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Abstract

Freitas, Pedro Vinicius Almeida de; Colcher, Sérgio (Advisor). Sen-
sitive Content Detection in Video with Deep Learning. Rio
de Janeiro, 2022. 68p. Dissertação de mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Massive amounts of video are uploaded on video-hosting platforms
every minute. This volume of data presents a challenge in controlling the
type of content uploaded to these video hosting services, for those platforms
are responsible for any sensitive media uploaded by their users. There
has been an abundance of research on methods for developing automatic
detection of sensitive content. In this dissertation, we define sensitive
content as sex, extreme physical violence, gore, or any scenes potentially
disturbing to the viewer. We present a sensitive video dataset for binary
video classification (whether there is sensitive content in the video or not),
containing 127 thousand tagged videos, Each with their extracted audio and
visual embeddings. We also trained and evaluated four baseline models for
the sensitive content detection in video task. The best performing model
achieved 99% weighed F2-Score on our test subset and 88.83% on the
Pornography-2k dataset.

Keywords
Sensitive Content; Sensitive Video Dataset; Multimodal Video

Classification; Deep Learning.
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Resumo

Freitas, Pedro Vinicius Almeida de; Colcher, Sérgio. Detecção de
Conteúdo Sensível em Video com Aprendizado Profundo. Rio
de Janeiro, 2022. 68p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Grandes quantidades de vídeo são carregadas em plataformas de hos-
pedagem de vídeo a cada minuto. Esse volume de dados apresenta um de-
safio no controle do tipo de conteúdo enviado para esses serviços de hospe-
dagem de vídeo, pois essas plataformas são responsáveis por qualquer mídia
sensível enviada por seus usuários. Nesta dissertação, definimos conteúdo
sensível como sexo, violencia fisica extrema, gore ou cenas potencialmente
pertubadoras ao espectador. Apresentamos um conjunto de dados de vídeo
sensível para classificação binária de vídeo (se há conteúdo sensível no vídeo
ou não), contendo 127 mil vídeos anotados, cada um com seus embeddings
visuais e de áudio extraídos. Também treinamos e avaliamos quatro modelos
baseline para a tarefa de detecção de conteúdo sensível em vídeo. O modelo
com melhor desempenho obteve 99% de F2-Score ponderado no nosso sub-
conjunto de testes e 88,83% no conjunto de dados Pornography-2k.

Palavras-chave
Conteúdo Sensível; Detecção de Conteúdo Sensível; Classificação

Multimodal de Videos; Deep Learning.
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1
Introduction

The amount of multimedia content on the internet is increasing every
year. More than 300 hours of video are uploaded to YouTube every minute.1

In this context, studies have shown that about 56% of children between 10
and 13 years old have a smartphone (7, 8), and 8 out of 10 teenagers have
had a friend who shared some sensitive media through social networks such as
Facebook, Twitter, and Whatsapp.2

This huge amount of data sharing pattern presents a challenge to the
control of the type of content that is loaded to these video repositories. By
allowing the upload of sensitive content from malicious users, content providers
become exposed to legal issues. This is also a problem for users in those
platforms, as they might get exposed to this content without a warning.

In Brazil, the “Cicarely case” was an example resulted in the nation-wide
blocking of YouTube.3 In our research, we are interested in helping to avoid
scenarios where sensitive content can be uploaded to education and unsuitable
channels, which might expose students, sometimes underage, to this content.4.
This scenery presents challenges on controlling which type of contents are
uploaded to these storage and distribution services, while dealing with great
amounts of videos. Our approach is set to be hosted and executed on the
platform itself, so that the platform itself can regulate, through retraining,
what type of content is allowed.

Methods based on Deep Learning (DL) became state-of-the-art in various
segments related to automatic video analysis. More specifically, Convolutional
Neural Networks (CNN) architectures, or ConvNets, have become the primary
method used for audio-visual pattern recognition (9, 10, 11).

The term Sensitive content is often used as a reference to any media that
contains content such as nudity, intercourse, extreme physical violence, gore,

1https://biographon.com/youtube-stats
2https://www.netnanny.com/the-importance-of-parental-control/
3http://g1.globo.com/Noticias/Tecnologia/0,,AA1412609-6174-363,

00.html
4https://g1.globo.com/sp/sao-paulo/noticia/2020/06/19/

professor-de-etec-na-zona-norte-de-sp-e-afastado-apos-se-masturbar-durante-aula-virtual.
ghtml

https://biographon.com/youtube-stats
https://www.netnanny.com/the-importance-of-parental-control/
http://g1.globo.com/Noticias/Tecnologia/0,,AA1412609-6174-363,00.html
http://g1.globo.com/Noticias/Tecnologia/0,,AA1412609-6174-363,00.html
https://g1.globo.com/sp/sao-paulo/noticia/2020/06/19/professor-de-etec-na-zona-norte-de-sp-e-afastado-apos-se-masturbar-durante-aula-virtual.ghtml
https://g1.globo.com/sp/sao-paulo/noticia/2020/06/19/professor-de-etec-na-zona-norte-de-sp-e-afastado-apos-se-masturbar-durante-aula-virtual.ghtml
https://g1.globo.com/sp/sao-paulo/noticia/2020/06/19/professor-de-etec-na-zona-norte-de-sp-e-afastado-apos-se-masturbar-durante-aula-virtual.ghtml
DBD
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Chapter 1. Introduction 13

or any scenes potentially disturbing to the viewer. On the other hand, content
is labeled as Safe when this content is suitable for the general public.

Figure 1.1: Examples of safe (top row) and sensitive videos (bottom row).

Figure 1.1 illustrates these two categories. There are four scenes with safe
content on the top row, and four scenes with sensitive content on the bottom
row.

Other works, such as (12), share our motivations and objectives, as
described in Section 2. However, most of them do not use both audio and image
for classification. We use recent CNNs that have been showing great potential
in video recognition and classification. Furthermore, none of them have the
same definition of sensitive content as ours. For instance, the violence aspect
of sensitive content citemoreira2019multimodal comprises any kind of physical
violence, such as fights. In our definition, the violence aspect is defined by
only potentially disturbing scenes and extremely violent acts, such as torture,
death, suicide, etc.

Our work uses two CNNs: one to extract image sequence features and the
other to extract audio features. As we get one feature vector for each second
of the video, we can approach the feature classification task as a time series
classification, using a Recurrent Neural Network (RNN) as a baseline. We also
can combine those features to create a single feature vector for the entire video,
which is then used as the input for other baseline classifiers.

Although sometimes we may refer to the task we are addressing as sen-
sitive content detection in video, our task is, specifically, binary classification
of video: Finding out whether sensitive content is or is not present in the
video. Furthermore, since there is no frame-by-frame annotation, this dataset
does not directly support the task of finding (either time-wise or space-wise)
sensitive content in the video.

In this work, the main research question is if a generic feature extraction,
based on transfer learning, can achieve results that approach fine tuned and
hand crafted approaches. The research questions we aim to answer with this
work are:

DBD
PUC-Rio - Certificação Digital Nº 1921163/CA



Chapter 1. Introduction 14

1. Can this transfer learning-based, multimodal approach archieve results
within 10% of the results from related work?

2. What is the impact of also using audio in the model’s performance?

The main contributions of this work are:

1. To our knowledge, the largest sensitive content detection dataset, when
balanced, it has approximately 110.000 videos, it its composed by 67.424
sensitive videos and 59651 safe videos.

2. We trained and tested baseline classifiers (KNN,SVM,MLP and LSTM)
on the features extracted from our dataset in order to validate both the
dataset and the feature extraction networks.

3. We tested sequential (LSTM) and non sequential (KNN, SVM and MLP)
classifiers in this task.

4. We tested the importance of image and audio features in our approach
by comparing the results of our approach when input with only one of
each type of features.

5. We also validate our approach by testing our best baseline (MLP) in
a well known pornography detection dataset, the Pornography-2k (13)
dataset.

Our approach yielded an F2-Score of 88.83%, compared to our related
works, Moreira et. al. with 93.53% (12) and who also aim at pornography and
violence detection, and Wehrmann et. al. with 95.20% (14), aiming at only
pornography.

To perform the sensitive detection task, we created a large scale dataset,
extracted features from this dataset using a generalist and well known feature
extraction for video classification method, and performed experiments such
as compare baseline classification models, compare which type of classification
model (sequential or not) performs best, and compared the importance of audio
and image features, further detailed in Chapter 5.

Although the largest dataset for this task by our knowledge, our dataset
is not manually labeled, which begs the question if it is noise-less enough
for any training and evaluation in this task. Our intent is not to replace
the Pornography-2k dataset, but to be a complement to it, it still is the
gold standard for pornography detection, in our dataset the videos were not
manually labeled by a human, so we need to validate this dataset. Through this
dissertation, we aim to validate our dataset by assembling a baseline approach

DBD
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Chapter 1. Introduction 15

to tackle this task and then evaluating our baseline approach on a manually
labeled dataset, the Pornography-2k dataset.

This dissertation is organized as follows: In Chapter 2 we discuss some
of the related work. In Chapter 3 we present the theory behind some of the
techniques used in the feature extraction method we adopted. We present our
dataset and metrics in Chapter 4. Then, in Chapter 5, we present baseline
models to detect sensitive content in videos.

Then, we evaluate and analyse our baseline models in Chapter 6. Finally,
in Chapter 7 we present, our conclusions, currently published papers, and
future work. Additionaly, in Appendix A, we show complementary data, such
as tables, distributions and a dataset datasheet.

DBD
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2
Related Work

In this Chapter, we present the most related works to the sensitive
content detection in video. As there are few related works using deep learning
to tackle this task and as it is composed of two other tasks, violence and
pornography, we chose to also include works specific to each sub-task.

Castro (15) shows an implementation of a pornography video classifier
using a convolutional neural network from Open pornography (16) and the
dataset from Nude Detection in Video using Bag-of-Visual-Features (17)
dataset. The CNN does a logistic regression on each frame, resulting in a value
from 0 to 1 at each frame. The higher the value is, the higher the likelihood of
the frame being pornography. The dataset used contained 90 non-pornography
video segments and 89 pornography video segments extracted from 11 movies.
The final score for the video is the max value from all frames of the video. The
experiment showed an accuracy of 81%, an F1 score, and Matthew’s correlation
coefficient(MCC) for the pornography class of 0.8047 and 0.6343, respectively.
Although the work also approaches pornography content detection in videos
problem with CNN like ours, it does not make use of audio features. The
method is also different, it performs the regression first, then it takes the
max value from all frames of the video, while ours, in the non-sequential
approach, combines features from all frames of the video into a single vector of
features (mainly by averaging) and then performs classification on the resulting
features.

Wehrmann et al. (14) classify adult content trained on the NPDI pornog-
raphy video dataset (18), which consists of 802 videos, totaling 80 hours
of videos, half of them with adult content. Those videos were processed by
keyframes, varying between 1 and 320 frames per video. The selected keyframes
of each video were chosen by a scene segmentation algorithm, resulting in 16727
images. Their architecture consists of a Convolutional Network and a Long-
Short Term Memory Network (LSTM) (19). Those models were chosen for
feature extraction with CNN and sequence learning with LSTM, taking into
consideration modifications on the images such as scaling and distorting. Us-
ing this approach the authors achieved a score of 95.6% ± 1 accuracy and
0.990 AUC(ROC). In our model, we also approached the video analysis using

DBD
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Chapter 2. Related Work 17

frame by frame processing, but we also processed the extracted sound from
each frame.

