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Abstract

Rendón García, Fiorella María; Sirakov, Boyan (Advisor). Global
boundary weak Harnack inequality for general uniformly
elliptic equations in divergence form and applications..
Rio de Janeiro, 2022. 84p. Tese de Doutorado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

This thesis focuses on global extension of the interior weak Harnack
inequality for a general class of divergence-type elliptic equations, under
very weak regularity assumptions on the differential operator. In this way
we generalize and unify all previous results of this type.

As an application, we prove a priori estimates for a class of quasilinear
elliptic problems with quadratic growth on the gradient and we investigate,
under various assumptions, the multiplicity of the solutions obtained for
this problem.

Keywords
Harnack inequality; Global estimates; Regularity theory; Existence

theory; Natural growth;
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Resumo

Rendón García, Fiorella María; Sirakov, Boyan. Desigualdade de
Harnack global para operadores ellípticos gerais na forma
divergente com aplicações.. Rio de Janeiro, 2022. 84p. Tese de
Doutorado – Departamento de Matemática, Pontifícia Universidade
Católica do Rio de Janeiro.

Nesta tese estudamos a extensão da desigualdade fraca de Harnack
até o bordo para uma equação de segunda ordem elíptica geral na forma
divergência, assumindo pouca regularidade sobre o operador diferencial.
Assim, generalizamos e unificamos todos os resultados precedentes deste
tipo.

Como aplicação, mostramos estimativas a priori para uma classe de pro-
blemas elípticos quasilineares com crescimento quadratico no gradiente e
investigamos, sob várias hipóteses, a multiplicidade das soluções obtidas
para este problema.

Palavras-chave
Desigualdade de Harnack; Estimativas globais; Teoria de regulari-

dade; Existência; Crescimento natural;
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1
Introduction

This thesis proves global extensions of the interior Weak Harnack In-
equality and the Zaremba-Hopf-Oleinik boundary point principle for a general
divergence-type uniformly elliptic operator. We begin this introduction by re-
calling these two results, which have been fundamental in the development of
the theory of elliptic PDE.

Let us have a bounded domain Ω ⊂ Rn, n ≥ 2, in which is defined a
second-order uniformly elliptic operator in either a non-divergence form

L[u] = − tr(A(x)D2u) + b(x).Du+ c(x)u, x ∈ Ω, (1.1)

or divergence form

L[u] = − div(A(x)Du) + b(x).Du+ c(x)u, x ∈ Ω, (1.2)

where A is a uniformly positive bounded measurable matrix, i.e. ϑIn ≤
(aij(x)) ≤ ϑ−1In, ϑ is a positive constant, and In is the identity matrix; and
the coefficients b, c ∈ Lp(Ω) for some p > n (in particular b, c can be bounded
measurable), ‖b‖Lp , ‖c‖Lp ≤ ϑ−1. Fix also f ∈ Lp(Ω).

The following basic result goes back to De Giorgi and Moser in the
divergence case, and to Krylov and Safonov for non-divergence form operators.

Theorem 1.1 (Interior Weak Harnack Inequality, IWHI) There exist
constants ε > 0 depending only on n, p, ϑ and C > 0 depending only on
n, p, ϑ,R > 0 such that if B2R ⊂ Ω then for each nonnegative solution of
L[u] ≥ f or L[u] ≥ f in Ω we have

(∫
BR
uε
)1/ε
≤ C

(
inf
BR

u+ ‖f‖Lp(B2R)

)
. (1.3)

Hence, by a scaling and covering argument, for each compact K ⊂ Ω

inf
K
u ≥ C

(∫
K
uε
)1/ε
− C‖f‖Lp(Ω), (1.4)

where C depends also on K and dist(K, ∂Ω).
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Chapter 1. Introduction 10

When f = 0 and inf u = 0 this result reduces to the classical strong
maximum principle (SMP), which says a nonnegative supersolution cannot
vanish inside the domain unless it is trivial. Actually (1.3)-(1.4) for f = 0
can be seen as a quantitative extension of the SMP in the following sense: if
we know that u is positive somewhere, then u is positive everywhere with a
quantified lower bound; specifically, if u ≥ a > 0 in some (unknown) ω ⊂ BR

then u ≥ aC−1|ω|1/ε in BR ("a growth lemma"). If u is not L-superharmonic,
there is a correction in this inequality with the Lp-norm of the right hand side.

The discovery of the IWHI (in somewhat modified form for divergence
form operators with b = c = 0) by E. De Giorgi in the 1960’s was the final and
decisive step in the resolution of the 19th Hilbert problem on the regularity
of minimizers of variational integrals. In its full form Theorem 1.1 was proved
by Moser and Trudinger for general divergence form operators a few years
later. Furthermore, the corresponding result in the non-divergence case was
reached in the early 1980s by Krylov and Safonov, and essentially opened up
the theory of non-divergence form operators. The importance of the IWHI lies
in particular in that it implies a Hölder bound for the solutions of L[u] = f or
L[u] = f : there exists α > 0 (depending on n, p, ϑ) such that

‖u‖Cα(BR) ≤ C
(
‖u‖L∞(B2R) + ‖f‖Lp(B2R)

)
. (1.5)

The latter is at the base of the regularity theory in Hölder spaces for solutions.
Classical results of this theory, more references, and a proof of Theorem 1.1
and (1.5) can be found in Chapters 6, 8 and 9 of [GT01].

Another fundamental result in the elliptic theory is the so-called "Hopf
lemma"1, to which we will refer as the boundary point principle (BPP). In its
classical form it says that if a nonnegative nontrivial supersolution vanishes at
a point of the (sufficiently smooth) boundary of Ω, then its gradient does not
vanish at that point; specifically, if L[u] ≤ 0, u > 0 in Ω, and u(x0) = 0 for
some x0 ∈ ∂Ω such that there is an interior tangent ball to ∂Ω at x0, then the
interior normal derivative ∂u

∂ν
(x0) > 0. The optimal regularity of the boundary

for this result to hold is interior C1,Dini (we write C1,D, see below and the next
section), and it is known that it may fail even for the Laplacian for a domain
with a C1 boundary.

Set B′R = BR(x0) ∩ Ω and d(x) = dist(x, ∂Ω). Another way to write the
BPP is the following.

1This is the most often encountered name of the result, even though various particular
cases were known before the classical work of Hopf from 1954, starting with a paper by
Zaremba in 1910; Oleinik proved the same result simultaneously with Hopf, so in some
sources it is called Zaremba-Hopf-Oleinik lemma.
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Chapter 1. Introduction 11

Theorem 1.2 (BPP, Zaremba-Hopf-Oleinik lemma) For each nonnega-
tive solution u of L[u] ≥ 0 in B′2R we have

inf
B′R

u

d
> 0. (1.6)

The BPP has immediate consequences for the uniqueness of solutions of
Neumann and Robin (mixed-type) boundary value problems. Its quantitative
forms are at the base of the up-to-the-boundary (global) Hölder regularity
theory for solutions of the Dirichlet problem for uniformly elliptic operators.

In relation to the BPP, a rather distinction appears between divergence
and non-divergence form operators. While no regularity assumptions on the
coefficients are needed in the non-divergence case, for general divergence form
with only bounded measurable coefficients the BPP fails. For its validity it
is necessary that leading coefficients aij be at least Dini continuous (simple
continuity is not enough). We refer to [ADN16], [AN19], and the references
there for details.

At a first glance the IWHI and the BPP have little in common. The
main theoretical contribution of this thesis is a quantitative inequality which
extends both results, and bridges them into a single statement, for divergence-
form operators.

Theorem 1.3 (Boundary Weak Harnack Inequality, BWHI) In addi-
tion to the above hypotheses, assume that the boundary of Ω is C1,D-smooth,
and that aij ∈ C0,D(Ω), ‖aij‖C0,D(Ω) ≤ ϑ−1, i, j = 1, . . . , n. There exist
constants ε > 0 depending only on n, p, ϑ and C > 0 depending only on
n, p, ϑ,R > 0 and the C1,D-representation of the boundary such that for each
nonnegative solution of L[u] ≥ f in Ω we have

inf
B′R

u

d
≥ C

(∫
B′R

(
u

d

)ε)1/ε

− C‖f‖Lp(B′2R), (1.7)

and

inf
Ω

u

d
≥ C

(∫
Ω

(
u

d

)ε)1/ε
− C‖f‖Lp(Ω). (1.8)

The possibility of proving such a result was only recently noticed by B.
Sirakov in [S17] where he proved the above theorem in the non-divergence
case (also for more general fully nonlinear operators). Here we prove the
same result for operators in divergence form. The hypotheses we make on the
coefficients and the domain are optimal for the result to hold. We shall observe
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Chapter 1. Introduction 12

that, as usual in the theory of elliptic PDE, the results for divergence and
non-divergence form operators is very similar, however, essential points and
techniques in the proofs are very different. In particular, in the non-divergence
case it is quite straightforward to find an "approximate barrier function" (in
terms of the distance to the boundary), and use it to deduce an up-to-the-
boundary growth lemma, which in turn leads to the BWHI. In our case such a
barrier function is not available, and we use an implicit construction, based on
solving a sequence of approximating boundary value problems in an annulus
around each point on the boundary, together with C1-regularity estimates.

The second part of this thesis is devoted to an application of the BWHI.
We will use this inequality as an important tool to prove an uniform a priori
bound for solutions of a class of quasilinear elliptic equations with quadratic
dependence in the gradient of the unknown function. Specifically, we study the
equation − div(A(x)Du) = cλ(x)u+ (M(x)Du,Du) + h(x) in Ω,

u = 0 on ∂Ω;
(Pλ)

where c+(x) and c−(x) are nonnegative functions such that cλ(x) := λc+− c−,
for a parameter λ ∈ R; c+(x), c−(x), h(x) ∈ Lp(Ω) with p > n. As before
Ω ⊂ Rn is a bounded domain with boundary of class C1,D. The matrix M(x)
is a positive definite matrix such that

0 < µ1In ≤M(x) ≤ µ2In in Ω

for some positive constants µ1 and µ2.
The main difference between this class of equations and linear equations

is that the second-order and the gradient terms in the equation (Pλ) have
the same scaling with respect to dilations (i.e. "zooms", changes of variable
x → x/r). Thus the first-order term does not disappear when a zoom is
performed around a fixed point, and this leads to quite different properties.

The point in writing the zero order coefficient c = cλ with dependence on
a parameter is that the solvability of the Dirichlet problem for (Pλ) changes
dramatically according to the sign of that coefficient. In a few words, solutions
are expected to be unique when that coefficient is negative, while phenomena
of multiplicity appear for nonnegative coefficients. Thus λ serves as a "measure"
of the positivity of c, and we study, the solutions as functions of λ.

The study of elliptic equations with gradient dependence up to the critical
growth |Du|2 was essentially initiated by Boccardo, Murat and Puel in the
80’s, and has been a very active field of research ever since. Up to ten years
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Chapter 1. Introduction 13

ago all results concerned the "coercive" case, i.e. c ≤ 0, when uniqueness
holds. On the other hand, from 2014 many works started to uncover the much
more complex nature of noncoercive equations. We refer to [BMP1], [ACJT15],
[CJ17], [CFJ19], [N18], [NS18], and the large lists of references in these works.

In simple situations, such as M = const, the problem (Pλ) can be
studied by variational methods, after an exponential change of the unknown
function. More general equations have been studied by topological (fixed-point)
techniques. In the latter, it is essential to prove various a priori bounds in L∞

for the solutions, with bounds that take into account the dependence in λ.
We will use here some insights from [NS18] in order to generalize the results
from [ACJT15] to operators in divergence form with maximal generality in the
coefficients as well as the domain.

To illustrate the type of results that we obtain, we include in this
introduction two theorems from Chapter 5, and visualize them on a chart
describing a value of the solutions at a fixed point in Ω, as a function of the
parameter λ.

Theorem 1.4 Suppose that (P0) has a solution u0 with c+(x)u0 	 0. Then

(i) For all λ ≤ 0, the problem (Pλ) has a unique solution uλ and this solution
satisfies u0 − ‖u0‖∞ ≤ uλ ≤ u0.

(ii) There exists a continuum C ⊂ Σ such that the projection of C on the
λ-axis is an unbounded interval (−∞, λ] for some λ ∈ (0,+∞) and C
bifurcates from infinity to the right of the axis λ = 0.

(iii) There exists λ0 ∈ (0, λ] such that, for all λ ∈ (0, λ0), the problem (Pλ)
has at least two solutions with ui ≥ u0 for i = 1, 2.

Figure 1.1: Illustration of Theorem 1.4

Theorem 1.5 Suppose that (P0) has a solution u0 ≤ 0 with c+(x)u0 � 0.
Then
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Chapter 1. Introduction 14

(i) For λ ≤ 0, the problem (Pλ) has a unique nonpositive solution uλ and
this solution satisfies uλ ≥ u0;

(ii) There exists a continuum C ⊂ Σ such that its projection of C+ on the
λ-axis is [0,+∞);

(iii) For λ > 0, every non-positive solution of (Pλ) satisfies uλ < u0.
Furthermore (Pλ) has at least two non-trivial solutions uλ,i for i = 1, 2
with

uλ,1 < u0 ≤ uλ,2, uλ,1 < uλ,2, and max
Ω

uλ,2 > 0.

Moreover we have uλ2,1 ≤ uλ1,1 ≤ u0 if 0 < λ1 < λ2.

Figure 1.2: Illustration of Theorem 1.5

For the above a priori estimates and multiplicity results for (Pλ), we
need to assume that the problem (P0) has a solution u0. Conditions on the
coefficients of the operator which guarantees this are available, see [ACJT15],
[CJ17], [CFJ19]. In addition, having a sign information on the solution u0 of
(P0) allows us to give rather precise informations on the set of solutions of
(Pλ).

More results on the existence and multiplicity for (Pλ) are given in
Chapter 5, also with weaker assumptions on the solution for λ = 0. Their proofs
are based on a construction of a completely continuous operator and the study
of an auxiliary fixed point problem for that operator. Essential compactness
properties are inferred from a set of uniform a priori bounds for the solutions,
which in turn rely heavily on the BWHI.

This thesis is organized as follows. In Chapter 2 we present some known
results and introduce some preliminaries. In Chapter 3 we provide a version of
the Boundary Point Hopf Lemma for a divergence form operator, under our
general assumptions on the coefficients of the equation and the boundary of
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Chapter 1. Introduction 15

the domain. In Chapter 4 we prove the full Theorem 1.3. Then in Chapter 5
we state our existence and multiplicity results on the boundary value problem
(Pλ), and prove the essential a priori bounds for that problem. In the final
Chapter 6 we give the proofs of the existence and multiplicity results .

The contents of this thesis are the object of two articles in preparation.
The first, devoted to the boundary weak Harnack inequality (Chapters 3-4)
is a collaboration with B. Sirakov and M. Soares, while the second, on the
problem (Pλ) (Chapters 5-6) is a joint work with M. Soares.
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2
Preliminary Results

In this chapter we recall some notation, definitions and known results (at
least for specialists) that will be used throughout the thesis. We begin with
some definitions on Dini continuity.

Definition 2.1 Let σ : [0, 1] → R+ be a function. We say that σ belongs to
the Dini class D if

– σ is increasing and σ(0) = 0;

– σ(τ)
τ

is decreasing and summable at zero.

It should be noted that the assumption about the decay of σ(τ)/τ is not
restrictive (see Remark 1.2 in [ADN16] for more details).

Definition 2.2 Let a function σ ∈ D. We define the function Jσ as

Jσ(s) :=
∫ s

0

σ(τ)
τ

dτ.

Definition 2.3 We say that a function ψ : Ω → R belongs to the class
C0,D(Ω), if there exists some σ ∈ D such that

(i) ψ ∈ C(Ω);

(ii) |ψ(x)− ψ(y)| ≤ σ(|x− y|), ∀x, y ∈ Ω, and σ belongs to the class D.

We suppose that ∂Ω ∈ C1,D, which means that ∂Ω is locally the graph of a
C1-function F satisfying DF ∈ C0,D, where DF is the gradient of F . Actually,
for the boundary point principle it is sufficient that ∂Ω ∈ C1,D only from the
inside, as in the following definition.

Definition 2.4 We say that ∂Ω satisfies the interior C1,D-paraboloid condition
if in a local coordinate system ∂Ω is given by the equation xn = F (x′), where

(i) F is a C1 function such that F (0) = 0;

(ii) The equation F (x′) ≤ |x′|σ(|x′|) holds true in some neighborhood of the
origin, for a C1-function σ ∈ D.
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Chapter 2. Preliminary Results 17

Remark 2.5 We observe that every Hölder continuous function ψ ∈ Cα(Ω)
belongs to the class C0,D(Ω) for all α ∈ (0, 1). Indeed, it is sufficient to choose
σ(τ) = C|τ |α for a suitable positive constante C > 0.

Remark 2.6 Without loss of generality σ ∈ D can be assumed continuously
differentiable on (0, 1] (see [AN19]).

Furthermore, when ∂Ω satisfies the interior C1,D-paraboloid condition,
in order to prove the BPP we may assume that locally ∂Ω is a paraboloid
xn = |x′|σ(|x′|) for a smooth σ ∈ D1.

Remark 2.7 Note that all the assumptions on the coefficients of L are
invariant under C1,D-regular changes of variables. Hence, without loss of
generality, we may consider ∂Ω locally as the flat boundary {xn = 0}. We
may assume without restriction that BR∩Rn+ ⊂ Ω for some R > 0. For details
check Remark 1 and 2 in [AN19], and the end of Chapter 4 below.

We next recall the definition of a weak Sobolev solution of the equations
we study in this thesis, namely

L[u] = − div(A(x)Du) + b(x) ·Du+ c(x)u = f(x), x ∈ Ω. (2.1)

Definition 2.8 We say that u is a weak (super,sub) solution of (2.1), if u
satisfies:

∫
Ω
A(x)DuDϕ+

∫
Ω
b(x)ϕ|Du|+

∫
Ω
c(x)ϕu = (≥,≤)

∫
Ω
fϕ

for each ϕ ∈ C∞0 (Ω), ϕ ≥ 0.

Now we present a rescaled version of the generalized Maximum Principle
(Stampacchia inequality) for our problem which is going to be useful later.

Lemma 2.9 [Rescaled Version of the Weak Maximum Principle] Let u
be a weak subsolution (supersolution) of problem (2.1) where L is the uniformly
elliptic operator given in (2.1) with aij ∈ L∞(Ω), |b| ∈ Lp(Ω), c ∈ Lp/2(Ω),
f ∈ Lp(Ω), for some p > n and c ≥ 0 in Ω. If Ω is a domain with width δ > 0,
there exists a constant C > 0 independent of δ such that

sup
Ω
u ≤ sup

∂Ω
u+ + δ2−n

pC‖f‖Lp/2(Ω)(
sup

Ω
(−u) ≤ sup

∂Ω
u− + δ2−n

pC‖f‖Lp/2(Ω)

)
.

