Referências Bibliográficas

- G. D. Ott, "Vehicle location in cellular mobile radio system," *IEEE Trans. Veh. Technol.*, no. 8, pp. 43–46, Fev. 1977.
- [2] H. Staras e S. N. Honickman, "The accuracy of vehicle location by trilateration in a dense urban environment," *IEEE Trans. Veh. Technol.*, pp. 38–43, Fev. 1972.
- [3] Federal Communications Comission, "FCC Wireless Enhanced 911 Requirements," FACT SHEET, http://www.fcc.gov/911/enhanced.
- [4] J. J. Caffery, Jr. e G. L. Stüber, "Overview of radiolocation in CDMA cellular systems," *IEEE Commun. Mag.*, vol. 36, no. 4, pp. 38–45, Abr. 1998.
- [5] H. Laitinen, S. Ahonen, S. Kyriazakos, J. Lahteenmaki, R. Menolasino, e S. Parkkila, "Cellular network optimization based on mobile location (IST-2000-25382-CELLO)," VTT -Technical Research Centre of Finland, Rel. Téc., 2001. [Online]: http://www.telecom.ecc.ntua.gr/cello
- [6] J. J. Caffery, Jr., Wireless Location in CDMA Cellular Radio Systems. Massachussets, USA: Kluwer Academic Publishers, 1999.
- [7] C. Botteron, "A statistical analysis of the performance of radio location techniques," Tese de Doutorado, University of Calgary, 2003.
- [8] Digital cellular telecommunications system (Phase 2+); Location Services (LCS), ETSI TS 101 724 v.7.3.0, Padrão, ETSI.
- [9] Y. T. Chan, "A simple and efficient estimator for hyperbolic location," *IEEE Trans. Signal Processing*, vol. 42, no. 8, pp. 1905–1915, 1994.
- [10] T. S. Rappaport, Wireless Communications. Prentice Hall, 1997.
- [11] N. Thomas e D. Cruickshank, "A passive mobile location system for UMTS," em Proc. IEE Colloquium on UMTS Terminals and Software Radio, 1999.

- [12] S. Al-Jazzar, J. J. Caffery, Jr., e H.-R. You, "A scattering model based approach to NLOS mitigation in TOA location systems," em *Proc. IEEE Veh. Technol Conf (Spring)*, 2002, pp. 861–865.
- [13] D. J. Torrieri, "Statistical theory of passive location systems," IEEE Trans. Aerosp. Electron. Syst., no. 2, pp. 183–197, Mar. 1984.
- [14] T. S. Rappaport, J. H. Reed, e B. D. Woerner, "Position location using wireless communications on highways of the future," *IEEE Commun. Mag.*, vol. 36, no. 4, pp. 30–37, Abr. 1998.
- [15] L. Cong e W. Zhuang, "Non-line-of-sight error mitigation in TDOA mobile location," em Proc. IEEE Global Telecommun. Conf. (Globecom), 2001, pp. 680–684.
- [16] M. P. Wylie-Green e S. S. Wang, "Robust range estimation in the presence of the non-line-of-sight error," em *Proc. IEEE Veh. Technol. Conf (Fall)*, 2001, pp. 101–105.
- [17] N. Thomas, D. Cruickshank, e D. Laurenson, "A robust location estimation architecture with biased Kalman filtering of TOA data for wireless systems," em Proc. IEEE Spread Spectrum Techniques and Applications Symposium, 2000, pp. 296–300.
- [18] M. Silventoinen e T. Rantalainen, "Mobile station emergency locating in GSM," em Proc. IEEE Personal Wireless Commun. Conf., 1996, pp. 232–238.
- [19] N. Thomas, D. Cruickshank, e D. Laurenson, "Performance of a TDOA-AOA hybrid mobile location system," em *Proc. IEE 3G Mobile Commun. Technol*, 2001, pp. 216–220.
- [20] W. Figel, N. Shepherd, e W. Trammel, "Vehicle location by a signal attenuation method," *IEEE Trans. Veh. Technol.*, 1969.
- [21] M. Hata e T. Nagatsu, "Mobile location using signal strength measurements in a cellular system," *IEEE Trans. Veh. Technol.*, pp. 245–251, 1980.
- [22] D. Kothris, M. Beach, B. Allen, e P. Karlsson, "Performance assessment of terrestrial and satellite based position location systems," em Proc. IEE 3G Mobile Commun. Technol, 2001, pp. 211–215.

- [23] J. C. Liberti e T. S. Rappaport, Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. Prentice Hall, 1999, ch. 10, pp. 285–365.
- [24] J. J. Caffery, Jr., "A new approach to the geometry of TOA location," em Proc. IEEE Veh. Technol. Conf (Fall), 2000, pp. 1943–1949.
- [25] B. L. Le, K. Ahmed, e H. Tsuji, "Mobile location estimator with NLOS mitigation using Kalman filtering," em Proc. IEEE Wireless Commun. and Networking, 2003, pp. 1969–1973.
- [26] B. Friedlander, "A passive localization algorithm and its accuracy analysis," *IEEE J. Oceanic Eng.*, pp. 234–245, Jan. 1987.
- [27] H. C. Schau e A. Z. Robinson, "Passive source localization employing intersecting spherical surfaces from time-of arrival differences," *IEEE Trans. Acoust., Speech, Signal Processing*, pp. 1223–1225, Ago. 1987.
- [28] J. S. Abel e J. O. Smith, "The spherical interpolation method for closed-form passive source localization using range difference measurements," em Proc. IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing, 1987, pp. 471–474.
- [29] —, "A divide and conquer approach to least-squares estimation," IEEE Trans. Aerosp. Electron. Syst., vol. 26, pp. 423–427, Mar. 1990.
- [30] J. Vidal, M. Cabrera, R. Játiva, M. Nájar, A. Pàges, e C. Simon, "D621 location based services performance evaluation (location techniques) (IST-1999-10322 SATURN)," Universitat Politècnica de Catalunya, Rel. Téc., 1999. [Online]: http://www.ist-saturn.org
- [31] M. P. Wylie e J. Holtzman, "The non-line of sight problem in mobile location estimation," em Proc. IEEE Universal Personal Commun. Conf, vol. 2, 1996, pp. 827–831.
- [32] J. Borràs, P. Hatrack, e N. B. Mandayam, "Decision theoretic framework for NLOS identification," em Proc. IEEE Veh. Technol Conf (Spring), 1998, pp. 1583–1587.
- [33] J. D. Parsons, The Mobile Radio Propagation Channel. UK: Pentech Press, 1992.
- [34] D. C. Cox, "Distributions of multipath delay spread and average excess delay for 910 mhz urban mobile radio paths," *IEEE Trans. Antennas Propagat.*, vol. 23, pp. 206–213, Mar. 1975.