Sing et. al.(20) proposes a fine-grained approach for child unsafe video
representation and detection. One of its main objectives is to optimize the
detection of sparsely present child unsafe content and it does so by using
a VGG16(21) Convolutional Neural Network (CNN) to encode each frame,
at 1-second granularity, in 512 real values. Then an LSTM autoencoder is
trained to output the sequence backward on those encoded frames. Once
the LSTM autoencoder is trained, then a fully connected layer of neurons is
used to fine-tune and classify each frame. The dataset used comprises 109,835
short-duration video clips extracted from four animes. The results for binary
classification using safe and unsafe classes were 81% recall for unsafe and 0.88
AUC(ROC) for unsafe class. Although this work also has similar objectives as
ours and also uses a CNN-based encoding method, ours uses both visual and
audio features to encode a video. The main difference between both works is
in the dataset: Theirs consists of small clips of only anime videos. Ours also
uses other types of videos such as live-action and other animations.

Song et. al. (22) proposed a multimodal stacking scheme for fast and
accurate online detection of pornographic content. Their work uses both visual
and auditory features as input for their detection method. They use a VGG16
model and a bi-directional LSTM to extract visual features and a combination
of a Mel-scaled spectrogram followed by multilayered dilated convolutions to
extract audio features. Using only the visual and auditory features, a video
classifier and an audio classifier are trained, respectively. By using both features
together, one fusion classifier is also trained. Then, these three component
classifiers are combined in an ensemble scheme to reduce the false-negative
errors and for faster detection. The proposed detection method yields a true
positive rate of 95.40% and a false negative rate of 4.60% on the pornography
class, totaling a recall for the pornography class of 95.40% and an accuracy of
92.33%. The dataset used was the Pornography-2k(13) dataset plus examples
of videos with only pornographic or non-pornographic audio collected by the
authors. This work is similar to ours because it also uses a multimodal approach
to detection, albeit ours is not for pornography detection only. It also uses the
same sampling rate of a frame for each second and uses a deep learning method
for extracting high-level features, which are then classified by one or more
machine learning models. We also use different feature extraction methods for
image and audio features. Finally, in contrast with their ensemble approach,
we use a single model to classify the extracted features from our dataset.

Moreira et.al. (12) have similar detection focuses as ours: Pornography

DBD
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Chapter 2. Related Work 18

and Violence. Their method uses four multi-modal classifiers, two for audio and
two for image, those classifiers were fed features from multiple handcrafted
feature extraction methods. Their work is geared towards mobile device
applications and also allows for sensitive scene localization. The authors
propose a method for sensitive scene localization which uses the output of
four multi-modal classifiers on snippets of the video, then creates a fusion
vector at each second of the video. Finally, they test different classifiers on
the fusion vector for each task: detecting pornography and detecting violence.
Their best result on the pornography task was 90.75% accuracy and 93.53%
on the F2 metric. For the violent videos, they achieved 0.502 on the MAP2014
evaluation metric. Some differences between this work and ours are mainly its
objectives: To detect if and at what time the sensitive video occurs. While our
only objective is to detect if there is or is not sensitive content in a video.
Their method is geared towards mobile devices, while ours is geared towards
video hosting platforms. Other differences stand out in the dataset and the
methods used for feature extraction and classification. The Violent Scenes
Dataset (23) is comprised of violent scenes from movies, while ours contains
real violent scenes. We use an authorial dataset and investigate what results a
deep learning-based approach to this problem can yield.

Wang et. al. (24) propose a pornography method for use in live streams,
focusing on real-time processing, their work uses multimodal features, namely,
image, audio, and optical flow (25). An Xception (8) model is used to extract
spatial features from keyframes. To get the optical flow frames, they also
use a CNN to extract the optical flow from the video, then, use another
Xception model to extract the high-level optical flow features. Finally, they
use a short-time Fourier transformation to create spectrograms and feed those
spectrograms to a third Xception model and thus acquiring the extracted
audio features. Each of the multimodal features extracted then is passed
onto bidirectional GRUs(26), to obtain temporal context, then, to create a
better-unified representation, all the features go through three interconnected
Attention-gated layers, each with three Attention-gated units proposed in the
paper. After obtaining the dense representation of the input types, it is applied
a fully connected layer of neurons with a softmax function. Their work archives
76.33% accuracy and runs at 66.1 fps. In our work, we strive for detecting
both violence and pornography, we use only two types of input data, image,
and audio, and we use a specific CNN for each type of data, while their work
focused only on detecting pornography and used the same CNN model for all
three types of input.

Liu et. al. (27) propose a multi-modal approach to pornography detec-
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PUC-Rio - Certificação Digital Nº 1921163/CA



Chapter 2. Related Work 19

tion, it uses audio frames and visual frames to create handcrafted low-level
features based on, respectively, periodic patterns and salient regions. Once
those features are extracted, they use k-means clustering to create audio and
visual codebooks. Then, low-level audio and visual features of test videos are
converted into mid-level semantic histograms via de audio or visual code-
book. Finally, the histograms are concatenated to represent the video and
a periodicity-based video decision algorithm is used to fuse the classification
results of multi-modal codebooks and the results of an SVM trained on the
concatenated mid-level semantic features train set. The true positive rate of
their approach achieves 96.7% while the false positive rate is about 10%. There
are three papers about our work have already been published:

− Freitas et al.(28), which describes our approach and model on a early
version of this dataset, containing about 60.000 sensitive and safe videos.

− Freitas et, al.(29), which describes how our approach fairs on pornogra-
phy detection in educational video-hosting platforms.

− Serra et. al.(30), which describes an method, based on our model for
sensitive content detection, for self-monitoring and parental control on
mobile phones.

Most related works focus on pornography detection alone, while ours aims
at detecting either pornographic or violent content. Moreover, some of them
only use image-frame features, whereas we use both audio and image-frame
features. We also use deep learning feature extraction methods instead of hand-
crafted ones. Feature extraction method, classification method, and dataset of
each related work are available in Table 2.1. Finally, a central difference is
our dataset: Ours contains violent scenes and is significantly larger than most
datasets used on other related works.
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3
Theory and technical background

This Chapter aims to set a basic understanding of the concepts underly-
ing the techniques used in this Dissertation.

3.1
Artificial Neural Networks

Artificial Neural Networks (ANNs) are machine learning models inspired
by biological neurons. The Perceptron (31) is one of the main precursors
of modern ANNs. The Perceptron is a mathematical model of the Neuron,
it is capable of binary classification. It draws its differentiation power from
adjusting a linear function with its weights. It can differentiate any linearly
separable problem, that is, any problem in which a hyperplane (a plane in
multiple dimensions) can separate the two classes of the data.

A Perceptron receives m inputs, denoted X, it holds m weights W , one
weight for each input, and a bias. During training, the weights W and the bias

are adjusted in order to optimize hyperplane separation.

Figure 3.1: The Perceptron and its components, the input layer, the weights,
the weighted sum and bias, the activation function, and the output layer.

To obtain the output of a Perceptron (a prediction), its weights are
multiplied by the inputs, then the sum of these multiplications is summed and
then a bias is added to this result. This weighted sum of the input features
can be calculated through Equation 3-1.
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m∑
i=1

(xiwi) + bias (3-1)

Where m is the number of inputs, xi and wi are the inputs and weights and
i is the number of the input. Finally, the weighted sum of the input features
(and bias) are input through an activation function, which in the original
perceptron is a Step function, but in Figure 3.1, which shows a diagram of
the Perceptron structure, is a Hyperbolic tangent function. The result of the
activation function is the output of the Perceptron.

The learning process of the Perceptron is adjusting the weights and the
bias so that the hyperplane can separate the training data up to a set metric.

By stacking layers of multiple Perceptrons, one can approximate any
continuous function, rather than only linear functions, thus being able to solve
both linear and non-linear problems. MLPs are also known as Fully Connected
(FC) neural networks when combined with other modern neural networks. The
general structure of a Multi-Layer Perceptron (MLP), as shown in Figure 3.2
consists of an input layer, one or more hidden layers, and an output layer.

Figure 3.2: The Multi-Layer Perceptron

The training procedure for the MLP is called Backpropagation. It is a
process in which the loss value is calculated to measure the error rate of the
output. The loss value is used to adjust the weights of the neural network in
the reverse sequence of the prediction process. Gurney et. al.(32) further detail
the Perceptron and the Multi-Layer Perceptron and how the learning on each
of them occurs.

When training MLPs, some problems may arise. Overfitting and Under-
fitting, are, respectively, learning to match the exact pattern of the training
data, and not approximating (or learning) the desired pattern enough, in both
cases, the network fails to generalize to data outside of the training set. For
Overfitting, there are many techniques that mitigate this problem, such as
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dropout (when some neurons are randomly deactivated when training), and
cross-validation (split training set in chunks and training with random chunks).
Underfitting, on the flip side, may mean that the complexity of the model is
too small for the train set or that the training data is insufficient.

3.2
Convolutional Neural Networks

The concept of Neural Networks can also be applied to computer vision,
by combining the concept of convolutions and neural networks, Kunihiko
Fukushima created the precursor of modern Convolutional Neural Networks
(CNNs), the "neocognitron"(33) in 1980.

To understand CNNs, one must first understand the convolution opera-
tion, used in many image processing techniques.

Figure 3.3: The Convolution operation, is the main operation behind Convo-
lutional Neural Networks. Image author: Anh H. Reynolds1

Convolutions consist on applying a filter (or mask), a matrix of values, to
an image. As exemplified in Figure 3.3. The operations consist of multiplying
each value on the mask by the equivalent pixel (on the current image patch)
in the image, then summing all results of these multiplications, this will be the
new pixel value of the resulting image/feature map.

In CNNs, each value of the filter is learned, as if the weights to be
learned in the neural networks are now the values of the convolutional mask.
Each convolution layer has its learned weights for its filters, therefore each
convolution layer will process the inputs even further, each layer passing its
output to the next.

CNNs also use an operation called Pooling in order to reduce the size of
the input of a layer (downsample), and consequently speed up computation,
by "distilling" the features they become more robust to noise.

1https://anhreynolds.com/blogs/cnn.html

https://anhreynolds.com/blogs/cnn.html
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The two most common methods of pooling are average and max pooling.
Max pooling takes the max value of each neighboring neurons/inputs while
average pooling is the average value of each neighboring neurons/inputs. As
represented in Figure 3.4.

There are also two different ways to perform Pooling operations. Local
pooling reduces the output of the previous neurons/inputs per channel. Global
pooling combines values of previous neurons/inputs across dimensions, or
channels, in the feature map.

Figure 3.4: Local Max and Average Pooling representation. Image authors are
Yingge et. al.(1)

In the first stage of traditional image classification, CNN is comprised
of convolutional and pooling layers, extracting and distilling characteristics as
the layers get deeper into the model, this is called the feature extraction stage.
Then, the features are input to the classification stage, which is usually a fully
connected layer of neurons (a Multilayer Perceptron). The classification stage
outputs the predicted class. This generic image classification CNN is shown in
Figure 3.5.

