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Abstract

Bertagna Peixoto Barbosa, Gustavo; Costa da Silva, Eduardo (Ad-
visor); Candea Leite, Antonio (Co-Advisor). Robust Vision-
based Autonomous Crop Row Navigation for Wheeled Mo-
bile Robots in Sloped and Rough Terrains. Rio de Janeiro,
2022. 77p. Dissertação de mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

In this work, we present a new application for some robust controllers,
such as SMC and STA approaches. The main idea is to perform autonomous
navigation in agricultural fields accurately using wheeled mobile robots,
equipped with a fixed monocular camera . Here, we consider the existence
of uncertainties in the parameters of the robot-camera system and external
disturbances caused by high driving velocities, sparse plants, and uneven
terrains. First, we design a robust image-based visual servoing approach to
deal with model inaccuracies and trajectory perturbations in the image
space. In addition, a cascade-based robust control approach is applied,
in which the outer vision feedback loop is connected with an inner pose
feedback loop to deal with the effects of all disturbances sources. Then, a
robust trajectory tracking approach based on the super-twisting algorithm
is applied for motion stabilization to ensure the successful execution of
row crop following tasks under wheel slippage and vehicle sideslip. ROS-
Gazebo platform, an open-source robotics simulator, was used to perform
3D computer simulation using a differential-drive mobile robot and an ad-
hoc designed row-crop environment. The effectiveness and feasibility of the
robust controllers are evaluated by analyzing numerical simulations and
performance metrics, such as: (i) the root-mean square error (RMSE) and
(ii) the mean-absolute deviation (MAD). Furthermore, we will see in results,
that in general, it is only possible to have stability, using robust controllers.

Keywords
Autonomous Vehicle Navigation; Agricultural Automation; Non-

Linear Control; Robust/Adaptive Control; Virtual Environment Simula-
tions
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Resumo

Bertagna Peixoto Barbosa, Gustavo; Costa da Silva, Eduardo;
Candea Leite, Antonio. Navegação autônoma em linhas de
cultivo baseada em visão robusta para robôs móveis com
rodas em terrenos inclinados e acidentados. Rio de Janeiro,
2022. 77p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Nesse trabalho, nós apresentamos novas aplicações para alguns contro-
ladores robustos, tais como as abordagens SMC e STA. O principal objetivo
é conseguir executar uma navegação autônoma precisa em campos agríco-
las, usando robôs móveis com rodas, equipados com uma câmera monocular
fixa. Primeiro, nós projetamos uma abordagem de controle robusto baseado
em servo-visão, a fim de lidar com imprecisões do modelo e perturbações da
trajetória no espaço da imagem. Além disso, uma abordagem de controle
robusto baseada em cascata, é aplicada, na qual, a malha de realimentação
externo está conectada com uma malha de realimentação interna para lidar
com os efeitos de todas as fontes de perturbação. Desse modo, uma abor-
dagem robusta de rastreamento de trajetória, baseada em super-twisting,
é aplicada para estabilização de movimento afim de garantir o sucesso da
tarefa de seguir uma linha de cultivo considerando os efeitos de derrapa-
gem das rodas e derrapagem lateral do veículo. A plataforma ROS-Gazebo,
um simulador de robótica de código aberto, foi utilizada para realização de
simulações computacionais 3D usando um robô móvel do tipo differential-
drive e um ambiente ad-hoc projetado para cultivo em linha. A eficácia e
a viabilidade dos controladores robustos são avaliadas analisando simula-
ções numéricas e métricas de desempenho, tais como: (i) o Erro Quadrático
Médio (EQM) e (ii) o Desvio Absoluto Médio (DAM). Além disso, nós ve-
remos nos resultados, que em geral, só é possível ter estabilidade, utilizando
os controladores rosbustos.

Palavras-chave
Navegação Autônoma de Veículos; Automação Agrícola; Controle

Não-Linear; Controle Robusto/Adaptativo; Simulação em Ambiente Vir-
tual
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1
Introduction

1.1
Motivation

The growth of agricultural productivity has been driven since the last
century, making farms larger and more complex. In this context, precision
agriculture is a new trend of farming development around the world. Conse-
quently, agriculture has demanded technological innovation, such as intelligent
machinery with decision-making capabilities, genetically modified seeds, and
highly accurate sensors for monitoring the cultivation fields [2, 3]. Hence, an
important branch of precision agriculture, autonomous navigation technologies
are becoming a very important research field, since it can reduce environmen-
tal impacts , lower production costs [4], and minimize herbicide waste to weed
control [5]. Therefore, agricultural robots are a feasible and affordable solution
to increase crop yields, help with labor shortages, and prevent crop losses [6].

Several wheeled mobile robots (WMRs), equipped with sensor packages
and different tools, have been developed to carry out various agricultural tasks.
For example, spraying robots as ARA (Fig. 1.1 (a)) and AgBotII (Fig. 1.1 (b))
can be autonomously guided to follow crop rows using machine vision, GPS
RTK and other sensors. they use robot arms to move micro-spray nozzles
attached to their end-effectors to apply herbicides on the detected weed plants
selectively [7, 8].

Figure 1.1: (a) ARA Robot navigating in lettuce harvest; (b) AgBotII performs
field trials of weed management in Dalby.

Monitoring robots, as TIBA and SoyBot (Fig. 1.2), can navigate au-
tonomously in sugarcane crop tunnels or visually follow crop rows in soybeans
and cotton farms for plant health inspection tasks, mainly carrying out dis-
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Chapter 1. Introduction 18

eases and insect pests inventory [9–11]. Autonomous modular robots, as Thor-
vald II, can be reconfigurable for most agricultural environments and carry
out fruit harvesting in strawberry polytunnels, UV-treatment on tomatoes in
greenhouses, plant phenotyping in open fields, among others [12].

Figure 1.2: (a) Soybot, a mobile robot designed for inspection of soy and cotton
crops ; (b) Soybot monitoring a cotton crop .

1.2
Review of State of the art

To ensure efficient and safe autonomous navigation in agricultural fields,
it is crucial to localize the robot accurately, inside or outside the row crops. Cur-
rently, the most common approach for localization is to use RTK GNSS/GPS
receivers to guide robots along previously planned routes, for survey and data
collection with centimeter accuracy. However, RTK GNSS (Real-Time Kine-
matic) technology still has a high cost especially for large-scale applications,
where a fleet of robots has to operate in large cultivation areas [13,14]. LIDAR
and laser scanners combined with cameras have been used to generate topo-
logical maps of the row crops as an affordable solution for autonomous naviga-
tion [15]. However, simultaneous localization and mapping (SLAM) approaches
based on range sensors have to face some challenges such as high computa-
tional cost for point cloud/image processing and optimization, accumulation
of localization errors over time, and localization failure [16,17]. All these draw-
backs have contributed for the development of filtering techniques, to improve
the accuracy of the robot localization, for example, Extended Kalman Fil-
ter (EKF) [18], Monte-Carlo localization (particle filters) [19] and Unscented
Kalman Filter (UKF) [20].

Following this trend, several vision-based autonomous navigation tech-
niques for vehicle guidance have been developed using monocular, stereo and
RGB-D cameras [21]. An Image-based Visual Servoing (IBVS) approach for
robot navigation in urban environments was introduced in [22], where authors
design two primitive vision-based controllers: a row controller, for path fol-
lowing; and column controller for path reaching. These controllers have the
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Chapter 1. Introduction 19

advantage of requiringe fewer computing resources. This IBVS approach was
also used for autonomous navigation in unknown indoor environments using
an electric wheelchair capable of following corridors and passing through door-
ways [23]. The previous works, however, were applied for mobile robot control
only in partially structured scenarios instead of open agricultural fields, which
are commonly subject to large variability in soil properties and crop plant
density. In [24], the aforementioned IBVS approach was firstly employed for
row crop following and two monocular cameras, mounted back and forth, were
used to avoid the need for maneuvers in the headlands.

Within this context, the stabilization and trajectory tracking problems
for WMRs have been an extensive field of research in artificial intelligence,
robotics and control. Except for omnidirectional robots, most WMRs are gen-
erally subject to nonholonomic kinematic constraints [25]. Therefore, these
robots cannot be stabilized using smooth feedback control laws and cannot
reach all the possible paths in the configuration space [26]. Thereby, some
authors have proposed significant waypoints regulation and trajectory track-
ing control approaches for nonholonomic vehicles considering their dynamic
models [27, 28]. In addition, a variety of discontinuous switching controllers
based on the backstepping technique [29] and sliding-mode control (SMC) ap-
proach [30] have been designed to stabilize nonholonomic systems. Because
of the undesired chattering effect caused by the discontinuous nature of such
robust controllers, some continuous approximation for switching control laws
have been proposed [31]. In [32], for example, the finite-time control (FTC)
technique and the super-twisting algorithm (STA) approach [33–35] have been
combined for achieving posture stabilization of a WMR.

In general, most autonomous navigation systems for open fields applica-
tions consider that WMRs are moving on locally flat and stable terrains [36].
Then, the performance of the navigation algorithms may be degraded when
operating in row crops with different soil types, slopes, and roughness. For
this reason, controlling mobile robots through rough and uneven terrains is
one of the most challenging problems for autonomous navigation in agricul-
tural environments. In such cases, external disturbances in robot trajectory
may arise, for example, wheel slippage and sideslip, undermining the perfor-
mance of the motion control algorithm [37]. Therefore, advanced control tech-
niques for WMRs have been proposed to deal with model inaccuracies and
trajectory perturbations caused by non-ideal environments. Wang et al. have
presented a backstepping controller for path-following based on the kinematic
model under wheel slippage and vehicle sideslip [38]. Mobayen has designed
a recursive terminal SMC approach for trajectory tracking for disturbed non-
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holonomic systems [39]. Bessas et al. have developed a novel integral SMC
approach combined with non-linear time-varying feedback for trajectory track-
ing of unicycle robots to deal with matched disturbances and attenuating the
unmatched ones [40]. In Martínez et al. [41], a robust tracking control ap-
proach for unicycle-type mobile robots based on SMC approach and attractive
ellipsoid method have been studied to reject disturbances on the kinematic
equations, considering the constraints of input saturation.

In addition, a variety of robust controllers have been developed to re-
ject perturbations and deal with unmodeled dynamics in visual servoing sys-
tems. [42, 43]. To increase the accuracy of visual tracking tasks for uncertain
robot manipulators as well as to cope with uncertainties in camera calibra-
tion parameters, Oliveira et al. [44] have proposed a Sliding Mode Control
(SMC) technique based on the unit vector control approach and a switching
monitoring function for the image tracking error. Becerra et al. [45] have de-
signed an SMC technique to stabilize the pose of mobile robots equipped with
an uncalibrated epipolar camera and to deal with singular configurations of
the image Jacobian matrix, allowing the vehicle to move directly toward the
target. Furthermore, Becerra et al. [46] have introduced an STA-based visual
servoing system for mobile robots, which uses uncalibrated camera models to
successfully perform tracking tasks of online-generated image trajectories with
unknown first-order time-derivative.

1.3
Methodology

This Master’s thesis presents and discusses two main techniques to per-
form autonomous navigation in agricultural environments with the presence of
disturbances and uncertainties: a robust image-based visual servoing (rIBVS)
approach and a robust cascade-based control (rCC) approach. We include the
3D CAD model of the Soybot robot in a row crop agricultural field developed
in Gazebo, a 3D Simulation environment, for evaluating these image-based
autonomous navigation solutions in different scenarios. Simulation results are
included to ilustrate the performance and fesibility of the proposed rIBVS and
rCC.

1.3.1
Robust Image-Based Visual Servoing Approach

The rIBVS approach is developed to increase the accuracy of autonomous
navigation tasks in agricultural fields performed by wheeled mobile robots,
equipped with a single monocular camera. This method seeks to deal with
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model inaccuracies and disturbances due to the weak camera calibration or
trajectory perturbations, that appear at high driving velocities. First, an image
segmentation technique based on the combination of Hough transform and
RANSAC [47], is applied to extract the line features of the crop row in the
image space. Such algorithm can be an alternative solution to the machine
learning-based methods, due to their well-known requirements regarding the
complexity of learning models, computational capacity and dataset quality.
Then, a sliding mode control approach is used to include a robustness term into
the classic IBVS approach based on two primitive row and column controllers
in the image space [22].