- [35] H. Suzuki, "A statistical model for urban radio propagation," *IEEE Trans. Commun.*, vol. 25, pp. 673–680, 1977.
- [36] H. Hashemi, "Simulation of the urban radio propagation," *IEEE Trans. Veh. Technol.*, pp. 213–225, 1979.
- [37] A. Saleh e R. A. Valenzuela, "A statistical model for indoor multipath propagation," *IEEE J. Select. Areas Commun.*, pp. 128–137, 1987.
- [38] T. Rappaport, "Characterization of UHF multipath radio channels in factory buildings," *IEEE Trans. Antennas Propagat.*, vol. 37, pp. 1058– 1069, 1989.
- [39] P. Höher, "A statistical discrete time model for the WSSUS multipath channel," *IEEE Trans. Veh. Technol.*, pp. 461–468, Nov. 1992.
- [40] P. M. Crespo e J. Jiménez, "Computer simulation of radio channels using a harmonic decomposition technique," *IEEE Trans. Veh. Technol.*, vol. 44, pp. 414–419, 1995.
- [41] K.-W. Yip e T.-S. Ng, "Efficient simulation of digital transmission over WSSUS channels," *IEEE Trans. Commun.*, vol. 43, pp. 2907–2913, 1995.
- [42] G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, e D. Lavry, "A statistical model of urban multipath propagation," *IEEE Trans. Veh. Technol.*, pp. 1–9, Fev. 1972.
- [43] T. Rappaport, S. Y. Seidel, e R. Singh, "900 MHz multipath propagation measurements for US digital cellular radiotelephone," *IEEE Trans. Veh. Technol.*, vol. 39, pp. 132–139, Maio 1990.
- [44] K. I. Pedersen, P. E. Mogensen, e B. H. Fleury, "A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments," *IEEE Trans. Veh. Technol.*, vol. 49, pp. 437–447, Mar. 2000.
- [45] C. Cheon e H. L. Bertoni, "Fading of wide band signals associated with displacement of the mobile in urban environments," em *Proc. IEEE Veh. Technol Conf (Spring)*, 2002, pp. 1–5.
- [46] M. Lu, T. Lo, e J. Litva, "A physical spatio-temporal model of multipath propagation channels," em Proc. IEEE Veh. Technol. Conf (Fall), 1997, pp. 810–814.

- [47] R. B. Ertel e J. H. Reed, "Angle and time of arrival statistics for circular and elliptical scattering models," *IEEE J. Select. Areas Commun.*, vol. 17, no. 11, pp. 1829–1840, Nov. 1999.
- [48] R. Janaswamy, "Angle and time of arrival statistics for the gaussian scatter density model," *IEEE Trans. Wireless Commun.*, vol. 1, no. 3, pp. 488–497, 2002.
- [49] N. Thomas, D. Cruickshank, e D. Laurenson, "Channel model implementation for evaluation of location services," em Proc. IEE 3G Mobile Commun. Technol, 2000, pp. 446–450.
- [50] S. Venkatraman e J. J. Caffery, Jr., "A statistical approach to non-lineof-sight BS identification," em Proc. IEEE Wireless Personal Multimedia Conf., 2002.
- [51] A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed. McGraw-Hill, 1991.
- [52] V. Enescu e H. Sahli, "Recursive filtering approach to MS locating using quantized TOA measurements," em Proc. IEE 3G Mobile Commun. Technol, 2001, pp. 206–210.
- [53] S. Venkatraman, J. J. Caffery, Jr., e H.-R. You, "Location using LOS range estimation in NLOS environments," em Proc. IEEE Veh. Technol Conf (Spring), 2002, pp. 856–860.
- [54] S. Haykin, Adaptive Filter Theory. New Jersey-USA: Prentice Hall, 1996.
- [55] J. G. Proakis, *Digital Communications*. USA: Mc Graw Hill, 1995.
- [56] A. J. Viterbi, CDMA Principles of Spread Spectrum Communications. Addison-Wesley, 1995.
- [57] H. L. Van Trees, Detection, Estimation, and Modulation Theory. USA: John Wiley & Sons, 1968.
- [58] S. M. Kay, Fundamentals of Statistical Signal Processing (Estimation Theory). UK: Prentice Hall, 1993.
- [59] M. Simon, J. Omura, R. Scholtz, e K. Levitt, Spread Spectrum Communications. Computer Science Press, 1985.
- [60] J. Holmes, Coherent Spread Spectrum Systems. Wiley, 1982.

- [61] M. Hellebrandt e R. Mathar, "Location tracking of mobiles in cellular radio networks," *IEEE Trans. Veh. Technol.*, vol. 48, no. 5, pp. 1558– 1562, 1999.
- [62] M. McGuire e K.N.Plataniotis, "A multi-model filter for mobile terminal location tracking," em Proc. IEEE Veh. Technol. Conf (Fall), 2002, pp. 1197–1201.
- [63] W. Fletcher, Engineering Approach to Digital Design. Prentice-Hall, 1980.
- [64] S. M. Kay, Fundamentals of Statistical Signal Processing (Volume II-Detection Theory). New Jersey-USA: Prentice Hall, 1998.
- [65] M. Barbiroli, C. Carciofi, G. Falciasecca, M. Frullone, P. Grazioso, e A. Varini, "A new statistical approach for urban environment propagation modeling," *IEEE Trans. Veh. Technol.*, vol. 51, pp. 1234–1241, 2002.
- [66] M. Aoki, Introduction to Optimization Techniques, 1st ed. The Macmillan Company, 1971.
- [67] A. Gaspar e M. A. Grivet, "Identification of LOS/NLOS states using TOA filtered estimates," em Proc. IEE Int'l Conf. on Telecommun., 2004, pp. 1067–1076.
- [68] P. W. Glynn e D. L. Iglehart, "Importance sampling for stochastic simulations," *Management Sci.*, vol. 35, pp. 1367–1392, 1989.
- [69] P. Hahn e M. Jeruchim, "Developments in the theory and application of importance sampling," *IEEE Trans. Commun.*, vol. COM-35, pp. 706–714, Jul. 1987.
- [70] N. Gordon, D. Salmond, e A. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation," *IEE Proceedings-F*, vol. 140, pp. 107–113, Abr. 1993.
- [71] G. Storvik, "Particle filters for state-space models with the presence of unknown static parameters," *IEEE Trans. Signal Processing*, vol. 50, pp. 281–289, Fev. 2002.
- [72] J. Miguez e P. M. Djuric, "Blind equalization by sequential importance sampling," em Proc. Int. Symp. Circ. Sys., Maio 2002, pp. 1845–1848.