Proof. We use Theorem 8.16 in [GT01], together with the remark on page 193
of [GT01]. We assume initially that |Ω| = 1, and we apply Theorem 8.16 in
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Chapter 2. Preliminary Results 18

[GT01]. The general case comes from a coordinate transformation: given δ > 0,
if Ω has width δ we have |Ω| ≤ δn, and can change variables to transform Ω
into a domain Ωδ with |Ωδ| = 1. In fact, we translate so that 0 ∈ Ω, and for
all x ∈ Ω we set y(x) = x/|Ω|1/n and y(Ω) = Ωδ.

Moreover, since u is a subsolution of problem (2.1), setting ũ(y) := u(x)
we have that ũ satisfies

− 1
|Ω|2/n div(Ã(y)Dũ(y)) + b̃(y)

|Ω|1/nDũ(y) + c̃(y)ũ(y) ≤ f̃(y)

− div(Ã(y)Dũ) + |Ω|1/nb̃(y)Dũ+ |Ω|2/nc̃(y)u ≤ |Ω|2/nf̃ in Ω

where ϕ̃(y) = ϕ(x), for ϕ = A, b, c, f . Hence applying Theorem 8.16 [GT01]
and using that |Ω| ≤ δn, we obtain

sup
Ω
u = sup

Ωδ
ũ ≤ sup

∂Ωδ
ũ+ + C|Ω| 2n‖f̃‖Lp(Ωδ)

= sup
∂Ω

u+ + C|Ω|
2
n
− 1
p‖f‖Lp(Ω)

≤ sup
∂Ω

u+ + Cδ2−n
p ‖f‖Lp(Ω)

as desired. �

The maximun principle for small domains or small c+ is a consequence
of Lemma 2.9.

Lemma 2.10 Under the assumptions of Lemma 2.9, there exists δ0 > 0, such
that if |Ω| ≤ δn or ‖c+‖Lp(Ω) ≤ δ, δ ≤ δ0, then any weak subsolution u of

 − div(A(x)Du) + b(x)Du+ c(x)u ≤ 0 in Ω
u ≤ 0 on ∂Ω

satisfies u ≤ 0 in Ω. Analogously, if v is a weak supersolution of − div(A(x)Dv) + b(x)Dv + c(x)v ≥ 0 in Ω
v ≥ 0 on ∂Ω

then we have that v ≥ 0 in Ω.

Proof. We apply the previous lemma with c replaced by −c− and f replaced
by −c+u, where c+, c− are the positive and negative part of c(x). �

For completeness, we also state the Comparison Principle.

Lemma 2.11 (Comparison Principle) Under the assumptions of Lemma
2.9, there exists δ0 > 0, such that if |Ω| ≤ δn or ‖c+‖Lp(Ω) ≤ δ, δ ≤ δ0, and
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u, v satisfy (in a weak sense)
 L[u] ≤ L[v] in Ω

u ≤ v in Ω

then u ≤ v in Ω.

The next theorem, the Strong Maximum Principle (SMP) is extremely
important, it says that a nonnegative supersolution of an elliptic equation in
a domain cannot vanish inside the domain, unless it vanishes identically.

Theorem 2.12 (SMP) Let Ω ⊂ Rn be a domain. If u satisfies
 L[u] ≥ 0 in Ω

u ≥ 0 in Ω

then either u > 0 in Ω or u ≡ 0 in Ω.

The SMP is an immediate consequence of the interior weak Harnack
inequality, Theorem 1.1.

Lemma 2.13 (Exponential change) Let u be a weak solution of problem
(2.1). For m > 0 we define

v := emu − 1
m

, w := 1− e−mu
m

Then we have Dv = (1 +mv)Du, Dw = (1−mw)Du,

− div(A(x)Du)− ϑ−1m|Du|2 ≤ − div(A(x)Dv)
1 +mv

≤ − div(A(x)Du)− ϑm|Du|2,

− div(A(x)Du) + ϑm|Du|2 ≤ − div(A(x)Dw)
1−mw ≤ − div(A(x)Du)− ϑ−1m|Du|2,

and {u = 0} = {v = 0} and {u > 0} = {v > 0}.
Therefore if u is a weak supersolution of

− div(A(x)Du) ≥ µ1|Du|2 + cλ(x)u+ h(x) (2.2)

then v = 1
m

(emu − 1) for m = µ1ϑ, is a weak supersolution of

− div(A(x)Dv) ≥ h(x)(1 +mv) + cλ(x)
m

(1 +mv) ln(1 +mv).

Proof. This follows from a computation, since div(fu) = fdiv(u) + uDf . �
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Lemma 2.14 (Lipschitz Bound) Under the assumptions of Lemma 2.11, if
Ω is a bounded domain such that ∂Ω ∈ C1,D and Ω has width less than δ, then

u(x) ≤ C

δ

(
sup

Ω
u+ + δ2−n

p ‖f‖Lp(Ω)

)
d(x) in Ω.

Proof. First we consider Ω with width δ = 1, and let φ be the weak solution
of the problem  Lφ = f in Ω

φ = h on ∂Ω

where h ≡ sup
∂Ω

u+. By the Comparison Principle we have u ≤ φ in Ω, since u
is a subsolution of  Lu = f in Ω

u ≤ h on ∂Ω.

Then,

u(x)
d(x) ≤

φ(x)
d(x) ≤ C‖Dφ‖L∞(Ω) ≤ C‖φ‖C1(Ω) in Ω.

Furthermore, global C1-estimates are valid for the Dirichlet problem satisfied
by φ (see Chapter 8 in [GT01]), so

‖φ‖C1(Ω) ≤ C
(
‖φ‖L∞(Ω) + ‖f‖Lp(Ω)

)
≤ C

(
sup

Ω
u+ + ‖f‖Lp(Ω)

)
,

where in the last inequality we used Lemma 2.9 with δ = 1. Combining these
two equations, it follows that

u(x) ≤ C

(
sup

Ω
u+ + ‖f‖Lp(Ω)

)
d(x) in Ω.

Now if Ω is a domain with width δ > 0, repeating the argument above for the
rescaled problem we obtain

u(x)
d(x) ≤

φ(x)
d(x) ≤

C

δ
‖Dφ‖L∞(Ω) ≤

C

δ

(
sup

Ω
u+ + δ2−n

p ‖f‖Lp(Ω)

)
in Ω.

�
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3
Boundary Point Hopf Lemma

3.1
Hopf Lemma

This section is devoted to the proof of the Boundary Point Principle
for the operators we consider. As we noted in the introduction, this result
is somewhat delicate for operators in divergence form, as it requires some
smoothness of the leading coefficients, and since barriers close to the boundary
are not readily exhibited.

The first result for equations with divergence structure was proved by
R. Finn and D. Gilbarg [FG57]. They considered a two-dimensional bounded
domain with C1,α-regular boundary, Hölder continuous entries of the matrix
A(x) and continuous lower order coefficients. After various generalizations,
as of today the most general result is due to Apushkinskaya and Nazarov
[AN19], whom prove the BPP for a divergence form operators with Dini
continuous leading coefficients, and integrable first-order coefficients. That
paper contains a historical review of results on the BPP for divergence form
operators. However, the result in [AN19] is valid for operators without zero
order terms.

The goal of this section is to generalize the result from [AN19] for the
full divergence-type operator L, with a Lp-integrable zero order term. The
general idea of the proof is similar to that of [AN19], however, to deal with the
zero-order term we use here one more tool, a fixed-point theorem. The proof
we give and the result itself are also instrumental in the following sections, in
particular for the proof of the boundary weak Harnack inequality.

Thus, this section will be devoted to the proof of Theorem 1.2 under our
assumptions on L.

The proof below is based on the classical C1 bounds of Gruter and Winter
[GW82], and we will also need the following Fixed Point Theorem of Schäefer.

Theorem 3.1 [Corollary 1.19, [CQ04]] Let F : X → X be compact, where X
is a Banach space. Then the following alternative holds:

(i) x− tF (x) = 0 has a solution for every t ∈ [0, 1]
or
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(ii) S = {x : ∃t ∈ [0, 1] : x− tF (x) = 0} is unbounded in X.

We will follow the argument from [AN19], by sketching the parts of the
proof that are taken from that paper, and giving more details when differences
appear and in order to consider c 6≡ 0 it is necessary to work a little deeper.

As we explained above, we can assume that 0 ∈ ∂Ω and ∂Ω is flat around
the origin. Consider for 0 < ρ < R/2 the point xρ = (0, · · · , 0, ρ) and the
annulus

Aρ = {x : ρ/2 < |x− xρ| < ρ} ⊂ Ω.

Let x∗ be an arbitrary point in Aρ, and define the auxiliary functions z and
ϕx∗ as the weak solutions for the Dirichlet problems

L0z = 0 in Aρ
z = 1 on ∂Bρ/2(xρ)
z = 0 on ∂Bρ(xρ)

,


Lx∗0 ϕx∗ = 0 in Aρ

ϕx∗ = 1 on ∂Bρ/2(xρ)
ϕx∗ = 0 on ∂Bρ(xρ),

(3.1)

where the operators L0 and Lx∗0 are given by

L0z := −Di(aij(x)Djz)

Lx∗0 ϕx∗ := −Di(aij(x∗)Djϕx∗)

Lv := L0v + b.Dv.

By repeating the proof of Lemma 2.2 in [AN19] we get the following C1-
estimate for the function w(1) = z − ϕx∗

|Dz(x∗)−Dϕx∗(x∗)| ≤ C1
Jσ(2ρ)
ρ

(3.2)

for all ρ ≤ R/2, where z ∈ C1(Aρ) and ϕx∗ ∈ C∞(Aρ) are the unique weak
solutions for (3.1). In the same way, according to Lemma 3.2 [GW82], we get

|Dz(y)| ≤ N1

ρ
(3.3)

for any y ∈ Aρ and some N1 > 0, where z is the solution of the Dirichlet
problem in (3.1).

We observe that it is well known, from the general elliptic theory (see for
instance Chapter 8 in [GT01]), that given f ∈ Lp(Aρ) there exists a unique
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weak solution zf ∈ C1(Aρ) for the Dirichlet problem

L0zf = f in Aρ
zf = 1 on ∂Bρ/2(xρ)
zf = 0 on ∂Bρ(xρ).

(3.4)

Further, we introduce the barrier function v defined as the weak solution of
the Dirichlet problem 

Lvf = f in Aρ
vf = 1 on ∂Bρ/2(xρ)
vf = 0 on ∂Bρ(xρ).

(3.5)

Following the argument in Theorem 2.3 [AN19] we get the existence of a unique
weak solution vf ∈ C1(Aρ) to problem (3.5) for each f ∈ Lp(Aρ), provided ρ
is sufficiently small. Let us briefly recall this proof, for completeness.

Consider in Aρ the auxiliary function w(2)
f = vf − zf . We observe that it

vanishes on ∂Aρ, and

L0w
(2)
f = Lvf − f(x)− b(x).Dvf = −b(x)Dvf = −b(x)(Dw(2)

f +Dzf ) in Aρ.

Hence, w(2)
f can be represented in Aρ via the corresponding Green function

G0,ρ(x, y) of the operator L0 as

w
(2)
f (x) =

∫
Aρ
G0,ρ(x, y)L0w

(2)
f (y) = −

∫
Aρ
G0,ρ(x, y)bi(y)(Diw

(2)
f (y) +Dizf (y)).

Differentiating this equality we obtain a fixed-point problem for the gradient
of w(2), and it can be shown that this problem is governed by a contractible
operator, for sufficiently (but uniformly) small ρ.

We now turn to the treatment of operators with zero order terms. By
the existence result we just proved for L, since c(x) ∈ Lp(Ω), the following
operator is well defined and compact: F : C(Aρ)→ C(Aρ) given by

F (g) := vg, where


Lvg = −cg in Aρ
vg = 1 on ∂Bρ/2(xρ)
vg = 0 on ∂Bρ(xρ).

Indeed, given g ∈ C(Aρ) we obviously have −cg ∈ Lp(Aρ), hence the solution
vg ∈ C(Aρ), exists and is unique. Thus F (g) = L−1(−cg) ∈ C1(Aρ) is well
defined and due to the compact embedding C1(Aρ) ↪→ C(Aρ), F is also
compact.
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We are going to show that the operator F has a fixed point, that is, there
exists v ∈ C(Aρ) such that Fv = v, which means that v ∈ C1(Aρ) and solves


Lv = Lv + cv = 0 in Aρ

v = 1 on ∂Bρ/2(xρ)
v = 0 on ∂Bρ(xρ).

(3.6)

To that end we will show that the set S defined in Theorem 3.1 is
bounded. We apply the Weak Maximum Principle (Theorem 2.9), to the
problem 

Lv = −tcv in Aρ
v = 1 on ∂Bρ/2(xρ)
v = 0 on ∂Bρ(xρ)

obtaining

‖v‖C(Aρ) ≤ 1 + tCρ2−n
p ‖c‖Lp(Aρ)‖v‖C(Aρ)

which implies that given v ∈ S we have ‖v‖C(Aρ) ≤ C0 for some C0 > 0
and sufficiently small ρ, namely, for ρ2−n

p < (1/2)C‖c‖Lp(Aρ). Therefore, by
Theorem 3.1 we ensure the existence of v when t = 1. From theWeak Maximum
Principle we conclude that 0 ≤ v ≤ 1, in particular, v is nonnegative.

At this point we consider the function z = z0, which is the unique solution
of the problem (3.4) when f = 0.

Theorem 3.2 There exists ρ0 > 0 such that for all ρ ≤ ρ0 the problem (3.6)
admits a unique solution v ∈ C1(Aρ). Moreover, the inequality

|(Dv −Dz)(x)| ≤ C2ρ
−n
p (3.7)

holds true for any x ∈ Aρ. Here z ∈ C1(Aρ) is defined in (3.4).

Proof. The existence of v was already proved. We define w(3) := v − z, so w(3)

vanishes on ∂Aρ and

L0w
(3)
f = Lv − b(x).Dv

= −c(x)(w(3) + z)− b(x) · (Dw(3) +Dz) in Aρ.

Hence, w(3)
f can be represented in Aρ via the corresponding Green function
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G0,ρ(x, y) as

w(3)(x) =
∫
Aρ
G0,ρ(x, y)L0w

(3)(y)

= −
∫
Aρ
G0,ρ(x, y)bi(y)Di[w(3)(y) + z(y)]dy

−
∫
Aρ
G0,ρ(x, y)ci(y)[w(3)(y) + z(y)]dy

Differentiating with respect the xk gives

Dkw
(3)(x) = −

∫
Aρ
DxkG0,ρ(x, y)bi(y)[Diw

(3)(y) +Diz(y)]dy

−
∫
Aρ
DxkG0,ρ(x, y)ci(y)[w(3)(y) + z(y)]dy.

Theorem 3.3 [GW82] provides the estimate

|DxG0,ρ(x, y)| ≤ C min{|x− y|1−n, d(y, ∂Aρ)|x− y|−n} (3.8)

for any x, y ∈ Aρ where C > 0 does not depend on ρ. Hence, we get

∫
Aρ
|DxkG0,ρ(x, y)bi(y)|dy ≤ C‖b‖Lp(Aρ)

(∫
Aρ
|x− y|(1−n)p/(p−1)dy

) p−1
p

≤ Cρ1−n
p ‖b‖Lp(Aρ)

for sufficiently small ρ =
(∫
Aρ
|x− y|(1−n)p/(p−1)dy

)n−1
p > 0 and obtain

‖Dw3‖L∞ ≤ Cρ1−n
p

[
‖b‖Lp(Aρ)

(
‖Dw3‖L∞ + ‖Dz‖L∞

)
+ C0‖c‖Lp(Aρ)

]
1
2‖Dw

3‖L∞ ≤ [1− Cρ1−n
p ‖b‖Lp(Aρ)]‖Dw3‖L∞

≤ Cρ1−n
p

[
‖b‖Lp(Aρ)‖Dz‖L∞ + C0‖c‖Lp(Aρ)

]
≤ Cρ1−n

p ‖Dz‖L∞
[
‖b‖Lp(Aρ) + ‖c‖Lp(Aρ)

]
.

Using the estimate (3.3) for all x ∈ Aρ, we get

|Dv(x)−Dz(x)| ≤ ‖Dw3‖L∞ ≤ C2ρ
−n
p .

�

Proof of Boundary Point Hopf Lemma
It is well known that the Boundary Point Hopf Lemma holds true for the

operator Lx∗0 with x∗ = 0 in the annulus A1, Theorem 1.2. Thus, rescaling A1
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into Aρ we get the estimate

Dnϕ0(0) ≥ C3

ρ
> 0.

Furthermore, the inequalities (3.2) and (3.7) imply for sufficiently small ρ

Dnv(0) ≥ Dnϕ0(0)− |Dz(0)−Dϕ0(0)| − |Dv(0)−Dz(0)|

≥ C3

ρ
− C1

Jσ(2ρ)
ρ

− C2
ρ1−n

p

ρ
≥ C3

2ρ .

Since u satisfies Lu ≥ 0 we observe that

L(u− u(0)) ≥ −cu(x0) ≥ 0 in Ω.

There exists a ball B such that u−u(0) > 0 in B∩Ω (by the strong maximum
principle). Hence given ρ > 0, we have for sufficiently small ε > 0

 L(u− u(0)− εv) ≥ 0 in Aρ
u− u(0)− εv ≥ 0 on ∂Aρ.

By Lemma 2.9 the estimate u− u(0) ≥ εv holds true in Aρ. This gives

∂u

∂n
(0) = −Dnu(0) ≤ −εDnv(0) ≤ −εC3

2ρ < 0,

which completes the proof.
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4
Boundary Weak Harnack Inequality

In this chapter we prove our main theoretical result, the boundary weak
Harnack inequality -BWHI (Theorem 1.3).

4.1
The Growth Lemma and auxiliary results

The core of our argument is the following growth lemma. We define by
Qρ(y) the cube of center y and side of length ρ, i.e.

Qρ(y) = {x ∈ Rn : |xi − yi| < ρ/2 for i = 1, · · · , n}.

In case the center of the cube is ρe with e = (0, 0, · · · , 1/2), we use the notation
Qρ = Qρ(ρe).

Lemma 4.1 (The Growth Lemma) Let u be a nonnegative weak superso-
lution of L[u] ≥ f , in Ω under the assumptions of the BWHI (Theorem 1.3)
and f ∈ Lp(Ω) is non-positive in Ω. Given ν > 0 there exist k, a > 0 depending
on ν, n, p, ϑ,Ω such that if

‖f‖Lp(Ω) ≤ a

and the following inequality holds

|{x ∈ Ω : u(x) > d} ∩ Ω| ≥ ν|Ω|

then u > kd in Ω.

Proof. Take d1 = d1(ν, n,Ω) for which the set Ωδ := {x ∈ Ω : d(x) < δ} be
smooth and has measure such that |Ωδ| ≤ ν/2|Ω|, for all 0 < δ ≤ d1. Then, for
Sδ = Ω \ Ωδ we have

|{u ≥ δ} ∩ Sδ| ≥ |{u ≥ d} ∩ Sδ| ≥
ν

2 |Sδ|.