1.3.2
Robust Cascade-Based Control Approach

In addition, a robust cascade-based control (rCC) approach for WMRs,
with an embedded fixed monocular camera, was developed to carry out
autonomous navigation tasks in row crop fields accurately. The designed
controller comprises an outer vision feedback loop connected via a cascade
control strategy with an inner pose feedback loop, with the aim of rejecting all
sources of disturbance. First, the robust image-based visual servoing (rIBVS)
approach, based on the STA method, is designed to deal with the uncertainties
mentioned in the first objective. Then, a robust trajectory tracking control
(rTTC) approach, based on the SMC method, is implemented to provide
motion stabilization in the presence of wheel slippage and vehicle sideslip,
due to variations in terrain roughness and slope. We employ the Lyapunov
stability theory to verify the stability and robustness properties of the overall
closed-loop system.

We include the 3D CAD model of the Soybot robot in a row crop agricul-
tural field developed in Gazebo, a 3D simulation environment, for evaluating
the image-based autonomous navigation solutions in different scenarios. Sim-
ulation results are included to illustrate the performance and feasibility of the
proposed robust vision-based controller (rIBVS) and the robust cascade-based
controller (rCC).

1.4
Goals and Objectives

The objective of this Master’s thesis is to design robust controllers
aiming at performing autonomous navigation tasks in different row crop fields
acurrately, with a monocular camera. We also seek to carry out simulation
tests on the ROS-Gazebo platform to verify and validate the proposed control
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approaches. Thereby, a virtual agricultural environment has been created
containing irregularities in the terrain and sparse plants, as well as, slopes on
the ground. In addition, we hope to apply the designed controllers using real
robots, in a challenging agricultural environment, to experimentally validate
the theory and simulations developed in the present work.

1.5
Contributions

The first contribution of this Master’s Thesis is to apply the vision-
based controller, based on column and row primitives, to navigate a wheeled
mobile robot in agricultural fields. Originally, these approaches were designed
for mobile robots to ride in urban environments only. Thus, it was necessary
to use a segmentation algorithm, based on the combination of RANSAC and
rough transform algorithms to find the best line that represents the crop row.
Then, we modified the column and row primitive controllers to include a
robustness term into the original control laws to ensure successful row crop
and following tasks. Furthermore, we consider the existence of uncertainties in
the parameters of the robot-cameras system and external disturbances caused
by high driving velocities, sparse plants, and uneven terrains. In addition, we
developed a cascade-based robust control approach to deal with the effects of
all disturbances sources. First, we design a robust image-based visual servoing
(rIBVS) to deal with model inaccuracies and trajectory perturbations in image
space. Secondly, a robust trajectory tracking control is designed for motion
stabilization to guarantee the successful performance of r ow crop following
under wheel slippage and vehicle sideslip. Another relevant contribution is the
development of a 3D agricultural environment to simulate all the behaviors
described above. The research conducted along this mater’s thesis, allowed the
publication of the following articles:

– G. B. P. Barbosa, E. C. Silva and A. C. Leite, "Robust Image-based
Visual Servoing for Autonomous Row Crop Following with Wheeled Mobile
Robots", 2021 IEEE 17th International Conference on Automation Science
and Engineering (CASE), Lyon, France, 2021.

– G. B. P. Barbosa, E. C. Silva and A. C. Leite, "Vision-based Autonomous
Crop Row Navigation for Wheeled Mobile Robots using Super-twisting Slid-
ing Mode Control", 2021 European Conference on Mobile Robots (ECMR),
Bonn, Germany, 2021.
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1.6
Dissertation Structure

This Master’s thesis is organized as follows:

– Chapter 2 presents a brief explanation of the main concepts of the
robust controllers used in this dissertation, such as: Sliding Mode Control
(SMC), Unit Vector Control (UVC) and Super Twisting Algorithm (STA)
approaches.

– Chapter 3 introduces a robust image-based visual servoing (rIBVS) ap-
proach for WMRs with a single monocular camera embedded, to carry out
autonomous navigation in row crop fields. First, we present the kinematic
modeling of the WMR, the camera model and the IBVS system. Next, we
describe the vision-based controller, based on column and row primitives.
Lastly, we make small changes to these approaches to include the robustness
term. To illustrate the effectiveness and feasibility of the proposed vision-
based control methodology, 3D computer simulations are executed in the
R0S-Gazebo simulator using the 3D CAD model of the SoyBot Robot.

– Chapter 4 shows a robust cascade-based controller (rCC) approach for
mobile robots equipped with a fixed monocular camera. This controller
comprises an outer vision feedback loop formed by the rIBVS approach, with
an inner pose feedback loop. The purpose of this approach is to deal with all
sources of disturbance. Thereby, we consider that a WMR has to navigate
autonomously in agricultural fields in the presence of external disturbances
caused by the slope and roughness of the terrain. Then, we introduce a
coordinate transformation of the kinematic model into the chained form,
that faclitates solving problems of planning and control of nonholonomic
systems. In addition, a robust trajectory tracking control (rTTC) approach
based on the SMC method is implemented to provide motion stabilization in
the presence of the disturbances caused by imperfections in the terrain. For
checking the robustness and stability of the closed-loop system, 3D computer
simulations are executed in the ROS-Gazebo platform, using a differential-
drive mobile robot and an ad-hoc designed row crop environment.

– Chapter 5 describes the conclusion of the developed approaches. Next, we
hightlight potential future works that we consider as the most relevant next
steps of the reserach.
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2
Main Concepts

In this chapter we describe a motivation of using robust controllers,
and also present a brief description of the control techniques applied in this
dissertation, such as: SMC, UVC and STA approaches.

2.1
Motivation

Generally, in any control problem there are discrepancies between the
real model and the mathematical model used to design the control law [31].
These discrepancies can arise from the following reasons: external disturbances,
uncertain plant parameters and unmodeled dynamics (underestimation of
system order). Thereby, developing controllers that perform the desired task in
the presence of inaccuracies/disturbances is a great challenge. The two major
approaches to deal with these problems are adaptive and robust controllers [1].
As will be seen in the next sections, the typical structure of robust controllers
is composed of a nominal part, similar to a feedback linearization and an
additional term for dealing with inaccuracies/disturbances.

2.2
Sliding Mode Control (SMC)

One of the main robust control approaches is so-called sliding control
methodology. This technique makes it possible to simplify nth-order problems
into an equivalent first-order problem. Therefore, using Sliding Mode Control
(SMC) approach in systems with disturbances and inaccuracies, makes possible
to achieve the desired performance during the task. However, it is necessary
to apply an extremely high control activity.

2.2.1
Sliding Surface

Let’s consider the following single-input dynamic system:

x(n) = g(x) + c(x)u , (2-1)
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where x ∈ R is the output of interest, u ∈ R is the control input and
x = (x, ẋ, ..., x(n−1)) ∈ Rn×1 is the state vector. In Eq. (2-1), the non-linear
function g(x) is not exactly known, but its upper bound and the gain function
c(x) are known functions of x. The control problem consists of making the state
vector x to track a specific time-varying state xd = (xd, ẋd, ..., x(n−1)

d ) ∈ Rn×1

in presence of model imprecision on g(x) and c(x). In addition, to perform
the mentioned trajectory tracking task using the finite control u, the initial
condition x(0) must be defined by:

x(0) = xd(0) . (2-2)

Now, let us define the trajectory tracking error as:

x̃ = x− xd , (2-3)

where x∈Rn×1 is the tracking error vector. In turn, considering a time-varying
surface S(t) in the state space Rn×1 by the equation s(x, t)∈R:

s(x, t) = ( d
dt

+ λ)n−1x̃ , (2-4)

where λ ∈ R is a strictly positive constant and n is the system order.
Thus, given the initial condition defined by Eq. (2-2), the trajectory tracking
problem is equivalent to that of stay on the surface S(t) for all t > 0, since
s(x, t)=0 represents a linear differential equation with a unique solution x̃ = 0.
Therefore, the n-dimensional stabilization problem is reduced to keeping s(x, t)
at 0. The scalar s(x, t) represents a true measure of tracking performance, since
the bounds on s(x, t) can be directly translated into bounds on the tracking
error vector x̃. This problem can be solved by choosing the control law u, such
that outside of S, satisfies:

1
2
d

dt
s(x, t)2 ≤ −Ω|s(x, t)| , (2-5)

where Ω is a strictly positive constant. In Eq. (2-5), s(x, t)2 represents the
squared distance to the surface, which decreases along all system trajectory.
Thereby, all trajectories are constrained to point to the surface S(t), which
means once on the surface, the system remains on the surface. Thus, the sliding
condition given by Eq. (2-5) makes the surface an invariant set. Furthermore,
we can deal with the perturbations and uncertainties in the model by keeping
the surface an invariant set. Another point is that once the sliding surface is
reached, the trajectories are defined by:

( d
dt

+ λ)n−1x̃ = 0 . (2-6)
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Then, with Eq. 2-6, we can confirm the statement that an n-order problem can
be replaced by a first-order one. In addition, satisfying the sliding condition,
guarantees that if the condition described by Eq. 2-2 is not exactly verified,
the surface S(t) will be reached in less time than |s(t = 0)/Ω| as can be seen
in [1]. Now, the robust controller design is divided into two steps. The first
one is a feedback control law u to verify the sliding condition described in
Eq. (2-5). However, due to modeling imprecision and disturbances, we design a
discontinuous control law in the second step to achieve robustness. At this step,
since the implementation of the associated control switchings is necessarily
imperfect, the chattering phenomenon appears.

2.2.2
Filippov’s Construction of the Equivalent Dynamics

The movement of the system on the sliding surface can receive an
interesting geometry interpretation as an "average" of the system dynamics
on both sides of the surface. The dynamic in sliding mode is given by:

ṡ = 0 . (2-7)

By solving Eq. (2-7) to find the control input u, we obtain the equivalent
control ueq. This term can be interpreted as a continuous control law that to
keeps s(x, t)= 0, if the dynamics were known. Now, we consider the following
system:

ẍ = f + u . (2-8)
Then, calculating the sliding surface for second-order system according to
Eq. (2-4), we have:

s = ˙̃x+ λx̃ , (2-9)
Next, taking the time-derivative of the Eq. (2-9) and applying Eq. (2-8), we
can found:

ṡ = f + u− ẍd + λ ˙̃x . (2-10)
The equivalent control ueq taking into account if the dynamic of f were known
and using Eq. (2-10) to calculate ˙s(x, t) = 0 is given by:

ueq = −f + ẍd − λ ˙̃x , (2-11)

geometrically, the equivalent control ueq can be built

ueq = αu+ + (1− α)u− . (2-12)

Therefore, ueq can be written as a convex combination of the u values on both
sides of the surface S(t) The α value can be calculated using Eq. (2-7). that
corresponds to requiring system trajectories tangent to the surface. This idea,
created by Filippov [1] is illustrated in the Fig. 2.1 where f+, f− and feq are
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Figure 2.1: Filippov’s construction of the equivalent dynamics in sliding mode
[1].

given by: 
f+ =

[
ẋ f + u+

]T
,

f− =
[
ẋ f + u−

]T
,

feq =
[
ẋ f + ueq

]T
.

(2-13)

The sliding mode on the surface corresponds to a limiting behavior. As control
switchings occur infinitely fast, the formal solution α of Eq. (2-7) and Eq. (2-
12) can be interpreted as the average "residence time" of the trajectory on the
side s(x, t) > 0.