- [73] R. G. Brown e P. Chwang, Introduction to Random Signal and Applied Kalman Filtering. John Wiley & Sons, 1992.
- [74] C. Andrieu e A. Doucet, "Online expectation-maximization type algorithms for parameter estimation in general state space models," em *Proc. IEEE Int'l Conf. on Acoustics, Speech, and Signal Processing*, Abr. 2003, pp. 69–72.
- [75] T. Higuchi, "Monte Carlo filter using the genetic algorithm operators," J. Stat. Comp. Simul., vol. 59, pp. 1–23, 1997.
- [76] G. Kitagawa, "A self organizing state-space model," J. Am. Stat. Ass., vol. 93, pp. 1203–1215, 1998.
- [77] S. MacEachern, M. Clyde, e J. Liu, "Sequential importance sampling for nonparametric Bayes models: The next generation," *Canadian Journal of Statistics*, vol. 27, pp. 251–267, 1999.
- [78] M. A. Spirito, "On the accuracy of cellular mobile station location estimation," *IEEE Trans. Veh. Technol.*, vol. 50, no. 3, pp. 674–685, Maio 2001.
- [79] W. C. Jakes, Jr., Microwave Mobile Ccommunications. USA: Wiley Interscience, 1974.
- [80] J. D. Gibson, The Mobile Ccommunications Handbook. USA: CRC Press, 1996.
- [81] J. Walfisch e H. Bertoni, "A theoretical model of UHF propagation in urban environments," *IEEE Trans. Antennas Propagat.*, vol. AP-36, pp. 1788–1796, 1988.
- [82] G. J. Hahn e S. S. Shapiro, Statisticals Models in Engineering. USA: John Wiley & Sons, 1967.
- [83] A. Doucet, S. Godsill, e C. Andrieu, "On sequential Monte Carlo sampling methods for Bayesian filtering," *Statistics and Computing*, vol. 10, pp. 197–208, Jul. 2000.
- [84] R. E. Kalman, "A new approach to linear filtering and prediction problems," *Transactions of the ASME–Journal of Basic Engineering*, vol. 82, no. Series D, pp. 35–45, 1960.
- [85] R. van der Merwe, A. Doucet, N. de Freitas, e E. Wan, "The unscented particle filter," Maio 2000.

- [86] A. Doucet, J. F. G. de Freitas, e N. J. G. (editors), Sequential Monte-Carlo Methods in Practice. New York: Springer Verlag, Maio 2001.
- [87] M. S. Arulampalam, S. Maskell, e T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking," *IEEE Trans. Signal Processing*, vol. 50, pp. 174–188, Fev. 2002.
- [88] P. Djuric, J. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. Bugallo, e J. Miguez, "Particle filtering," *IEEE Signal Processing Mag.*, vol. 50, pp. 281–289, Set. 2003.
- [89] S. Thurn, W. Bugard, e D. Fox, "A probabilistic approach to concurrent mapping and localization for mobile robots," *Machine Learning*, vol. 31, pp. 29–53, 1998.
- [90] J. F. G. Freitas, M. Niranjan, A. H. Gee, e A. Doucet, "Sequential Monte-Carlo methods to train neural networks models," *Neural Computation*, vol. 12, no. 4, pp. 955–993, 2000.
- [91] Z. Yang e X. Wang, "A sequential Monte-Carlo blind receiver for OFDM systems in frequency-selective fading channels," *IEEE Trans. Signal Processing*, vol. 50, pp. 271–280, Fev. 2002.

Glossário

A-GPS	Assisted Global Positioning System.
AoA	Angle of Arrival.
BPSK	Binary Phase Shift Keying.
BS	Base Station.
CDMA	Code Division Multiple Access.
CRLB	Cramér-Rao Lower Bound.
CTIA	Cellular Telephone Industries Association.
DoA	Direction of Arrival.
E911	Wireless Enhanced 911.
EBR	Estimativa Bayesiana Recursiva.
EKF	Extended Kalman Filter.
EML	Erro Médio de Localização.
EMQ	Erro Médio Quadrático.
E-OTD	Enhanced-Observed Time Difference.
FCC	Federal Communications Commission.

- fd
c \hdots função distribuição complementar.
- fdp função densidade de probabilidade.
- ${\rm GDOP} \ldots \ldots \quad {\rm Geometric} \ {\rm Dilution} \ {\rm of} \ {\rm Precision}.$
- GPS Global Positioning System.

- GSM Global System for Mobile Communications.
- iid independentes e identicamente distribuídas.
- IS-95 Interim Standard 95.
- LMU Location Measurement Unit.
- LOS Line of Sight.
- LRT Likelihood Ratio Test.
- LS Least Squares.
- MEMQ Mínimo Erro Médio Quadrático.
 - ML Maximum Likelihood.
 - MS Mobile Station.
- MSC Mobile Switching Center.
- NEMPS NLOS Error Estimation based on Mean Power Scattering.
- NLOS Non-line of Sight.
- NP Neyman-Pearson.
- PF Particle Filter.
- PSAP Public Safety Answering Point.
- TDoA Time Difference of Arrival.
- ToA Time of Arrival.
- UMP Uniformly Most Powerful.
- UMTS Universal Mobile Telecommunications System.
 - US Uncorrelated Scattering.
- WCDMA..... Wide Code Division Multiple Access.
 - WLS Weighted Least Squares.
 - WSS Wide Sense Stationary.