Since u ≥ 0 it follows that
∫
Sδ

usdx ≥
∫
{u≥δ}∩Sδ

usdx ≥ |{u ≥ δ} ∩ Sδ|δs ≥ δs
ν

2 |Sδ|.
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By the interior weak Harnack inequality (Theorem 1.1), there exist constants
C1, C2 > 0 such that

inf
Sδ
u ≥ C1

(∫
Sδ

usdx
)1/s
− C2‖f‖Lp(Ω)

≥ C1δ
(
ν

2

)1/s
|Sδ|1/s − C2a.

We define k′δ := C1δ
(
ν
2

)1/s
|Sδ|1/s−C2a. Thus k′δ > 0 if a is chosen sufficiently

small, and

u ≥ k′δ
diam(Ω)d in Sδ, for all δ ∈ (0, d1). (4.1)

It remains to prove that u ≥ kδd in Ωδ, for some kδ > 0 and some fixed δ > 0,
to be determined.

We are going to use an argument that proves this in a neighborhood
of each boundary point separately. Given a point x0 ∈ ∂Ω and the exterior
normal unitary vector η to ∂Ω passing by x0, we can assume, after a change
of variables, that x0 = 0 and η = −en. We are going to prove that u ≥ kδd at
each point x = ten, 0 ≤ t < δ. Then the same inequality for all x ∈ Ωδ follows
from repeating this argument for each x0 ∈ ∂Ω.

Consider the annulus Aρ (with x ∈ Aρ) given by Aρ = Bρ \ Bρ/2 where
Bρ = Bρ(ρen) and such that Bρ/2 ∩ Ωδ = ∅. For the latter, we can choose
ρ = 4δ for instance. Since for x = ten we have x closer to ∂Bρ than to ∂Bρ/2,
we have d̃(x) := dist(x, ∂Aρ) = d(x), where d(x) := dist(x, ∂Ω) = t.

Figure 4.1: Annulus Aρ

We introduce the auxiliary function w0 = v − ϕ0, where ṽ is the unique
weak solution of (3.6), and ϕ0 is defined in the previous section (or in Claim
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4.2 below). We obtain from (3.2) and (3.7) that
∣∣∣∣∣w0(x)
d(x)

∣∣∣∣∣ ≤ C‖Dw0‖L∞(Aρ) ≤
C3

ρ

(
ρ1−n

p + Jσ(2ρ)
)
,

where C3 > 0 does not depend on ρ neither on x. Then Claim 4.2 below yields

v(x)
d(x) ≥

ϕ0(x)
d(x) −

C3

ρ

(
ρ1−n

p + Jσ(2ρ)
)
≥ C1

ρ
− C3

ρ

(
ρ1−n

p + Jσ(2ρ)
)
≥ C1

2ρ
(4.2)

for sufficiently small δ such that ρ = 4δ is small enough. ConsiderDδ = Ωδ∩Aρ,
and set kδ = 4δC1

ρk′δ
> 0, we have

v(x) ≤ max v ≤ kδu(x)

for all x ∈ ∂Ωδ ∩ ∂Dδ, which is possible since by (4.1) we have u ≥ Cδd ≥ Cδδ

in Sδ. Moreover, u ≥ 0 = v on ∂Aρ ∩ ∂Dδ, since x ∈ ∂Bρ. Then L(v − kδu) ≤ −kδf in Dδ(ρen)
v − kδu ≤ 0 on ∂Dδ(ρen).

(4.3)

We apply the rescaled version of the Weak Maximum Principle, Lemma 2.9
for a domain with width δ, and we get

v − kδu ≤ Cδ2−n
p kδ‖f‖Lp(Dδ).

By the Lipschitz Bound at Ωδ , Lemma 2.14, applied to (4.3) in Ωδ.

v − kδu ≤
C

δ

sup
Ωδ

(ṽ − kδu) + δ2−n
p kδ‖f‖Lp(Dδ)

 d
≤ Cδ1−n

p kδd‖f‖Lp(Dδ) in Dδ/2

Thus, by using (4.2), we see that

kδu(x) ≥ v − Cδ1−n
p kδd(x)‖f‖Lp(Dδ)

≥
(
C1

2ρ − Cδ
1−n

p kδ‖f‖Lp(Dδ)

)
d(x) in Dδ/2.

We now fix δ0 small enough so that Cδ
1−n

p

0 kδ0a <
C1
4ρ <

C1
4 . Thus,

u(x) ≥ C1

4kδ0

d(x) in Dδ0/2.
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Repeating this argument for all x0 ∈ ∂Ω, we obtain the same inequality for all
x ∈ Ωδ.

On the other hand, u(x) ≥
k′δ0/2

diam(Ω)d(x) in Sδ0/2 by (4.1). Setting

k = min
{

k′δ0/2

diam(Ω) ,
C1

4kδ0

}
=

k′δ0/2

diam(Ω) ,

where δ0 is set to be smaller than diam(Ω)/4, since

k′δ0/2

diam(Ω) ≤
2C1δ0

kδ0/2diam(Ω) ≤
C1

2kδ0/2
≤ C1

4kδ0

.

This ends the proof of the growth lemma, pending a proof of the following
claim. �

We need the following estimate for ϕ0.

Claim 4.2 Let ϕ0 be the unique solution of the problem
L0

0ϕ0 = − div(A(0)Dϕ0(x)) = 0 in Aρ(ρen)
ϕ0 = 1 on ∂Bρ/2(ρen)
ϕ0 = 0 on ∂Bρ(ρen).

(4.4)

Then,

ϕ0(x) ≥ C1

ρ
d̃(x) for all x ∈ Aρ

where C1 does not depend on ρ neither on x. In particular, ϕ0(x̄) ≥ C1

ρ
d(x̄).

Proof. We define the new variable y = 1
ρ

(x − ρen), and the rescaled function
ϕ̃0(y) = ϕ0(x). Then ϕ̃ is a weak solution of

0 = − div(A(0)Dϕ0(x)) = − 1
ρ2 div(A(0)Dϕ̃0(y))

and
d(y) = dist(y, ∂B1) = 1

ρ
dist(x, ∂Bρ) = 1

ρ
d(x).

Moreover, observe that

x ∈ Aρ(ρen) if and only if y ∈ B1(0)/B1/2(0)
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and so, that (4.4) is equivalent to

− div(A(0)Dϕ̃0(y)) = 0 in B1(0)/B1/2(0)

ϕ̃0 = 1 on ∂B1/2(0)
ϕ̃0 = 0 on ∂B1(0).

(4.5)

Applying the BPP, we get ∂ϕ̃0
∂η

(y0) < 0, since ϕ̃0 attains its minimum at
y0 ∈ ∂B1(0), and ∂ϕ̃0

∂η
(y1) > 0, since ϕ̃0 attains its maximum at y1 ∈ ∂B1/2(0).

Now, let us define

ϕ̂0(y) =

 ϕ̃0 in B1(0)/B1/2(0)
1 in B1/2(0).

Then ϕ̂0 solves in the viscosity sense

− div(A(0)Dϕ̂0(y)) = −
n∑

i,j=1
aij(0)Dijϕ̂0(y) ≥ 0 in B1

since the normal derivative of ϕ̃0 at ∂B1/2 is different from zero, and then no
smooth function can touch ϕ̂0 from below at a point on ∂B1/2. That is, ϕ̂0 is
a weak supersolution in B1, with

−
n∑

i,j=1
aij(0)Dijϕ̂0(y) ≥ 0 in B1(0)

ϕ̂0 = 1 in B1/2(0).

The latter equation is in non-divergence form, so we can apply the growth
lemma for such equations, already proved in [S17] (Theorem 4.2 in that paper,
with f = 0 , Ω = B1). Since

|{y ∈ B1(0) : ϕ̂0 ≥ d(y)}| ≥ |{y ∈ B1/2(0) : ϕ̂0 ≥ d(y)}| ≥ |B1/2| ≥ C|B1|.

we can find k > 0 such that ϕ̂0(y) ≥ kd(y) for all y ∈ B1/B1/2. Equivalently,
ϕ0(x) ≥ k

ρ
d(x) for all x ∈ Bρ/Bρ/2. The Claim is proved. �

As a second ingredient, we introduce a technical result from measure
theory which is an equivalent version of Krylov’s famous propagating ink spot
Lemma (see Lemma 4.2, [S17]).

Lemma 4.3 Let A ⊂ B ⊂ Q1 be two open sets. Assume there exists α ∈ (0, 1)
such that:

(i) |A| ≤ (1− α)|Q1|.

(ii) For any cube Q ⊂ Q1, |Q ∩ A| ≥ (1− α)|Q| implies Q ⊂ B.
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Then, it follows that |A| ≤ (1− c0α)|B| for some constant c0 = c0(n) ∈ (0, 1).

The next lemma is the basis for the Calderon-Zigmund-Caffarelli type
iteration, which we will use to prove the boundary weak Harnack inequality.
Although our proof is based in the correspondent theorem present in [S17], in
[S17] such type of inequalities is established for a uniformly elliptic operator in
non-divergence form. We exhibit a self-contained proof under our assumptions,
simplifying the arguments employed there.

Lemma 4.4 Let u be a nonnegative weak supersolution of L[u] ≥ f in Q2,
under the assumptions of the BWHI (Theorem 1.3), and f ∈ Lp(Q2) is non-
positive in Q2. Assume

inf
Q1

u(x)
xn
≤ 1.

Then, there exist M > 1, µ ∈ (0, 1) and δ0 > 0 depending on n, p, ϑ such that
if ‖f‖Lp(Q2) ≤ δ0 then

|{u/xn > M j} ∩Q1| ≤ (1− µ)j, ∀j ∈ N. (4.6)

Proof. We choose ν = 1
2

(1
4

)n
and denote by M = max

{1
k
,

4
C1

21/p
}
> 1,

where C1 the constant given by the interior Harnack inequality (see (4.13)
below), and k ∈ (0, 1) and a > 0 the constants given by the Growth Lemma
4.1 applied to our weak supersolution u, which is such that

L(ku) ≥ kf ≥ f in Q3/2. (4.7)

If u is a non-negative weak supersolution of L[u] ≥ f , then u is a non-negative
weak supersolution of (4.7), since f ≤ 0. We are going to show that (4.6) holds.

First of all, observe that

{x ∈ Q1 : u(x)/xn > M} ⊂ {x ∈ Q1 : ku(x) > xn}.

Hence, since inf
Q1

ku(x)
xn

≤ k and ‖f‖Lp(Q2) ≤ a, Lemma 4.1 implies that

|{x ∈ Q1 : u(x)/xn > M}| ≤ |{x ∈ Q1 : ku(x) > xn}| < ν <
1
2 (4.8)

and, in particular, (4.6) holds for j = 1 and µ < 1/2.
Now, for j > 1 we fix µ = c0/2, where c0 < 1 is given by the Lemma 4.3.
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We introduce the sets

A = {x ∈ Q1 : u(x)/xn > M j} and B = {x ∈ Q1 : u(x)/xn > M j−1}.

Since M > 1 and j > 1, observe that (4.8) implies that

|A| = |{x ∈ Q1 : ku(x) > xn}| <
1
2 , (4.9)

and the first assumption of Lemma 4.3 is satisfied for (1− α) = 1
2 . Thanks to

(4.9) and the Claim 4.5 below we can apply Lemma 4.3, and we obtain that

|A| ≤
(

1− c0

2

)
|B|

i.e., |{x ∈ Q1 : u(x)/xn > M j}| ≤ (1− µ)|{x ∈ Q1 : u(x)/xn > M j−1}|.

Iterating in j and using (4.8), the result follow with µ ∈ (0, 1) depending only
on n, once the following Claim is proved. �

Claim 4.5 For every cube Qρ(x0) ⊂ Q1 such that

|A ∩Qρ(x0)| ≥ 1
2 |Qρ(x0)| = 1

2ρ
n, (4.10)

we have Qρ(x0) ⊂ B.

Proof. Let us denote x0 = (x′0, x0n) with x′0 ∈ Rn−1. We define the new variable

y = (y′, yn) =
(
x′ − x′0
ρ′

,
xn
ρ′

)
where ρ′ = 2x0n

and the rescaled function

v(y) = u(x)
ρ′

= 1
ρ′
u(ρ′y′ + x′0, ρ

′yn).

Then v is a non-negative supersolution of

− div(Ã(y)Dv) + ρ′b̃(y)Dv + (ρ′)2c̃(y)v = ρ′f̃(y), in Q4/ρ′

(
−x

′
0
ρ′
,

2
ρ′

)
(4.11)

where ϕ̃(y) := ϕ(x), for ϕ = A, b, c, f . In fact, x ∈ Q 3
2
, then

2 > 3/4 > |x′| = |x′ − x′0 + x′0| = |y′ρ′ + x′0|

and, |ynρ′ − 2| = |xn − 2| ≤ |xn −
3
4 |+ |

3
4 − 2| < 3

4 + 5
4 = 2.
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Moreover, observe that

x ∈ A ∩Qρ(x0) if and only if y ∈ {y ∈ Qρ/ρ′(e) : v(y)/M j > yn}

and so, (4.10) is equivalent to

|{y ∈ Qρ/ρ′(e) : v(y)/M j > yn}| ≥
1
2 |Qρ/ρ′(e)| =

1
2

(
ρ

ρ′

)n
. (4.12)

Observe also that the embedding Qρ(x0) ⊂ Q1 implies that ρ ≤ ρ′ ≤ 2−ρ and
|x0,i| ≤ 1−ρ

2 i ∈ {1, · · · , n− 1}. In fact,

|xi| ≤ |xi − x0,i|+ |x0,i| <
ρ

2 + |x0,i|

then |x0,i| ≤ 1−ρ
2 , similar with xn, we obtain

|xn −
1
2 | ≤ |xn − x0,n|+ |x0,n −

1
2 | <

ρ

2 + |x0,n −
1
2 |

with ρ ≤ 2x0,n ≤ 2− ρ. In particular, we have Q 3
4
⊂ Q 4

ρ′

(
− x′0

ρ′
, 2
ρ′

)
. In fact,

|x′ρ′ + x′0| ≤ ρ′|x′|+ 1− ρ
2 < 2− 5ρ

4 < 2,

and |xnρ′ − 2| ≤ 3ρ′
4 + |3ρ

′ − 8|
4 = 2.

Now, we consider three cases:
Case 1: ρ < ρ′/4 . Then v/M j is also a non-negative supersolution of (4.11)
and we apply the interior weak Harnack inequality, Theorem 1.1 (also see
Theorem 8.18 in [GT01] ) to obtain

inf
Qρ/ρ′ (e)

v ≥ C1

( ρ
ρ′

)−n ∫
Qρ/ρ′ (e)

vp

 1
p

− C ρ

ρ′
‖ρ′f̃‖Lp(Q2ρ/ρ′ (e)). (4.13)

Since Qρ(x0) ⊂ Q1 we have Q2ρ(x0) ⊂ Q2 and

‖ρ′f̃‖Lp(Q2ρ/ρ′ (e)) ≤ C‖f‖Lp(Q2ρ) ≤ C2δ0.

Now, let us introduce

G = {y ∈ Qρ/ρ′(e) : v(y)/M j > 1/4},
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and, as yn > 1/4 for all y ∈ Qρ/ρ′(e), observe that (4.10) implies that

|G| ≥ |{y ∈ Qρ/ρ′(e) : v(y)/M j > yn}| ≥
1
2

(
ρ

ρ′

)n
.

Hence, we deduce that

inf
Qρ/ρ′ (e)

v ≥ C1

( ρ
ρ′

)−n ∫
G
vp

 1
p

− C2δ0

≥ C1

(
ρ

ρ′

)−n
p M j

4 |G|
1
p − C2δ0

≥ C1

2
1
p

M j

4 − C2δ0.

Using M ≥ 4
C1

21/p, yn ≤ 1 in Qρ/ρ′(e), increasing M and diminishing δ0 we
obtain

v ≥M j−1/2 − 1 ≥M j−1yn.

Thus, we conclude that u(x)/xn > M j−1 in Qρ(x0).
Case 2: ρ ≤ ρ′/4 and ρ′ < 1. Then Q2 ⊂ Q2/ρ′ and

‖ρ′f̃‖Lp(Q2) ≤ ‖ρ′f̃‖Lp(Q2/ρ′ ) = (ρ′)1−n
p ‖f‖Lp(Q2) ≤ δ0 ≤ a.

Observe that v/M j is a non-negative supersolution of

− div(Ã(y)D(v/M j) + ρ′b̃(y).D(v/M j) + ρ′2c̃(y)v/M j ≥ ρ′

M j
f̃(y) ≥ ρ′f̃

since M−1 < 1 and f̃ < 0. Moreover, as ρ ≤ ρ′, (4.12) implies that

|{y ∈ Q1 : v(y)/M j > yn}| ≥ |{y ∈ Qρ/ρ′(e) : v(y)/M j > yn}| ≥
1
2

(
ρ

ρ′

)n
= ν.

Hence by Lemma 4.1, we obtain v(y)/M j > kyn in Q1, and by the definition of
k, v(y)/yn > M j−1 in Qρ/ρ′(e). This implies that u(x)/xn > M j−1 in Qρ(x0).
Case 3: ρ ≥ ρ′/4 and ρ′ ≥ 1. Then ρ ≥ 1/4 and

|A ∩Q1| ≥ |A ∩Qρ| ≥
1
2ρ

n ≥ 1
2

(1
4

)n
= ν.

Hence by Lemma 4.1, we obtain directly u(x)/M j > kxn in Q1. This means
that Qρ(x0) ⊂ B and so, the claim is proved. �
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4.2
Boundary Weak Harnack Inequality for cubes

We state and prove the version for cubes of our main result in this section.

Theorem 4.6 (Boundary Weak Harnack Inequality for cubes)
Assume that u is a nonnegative weak supersolution of problem L[u] ≥ f

in Q2, where L is under the assumptions of Lemma 4.1, and f ∈ Lp(Q2) is
nonpositive function in Q2. Then, there exist constants ε > 0 and C > 0 such
that

inf
Q1

u

xn
≥ C

[∫
Q1

(
u

xn

)ε]1/ε
− C‖f‖Lp(Q2).

Proof. Let us split the proof into three steps.
Step 1: Assume that inf

Q1

u(x)
xn
≤ 1 and ‖f‖Lp(Q2) ≤ δ0. Then there exist ε > 0

and C > 0 such that for all t ≥ 0

|{x ∈ Q1 : u(x)/xn > t}| ≤ C min{1, t−2ε}.

To prove this, let us define the real valued function

g(t) = |{x ∈ Q1 : u(x)/xn > t}|

and let M and µ be the constants obtained in Lemma 4.4. We define

C := max{(1− µ)−1,M2ε} > 1 and ε := −1
2

ln(1− µ)
ln(M) > 0.

If t ∈ [0,M ] we get

|{x ∈ Q1 : u(x)/xn > t}| ≤ 1 ≤ CM−2ε ≤ C min{1, t−2ε}.

Now, let us assume t > M > 1. Without loss of generality, we assume
t ∈ [M j,M j+1] for some j ∈ N, and it follows that

ln t
lnM − 1 ≤ j ≤ ln t

lnM .