As convolutional layers get deeper, the level of abstraction also gets
higher, as an example, in a generic image classification CNN, the last layers
the features may represent more abstract concepts, such as the presence of
objects and complex shapes such as cars. These abstractions depend on what
images the CNN was trained on and what is it supposed to classify.

Once a CNN is trained with success, it should have learned represen-
tations as features that allow it to differentiate between classes. By training
a new classifier on the already existing learned concepts (features) in the last
convolutional layers, one can modify this generic CNN to classify between dogs
and cats or types of cars. One could also use the same trained generic CNN
and continue training it on a different task, using the already learned concepts
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Figure 3.5: A generic image classification CNN architecture represents both the
feature extraction stage and the classification stage. Note that as the inputs
progress through the CNN the width and height of the inputs become smaller,
but the number of feature channels/dimensions increases. Image authors are
Khozeimeh et. al.(2)

as a head start, the CNN would also learn more specific concepts for this task
as the training continues. This is called transfer learning.

One of the most popular datasets and challenges for CNNs is The
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)2(34), in 2012
it hosted the work that ushered a boom in CNN research and development
when AlexNet achieved a top-5 error of 15.3% in the ILSVRC, more than 10.8
percentage points lower than that of the second place. The ImageNet dataset
has more than 100.000 "synonym sets" which are sets of words or phrases that
represent the image. The dataset holds multiple challenges for tasks such as
Image classification, Single-object localization, and Object detection, each of
the subsets for these tasks has 1000 classes (or objects).

A CNN trained on the ImageNet dataset can learn a wide variety of
abstractions, from cars to dogs, because of the wide scope of their image
classification task. This makes CNNs pre-trained in the ImageNet dataset
especially performant as transfer learning models (35).

With the success of CNNs, researchers started modifying and applying
these models to other domains, such as audio, time series, and natural language
processing.

The equivalent of the ImageNet dataset for the audio classification is the
Audioset3 (36). It is an ontology of 632 audio classes and 2,084,320 human-
labeled 10-second sound clips collected from YouTube videos. Its classes range
from human and animal sounds, musical instruments and genres, and common
everyday environmental sounds.

With the advent of deeper CNNs, one problem also surfaced: The
vanishing gradient problem, which occurs when the error propagation makes

2http://www.image-net.org/
3https://research.google.com/audioset/

http://www.image-net.org/
https://research.google.com/audioset/
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the training diverge, the values of weights become too small. To avoid this
problem, there are multiple techniques, such as the Rectified Linear Unit
(ReLU) activation function (37), and lower the learning rate, thus taking
smaller steps when adjusting the weights.

3.3
The VGG Convolutional Neural Network

The VGG Convolutional Neural Network (38) was designed for the Ima-
geNet Challenge in 2014, where it won first and second place in localization and
classification tasks. Its input is a 224×224 RGB image. The main contribution
of this network is that is showed that even with a very small receptive field
(3×3, which is the smallest size to capture the notion of left/right, up/down,
and center, by increasing the depth of a network, it could still outperform all
other CNN based methods at the time.

This architecture has 6 configurations with different depths that are
connected to two Fully Connected (FC) layers, two of 4096 channels and a final
one with 1000 channels (The Image Net challenge had 1000 classes), followed
by a soft-max layer that outputs the predicted class. The configuration of the
fully connected layers is the same in all configurations. All hidden layers used
rectification (ReLU) (37) non-linearity. Figure 3.6 shows the most popular
variation, the VGG-16 (Configuration D), and its layers, as described above.

Figure 3.6: VGG-16 architecture, image authors are Ferguson et. al.(3).
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3.4
VGGish

The VGGish is a variation of the VGG-11 (Configuration A), created
by the authors of the YouTube8m dataset (39), with some modifications to
perform audio (spectrogram) classification and embeddings generation).

Specifically, the input size was modified to 96×64 for log Mel spectrogram
audio inputs. The last group of convolution and max pool layers was removed.
In order to create a compact embedding layer, the 1000 channel wide FC layer
at the end was changed to a 128-wide FC layer. This final layer does not have
a non-linear activation.

3.5
The Inception Convolutional Neural Network

The Inception Convolutional Neural Network or GoogLeNet, (4) was
designed for the ImageNet Large-Scale Visual Recognition Challenge in 2014,
it features many techniques in order to increase the efficiency of deep CNNs.

In order to achieve this increased efficiency, the authors created a module
to capture as much information as possible, both in the local and global
contexts, by using multiple kernel sizes in the same convolutional layer. To
optimize for computational cost and speed, the creators also avoided naively
stacking layers, for it is computationally expensive.

The solution proposed by the authors of the inception CNN is to use
compute multiple filters at the same level, with varying convolutional filter
sizes.

The “Naive” inception module, as shown in Figure 3.7 consists of a
convolutional layer using 3 different filter sizes, 1×1, 3×3, and 5×5. Along
with a max-pooling operation. The outputs are then concatenated by the end
of the inception module.

In order to reduce computational costs further, the authors added 1×1
convolutions after the max-pooling step and before the 3×3 and 5×5 convo-
lutions. By doing this the authors reduce the amount of processing done by
reducing the number of input channels before the convolutions. This improve-
ment was named “The inception module with dimension reduction” and it is
represented in Figure 3.8.

By stacking 9 inception modules with dimension reduction and using 2
intermediate classifiers, essentially computing prediction values and using these
values to compute auxiliary losses, which are then used to compose the final
loss in the training process in order to avoid the vanishing gradient problem.
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Figure 3.7: The “Naive” inception module, the image authors are Szegedy et.
al. (4).

Figure 3.8: The inception module with dimensional reduction, the image
authors are Szegedy et. al. (4).

As shown in Figure 3.9 It is still deeper (it has 22 convolutional layers)
than the deepest VGG configuration (with 19 convolutional layers).

InceptionV2 and InceptionV3 networks (40) For the inceptionV2 compu-
tational efficiency was improved by factorizing the convolutions, convolutions
with 5×5 size kernels were factorized into two 3×3 sequential convolutions, this
improves computability (because 3×3 convolutions use 2.78 times fewer oper-
ations than 5×5) while actually improving performance. They also factorized
the 3×3 convolutions into one 1×3 and 1×3 convolutions. These factorized
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Figure 3.9: The complete inception convolutional neural network, image au-
thors are Szegedy et. al. (4).

convolutions are performed on the same input to avoid excessive dimension
reduction (information loss).

The InceptionV3 CNN used all the upgrades of the InceptionV2, and
improved performance further by incorporating the RMSProp Optimizer (41),
factorized 7×7 convolutions ( 1×7 convolutions followed by 7×1 convolutions.),
batch normalization in the Auxillary Classifiers, and Label Smoothing (It is a
modification in the loss function that prevents the network from having high
confidence in a class) for preventing overfitting.

The Inception CNNs continued to improve further with InceptionV4 and
Inception-ResNet (42), but we will not detail them here for they are not used
in the scope of this work.
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3.6
Feature Fusion

Since we are using information from two different domains, image, and
audio, it is also important to think about how one can fuse information from
both these domains while losing as minimum information as possible.

Snoek et al. (5) present two main strategies for information fusion in
semantic video analysis:

− Early fusion methods (Figure 3.10a), which work directly with the
extracted features.

− Late fusion methods (Figure 3.10b), which operate on classification
outputs from specialized models.

(a) In the late fusion approach, in it, there is
a machine learning model for each unimodal
feature and a final model to fuse the outputs
of each unimodal model.

(b) The early fusion approach uses a
single multimodal machine learning
model to both aggregate and classify
all features.

Figure 3.10: The late and early fusion methods for feature fusion. Image
authors are Snoek et. al. (5).

In the work by Snoek et. al.(5), the Late fusion approach tends to give
better performance on most semantic concepts (multilabel video classification)
at the cost of increased computability costs. However, the authors also conclude
that the late and early fusion approaches should be compared are per concept
(in a multilabel situation).
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4
Sensitive Content Dataset

In this chapter, we present how our dataset was collected, how it is
structured, how the features were extracted, and what metrics we recommend
for the main task of this dataset. This dataset is partially weakly annotated,
as some of the Safe and all of the Sensitive videos were user-labelled.

4.1
Dataset Collection and Assembly

4.1.1
Safe content

For safe content, we chose to sample instances from Youtube8M1 (39).
We chose this dataset because of its size (8 million videos) and because of the
wide variety of video classification challenges it supports. We selected 55.000
random videos inside each of the 24 top-level categories, proportionally to the
original dataset distribution. As there was no limit for the sample size, we did
not have to use any rules to keep small categories.

We successfully collected 50,988 Youtube videos with metadata. 4,012
of the 55,000 sampled videos failed to download or were unavailable. These
videos are manually (strongly) labelled, as they were assembled from the yt8m
dataset.

We also collected 8,663 videos from Youtube, hereby referred to as
“cherry-picked" safe videos, those videos were selected for the purpose of
increasing the amount of “hard" videos, as done in (13), which are videos
that could possibly be misclassified as sensitive, such as Mixed Martial Arts
(MMA), breastfeeding, pool parties, beaches and other videos that have a
higher amount of skin exposure. The amount of cherry-picked videos collected
is listed by their respective query in Table A.2. The collection was made by
automated means, a script automatically searched and tried to download all
videos from the first 100 result pages of each query. This means that the main
tags, or labels, of the “hard" safe videos are user-generated, or weakly labelled.

1https://research.google.com/youtube8m

https://research.google.com/youtube8m
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4.1.2
Sensitive content

For sensitive content, we collected pornography and violent videography
(hereafter referred to as gore) from websites. All videos with sensitive content
are weakly labelled, that means that all labels are either user-generated or
manually labelled by its site’s moderator.

For the pornography, we to sample videos from the XVideos2 database.
We chose this source because of the database size (7 million videos) and because
of the amount and variety of annotations. In this database, each video has one
main tag, totaling 60 main tags, and tags (user-created).

We sampled 55.000 random videos in each tag in equal proportion to the
original distribution in these tags. In particular, to prevent tags with fewer
videos from disappearing, we have defined that the minimum sample for each
tag is the size of the smallest tag. The smallest tag was ’ASMR’ with 63 videos.

We successfully collected 54,549 pornography videos with metadata. 451
of the 55,000 sampled videos failed to download or were unavailable. We also
collected 10,519 “hard" videos from XVideos, specifically videos that have low
skin exposure, fully dressed people, latex costumes, and cosplay.

For the gore content, we used a web crawler to extract 2,356 gore
videos from various websites dedicated to gore media, such as, BestGore3 and
GoreBrasil4. As these videos were harder to find and collect, we collected all
available videos from each website, no sampling method was applied. Most
videos did not stay online for more than one week. As there was no contact
with the videos and the videos did not have any tags, all metadata collected
was the title of the videos.

Not all video features were successfully extracted for multiple reasons,
such as corrupt data, unknown format, and missing audio. For those videos
with missing audio or image, the features were still generated, but their
respective modal feature were zeros. Those videos which did not have any
features successfully extracted were removed from the dataset.