A Notações Matemáticas

Ao longo do texto, matrizes são representadas por letras maiúsculas em negrito, vetores por letras minúsculas em negrito, e variáveis escalares por letras maiúsculas ou minúsculas em itálico. Outras notações utilizadas são listadas a seguir:

j		número complexo $\sqrt{-1}$.
С		velocidade da luz $(c\approx 3\times 10^8)$
\mathbb{N}		conjunto dos números naturais
\mathbb{R}		conjunto dos números reais
.		módulo de um escalar.
.		norma (ou distância) euclideana.
[.]		maior inteiro menor ou igual ao número.
ℜ[.]		parte real do número complexo.
$\delta(\;.\;)$		delta de Dirac
$\ln(.)$		logaritmo natural.
$\log(.)$		logaritmo na base 10.
$ \arg \max_{x} (f(.$))	valor da variável x que maximiza f .
$\underset{x}{\operatorname{argmin}}(f($.))	valor da variável x que minimiza f .
$\min f$		valor mínimo da função f .
\mathbf{I}_N		matriz identidade com dimensão $N \times N$.
0		matriz com elementos nulos.

$1_{n imes p}$		matriz de dimensão $n \times p$ com elementos iguais a 1.
$[v_1,\ldots,v_M]$		vetor-linha com M componentes.
$(\ . \)^{T}$		matriz (ou vetor) transposta(o).
$\det(\ .\)$		determinante da matriz.
tr(.)		soma dos elementos da diagonal da matriz (traço).
$\operatorname{diag}(\mathbf{v})$		matriz quadrada cuja diagonal é formada pelo vetor ${f v}$ e com elementos nulos nas demais posições.
$[\;.\;]_j$		j-ésimo elemento do vetor.
$[\;.\;]_{ij}$		elemento (i, j) da matriz.
$\left. \frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right _{\mathbf{x}=\mathbf{x}_0}$		matriz cujo elemento (i, j) é dado pela derivada parcial da <i>i</i> -ésima componente da imagem de f com relação à <i>j</i> -ésima componente do vetor x , calculada no ponto x = x ₀ .
E[.]		valor esperado da variável aleatória.
$\mathrm{E}[a b]$		valor esperado da variável aleatória a condicionado a uma dada realização da variável b .
Var[.]		variância da variável aleatória.
$\operatorname{Cov}(\ .\ ,\ .\)$		covariância entre duas variáveis aleatórias.
Pr(.)		probabilidade do evento ocorrer
$\Pr(A B)$		probabilidade do evento A ocorrer dado que ocorreu o evento B.
$x \sim p_x(\ .\)$		x tem função densidade de probabilidade dada por $p_x.$
$\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \boldsymbol{\Lambda}$)	vetor aleatório \mathbf{x} é gaussiano com vetor-média \mathbf{m} e matriz covariância $\boldsymbol{\Lambda}$. A notação é aplicada também para variáveis escalares gaussianas.
$X \sim \mathbb{U}[a,b]$		variável aleatória X com distribuição uniforme no intervalo $[a, b]$.

- $N(\mathbf{x}; \mathbf{m}, \Lambda)$ função densidade de probabilidade gaussiana com argumento \mathbf{x} e parâmetros (\mathbf{m}, Λ) .
 - $\mathbf{Q}(\;.\;)$ função distribuição cumulativa complementar de uma variável gaussiana normalizada e de média nula, i.e, $Q(x)=(2\pi)^{-1/2}\int_x^\infty e^{-t^2/2}dt.$
 - erf(.) função erro, i.e, $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt$
 - $x \underset{H_0}{\overset{H_1}{\gtrless}} y$ decisão pela hipótese H1 se x for maior que o limiar y, caso contrário decide-se pela hipótese H0.
 - $\hat{\mathbf{v}}_k$ estimativa do vetor \mathbf{v} no instante t_k .
 - $\hat{\mathbf{v}}_{k,k-1}$ estimativa a priori do vetor \mathbf{v} no instante t_k .
 - $\mathbf{z}_{1:k}$ conjunto { $\mathbf{z}_i, i = 1, \ldots, k$ }

B Estimação Bayesiana Recursiva

B.1 Introdução

Vários problemas de engenharia encontrados na prática requerem a estimação do "estado" de um sistema que se altera ao longo do tempo, com base em uma série de observações (medidas) coletadas seqüencialmente. A partir de um modelo de evolução do estado e caracterização estatística das medidas, é possível implementar algoritmos ótimos ou sub-ótimos de estimação (sob o critério de mínimo erro médio quadrático) recursivos.

Matematicamente, o problema pode ser colocado da forma a seguir: considere a evolução em tempo discreto de um estado { $\mathbf{z}_k \in \mathbb{R}^{n_z}, k \in \mathbb{N}$ } dada por

$$\mathbf{z}_k = \mathbf{f}_k(\mathbf{z}_{k-1}, \mathbf{v}_{k-1}), \tag{B.1}$$

onde $\mathbf{f}_k : \mathbb{R}^{n_z} \times \mathbb{R}^{n_v} \to \mathbb{R}^{n_z}$ é uma função (possivelmente não linear) do estado \mathbf{z}_k e do *ruído de estado* { $\mathbf{v}_k \in \mathbb{R}^{n_v}, k \in \mathbb{N}$ }, sendo este último uma seqüência de variáveis aleatórias independentes entre si e de \mathbf{z}_k , identicamente distribuídas. Admite-se que a matriz covariância de \mathbf{v}_k é conhecida e dada por \mathbf{Q}_k . O problema consiste em estimar recursivamente \mathbf{z}_k a partir das medidas

$$\boldsymbol{\tau}_k = \mathbf{h}_k(\mathbf{z}_k, \mathbf{n}_k), \tag{B.2}$$

onde $\mathbf{h}_k : \mathbb{R}^{n_z} \times \mathbb{R}^{n_n} \to \mathbb{R}^{n_\tau}$ é uma função (possivelmente não linear) e { $\mathbf{n}_k \in \mathbb{R}^{n_n}, k \in \mathbb{N}$ } é uma seqüência de variáveis aleatórias iid representando o *ruído de medida*, com matriz covariância conhecida dada por \mathbf{R}_k .

Ou seja, no instante de tempo t_k , deseja-se realizar a estimativa de \mathbf{z}_{k+1} (predição) ou \mathbf{z}_k (filtragem) baseando-se no conjunto de todas as medidas disponíveis $\boldsymbol{\tau}_{1:k} = \{\boldsymbol{\tau}_i, i = 1, ..., k\}$ até o instante t_k , e possivelmente na função densidade de probabilidade de \mathbf{z}_k no instante inicial $(p(\mathbf{z}_0))$.