Since g is non-increasing and 1− µ ∈ (0, 1), the above inequality and Lemma
4.4 imply

g(t) ≤ f(M j) ≤ (1− µ)j ≤ (1− µ) ln t
lnM−1.
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Observe that,

ln
(
(1− µ) ln t

lnM−1
)

=
(

ln t
lnM − 1

)
ln(1− µ) = ln(1− µ)

lnM ln t− ln(1− µ)

≤ −2ε ln t+ lnC = ln(Ct−2ε).

Finally, the conclusion of Step 1 follows from the two last equations and the
fact min{1, t−2ε} = t−2ε for t ≥ 1.

Step 2: Assume that inf
Q1

u(x)
xn
≤ 1 and ‖f‖Lp(Q2) ≤ δ0. Then there exist C > 0

such that
∫
Q1

(
u(x)
xn

)ε
dx ≤ C.

Hence, applying Lemma 9.7 [GT01] we obtain that

∫
Q1

(
u(x)
xn

)ε
dx ≤ ε

∫ ∞
0

tε−1|{x ∈ Q1 : u(x)/xn > t}|dt

≤ Cε
∫ ∞

0
tε−1 min{1, t−2ε}dt = C.

Step 3: Conclusion. Let us introduce the functions

v = u

inf
y∈Q1

u(y)
yn

+ β + δ−1‖f‖Lp(Q2)

and f̃ = f

inf
y∈Q1

u(y)
yn

+ β + δ−1‖f‖Lp(Q2)

where β > 0 is an arbitrary constant. Hence v satisfies inf
Q1

v(x)
xn

≤ 1 and

‖f̃‖ ≤ δ0 then applying Step 2, we obtain that

∫
Q1

(
v(x)
xn

)ε
dx,

so
(∫

Q1

(
u(x)
xn

)ε
dx

)1/ε

≤ C inf
y∈Q1

u(y)
yn

+ β + δ−1
0 ‖f‖Lp(Q2).

Therefore, we get the result by letting β → 0. �

4.3
Boundary Weak Harnack Inequality

Finally, we enunciate the general version of boundary weak Harnack
inequality. Namely, the statement for an arbitrary Ω ⊂ Rn with C1,D-regular
boundary.

DBD
PUC-Rio - Certificação Digital Nº 1721304/CA



Chapter 4. Boundary Weak Harnack Inequality 38

Theorem 4.7 (Boundary Weak Harnack Inequality) Let Ω ⊂ Rn, for
n ≥ 2, be a bounded domain. Assume that u is a nonnegative weak supersolution
of L[u] ≥ f in Ω, where Ω and L are under our hypotheses and f ∈ Lp(Ω) is
non-positive in Ω. Then for any x0 ∈ ∂Ω there exist constants R > 0, ε > 0
and C > 0 such that for all R ∈ (0, R],

inf
BR(x0)∩Ω

u(x)
d(x) ≥ C

(∫
BR(x0)∩Ω

(
u(x)
d(x)

)ε
dx

)1/ε

− C‖f‖Lp(Ω). (4.14)

Proof. By the definition of a C1,D-domain, at each point x0 ∈ ∂Ω there
is a neighborhood N of x0 and a C1,D-diffeomorphism ϕ that straightens
the boundary in N , such that Dϕ(0) = In. Let BR(x0) ⊂⊂ N and set
B′ = BR(x0) ∩ Ω, ϕ(B′) ⊂ Q1, T = BR(x0) ∩ ∂Ω ⊂ ∂B′, and ϕ(T ) ⊂
{x ∈ Q1;xn = 0} (ϕ(T ) is a hiperplane portion of ∂Q1). Under the mapping
y = ϕ(x) = (ϕ1(x), · · · , ϕn(x)), let ũ(y) = u(x), and L̃ũ(y) = Lu(x), where

L̃ũ ≡ − div(Ã(y)Dũ) + b̃(y)Dũ+ c̃(y)ũ = f̃(y),

and Ã(ϕ(x)) = A(x)Dϕ(x), b̃(ϕ(x)) = Dϕ(x)b(x), c̃(y) = c(x), f̃(y) = f(x).

Since Dϕ(0) = In, by choosing R small enough we can ensure that the new
equation has the same properties as the original one (by replacing, say, λ
by λ/2, and ϑ by 2ϑ). The assumptions of Theorem 4.6 are satisfied for the
equation L̃ũ = f̃ in ϕ(B′) with the hyperplane portion ϕ(T ). We can therefore
assert

inf
Q1

ũ(y)
yn
≥ C

(∫
Q1

(
ũ(y)
yn

)ε
dy

)1/ε

− C‖f̃‖Lp(Q2)

for any Q2 ⊂ ϕ(B1). Returning to the original variable x, the latter inequality
implies (4.14), by diminishing R, if necessary.

�

4.4
Regularity Estimates

This section has expository character. For the reader’s convenience we
sketch how, using the original method of Safonov, Hölder estimates can be
inferred from the weak Harnack inequality. We will use these estimates in later
sections.

Theorem 4.8 ( Cα Regularity Estimates) Let Ω ⊂ Rn be a bounded do-
main. Assume L is under the assumptions of Lemma 5.1, f ∈ Lp(Ω), where
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p > n. Let u be a weak solution of

L[u] = f(x) in Ω

with ‖u‖L∞(Ω) + ‖f‖Lp(Ω) ≤ C0. Then, there exists α ∈ (0, 1) depending on
n, p, ϑ, ‖b‖Lp(Ω), such that u ∈ Cα

loc(Ω) and for any subdomain Ω′ ⊂⊂ Ω we
have

‖u‖Cα(Ω′) ≤ C
{
‖u‖L∞(Ω) + ‖f‖Lp(Ω)

}
where C depends only n, p, ϑ, ‖b‖Lp(Ω), ‖c‖Lp(Ω), dist(Ω′, ∂Ω) and C0. If, in
addition Ω is C1-smooth, then there exist some α0, ρ0 > 0 depending only
n, p, ϑ, ϑ−1, ‖b‖Lp(Ω), such that for each ball Bρ with radius ρ ≤ ρ0 and center
in Ω

osc
Bρ∩Ω

u ≤ C1(ρα0 + osc
B√ρ∩∂Ω

u)

where C1 depends on n, p, ϑ, ϑ−1, ‖b‖Lp(Ω), ‖c‖Lp(Ω),Ω and C0. Hence if u|∂Ω ∈
Cβ(∂B) then u ∈ Cα(Ω) with α = min{α0, β/2}.

Proof of Theorem 4.8
Note we can assume c = 0 by replacing f by f − cu.
First, we give the proof of the interior estimate in the case f = 0. Recall we
have a solution u ∈ C(Ω) of − div(A(x)Du) + b(x).Du = f(x). Then for any
ρ such that B2ρ ⊂ Ω the functions

u1 := u− inf
B2ρ

u u2 := sup
B2ρ

u− u

satisfy the hypotheses of Growth Lemma (Lemma 4.1) . In addition, we define

w(2ρ) := osc
B2ρ

u = u1 + u2.

Note the following equivalences are satisfied,

(i) u ≥ 1
2(supB2ρ u+ infB2ρ u)⇐⇒ u1 ≥ 1

2w(2ρ)

(ii) u ≤ 1
2(supB2ρ u+ infB2ρ u)⇐⇒ u2 ≥ 1

2w(2ρ)

so at each point of B2ρ, either u1 or u2 is greater or equal than 1
2w(2ρ).

Case 1: Suppose that
∣∣∣∣{x ∈ Bρ; u1 ≥

1
2w(2ρ)

}∣∣∣∣ ≥ 1
2 |Bρ|
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Applying Lemma 4.1 to u1 ≥ 0 in Bρ, we have that for some k > 0

u1 ≥ kw(2ρ) in Bρ,

which yields the following estimate:

inf
Bρ
u ≥ k sup

B2ρ

+(1− k) inf
B2ρ

u.

Case 2: Suppose that
∣∣∣∣{x ∈ Bρ; u2 ≥

1
2w(2ρ)

}∣∣∣∣ ≥ 1
2 |Bρ|.

Similarly we obtain

u2 ≥ kw(2ρ) in Bρ,

which yield the following estimate:

sup
Bρ

u ≤ k sup
B2ρ

+(1− k) inf
B2ρ

u.

In both cases, we have w(ρ) ≤ (1− k)w(2ρ), for all ρ ∈ (0, ρ0). With the claim
4.9 below we have u ∈ Cα(Bρ). Next, we deal with f 6= 0. We argue in the
same way as in the case f = 0, but in the end we get

w(ρ) ≤ (1− k)w(2ρ) + Cρ‖f‖Lp(B2ρ).

Applying Lemma 8.23 of [GT01], for any γ ∈ (0, 1) there exists α depending
on γ, n, ϑ, ϑ−1, ‖b‖Lp such that

w(ρ) ≤ C sup
Bρ0

|u|ραw(2ρ) + Cργ‖f‖Lp(B2ρ).

The last case deals with the extension of the result to the boundary. We
use the idea of extending the function u as a constant outside the domain. Let
x0 ∈ ∂Ω we want to show that for some k0 < 1,

osc
Bρ(x0)∩Ω

u ≤ k0 osc
B2ρ(x0)∩Ω

u+ Cρ‖f‖Lp(Ω) + 2 osc
B2ρ(x0)∩∂Ω

u

which would imply, by Claim 4.9

w(ρ) ≤ Cρα + ω(ρν),∀ν < 1, ∀ρ ≤ ρ0
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where σ(ρ) = Cρ‖f‖Lp(Ω) + 2 oscB2ρ(x0)∩∂Ω u. Note that if

osc
Bρ(x0)∩Ω

u ≤ 2 osc
B2ρ(x0)∩∂Ω

u

we are done. Suppose then

osc
Bρ(x0)∩Ω

u > 2 osc
B2ρ(x0)∩∂Ω

u

and we have two possibilities:

1) sup
B2ρ(x0)∩Ω

u− sup
B2ρ(x0)∩∂Ω

u ≤ 1
4 osc
B2ρ(x0)∩Ω

u,

and

2) inf
B2ρ(x0)∩∂Ω

u− inf
B2ρ(x0)∩Ω

u ≤ 1
4 osc
B2ρ(x0)∩Ω

u.

For the case 2 we define u2 := u− inf
B2ρ(x0)∩Ω

u so that


L[u2] = f in B2ρ(x0) ∩ Ω

u2 ≥ 0 in B2ρ(x0) ∩ Ω

u2 ≥
1
4w(2ρ) on B2ρ(x0) ∩ ∂Ω.

In B2ρ(x0) we define the function

u2 :=


min{u2,

1
8w(2ρ)} in B2ρ(x0) ∩ Ω
1
8w(2ρ) in B2ρ(x0) \ Ω.

By Lemma 4.10 below we obtain that u2 is a supersolution, and we allow to
use Lemma 4.1 to conclude that

u2 ≥ k0a− Cρ‖f‖Lp in Bρ

where d = m = 1
8w(2ρ) and by the definition of u2, we obtain that

inf
Bρ
u2 ≥ inf

Bρ
u2 ≥

k0

8 w(2ρ)− Cρ‖f‖Lp(Ω)

which implies that

w(ρ) ≤ (1− k0

8 )w(2ρ) + Cρ‖f‖Lp(Ω).
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Claim 4.9 Suppose the hypotheses of Theorem 4.8 are satisfied and for all
ρ ∈ (0, ρ0], the inequality

w(ρ) ≤ (1− k)w(2ρ)

holds, k > 0. Then for any ρ ∈ (0, ρ0), we have u is locally Hölder continuous
in Ω and for any ball Bρ0 we have

sup
x,y∈Bρ

|u(x)− u(y)|
|x− y|α

≤ C sup
Bρ0

|u|

where C = C(a, n, p, ρ0), α = α(a, n, p, ρ0) > 0 are positive constants.

Proof. Let us fix initialy some number ρ1 ≤ ρ0. Then for any ρ ≤ ρ1 we have

w(ρ) ≤ (1− k)w(2ρ).

We now iterate this inequality to get, for any positive integer m,

w(2−mρ1) ≤ (1− k)mw(ρ1) ≤ (1− k)mw(ρ0). (4.15)

For any ρ ≤ ρ1, we can choose m such that

2−mρ1 < ρ ≤ 2−m+1ρ1.

The inequality (4.15) can be written in the form of the Hölder condition. Hence,

|u(x)− u(y)| ≤ w(ρ) ≤ w(2−m+1ρ1) ≤ (1− k)m−1w(ρ0)

≤ 1
(1− k)

(
ρ

ρ1

)log1/2(1−k)

w(ρ0).

Now let ρ1 = ρ1−α
0 ρα so that we have

|u(x)− u(y)| ≤ 1
(1− k)

(
ρ

ρ0

)(1−α) log1/2(1−k)

w(ρ0).

Indeed, let α > 0 be the number such that (1− α) log1/2(1− k) < α, then

|u(x)− u(y)| ≤ C

(1− k)

(
ρ

ρ0

)α
sup
Bρ0

|u| ≤ Cρα sup
Bρ0

|u|.

�
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Lemma 4.10 Suppose for some B ⊂ Rn and for f ∈ Lp(B), f ≤ 0, u ∈
C(Ω),m > 0, we have


L[u] ≥ f(x) in B2ρ ∩ Ω
u ≥ 0 in B2ρ ∩ Ω
u ≥ 2m on B2ρ ∩ ∂Ω.

Then for all B2ρ ⊂ Ω ∪B, ρ ≤ ρ0 and for any ν, a > 0 it followa that

inf
Bρ
u ≥ ka− Cρ‖f‖Lp(Ω)

where k, C depends on ν, n, ϑ, ϑ−1, ‖b‖Lp,p > n and u ∈ C(B) is defined by

u =

 min{u,m} in B2ρ ∩ Ω
m in B2ρ \ Ω.

Proof. We note that u satisfies the hypotheses of Growth Lemma 4.1 in the
ball B, since the minimum of two weak supersolution is a weak supersolution
and L[u] = L[m] ≡ 0 ≥ f(x). �

Proof.[Proof of Theorem 4.8] Let us prove the interior estimate for

− div(A(x)Du)− µ|Du|2 − b(x)|Du| ≥ |f(x)| (4.16)

where u and −u are solutions of (4.16). Hence by Lemma 2.13, the functions

w1 = 1− e−mu1

m
, w2 = 1− e−mu2

m

where u1 = u− inf
B2ρ

u and u2 = sup
B2ρ

u− u satisfy

− div(A(x)Dwj)− µ|Du|2 − b(x)|Du| ≥ (1−mwj)[|f(x)|+ ϑm|Du|2]

≥ (1−mwj)|f(x)| := f̃ .

Since at each point x ∈ B2ρ

wj ≥
1− e−m

w(2ρ)
m

m

for some j, say j = 1, reasoning as before and applying the Growth Lemma
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we get

w1 ≥ k
1− e−m

w(2ρ)
m

m
− Cρ‖f‖Lp(B2ρ)

for ρ ≤ ρ0. Notice that for each t0 there exits ε = ε(t0,m) such that

t ≥ 1− e−mt
m

≥ εt for t ∈ [0, t0].

We apply this with t0 = w(2ρ0)/2 and we get

u1 ≥
1− e−mu1

m
= w1 ≥ k

1− e−m
w(2ρ)

2

m
− Cρ‖f‖Lp(B2ρ) ≥

ε

2w(2ρ0)k − Cρ‖f‖Lp(B2ρ)

in Bρ, so again

w(ρ) ≤ Cρα sup
Bρ0

|u|+ Cργ‖f‖Lp(B2ρ)

for ρ ∈ (0, ρ0). �
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5
A priori Bounds and Multiplicity results

In this chapter we obtain a priori bounds for solutions of a class of
indefinite quasilinear elliptic equations, assuming lower regularity on their
coefficients and on the boundary of Ω than in the previous works on the
subject. These a priori bounds are going to be used to establish existence
and multiplicity of solutions for these problems.

We consider the following class of boundary value problem − div(A(x)Du) = cλ(x)u+ (M(x)Du,Du) + h(x)
u ∈ H1

0 (Ω) ∪ L∞(Ω)
(Pλ)

where Ω ⊂ Rn, n ≥ 3 is a bounded domain with boundary ∂Ω of class C1,D. It
is assumed that c, h ∈ Lp(Ω) for some p > n, where c+ and c− are nonnegative
functions such that cλ(x) := λc+(x)−c−(x) for a parameter λ ∈ R. Also A(x) is
a uniformly positive bounded measurable matrix, i.e. ϑIn ≤ (aij(x)) ≤ ϑ−1In,
ϑ is a positive constant, and In is the identity matrix; and that M(x) is an
positive matrix such that

0 < µ1In ≤M(x) ≤ µ2In in Ω (5.1)

for some positive constants µ1 and µ2.
The specificity of these problems, and what makes them delicate to study,

is the quadratic dependence in the gradient, which makes the gradient term of
the same order as the Laplacian with respect to dilations. We refer to [CFJ19],
[NS18] for a review of the large literature on this topic.

The study of the coercive case, i.e. c ≤ 0, was initiated by Boccardo,
Murat and Puel in the 80’s, and we refer to [ACJT14] for the uniqueness. On
the other hand, the noncoercive case remained unexplored until very recently.
We refer a particular case of Jeanjean and Sirakov, study a problem directly
connected to (Pλ).

As in [CFJ19] we assume the additional assumption
 |Ωc+| > 0, where Ωc+ := supp(c+),

There exists ε > 0 such that c− = 0 in {x ∈ Ω : d(x,Ωc+) < ε}.
(A)
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This hypothesis means we are in the "hard" noncoercive case, when the
zero order coefficient is not negative, and uniqueness of solutions is expected
to fail. For a definition of supp(f) with f ∈ Lp(Ω), for some p ≥ 1, we refer to
Proposition 4.17 [B11].

Definition 5.1 Let f ∈ Lp(Ω). Consider the family (ωi)i∈I of all open sets on
Ω such that for each i ∈ I, f = 0 a.e. on ωi. Set ω = ∪i∈Iωi.
Then f = 0 a.e on ω.
By definition, supp(f) is the complement of ω in Ω.

We also observe that, under the above regularity assumptions, any solution of
(Pλ) belongs to C0,τ (Ω) for some τ > 0. This can be deduced from ([LU68],
Theorem IX-2,2).

As in [ACJT14], [ACJT15], [CFJ19], [NS18], we will obtain our results
by using a topological approach, which relies heavily on the derivation of a
priori bounds, and combines sub and supersolutions arguments together with
degree theory.

We now recall a few definitions. We will denote with γ1 > 0 the “first
eigenvalue" of the linear problem, which in our case means that the problem

− div(A(x)Dϕ1) = cγ1(x)ϕ1 in Ω
ϕ1 > 0 in Ω
ϕ1 = 0 on ∂Ω

(Pγ1)

has a solution. In that case when h(x) 	 0 the problem (Pλ) has no solution u
with c+(x)u 	 0 when λ = γ1 and no nonnegative solutions when λ ≥ γ1. See
Lemma 6.1,[ACJT15] for details.

Further, we define strict comparison between functions in the following
way.