We also removed any duplicated videos that were detected, for duplicate
video detection we used, we matched either id, title, or checksum.

2https://info.xvideos.com/db
3https://www.bestgore.com/
4https://www.gorebrasil.com

https://info.xvideos.com/db
https://www.bestgore.com/
https://www.gorebrasil.com
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4.2
Dataset Structure

Our dataset is structured into two main classes (or macro-classes): “safe”
videos and sensitive videos. The sensitive macro-class is composed of two
micro-classes: Pornography and Gore. The safe class is composed of videos
from Youtube. Finally, each of the micro-classes has main tags, which are the
same main tags from their original metadata in the website, if available. Each
instance (a video) of the dataset may also have tags, which are a list of tags
that represent the video. The general structure and organization of our dataset
are represented in Figure 4.1.

Figure 4.1: Dataset tree structure

There are 59,651 safe videos and 67,424 videos with sensitive content.
Table 4.1 presents the general statistics of our dataset, such as total duration
(hours, minutes, and seconds) of all videos, total (uncompressed) features
size, and tag coverage, the amount of videos with a main tag (videos may
also have tags but no main tag). If played in real-time, a person would take
approximately 1 year and 127 days straight to flag all videos in this dataset.

The YouTube micro-class has 25 main tags, as presented in Table A.3,
in Appendix A, each of the videos in the "hard safe videos" main tag, has one
tag, which was the query word used to collect it.

The Pornography micro-class has 60 main tags, as presented in Table
A.4, Appendix A, these main tags were defined by the database creators, and
the tags were user created. The instances in this micro-class also have user-
created titles. There are no main tags or tags (but the ’gore’ tag) on the Gore
micro-class as they were not available on their site. All instances, however,
have user-created titles.
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Table 4.1: General statistics of the two main classes of the dataset. Tag coverage
is the amount of videos with a main tag, videos may also have tags but no
main tag.

Sensitive Safe
Video Count 67424 59651

Total Duration 6953:27:41 4852:53:31
Mean Duration 00:06:11 00:04:52
STD Duration 00:04:12 00:03:26
Max Duration 00:30:55 00:30:55
Min Duration 00:00:05 00:00:05

Total Size 1,2TiB 2,2TiB
Mean Size 19,3MiB 39,0MiB
STD Size 35,4MiB 42,3MiB

Features Size 519,4GiB 376,8GiB
Tag coverage 63036 59651

Tag coverage (%) 93,4919 100,0000

By using macro and micro classes of this dataset, our dataset also
supports other tasks, other than the binary classification of sensitive content,
such as:

− Multi-label classification (or tagging) of pornographic videos;

− Multi-label classification of "Safe" (Videos that do not contain sensitive
content);

− Binary classification of extremely violent (gore) videos;

− Binary classification of pornography.

4.2.1
Dataset Distribution

The dataset will be distributed as extracted and processed visual and
audio features from the videos. Each instance (features from a video) is
associated with a id, a label, and a sequence size. We will not distribute raw
video data, but we are open and plan to include other feature extraction
methods in our dataset. General details on the dataset distribution are
available in Appendix B.

4.2.2
Dataset Balancing

For experimenting, we equally balanced both main labels (sensitive/im-
proper and safe/proper), so that both main classes have the same number of
instances. One could also choose not to balance both classes equally, since our
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Table 4.2: Granular statistics of the dataset: Videos collected from Youtube,
pornographic videos, and gore videos.

Pornography Gore YouTube
Video Count 65068 2356 59651

Total Duration 6900:17:38 53:10:02 4852:53:31
Mean Duration 00:06:21 00:01:21 00:04:52
STD Duration 00:04:10 00:01:26 00:03:26
Max Duration 00:30:55 00:16:56 00:30:55
Min Duration 00:00:05 00:00:05 00:00:05

Total Size 1,2TiB 15,8GiB 2,2TiB
Mean Size 19,8MiB 6,9MiB 39,0MiB
STD Size 35,9MiB 13,9MiB 42,3MiB

Features Size 515,3GiB 4,1GiB 376,8GiB
Tag coverage 63036 0 59651

Tag coverage (%) 96,8771 0 100,0000

main metric already takes label imbalance into account. Additionally, when
removing excess sensitive content (while balancing), we removed only pornog-
raphy videos in order to not lower the number of gore videos.

4.2.3
Dataset splits and Test sets

We hold out our dataset for testing our approach: 10% of the safe videos,
then 10% of gore videos, and sample pornography videos to match the number
of safe videos minus the amount of gore test samples so that the test subset has
a balanced amount of sensitive and safe videos while keeping a valid amount
of gore videos. For the micro-classes that have multiple main tags (Youtube
and Pornography), we took stratified samples based on the number of each
main tag in the dataset. The number of instances by micro-class sampled is
presented in Table 4.3.

As a complementary test dataset, we selected the Pornography-2k
dataset (18), which contains 1000 non-pornographic videos and 1000 porno-
graphic videos. Those non-pornographic videos are comprised of “hard” and
“easy” videos according to the likelihood of misclassification. Some examples of
“hard” videos are those with high amounts of exposed skin, such as swimming
and sumo fighting videos. Its general statistics are shown in Table 4.4.

4.3
Metrics

To evaluate each experiment and our approach, we will use Precision (P),
Recall (R), and, most importantly, the weighted F2 score. In this section, we
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Table 4.3: Test subset statistics.

Pornography Gore YouTube
Video Count 5732 236 5968
Total Duration 574:03:29 05:22:20 443:35:36
Mean Duration 00:06:00 00:01:21 00:04:27
STD Duration 00:03:44 00:01:48 00:02:32
Max Duration 00:30:29 00:16:56 00:29:01
Min Duration 00:00:05 00:00:07 00:00:07
Total Size 80,2GiB 1,5GiB 204,8GiB
Mean Size 14,3MiB 6,6MiB 35,1MiB
STD Size 25,6MiB 14,4MiB 35,0MiB
Features Size 42,6GiB 424,1MiB 34,5GiB
Tag coverage 5695 0 5968
Tag coverage (%) 99,3545 0,0000 100,0000

Table 4.4: Pornography-2k dataset statistics.

Porn Non-Porn
Video Count 1000 1000

Total Duration 100:30:32 40:26:06
Mean Duration 00:06:01 00:02:25
STD Duration 00:05:49 00:02:17
Max Duration 00:33:40 00:20:16
Min Duration 00:00:05 00:00:02

Total Size 26,4GiB 18,5GiB
Mean Size 27,0MiB 18,9MiB
STD Size 31,1MiB 21,9MiB

Features Size 7,6GiB 3,1GiB
Tag coverage 0 0

Tag coverage (%) 0 0

present a contextualized explanation of these metrics.
In the context of sensitive content detection, true positives are videos

predicted as sensitive and are in fact, sensitive. Likewise, true negatives are
videos predicted as safe and are indeed safe. False positives are videos predicted
as sensitive, but were safe, the same goes for false negatives, which are videos
that were predicted as safe, but were actually sensitive.

Precision (Equation 4-1) measures how many videos predicted as sensi-
tive (both true positives and false positives) are truly sensitive. The Recall
(Equation 4-2) measures how many truly positive videos were correctly iden-
tified.

P = TP

TP + FP
(4-1) R = TP

TP + FN
(4-2)
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Where TP, TN, FP , and FN denote the examples that are true positives,
true negatives, false positives, and false negatives, respectively.

Fβ = (1 + β2) × P × R

(β2 × P ) + R
(4-3)

The Fβ-score, defined in Equation 4-3, evaluates the classifier by the
harmonic mean between Precision and Recall. To account for label imbalance,
after calculating the F2-score metrics for each label, we find their average
weighted by support (the number of true instances for each label).

Most related works, such as (12, 14, 15), use either F1-score (β = 1)
or F2-score (β = 2) metrics as their main evaluation metric. While the F1-
score represents a balanced performance metric, the F2-score gives twice more
weight to the recall than to precision, which means that the metric is more
focused on the recall of a solution.

In this work, the F2-score represents an overall performance metric, while
the precision and recall metrics can give insights on what the classifier model
is doing better and what to improve. We chose the weighted F2 score as our
main evaluation metric because when detecting sensitive content it is more
important to predict a truly sensitive video than to predict a safe video as
sensitive.
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5
Method

In this section, we detail our method for sensitive content detection in
video. We split our approach into three parts: feature extraction, feature fusion,
and feature classification, as illustrated in Figure 5.1.

Figure 5.1: Our approach to sensitive video detection (binary classification)

In the feature extraction stage, firstly we split the frames and audio from
the video; then, for each media, we use a CNN to extract the features (or
embeddings) from each simultaneous video segment. In the second stage, Fea-
ture Fusion, we concatenate both audio and frame features. If the classification
model is not sequential, we also aggregate the features in this stage. Finally,
in the feature classification stage, we feed one of the classification models to
be experimented with.

5.1
Video Embeddings Extraction

CNNs tend to learn low-level features (e.g., in the visual domain: edges,
corners, contours) at their first layers. At the intermediate and final layers,
the combination of these features helps to extract more complex features,
resulting in a vector of continuous values, referred to as embeddings, that might
be used for classification and other tasks. In this work, we use two benchmark
CNNs to extract both image and audio embeddings by using a transfer learning
technique (43).

By using the feature extraction method created for the Youtube-8m
benchmark, we can test a feature extraction method that is powerful enough
to represent features that can be in multiple tasks, such as multi-label video
classification, video recommendation, and human activity recognition.
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"Since the video-level representations are unsupervised (extracted inde-
pendently of the labels), these representations are far less specialized to the
labels associated with the current dataset, and can generalize better to new
tasks or video domains." (39)

In order to validate our dataset, we used the same feature extraction
method used in the Youtube-8m dataset challenges (39), both networks were
pre-trained and frozen. They were not retrained for application-sensitive
content classification. This gives future works an opportunity to develop even
more efficient and smaller feature extraction networks for this specific task.

As described in (39), To generate image frame features and audio
features we decode each video at approximately 1 frame-per-second. For the
image frame features, we used an InceptionV3 network (40) pre-trained on the
ImageNet1 dataset. We also use a variation of the VGG network (38), called
VGGish, with pre-trained weights in the Audioset2 dataset to extract the audio
embeddings.

Each of these CNNs was used as published by their authors; We adopted
their respective versions for feature embedding generation, on which the only
modification was the removal of classification layers in both CNNs to obtain
their respective embeddings.

5.2
Feature Fusion

Once we have the features (embeddings) from both image and audio, we
should make a decision about which method is best to fuse the information
from these different domains, as described in Chapter 3, Section 5.2.

Although the Late fusion approach tends to give better performance (5),
it comes with increased computability costs.

In this work we have high abstraction level features and are making
baseline models for this dataset, because of that, we opted to investigate the
approach with the lesser computability cost, which is to train a single model
on the concatenated features from both media inputs (Early Fusion).

In order to create the final embeddings, we concatenate both image
and audio embeddings extracted in the same frame and audio window. This
generates a sequence of the same size as the number of seconds of the video.
After this concatenation, each time-step has 1,152 features: 128 audio features
and 1024 frame features.