A estimativa de mínimo erro médio quadrático (MEMQ) é a média a posteriori de \mathbf{z}_k [57][58]. Ou seja, dado o conjunto de observações $\boldsymbol{\tau}_k$, a estimativa MEMQ é dada por

$$\hat{\mathbf{z}}_{k,k} = E\{\mathbf{z}_k | \boldsymbol{\tau}_{1:k}\},\tag{B.3}$$

o que requer, a princípio, que a função densidade de probabilidade a posteriori seja conhecida ou estimada.

O algoritmo mais utilizado para lidar com este problema é o filtro de Kalman [54][84]. No entanto, as condições para a aplicação desta técnica são altamente restritivas, já que exige que as funções $\mathbf{f}_k \in \mathbf{h}_k$ sejam lineares e que $\mathbf{v}_k \in \mathbf{n}_k$ sejam variáveis gaussianas¹.

Se estas condições não forem válidas, o filtro de Kalman tradicional não pode ser aplicado e outras alternativas devem ser buscadas, como por exemplo, o filtro de Kalman estendido (EKF). A técnica utilizada no EKF consiste em linearizar a equação de medidas e o modelo de evolução do estado aproximando as funções \mathbf{f}_k e \mathbf{g}_k por séries de Taylor truncadas. No entanto, a aproximação por série de Taylor pode conduzir a representações imprecisas da função não-linear e das distribuições de probabilidade de interesse. Como resultado, o filtro EKF pode não convergir [85].

Em função disto, novas alternativas para lidar com o problema de estimação recursiva MEMQ foram recentemente propostas na literatura. É o caso da técnica denominada de "Filtro de Partículas" [70][86][87].

B.2 Estimação Bayesiana Recursiva

Na estimação Bayesiana recursiva (EBR) o objetivo é construir a fdp a posteriori do estado atual \mathbf{z}_k ($p(\mathbf{z}_k | \boldsymbol{\tau}_{1:k})$) recursivamente. Em princípio isto pode ser realizado em 2 etapas: *predição* e *atualização*.

Supondo que a fdp $p(\mathbf{z}_{k-1}|\boldsymbol{\tau}_{1:k-1})$ no instante de tempo t_{k-1} esteja disponível, é possível obter a fdp a priori do estado no instante t_k pela equação de Chapman-Kolmogorov:

$$p(\mathbf{z}_k|\boldsymbol{\tau}_{1:k-1}) = \int p(\mathbf{z}_k|\mathbf{z}_{k-1},\boldsymbol{\tau}_{1:k-1}) p(\mathbf{z}_{k-1}|\boldsymbol{\tau}_{1:k-1}) d\mathbf{z}_{k-1}, \qquad (\mathsf{B.4})$$

que simplifica para

$$p(\mathbf{z}_k|\boldsymbol{\tau}_{1:k-1}) = \int p(\mathbf{z}_k|\mathbf{z}_{k-1}) p(\mathbf{z}_{k-1}|\boldsymbol{\tau}_{1:k-1}) d\mathbf{z}_{k-1}$$
(B.5)

 $^{^{1}\}acute{\rm E}$ possível aplicar o filtro de Kalman quando o ruído não é gaussiano, porém nestas condições o desempenho não é ótimo no sentido MEMQ

utilizando o fato de que a equação (B.1) descreve um processo de Markov de ordem um. Por sua vez, a fdp $p(\mathbf{z}_k|\mathbf{z}_{k-1})$ pode ser determinada por

$$p(\mathbf{z}_k|\mathbf{z}_{k-1}) = \int p(\mathbf{z}_k|\mathbf{z}_{k-1}, \mathbf{v}_{k-1}) p(\mathbf{v}_{k-1}|\mathbf{z}_{k-1}) d\mathbf{v}_{k-1}.$$
 (B.6)

Uma vez que $p(\mathbf{v}_{k-1}|\mathbf{z}_{k-1}) = p(\mathbf{v}_{k-1})$, a equação anterior pode ser reescrita da forma

$$p(\mathbf{z}_k|\mathbf{z}_{k-1}) = \int \delta(\mathbf{z}_k - \mathbf{f}_{k-1}(\mathbf{z}_{k-1}, \mathbf{v}_{k-1})) p(\mathbf{v}_{k-1}) d\mathbf{v}_{k-1}, \qquad (\mathsf{B.7})$$

onde $\delta(.)$ é a função delta de Dirac. A função delta de Dirac aparece em (B.7) porque se \mathbf{z}_{k-1} e \mathbf{v}_{k-1} são conhecidos, então \mathbf{z}_k é obtido através da relação determinística dada em (B.1). A equação (B.5) com (B.7) constitui a etapa de *predição* da EBR.

No instante de tempo t_k , quando obtém-se a medida $\boldsymbol{\tau}_k$, a fdp de \mathbf{z}_k pode ser *atualizada* utilizando-se a regra de Bayes:

$$p(\mathbf{z}_k|\underbrace{\boldsymbol{\tau}_k, \boldsymbol{\tau}_{1:k-1}}_{\boldsymbol{\tau}_{1:k}}) = \frac{p(\boldsymbol{\tau}_k|\mathbf{z}_k, \boldsymbol{\tau}_{1:k-1})p(\mathbf{z}_k|\boldsymbol{\tau}_{1:k-1})}{p(\boldsymbol{\tau}_k|\boldsymbol{\tau}_{1:k-1})} = \frac{p(\boldsymbol{\tau}_k|\mathbf{z}_k)p(\mathbf{z}_k|\boldsymbol{\tau}_{1:k-1})}{p(\boldsymbol{\tau}_k|\boldsymbol{\tau}_{1:k-1})}.$$
(B.8)

onde o denominador de normalização é dado por

$$p(\boldsymbol{\tau}_{k}|\boldsymbol{\tau}_{1:k-1}) = \int p(\boldsymbol{\tau}_{k}|\mathbf{z}_{k},\boldsymbol{\tau}_{1:k-1})p(\mathbf{z}_{k}|\boldsymbol{\tau}_{1:k-1})d\mathbf{z}_{k}$$
$$= \int p(\boldsymbol{\tau}_{k}|\mathbf{z}_{k})p(\mathbf{z}_{k}|\boldsymbol{\tau}_{1:k-1})d\mathbf{z}_{k}.$$
(B.9)