2.2.3
A Basic Example

Considering a second-order system given by:

ẍ = f + u , (2-14)

where u∈R is the control input, x∈R is the output of interest, and f ∈R s
not exactly known but can be estimated as f̂ ∈R. The estimation error on f
is assumed to be bounded by some known function F (x, ẋ)∈R, described by

|f̂ − f | ≤ F . (2-15)

To give a better example, let the system be:

ẍ+ a(t)ẋ2 cos 3x = u , (2-16)

where a(t) is unknown but obeys

1 ≤ a(t) ≤ 2 . (2-17)

In addition, we have defined that f̂ = −1.5x2 cos 3x and F = 0.5ẋ2| cos 3x|.
Now, to the system track x(t) = xd(t), we have a sliding surface s = 0,
according to Eq. (2-4) given by

s = ˙̃x+ λx̃ . (2-18)
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Then, taking the time-derivative of Eq. (2-18), we found:

ṡ = f + u− ẍd + λ ˙̃x . (2-19)

The best approximation for the feedback control law û that would achieve ṡ=0
is given by:

û = −f̂ + ẍd − λ ˙̂x . (2-20)
The next step is to add to û a discontinuous term to satisfy the sliding
condition, defined in Eq. (2-5) despite the uncertainty on f

u = û− ksgn(s) . (2-21)

Chosing k large enough, we can ensure that the sliding condition is verified.
Applying Eq. (2-21) in Eq. (2-19), we can found

1
2
d

dt
s2 = (f − f̂)s− k|s| . (2-22)

To guarantee the sliding condition, we have the following value for k:

k = F + Ω . (2-23)

2.3
Unit Vector Control (UVC)

Once the SMC approach is based on the sign function, on the other hand
the UVC approach [25], [44] is given by:

u = −K s(x, t)
|s(x, t)| , (2-24)

where K ∈ R is a positive constant gain, and s(x, t) is the sliding surface
defined in Eq. (2-4). Another difference between the SMC and UVC approaches
is that sliding mode for the first one can take place in any individual switching
surface before their intersection x=0. However, the sliding mode for the UVC
approach happens only at the origin.

2.4
Super Twisting Algorithm (STA)

In many cases the high-frequency switching control described in Sec-
tions 2.2 and 2.3 is impractical. Thereby, continuous control is necessary. In
this section we introduce a controller that follows this approach so-called Su-
per Twisting Algorithm (STA), a second-order sliding mode control. First, let
us rewrite Eq.(2-10):

ṡ = u− φ , (2-25)
where φ∈R is a disturbance term given by:
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φ=−f + ẍd − λ ˙̃x , (2-26)

Now the STA control law [31] will be defined as:u = c|s|0.5sign(s) + w ,

ẇ = b sign(s) ,
(2-27)

where c∈R and b∈R are positive gains calculated as:

c = 1.5
√
C b = 1.1C , (2-28)

assuming that |φ̇| ≤ C. The dynamic of the sliding surface s described in
Eq. (2-4), applying the control law defined in Eq. (2-28), is given by:u = c|s|0.5sign(s) + w = φ ,

ẇ = b sign(s) ,
(2-29)

Thereby, the term w defined in Eq. (2-29) becomes equal to the disturbance φ
described in Eq. (2-26), in finite time. Therefore, s-dynamic is given by:

ṡ = c|s|0.5sign(s) . (2-30)

Consequently, s → 0 in finite time. For the STA approach, the following
properties hold:

– The STA approach given by Eq. (2-29) is a second-order sliding mode control,
since it drives both s, ṡ→0 in finite time.

– The STA approach given by Eq. (2-29) is continuous since both terms
c|s|0.5sign(s) and w=b

∫
sign(s)dt are continuous. Thus, the high-frequency

switching term sign(s) is "hidden" under the integral.

2.5
Final Remarks

In this chapter, we have presented a motivation to apply robust control,
and we also have provided details of the approaches that will be used in this
work. In the next chapter, we will develop robust image-based visual servoing
(rIBVS) approaches, based on SMC and STA, mentioned in this chapter,
for mobile robots using a single monocular camera. This methods will be
designed to perform autonomous navigation tasks in agricultural fields with
high accuracy.
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3
Robust Image-based Visual Servoing for Autonomous Row
Crop Following

In this chapter, we will introduce robust image-based visual servoing
(rIBVS) approaches based on SMC and STA for WMRs, endowed with a single
monocular camera to increase the accuracy of the autonomous navigation
task in agricultural fields. These approaches can handle model inaccuracies
and external disturbances caused by weak camera calibration and sparse
plant distributions, as well as trajectory perturbations that arise at high
driving velocities. Then, robust controller approaches are designed to add
robustness terms to the classic IBVS approach comprising column and row
visual primitive controllers [22]. To evaluate the effectiveness and feasibility
of the proposed vision-based control methodology, we performed tests with
two different techniques of the developed rIBVS. The first is based on SMC
approach, and then the STA approach is applied to mitigate the effects of
chattering and increase the accuracy of the task performed. 3D Computer
simulations are executed in ROS-Gazebo simulator using the 3D CAD model
of the Soybot Robot, a differential-drive mobile robot (DDMR) navigating
autonomously in an ad-hoc developed row crop agricultural environment.

3.1
Problem Formulation

Here, we consider the problem of row crop following by using a fixed
monocular camera attached to the top of a wheeled mobile robot (WMR).
Most crops in open fields or gardens are planted in rows or straight lines, either
single or multiple rows, mainly to enhance maximum yields and simplify the
farm logistics. We assume that the task of interest consists of autonomously
guiding the robot over a single crop row, keeping its wheels in the midpoint
between two adjacent rows A differential-drive mobile robot, called Soybot [10]
designed to carry out plant-health monitoring tasks in soybeans and cotton
crops, is used for autonomous visual navigation in the presence of uncertainties
and disturbances in the camera-robot system’s parameters. During the row
crop following, RGB images are continuously captured by the vision sensor.
An image segmentation method, based on the combination of RANSAC and

DBD
PUC-Rio - Certificação Digital Nº 1921374/CA



Chapter 3. Robust Image-based Visual Servoing for Autonomous Row Crop
Following 31

Hough transform algorithms [47], is then applied to find the best-fit line L to
represent the crop row and extract line features. Then, the following 2D image
feature set L={P , Θ} is computed in the image frame Fv: (i) θv∈(−π, π] is the
coordinate of image feature angle Θ, denoting the angle between the line and
the negative yv-axis; (ii) (xv, yv)∈R2 are the coordinates of the image feature
point P , denoting the bottom (top) pixel row or left (right) pixel column.
Therefore, the image feature set can be denoted by the image feature vector
s= (xv, yv, θv)∈R3×1.

Afterward, a robust IBVS approach is designed to enable the robot to
visually reach and follow a path on the ground defined by the crop rows [24].
An uncalibrated camera is mounted with a tilt offset angle ψ ∈ (−π

2 ,
π
2 ] with

respect to the x-axis of the camera frame Fc. In addition, the camera’s optical
center is positioned at the coordinates (tx, 0, tz)∈R3 with respect to the robot
frame Fr, as shown in Fig. 3.1.

Figure 3.1: The Soybot robot and its coordinate frames: Fv is the image frame
and s= (xv, yv, θv)∈R3 are the image features vector. Side view of the robot:
Fr is the robot frame, Fw is the world frame, Fc is the camera frame with a
camera tilt offset ψ.

For designing the rIBVS controller for real-world agricultural applica-
tions, the following assumptions are considered: (A1) the robot is located out-
side the crop row, so that both column and row primitives may be included
into the control design; (A2) the image processing algorithm uses a region of
interest (RoI) to find the best-fit line denoting the crop row to be monitored;
(A3) the mobile robot can travel with high driving velocities inside the crop
field; and (A4) the terrain is rough and has plants sparsely distributed.

Then, a robustness term will be included in the classic IBVS controller,
based on row and column primitives [22], to cope with the external perturba-
tions caused by assumptions (A3) and (A4). The new rIBVS controller is split
into twofold: a robust IBVS column controller (rIBVS-CC), to reach out the
crop rows and maneuver the robot; (ii) a robust IBVS row controller (rIBVS-
RC), to keep the robot following the path after reaching it.
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3.2
Kinematic Robot Model

The unicycle robot is a rigid body with a single orientable wheel and its
configuration is described by the generalized coordinates q= (x, y, θ)∈R3×1,
wherein (x, y) ∈ R2×1 is the Cartesian coordinates of a given point of the
wheel and θ ∈ R is the wheel orientation with respect to the x-axis of the
world frame Fw. WMRs are subject to kinematic constraints, integrable or
not (nonholonomic constraints), which reduce the mobility of the mechanical
structure. For instance, the motion of a unicycle robot is characterized by a
pure rolling constraint given by:

ẋ sin θ − ẏ cos θ = 0 , (3-1)

which means that the point velocity (ẋ, ẏ) ∈ R2×1 is zero in the direction
orthogonal to the sagittal axis of the wheel [25]. In this context, the kinematic
model of the unicycle robot is expressed in terms of the null space of the
kinematic constraint as: 

ẋ

ẏ

θ̇

 =


cos θ
sin θ

0

 v +


0
0
1

ω , (3-2)

where the robot inputs v ∈ R and ω ∈ R are the driving and steering
velocities respectively. However, a single wheeled robot has serious problems
of balance in static conditions. That is why there are vehicles kinematically
equivalent to a unicycle robot that use two or more wheels to provide higher
mechanical stability, such as the DDMR. Its configuration is described by the
same generalized coordinates of the unicycle robot, where (x, y)∈R2×1 is the
Cartesian coordinates of the midpoint between the two wheel centers and θ is
the common orientation of the fixed wheels (Fig. 3.2).

Hence, the kinematic model in Eq. (3-2) is also applied to the DDMR and
the robot inputs (v, ω) ∈R2×1 can be expressed as a function of the angular
speeds (ωL, ωR)∈R2×1 of the left and right wheels respectively, as given by:

v = r (ωR + ωL)
2 , ω = r (ωR − ωL)

d
, (3-3)

where r > 0 is the wheels radius and d > 0 is a distance between their
centers [25].

Then, the robot velocity Vr=(v, 0, 0, 0, 0, ω)∈R6×1 can be related to the
robot inputs u= (v, ω)∈R2×1 using the following relationship:

Vr = S u , S =
1 0 0 0 0 0

0 0 0 0 0 1

T

, (3-4)
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Figure 3.2: Generalized coordinates q = (x, y, θ) ∈ R3×1 and the robot inputs
u=(v, ω)∈R2×1 for a differential-drive mobile robot.

where S∈R6×2 is a selection matrix.

3.3
Camera Model

Consider a pin-hole camera observing a line L with a set of image features
(P , Θ), as described in Section 3.1. Then, let pc = (xc, yc, zc) ∈ R3×1 be the
coordinates of the image feature point P expressed in the camera frame Fc.
The velocity of P expressed in frame Fc is given by:

ṗc = −ωc × pc − vc , (3-5)

where vc∈R3×1 and ωc∈R3×1 are respectively the linear and angular velocities
of the camera expressed in the world frame Fw [48]. The image feature point
P can be expressed in the image frame Fv with its projected coordinates
(xv, yv)∈R2×1, using the following relationship:xv

yv

 = f

zc

αx 0
0 αy

 xc
yc

 +
xv0

yv0

 , (3-6)

where (xv0, yv0)∈R2×1 is the camera principal point, f >0 is the focal length
of the camera lens, and αx, αy>0 are the scaling factors. A line feature L can
be parameterized using a pair (ρ, θv) described by:

yv = −xv tan(θv) + ρ/ cos(θv) , (3-7)

where ρ∈ [−ρmin, ρmax] is the perpendicular distance between the origin of the
image frame Fv and the line. The rate of change of the image features vector
s= (xv, yv, θv) ∈R3×1 is related to the camera spatial velocity Vc = (vc, ωc) ∈
R6×1 , as given by [48]:

ṡ = Ls Vc + ξs , (3-8)
where Ls = [Lx Ly Lθ ]T ∈ R3×6 is the so-called interaction matrix, and
ξs=(ξx , ξy , ξθ)∈R3×1 denotes the uncertain motion of the image feature, which
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can be considered as a bounded perturbation. In general, this disturbance term
must be estimated to compensate the target motion or it can be neglected,
when the robot is moving with low velocities and saccelerations [48]. Our
solution consists in designing a robust controller that explicitly deals with
model inaccuracies and trajectory perturbations in the image space caused by
high driving velocities and uneven terrains.