Definition 5.2 Let u, v ∈ C(Ω). We say that u � v in case there exists
ε > 0 such that, for all x ∈ Ω, v(x) − u(x) ≥ εϕ1(x), where ϕ1 is the first
eigenfunction of (Pγ1). Recall that, for all x ∈ Ω, ϕ1(x) > 0 and, for x ∈ ∂Ω,
∂ϕ1
∂ν

(x) < 0 where ν denotes the exterior unit normal.

We make the convention, mainly when dealing with multiplicity results,
that α and β will always denote a pair of sub and supersolutions, in a sense
to be specified.

Many of our results are valid without assuming that h has a sign.
However, when we require h to have a sign, we will see that the set of solutions
differs completely for h � 0 and h 	 0.
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5.1
Main results

We now state our main multiplicity results which is going to be proved
next chapter. In what follows continuum means a closed and connected set
and the above assumptions on the coefficients of the equation are assumed to
hold.

More precisely, defining

Σ := {(λ, u) ∈ R× C(Ω) : u solves (Pλ)},

we will show that it is possible to obtain a description of the set Σ. In the next
two theorems, following the strategy of [CFJ19], we show the existence of a
continuum of solutions of (Pλ) when the coercive problem (P0) with λ = 0 has
a solution (conditions on the coefficients which ensure this can be found for
instance in [ACJT15], [CFJ19]).

Theorem 5.1 Suppose that (P0) has a solution u0 with c+(x)u0 	 0. Then

(i) For all λ ≤ 0, the problem (Pλ) has a unique solution uλ and this solution
satisfies u0 − ‖u0‖∞ ≤ uλ ≤ u0.

(ii) There exists a continuum C ⊂ Σ such that the projection of C on the
λ-axis is an unbounded interval (−∞, λ] for some λ ∈ (0,+∞) and C
bifurcates from infinity to the right of the axis λ = 0.

(iii) There exists λ0 ∈ (0, λ] such that, for all λ ∈ (0, λ0), the problem (Pλ)
has at least two solutions with ui ≥ u0 for i = 1, 2.

Figure 5.1: Illustration of Theorem 5.1

Theorem 5.2 Suppose that (P0) has a solution u0 ≤ 0 with c+(x)u0 � 0.
Then
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(i) For λ ≤ 0, the problem (Pλ) has a unique nonpositive solution uλ and
this solution satisfies u0 + ‖u0‖∞ ≥ uλ ≥ u0;

(ii) There exists a continuum C ⊂ Σ such that its projection of C+ on the
λ-axis is [0,+∞);

(iii) For λ > 0, every non-positive solution of (Pλ) satisfies uλ � u0.
Furthermore (Pλ) has at least two non-trivial solutions uλ,i for i = 1, 2
with

uλ,1 � u0 ≤ uλ,2, uλ,1 � uλ,2, and max
Ω

uλ,2 > 0.

Moreover we have uλ2,1 ≤ uλ1,1 ≤ u0 if 0 < λ1 < λ2.

Figure 5.2: Illustration of Theorem 5.2

Note that our Theorems 5.1 and 5.2 require (P0) to have a solution and
thus we are in a situation where a branch of solutions starts from (0, u0). In
our next results we consider the situation when a (super)solution of (Pλ) exists
for some λ0 > 0.

Theorem 5.3 Assume that

(a) (P0) does not have a solution u0 ≤ 0;

(b) there exist λ0 > 0 and β0 a supersolution of (Pλ0) with β0 ≤ 0.

Then there exists 0 < λ ≤ λ0 such that

(i) for every λ ∈ (λ,∞), the problem (Pλ) has at least two solutions with
uλ,1 ≤ 0 and uλ,1 ≤ uλ,2. Moreover, if λ1 < λ2, we have uλ1,1 � uλ2,1;
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(ii) the problem (Pλ) has a unique solution uλ ≤ 0;

(iii) for λ < λ, the problem (Pλ) has no solution u ≤ 0.

For every λ < 0, the problem (Pλ) has at most one nonpositive solution uλ;
There exists an unbounded contiuum C , uλ and λ = 0 is a birfucation point
from infinity.

Figure 5.3: Illustration of Theorem 5.3

Open Problem Can we prove in Theorem 5.3 that the second solution changes
sign?

In the proof of Theorem 5.2 below (see page 68) we define the auxiliary
problem (Pλ,k), whose solutions are supersolutions of (Pλ). In particular, from
Theorem 5.1 and Lemma 6.7 below we can deduce the following corollary which
concerns the case h � 0, and in which we see the simultaneous realization of
two of the above theorems.

Corollary 5.4 Assume that h � 0. For all λ̃ > γ1 where γ1 > 0 is the first
eigenvalue (Pγ1), there exists k̃ > 0 such that, for all k ∈ (0, k̃],

(i) there exists λ1 ∈ (0, γ1) such that

(a) for all λ ∈ (0, λ1), the problem (Pλ,k) has at least two positive
solutions;

(b) for λ = λ1, the problem (Pλ,k) has exactly one positive solution;

(c) for λ > λ1, the problem (Pλ,k) has no non-negative solution;

(ii) for λ = γ1 the problem (Pλ,k) has no solution;

(iii) there exists λ2 ∈ (γ1, λ̃] such that
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(a) for λ > λ2, the problem (Pλ,k) has at least two solutions with
uλ,1 � 0 and min uλ,2 < 0;

(b) for λ = λ2, the problem (Pλ,k) has a unique non-positive solution;

(c) λ < λ2, the problem (Pλ,k) has no non-positive solution.

Figure 5.4: Illustration of Corollary 5.4

We conclude this section with a result on the particular but important
case h(x) ≡ 0. Further considerations in case h(x) has a sign are given in
Remark 6.10 below.

Theorem 5.5 Assume h(x) ≡ 0 and recall that γ1 > 0 denotes the first
eigenvalue (Pγ1). Then

(i) for all λ ∈ (0, γ1), the problem

− div(A(x)Du) = cλ(x)u+ (M(x)Du,Du) (Ph≡0)

has at least two solutions uλ,1 ≡ 0 and uλ,2 	 0;

(ii) for λ = γ1 the problem (Ph≡0) has only the trivial solution;

(iii) for λ > γ1, the problem (Ph≡0) has at least two solutions uλ,1 ≡ 0 and
uλ,2 ≤ 0;

(iv) for all λ ≤ 0 the problem (Ph≡0) has a unique solution uλ ≡ 0.

(v) There exists a continuum C ⊂ Σ such that the projection of C on the
λ-axis is an unbounded interval (0,+∞) and C bifurcates from infinity
to the right of the axis λ = 0.
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Figure 5.5: Illustration of Theorem 5.5

5.2
A priori Bound

The following essential upper bound shows that any unbounded contin-
uum of solutions of (Pλ) for λ > 0 in a bounded interval can only bifurcate to
the right of λ = 0.

Theorem 5.6 (A priori Upper Bound) Under the stated assumptions of
problem (Pλ), including hypothesis (A), for any Λ2 > Λ1 > 0, there exists a
constant M̃ > 0 such that, for each λ ∈ [Λ1,Λ2], any solution of (Pλ) satisfies
supΩ u ≤ M̃ .

To prove this theorem we will first show, in Lemma 5.8, that it is sufficient
to control the behavior of the solutions on Ωc+ . By compactness, it is equivalent
to study what happens around any fixed point x̃ ∈ Ωc+ . We shall consider
separately the alternative cases x̃ ∈ Ωc+ ∩ Ω and x̃ ∈ Ωc+ ∩ ∂Ω.

Remark 5.7 Let us point out that if λ = 0 or c+ ≡ 0 i,e. |Ωc+ | = 0 the
problem (Pλ) reduces to (P0) which is independent of λ, and has a solution,
by [ACJT15],[CF18], where the authors give sufficient conditions to ensure the
existence of a solution of (P0). Such a solution is unique and so, automatically
we have an a priori bound.

For the general case, an a priori bound to solution of (Pλ) depends only
on controlling the solution on Ωc+ .
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Lemma 5.8 Assume the hypotheses of (Pλ), there exists a constant M > 0
such that, for any λ ∈ R, any solution u of the problem (Pλ) satisfies

− sup
Ωc+

u− −M ≤ u ≤ sup
Ωc+

u+ +M.

Proof. In case problem (Pλ) has no solution for any λ ∈ R, there is nothing to
prove. Hence, we assume the existence of λ̃ ∈ R such that (P

λ̃
) has a solution

ũ. We shall prove the result with M := 2‖ũ‖∞. Let u be an arbitrary solution
of (Pλ). Setting D := Ω \ Ωc+ and v = u− sup

∂D
u+, we have

− div(A(x)Dv) = −c−(x)v + (M(x)Dv,Dv) + h(x)− c−(x) sup
∂D

u+

≤ −c−(x)v + (M(x)Dv,Dv) + h(x) in D.

Since v ≤ 0 on ∂D, the function v is a subsolution of (P0). On the other hand,
setting ṽ = ũ+ ‖ũ‖∞ we obtain

− div(A(x)Dṽ) = −c−(x)ṽ + (M(x)Dṽ,Dṽ) + h(x) + c−(x)‖ũ‖∞
≥ −c−(x)ṽ + (M(x)Dṽ,Dṽ) + h(x) in D

and thus, as ṽ ≥ 0 on ∂D, the function ṽ is a supersolution of (P0). By
standard regularity results (see for instance Lemma 2.1, [ACJT14], which can
be applied under our hypotheses), we get u, ũ ∈ H1(Ω)∩W 1,n

loc (Ω)∩C(Ω) and
hence, v, ṽ ∈ H1

0 (D) ∩W 1,n
loc (D) ∩ C(D) and the right-hand sides of the above

inequalities are Ln functions. Therefore we are able to apply the Lemma 2.11
(Comparison Principle), and conclude that v ≤ ṽ in D, namely that

u− sup
∂D

u+ ≤ ũ+ ‖ũ‖∞ in D

u ≤ ũ+ ‖ũ‖∞ + sup
∂D

u+ in D.

Hence u ≤ M + sup
Ωc+

u+ in Ω. For the other inequality, we now define v :=

u+ sup
∂D

u− and obtain v ≥ 0 on ∂D, as well as,

− div(A(x)Dv) = −c−(x)v + (M(x)Dv,Dv) + h(x) + c−(x) sup
∂D

u−

≥ −c−(x)v + (M(x)Dv,Dv) + h(x) in D.

Thus v is a supersolution of (P0). Now defining ṽ = ũ − ‖ũ‖∞ again we have
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ṽ ≤ 0 on ∂D as well as

− div(A(x)Dṽ) = −c−(x)ṽ + (M(x)Dṽ,Dṽ) + h(x)− c−(x)‖ũ‖∞
≤ −c−(x)ṽ + (M(x)Dṽ,Dṽ) + h(x) in D.

Thus ṽ is a subsolution of (P0). As previously we have that v, ṽ ∈ H1
0 (D) ∩

W 1,n
loc (D)∩C(D), and applying again the Comparison Principle (Lemma 2.11)

we get ṽ ≤ v in D. Namely

ũ− ‖ũ‖∞ ≤ u+ sup
∂D

u− in D

u ≥ ũ− ‖ũ‖∞u− sup
∂D

u− in D.

Therefore, it yields u ≥ − sup
Ωc+

u− −M in Ω, ending the proof. �

Now, let u ∈ H1
0 (Ω) ∩ L∞(Ω) be a solution of (Pλ). We introduce the

exponential change of variable

wi(x) := 1
νi

(eνiu(x) − 1) and gi(x) := 1
νi

ln(1 + νis), i = 1, 2 (5.2)

where
ν1 := µ1ϑ, and ν2 := µ2ϑ

−1

for µ1, µ2 given in (5.1) and ϑ given in the definition of the matrix A(x).
By Lemma 2.13 we have,

− div(A(x)Dwi) = − div(A(x)(1 + νiwi)Du)

= −(1 + νiwi)div(A(x)Du)− (A(x)Du,D(1 + νiwi))

= (1 + νiwi)
[
cλu(x) + (A(x)Du,Du) + h(x)

]
− (1 + νiwi)(νiA(x)Du,Du).

Then,

− div(A(x)Dwi) = (1 + νiwi)
[
cλ(x)gi(wi) + h(x) +

(
[M(x)− νiA(x)]Du,Du

)]
.

(5.3)

Note that the last term is negative for i = 1 and positive for i = 2.
Using (5.3) we shall obtain a uniform a priori upper bound on u in a

neighborhood of any fixed point x̃ ∈ Ωc+ . We consider the two cases x̃ ∈ Ωc+∩Ω
and x̃ ∈ Ωc+ ∩ ∂Ω separately.
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Lemma 5.9 Assume that (A) holds and that x ∈ Ωc+ ∩ Ω. For each Λ2 >

Λ1 > 0, there exist M1 > 0 and R > 0 such that, for any λ ∈ [Λ1,Λ2], any
solution u of (Pλ) satisfies sup

BR(x̃)
u ≤M1.

Proof. Under the assumption (A) we can find a R > 0 such that M(x) ≥
µ1In > 0, c− ≡ 0 in B4R(x̃) and c+ 	 0 in BR(x̃). Observe that (5.3), for
i = 1 turns into

− div(A(x)Dw1) = (1 + ν1w1)
[
cλ(x)g1(w1) + h(x) +

(
[M(x)− ν1A(x)]Du,Du

)]
≥ (1 + ν1w1)[λc+(x)g1(w1) + h+(x)]− h−(x)− ν1h

−(x)w1

+ (1 + ν1w1)(µ1 − ϑ−1ν1)|Du|2.

Therefore in B4R(x̃),

− div(A(x)Dw1) + ν1h
−(x)w1 ≥ (1 + ν1w1)[λc+(x)g1(w1) + h+(x)]− h−(x).

(5.4)

Define z0 to be the solution of

− div(A(x)Dz0) + ν1h
−(x)z0 = −Λ2c

+(x)e
−1

ν1
, z0 ∈ H1

0 (B4R(x̃)). (5.5)

By classical regularity (Theorem III-14.1 [LU68]), z0 ∈ C(B4R(x̃)) and there
exists a constant C > 0 depending on x̃, ν1,Λ2, p, R, ‖h−‖Lp(B4R), ‖c+‖Lp(B4R)

such that z0 ≥ −C in B4R (see Lemma 2.9). Further, by the Weak Maximum
Principle (see Lemma 2.9) we know that z0 ≤ 0.

Observe that

min
(− 1

νi
,∞)

(1 + νis)gi(s) = −e
−1

νi
,

and define v1 = w1 − z0 + 1
ν1
. Thus v1 satisfies

− div(A(x)Dv1) + ν1h
−(x)v1 ≥ (1 + ν1w1)[λc+(x)g1(w1) + h+(x)] + Λ2c

+(x)e
−1

ν1
≥ (1 + ν1w1)(Λ2 − Λ2)[c+(x)g−1 (w1)]

+(1 + ν1w1)Λ1c
+(x)g+

1 (w1)

≥ Λ1c
+(x)
ν1

(1 + ν1w1) ln(1 + ν1w1)

= Λ1c
+(x)(v1 + z0) ln(ν1(v1 + z0)) := f(x, v1)

(5.6)
in B4R(x̃), where
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f : Ω× R → R
(x, s) → f(x, s) := Λ1c

+(x)
(
[s+ z0][ln(ν1) + ln(s+ z0(x))]

) (5.7)

is a superlinear function in the variable s. Since w1 > −1/ν1 we have v1 > 0 in
B4R(x̃). On the other hand, for i = 2, in view of (5.1) in Ω and w2 > −1/ν2,
by (5.3) in a similar way we conclude that w2 satisfies

− div(A(x)Dw2) ≤ [1 + ν2w2](λc+(x)g2(w2) + h+(x))
+ (ν1 − ν2)h−(x)w2 − h−(x)− ν1h

−(x)w2

− div(A(x)Dw2) + ν1h
−(x)w2 ≤ [1 + ν2w2]

(
Λ2c

+(x)
ν2

ln(1 + ν2w2) + h+(x)
)

=: g(x,w2)
(5.8)

in B4R(x̃), where g : Ω× R→ R satisfies

g(x, s) ≤ a0[1 + sα+1], for each α > 0. (5.9)

In order to prove that (5.8) implies (5.9), let cα > 0 be a constant such that

ln(1 + x) ≤ (1 + x)α + cα, for all x ≥ 0.

Hence,

g(x,w2) = [1 + ν2w2]
(

Λ2

ν2
c+(x) ln(1 + ν2w2) + h+(x)

)

≤ [1 + ν2w2]
(

Λ2

ν2
c+(x)(1 + ν2w2)α + cα

Λ2

ν2
c+(x) + h+(x)

)

≤ [1 + ν2w2]α+1
(

Λ2

ν2
c+(x)(1 + cα) + h+(x)

)
≤ [1 + (ν2w2)α+1]a0(x)

where a0(x) ∈ Lp(Ω), α > 0. In addition, we note that

[1 + ν2w2]
ν1
ν2 = (eν2u)

ν1
ν2 = (eν1u) = 1 + ν1w1 = ν1[v1 + z0].

This means that w2 = ξ(v1 +z0), where ξ(s) := [(ν1s)
ν2
ν1 −1]ν−1

2 is an increasing
function satisfying

lim
s→∞

ξ(s)
sβ

= lim
s→∞

(ν1s)ν2/ν1 − 1
ν2sν2/ν1

= lim
s→∞

ν
ν2/ν1
1 − 1

sν2/ν1

ν2
= ν

ν2/ν1
1
ν2

<∞, (5.10)

for β = ν2/ν1.

Thus we are in position to apply the following theorem, which under our

DBD
PUC-Rio - Certificação Digital Nº 1721304/CA



Chapter 5. A priori Bounds and Multiplicity results 56

assumptions is a rather straightforward generalization of Theorem 2 in [S20].

Theorem 5.10 Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with boundary ∂Ω
satisfying the interior C1,D-paraboloid condition and L be a uniformly elliptic
operator under our standing assumptions. Assume that z0 is a bounded function
and v ≥ 0, and ξ(v + z0) where ξ satisfies (5.10) are functions in H1(Ω)
satisfying the following inequalities in the weak sense

− div(A(x)Dv) + ν1h
−1(x)v ≥ f(x, v)

− div(A(x)Dξ(v + z0)) + ν1h
−1(x)ξ(v + z0) ≤ g(x, ξ(v + z0)),

where f satisfies (5.7) and g satisfies (5.9) for some r = α + 1 with

r <
n+ 1
n− 1 +

(
1
β
− 1

)
2

n− 1 .

Then for some C depending on the concerned quantities we have

ξ(v(x) + z0) ≤ Cd(x) in Ω and hence v(x) ≤ C.

Proof. In view of Theorem 1.8 all Theorems 3, 4, 5 and 6 stated in [S20]
are valid under our assumptions on the domain and on the coefficients of L,
hence, it remains to observe that the other generalizations on the hypotheses
of Theorem 5.3 in comparison with Theorem 2, [S20] are natural, in view of
Remark 4, [S20] and due to the injective property of ξ and the boundedness
of z0. Thus, taking into account these observations, the proof follows almost
verbatim the proof of Theorem 2, [S20], with minor changes. �

In view of (5.6) and (5.8) we are able to apply Theorem 5.10 for v = v1

and w2 = ξ(v1 +z0) and conclude that v1 and w2 have upper bounds in B4R(x̃).
As a consequence of this, the same holds for w1 and also for u as desired. �

It is important to observe that Theorem 1.8 is fundamental to prove
Theorem 5.10.