1http://www.image-net.org/
2https://research.google.com/audioset/

http://www.image-net.org/
https://research.google.com/audioset/
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Notice that with this approach, the video is transformed into a time
series, and to use it in non-sequential models (e.g. SVM, KNN, and MLP) we
need to turn this sequence into a single feature vector that represents the whole
video. In our setting, we did that by taking the average, median, standard
deviation, min, and max values for each feature to represent the entire video.
In summary, we turn the sequence of features with size n and shape n by 1,152
into a single feature with shape 1 by 5,760.

5.3
Classifiers

For the feature classification task, we investigate both sequential models
(which use the extracted embeddings in a time series format), and non-
sequential ones (which use a single aggregated embeddings vector). We want
to experiment with both approaches in order to investigate if a more compact
format, such as the single embeddings vector, can yield results at least as
good (or even better) than the full feature sequence data. As an example, one
can think of a long video that has a pornographic scene in one second out
of its entirety. In a non-sequential representation of the extracted features,
this short pornographic fragment could be left “hidden” among the other non-
pornographic frames of the video, as illustrated in Figure 5.2. In a sequential

Figure 5.2: Sequential features with aggregation, the sensitive scene (red) might
vanish among the other scenes during aggregation.
representation, although time-series classifiers usually output a prediction after
reading the entire sequence, the embedding vectors of each second of the video
would not be aggregated and thus could be analyzed section by section, as
illustrated in Figure 5.3.

Although a sequential representation contains possibly much more re-
dundant data than the non-sequential one, it could give the sequential classifi-
cation model an important edge of detail over the less granular non-sequential
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Figure 5.3: Sequential features with no aggregation. The output, after reading
the entire sequence, can also be susceptible to information vanishing.
ones. Furthermore, with a sequential approach, one could train a model to
classify the whole video, but when at testing time, to stop classification as
soon as the current sample is classified as sensitive, allowing for near-real-time
classification.

For the sequential classification model, we chose the Long Short-Term
Memory (LSTM)(19) networks. It has been a commonly used time series
classification baseline model.

For the non-sequence models, we chose Support Vector Machines
(SVM) (44) , K-Nearest Neighbors (KNN) (45), and Multilayer Perceptron
(MLP) (46). Among all of the experimented models, the Support Vector Ma-
chine (SVM) is the most used in the literature. It is a classification model
in which the data is mapped into a higher dimension input space, where an
optimal separating hyper-plane is constructed. We used the RBF kernel and
C=1. The second model, K-Nearest Neighbors uses distance measure between
training samples so that the k-nearest neighbors always belong to the same
class, while samples from different classes are separated by a large margin. It
was chosen because it is used also by related work, although it is a simple clas-
sification method. The third model is the Multilayer-perceptron (MLP), which
contains layers of nodes: an input layer, an output layer, and various hidden
layers in between. This one was selected because it is also commonly used as
a final classifier on deep neural networks. For model evaluation, we performed
20-fold cross-validation for all baseline models.

5.4
Proposed Analysis

In Chapter 6, we evaluate the performances of baseline classifiers over the
video embeddings that were extracted from our dataset, described in Chapter
4. Then, we choose the best performing classifier during the validation stage
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and test its performance on the test sets. We designed a set of cases that
might help us find insights and assess the performance and shortcomings of
our dataset and approach.

Our objective with these analyses is to attest to the quality of our dataset
and approach to detecting sensitive content on video.

We chose not to perform extensive hyperparameter optimization (fine-
tuning) on the baseline models, since this work already aims at validating the
dataset and the transfer learning-based feature extraction method. Although
we performed hyperparameters changes on the SVM model, the most since it
is most sensitive to hyperparameters optimization. In future works, we will
create a specific model for this task in this dataset and compare it with fine
tuned baseline models.

(E0): Testing only on image features: In this analysis, we evaluate our approach
on our test subset using the visual (frames) features only.

(E1): Testing only on audio features: In this analysis, we evaluate our approach
on our test subset using the audio features only.

(E2): Testing pornography using audio-only videos: In this analysis, we evalu-
ate our approach to the Pornography-2k dataset using the audio features
only.

(E3): Testing pornography using only image features: In this analysis, we
evaluate our approach to the Pornography-2k dataset using the visual
features only.

In the next chapter, we present and discuss the results of our baselines
and report each analysis.
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6
Results

Having performed 20-fold cross-validation, we collected all metrics
through all the folds. Table 6.1 presents mean, standard deviation, min, and
max. The full results for each fold are available in Table A.1, Appendix A.

Table 6.1: Weighted F2-Score (in percentage) for each model across 20-Fold
Cross Validation.

MLP LSTM SVM KNN
count 20,0000 20,0000 20,0000 20,0000
mean 99,0743 98,9899 98,8993 96,4738
std 0,1349 0,1174 0,1347 0,2915
min 98,7945 98,7943 98,5445 95,6932
25% 99,0073 98,9175 98,8499 96,3585
50% 99,0962 98,9848 98,9174 96,4108
75% 99,1708 99,0684 98,9756 96,6564
max 99,2885 99,1915 99,0836 96,9448

6.1
Model comparison

Comparing the models in Table 6.1 the model with the highest mean
weighed F2-Score across folds is the Multilayer Perceptron model. To compare
the models and test if their results are statistically different.

Afterward, we test if the model with the best model has a statistically
significant difference from the second-best by performing a posthoc pairwise
hypothesis test.

Figure 6.1 shows the difference in the distribution of results of each model.
The simplest model, K-Nearest Neighbors, has the most different from the
models. The three other models, however, are relatively close to each other.

To determine what test is better suited for our data distribution (the
best-weighed F2-Score), we checked our data for normality and outliers. Which
are frequent assumptions for different hypothesis tests. For the normality
assumption, we used probability plots, as shown in Figure 6.2 to test if the
data is normal.
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Figure 6.1: Histogram of the results of each model throughout the 20-fold cross-
validation.

Figure 6.2: Probability plots for each model show the data’s quantiles against
the quantiles of a theoretical distribution (the normal distribution).

As shown in Figure 6.2, the KNN and SVM models differ from a normal
distribution.

To validate what is shown in the probability plots, we also tested the
normality assumption with the Shapiro-Wilk test. The null hypothesis is that
the data is not drawn from a normal distribution. The alternative hypothesis
is that the data is drawn from a normal distribution.

According to the Shapiro-Wilk test, the MLP and LSTM models follow
a normal distribution (p<0.05). As for the SVM and KNN models, they do
not follow a normal distribution (p>0.05). So our data does not support tests
that require data with normal distribution.

For outliers presence, as seen by the box plot in Figure 6.3, there are
outliers in the SVM and KNN data.

When tested with most parametric tests, both outliers and non-normal
distributions can bias the results and potentially lead to incorrect conclusions
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Figure 6.3: Boxplot of the results of each model throughout the 20-fold cross-
validation.

if not handled properly.
To choose a test, we chose a non-parametric (sample median) test,

because sample medians are less sensitive to outliers, in contrast with the mean
or variance-based parametric tests, such as Variance Analysis (ANOVA). We
defined the null hypothesis as "All models folds evaluations medians are equal";
The alternative hypothesis is that "At least one model mean rank (median) is
different from other groups". We used a two-tailed test since we do not know
which model will be higher. We chose our alpha as 0.05. That is a probability
of 5% of committing an error, rejecting the null hypothesis when it should be
accepted.

We chose the Kruskal-Wallis test (47) as our hypothesis test because
it fits all of our requisites (non-parametric, median-based). Our data also
supports all of this test’s assumptions.

After applying the Kruskal-Wallis test we obtained a p-value of 2.2733e-
11, which means that p<0.05 and that we can reject the null hypothesis and
accept the alternative hypothesis.

To determine which models are statistically different from each other, we
performed a posthoc test using the Nemenyi post hoc test (48), because it is a
non-parametric (distribution-free) test and our data does not follow a normal
distribution. The results from this test are presented in Figure 6.4.

As presented in Figure 6.4, the MLP and LSTM models are not signifi-
cantly different from each other (p>0.05), and the KNN model is statistically
different from all other models (p<0.05).
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Figure 6.4: Significance matrix. The plot was made with scikit-posthocs(6).

6.2
Tests results

We tested the best performing model, the Multilayer-Perceptron, on the
test subset, shown in Table 6.2.

Table 6.2: Test subset results, shown in absolute values).

precision recall f1-score f2-score support
Safe 0,9895 0,9906 0,9900 0,9897 5973,0000
Sensitive 0,9906 0,9895 0,9900 0,9904 5973,0000
weighted avg 0,9900 0,9900 0,9900 0,9900 11946,0000

As shown in Table 6.2 and Figure 6.5, the MLP model has performed
within the range of the mean of the cross-validation. It can also be noted that
the most frequent errors were false positives when the model predicted a video
as Sensitive when it was in fact, Safe.

Figure 6.5: Confusion matrix of the predictions of the best model in the test
subset.
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We also tested our best model in each sub-task, pornography and gore
binary classification. For the pornography, shown in Table 6.3, and Figure 6.6a,
the most frequent error was the false negatives, in which the model predicted
that the most samples were predicted as Safe, but were Sensitive.

Table 6.3: Results testing pornography only, shown in absolute values).

precision recall f1-score f2-score support
Safe 0,9947 0,9902 0,9925 0,9939 5737,0000
Sensitive 0,9903 0,9948 0,9925 0,9911 5737,0000
weighted avg 0,9925 0,9925 0,9925 0,9925 11474,0000

For the gore, shown in Table 6.4, and Figure 6.6b, the most frequent error
was the false positive, in which the model predicted that the most samples were
predicted as Sensitive, but were Safe.

Table 6.4: Results testing gore videos only, shown in absolute values).

precision recall f1-score f2-score support
Safe 0,8764 0,9915 0,9304 0,8834 236,0000
Sensitive 0,9902 0,8602 0,9206 0,9661 236,0000
weighted avg 0,9333 0,9258 0,9255 0,9248 472,0000

(a) Confusion matrix of the model on the
pornography videos of the test subset.

(b) Confusion matrix of the model on the
gore videos of the test subset.

Figure 6.6: Confusion matrices of the best performing model on the pornogra-
phy and gore subsets.

To evaluate our model and our dataset on the pornography detection
(binary classification) task, we also tested our best performing baseline model
on a well-known dataset for pornography detection: The Pornography-2k
dataset. The results are shown in Table 6.5 and in Figure 6.7. The most
common errors were false negatives, in which the model predicts the instance
as a Safe, but the true label was Sensitive.
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Table 6.5: Test on the Pornography-2k dataset results, shown in absolute
values).

precision recall f1-score f2-score support
Safe 0,9665 0,8080 0,8802 0,9411 1.000,0000
Sensitive 0,8351 0,9720 0,8983 0,8354 1.000,0000
weighted avg 0,9008 0,8900 0,8893 0,8883 2.000,0000

Figure 6.7: Confusion matrix of the predictions of the best model in the
Pornography-2k dataset.

6.3
Analysis cases

As detailed in analysis (E0) and (E1) (Section 5.4), to further investigate
the impact of each multi-modal feature in our best performing model, the
Multilayer Perceptron. We tested it on our test subset and on the Pornography-
2k dataset, but only using one modal feature at a time. For example, in Figure
6.8a, we tested the MLP model using only visual (frames) features, specifically,
were changed all audio features to zero to simulate a video with no audio
features.