3.4
Camera Robot-System Model

The camera velocity Vc = (vc, ωc)∈R6×1 is related to the robot velocity
Vr∈R6×1 by using the adjoint matrix Acr∈R6×6 as expressed by:

Vc = Acr Vr , Acr =
Rcr [tcr]×Rcr

03×3 Rcr

 , (3-9)

where tcr = (0, tz,−tx) ∈ R3×1 is the translation vector from the origin of
the robot frame Fr to the origin of the camera frame Fc and [tcr]× is a
skew-symmetric matrix. The rotation matrix Rcr(ψ) ∈ SO(3) of the robot
frame Fr with respect to the camera frame Fc is computed as Rcr(ψ) =
Rx(ψ)Ry (π/2) Rx (−π/2). The robot inputs u can be related with the camera
velocity Vc by using the homogeneous transformation matrix Tcr∈R6×2, which
is calculated by substituting Eq. (3-4) into Eq. (3-9) as:

Tcr=Acr S , (3-10)
where Tcr = [Tv Tω ] ∈ R6×2 can be split in two parts, with Tv ∈ R6×1 and
Tω∈R6×1 being its first and second columns respectively. Substituting Eq. (3-
10) into Eq. (3-8) results in the following IBVS system:

ṡ = Ls Tcr u+ ξs . (3-11)

3.5
Classic Image-Based Visual Servoing Approach

In the row crop following task, it is possible to identify two common
practical situations based on the robot location regarding the crop rows: (i)
inner, the robot is inside the crop rows; (ii) outer, the robot is outside the crop
rows. In [22], authors have developed an IBVS approach using the analysis
of the location of the image feature point P in the image plane. Then, the
proposed IBVS strategy is divided into two parts or primitives: a row controller
and a column controller. Therefore, in the block diagram represented in
Fig. 3.3, the task planning stage will choose the primitive controller depending
on the inspection of the image feature point P through the image feature
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vector s. Afterwards, the selected controller will calculate the angular velocity
ωi, being i={C,R}, for IBVS Column and Row Controllers respectively. Lastly,
the angular velocity ωi is concatenated with the linear velocity v to form the
input u of the robot. In the next subsections, we briefly present the IBVS
control design and a sequence of images representing the control action for
both row and column cases. Notice that, in Figures 3.4 and 3.5, the red line
denotes the current crop row orientation whereas the blue line denotes the
desired path tangent orientation. Both angles are taken to be positive if the
lines rotation are counter-clockwise about yv-axis of the image frame Fv.

Figure 3.3: Block Diagram representing the two primitive controllers (Column
and Row).

3.5.1
IBVS Column Controller (IBVS-CC)

The IBVS Column Controller (IBVS-CC) approach is applied for reach-
ing the crop row or during maneuvers at the headlands, when the image fea-
ture point P is located at the right (or left) pixel column of the image plane I.
Here, we assume that the control goal is to drive the current image coordinates
(yv, θv) to the desired values y?v = H/2 and θ?v = 0, under the path following
constraint x?v = ±W/2 and ẋ?v = 0. An application example of the IBVS-CC
approach is depicted in Fig. 3.4(a)-(d), where it can be observed a sequence
of motions in which the robot pose is successfully controlled. In such a case,
the current P moves to the bottom left corner of the image plane (yv =H/2).
Afterwards, the IBVS row controller should be applied so that P can achieve
the desired P? located at the bottom center of the image plane.

Due to the velocity constraint ẋv=0, Eq. (3-11) can be expressed as:

ṡC =
ẏv
θ̇v

 = JvC v + JωC ω + ξsC , (3-12)

DBD
PUC-Rio - Certificação Digital Nº 1921374/CA



Chapter 3. Robust Image-based Visual Servoing for Autonomous Row Crop
Following 36

Figure 3.4: An application example of the IBVS-CC approach: The red and
blue lines denote respectively the visually estimated crop row and the path
tangent orientation with respect to the yv-axis, in image frame Fv.

where ξsC∈R2×1 is a perturbation term, with JvC ∈R2×1 and JωC ∈R2×1 being
respectively the linear and angular Jacobian matrices that result from the
multiplication of the matrices corresponding to Ls and Tcr, as shown below:

JvC =
Ly
Lθ

Tv , JωC =
Ly
Lθ

Tω . (3-13)

Then, the IBVS system, described in Eq. (3-12) with ξsC ≈ 0, can be
controlled using the following control law:vC

ωC

 =
 vd

−J†ωC(ΛCeC + JvC vd)

 , (3-14)

where Λc ∈ R2×2 is a positive definite gain matrix and vd ∈ R is the desired
linear velocity. The image feature error eC = (ey, eθ) ∈ R2×1 for the column
controller is given by:

ey = yv − y∗v , eθ = θv − θ∗v . (3-15)
The stability properties and convergence analysis for the IBVS-CC approach,
given by Eq. (3-14), can be found in [22].

3.5.2
IBVS Row Controller (IBVS-RC)

The IBVS Row Controller (IBVS-RC) is applied for row following task
at the vicinity of the crop row, when the image feature point P is located
at the bottom (or top) pixel row of the image plane I. Here, we assume
that the control goal is to drive the current image coordinates (xv, θv) to the
desired values x?v =0 and θ?v =0, under the path following constraint y?v =H/2
and ẏ?v = 0. An application example of the IBVS-RC approach is depicted in
Fig. 3.5(a)-(d), where it can be observed a sequence of motions in which the
robot pose is successfully controlled. In such a case, the current P moves to
the bottom center of the image plane (xv=0) and Θ becomes vertical (θv=0).
Then, the row crop (red line) aligns with the center of the image (blue line)
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and the offset between the lines tends to zero.

Figure 3.5: An application example of IBVS-RC approach: P (cyan) and
P∗ (black) points denotes respectively the current and desired image feature
points, in image space I.

Due to the kinematic constraint ẏv= 0, Eq. (3-11) can be expressed as:

ṡR =
ẋv
θ̇v

 = JvR v + JωR ω + ξsR , (3-16)

where ξsR∈R2×1 is a perturbation term, with JvR∈R2×1 and JωR∈R2×1 being
respectively the linear and angular Jacobian matrices that result from the
multiplication of the matrices corresponding to Ls and Tcr, as shown below:

JvR =
Lx
Lθ

Tv , JωR =
Lx
Lθ

Tω . (3-17)

Then, the IBVS system, described in Eq. (3-16) with ξsR ≈ 0, can be
controlled using the following control law:vR

ωR

 =
 vd

−J†ωR(ΛR eR + JvR vd)

 , (3-18)

where ΛR ∈ R2×2 is a positive definite gain matrix. The image feature error
eR =(ex, eθ)∈R2×1 for the IBVS row controller is given by:

ex = xv − x∗v , eθ = θv − θ∗v . (3-19)

The stability properties and convergence analysis for the IBVS-RC approach,
given by Eq. (3-18), can be found in [22].

3.6
Robust Image-Based Visual Servoing (rIBVS)

In this section, we shortly present the robust control design based on the
SMC and STA approaches for the IBVS column and row controllers, introduced
in the previous section. Here, let us introduce the following useful notation:
d · cp=| · |p sgn(·) for 0<p≤1, where sgn(·) is the sign function. Considering the
model inaccuracies and trajectory perturbations in the designing of the robust
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IBVS approach, the linear and angular velocities, v and ω, can be written
respectively as:

v = vd , ω = Ĵ†ωi νi , (3-20)
where Ĵ†ωi∈R1×2 is the pseudo-inverse of the nominal angular Jacobian matrix
and νi∈R2×1 is the robust control action to be designed with i={C,R}. Now,
we obtain the following perturbed IBVS system:

ṡi = νi + ηi , (3-21)

where the disturbance term ηi is given by:

ηi=(JωiĴ†ωi − I) νi + Jvi vd + ξsi . (3-22)

Notice that, the effect of the disturbance term ηi increases for high values
of the desired driving velocity vd and, consequently, the IBVS system may
perform very poorly or become unstable. To cope with performance and insta-
bility issues caused by system’s inaccuracies and perturbations, an alternative
solution consists of using adaptive and robust control techniques due to their
remarkable capability of dealing with parametric uncertainties and external
disturbances [31]. In the block diagram shown in the Fig. 3.6, it is possible to
see the addition of the robustness terms τ

i
∈ R2×1, being i = {C,R}, to the

primitive controllers, aiming at dealing with disturbances caused by term ηi.

Figure 3.6: Block Diagram representing the robust control design for the IBVS
column and row controller.

3.6.1
rIBVS Column Controller (rIBVS-CC)

In the design of the rIBVS-CC approach, we consider the following
robustness term τC ∈R2×1 given by:

τC =KC dσCcp + ζC , ζ̇C =−µCsgn(σC ) , (3-23)
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where KC ∈ R2×2 and µC ∈ R2×2 are positive definite gain matrices, and
σC ∈R2×1 being the sliding surface defined as σC = eC +ΓC

∫ t
0 eC (τ) dτ , where

ΓC ∈R2×2 is a positive definite matrix. Hence, the rIBVS-CC approach can be
implemented by applying Eq. (3-23) to Eq. (3-20) and adding a proportional
term ΛCeC , as shown below:

νC = ΛC eC + τC . (3-24)

3.6.2
rIBVS Row Controller (rIBVS-RC)

In the design of the rIBVS-RC approach, we consider the following
robustness term τR∈R2×1 given by:

τR = KR dσRcp + ζR , ζ̇R = −µRsgn(σR) , (3-25)

where KR ∈ R2×2 and µR ∈ R2×2 are positive definite gain matrices, and
σR ∈ R2×1 the sliding surface defined as σR = eR + ΓR

∫ t
0 eR(τ)dτ , where

ΓR∈R2×2 is a positive definite matrix. Hence, the rIBVS-RC approach can be
implemented by applying Eq. (3-25) to Eq. (3-20) and adding a proportional
term ΛReR , as shown below:

νR = ΛR eR + τR . (3-26)

The following theorem can be stated for establishing for the stability properties
of the rIBVS approach:

Theorem 3.1 Consider the IBVS system defined by Eq. (3-21) under the
disturbance term given by Eq. (3-22), assumed to be bounded. Under the
robust IBVS row and column controllers given by Eq. (3-26) and Eq. (3-24)
respectively, the following properties hold: (i) all systems signals are bounded;
(ii) σC (t), σR(t)→ 0; (iii) ex(t), eθ(t)→ 0; and (iv) ey(t), eθ(t)→ 0 in finite
time.

Proof 1 : For a proof of the rIBVS approach based on SMC, please, see
AppendixA. Furthermore, for a proof of the rIBVS approach based on STA,
please, consult [46]

3.7
3D Computer Simulation

In this section, we present 3D computer simulations and case studies
with the rIBVS approach, based on SMC, developed for autonomous visual
navigation with a wheeled mobile robot in row crop fields. An example of a
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3D agricultural environment with non-ideal plants and terrain conditions was
created in Gazebo platform, as shown in Fig. 3.7.

Figure 3.7: Soybot robot navigating in the 3D agricultural environment created
in the Gazebo platform, with sparse plants and rough terrains.

In real-world scenarios, row crop fields occur in rough and uneven
terrains, and plants are sparsely distributed. The WMR used for autonomous
navigation tests was the Soybot, a differential-drive mobile robot, ad-hoc
designed for plant health monitoring in soybeans and cotton crops [10],
equipped with a monocular camera attached at the top of the mechanical
structure. The robot and the world (i.e., the crop field) models are described
in a SDF file, containing all their physical and geometrical characteristics. The
visual and collision geometry of the robot are given in STL format developed
in SolidWorks CAD. Moreover, the camera and motor plugins are also given
in the SDF file, that sends their data to the user via ROS topic [49]. In this
simulation, we use the diff drive plugin, that takes the x component of the linear
velocity and z component of the angular velocity to compute the velocities
sent to the two wheels of a differential drive wheel base. The simulated field
is created using a tool called heightmap, which converts a 2D grayscale image
(Fig.3.8(a)) into a 3D RGB format (Fig.3.8(b)). This 3D model can be easily
imported into the Gazebo platform [50]. To emulate the crop plants, we use a
simple 3D model in STL format, called acanthus.

