
−

1.
0

−
1.

0
−

3.
3

−
2.

0
1.

0
1.

3
2.

0
1.

0
−

1.
3

1.
0

−
2.

0
−

3.
3

−
1.

0
−

2.
0

−
2.

6
−

2.
0

2.
0

11
.0

2.
0

2.
0

1.
3

1.
0

−
1.

0
−

1.
0

−
2.

6
−

1.
0

−
2.

0
−

3.
3

−
2.

0
−

2.
0

−
2.

6
−

2.
0

−
1.

0
−

3.
3

1.
0

1.
0

−
1.

3
1.

0
2.

0
1.

3
2.

0
2.

0
11
.0

2.
0

1.
0

1.
3

−
1.

3
−

1.
0

−
1.

0
−

2.
6

1.
0

1.
0

−
3.

3
1.

0
2.

0
1.

3
−

1.
0

−
2.

0
1.

3
−

2.
0

−
1.

0
−

3.
3

2.
0

1.
0

−
2.

6
2.

0
2.

0
11
.0

−
2.

0
−

2.
0

1.
0

−
3.

3
−

2.
0

1.
0

−
2.

6
−

1.
0

−
1.

0
−

1.
3

1.
0

−
1.

0
1.

3
2.

0
2.

0
−

2.
6

−
2.

0
2.

0
−

3.
3

−
1.

0
−

2.
0

1.
3

1.
0

−
2.

0
11
.0

2.
0

1.
0

−
2.

0
−

3.
3

1.
0

−
1.

0
−

2.
6

2.
0

−
1.

0
−

3.
3

2.
0

−
2.

0
−

2.
6

−
1.

0
2.

0
1.

3
−

1.
0

1.
0

−
1.

3
−

2.
0

1.
0

1.
3

−
2.

0
2.

0
11
.0

(A-7)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

B
Compliance Minimization with Continuously Varying Loads

This appendix presents a brief description on how to extend the formula-
tion for compliance minimization. The compliance minimization optimization
statement is presented in Eq. (B-1):

min
z

C(z,θ) = UT (z,θ)K(z)U(z,θ)

s.t. gV (z) ≤ 0
0 ≤ ze ≤ 1, e = 1, . . . , Ne

with: K(z)U(z,θ) = F(θ)

(B-1)

in which, C(z,θ) is the compliance, and gV (z) is the volume constraint. Similar
to the stress constraint formulation, the load direction in the compliance
formulation also depends on a variable θ. However, instead of stress constraints,
which limit the worst-case stress for any load direction possible, now we
minimize the worst-case compliance. Here, we will derive the formulation for
the equivalent of the previously describe case 1 of load variation (Section 5.1.1),
in which we have a single load that can vary 360o in direction. The other load
cases can be derived following the same approach. The derivations for the
worst-case compliance starts in the same way as the stress, by decomposing
the load into linearly independent components:

F(θ) = Fx cos(θ) + Fy sin(θ) (B-2)

we then replace the this expression for the loads in the equilibrium equation:

U(z,θ) = K−1F(θ) =
(
K−1Fx

)
cos(θ) +

(
K−1Fy

)
sin(θ) (B-3)

By defining Ux =
(
K−1Fx

)
and Uy =

(
K−1Fy

)
, we can compute the

compliance as:

C(z,θ) =
[
(Ux) cos(θ) +

(
Uy

)
sin(θ)

]T
K(z)

[
(Ux) cos(θ) +

(
Uy

)
sin(θ)

]
(B-4)

To simplify the expression in Eq. B-4 we define the quadratic compliance terms
txx = UT

xK(z)Ux, tyy = UT
yK(z)Uy, and txy = UT

xK(z)Uy, which we then
substitute in Eq. B-4:

C(z,θ) = txx cos2(θ) + tyy sin2(θ) + 2txy cos(θ) sin(θ) (B-5)

We simplify this equation even further using trigonometric identities:

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

Appendix B. Compliance Minimization with Continuously Varying Loads 131

C(z,θ) = txy sin (2 θ) + 0.5
[(
txx − tyy

)
cos (2 θ) + txx + tyy

]
, (B-6)

and we finally obtain the optimization problem for the worst-case compliance:

max
θ∈Γ

C(z,θ) = txy sin (2 θ) + 0.5
[(
txx − tyy

)
cos (2 θ) + txx + tyy

]
with: K(z)Ux = Fx

K(z)Uy = Fy

(B-7)

which is exactly the same as the one in Eq. 5-8, for which the solution is:

θ? = θcrmax = 1
2 tan−1

(
2 txy, txx − tyy

)
(B-8)

DBD
PUC-Rio - Certificação Digital Nº 1712569/CA

	Locally stress-constrained topology optimization with continuously varying loading direction and amplitude: Toward large-scale problems
	Resumo
	Table of contents
	Introduction and Motivation
	Summary of the Main Contributions of This Work
	Thesis Outline

	Literature Review
	Large-scale GPU
	Continuously Varying Load Case

	Stress-Constrained Topology Optimization Formulation
	Basic Stress-constrained topology optimization formulation
	Piecewise vanishing stress constraint
	Stress Measure

	Augmented Lagrangian Method (AL)
	Augmented Lagrangian method for inequality constraints
	Modified Augmented Lagrangian method and the Scale Factor eta
	Addressing non-convexity

	Sensitivity analysis

	Toward Large-Scale GPU-based Stress-Constrained Topology Optimization
	Large-Scale Filter in Parallel
	Sequential Filter

	Optimization Algorithm
	Finite Element Analysis
	Preconditioned Conjugated Gradient (PCG)
	Matrix-Vector Product and Assembly-free Method
	Optimized Local Stiffness Matrix Product
	NP-Hardness
	Branch-and-Bound Solution
	Optimizing FLOPS Spent in Post-Multiplication Addition
	FLOP Optimization of the BRICK8 Element Local Stiffness Matrix

	Numerical Results
	L-Beam
	Double-Decked Bridge
	Victoria Amazonica

	Computational efficiency

	Continuously Varying Load Case
	Multiple load direction
	Case 1: Planar load varying 360 degrees
	Case 2: Planar load with limited angle
	Secondary Range of Admissible Angles

	Case 3: Planar load varying 360 degrees plus a fixed load
	Case 4: Multiple loads varying independently with different angles
	Error Analysis of Critical Stress Upper Bound
	Limiting the range of theta 1 and theta 2
	Generalization to more than two independent loads

	Case 5: Load varying in 3D

	Generalization of load decomposition and varying load intensity
	Critical Stress Sensitivity Analysis
	Sensitivity of case 1 and case 2: Planar load varying in direction
	Sensitivity of case 3: Planar load varying in direction plus a fixed load
	Sensitivity of case 4: Multiple Planar loads varying independently
	Sensitivity of the Stress Components

	Numerical Results
	Double L-bracket
	Double L-beam with two loads varying simultaneously
	Double L-beam with one fixed load and a load varying in direction
	Double L-beam with two loads varying independently

	GE Jet Engine Bracket Challenge

	Conclusions
	Suggestions for Future Work

	FLOP Optimization Solution of the BRICK8 Element Local Stiffness Matrix
	Compliance Minimization with Continuously Varying Loads