Lemma 5.11 Assume that (A) holds and that x̃ ∈ Ω̃c+ ∩ ∂Ω. For each
Λ2 > Λ1 > 0, there exist R > 0 and M2 > 0 such that, for any λ ∈ [Λ1,Λ2],
any solution u of (Pλ) satisfies sup

BR(x̃)∩Ω
u ≤M2.

Proof. The proof is very similar to the previous case, we only need to observe
that our assumptions permit us to find Ω1 ⊂ Ω with ∂Ω1 of class C1,D such
that B2R(x̃) ∩ Ω ⊂ Ω1 and M(x) ≥ µ1In > 0, c−(x) ≡ 0 and c+(x) 	 0 in Ω1.
Hence, for i = 1 note that (5.3) turn into (5.4) in Ω1 instead of B4R(x̃). Then,
if z0 is the solution of (5.5) in H1

0 (Ω1) instead of H1
0 (B4R(x̃)), as in Lemma
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5.9, we get z0 ∈ C(Ω1) and C > 0 depending on the usual quantities such that
−C ≤ z0 ≤ 0 in Ω1. In addition, defining v1 as in Lemma 5.9, we observe that
v1 satisfies equation (5.6) in Ω1 and v1 > 0 on Ω1. Arguing exactly as Lemma
5.9 we deduce (5.6),(5.8) and then we are able to apply Theorem 5.10 getting
an upper bound to u in Ω1. �

Proof of Theorem 5.6
Once the previous two lemmas are available, that is, we have the existence
of a uniform a priori upper bound on u in a neighborhood of any fixed point
x̃ ∈ Ωc+ (see Lemma 5.9 and 5.11), then the proof of Theorem 5.6 follows
exactly as the proof of Theorem 1.1 in [CFJ19].

We will now see that solutions are bounded from below, even when λ→ 0,
λ > 0.

Theorem 5.12 (A priori lower bound) Under the standing assumptions
on problem (Pλ), including hypothesis (A), let Λ2 > 0. Then every super-
solution u of (Pλ) satisfies

‖u−‖L∞ ≤ C for all λ ∈ [0,Λ2]

where C depends only on n, p, ν1,Ω,Λ2, ‖c‖Lp(Ω), ‖h−‖Lp(Ω).

Proof. First observe that both U1 = −u and U2 = 0 are subsolutions of

− div(A(x)DU) ≤ cλU − (M(x)DU,DU) + h−(x) in Ω.

Then these functions are also subsolutions of − div(A(x)DU) + µ1|Du|2 ≤ cλU + h−(x) in Ω
U ≤ 0 on ∂Ω

and so is U := u− = max{U1, U2}, as the maximum of subsolutions. Moreover
U ≥ 0 in Ω and U = 0 on ∂Ω. We make the following exponential change of
variables

w := 1− e−ν1U

ν1
.

From Lemma 2.13,

− div(A(x)Dw) ≤ (1− ν1w)
[
cλ(x)U + h−(x)

]
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we know that w is a weak solution of − div(A(x)Dw) + ν1h
−(x)w ≤ h−(x) + cλ(x)

ν1
ln(1− ν1w)(1− ν1w) in Ω

w = 0 on ∂Ω.
(Qλ)

Note that the logarithm above is well defined, since

0 ≤ w = 1− e−ν1U

ν1
≤ 1
ν1

in Ω.

Now set w1 := 1−e−ν1u
−
1

ν1
, where u1 is some fixed supersolution of (Pλ), λ ≥ 0

(if there was not such supersolution, we have nothing to prove). Then, by the
above, w1 ∈ [0, 1/ν1) is a solution of (Qλ). Define

w := supA, where A := {w : w is a solution of (Qλ); 0 ≤ w < 1/ν1 in Ω}.

First, observe that A 6= ∅ since w1 ∈ A, and w1 ≤ w ≤ 1/ν1 in Ω. Also, as a
supremum of subsolutions, w is a weak solution of (Qλ), with w = 0 on ∂Ω.
Then, the function

f(x) := h−(x) + cλ(x)
ν1
| ln(1− ν1w)|(1− ν1w) ∈ Lp+(Ω)

with ‖f+‖Lp(Ω) ≤ ‖h−‖Lp(Ω) + 1
ν1

(
Λ2‖c+‖Lp(Ω) + ‖c−‖Lp(Ω)

)
C0,

since A(w) := | ln(1 − ν1w)|(1 − ν1w) ≤ C0. Therefore, by the Boundary
Lipschitz bound, Lemma 2.14,

w ≤ Cδ1−n/p‖f+‖Lp(Ω)d(x)→ 0 as x→ ∂Ω

and so w 6≡ 1/ν1. Observe that the function w can be equal to 1/ν1 at some
interior points. In order to obtain a contradiction, assume that there is a
sequence of supersolutions uk of (Pλ) in Ω with unbounded negative parts,
then there would exist a subsequence such that

u−k (xk) = ‖u−k ‖L∞ → +∞, xk ∈ Ω, xk → x0 ∈ Ω, k →∞

with xk ∈ Ω for large k, since uk ≥ 0 on ∂Ω. Then the respective sequence

wk(xk) = 1− e−ν1u
−
k

(xk)

ν1
→ 1

ν1
, wk ∈ A
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i.e. for every ε > 0, there exists some k0 ∈ N such that

1
ν1
− ε ≤ wk(xk) ≤ w(xk) ≤

1
ν1
, for all k ≥ k0.

Thus, there exists lim
k→∞

w(xk) = 1
ν1

and also

w(x0) ≥ lim
xk→x0

w(xk) = lim
k→∞

w(xk) = 1
ν1
.

Hence, x0 ∈ Ω, since w = 0 on ∂Ω, and w(x0) = 1
ν1
. Finally, define z := 1−ν1w,

and observe that

div(A(x)Dz) = −ν1div(A(x)Dw)

≤ ν1(1− ν1w)
[
cλ(x)
ν1
| ln(1− ν1w)|+ h−(x)

]
= cλ(x)| ln z|z + ν1h

−(x)z.

Then z is a supersolution of
− div(A(x)Dz) + ν1h

−(x)z ≥ −cλ(x)| ln z|z in Ω
z 	 0 in Ω

z(x0) = 0.

But this contradicts the nonlinear version of the SMP, (Lemma 5.3, [NS18],
and its extension in [SS21]) which says that z ≡ 0 or z > 0 in Ω. �
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6
Proof of Multiplicity results

6.1
Preliminary observations

We first define strict sub and supersolutions. We observe that for the
purposes of this section, where degree arguments will be employed, it will
be sufficient to consider only supersolutions (resp. subsolutions) that are finite
minima (resp. maxima) of regular (inW 2,p) supersolutions (resp. subsolutions).

Definition 6.1 A subsolution of (Pλ) is said to be strict if every solution u

of (Pλ) such that α ≤ u on Ω satisfies α � u. In the same way a strict
supersolution of (Pλ) is a supersolution such that every solution u with u ≤ β

is such that u� β.

The next result is important in degree arguments.

Lemma 6.2 Under assumption (A) for every λ > 0, there exists a strict
subsolution vλ of (Pλ) such that, every supersolution β of (Pλ) satisfies vλ ≤ β.

Proof. Let C > 0 be given by Theorem 5.12 and M be given by Theorem 5.6
such that, for every supersolution β of − div(A(x)Du) = cλ(x)u+ (M(x)Du,Du)− h−(x)− 1 in Ω

u = 0 on ∂Ω,

we have β ≥ −C. Let k > C and consider αk the solution of − div(A(x)Dv) + c−(x)v = −λkc+(x)− h−(x)− 1 in Ω
v = 0 on ∂Ω.

As −λkc+(x)−h−(x)−1 < 0 we have αk � 0 by the strong maximum principle
and the Hopf lemma.
Claim 1: Every supersolution β of (Pλ) satisfies β ≥ αk.
In fact, β = min{βj; 1 ≤ j ≤ l} where β1, · · · , βl are regular supersolutions of
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(Pλ). Setting w = βj − αk for some 1 ≤ k ≤ l we have
 − div(A(x)Dw) + c−(x)w ≥ λc+(x)(βj + k) + µ1|Dβj|2 ≥ 0 in Ω

w = 0 on ∂Ω.

By the maximum principle w ≥ 0 i.e. βj ≥ αk. This proves the claim.
Consider the problem

− div(A(x)Dv) = cλ(x)Tk(v) + (M(x)Dv,Dv)− h−(x)− 1 (6.1)

where

Tk(v) =

 −k, if v ≤ −k,
v, if v > −k.

We observe that β is a supersolution of (6.1) with β = Tk(β) and αk

is a subsolution of (6.1) (note that −λkc+(x) = λc+(x)Tk(αk), c−(x)k =
−c−(x)Tk(αk)); and hence by the standard method of sub- and super-solutions
(6.1) has a minimal solution vk with αk ≤ vk ≤ β.
Claim 2: Every supersolution β of (Pλ) satisfies β ≥ vk.
Observe that, by the construction of (6.1), every supersolution β of (Pλ) is also
a supersolution of (6.1). As, by the Claim 1, we have β ≥ αk, the minimality
of vk implies that vk ≤ β.
Claim 3: vk is a subsolution of (Pλ).
Observe that vk ≥ −C > −k and vk satisfies

− div(A(x)Dvk) = cλ(x)Tk(vk) + (M(x)Dvk, Dvk)− h−(x)− 1

≤ cλ(x)vk + (M(x)Dvk, Dvk) + h(x).

This implies that vk is a subsolution of (Pλ).
Claim 4: vk is strict subsolution of (Pλ).
Let u be a solution of (Pλ) with u ≥ vk. Then w = u− vk satisfies

− div(A(x)Dw) ≥ cλ(x)u+ (M(x)Du,Du) + h(x)

− cλ(x)vk − (M(x)Dvk, Dvk) + h−(x) + 1

= cλ(x)w + (M(x)[Du+Dvk], Dw) + h+(x) + 1,

which means that − div(A(x)Dw)− (M(x)[Du+Dvk], Dw) ≥ cλ(x)w + h+(x) + 1 in Ω
w = 0 on ∂Ω.
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By the maximum principle, we deduce that w � 0 i.e. u� vk. �

Remark 6.3 Lemma 6.2 shows that, for (P0), having a supersolution is
equivalent to have a solution.

By adapting Lemma 5.1 from [CFJ19] to our setting we obtain the
following auxiliary result for proving Theorem 5.1.

Lemma 6.4 Under the assumptions of Theorem 5.1, assume that (P0) has a
solution u0 such that c+(x)u0 	 0, c−(x) ≡ 0. Then there exists Λ ∈ (0,∞)
such that, for λ ≥ Λ, the problem (Pλ) has no solution u with u ≥ u0 in Ω.

Proof. Let ϕ1 > 0 the first eigenfunction of (Pγ1). If (Pλ) has a solution u with
u ≥ u0, multiplying (Pλ) by ϕ1 and integrating we obtain

∫
Ω
cγ1(x)uϕ1 =

∫
Ω
A(x)Dϕ1Du

=
∫

Ω
cλ(x)uϕ1dx+

∫
Ω

(M(x)Du,ϕ1Du) +
∫

Ω
h(x)ϕ1dx

and hence λ > Λ > γ1, as u ≥ u0, we have

0 ≥ (λ− γ1)
∫

Ω
c+(x)uϕdx+ µ1

∫
Ω
ϕ1|Du|2dx+

∫
Ω
h(x)ϕ1dx

≥ (λ− γ1)
∫

Ω
c+(x)u0ϕdx+ µ1

∫
Ω
ϕ1|Du|2dx+

∫
Ω
h(x)ϕ1dx

which gives a contradiction for λ large enough. �

We also need a continuation theorem. Let C(Ω) be a real Banach space
and T : R× C(Ω)→ C(Ω) a completely continous map, i.e. it is a continuous
and maps bounded sets to relatively compact sets. For λ ∈ R, we consider the
problem of finding the zeroes of Φ(λ, u) := u− T (λ, u), i.e.

u ∈ C(Ω); Φ(λ, u) := u− T (λ, u) = 0, (Qλ)

Let λ0 ∈ R arbitrary but fixed and we assume that uλ0 is an isolated solution
of Φ(λ0, u), then the degree deg(Φ(λ0, .), B(uλ0 , r), 0) is well defined and is
constant for r > 0 small enough. Thus it is possible to define the index

i(Φ(λ0, .), uλ0) := lim
r→0

deg(Φ(λ0, .), B(uλ0 , r), 0).

Theorem 6.5 (Theorem 2.2 of [ACJT15]) If (Qλ) has a unique solution
uλ0, and i(Φ(λ0, .), uλ0) 6= 0 then Σ possesses two unbounded components
C+, C− in [λ0,+∞] × C(Ω) and [−∞, λ0] × C(Ω) respectively which meet at
(λ0, uλ0).
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6.2
Proof of Theorem 5.1

Applying all previous results and adopting strategies presented in
[ACJT14],[ACJT15],[CFJ19] we give the proof of Theorem 5.1. We treat
separately the case λ ≤ 0 and λ > 0.
(i): λ ≤ 0.
This has been studied in previous works. We briefly recall the following
argument. If (P0) has a solution u0, then u0 is a supersolution of (Pλ)
and by using Lemma 5.8 and [ACJT15] we obtain the existence of a solu-
tion uλ of (Pλ) for any λ < 0, and by Proposition 4.1 [ACJT15] we have
the uniqueness of solutions for λ ≤ 0. Observe that for λ ≤ 0, we have
cλ(x) = λc+(x) − c−(x) ≤ −c−(x) so by applying the comparison principle
(Lemma 2.11), we get uλ ≤ u0. Also by Lemma 5.8, setting v = u0 − ‖u0‖∞
we see that v0 a subsolution of (Pλ) for λ < 0, so again by the Comparison
Principle we get u0 − ‖u0‖∞ ≤ uλ.

(ii): λ > 0.
With the aim of showing the existence of a continuum of solution of (Pλ), for
λ ≥ 0 we introduce the auxiliary problem

− div(A(x)Du)+u = [cλ(x)+1][(u−u0)++u0]+
(
M(x)Du,Du

)
+h(x). (P λ)

As in the case of (Pλ), any solution of (P λ) belongs to C0,τ (Ω) for some τ > 0.
Moreover observe that u is a solution of (P λ) if and only if it is a fixed point
of the operator T λ defined by T λ : C(Ω)→ C(Ω) : v → u with u the solution
of

− div(A(x)Du) + u−
(
M(x)Du,Du

)
= [cλ(x) + 1][(v − u0)+ + u0] + h(x).

Applying Lemma 5.2 of [ACJT15], we see that T λ is completely continuous.
Now, we denote

Σ := {(λ, u) ∈ R× C(Ω), u solves (P λ)}

and we split the rest of the proof into three steps.
Step 1: If u is a solution of (P λ) then u ≥ u0 and hence it is a solution of
(Pλ).
Observe that (u−u0)+ +u0−u ≥ 0 and λc+(x)[(u−u0)+ +u0] ≥ λc+(x)u0 ≥ 0.
Hence, we deduce that a solution u of (P λ) is a supersolution of

− div(A(x)Du) = [cλ(x) + 1][(u− u0)+ + u0] +
(
M(x)Du,Du

)
+ h(x). (6.2)
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Since u0 is a solution of (Pλ), it implies that u0 solves (6.2). Then applying
again the comparison principle we get u ≥ u0.
Step 2: u0 is the unique solution to (P 0) as well as to the problem (P0).
Furthermore i(I − T 0, u0) = 1.
For λ = 0, if u is a solution of (6.2), then by Step 1, u ≥ u0 and u solves (Pλ).
From case 1 we conclude that u = u0. In order to prove that i(I −T 0, u0) = 1,
we consider the operator St defined by

St : C(Ω)→ C(Ω)

v → St(v) = tT 0v = u

with u is the solution of

− div(A(x)Du) + u = (M(x)Du,Du) + th(x)

+ t
(
[−c−(x) + 1][u0 + (v − u0)+ − (v − u0 − 1)+]

)
.

First, note that the complete continuity of T λ follows from the fact that every
solution u of (P λ) is Cα up to the boundary, then there exists R > 0 such that
for all t ∈ [0, 1] and all v ∈ C(Ω),

‖Stv‖L∞ < R.

Then I − St does not vanish on ∂BR(0) and

deg(I − T 0, BR(0)) = deg(I − S1, BR(0)) = deg(I − S0, BR(0)) = deg(I, BR(0)) = 1.

Therefore, T 0 has a fixed point u0 which is a solution of (P 0). Hence, by the
property of the degree, for all ε > 0 small enough, it follows that

deg(I − T 0, Bε(0)) = deg(I − T 0, BR(0)) = 1.

Thus, for ε < 1, we conclude that

i(I − T 0, u0) = lim
ε→0

deg(I − T 0, Bε(0)) = 1.

Step 3: Existence and behavior of the continuum.
We are able to apply Theorem 6.5 (see also Theorem 2.2 [ACJT15] and
Theorem 3.2 [R71]) to ensure the existence of a continuum C = C+ ∪ C− ⊂ Σ
such that

C+ = C ∩ ([0,∞)× C(Ω)) and C− = C ∩ ((−∞, 0]× C(Ω))
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are unbounded in R±×C(Ω). By Step 1, we get that if u ∈ C+, then u ≥ u0 and
is a solution of (Pλ). Thus applying Lemma 6.4 we infer that the projection of
C+ on λ-axis is [0,Λ], a bounded interval. A consequence of (i) is that none of
λ ∈ (−∞, 0] is a bifurcation point from infinity of (Pλ), and then deduce that
the projection of C− on λ-axis is (−∞, 0]. Hence,

ProjRC = ProjRC− ∪ ProjRC+ = (−∞,Λ]

for some Λ > 0.
Finally, by Theorem 5.6 for any 0 < Λ1 < Λ2 there is a priori bound

for the solution of (Pλ), for all λ ∈ [Λ1,Λ2]. Then by the Cα global estimates
(Theorem 4.8), we have also a Cα a priori bound for these solutions i.e. the
projection of C ∩ ([Λ1,Λ2]× C(Ω)) on C(Ω) is bounded. Since the component
C+ is unbounded in R+ × C(Ω), its projection on the C(Ω) axis must be
unbounded. By (i), the projection C− on the C(Ω) is bounded. Hence,

ProjC(Ω)C = ProjC(Ω)C
− ∪ ProjC(Ω)C

+ = [0,+∞).