Figure 3.8: (a) 2D grayscale representing the heightmap used to create (b) the
3D environment used to simulate this comparative study.
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3.7.1
Robot-Camera Parameters

Here, we present the parameters of the camera-robot system used in
the simulated experiments. The dimensions of the robot, that is, its width,
length and height, are given respectively by (Wr, Lr, Hr) = (1.2, 1.9, 2.0) m.
The diameter of the front wheels is df =40 cm, and the castor wheels located at
the robot back have db=20 cm of diameter. The camera used in the simulation
was similar to a Logitech C270 HD webcam (720p, 30fps), with a focal length of
f=8 mm, and scale factors of αx=69.4 pixel mm−1 and αy=52.1 pixel mm−1

respectively. The RGB images captured by the camera have a dimension of
640×480 pixels resolution. These images are used for the navigation task after
the line feature extraction.

The camera is placed in a vertical and horizontal coordinates, relative to
the robot’s centre of mass, given by (tx, ty, tz) = (0.16, 0.0, 1.4) m, with a tilt
angle offset of ψ=π/4 rad. The communication between the sensors and the
plugins was implemented using the Robot Operating System (ROS), release
Kinetic Kame, running on Linux OS Ubuntu 16.04 LTS using an Intel Core
i5-8250U 1.6GHz, 8GB DDR4 RAM. The ROS nodes for implementing the
autonomous navigation task were developed in Python with OpenCV libraries.
In the simulation tests, we considered an uncertainty of 20% in all the intrinsic
camera calibration parameters and in the following extrinsic parameters: ψ,
tx, tz. To verify the robustness properties of the proposed controller, we also
measured noise in the image feature and unmodeled dynamics with high-
or low-frequency, to emulate the effects of actuator dynamics and Coulomb
friction. The unmodeled dynamics is given by the transfer function D(s) =
k/λs+ 1, where k= 1 and λ∈ [0.1, 0.5].

3.7.2
Results of Comparative Study I

Here, we will present a comparative study1 among the classic IBVS
controller, given by Eq. (3-14) and Eq. (3-18), the rIBVS controller, given by
Eq. (3-24) and Eq. (3-26) and the IBVS approach based on the Unit Vector
Control (UVC) described in [44] with a small term Π= 10−3 summed to avoid
discontinuities in the control law. We also consider a high driving velocity, as
vd=1.5 ms−1, to evaluate the performance of the IBVS controllers in situations
where the robot needs to move faster along the row crop field, relaxing the low-
speed assumption used in [22]. Once the robot starts outside of the crop row,

1The video clip representing this comparative study can be found at the following link:
https://youtu.be/nXVUzyDoKoQ.

 https://youtu.be/nXVUzyDoKoQ.
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the image feature error ev will have high values. Thereby, we need to apply the
IBVS Column Controller approach with small values in the gain matrix ΛC , for
the robot to reach the crop row smoothly. If the gains are too high, the robot
will perform the maneuver abruptly, which may cause instability in the system,
since the robot’s input values may be too large. On the other hand, when the
robot needs to stay above the row, the image feature error ev will have lower
values. Furthermore, the performance of the control approach in this case,
needs to be more precise, so that the robot does not reach neighboring rows.
Therefore, the gain matrix ΛR for the IBVS Row Controller approach will have
bigger values compared to IBVS Column Controller approach. For the IBVS-
CC approach, the gains were chosen in the range between diag(0.1,0.2) and
diag(0.5,0.6), while, for the IBVS-RC approach, the values were selected in the
range between diag(0.5,1.0) and diag(5,10). In addition, the robust controllers
gains KC and KR were varied from 0.01I to 0.5I for both approaches, aiming
to identify their best values. Table 3.1 shows the combination of gains that
presented best results in each case. The gains µC , µR , ΓC and ΓR have no
values in the Table 3.1, as all controllers in this comparative study are of first
order and the sliding surfaces σi, being i={C,R}, are equal to the image feature
vector ev.

Table 3.1: Control parameters for the IBVS approaches.

Parameters classic IBVS UVC rIBVS (SMC)
ΛC diag(0.3, 0.6) diag(0.15, 0.3) diag(0.3, 0.6)
ΛR diag(2.5, 5.0) diag(2.0, 5.0) diag(2.5, 5.0)

KC , KR - 0.2I, 0.02I 0.2I, 0.02I
µC , µR - - -
ΓC ,ΓR - - -

Other parameter is the simulation time Tmax=60 s. At the beginning of
the experiments, the robot is located outside the row crop. The column and
row controllers are then activated to enable the robot to reach the crop row and
align to it. Figures 3.9(a)-(b) and 3.9(c)-(d) depict the behavior over time of
the image errors and image coordinates in x- and y-axis of the image frame Fv
respectively, whereas Fig. 3.9(e)-(f) depicts the image error eθ and the image
coordinate θv. We can observe that all controllers are able to drive the image
coordinate yv to the desired value H/2, and the robot successfully reaches the
crop row. However, it is possible to notice the degraded performance obtained
with the IBVS approach for image coordinates xv and θv. Therefore, the robot
motion is impaired by unwanted oscillations during the crop-row following,
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caused by external disturbances in the field and parametric uncertainties in
the camera-robot system, which can damage neighboring plants and even the
robot. On the other hand, as can be seen in Fig. 3.10(a)-(d), the rIBVS and
UVC approaches are capable of mitigating such perturbations and inaccuracies,
allowing the robot to carry out the autonomous navigation task in a safe and
efficient manner.

Finally, Fig. 3.11(a)-(b) shows the robot inputs (v, ω) and Fig. 3.11(c)-
(d) depicts the robot wheel speeds (ωR, ωL), where it can be observed the
remarkable performance of the rIBVS and UVC approaches in contrast to the
oscillatory behavior of the IBVS approach.
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Figure 3.9: Comparative study among the IBVS, rIBVS and UVC approaches:
(a)-(b) image error, ex and image coordinate, xv; (c)-(d) image error, ey and
image coordinate, yv. (e)-(f) image error, eθ and image coordinate, θv
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Figure 3.10: Comparative study among the IBVS, rIBVS and UVC approaches:
(a)-(c) robot coordinates, xr, yr and θr; (d) trajectory of the robot navigating
along the crop row.
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Figure 3.11: Comparative study among the IBVS, rIBVS and UVC approaches:
(a)-(b) linear and angular velocities; (c)-(d) left and right wheel speeds.
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For comparative study purposes, we use two performance metrics as
shown in Table 3.2: (i) the root mean square error (RMSE) of the image feature
errors ex, ey and eθ; (ii) the mean-absolute deviation (MAD) of the control
signals ω, ωL and ωR. Analyzing the RMSE, we notice that the rIBVS approach
shows the smallest values for the image features coordinates compared to
IBVS and UVC approaches. Hence, the rIBVS approach presents a better
transient behavior with fewer oscillations since the RMSE metrics penalizes
more the most significant errors. In addition, Table 3.2 indicates that the rIBVS
approach has lower average values for the control signals, that may be relevant
for saving battery. Notice that, the rIBVS and UVC approaches are able to
generate almost the same control effort for the robot wheels than the IBVS
approach, even in the presence of disturbances and uncertainties.

Table 3.2: Performance metrics: RMSE for image feature errors and MAD for
control signals.

RMSE IBVS rIBVS (SMC) UVC unit
xv 27.76 12.65 12.89 cm
yv 4.91 4.60 6.18 cm
θv 18.40 11.35 12.27 deg

MAD IBVS rIBVS (SMC) UVC unit
ω 0.261 0.0430 0.0533 rad s−1

ωL 0.448 0.0737 0.0914 rad s−1

ωR 0.448 0.0737 0.0914 rad s−1

3.7.3
Results of Comparative Study II

In this simulation, we decrease the spacing between the rows, and increase
terrain irregularities. Therefore, we will present a comparative study 2 among
the classic IBVS controller described in [22, 24], the IBVS controller based on
the unit vector control (UVC) approach described in [44] with a small term
Π= 10−3 summed to avoid discontinuities in the control law, and the proposed
rIBVS controller based on the STA approach, given by Eq. (3-23) and Eq. (3-
25) with sliding surfaces σC and σR . The choice of gain matrices values ΛC ,
ΛR , KC and KR follows the same reasoning described in Subsection 3.7.2. On
the other hand, for this case, we consider the gains µC , µR , ΓC and ΓR , that
were not used in the first comparative study (Subsection 3.7.2). These gains
were chosen small, since they are multiplied by integral terms, which make

2The video clip representing this comparative study can be found at the following link:
https://youtu.be/Sswm8KLGKlk.

 https://youtu.be/Sswm8KLGKlk.
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the system unstable, if chosen with high values. These tested values for the
gains µC and µR were between 0.005I and 0.02I. In addition, the gains ΓC

and ΓR were chosen in the range between 0.0001I and 0.001I. The control
gains that presented best results are shown in Table 3.3. The simulation time is
Tmax=30 s. Morever, like the previous case study, we also consider high driving
velocities for the robot, such as vd=1.5 ms−1, to evaluate the performance of
all IBVS controllers in cases where the robot needs to move faster across the
row crop field, relaxing the low-speed assumption used in [22,24].

Table 3.3: Control parameters for the IBVS approaches.

Parameters classic IBVS UVC rIBVS (STA)
ΛC diag(0.3, 0.6) diag(0.15, 0.3) diag(0.15, 0.3)
ΛR diag(2.5, 5.0) diag(1.0, 1.5) diag(1.0, 1.5)

KC , KR - 0.3I, 0.05I 0.3I, 0.08I
µC , µR - - 0.01I, 0.005I
ΓC ,ΓR - - 0.001I, 0.001I

At the start of the experiments, the robot is located outside the row crop
field. Then, the column and row controllers are activated to allow the robot
to reach the crop row and align to it. The time history of the image errors
and image coordinates in x- and y-axis of the image frame Fv are depicted in
Figures 3.12(a)-(b) and 3.12(c)-(d) respectively. Furthermore, Fig. 3.12(e)-(f)
reciprocally depicts the behavior over time of the image error eθ and the image
coordinate θv.

We can observe the oscillating behavior and poor performance obtained
with the classic IBVS approach for image coordinates xv and θv. Thereby,
the robot motion may be affected by these unwanted oscillations during the
crop row following tasks, caused by external disturbances in the field and
parametric uncertainties in the robot-camera system, damaging neighboring
plants and even the vehicle. On the other hand, we can see that in the steady-
state regime all IBVS controllers can drive the image coordinate yv to the
desired value H/2, and the robot successfully reaches the crop row, despite the
poor performance of the classic IBVS approach.
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Figure 3.12: Comparative study among the IBVS, UVC and STA approaches:
(a)-(b) image error, ex and image coordinate, xv; (c)-(d) image error, ey and
image coordinate, yv; (e)-(f) image error, eθ and image coordinate, θv.

In Fig. 3.13(a)-(d), we can notice that the UVC and STA approaches are
the only ones capable of dealing with such modeling inaccuracies and trajectory
perturbations, allowing the robot to carry out the autonomous navigation task
safely and efficiently.

Finally, Fig. 3.14(a)-(b) shows the time history of the robot inputs (v, ω),
whereas Fig. 3.14(c)-(d) depicts the time history of the robot wheel speeds
(ωL, ωR) respectively. Thereby, we can observe the remarkable performance of
the UVC and STA approaches in contrast to the oscillatory behavior of the
classic IBVS approach.
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Figure 3.13: Comparative study among the IBVS, UVC and STA approaches:
(a)-(c) robot coordinates, xr, yr and θr; (d) trajectory of the robot navigating
along the crop row.
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Figure 3.14: Comparative study among the IBVS, UVC and STA approaches:
(a)-(b) linear and angular velocities; (c)-(d) left and right wheel speeds.
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For comparative study purposes, we use two performance metrics as
shown in Table 3.4: (i) the root-mean-square error (RMSE) of the image
features coordinates xv, yv and θv; (ii) the mean-absolute deviation (MAD) of
the robot input ω, and the wheel speeds ωL and ωR. Evaluating the RMSE, we
observe that the STA approach shows the lowest values for all image features
coordinates compared to the classic IBVS and UVC approaches. Therefore, the
STA approach presents a better transient behavior with less oscillations, since
the RMSE metrics penalizes the most significant errors. Moreover, Table 3.4
indicates that the rIBVS approach has lower mean values for the control
signals, which can be relevant to save battery during operations. Finally, we
note that the UVC and STA approaches generate almost the same control
effort for the robot wheels, which is much less than the classic IBVS approach.

Table 3.4: Performance metrics: RMSE and MAD.