As observed in Figures 6.8a and 6.8b, our model had the same perfor-
mance with only visual features, but misclassified all Sensitive videos. This
means that the MLP model ignored all audio features for all videos. It is rely-
ing only upon visual features, even though there are examples of videos in the
dataset, in which the main feature of a sensitive video is audio.

As described in analysis (E2) and (E3) (Section 5.4), we confirmed the
same pattern in the tests with the Pornography-2k dataset, as shown in Figures
6.9a and 6.9b.

Because of the late fusion approach, in which the model receives both
feature types and decides which ones to use the most we were susceptible to
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(a) Confusion matrix of the model on the
test subset using only image features.

(b) Confusion matrix of the model on the
test subset using only audio features.

Figure 6.8: Confusion matrices of the model on the test subset using only one
multi-modal feature at a time.

(a) Confusion matrix of the model on the
Pornography-2k dataset using only image
features.

(b) Confusion matrix of the model on the
Pornography-2k dataset using only audio
features.

Figure 6.9: Confusion matrices of the model on the Pornography-2k dataset
using only one multi-modal feature at a time.

this learning behavior. These results could be due to multiple reasons:

− The difference in the size of visual features and audio features (1024 for
visual and 128 for audio);

− This specific model learned to ignore the audio features;

− The audio features did not offer as much differentiation power as much
as the visual features in this dataset.

− The audio feature extraction method did not offer as much differentiation
power as the visual features.
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Using late fusion in the multimodal features could improve our perfor-
mance in this task because a model is trained for each multimodal feature,
assuring the use of each available feature type.

6.4
Discussion

When testing the best performing model, the MLP, there was a little
variation in the test subset performance. One explanation for this could be that
our dataset is mostly homogeneous (Does not have many variations in videos
characteristics). This could also be a consequence of the dataset’s sampling,
resulting in a test subset similar to the train/validation subset. However, there
are steps taken to avoid both these possibilities. The dataset was created with
a wide variety of videos within each subclass, such as education and sports for
the safe videos, and the test subset was a random sampling that followed the
distribution of main tags within each of the subclasses. On the pornography
detection task, the results were still within the expected performance and the
most frequent errors were false negatives, which is an error we want no minimize
the most over false positives. On the gore detection task, there was a significant
performance drop, which could be a reflection of the smaller amount of gore
examples in the dataset, or could mean that this approach is less adequate for
the gore detection task than for the pornography detection task.

When testing the best performing model on the Pornography-2k dataset,
there was a significant drop in performance compared to the test subset, this
could be due to the model’s lack of use of audio features. This could also mean
that our dataset misses specific hard instances of either class.
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7
Conclusions

In this work, we created a large-scale (110k) video dataset for sensitive
content detection and a multi-modal approach to sensitive content detection in
video. It uses pre-trained convolutional neural networks and applies an early-
fusion feature method, which is simpler than the late-fusion approach since we
use a single model to classify both features.

We evaluated our models by testing on a test subset and a popular
dataset. We validated our dataset and baseline approach while maintaining
similar performance to the existing methods.

It is important to note that our approach is not focused on mobile
platforms, therefore memory and disk space were not major constraints.

It is worth mentioning that our overall results on the sensitive content
detection are not directly comparable to the related works since their definition
of violence does not match ours. However, we could compare our approach to
the pornography detection task by testing our best-performing baseline model
on the Pornography-2k dataset. Our approach yielded an F2-Score of 88.83%,
compared to our related works, Moreira et. al. with 93.53% (12) and who also
aim at pornography and violence detection, and Wehrmann et. al. with 95.20%
(14), aiming at only pornography.

The answers we obtained for our research questions are:

1. Question: Can this transfer learning-based, multimodal approach
archieve results within 10% of the results from related work? An-
swer: Yes, this approach yielded an F2-Score of 88.83%, compared to
our related works, Moreira et. al. with 93.53% (12) and who also aim at
pornography and violence detection, and Wehrmann et. al. with 95.20%
(14), aiming at only pornography.

2. Question: What is the impact of also using audio in the model’s per-
formance? Answer: The audio feature did not affect the results of our
approach, which seemed to learn to rely solely on visual features.

3. Our main research question: Can this approach, with a generic feature
extraction, based on transfer learning, achieve results that approach fine
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tuned and hand crafted approaches. Answer: Yes, with less than 5%
difference between the most related work(12).

7.1
Currently published papers

By the time of this writing, three papers about this work have already
been published in conferences: (28), (29), and (30). We also have finished the
construction of the dataset for sensitive content detection, to be published
soon.

7.2
Future Work

Even with generic feature extraction CNNs, we achieved almost 90% on
the pornography detection task. One future work is to create a late fusion
model and evaluate it based on each feature type. Another possibility is to
extend this approach even further, creating new CNNs from scratch to classify
the videos based on, audio, visual and motion features. Both training the
feature extraction methods from scratch and using a late fusion could help
create a model that balances the use of each multimodal feature. Another
possible future work is to add motion information, such as optical flow, to
the dataset and our approach. One could also test if a sequential model can
outperform a non-sequential model in specific cases that demand long-term
memory, such as long videos with very small sensitive scenes. Finally, one
could investigate misclassified videos in the test sets and use explainability
techniques to search for insights into what circumstances our approach fails to
correctly detect sensitive content.
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A
Complementary tables

Table A.1: Weighed F2-Score for each fold and each baseline model.

MLP LSTM SVM KNN
1 99,1196 98,9038 98,9917 96,2230
2 99,1017 99,0298 99,0513 96,6345
3 99,1915 99,1374 98,6160 96,4204
4 99,0477 98,9758 98,7941 96,3366
5 99,1735 98,9938 99,0710 96,7749
6 99,0118 98,8861 98,9128 96,2796
7 99,0119 99,1196 98,8926 96,5178
8 99,1374 99,1915 98,8679 96,4022
9 98,8501 98,7963 98,8498 96,4195

10 99,0398 98,9439 98,9219 96,3810
11 98,9937 98,9220 98,8284 96,9448
12 99,2273 98,9938 98,5445 96,3657
13 99,2810 99,1375 99,0836 96,9391
14 99,1103 98,9526 98,9756 96,2957
15 99,0908 99,0316 98,9038 96,4567
16 99,1700 99,1502 98,9399 96,3819
17 98,7945 98,9525 98,9398 96,3807
18 98,8929 98,8338 98,9756 96,9062
19 99,2885 99,0513 98,9756 96,7222
20 98,9517 98,7943 98,8499 95,6932
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Table A.2: The amount of youtube videos collected per query.

Query Video count
amamentacao 987
animation 823
breastfeeding 724
ufc 592
model 541
pool 526
gymnastics 474
pool party 459
ecchi 431
fisiculturismo 426
boxing 416
yoga 368
animação 348
anime 337
surf 321
MMA 314
swimming 297
beach 279
Total 8663
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Table A.3: Video distribution per main tag on the Youtube macro-class.

Main
tag

#
Videos

Total
Duration

Mean
Duration

STD
Duration

Total
Size

Tag
coverage
(%)

Hard Safe Videos 8640 1278:28:34 00:08:52 00:06:46 638.5GiB 100
Arts & Entertainment 8554 598:33:35 00:04:11 00:01:36 221.5GiB 100
Games 7182 530:11:13 00:04:25 00:01:47 250.6GiB 100
Autos & Vehicles 6812 455:38:54 00:04:00 00:01:39 253.3GiB 100
(Unknown) 4054 283:05:42 00:04:11 00:01:37 109.0GiB 100
Food & Drink 3552 262:25:03 00:04:25 00:01:42 129.2GiB 100
Sports 3053 203:38:24 00:04:00 00:01:38 100.4GiB 100
Business & Industrial 2584 14:38:23 00:04:14 00:01:43 83.1GiB 100
Computers & Electronics 2325 169:45:31 00:04:22 00:01:44 84.3GiB 100
Hobbies & Leisure 2110 149:44:31 00:04:15 00:01:44 77.1GiB 100
Pets & Animals 2000 129:44:49 00:03:53 00:01:37 61.9GiB 100
Shopping 1667 22:32:11 00:04:15 00:01:41 57.8GiB 100
Home & Garden 1543 104:37:46 00:04:04 00:01:40 46.9GiB 100
Science 1233 82:13:19 00:04:00 00:01:32 32.5GiB 100
Beauty & Fitness 848 59:25:57 00:04:12 00:01:40 29.3GiB 100
Travel 688 22:03:23 00:04:00 00:01:37 21.1GiB 100
Law & Government 658 45:25:34 00:04:08 00:01:42 19.3GiB 100
Internet & Telecom 427 05:49:49 00:04:11 00:01:37 14.5GiB 100
Books & Literature 362 01:19:18 00:04:11 00:01:36 7.9GiB 100
People & Society 295 20:40:09 00:04:12 00:01:43 7.4GiB 100
Reference 290 21:15:52 00:04:23 00:01:44 8.8GiB 100
News 253 16:40:53 00:03:57 00:01:36 6.4GiB 100
Jobs & Education 235 17:01:50 00:04:20 00:01:39 6.7GiB 100
Finance 196 15:30:18 00:04:44 00:01:49 4.8GiB 100
Real Estate 70 04:52:48 00:04:10 00:01:34 1.9GiB 100
Health 20 01:29:33 00:04:28 00:01:39 563.7MiB 100
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Table A.4: Video distribution per main tag on the Pornography macro-class.

Main
tag

#
Videos

Total
Duration

Mean
Duration

STD
Duration

Total
Size

Tag
coverage
(%)