Therefore, we deduce that C must emanate from infinity on the right of axis
λ = 0.
(iii): Multiplicity results.
Since C contains (0, u0), with u0 being the unique solution of (P0), from (ii)
we deduce that C also emanates from infinity on the right of axis λ = 0. We
conclude that there exists λ0 ∈ (0,Λ) such that problems (P λ) and (Pλ) have
at least two solutions satisfying u ≥ u0 for λ ∈ (0, λ0).
Next, the quantity

λ := sup{µ,∀λ ∈ (0, µ), (Pλ) has at least two solutions}

is well defined.
We now prove that, for all λ ∈ (0, λ), the problem (Pλ) has at least two

solutions with uλ,1 � uλ,2.
Let us consider the strict subsolution αλ given by Lemma 6.2. As αλ ≤ u

for all u solution of (Pλ), we can choose uλ,1 as the minimal solution with
uλ,1 ≥ α. Hence we have uλ,1 � uλ,2, otherwise there exists a solution u with
α ≤ u ≤ min{uλ,1, uλ,2}, which contradicts the minimality of uλ,1. Observe
that, the function β = 1

2(uλ,1 + uλ,2) is a supersolution of (Pλ) which is not
a solution. As in the proof of the Lemma 6.8 below, we use the convexity of
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ϕ(ξ) = (M(x)ξ, ξ) for each ξ ∈ Rn in order to obtain

− div(A(x)Dβ) = −1
2div(A(x)Duλ,1)− 1

2div(A(x)Duλ,2)

= cλ(x)β + 1
2(M(x)Duλ,1, Duλ,1) + 1

2(M(x)Duλ,2, Duλ,2) + h(x)

= cλ(x)β + 1
2ϕ(Duλ,1) + 1

2ϕ(Duλ,2) + h(x)

	 cλ(x)β + ϕ
(Duλ,1

2 + Duλ,2
2

)
+ h(x)

= cλ(x)β + (M(x)Dβ,Dβ) + h(x).

Let us prove that β is a strict supersolution of (Pλ). Consider a solution u of
(Pλ) with u ≤ β. Then v := β − u satisfies

− div(A(x)Dv) 	 cλ(x)β + (M(x)Dβ,Dβ) + h(x)− (M(x)Du,Du)− cλu− h(x)

= (M(x)[Dβ +Du], Dv) + cλv,

and hence

− div(A(x)Dv)− (M(x)Dβ +Du,Dv) + c−(x)v 	 λc+(x)v ≥ 0.

By Theorem 2.12 we deduce that either v � 0 or v ≡ 0. If v ≡ 0, then β = u

is solution, which contradicts the construction of β. Then we have β � u.
As uλ,1 � β � uλ,2 we deduce that, uλ,1 � β � uλ,2 and hence we have
uλ,1 � uλ,2. We finish the proof with the following claim.

Claim 6.6 If λ <∞, the solution uλ of (Pλ) is unique.

Proof. To prove that (Pλ) has at least one solution, let {λn} ⊂ (0, λ) such
that λn → λ and by the regularity result (Lemma 2.1 [ACJT14]) {un} ⊂
H1(ω)∩W 1,n

loc (Ω)∩C(Ω) be a sequence of corresponding solutions. By Theorem
5.6, there exists M > 0 such that ‖un‖L∞ < M for all n ∈ N, and hence by
the C1,α global estimates we get ‖un‖C1,α(Ω) ≤ C. Hence, up to a subsequence,
un → u in C1

0(Ω). From this strong convergence we easily observe that u is a
solution of (Pλ). Now we proof the uniqueness of the solution of (Pλ).
Let us assume by contradiction that we have two distinct solutions, u1 and u2

of (Pλ), we prove that β = 1
2(u1 + u2) is a strict supersolution of (Pλ). Let us

consider the strict subsolution αλ � β of (Pλ) given by Lemma 6.2, and look
at the set,

S = {u ∈ C1
0(Ω); α� u� β, ‖u‖C1

0
< R}
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for some R > C > 0. Again, by the C1,α estimates,

‖u‖C1,α ≤ C for all u solution of (Pλ), λ ∈ [λ, λ+ 1] (6.3)

such that deg(I − Tλ,S) = 1.
Now we prove the existence of ε > 0 such that

deg(I − Tλ, λ) = 1, for all λ ∈ [λ, λ+ ε]. (6.4)

We will verify that there exists some ε ∈ (0, 1) such that there is no fixed
points of Tλ on the boundary of S for all λ in the preceding interval. Indeed, if
this was not the case, there would exists a sequence λk → λ with the respective
solutions uk of (Pλk) belonging to S. Say λk ∈ [λ, λ+1] for k ≥ k0. Then, since
α � uk � β in Ω, by (6.3) we must have uk ∈ ∂S for k ≥ k0, which means
that for each such k,

max
Ω

(α− uk) = 0 or min
Ω

(uk − β) = 0. (6.5)

By (6.3) and the compact inclusion Cα(Ω) ⊂ C(Ω), uk → u in Ω for some
u ∈ C(Ω), up to subsequence. From this, we observe that u is a solution of
(Pλ) and α ≤ β in Ω, by taking the limit as k → +∞ in the corresponding
inequalities for uk. Thus α � u � β in Ω, since α and β are strict. Passing
(6.5) to the limits, we obtain that u(x) = α(x) or u(x) = β(x) at a point x ∈ Ω,
which contradicts the definition of α� u� β. Hence for obtaining (6.4) it is
just necessary to apply the homotopy invariance in λ in the interval [λ, λ+ ε].
Next, with (6.4) at hand, we repeat exactly the same argument done in (iii)
to obtain the existence of a second solution uλ,2 of (Pλ), for all λ ∈ [λ, λ+ ε].
But this, finally, contradicts the definition of λ. �

6.3
Proof of Theorem 5.2

We start by constructing an auxiliary problem (Pλ,k), for which we can
assume that there are no solutions for large k. This is a typical but essential
argument that allows us to find a second solution via degree theory, by
homotopy invariance in k. Fix Λ2 > 0. Recall that Theorem 5.12 gives us
an a priori lower uniform bound C0 such that

u ≥ −C0, for every weak supersolution u of (Pλ), for all λ ∈ [0,Λ2].
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Consider, the problem − div(A(x)Du) = cλ(x)u+ (M(x)Du,Du) + h(x) + kc̃(x) in Ω
u = 0 on ∂Ω

(Pλ,k)

for k ≥ 0, λ ∈ [0,Λ2] and c̃ being defined as

c̃(x) := c̃Λ2(x) = h−(x) + Λ2C0c
+(x) + M̃c−(x) +Bc+(x) (6.6)

with B = γ1/ν1, where γ1 = γ+
1 > 0 is the first eigenvalue with weight c,

associated to the eigenfunction ϕ1 ∈ W 2,p(Ω), given by (Pγ1). Note that every
solution of (Pλ,k) is also a supersolution of (Pλ) since kc̃(x) ≥ 0. From this
and (6.6) we have for all k ≥ 1 that

cλ(x)u+ h(x) + kc̃(x) ≥ −Λ2C0c
+(x)− M̃c−(x)− h−(x) + c̃(x) = Bc+(x) 	 0.

Lemma 6.7 Under assumption (A), assume that (P0) has a solution u0 ≤ 0
with c+(x)u0 � 0. Then for each fixed Λ2 > 0 and λ ∈ [0,Λ2], there exists
k ≥ 0 such that

(i) For all k > 1, the problem (Pλ,k) has no solutions;
(ii) For all k ∈ (0, 1), (Pλ,k) has at least two solutions uλ,1 � uλ,2;
(iii) For k = 1, and h ≤ 0 the problem (Pλ,k) has exactly one solution.

Proof. We proceed in several steps.
Step 1: For k > 0 small, (Pλ,k) admits a solution.
Let λ > γ1 and ε0 > 0 be given by Lemma 6.11 corresponding to c = c(x),
d = ν2h

−(x), h = ν2c̃(x) + 1
k
ν2h

+(x), and choose

λ0 ∈
(
γ1,min

{
γ1 + ε0, γ1 + λ− γ1

2
}]
. Then the problem

− div(A(x)Du) + ν2h
−(x)u = cλ0u+ ν2c̃(x) + 1

k
ν2h

+(x)

has a solution u� 0. Also taking δ > 0 small enough we have that

λ0s ≥ (1 + λs) ln(1 + λs)

for all s ∈ [−δ, 0]. Thus defining β̃k = k
λ
u for k > 0 small enough, it follows

that β̃k ∈ [−δ, 0] and satisfies

− div(A(x)Dβ̃k) = cλ0 β̃k + ν2
k

λ
c̃(x)− ν2

k

λ
h−(x)u+ 1

λ
ν2h

+(x), and hence

− div(A(x)Dβ̃k) + ν2h
−(x)β̃k = cλ0(x)β̃k + ν2

k

λ
c̃(x) + 1

λ
ν2h

+(x).
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Hence for βk being defined by βk = 1
ν2

ln(1 + λβ̃k), we have

− div(A(x)Dβk) = − λ
ν2

div(A(x)Dβ̃k)
(1 + λβ̃k)

− λ

ν2

(
A(x)Dβ̃k, D

[
1

(1 + λβ̃k)

])

	 cλ(x)βk + kc̃(x) + h+(x)− λh−(x)β̃k
1 + λβ̃k

+ λ2

ν2(1 + λβ̃k)2
(A(x)Dβ̃k, Dβ̃k)

≥ cλ(x)βk + kc̃(x) + h+(x)− h−(x) + ν2ϑ
|Dβ̃k|2

(1 + ν2β̃)2

= cλ(x)βk + kc̃(x) + h(x) + µ2|Dβk|2

≥ cλ(x)βk + kc̃(x) + h(x) + (M(x)Dβk, Dβk).

We see that − div(A(x)Dβk) ≥ cλ(x)βk + kc̃(x) + h(x) + (M(x)Dβk, Dβk) in Ω
βk = 0 on ∂Ω

has a supersolution βk with βk � 0. Hence we conclude that (Pλ,k) has at least
one solution, by following the proof of Theorem 5.1.
Step 2: For k > 1 the problem (Pλ,k) has no solution.
First we observe that every solution of (Pλ,k), for λ ∈ [0,Λ2], is positive in Ω.
In fact, we observe that − div(A(x)Du) ≥ (M(x)Du,Du) +Bc+(x) ≥ 0 in Ω

u = 0 on ∂Ω

and this implies that u ≥ 0 in Ω by Lemma 2.10. Then u > 0 in Ω by SMP. In
order to obtain a contradiction, assume that u is a solution of (Pλ,k) in Ω. Let
ϕ ∈ C∞0 (Ω) such that ϕ2 � 0. Then using ϕ2 as test function, by Theorem
5.12 we obtain
∫ 1
µ1
|Dϕ|2 ≥ 2

∫
(ϕDu,Dϕ)− µ1

∫
|Du|2ϕ2

≥ 2
∫

(ϕDu,Dϕ)−
∫

(M(x)Du,ϕ2Du)

=
∫
cλ(x)uϕ2 + h(x)ϕ2 + kc̃(x)ϕ2

≥ −Λ2C0

∫
c+(x)ϕ2 −M

∫
c−(x)ϕ2 −

∫
h−(x)ϕ2 +

∫
kc̃(x)ϕ2

which is a contradiction for k > 1 large enough.
Step 3: For k = 1 (Pλ,k) has a unique solution, and k ∈ (0, 1) the problem
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(Pλ,k) has a strict supersolution.
By Step 1 and 2 we have

1 = sup{k > 0; (Pλ,k) has at least one solution}.

Let k ∈ (0, 1) and k̃ ∈ (k, 1) be such that (P
λ,̃k

) has a solution β̃. Then β = k

k̃
β̃

is a supersolution of (Pλ,k). In fact note that,

− div(A(x)Dβ) = cλβ +
(
M(x) k̃

k
Dβ,Dβ

)
+ k

k̃
h(x) + kc̃(x)

≥ cλβ + (M(x)Dβ,Dβ) + h(x) + kc̃(x)

i.e. β is a supersolution of (Pλ,k). Now, as in (iii) of the proof of Theorem 5.1
we can prove that β is a strict supersolution of (Pλ,k).
Step 4: Conclusion.
The proof of the existence of the second solution uλ,2 with uλ,1 � uλ,2 is derived
exactly as (iii) of the proof of Theorem 5.2. �

Lemma 6.8 Under assumption (A), assume that (P0) has a solution u0 ≤ 0
with c+(x)u � 0. Then, for all λ ≥ 0, problem (Pλ) has at most one solution
u ≤ 0.

Proof. The proof is divided in several steps.
Step 1: If u is a subsolution of (Pλ) with u ≤ 0, then u� 0.
In fact, u is a subsolution of (P0) and by Lemma 2.11, we have u ≤ u0. In
addition for w = u0 − u we have

− div(A(x)Dw) ≥ −c−(x)u0 + (M(x)Du0, Du0)− cλ(x)u− (M(x)Du,Du)

= (M(x)Du+Dw,Dw)− c−(x)w − λc+(x)u,

and hence, we get − div(A(x)Dw)− (M(x)Du+Dw,Dw)− c−(x)w 	 0 in Ω
w = 0 on ∂Ω.

This implies that w � 0 i.e. u� u0 ≤ 0.
Step 2: If we have two solutions u1, u2 ≤ 0 of (Pλ) then we have two ordered
solutions ũ1 � ũ2 ≤ u0.
By Step 1, we have u1, u2 � u0 . In case u1 and u2 are not ordered, as u0 is a
supersolution of (Pλ), applying Theorem 2.1 of [CJ17], there exists a solution
u3 of (Pλ) with max{u1, u2} ≤ u3 ≤ u0. This proves Step 2 by choosing ũ1 = u1

and ũ2 = u3.
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Step 3: We prove the uniqueness of the nonpositive soluion of (Pλ).
Let us assume by contradiction that we have two ordered solutions, we can
suppose u1 � u2 � 0. As |u2| � 0 the set {ε > 0, u2 − u1 ≤ ε|u2|} is not
empty. Then defining

ε̃ := min{ε > 0, u2 − u1 ≤ ε|u2|}

and setting

wε̃ := (1 + ε̃)u2 − u1

ε̃
,

we can define for each ξ ∈ Rn the function ϕ(ξ) := (M(x)ξ, ξ), and by
assumption (A), we have D2(ϕ) > 0, therefore ϕ is convex. We can write

u2 = ε̃

1 + ε̃
wε̃ + 1

1 + ε̃
u1,

(M(x)Du2, Du2) = ϕ(Du2) = ϕ
(

ε̃

1 + ε̃
Dwε̃ + 1

1 + ε̃
Du1

)
≤ ε̃

1 + ε̃
ϕ(Dwε̃) + 1

1 + ε̃
ϕ (Du1)

= 1
1 + ε̃

[
ε̃(M(x)Dwε̃, Dwε̃) + (M(x)Du1, Du1)

]
,

and hence
1 + ε̃

ε̃
(M(x)Du2, Du2) ≤ (M(x)Dwε̃, Dwε̃) + 1

ε̃
(M(x)Du1, Du1).

Thus, we obtain

− div(A(x)Dwε̃) = −1 + ε̃

ε̃
div(A(x)Du2) + 1

ε̃
div(A(x)Du1)

≤ 1 + ε̃

ε̃

(
cλ(x)u2 + (M(x)Du2, Du2) + h(x)

)
− 1
ε̃

(
cλ(x)u1 + (M(x)Du1, Du1) + h(x)

)
≤ cλ(x)wε̃ + (M(x)Dwε̃, Dwε̃) + h(x).

Then, applying again the Comparison Principle Lemma 2.11, wε̃ � u2 ≤ 0.
Hence, we have a contradiction with the definition of ε̃. �

Proof.[Proof of Theorem 5.2] We treat separately the case λ ≤ 0 and λ > 0.
(i): λ ≤ 0.
As in the proof of Theorem 5.1 we can use Theorem 1.2 [CFJ19] and its proof.
Moreover, observe that u0 is a subsolution of (Pλ). Hence we conclude that
uλ ≥ u0 applying the comparison principle. By Proposition 4.1 in [ACJT15]
the problem (Pλ) for λ ≤ 0 has at most one solution.
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By Lemma 5.8 the functions v = u0 + ‖u0‖∞ is a supersolution of (Pλ) for
λ < 0, and by the comparison principle, we get u0 + ‖u0‖∞ ≥ uλ .
(ii): λ > 0.
With the aim of showing the existence of a continuum of solution of (Pλ), for
λ ≥ 0 we introduce the auxiliary problem

− div(A(x)Du)+u = [cλ(x)+1][u0−(u−u0)−]+(M(x)Du,Du)+h(x). (Pλ)

As in the case of (Pλ), any solution of (Pλ) belong to C0,τ (Ω) for some τ > 0.
Moreover observe that u is a solution of (Pλ) if and only if it is a fixed point of
the operator T̂λ defined by T̂λ : C(Ω)→ C(Ω) : v → u, where u is the solution
of

− div(A(x)Du) + u−
(
M(x)Du,Du

)
= [cλ(x) + 1][u0 − (v − u0)−] + h(x).

Applying the same argument to T λ as the one used in the proof of Theorem
5.1, we see that T̂λ is completely continuous, and we split the rest of the proof
into three steps.
Step 1: If u is a solution of (Pλ) then u ≤ u0 and hence it is a solution of
(Pλ).
Observe that u0 − u− (u− u0)− ≤ 0. Moreover, we also have

λc+(x)[u0 − u− (u− u0)−] ≤ λc+(x)u0 ≤ 0.

Hence we deduce that a solution u of (Pλ) is a subsolution of

− div(A(x)Du) = −c−(x)[u0 − (u− u0)−] + (M(x)Du,Du) + h(x). (6.7)

Since u0 is a solution of (Pλ), it implies that u0 solves (6.7). Then applying
again the comparison principle we get u ≤ u0.
Step 2: u0 is the unique solution to (P0) as well as to the problem (P0) and
i(I − T̂0, u0) = 1.
For λ = 0, if u is a solution to (6.7), then by Step 1, u ≤ u0 and u solves (Pλ).
From (i) we conclude that u = u0. In order to prove that i(I − T̂0, u0) = 1, we
consider the operator St defined by

St : C(Ω)→ C(Ω)

v → St(v) = tT̂0v = u
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where u is the solution of

− div(A(x)Du) + u = (M(x)Du,Du) + th(x)

+ t[−c−(x) + 1][u0 − (v − u0)− − (v − u0 + 1)−].

First, note that by the complete continuity of T̂ (recall also that every solution
u of (P λ) is Cα up to the boundary), there exists R > 0 such that for all
t ∈ [0, 1] and all v ∈ C(Ω),

‖Stv‖Cα < R.

Then I − St does not vanish on ∂BR(0) and

deg(I − T̂0, BR(0)) = deg(I − S1, BR(0))

= deg(I − S0, BR(0))

= deg(I, BR(0)) = 1.

Therefore, T̂0 has only a fixed point u0 which is a solution of (P0). Hence, by
the property of the degree, for all ε > 0 small enough, it follows that

deg(I − T̂0, Bε(0)) = deg(I − T̂0, BR(0)) = 1.

Thus, for ε < 1, we conclude that

i(I − T̂0, u0) = lim
ε→0

deg(I − T̂0, Bε(0)) = 1.