RMSE classic IBVS UVC rIBVS (STA) Unit
xv 37.09 24.01 16.40 cm
yv 16.49 6.48 5.98 cm
θv 32.61 13.47 11.00 deg

MAD classic IBVS UVC rIBVS (STA) Unit
ω 0.6 0.08 0.06 rad s−1

ωL, ωR 1.711 0.244 0.197 rad s−1

3.7.4
Results of Comparative Study III

In this section, we present a comparative study among the rIBVS
controllers based on SMC and STA approaches. Here, we consider similar
conditions described in subsection 3.7.3, such as, the same terrain and linear
velocity vd = 1.5ms−1. Thereby, the WMR moves faster across the row crop
field, relaxing the low speed assumption [22,24]. In addition, the control gains
of the applied techniques were chosen following the same logic mentioned
in subsections 3.7.2 and 3.7.3. The gains presented in Table 3.5 lead to the
best results in simulations carried out for this section. The simulation time is
Tmax=30s.
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Table 3.5: Control parameters for the rIBVS approaches.

Parameters rIBVS (SMC) rIBVS (STA)
ΛC diag(0.3, 0.3) diag(0.15, 0.3)
ΛR diag(1.0, 1.5) diag(1.0, 1.5)

KC , KR 0.4I, 0.08I 0.3I, 0.05I
µC , µR - 0.01I, 0.005I
ΓC ,ΓR - 0.001I, 0.001I

As in previous experiments described in subsections 3.7.2 and 3.7.3, the
robot is placed outside the row crop field at the beginning of the tests. Then,
the column and row primitives are applied, enabling the WMR to achieve
the crop row and align to it. Figures 3.15(a)-(b) and 3.15(c)-(d) show the
performance over time of the image errors and image coordinates in x- and
y-axis of the image frame Fv respectively. Next, Fig. 3.15(e)-(f) presents the
image error eθ and the image coordinate θv. Analyzing these figures, we notice
that both approaches are capable of taking the image coordinates xv, yv and
θv to the desired values. However, the results shown in Fig. 3.15(a)-(b) and
Fig. 3.15(e)-(f), indicate that the rIBVS controller based on STA approach
has a smoother response, than the rIBVS controller based on SMC approach.
The results shown in Fig 3.16(a)-(d), confirm that both controllers are able
to mitigate the parametric uncertainties in the camera-robot system and
the external disturbances caused by the uneven terrain. Thereby, the two
approaches can drive the robot to the crop row, and keep it aligned. Moreover,
we can also verify that STA approach has a more attenuated steady-state
oscillatory behavior compared to the rIBVS controller based on the SMC
approach. Therefore, STA approach can better deal with the disturbances
acting on the robot.

Finally, Fig. 3.17(a)-(b) presents the time history of the robot inputs
(v, ω) and Fig. 3.17(c)-(d) depicts the robot wheel speeds (ωL, ωR) respectively.
The inputs of both controllers seem very similar if we take into account the
graphs shown in Fig. 3.17(a)-(d). Then, a more quantitative performance
analysis will be made using the metrics described in Table 3.6, aiming at
evidencing the differences between the two analyzed approaches.
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Figure 3.15: Comparative study between the rIBVS controllers based on SMC
and STA approaches: (a)-(b) image error, ex and image coordinate, xv; (c)-(d)
image error, ey and image coordinate, yv; (e)-(f) image error, eθ and image
coordinate, θv.

Now, for comparative study purposes, we calculate two performance
metrics as depicted in Table 3.6: (i) the root-mean-square error (RMSE) of
the image features xv,yv and θv; and (ii) the mean absolute deviation (MAD)
of the robot input ω and the wheel speeds ωL and ωR. Looking at the RMSE,
we see that the rIBVS controller based on STA approach has lower values
than the rIBVS controller based on SMC approach for all image features
coordinates. Thereby, the first method has a smaller oscillatory behavior, and
does not have so many accentuated values of perturbations, since the RMSE
metrics penalizes the most significant errors. In addition, we can note that
STA approach presents lower MAD values for the control signals than the
SMC approach, meaning that the first technique is more efficient for battery
operations.
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Figure 3.16: Comparative study between the rIBVS controllers based on SMC
and STA approaches: (a)-(c) robot coordinates, xr, yr and θr; (d) trajectory
of the robot navigating along the crop row.
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Figure 3.17: Comparative study between the rIBVS controllers based on SMC
and STA approaches: (a)-(b) linear and angular velocities; (c)-(d) left and right
wheel speeds.
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Table 3.6: Performance metrics: RMSE and MAD.

RMSE rIBVS (SMC) rIBVS (STA) Unit
xv 26.29 16.40 cm
yv 8.91 5.98 cm
θv 20.92 11.00 deg

MAD rIBVS (SMC) rIBVS (STA) Unit
ω 0.103 0.06 rad s−1

ωL, ωR 0.309 0.197 rad s−1

3.8
Final Remarks

In this chapter, we present a robust image-based visual servoing (rIBVS)
approach for wheeled mobile robots (WMRs) to execute autonomous visual
navigation tasks in row crop fields using a single monocular camera. The main
idea is to include a robustness term to the classic IBVS approach to deal with
model inaccuracies caused by camera miscalibration and trajectory perturba-
tions, due to the robot’s high driving velocities. In the first comparative study,
we considered three control strategies, the classic IBVS controller with row
and column primitives, and two robust controllers based on a first-order slid-
ing mode control approach. Then, in the second comparative study, we applied
the rIBVS approach, based on a second-order sliding mode control approach,
to deal with the added difficulties in relation to the last test. Finally, in the
third comparative study, we considered the rIBVS controller based on the SMC
approach developed in the first comparative study and the rIBVS controller
based on the STA approach developed in the second comparative study to
analyze which one had the best performance. The performance of the con-
trollers has been evaluated using the RMSE and MAD metrics applied to the
image errors and control signals The 3D Computer simulations with a DDMR
were carried out in a row crop field buit on the ROS-Gazebo platform The
virtual agricultural environment has been created to include irregularities in
the terrain and sparse plants, emulating robot navigation for monitoring row
crop fields. In the next chapter, we will design a robust controller capable of
dealing with wheel slippage and sideslip owing to autonomous navigation on
rough and uneven terrains.
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4
Cascade Robust Controller for Row Crop Following with
Wheeled Mobile Robots in Sloped and Rough Terrains

Here, in this chapter, we will introduce a cascade-based robust control
approach for wheeled mobile robots (WMRs), equipped with a fixed monocular
camera, to perform autonomous navigation tasks in row crops accurately. Here,
we consider the existence of uncertainties in the parameters of the robot-
camera system, and external disturbances caused by high driving velocities,
sparse plants and uneven terrains. First, we design a robust image-based visual
servoing (rIBVS) approach based on super-twisting algorithm (STA) to deal
with model inaccuracies and trajectory perturbations in the image space. Then,
a robust trajectory tracking (rTTC) approach based on STA is applied for
motion stabilization to ensure the successful execution of row crop following
tasks under wheel slippage and vehicle sideslip. The effectiveness and feasibility
of the proposed robust-cascade control (rCC) methodology are evaluated
by analyzing performance metrics. obtained from 3D computer simulations
executed in ROS-Gazebo platform, an open-source robotics simulator, using
a differential-drive mobile robot (DDMR) and an ad-hoc designed row-crop
environment.

4.1
Problem Formulation

Here, we consider the problem of row crop following by using a fixed
monocular camera attached to the top of the SoyBot [10], a differential-drive
mobile robot. The task of interest is to guide the robot over a single crop row
in a rough and sloped terrain, with the wheels in the midpoint between two
adjacent rows. Furthermore, we also consider that the camera is not calibrated,
set up with a tilt offset angle ψ ∈ (−π

2 ,
π
2 ] with respect to the x-axis of the

camera frame Fc. Just like in the previous chapter, the camera’s optical center
is positioned at coordinates (tx, 0, tz)∈R3 with respect to the robot frame Fr,
as shown in Fig. 4.1.

The designed control approach for performing this activity is based on
a robust-cascade control (rCC) method, with two control loops: an external,
comprising the rIBVS approach, and an internal, which is composed of an
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rTTC approach. The design details of the rIBVS control approach were
detailed in Chapter 3. On this occasion, the rIBVS approach is responsible
for generating a virtual reference DDMR, with the same kinematic constraints
as the real DDMR. Thereby, the second control loop, which consists of the
rTTC approach, needs to take the robot generalized coordinates q = (x, y, z)
to the desired trajectory with coordinates qd = (xd, yd, θd) ∈ R3×1. During
this task, the robot coordinates q are measured by odometry. Before designing
the rTTC control law, we need to perform a coordinate transformation of the
kinematic model into the chained form [25], which is more convenient to solve
trajectory tracking problems.

To make the problem even more real, beyond assumptions considered in
Chapter 3, we have two more for the rCC approach: (A5) the terrain is sloped,
and (A6) the robot is affected by external disturbances due to wheel slippage
and sideslip caused by rough and sloped terrain. Then, the rIBVS is applied to
deal with the disturbances caused by assumptions mentioned in the previous
chapter. In addition, the rTTC is designed based on the STA approach for
trajectory tracking to cope with perturbations caused by assumptions (A5)
and (A6).

Figure 4.1: The representation of SoyBot robot travelling along a sloped
terrain, and its coordinate frames: Fv is the image frame and s=(xv, yv, θv)∈R3

is the image features vector. Side view of the robot: Fr is the robot frame, Fw
is the world frame, Fc is the camera frame with a camera tilt offset ψ.

4.2
External Disturbances

Here, we also consider that a WMR has to navigate autonomously in
agricultural fields in the presence of external disturbances caused by the slope
and roughness of the terrain. In such a case, WMRs may be affected by wheel
slippage and sideslip while traversing or steering on rough terrains. In general,
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wheel slippage occurs either when the vehicle moves on a loose soil or a sloped
terrain. Let vx and vy be the longitudinal and lateral travelling speeds of the
robot wheels. The wheel slippage in the longitudinal direction, denoted by the
slip ratio γ∈R, is given by:

γ =

 (ν − vx)/ν , |ν| ≥ |vx| ,
(ν − vx)/vx , |ν| < |vx| ,

(4-1)

with ν∈R being the linear speed of the wheel, where r>0 is the wheel radius
and φ̇ is the angular speed of a given wheel (i.e., left or right wheel) such that
ν=rφ̇. Notice that, the slip ratio γ will take a value in the range of (−1, 1]. In
such cases, when |ν| ≥ |vx| the vehicle is moving uphill (driving). Otherwise,
when |ν|< |vx|, the vehicle is moving downhill (braking). Here, we also assume
that: (A7) The wheel speeds do not change abruptly during the autonomous
maneuver and, therefore, the slip ratio of the right and left wheels, γ

R
and γ

L
,

are approximately the same (γ
R
≈γ

L
≈γ). Then, we can rewrite the slip ratio

γ as a single slipping coefficient κ given by:

κ =

 (1− γ) , |ν| ≥ |vx| ,
(1 + γ)−1 , |ν| < |vx| ,

(4-2)

Consequently, the driving and steering velocities v and ω can be related to the
angular speeds ωR and ωL of the right and left wheels, considering the slipping
coefficient κ, as given by:

v = κr(ωR + ωL)
2 , ω = κr(ωR − ωL)

d
. (4-3)

In addition, we consider a slip effect in the lateral direction, denoted by the
slip angle β∈ [0, π/2), given by:

β =

 atan(vy/vx) , vx 6= 0 ,
(π/2) sgn(vy) , vx = 0 .

(4-4)

Now, we can rewrite the nonholonomic constraint given by Eq. (3-1), as a
function of the slip angle β [37]:

ẋ sin(θ − β)− ẏ cos(θ − β) = 0 . (4-5)

In this context, the kinematic model of the DDMR can be expressed in terms
of the slipping coefficient κ and slip angle β as:

ẋ

ẏ

θ̇

 =


κ cos(θ − β)
κ sin(θ − β)

0

 v +


0
0
κ

ω . (4-6)
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Finally, using addition and subtraction formulas of trigonometric identities, we
obtain the following robot kinematic model which depends only on the robot
orientation θ: 

ẋ

ẏ

θ̇

 =


κ(cos θ + δ sin θ)
κ(sin θ − δ cos θ)

0

 vx +


0
0
κ

ω , (4-7)

where δ= tan β is a disturbance term and vx = v cos β ∈R is the longitudinal
velocity of the DDMR. Figure 4.2 shows a representation of the kinematic
model of the DDMR including the slipping coefficient κ and slip angle β.