Por sua vez a fdp condicional de τ_k dado \mathbf{z}_k , $p(\tau_k | \mathbf{z}_k)$, é definida pela equação de medida (eq. (B.2)) e pela estatística (conhecida) de \mathbf{n}_k :

$$p(\boldsymbol{\tau}_{k}|\mathbf{z}_{k}) = \int p(\boldsymbol{\tau}_{k}|\mathbf{z}_{k},\mathbf{n}_{k})p(\mathbf{n}_{k})d\mathbf{n}_{k}$$

= $\int \delta(\boldsymbol{\tau}_{k}-\mathbf{h}_{k}(\mathbf{z}_{k},\mathbf{n}_{k}))p(\mathbf{n}_{k})d\mathbf{n}_{k}.$ (B.10)

As relações de recorrência apresentadas nas equações (B.5) e (B.8) representam a solução formal para o problema de EBR. Soluções ótimas (no sentido de MEMQ) para este problema existem, sendo as mais importantes o filtro de Kalman e os métodos baseados em *grid*. Quando estas técnicas não podem ser aplicadas, é necessário de técnicas sub-ótimas, como por exemplo o EKF, o filtro Unscented ou o filtro de partículas.

B.3 Métodos para estimação Bayesiana recursiva

B.3.1 Algoritmo Ótimo

Filtro de Kalman

Para o uso de filtro de Kalman admite-se para o problema que

- $-\mathbf{v}_{k-1} \in \mathbf{n}_k$ devem ser variáveis Gaussianas de parâmetros conhecidos
- $-\mathbf{f}_k(\mathbf{z}_{k-1},\mathbf{v}_{k-1})$ deve ser conhecida e linear
- $-\mathbf{h}_k(\mathbf{z}_k,\mathbf{n}_k)$ deve ser conhecida e linear

Ou seja, as equações (B.1) e (B.2) podem ser reescritas por

$$\mathbf{z}_k = \mathbf{F}_k \mathbf{z}_{k-1} + \mathbf{v}_{k-1} \tag{B.11}$$

$$\boldsymbol{\tau}_k = \mathbf{H}_k \mathbf{z}_k + \mathbf{n}_k \tag{B.12}$$

onde \mathbf{F}_k e \mathbf{H}_k são matrizes conhecidas definindo as funções lineares. Com estas suposições é possível provar que as distribuições de \mathbf{z}_k a priori e a posteriori são Gaussianas e portanto completamente caracterizadas por suas médias e matrizes covariância.

Dadas estas suposições e usando as equações (B.5) e (B.8), é possível estabelecer a seguinte relação recursiva:

$$\mathbf{m}_{k,k-1} = \mathbf{F}_k \mathbf{m}_{k-1} \tag{B.13}$$

$$\mathbf{P}_{k,k-1} = \mathbf{Q}_{k-1} + \mathbf{F}_k \mathbf{P}_{k-1,k-1} \mathbf{F}_k^T$$
(B.14)

$$\mathbf{m}_{k} = \mathbf{m}_{k,k-1} + \mathbf{K}_{k}(\boldsymbol{\tau}_{k} - \mathbf{H}_{k}\mathbf{m}_{k,k-1})$$
(B.15)

$$\mathbf{P}_{k} = \mathbf{P}_{k,k-1} - \mathbf{K}_{k}\mathbf{H}_{k}\mathbf{P}_{k,k-1} \tag{B.16}$$

onde $\mathbf{m}_{k,k-1}, \mathbf{m}_k$ e $\mathbf{P}_{k,k-1}, \mathbf{P}_k$ representam os vetores-média e matrizes covariância das fdp's (a priori e a posteriori) de \mathbf{z}_k , e

$$\mathbf{S}_{k} = \mathbf{H}_{k} \mathbf{P}_{k,k-1} \mathbf{H}_{k}^{T} + \mathbf{R}_{k}$$
(B.17)

$$\mathbf{K}_{k} = \mathbf{P}_{k,k-1}\mathbf{H}_{k}^{T}\mathbf{S}_{k}^{-1}$$
(B.18)

(B.19)

representam a matriz covariância do termo de inovação $\tau_k - \mathbf{H}_k \mathbf{m}_{k,k-1}$, e o ganho de Kalman, respectivamente. As matrizes \mathbf{Q}_{k-1} e \mathbf{R}_k são as matrizes

covariância dos ruídos \mathbf{v}_{k-1} e \mathbf{n}_k . A estimativa MEMQ de \mathbf{z}_k é dada por $\hat{\mathbf{z}}_k = \mathbf{m}_k$.

Esta é a solução ótima para o problema de EBR se as hipóteses mencionadas forem válidas. Isto quer dizer que em um cenário linear e Gaussiano, nenhum método supera o filtro de Kalman.

B.3.2 Algoritmos Sub-Ótimos

Em muitas situações de interesse as técnicas ótimas de EBR não podem ser aplicadas e portanto são necessárias aproximações para o cálculo recursivo da fdp a posteriori de \mathbf{z}_k . Duas das principais alternativas para problemas não-lineares são:

- filtro de Kalman estendido (EKF)
- filtro de partículas

Filtro de Kalman Estendido

Se as equações (B.1) e (B.2) não puderem ser escritas da forma mostrada em (B.11) e (B.12) porque as funções não são lineares, então uma alternativa é linearizar localmente estas equações truncando-se a expansão em série de Taylor de \mathbf{f}_k e \mathbf{h}_k no segundo termo (aproximação de primeira ordem). A técnica EKF baseia-se nesta aproximação para utilizar a mesma formulação de Kalman. Ou seja, a EBR neste caso é dada por

$$\mathbf{m}_{k,k-1} = \mathbf{f}_k(\mathbf{m}_{k-1}) \tag{B.20}$$

$$\mathbf{P}_{k,k-1} = \mathbf{Q}_{k-1} + \mathbf{F}_k \mathbf{P}_{k-1} \mathbf{F}_k^T$$
(B.21)

$$\mathbf{m}_{k} = \mathbf{m}_{k,k-1} + \mathbf{K}_{k}(\boldsymbol{\tau}_{k} - \mathbf{h}_{k}(\mathbf{m}_{k,k-1}))$$
(B.22)