Step 3: Existence and behavior of the continuum.
Proceeding as the proof of Theorem 1.2 of [CJ17], we are able to apply Theorem
6.5 (see also Theorem 2.2 [ACJT15]) to ensure the existence of a continuum
C = C+ ∪ C− ⊂ Σ such that

C+ = C ∩ ([0,∞)× C(Ω)) and C− = C ∩ ((−∞, 0]× C(Ω))

are unbounded in R± × C(Ω). Since the component C+ is unbounded in
R+ × C(Ω), its projection on the C(Ω) axis must be unbounded and a
consequence of (i) is that none of λ ∈ (−∞, 0] is a bifurcation point from
infinity of (Pλ), thus we deduce that the projection of C− on λ-axis is (−∞, 0].
(iii): Multiplicity results.
We now prove that for λ > 0, (Pλ) has at least two solutions, uλ,1 and uλ,2

with uλ,1 ≤ uλ,2. By Step 1, we get the existence of a first solution uλ,1 ≤ u0.
To prove that u0 is a strict supersolution of (Pλ), we argue as in Step 2 of
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the proof of Theorem 5.1, and by Lemma 6.2 (Pλ) has a strict subsolution α
with α ≤ u0. Then, by Theorem 2.1 of [CJ17], there exists R > 0 such that
uλ,1 ∈ S, where S = {u ∈ C1

0(Ω);α� u� u0 in Ω, ‖u‖C1
0
< R}.

Fix λ > 0 and set Λ2 = 2λ. Replace h by h + kc̃ in the problem (Pλ,k),
then Theorem 5.6 gives us an L∞ a priori bound for solutions of (Pλ,k) for
every k ∈ [0, 1]. This provides, by the C1,α global estimatives, an a priori
bound for solutions in C1

0(Ω), i.e. ‖u‖C1
0 (Ω) < R0 for every solution u of (Pλ,k),

for all k ∈ [0, 1] where R0 > R also depends on λ. Hence, by the homotopy
invariance of the degree, and the fact that, for k > 1, (Pλ,k) has no solution
we have

deg(I − T̂λ, BR0(0)) = deg(I − T̂λ,0, BR0(0)) = deg(I − T̂λ,k, BR0(0)) = 0

where T̂λ,k is the operator T̂λ in which we replace h(x) by h(x) + kc̃ (of course
T̂λ,k is still completely continuous). But then, by the excision property of the
degree,

deg(I − Tλ, BR0 \ S(0)) = deg(I − Tλ, BR0(0))− deg(I − Tλ, S(0)) = −1

and the existence of a second solution uλ,2 ∈ BR0 \ S is derived. By Lemma
6.8 we have uλ,2 > 0.

Claim 6.9 For λ1 < λ2, we have uλ2,1 � uλ1,1.

Proof. For fixed λ1 < λ2 note that

cλ1(x)uλ1,1 = λ1c
+(x)uλ1,1−c−(x)uλ1,1 	 λ2c

+(x)uλ1,1−c−(x)uλ1,1 = cλ2(x)uλ1,1

since uλ1,1 < 0. Then uλ1,1 is a strict supersolution of (Pλ2), which is not
a solution and, in particular uλ1,1 6= uλ2,1. As in the proof of Claim 6.16
[NS18], observe that uλ2,1 is the minimal solution of (Pλ2). In fact, recall
that ξ = ξλ2 , given by Lemma 6.2, is such that ξ ≤ u for every strict
supersolution of (Pλ2), and in particular ξ ≤ uλ1,1. Remember also that uλ2,1

is the minimal strict solution such that uλ2,1 ≥ ξ in Ω. Now, if there was a
x0 ∈ Ω such that uλ2,1(x0) > uλ1,1(x0), by defining η := min{uλ1,1, uλ2,1}, as
the minimum of strict supersolutions of (Pλ2) not less than ξ, we have ξ ≤ η

in Ω. Thus, Theorem 2.1 of [CJ17] provides a solution u of (Pλ2) such that
ξ ≤ u ≤ η � uλ2,1 in Ω, which contradicts the minimality of uλ2,1. �

This ends the proof of Theorem 5.2. �
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6.4
Proof of Theorem 5.3

(i): Multiplicity results.
First observe that if (Pλ) has a supersolution βλ ≤ 0, then βλ satisfies also
c+(x)βλ � 0, otherwise, it is also an supersolution of (P0), which contradicts
the assumption (a). (See Remark 6.3). Let us define

λ = inf{λ ≥ 0; (Pλ) has a supersolution βλ ≤ 0 with c+(x)βλ � 0}.

Let λ > λ. By the definition of λ there exists λ̃ ∈ [λ, λ), such that (P
λ̃
) has a

supersolution β
λ̃
≤ 0 with c+(x)β

λ̃
� 0. Note that

c
λ̃
(x)β

λ̃
= λ̃c+(x)β

λ̃
− c−(x)β

λ̃
	 λc+(x)β

λ̃
− c−(x)β

λ̃
= cλ(x)β

λ̃
.

Then, β
λ̃
is a supersolution of (Pλ), which is not a solution and hence, as in

(iii) of the proof of Theorem 5.2, it is a strict supersolution of (Pλ). By Lemma
6.2, (Pλ) has a strict subsolution α ≤ β

λ̃
and α ≤ u for all solutions u of

(Pλ). As in Step 2 of the proof of Theorem 5.2, there exists R > 0 such that
deg(I − T̂λ, S) = 1 with

S = {u ∈ C1
0(Ω), α� u� β

λ̃
, ‖u‖C1 ≤ R},

and by the property of the degree, the existence of the first solution uλ,1 � 0 is
derived. To obtain a second solution uλ,2 satisfying uλ,1 � uλ,2 and uλ,2 > β

λ̃

we now repeat the argument of (iii) of the proof of the Theorem 5.2. By
Lemma 6.8 in this case we have uλ,2 > uλ. Again, Claim 6.9, we prove that if
λ1 < λ2 we have uλ1,1 � uλ2,1.
(ii): Uniqueness of the solution of (Pλ).
To prove that (Pλ) has at least one solution with u ≤ 0, let {λn} ⊂ (λ,∞) be
a decreasing sequence such that λn → λ. By the regularity result (Lemma 2.1
[ACJT14]) {un} ⊂ H1(ω) ∩W 1,n

loc (Ω) ∩ C(Ω) be a sequence of corresponding
solutions with un ≤ un+1 ≤ 0. As {un} is increasing and bounded above,
by Theorem 5.6, there exists M > 0 such that ‖un‖L∞ < M for all n ∈ N,
and hence by the C1,α global estimates, Theorem 4.8 we get ‖un‖C1,α(Ω) ≤ C.
Hence, up to a subsequence, un → u in C1

0(Ω). From this strong convergence
we easily observe that u is a solution of (Pλ) with u ≤ 0.

Now we prove the uniqueness of the nonpositive solution of (Pλ). Let us
assume by contradiction that we have two distincts solutions, u1 and u2 of (Pλ),
then as in the Step 3 of the proof of Theorem 5.2, we prove that β = 1

2(u1 +u2)
is a strict super solution of (Pλ). Let us consider the strict subsolution α� β
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of (Pλ) given by Lemma 6.2, and define the set,

S = {u ∈ C1
0(Ω); α� u� β, ‖u‖C1

0
< R}

for some R > C > 0. Again, by the C1,α estimates,

‖u‖C1,α ≤ C for all u sol. of (Pλ), λ ∈ [λ− 1, λ] (6.8)

such that deg(I − T̂λ,S) = 1.
Now we prove the existence of ε > 0 such that

deg(I − T̂λ, λ) = 1, for all λ ∈ [λ− ε, λ]. (6.9)

We will verify that there exists some ε ∈ (0, 1) such that there is no fixed
points of Tλ on the boundary of S for all λ in the preceding interval. Indeed, if
this was not the case, there would exists a sequence λk → λ with the respective
solutions uk of (Pλk) belonging to S. Say λk ∈ [λ−1, λ] for k ≥ k0. Then, since
α � uk � β in Ω, by (6.8) we must have uk ∈ ∂S for k ≥ k0, which means
that for each such k,

max
Ω

(α− uk) = 0 or min
Ω

(uk − β) = 0. (6.10)

By (6.8) and the compact inclusion Cα(Ω) ⊂ C(Ω), uk → u in Ω for some
u ∈ Ω, up to subsequence. From this, we observe that u is a solution of
(Pλ); and α ≤ β in Ω, by taking the limit as k → +∞ in the corresponding
inequalities for uk. Thus α � u � β in Ω, since α and β are strict. Passing
(6.10) to the limit and we obtain that u(x) = α(x) or u(x) = β(x) at a point
x ∈ Ω, which contradicts the definition of α � u � β. Hence for obtaining
(6.9) it is sufficient to apply the homotopy invariance in λ in the interval
[λ − ε, λ]. Next, with (6.9) at hand, we repeat exactly the same argument
done in (i) to obtain the existence of a second solution uλ,2 of (Pλ), for all
λ ∈ [λ− ε, λ]. But this, finally, contradicts the definition of λ.
(iii): By the definition of λ and since β is a strict supersolution of (Pλ) we
infer that the problem (Pλ) has no solution u ≤ 0.
(iv): Behaviour of the solutions for λ→ 0−.
In Theorem 5.12 we proved that ‖uλ‖∞ ≥ −2‖u

λ̂
‖∞ for all λ ≤ λ̂ < 0. In

particular, if C0 := lim infλ→0− −‖uλ‖∞ > −∞, then there exists a sequence
λ̂n → 0− such that C0 = limn→∞−‖uλ̂‖∞ > −∞. Hence, for every sequence
λn → 0− we deduce by the above inequality that lim infn→∞ ‖uλn‖∞ ≥ −2C0,
which implies that lim infλ→0− −‖uλn‖∞ > −∞. Therefore, we have either
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limλ→0− −‖uλ‖∞ = −∞ or limλ→0− −‖uλ‖∞ > −∞. By hypothesis we have
that (P0) does not have a solution u0, then we have the first case.

6.5
Proof of Corollary 5.4

First observe that (Pγ1,k) has no solution. If we assume by contradiction
that u is a solution of (Pλ,k) and using ϕ1 > 0 the first eigenfunction of (Pγ1)
as test function in (Pλ,k), we have

∫
cγ1(x)uϕ1 =

∫
A(x)DuDϕ1

=
∫
cλ(x)uϕ1 +

∫
ϕ1(M(x)Du,Du) +

∫
(h(x) + kc̃(x))ϕ1

and

(γ1 − λ)
∫
c+(x)uϕ1 ≤ −

∫
|h(x)|ϕ1 < 0.

which is a contradiction for λ = γ1. Hence also, for all λ > 0 (Pλ) has no
solution with c+(x)u ≡ 0 as otherwise u is a solution of (Pλ) for every λ ∈ R
which contradicts the nonexistence of a solution for λ = γ1. By Step 3 of the
proof of Lemma 6.7 there exists k̃ > 0 such that, for all k ∈ (0, k̃], the problem
(Pλ,k) has a strict super solution β0 with β � 0. The existence of λ2 > γ1 as
in (iii) can then be deduced from Theorem 5.3. By Theorem 1.1 [ACJT15],
decreasing k̃ if necessary, we know that for all k ∈ (0, k̃], the problem (P0,k)
has a solution u0 � 0. Hence the existence of λ1 as in (i) can be deduced from
Theorem 5.1.

6.6
Proof of Theorem 5.5

Let us begin with a preliminary remark.

Remark 6.10 Particular cases of Theorem 5.1 and 5.2 are given when h(x) 	
0 and h(x) � 0. Indeed, if h 	 0 holds, then u0 is a supersolution of
 − div(A(x)Du0) ≥ cλ(x)u0 + (M(x)Du0, Du0) + h(x) 	 0 in Ω

u0 = 0 on ∂Ω

and this implies that u0 ≥ 0 in Ω by Lemma 2.10. Then applying the SMP
SMP gives us u0 > 0 in Ω. Furthermore, by Hopf, u0 � 0 in Ω. On the other
hand , if h � 0, then u0 is a subsolution of

− div(A(x)Du0) ≤ cλ(x)u0 + (M(x)Du0, Du0) + h(x) � (M(x)Du0, Du0)
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and so v0 = 1
ν2

(eν2u0 − 1) is a subsolution of

− div(A(x)Dv0) ≤ [1 + ν2v][− div(A(x)Du0)− µ2|Du0|2]

� [1 + ν2v][(M(x)Du0, Du0)− µ2|Du0|2]

� 0 in Ω

by Lemma 2.10 with v0 = 0 on ∂Ω. Again by SMP we get v0 < 0 in Ω (then
v0 � 0 in Ω by Hopf) and so does u0 < 0 (with u0 � 0).

In order to consider the situation where (Pλ0) has a supersolution, we need
the following formulation of the anti-maximum principle. Under slightly more
smooth data this result was established in [H81] but the proof given in [H81]
directly extend under our regularity assumptions.

Lemma 6.11 Let c, h, d ∈ Lp(Ω) with p > n and assume h 	 0. We denote
by γ1 > 0 the first eigenvalue of

− div(A(x)Du) + d(x)u = cγ1(x)u, u ∈ H1
0 (Ω).

Then there exists ε0 > 0 such that, for all λ ∈ (γ1, γ1 + ε0), the solution v of

− div(A(x)Dv) + d(x)v = cλ(x)v + h(x), v ∈ H1
0 (Ω).

satisfies v � 0.

Proof.[Proof of Theorem 5.5] Note that, for all λ ∈ R, u ≡ 0 is a solution of
(Ph≡0).
(i): We proceed in several steps.
Step 1: We prove that for all λ ∈ (0, γ1) the problem (Ph≡0) has a second
solution uλ,2 	 0.
Let us prove that the problem (Ph≡0) has a supersolution β � 0. Define λ < γ1

and ε > 0 such that, for all v ∈ [0, ε],

λ
(1 + ν2v) ln(1 + ν2v)

ν2
≤ γ1v.

Consider then the function β̃ = εϕ1 where ϕ1 denotes the first eigenfunction
of (Pγ1) with ‖ϕ1‖L∞ = 1 and


− div(A(x)Dβ̃) = cγ(x)β̃ 	 cλ(x)(1 + ν2β̃) ln(1 + ν2β̃)

ν2
, in Ω

β̃ = 0 on ∂Ω.
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Hence for β being defined by β = ln(1+ν2β̃)
ν2

, we have

− div(A(x)Dβ) = −div(A(x)Dβ̃)
(1 + ν2β̃)

−
(
A(x)Dβ̃,D

[
1

(1 + ν2β̃)

])

	 cλ(x)β + ν2

(1 + ν2β̃)2
(A(x)Dβ̃,Dβ̃)

≥ cλ(x)β + ν2ϑ
|Dβ̃|2

(1 + ν2β̃)2

= cλ(x)β + µ2|Dβ|2

≥ cλ(x)β + (M(x)Dβ,Dβ)

and hence − div(A(x)Dβ) 	 cλ(x)β + (M(x)Dβ,Dβ) in Ω
β = 0 on ∂Ω.

This implies, by Lemma 2.11 that β ≥ 0 is a strict supersolution of (Ph≡0).
Then by Remark 6.10 we know that, every solution u of the problem (Ph≡0)
satisfies u ≥ 0, and by Lemma 6.2, (Ph≡0) has a strict subsolution α � 0.
Hence we conclude that (Ph≡0) has at least two solutions following the proof
of Theorem 5.1 with the solution uλ,1 being u ≡ 0.
(ii): Uniqueness of the solution.
Let u 6≡ 0 be another solution of (Ph≡0), and using ϕ1 > 0 the first
eigenfunction of (Pγ1), as test function in (Ph≡0), we have

∫
cγ1(x)uϕ1 =

∫
A(x)DuDϕ1 =

∫
cλ(x)uϕ1 +

∫
(M(x)Du,Du)ϕ1

(γ1 − λ)
∫
c+(x)uϕ1 =

∫
(M(x)Du,Du)ϕ1 ≥ µ1

∫
|Du|2ϕ1 > 0,

which is a contradiction for λ = γ1. Hence (Ph≡0) has only the trivial solution.
(iii): Multiplicity results.
For λ > γ1, the problem (Ph≡0) has a second solution uλ,2 � 0. Let λ > γ1

and λ0 ∈ (γ1, λ] such that, by Lemma 6.11, the problem

− div(A(x)Du) = cλ0(x)u+ 1,

has a solution u � 0. This implies that for ε > 0 small enough, the function
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β0 = εu satisfies

− div(A(x)Dβ0) = cλ0(x)εu+ ε

≥ cλ0(x)β0 + ε2µ2|Du|2

≥ cλ0(x)β0 + (M(x)Dβ0, Dβ0)

and the problem (Ph≡0) has a supersolution β0 with β0 ≤ 0 and c+(x)β0 � 0.
The result follows by Theorem 5.3 with uλ,2 ≡ 0.

(v): Continuum of solution of (Ph≡0).
With the aim of showing the existence of a continuum of solution of (Ph≡0),
we use the operator

Tλ =

 T λ, if λ ≤ γ1,

T̂λ, if λ > γ1.

where T λ for λ ≤ γ1 is defined in (ii) of the proof of Theorem 5.1 and the
operator T̂λ for λ ≥ γ1 is defined in (ii) of the proof of Theorem 5.2 in both
cases with h ≡ 0. We proceed in several steps.
Step 1: For λ ∈ (−∞, γ1].
This can be proved as in (ii) of the proof of Theorem 5.1. Then, if u is a
solution of (P λ) then u ≥ uγ1 and hence it is a solution of (Ph≡0).
Step 2: For λ ∈ [γ1,+∞).
The proof follows the lines of (ii) of the proof of Theorem 5.2. Then, if u is a
solution of (Pλ) then u ≤ uγ1 and hence it is a solution of (Ph≡0).
Step 3: We have uγ1 ≡ 0 is the unique solution of the problem (Ph≡0) for
λ = γ1 and i(I − Tγ1 , uγ1) = 1.
Step 4: Existence and behavior of the continuum.
To establish the existence of a continuum of solutions of (Ph≡0) we use Theorem
6.5 (see also Theorem 2.2 [ACJT15]) with γ1 > 0, to ensure the existence of a
continuum C = C+ ∪ C− ⊂ Σ such that

C+ = C ∩ ([γ1,+∞)× C(Ω)) and C− = C ∩ ((−∞, γ1]× C(Ω))

are unbounded in R± × C(Ω). By Step 1, we get that if u ∈ C−, then u ≥ uγ1

and is a solution of (Ph≡0). Thus by (iv) we infer that the projection of C− on
λ-axis is (0, γ1], a bounded interval, and then deduce that the projection of C+

on λ-axis is [γ1,+∞). Hence,

ProjRC = ProjRC− ∪ ProjRC+ = (0,+∞).
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Finally, by Theorem 5.6 for any 0 < Λ1 < Λ2 < γ1 there is a priori bound for
the solution of (Ph≡0), for all λ ∈ [Λ1,Λ2]. Then by the Cα global estimates
(Theorem 4.8), we have also a Cα a priori bound for these solutions i.e. the
projection of C ∩ ([Λ1,Λ2]× C(Ω)) on C(Ω) is bounded. Since the component
C− is unbounded in R− × C(Ω), its projection on the C(Ω) axis must be
unbounded. Therefore, we deduce that C must emanate from infinity on the
right of axis λ = 0. �
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