Figure 4.2: Schematic of the kinematic model of a DDMR, the generalized
coordinates q = (x, y, θ) and the robot inputs u = (v, ω) under the effects of
wheel slippage κ and sideslip β.

4.3
Robust Kinematic Controller Design

In this section, we present a robust kinematic control design based
on the STA approach for trajectory tracking in the presence of external
disturbances, due to wheel slippage and vehicle sideslip caused by rough and
sloped terrains [37]. Here, the key idea is to design a robust cascade controller in
the configuration space to ensure the accomplishment of the following control
goal:

q → qd(t) , q̃ = q − qd(t)→ 0 , (4-8)
where q̃ = (x̃, ỹ, θ̃) ∈ R3×1 is the Cartesian tracking error and qd(t) ∈ R3×1 is
the desired trajectory generated by a virtual reference DDMR with the same
kinematic constraints of the real DDMR and, therefore, feasible in practice.
Feasible reference trajectories must satisfy the motion of a reference frame Fd
rigidly attached to the virtual reference DDMR. Then, let us define the desired
reference trajectory qd(t) = (xd(t), yd(t), θd(t)) as smooth time functions that
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serve as solution to the kinematic model:
ẋd

ẏd

θ̇d

 =


κ(cos θd + δ sin θd)
κ(sin θd − δ cos θd)

0

 vd +


0
0
κ

 ωd , (4-9)

where ud = (vd, ωd) ∈ R2×1 are the desired input velocities provided by the
rIBVS approach described by Eq. (3-24) and Eq. (3-26) respectively. Then,
the tracking problem can be formulated as determine a feedback control
v=(v, ω) for asymptotically stabilizing the reference trajectory qd(t) such that
the Cartesian tracking error q̃ := (x− xd, y − yd, θ − θd) asymptotically goes
to zero. Figure Fig. 4.3 shows a block diagram that represents in more detail
how the previously mentioned control approach is designed. As depicted in the
schematic, the rIBVS approach is responsible for dealing with disturbances in
the image space, represented by ηi. On the other hand the rTTC approach must
reject perturbations caused by wheel slippage and vehicle sideslip. In addition,
to find the reference trajectory qd, the Euler method is used to integrate q̇d
obtained after applying the desired inputs ud in the virtual robot. In Fig. 4.3, we
can also see the coordinate transformations Tqz and Tuv that will be described
in the next subsections.

Figure 4.3: Block diagram representing the Robut Cascade-Based Controller
(rCC) approach.
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4.3.1
Kinematic Model Transformation

Here, we will introduce the coordinate transformations of the kinematic
model into the chained form, which is more convenient for solving planning
and control problems efficiently by using systematic procedures [36]. Equations
in the chained form can be easily integrable in closed-form under appropriate
inputs, simplifying the control design and the subsequent stability analysis [25].

Then, the tracking problem can be reformulated as follows: to find the
stabilizing control laws u = (u1, u2) ∈ R3×1 based on nonlinear switching
functions for the resulting chained system under disturbances, which asymp-
totically stabilizing the Cartesian tracking error q̃ at zero. Let us consider
the following change of coordinates and control variables (x̃, ỹ, θ̃, v, ω) 7→
(z1, z2, z3, u1, u2) via coordinate and input transformations:

z = Tzq(q) q̃ , u = Tuv(q) v , (4-10)

where

Tzq=


0 0 1

cos θ sin θ 0
sin θ − cos θ 0

 , Tuv=
 0 1

1 −z3

 , (4-11)

with z = (z1, z2, z3)∈R3×1 being the chained form coordinates whereas Tzq ∈
R3×3 and Tuv∈R2×2 are respectively the coordinate and input transformation
matrices.

After taking the time-derivative of z from Eq. (4-10), and using Eq. (4-7)
and Eq. (4-9), we can write the perturbed chained system as:

ż1 =u1 − ωd + f1 , (4-12.1)

ż2 =u2 − vd cos z1 + f2 , (4-12.2)

ż3 = z2 u1 − vd sin z1 + f3 , (4-12.3)

where f1∈R, f2∈R, and f3∈R are bounded disturbances given by:

f1 = [κ−1] (ω−ωd) , (4-13.1)

f2 = [κ−1] (v−ωz3−vd cos z1) + κ δ vd sin z1 , (4-13.2)

f3 = [κ−1] (ωz2−vd sin z1) + κ δ (v−vd cos z1) . (4-13.3)

Notice that, for the case of autonomous navigation in flat terrains, where κ=1
and δ = 0, the tracking problem for the perturbed chained system, given by
Eq. (4-12.1)-Eq. (4-12.3), is simplified for the conventional tracking problem for
chained form systems.
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4.3.2
Robust Trajectory Tracking

For asymptotically stabilizing the perturbed chained form system de-
scribed by Eq. (4-12.1)-Eq. (4-12.3), we design a new robust tracking controller
based on the STA approach and the stabilizing control laws proposed in [30]
with additional robustness terms, as shown below:

u1 =−αz1 − bz2|σ|0.5sgn(σ) + w1 + ωd , (4-14.1)

u2 =−αz2 + bz1|σ|0.5sgn(σ) + w2 + vd cos z1 , (4-14.2)

where σ = (2z3− z1 z2) is the sliding surface, b ∈ R+ is a positive constant
gain and α ∈ R0+ is a non-negative variable gain define as a function of the
coordinates z1 and z2:

α(z1, z2) =

α0 , per z2
1 + z2

2 > ε2 ,

0 , per z2
1 + z2

2 ≤ ε2 ,
(4-15)

with α0 ∈R being a positive constant and ε∈R is a positive constant which
defines the radius of a ε-sphere of the z1, z2-space origin. The robustness terms
w1 ∈ R and w2 ∈ R, designed according to the super-twisting algorithm, are
given by:

w1 =−ρ11 |z1|0.5 sgn(z1) + ζ1 , (4-16.1)

w2 =−ρ21 |z2|0.5 sgn(z2) + ζ2 , (4-16.2)

with ζ̇1 = −ρ12 sgn(z1) and ζ̇2 = −ρ22 sgn(z2), where ρ11, ρ12 ∈ R+ and
ρ21, ρ22∈R+ are positive gains. Then, we can state the following theorem:

Theorem 4.1 Consider the chained form system defined by Eq. (4-12.1)-
Eq. (4-12.3) under the disturbance terms given by Eq. (4-13.1)-Eq. (4-13.3)
assumed to be bounded. Under the robust SMC-based controllers given by
Eq. (4-14.1) and Eq. (4-14.2) respectively, the following properties hold: (i) all
systems signals are bounded; (ii) z1(t), z2(t)→0; (iii) σ(t), z3(t)→0; and (iv)
q̃(t)→0. (iv) x̃(t), ỹ(t)→0; (v) θ̃(t)→0 in finite time.

4.4
3D Computer Simulation

Here, we present 3D computer simulations and results of the rCC
approach designed for autonomous visual navigation in row crop fields, using
the SoyBot [10] equipped with a monocular camera. An example of a 3D
agricultural environment with sloped and rough terrain, as well as sparsely
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distributed plants, was created in ROS-Gazebo platform, as shown in Fig. 4.4.
The WMR and the world (i.e., the crop field) models, as explained in chapter 3,
are described in an SDF file, which contains all their physical and geometrical
characteristics. The environment has multiple crop-rows created choosing a
simple plant 3D model, called acanthus. The heightmap image, which was
converted into the 3D model used for the simulations of this chapter, and the
environment itself may be visualized in Fig. 4.5(a) and Fig. 4.5(b), respectively.

Figure 4.4: SoyBot robot navigating in the 3D agricultural environment created
in Gazebo platform, with sparse plants and rough terrains.

Figure 4.5: (a) 2D grayscale representing the heightmap used to create (b) the
3D environment used to simulate this comparative study.

The parameters of the camera-robot system used in the simulations were
previously shown in subsection 3.7.1 The ROS Nodes developed for the simu-
lation were written using Python with OpenCV libraries. The communication
between the sensors and the plugin was configured using ROS version Melodic
Morenia, running on the operating Linux Ubuntu 18.04, using an Intel Core i5-
8250U 1.6 GHz, 8GB DDR4 RAM. In the simulated tests , we considered 20%
of uncertainty in the extrinsic and intrinsic camera calibration parameters, a
slope angle of the terrain of approximately π/9 rad. In addition, we assume
a slipping coefficient κ= 0.6 and a disturbance term δ= 0.52 to validate the
robustness of the rCC approach.

Here, we will show a comparative study among the rCC approach and
the pure rIBVS approach, given by Eq. (3-24) and Eq. (3-26). The methods
were applied taking into account that the robot is climbing a sloped terrain
with roughness. Moreover, we consider a high driving velocity vd = 1.5 ms−1,
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relaxing the low-speed assumption used in [22]. Other parameters are: rate
of control loop h = 30Hz for a simulation time of Tmax = 40 s. The control
parameters used in the simulations are presented in Table 4.1. The gains ΛC ,
ΛR , KC , KR , µC and µR are chosen as described in subsection 3.7.3, as well as,
the tested ranges. The gain α0 was evaluated in the interval [0.1, 20.5], where
very low values makes variable z1 and z2 not to reach an acceptable value of
convergence. On the other hand, values near to the upper bound, cause the
system to approach instability. The gain b has been selected in such a way
that the sliding surface σ converge to about 10−3. Small values of b, makes
this gain result unachievable, and on the other hand, high values become the
system unstable. The variable ε was selected so that z1 and z2 reach values
with order of magnitude 10−3. Thereby, it is possible to ensure that the real
robot tracks the virtual robot with acceptable accuracy. The robust gains ρ11

and ρ21 were increased until the controller could deal with the uncertainties
and make the system perform the task satisfactorily. Finally the gains ρ12 and
ρ22 were chosen small, since high values can make the system unstable, because
they are multipled by integral terms. Moreover, the tested range for these gains
is [0.01, 0.1]. Table.4.1 shows the control paramaters for the rIBVS and rCC
approaches used to produce the simulation results shown in this section.

Table 4.1: Control parameters for the rIBVS and rCC approaches.

Parameters rIBVS (STA) rCC
ΛC diag(0.3, 0.6) diag(0.3, 0.6)
ΛR diag(2.5, 5.0) diag(2.5, 5.0)
KC 0.2I 0.2I
KR 0.2I 0.2I
µC , µR 0.05I 0.05I
α0 - 6.5
b - 7.5
ε - 8× 10−4

ρ11 - 0.5
ρ21 - 4.5

ρ12, ρ22 - 0.05

Figures 4.6-4.8 present the main results of various numerical simulations
for autonomous visual navigation task in a sloped terrain with roughness.
Figures 4.6(a)-(f) show the evolution over time of the image errors and coordi-
nates. At the beginning, we can observe that both rIBVS and rCC approaches
are able to make the robot reach the crop row, since, the image coordinate
yv is driven to the desired value H/2. However, when the robot is moving up
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the sloped terrain, the rIBVS approach is not capable of keeping the robot
aligned with the crop row, which can be visualized by the behavior of the im-
age coordinates xv and θv, and their respective errors. On the other hand, the
rCC approach is able to reject the disturbances in the kinematic model of the
DDMR, as well as the perturbations and inaccuracies in the image space.
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Figure 4.6: Comparative study among the rIBVS,and rCC approaches: (a)-(b)
image error, ex and image coordinate, xv; (c)-(d) image error, ey and image
coordinate, yv; (e)-(f) image error, eθ and image coordinate, θv

Therefore, the robot performs the desired task, as can be seen in
Fig. 4.7(a)-(d). Finally, the real robot inputs (v, ω) are presented in Fig 4.8(a)-
(b) and the robot wheel speeds (ωL, ωR) are depicted in Fig 4.8(c)-(d). In these
graphics, we realize that the real robot can track the desired robot, with the
rCC approach, since the inputs of the real robot achieve the inputs of the
desired robot.
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Figure 4.7: Comparative study among the rIBVS and rCC approaches: (a)-(c)
robot coordinates, xr, yr and θr; (d) trajectory traveled by the robot navigating
along the crop row.
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In addition, we use two performance metrics for a comparative study,
as presented in Table 4.2: (i) the mean-absolute error (MAE) of the image
features ex, ey, and eθ; (ii) the root mean squared error (RMSE) of the image
features ex, ey and eθ; and (iii) the mean-absolute deviation (MAD) of the
control signals v, ω, ωL and ωR. The metrics MAE and MAD were chosen to
analyze the transient and steady regimes with the same weights. In addition,
to facilitate the comparison with the performance of the rIBVS controller
applied to the case approached in chapter 2, we include the RMSE values
in Table 4.2. Looking at the MAE measure, we realize that the rCC approach
achieves much smaller values than the rIBVS approach, which fails to make
the system asymptotically stable. It is also possible to do this analysis by the
RMSE measure. However, RMSE are higher compared to MAE, as MAE places
greater weights on the transient regime of the system.