$$\mathbf{P}_{k} = \mathbf{P}_{k,k-1} - \mathbf{K}_{k} \mathbf{H}_{k} \mathbf{P}_{k,k-1}$$
(B.23)

onde agora as funções \mathbf{f}_k e \mathbf{h}_k são não-lineares, e $\widetilde{\mathbf{F}}_k$ e $\widetilde{\mathbf{H}}_k$ são matrizes dadas por

$$\widetilde{\mathbf{F}}_{k} = \left. \frac{d\mathbf{f}_{k}(\mathbf{z})}{d\mathbf{z}} \right|_{\mathbf{z}=\mathbf{m}_{k-1}} = \begin{pmatrix} \left. \frac{\partial f_{k}^{(1)}}{\partial z_{1}} \right|_{\mathbf{z}=\mathbf{m}_{k-1}} & \cdots & \frac{\partial f_{k}^{(1)}}{\partial z_{1}} \right|_{\mathbf{z}=\mathbf{m}_{k-1}} \\ \vdots & \ddots & \vdots \\ \left. \frac{\partial f_{k}^{(n_{z})}}{\partial z_{1}} \right|_{\mathbf{z}=\mathbf{m}_{k-1}} & \cdots & \frac{\partial f_{k}^{(n_{z})}}{\partial z_{n_{z}}} \right|_{\mathbf{z}=\mathbf{m}_{k-1}} \end{pmatrix}$$
(B.24)

$$\widetilde{\mathbf{H}}_{k} = \frac{d\mathbf{h}_{k}(\mathbf{z})}{d\mathbf{z}}\Big|_{\mathbf{z}=\mathbf{m}_{k,k-1}} = \begin{pmatrix} \frac{\partial h_{k}^{(1)}}{\partial z_{1}}\Big|_{\mathbf{z}=\mathbf{m}_{k,k-1}} & \cdots & \frac{\partial h_{k}^{(1)}}{\partial z_{n_{z}}}\Big|_{\mathbf{z}=\mathbf{m}_{k,k-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_{k}^{(n_{\tau})}}{\partial z_{1}}\Big|_{\mathbf{z}=\mathbf{m}_{k,k-1}} & \cdots & \frac{\partial h_{k}^{(n_{\tau})}}{\partial z_{n_{z}}}\Big|_{\mathbf{z}=\mathbf{m}_{k,k-1}} \end{pmatrix}$$
(B.25)

onde z_m e $f_k^{(m)}$ representam as *m*-ésimas componentes de **z** e da imagem de $\mathbf{f}_k(.)$, respectivamente, e

$$\mathbf{S}_{k} = \mathbf{H}_{k} \mathbf{P}_{k,k-1} \mathbf{H}_{k}^{T} + \mathbf{R}_{k}$$
(B.26)

$$\mathbf{K}_{k} = \mathbf{P}_{k,k-1} \mathbf{H}_{k}^{T} \mathbf{S}_{k}^{-1} . \tag{B.27}$$

A EKF, portanto, considera que $p(\mathbf{z}_k|\boldsymbol{\tau}_{1:k})$ é Gaussiana (pois segue Kalman) e realiza aproximações de primeira ordem aos termos ótimos. Estas aproximações, no entanto, podem introduzir grandes erros na estimativa da média e covariância a posteriori da variável (vetor) aleatório propagado ao longo do tempo.

Filtro de Partículas

Definição

O filtro de partículas (PF), ou amostragem *por importância* seqüencial (SIS-Sequential Importance Sampling), representa uma alternativa amplamente considerada na literatura para o problema de EBR em modelos nãolineares e não-Gaussianos², tendo sido aplicado em áreas como: navegação de robôs móveis [89], treinamento de redes neurais [90], equalização cega [72][91] etc. A idéia-chave desta técnica é representar a fdp a posteriori do estado a ser estimado de forma discreta, ou seja, utilizando funções de ponto de massa. Estas funções são denominadas de partículas e geradas em uma simulação por Monte-Carlo, segundo a metodologia de *amostragem por importância*.

Seja $\{\mathbf{z}_{0:k}^{(i)}, w_k^{(i)}\}$ uma *medida aleatória* discreta que caracteriza a fdp a posteriori $p(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k})$, onde $\{\mathbf{z}_{0:k}^{(i)}, i = 0, \ldots, N_s\}$ é um conjunto de pontos suporte com pesos associados $\{w_k^{(i)}, i = 0, \ldots, N_s\}$ e $\mathbf{z}_{0:k} = \{\mathbf{z}_j, j = 0, \ldots, k\}$ é o conjunto de todos os estados até o instante t_k . Os pesos são normalizados,

²Para leitores com maior interesse no assunto, recomenda-se como leitura inicial as referências [70][83][87][88].

tal que $\sum_{i} w_{k}^{(i)} = 1$. Considera-se que a densidade a posteriori em t_{k} pode ser aproximada por

$$p(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k}) \approx \sum_{i=1}^{N_s} w_k^{(i)} \delta(\mathbf{z}_{0:k} - \mathbf{z}_{0:k}^{(i)}).$$
 (B.28)

À medida que o número de "pontos suporte" gerados torna-se elevado, qualquer funcional de interesse da fdp a posteriori calculado com base nesta caracterização pode convergir para o seu valor verdadeiro. Ou seja, pela lei forte dos grandes números, é possível afirmar que [85]

$$\frac{1}{N_s} \sum_{i=1}^{N_s} f_t(\mathbf{z}_{0:k}^{(i)}) \xrightarrow{N_s \to \infty} \int f_t(\mathbf{z}_{0:k}) p(\mathbf{z}_{0:k} | \boldsymbol{\tau}_{1:k}) d\mathbf{z}_{0:k}$$
(B.29)

onde $f_t : \mathbb{R}^{n_z} \to \mathbb{R}^{n_{f_t}}$ é alguma função de interesse. Para o cálculo da estimativa de MEMQ, $f_t(\mathbf{z}_{0:k}) \equiv \mathbf{z}_{0:k}$.