gay 20604 1888:35:01 00:05:29 00:03:26 170.7GiB 100,0000
teen 18303 1922:49:21 00:06:18 00:03:20 312.9GiB 100,0000
blowjob 4197 503:44:56 00:07:12 00:03:00 88.5GiB 100,0000
other 3348 348:48:55 00:06:23 00:06:16 47.0GiB 91,6502
cumshot 2333 348:27:39 00:08:57 00:06:34 66.6GiB 100,0000
hard_porn 1947 256:37:28 00:07:54 00:04:26 116.0GiB 0,0000
anal 1821 248:31:25 00:08:11 00:06:19 83.0GiB 100,0000
lesbian 1269 150:05:51 00:07:05 00:04:02 26.4GiB 100,0000
sexy 1058 112:49:57 00:06:23 00:05:03 19.9GiB 100,0000
amateur 1021 85:53:07 00:05:02 00:04:46 25.5GiB 100,0000
milf 804 91:00:05 00:06:47 00:04:47 15.0GiB 100,0000
bdsm 800 92:24:09 00:06:55 00:04:02 33.8GiB 100,0000
shemale 753 67:58:58 00:05:25 00:04:14 8.4GiB 100,0000
exotic 672 69:31:01 00:06:12 00:05:15 11.5GiB 100,0000
big_tits 586 68:57:58 00:07:03 00:04:03 19.1GiB 100,0000
ass 571 53:05:27 00:05:34 00:04:51 23.0GiB 100,0000
sex_toys 547 71:14:52 00:07:48 00:04:34 24.6GiB 100,0000
asian_woman 469 50:16:47 00:06:25 00:05:20 16.2GiB 100,0000
lingerie 416 55:24:42 00:07:59 00:03:42 17.6GiB 100,0000
cam_porn 411 52:02:43 00:07:35 00:05:27 9.9GiB 100,0000
stockings 397 52:09:06 00:07:52 00:03:49 18.1GiB 100,0000
blonde 362 51:42:48 00:08:34 00:05:49 16.3GiB 100,0000
bukkake 279 30:40:28 00:06:35 00:06:14 6.4GiB 100,0000
interracial 274 30:32:53 00:06:41 00:04:13 3.3GiB 100,0000
big_ass 237 21:03:45 00:05:19 00:05:04 6.7GiB 100,0000
orgy 196 21:24:24 00:06:33 00:02:38 3.3GiB 100,0000
latina 170 14:26:20 00:05:05 00:04:54 3.4GiB 100,0000
pornstar 162 18:52:39 00:06:59 00:04:53 4.0GiB 100,0000
toons 162 16:46:25 00:06:12 00:05:43 4.4GiB 100,0000
brunette 154 21:10:59 00:08:15 00:05:36 4.2GiB 100,0000
solo_-_masturbation 137 12:26:16 00:05:26 00:05:09 2.1GiB 100,0000
pissing 135 15:43:48 00:06:59 00:04:42 4.1GiB 100,0000
massage 133 12:26:51 00:05:36 00:01:49 1.0GiB 100,0000
squirting 126 13:07:19 00:06:14 00:04:40 2.1GiB 100,0000
creampie 125 14:52:00 00:07:08 00:06:17 3.4GiB 100,0000
heels 114 14:07:21 00:07:25 00:05:17 2.4GiB 100,0000
virtual_reality 113 10:51:17 00:05:45 00:03:09 1.5GiB 100,0000
feet 110 10:11:12 00:05:33 00:04:07 1.6GiB 100,0000
fisting 109 12:20:43 00:06:47 00:05:16 1.4GiB 100,0000
indian 108 07:11:21 00:03:59 00:04:29 564.3MiB 100,0000
facial 108 15:44:01 00:08:44 00:06:05 2.5GiB 100,0000
mature 105 11:14:26 00:06:25 00:05:20 1.4GiB 100,0000
gapes 104 09:30:18 00:05:29 00:03:27 787.8MiB 100,0000
oiled 103 09:28:37 00:05:31 00:04:16 1.0GiB 100,0000
big_cock 102 10:51:22 00:06:23 00:04:23 1.4GiB 100,0000
sex_dolls 101 04:40:37 00:02:46 00:03:21 969.2MiB 100,0000
black_woman 100 06:29:52 00:03:53 00:04:48 1.0GiB 100,0000
redhead 100 11:25:17 00:06:51 00:05:37 2.9GiB 100,0000
bi_sexual 97 11:59:56 00:07:25 00:04:47 1.5GiB 100,0000
bbw 96 05:14:33 00:03:16 00:04:02 803.4MiB 100,0000
workout 95 08:36:48 00:05:26 00:02:58 981.9MiB 100,0000
shaved_pussy 95 09:49:53 00:06:12 00:04:44 1.1GiB 100,0000
gangbang 93 12:12:51 00:07:52 00:06:46 1.3GiB 100,0000
celebrity 93 05:02:23 00:03:15 00:04:00 661.2MiB 100,0000
real_amateur 91 09:26:47 00:06:13 00:06:53 1.3GiB 100,0000
japanese 89 13:46:47 00:09:17 00:06:21 2.0GiB 100,0000
swingers 82 05:35:26 00:04:05 00:05:38 529.5MiB 100,0000
ass_to_mouths 76 11:56:49 00:09:25 00:08:03 2.8GiB 100,0000
arab 72 04:37:33 00:03:51 00:03:28 1.2GiB 100,0000
asmr 63 08:09:12 00:07:45 00:05:57 4.2GiB 100,0000
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110K Sensitive Video Dataset (110k-SVD) Datasheet

I. MOTIVATION FOR DATASET CREATION

A. Why was the dataset created? (e.g., was there a specific
task in mind? was there a specific gap that needed to be
filled?)

We define sensitive video as for any video that contains
pornography or extremely violent scenes (that usually in-
clude but are not limited to the appearance of blood). At
the time of creation, we could not find any open access
datasets that had this or a similar definition and had more
than 10.000 videos. This dataset was designed to be used
specifically in the binary classification of entire videos, to
determine whether a video contains sensitive content or not.

B. Has the dataset been used already? If so, where are
the results so others can compare (e.g., links to published
papers)?

No, the results of the baselines of this task are to be
published.

C. What (other) tasks could the dataset be used for?

Tasks that include binary or multi-label classification of
the macro and micro classes of this dataset. Such as:

• Multi-label classification (or tagging) of pornographic
videos;

• Multi-label classification of ”Safe” (Videos that do not
contain sensitive content);

• Binary classification of extremely violent videos
(hereby referred to as gore);

• Binary classification of pornography.

D. Who funded the creation dataset?

The creation of the 110K Sensitive Video Dataset database
was supported by a joint challenge by Microsoft and Brazil’s
National Research Net (RNP) in 2019.

II. DATASET COMPOSITION

A. What are the instances? (that is, examples; e.g., docu-
ments, images, people, countries) Are there multiple types of
instances? (e.g., movies, users, ratings; people, interactions
between them; nodes, edges)

Each instance is a video (min 5 seconds, max 31 minutes).

TABLE I
GENERAL STATISTICS OF THE TWO MAIN CLASSES OF THE DATASET

Sensitive Safe
Video Count 67424 59651

Total Duration 6953:27:41 4852:53:31
Mean Duration 00:06:11 00:04:52
STD Duration 00:04:12 00:03:26
Max Duration 00:30:55 00:30:55
Min Duration 00:00:05 00:00:05

Total Size 1.2TiB 2.2TiB
Mean Size 19.3MiB 39.0MiB
STD Size 35.4MiB 42.3MiB

Features Size 519.4GiB 376.8GiB
Tag coverage 65392 51011

Tag coverage (%) 96,9862 85,5157

B. How many instances are there in total (of each type, if
appropriate)?

As shown in Table II, it is divided into 59,651 safe videos
and 67,424 videos with sensitive content. Those sensitive
videos are 54,549 Pornographic Videos and 2,356 Gore
Videos. Tag coverage refers to main tag annotation existence
(videos also may have subtags but no main tag).

C. What data does each instance consist of ? “Raw” data
(e.g., unprocessed text or images)? Features/attributes? Is
there a label/target associated with instances? If the in-
stances related to people are subpopulations identified (e.g.,
by age, gender, etc.), what is their distribution?

Each video will be distributed as extracted and processed
visual and audio features. Each video file is associated with
an id, a label, and a sequence size. There are people in the
videos, but subpopulations are not identified.

D. Is there a label or target associated with each instance?
If so, please provide a description.

Each video file is associated with a label (proper/improper)
and id. Some examples of video data associated with
the features: improper 29024487, proper MqnZqzAxQTk,
improper gore122. There is also a main dataframe, this
dataframe is indexed by video id and contains all the other
gathered data, such as tags, subtags, file size, duration in
seconds, and title.

E. Is any information missing from individual instances?
If so, please provide a description, explaining why this
information is missing (e.g., because it was unavailable).
This does not include intentionally removed information, but
might include, e.g., redacted text.
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For the main labels (sensitive/improper and safe/proper)
there are no missing labels. For tags and subtags, there is
some missing information because either the website did not
a tag system or the video had no tags on the website. The
coverage of tags is shown in Table II.

F. Are relationships between individual instances made ex-
plicit (e.g., users’ movie ratings, social network links)? If so,
please describe how these relationships are made explicit.

An individual might appear in multiple videos. This re-
lationship was not collected and registered in the dataset.
Other than this, there are no known relationships between
instances.

G. Does the dataset contain all possible instances or is it a
sample (not necessarily random) of instances from a larger
set? If the dataset is a sample, then what is the larger set? Is
the sample representative of the larger set (e.g., geographic
coverage)? If so, please describe how this representativeness
was validated/verified. If it is not representative of the larger
set, please describe why not (e.g., to cover a more diverse
range of instances, because instances were withheld or
unavailable).

This dataset is a sample, not necessarily random, of
instances from a larger set. The larger set is all the videos
from each crawled website. This dataset is representative of
the sites we crawled because of the equally sampled variety
of video types inside those sites and because of its large
amount of instances.

However, the dataset is not a fully representative set of the
entirety of videos on the internet, to be more representative
of our definition of sensitive videos, the data should have to
be collected from more video hosting sites. The sites used
for gathering the videos were the most easily obtainable data
at the time.

H. Are there recommended data splits or evaluation mea-
sures? (e.g.,training, development, testing; accuracy/AUC)

The instances come bundled in .npz files, each file repre-
sents a batch. We split our dataset into training/validation
and testing batches. We publish features for all batches,
but only publish labels for the train/validate batches. The
user is free to split the training/validation as desired. For
training evaluation, we recommend 20-fold cross-validation
to perform training and validation.

To report performance in the binary classification of sen-
sitive videos, we recommend Precision (P), Recall (R), and,
most importantly, the weighted F2 score. In this section, we
present a contextualized explanation of these metrics.

In the context of sensitive content detection, true positives
are videos predicted as sensitive and are in fact, sensitive.
Likewise, true negatives are videos predicted as safe and are
indeed safe. False positives are videos predicted as sensitive,
but were safe, the same goes for false negatives, which are
videos that were predicted as safe, but were predicted as
sensitive.

Precision (Equation 1) measures how many videos pre-
dicted as sensitive (both true positives and false positives)
are truly sensitive. The Recall (Equation 2) measures how
many truly positive videos were correctly identified.

P =
TP

TP + FP
(1) R =

TP

TP + FN
(2)

Where TP, TN,FP , and FN denote the examples that
are true positives, true negatives, false positives, and false
negatives, respectively.

Fβ = (1 + β2)× P ×R

(β2 × P ) +R
(3)

The Fβ-score, defined in Equation 3, evaluates the classi-
fier by the harmonic mean between Precision and Recall. To
account for label imbalance, after calculating the F2-score
metrics for each label, we find their average weighted by
support (the number of true instances for each label).

While the F1-score represents a balanced performance
metric, the F2-score gives twice more weight to the recall
than to precision, which means that the metric is more
focused on the recall of a solution.

We chose the weighted F2 score as our main evaluation
metric because when detecting sensitive content it is more
important to predict a truly sensitive video than to predict a
safe video as sensitive.

I. Are there any errors, sources of noise, or redundancies in
the dataset? If so, please provide a description.

There might be annotation divergences in the tags and
subtags of the pornography videos since the videos were
tagged by users and not by a centralized annotation group.
We can not guarantee that frames and/or audio clips do not
appear in other videos since there was no direct contact with
the videos during dataset creation. There was however a
duplicate removal step in the creation of the dataset, detailed
later in this document.

J. Is the dataset self-contained, or does it link to or other-
wise rely on external resources (e.g., websites, tweets, other
datasets)? If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant,
over time; b) are there official archival versions of the
complete dataset (i.e., including the external resources as
they existed at the time the dataset was created); c) are
there any restrictions (e.g., licenses, fees) associated with
any of the external resources that might apply to a future
user? Please provide descriptions of all external resources
and any restrictions associated with them, as well as links
or other access points, as appropriate.