Furthermore, notice that Table 4.2 shows that the rCC approach also
leads to much has lower MAD metrics for the control signals, which may be
interesting for saving battering. Notice that, since, the linear velocity v sent to
the robot is equal to the desired one and this velocity is not measured in the
rIBVS approach, the MAD value is 0 in this case.

Table 4.2: Performance metrics: MAE, RMSE and MAD.

MAE rIBVS rCC unit
xv 31.11 12.78 cm
yv 38.78 1.94 cm
θv 49.47 7.56 deg

RMSE rIBVS rCC unit
xv 63.82 26.20 cm
yv 47.86 8.20 cm
θv 53.25 20.87 deg

MAD rIBVS rCC unit
v 0 0.147 ms−1

ω 2.18 0.105 rad s−1

ωL 6.53 0.621 rad s−1

ωR 6.53 0.946 rad s−1

4.5
Final Remarks

In this chapter, it was developed a robust cascade-based control (rCC)
methodology for wheeled mobile robots to perform autonomous navigation in
agricultural fields using a single monocular camera, considering the effects of
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all disturbances sources. The key idea is to connect a robust image-based visual
servoing (rIBVS) approach, with a robust trajectory tracking (rTTC) to handle
uncertainties caused by camera miscalibration, and external disturbances due
to high driving velocities, sparse plants, and changes in the slope and roughness
of the terrain First, the rIBVS approach is designed to reject inaccuracies and
perturbations in the image space, and afterwards, the rTTC is applied to
ensure successful execution of row crop following tasks under wheel slippage
and vehicle sideslip. A comparative study has been conducted considering two
control techniques, the pure rIBVS controller, presented in chapter 3, and the
rCC controller, described in this chapter, both based on the super twisting
algorithm (STA) approach. The controllers performance has been analyzed
by looking at the MAE and MAD metrics applied to the image features and
control signals. The 3D computer simulations are carried out in a row-crop
field created in ROS-Gazebo platform, using a differential-drive mobile robot
(DDMR). The agricultural environment has been built to incorporate slope
and roughness in the terrain, as well as, sparse plants, making the scenario
more realistic.
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5
Conclusion and Future Works

In this chapter, we present the concluding remarks about the design of
the Robust Image-based Visual Servoing and the Cascade Robust Controller
approaches for row crop following with wheeled mobile robots. In addition, we
added a brief discussion of terms perspectives for future works.

5.1
Concluding Remarks

In this work, we have proposed robust approaches for wheeled mobile
robots to perform row crop following using a singles monocular camera.
In Chapter 3, we designed a robust image-based visual servoing (rIBVS)
approach based on STA, for WMR. The main idea is to include a robustness
term in the vision-based control law to handle model inaccuracies caused
by camera miscalibration and trajectory perturbations in the image space,
due to high driving velocities, sparse plants, and uneven terrains. Three
comparative studies have been carried out to validate the developed strategy.
The first one considers three control techniques, the classic IBVS controller
with row and column primitives, and two robust controllers based on the
sliding mode control approach. Then, the second comparative study is carried
out by replacing the SMC-based rIBVS with the STA-based rIBVS. Finally,
the third comparative study compares the performance between the SMC-
based rIBVS and the STA-based rIBVS. The performance of the controllers
has been evaluated using the RMSE and MAD metrics applied to the image
errors and control signals. Analyzing the results shown in Tables 3.2 and 3.4,
we see that both rIBVS controllers present smaller RMSE for all image features
coordinates, compared with the classic IBVS and UVC approaches. Therefore,
the rIBVS approach has a better performance on the transient regime with
fewer oscillations, since the RMSE metrics penalize more the most significant
errors. These behaviors are also visualized in the graphs of Figs.3.9 and 3.12.
Thereby, it is noted that for comparative study I, the system is oscillatory for
the classic iBVS, and for the second comparative study, this method makes
the system unstable. In addition, Tables 3.2 and 3.4 show that the rIBVS
techniques have lower MAD metrics for the control signals, which can be
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relevant to save battery during the operations. In the last comparative study
presented in subsection 3.7.4, we compared the rIBVS approaches developed
for the two previously cited comparative studies. Then, analyzing the RMSE
metrics described in Table 3.6, we note that the rIBVS controller based on
the SMC approach reaches higher values than the rIBVS controller based on
the STA approach, for all image features coordinates. Therefore, the rIBVS
controller based on the STA approach has a smaller oscillatory behavior and
does not have so many accentuated perturbations, since the RMSE metrics
penalize the most significant errors. Moreover, the technique that has the
lowest MAD metrics for the control signals, according to the results present in
Table 3.6, is the rIBVS controller based on STA, indicating that this method
is more energy efficient. The stability and robustness properties of the rIBVS
controllers have been analyzed using the Lyapunov stability theory. Afterward,
in Chapter 4, we present the development of a robust cascade-based control
approach, taking into account all disturbances sources. To achieve this goal,
we connected the rIBVS approach, with robust trajectory tracking. Therefore,
it is possible to deal with uncertainties in the image space, and perturbations
caused by wheel slippage and vehicle sideslip. A comparative study has been
conducted considering two control strategies based on the super twisting
algorithm approach, the pure rIBVS and rCC controllers. The performance
has been analyzed measuring the MAE, RMSE, and MAD metrics applied
to the image features and control signals. Observing the results shown in
Table 4.2, we realize that the rCC approach reaches significantly lower MAE
and RMSE metrics compared with rIBVS approach, which fails to make the
system asymptotically stable. This analysis can also be done by looking at the
graphs presented in section 4.4. It is also possible to notice that rCC approach
has smaller MAD metrics than rIBVS approach for angular velocity ω and
wheel speeds ωL and ωR. This may be interesting for saving battering. In both
Chapters, 3D computer simulations are carried out in a row-crop field created
in the ROS-Gazebo platform, using a differential-drive mobile robot named
Soybot. We built the agricultural environment inserting slope and roughness
in the terrain, as well as, sparse plants.

5.2
Future Works

The following topics will be approached in future works of this research:

– Develop a stability proof based on Lyapunov theory for the Robust Image-
Based Visual Servoing (rIBVS) approach developed in Chapter 3.
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– Produce a stability proof based on Lyapunov theory for the Cascade Robust
Controller approach developed in Chapter 4.

– Apply optimization methods to choose the control gains of the approaches
described in Chapters 3 and 4.

– Design a novel control technique to deal with uncertainties and perturbations
in the dynamic model of the mobile robot.

– Extend the Cascade Robust Controller approach, so that we can relax the
assumption (A7), which mentions that the wheel speeds do not change
abruptly during autonomous maneuvers.

– Carry out experimental tests with real robots and environments, to proceed
with the experimental validation of the strategies developed in this work.

In addition, we will need to deal with some challenges that arise when
we navigate autonomously in real environments, which are caused by:

– Variation in lighting during the execution of the task, since outdoor envi-
ronments suffer from changes in sunlight during the day.

– Perturbations caused by navigation in types of terrain that were not tested
in Gazebo Platform, such as sandy terrains.

– Wear on the physical components of the real robot over time.

– Obstacles during the navigation task in agricultural environments, such as
wild animals, workers and others.

– Gain adjustments for the rIBVS and rCC approaches, so that the task is
performed with high accuracy.
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A
Stability and Robustness Analysis of rIBVS Approach

Here, we present the stability and robustness analysis of the proposed
rIBVS controllers. Then, the following assumptions for the perturbation term
ηi given by Eq. (3-22) hold for all image features vector si for i={C,R} as:

sup t≥0 ‖ξsi‖ < ∆si <∞, ∀ξsi , (A-1)

‖JωiĴ†ωi − I‖ ≤ ι ≤ 1 , (A-2)

‖Jvivd‖ ≤ Υ <∞ . (A-3)
The assumption given by Eq. (A-1) is satisfied because in Theorem4.1 was
assumed that ξsi is bounded. To prove the assumption made in Eq. (A-2), we
consider the boundedness of the norm of Jωi given by the following inequalities:

0 < Jmi ≤ ‖Jωi‖ ≤ JMi <∞ , (A-4)
where Jmi and JMi are the lower and upper bounds respectively. To satisfy the
Eq. (A-2), we can choose Ĵ†ωi as:

Ĵ†ωi = 2I/(JMi + Jmi) . (A-5)

Then, using Eq. (A-4) and Eq. (A-5) in the assumption given by Eq. (A-2), the
following inequality can be found:

‖JωiĴ†ωi − I‖≤(JMi−Jmi)/(JMi+Jmi) = ι ≤ 1 . (A-6)

Finally, the last assumption given by Eq. (A-3) is satisfied, since the parameters
that define Jvi and the velocity vd are also assumed to be bounded. For the
stabilization of the rIBVS system in closed-loop (i.e., the regulation problem),
the image error equation is taken from Eq. (3-21) as:

ṡi = ėi = νi + ηi , (A-7)

where ei∈R2 is a generic image error which can be defined in terms of image
features errors eC and eR . Now, to demonstrate the stability and robustness
properties of the rIBVS system, we choose the Lyapunov function candidate:

2Vi(σi) = σT
i σi , (A-8)
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which must satisfy the following properties:

(P1) Vi(σi) > 0 , (A-9)

(P2) V̇i(σi) = σTi σ̇i ≤ −α |σi| , (A-10)

(P3) V̇i(σ) = σT
i σ̇i . (A-11)

Notice that, σi∈R2 is a generic sliding surface which can be defined in terms
of σR and σC . Now, taking the time-derivative of V (σi) and using Eq. (A-7),
we obtain:

V̇i(σi) = σT
i (νi + ηi) . (A-12)

Then, by choosing νi=−Λσi−Kidσicp, with Λi=ΛT
i >0, yields:

V̇ (σ) = −σTΛσ + σT (η −Kdσcp) , (A-13)

which gives:
σT
i (ηi −Kidσicp) ≤ ‖σi‖ (‖ηi‖ −Ki) . (A-14)

To fulfill the sliding condition given by Property (P2), which makes the sliding
surface an invariant set, the robustness gain matrix Ki must satisfy:

Ki ≥ ‖ηi‖ , ∀si, sdi , (A-15)

which, in view of Eq. (A-1)-Eq. (A-3), implies that

‖ηi‖≤‖JωiĴ†ωi−I‖ (‖Λi‖ ‖ei‖+ ‖τi‖) + ‖Jvivd‖+ ‖ξsi‖ .

Then, setting:
K ≥ β + ∆si + ι (‖Λi‖ ‖ei‖)

1− ι , (A-16)
results in:

V̇i(σi) = −σT
i Λiσi + σTi (ηi −Kidσicp) < 0 , (A-17)

which implies that V̇i(σi) is negative definite for all σi 6=0. Therefore, we con-
clude that V̇i(σi)∈L∞ and σi, ei∈L∞ and, consequently, limt→∞ σi(t), ei(t)=0
[25]. Notice that, from Eq. (3-20), we can also conclude that ω∈L∞ provided
that νi∈L∞ , which proves the property (i) from Theorem4.1. Finally, we can
apply these results to the rIBVS system and conclude that σC , σR → 0 and
ex, ey, eθ→0 , which prove the properties (ii), (iii) and (iv) from Theorem4.1.
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