Everything needed to perform the proposed tasks is in-
cluded.

Any other comments?
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III. COLLECTION PROCESS

A. What mechanisms or procedures were used to collect the
data (e.g., hardware apparatus or sensor, manual human
curation, software program, software API)? How were these
mechanisms or procedures validated?

There was no direct human curation, the videos were
automatically collected based on their titles and tags. We
created crawlers to automatically collect the videos.

B. How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw text,
movie ratings), reported by subjects (e.g., survey responses),
or indirectly inferred/derived from other data (e.g., part-of-
speech tags, model-based guesses for age or language)? If
data was reported by subjects or indirectly inferred/derived
from other data, was the data validated/verified? If so, please
describe how.

If available, the title, tags, and subtags of the video
were collected and stored by the crawler. The video feature
extraction process was already validated for multi-label video
classification [1]. To validate the feature extraction process
for the task we propose we also trained and tested baseline
models and archived an F2 score of 99% in our test subset
and 88.83% in a popular pornography dataset [2].

C. If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)?

The sampling strategy was to collect at least the amount
of the less numerous tag for each tag, then, to complete the
number of collected videos the sampling probabilities were
proportional to the database distribution of each tag.

D. Who was involved in the data collection process (e.g.,
students, crowd workers, contractors) and how were they
compensated (e.g., how much were crowd workers paid)?

Two graduate students.

E. Over what timeframe was the data collected? Does this
timeframe match the creation timeframe of the data asso-
ciated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the
data associated with the instances was created.

The dataset was crawled from January 2019 to December
2019, this timeframe does not match the creation of the data
associated with the instances.

IV. DATA PREPROCESSING

A. Was any preprocessing/cleaning/labeling of the data done
(e.g., discretization or bucketing, tokenization, part-of-speech
tagging, SIFT feature extraction, removal of instances, pro-
cessing of missing values)? If so, please provide a descrip-
tion. If not, you may skip the remainder of the questions in
this section.

Once the raw data was crawled, we performed feature
extraction in all videos successfully collected. To generate
image frame features and audio features we decode each
video at approximately 1 frame-per-second and feed an In-
ceptionV3 network [3] pre-trained on the ImageNet1 dataset.

We also make use of an AudioVGG [4] network with pre-
trained weights in the Audioset2 dataset to extract the audio
embeddings. Each of these CNNs was used as published
by their authors; the only modification was the removal of
classification layers in both CNNs to obtain their respective
embeddings.

Next, we apply Principal Component Analysis (PCA) [5]
to each of the outputs to reduce the dimensions of both
embeddings and to generate feature vectors of size 1024 and
128 for frame and audio embeddings respectively.

We concatenate both image and audio embeddings ex-
tracted in the current frame and audio window in order to
compose the final embeddings as a sequence of the same
size as the number of seconds of the video. After this
concatenation, each time-step has 1,152 features: 128 audio
features and 1024 frame features.

Notice that with this approach, the video is transformed
into a time series, and to use it in non-sequential models
(e.g. SVM, KNN, and MLP) we need to turn this sequence
into a single feature vector that represents the whole video.
In our setting, we did that by taking the average, median,
standard deviation, min, and max values for each feature to
represent the entire video. In summary, we turn the sequence
of features with size n and shape n by 1,152 into a single
feature with shape 1 by 5,760.

We also filtered out short and long videos. For the short
videos, we defined that the minimum length of a video was
5 seconds based on [2], which was 0.09% of the dataset. To
define the maximum length of a video in the dataset, first,
we removed all videos with less than 5 seconds, then we
calculated the mean and standard deviation of each video’s
duration. The maximum length of a video in the dataset is
mean+2∗std, which resulted in approximately 31 minutes
and covered 98,94% of the videos.

Not all video features were successfully extracted for
multiple reasons, such as corrupt data, unknown format,
and missing audio. For those videos with missing audio or
image, the features were still generated, but their respective
modal feature were zeros. Those videos which do not have
any features successfully extracted were removed from the
dataset.

We also removed any duplicated videos that were detected,
for duplicate video detection we used, we matched either id,

1http://www.image-net.org/
2https://research.google.com/audioset/
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title, or checksum.
We recommend equally balancing both main labels (sen-

sitive/improper and safe/proper) so that both main classes
have the same number of instances. One could also choose
not to balance both classes equally, since our main metric
already takes label imbalance into account. Additionally,
when removing excess sensitive content (while balancing),
we recommend removing only pornography videos in order
to not lower the number of gore videos.

B. Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unanticipated
future uses)? If so, please provide a link or other access
point to the “raw” data.

We can not provide a link for the raw video data, but
we are open to including other feature extraction methods.
If there are any suggestions for better or newer feature
extraction methods, please, get in contact with us.

C. Is the software used to preprocess/clean/label the in-
stances available? If so, please provide a link or other access
point.

Yes, the feature extraction method and our preprocessing
are available in the GitHub repository: https://github.
com/TeleMidia/Sensitive-Video-Dataset.

D. Does this dataset collection/processing procedure
achieve the motivation for creating the dataset stated in
the first section of this datasheet? If not, what are the
limitations?

Although our baseline tests perform well on the gore
detection task, there is still a relatively small amount of
gore videos in our dataset. Furthermore, the is no manually
curated dataset comparative to the gore videos. Mainly
because of the difference in our definition of violence, which
is just highly violent scenes such as death, mutilation, and
torture.

E. Any other comments

V. DATASET DISTRIBUTION

A. How will the dataset be distributed? (e.g., tarball on
website, API, GitHub; does the data have a DOI, and is
it archived redundantly?)

The dataset scripts, updates, papers, and additional in-
formation will be hosted on GitHub: https://github.
com/TeleMidia/Sensitive-Video-Dataset. The
dataset itself will be hosted by the IEEE Dataport:

• DOI: 10.21227/sx01-1p81
• URL:https://ieee-dataport.org/
documents/sensitive-video-dataset

The dataset will be distributed in multiple .npz files,
organized in multiple directories:

• train val batches

• test subset batches
• non sequential train val batches
• non sequential test subset batches
There is also a main dataframe, this dataframe is indexed

by video id and contains all the other gathered data, such as
tags, subtags, file size, duration in seconds, and title.

Each npz file represents a batch of variable size, but all
split to have at max 4 Gbs when loaded to memory. Each
npz file has keys and values, the keys are string in the
format ¡label¿ ¡video id¿. Some examples of keys in the
npz file: ”improper 29024487”, ”proper MqnZqzAxQTk”,
”improper gore122”.

The values are the videos features stored in NumPy
arrays, of varying shapes, depending on the dataset variation
(sequential or non-sequential).

The dataset has two variations:
• Sequential: Each sample remains as it was extracted,

a single video generates a sequence of N samples. In
this variation, inside each npz file, each instance is
represented by an N by 1152 NumPy array.

• Non-Sequential: All samples of a video are aggregated
into a single sample, resulting in each instance having
a shape of 1 by 5760, this single sample summarizes
the entire video.

The data is archived redundantly.

B. When will the dataset be released/first distributed? What
license (if any) is it distributed under?

It is available on IEEE Dataport (https:
//ieee-dataport.org/documents/
sensitive-video-dataset) under Ceative Commons
Attribution 4.0 International (CC BY 4.0).

C. Are there any copyrights on the data?

No.

D. Are there any fees or access/export restrictions?

There are no fees or restrictions.

E. Any other comments?

VI. DATASET MAINTENANCE

A. Who is supporting/hosting/maintaining the dataset?

The dataset is hosted by IEEE Dataport and maintained
by the authors.

B. Will the dataset be updated? If so, how often and by
whom?

There are no expected updates on this dataset.

C. How will updates be communicated? (e.g., mailing list,
GitHub)
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If any, updates will be communicated via the dataset’s
GitHub page/repository.

D. If the dataset becomes obsolete how will this be commu-
nicated?

Through the dataset’s GitHub page/repository.

E. Is there a repository to link to any/all papers/systems that
use this dataset?

The links about papers and works using our
dataset will be held on the dataset‘s GitHub
repository:https://github.com/TeleMidia/
Sensitive-Video-Dataset.

F. If others want to extend/augment/build on this dataset, is
there a mechanism for them to do so? If so, is there a process
for tracking/assessing the quality of those contributions?
What is the process for communicating/distributing these
contributions to users?

Others are free to use and modify our datasets. Contribu-
tions can be discussed via email (pedropva@telemidia.puc-
rio.br).

VII. LEGAL AND ETHICAL CONSIDERATIONS

A. Were any ethical review processes conducted (e.g., by
an institutional review board)? If so, please provide a de-
scription of these review processes, including the outcomes,
as well as a link or other access point to any supporting
documentation.

No. The data was crawled from public websites. The
reproducible videos were not assessed by anyone and will
not be distributed, only the features will be distributed. Those
features can not be reverted or recreated into reproducible
videos.

B. Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal privilege
or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so,
please provide a description.

No, all videos were crawled from public sources, fur-
thermore, only video the features will be distributed. Those
features can not be reverted or recreated into reproducible
videos.

C. Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might otherwise
cause anxiety? If so, please describe why

No, only video features will be distributed. Those features
can not be reverted or recreated into reproducible videos.

D. Does the dataset relate to people? If not, you may skip
the remaining questions in this section.

No, only video features will be distributed. Those features
can not be reverted or recreated into reproducible videos.

E. Does the dataset identify any subpopulations (e.g., by age,
gender)? If so, please describe how these subpopulations
are identified and provide a description of their respective
distributions within the dataset.

Not applicable.

F. Is it possible to identify individuals (i.e., one or more natu-
ral persons), either directly or indirectly (i.e., in combination
with other data) from the dataset? If so, please describe how.

Not applicable.

G. Does the dataset contain data that might be considered
sensitive in any way (e.g., data that reveals racial or eth-
nic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or
health data; biometric or genetic data; forms of government
identification, such as social security numbers; criminal
history)? If so, please provide a description.

Not applicable.

H. Did you collect the data from the individuals in question
directly, or obtain it via third parties or other sources (e.g.,
websites)?

Not applicable.

I. Were the individuals in question notified about the data
collection? If so, please describe (or show with screenshots
or other information) how notice was provided, and provide
a link or other access point to, or otherwise reproduce, the
exact language of the notification itself.

Not applicable.

J. Did the individuals in question consent to the collection
and use of their data? If so, please describe (or show with
screenshots or other information) how consent was requested
and provided, and provide a link or other access points to,
or otherwise reproduce, the exact language to which the
individuals consented.

Not applicable.

K. If consent was obtained, were the consenting individuals
provided with a mechanism to revoke their consent in the
future or for certain uses? If so, please provide a description,
as well as a link or other access point to the mechanism (if
appropriate).

Not applicable.

L. Has an analysis of the potential impact of the dataset
and its use on data subjects (e.g., a data protection impact
analysis)been conducted? If so, please provide a description
of this analysis, including the outcomes, as well as a link or
other access point to any supporting documentation.
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Not applicable.
M. Any other comments?
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