Os pesos na equação (B.28) são escolhidos pelo princípio de amostragem por importância (importance sampling). Este princípio baseia-se no seguinte. Suponha que $p(x) \propto \pi(x)$ é uma densidade de probabilidade da qual é difícil de se gerar amostras aleatórias, mas que é conhecida. Além disso, sejam $x^{(i)} \sim q(x)$, $i = 1, \ldots, N_s$, amostras geradas de uma dada densidade q(.), chamada de densidade de importância. Então, uma aproximação para a densidade p(.) é dada por

$$p(x) \approx \sum_{i=1}^{N_s} w_k^{(i)} \delta(x - x^{(i)}).$$
 (B.30)

onde

$$w^{(i)} = \frac{\pi(x^{(i)})}{q(x^{(i)})} \tag{B.31}$$

é o peso normalizado da i-ésima partícula.

Portanto, se as amostras $\mathbf{z}_{0:k}^{(i)}$ forem geradas de uma densidade *por importância* $q(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k})$, possível de ser implementada, então os pesos em (B.28) podem ser calculados por (B.31), ou seja

$$w_k^{(i)} \propto \frac{p(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k})}{q(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k})}$$
 (B.32)

Retornando ao caso seqüencial, em cada iteração haverá amostras (e pesos correspondentes) representando uma aproximação para $p(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k-1})$, e deseja-se representar $p(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k})$ com um novo conjunto de amostras. Se

a densidade por importância tiver a propriedade

$$q(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k}) = q(\mathbf{z}_k|\mathbf{z}_{0:k-1}, \boldsymbol{\tau}_{1:k})q(\mathbf{z}_{0:k-1}|\boldsymbol{\tau}_{1:k-1})$$
(B.33)

então é possível provar que $p(\mathbf{z}_{0:k}|\boldsymbol{\tau}_{1:k})$ pode ser representado pelo conjunto $\{\mathbf{z}_{0:k}^{(i)}, w_k^{(i)}\}$, onde $\mathbf{z}_{0:k}^{(i)}$ é gerada da densidade $q(\mathbf{z}_k|\mathbf{z}_{0:k-1}, \boldsymbol{\tau}_{1:k})$ e os pesos $w_k^{(i)}$ são calculados iterativamente através de

$$w_{k}^{(i)} \propto w_{k-1}^{(i)} \frac{p(\boldsymbol{\tau}_{k} | \mathbf{z}_{k}^{(i)}) p(\mathbf{z}_{k}^{(i)} | \mathbf{z}_{k-1}^{(i)})}{q(\mathbf{z}_{k}^{(i)} | \mathbf{z}_{0:k-1}^{(i)}, \boldsymbol{\tau}_{1:k})}.$$
(B.34)

Se $q(\mathbf{z}_{k}^{(i)}|\mathbf{z}_{0:k-1}, \boldsymbol{\tau}_{1:k}) = q(\mathbf{z}_{k}^{(i)}|\mathbf{z}_{k-1}, \boldsymbol{\tau}_{k})$ (caso mais comum), então a densidade *por importância* torna-se dependente apenas de $\mathbf{z}_{k-1} \in \boldsymbol{\tau}_{k}$. Neste caso, somente $\mathbf{z}_{k}^{(i)}$ necessita ser armazenado, e portanto a equação (B.34) pode ser simplificada para

$$w_{k}^{(i)} \propto w_{k-1}^{(i)} \frac{p(\boldsymbol{\tau}_{k} | \mathbf{z}_{k}^{(i)}) p(\mathbf{z}_{k}^{(i)} | \mathbf{z}_{k-1}^{(i)})}{q(\mathbf{z}_{k}^{(i)} | \mathbf{z}_{k-1}^{(i)}, \boldsymbol{\tau}_{k})},$$
(B.35)

e a densidade a posteriori pode ser aproximada por

$$p(\mathbf{z}_k | \boldsymbol{\tau}_{1:k}) \approx \sum_{i=1}^{N_s} w_k^{(i)} \delta(\mathbf{z}_k - \mathbf{z}_k^{(i)}).$$
(B.36)

Fenômeno de Degenerescência

Um problema comum que ocorre com o filtro de partículas é o chamado fenômeno de degenerescência, onde após algumas iterações, todas as partículas, exceto uma, têm peso associado desprezível. É possível demonstrar que a variância dos pesos pode apenas aumentar com o tempo, e portanto, é impossível evitar o fenômeno de degenerescência. Quando ocorre este fenômeno, a aproximação por partículas da fdp a posteriori é imprecisa e o método torna-se inadequado. Uma medida da degenerescência do algoritmo pode ser dado pelo parâmetro N_{eff} , número efetivo de amostras, que é dado por

$$N_{eff} = \frac{N_s}{1 + \operatorname{Var}(\tilde{w}_k^{(i)})},\tag{B.37}$$

onde $\tilde{w}_{k}^{(i)} = p(\mathbf{z}_{k}^{(i)}|\boldsymbol{\tau}_{1:k})/q(\mathbf{z}_{k}^{(i)}|\mathbf{z}_{k-1}^{(i)},\boldsymbol{\tau}_{k})$ é denominado de "peso verdadeiro". Este parâmetro não pode ser calculado com exatidão, mas uma estimativa de seu valor é dada pela expressão

$$\hat{N}_{eff} = \left[\sum_{i=1}^{N_s} (w_k^{(i)})^2\right]^{-1}.$$
(B.38)

Obviamente o fenômeno de degenerescência é um efeito indesejável na estimação recursiva por filtro de partículas. Existem duas maneiras para evitar este problema: a)uma escolha apropriada da densidade *por importância* e, b) uso de reamostragem.

Escolha da densidade por importância

A densidade *por importância* deve ser escolhida de forma que $\operatorname{Var}(\tilde{w}_k^i)$ seja minimizada e conseqüentemente N_{eff} possa ser maximizado. A função densidade *por importância ótima* que minimiza $\operatorname{Var}(\tilde{w}_k^{(i)})$ condicionado a $\mathbf{z}_{k-1}^{(i)}$ e $\boldsymbol{\tau}_k$ é dada por

$$q(\mathbf{z}_{k}|\mathbf{z}_{k-1}^{(i)}, \boldsymbol{\tau}_{k})_{ot} = p(\mathbf{z}_{k}|\mathbf{z}_{k-1}^{(i)}, \boldsymbol{\tau}_{k}) \\ = \frac{p(\boldsymbol{\tau}_{k}|\mathbf{z}_{k}, \mathbf{z}_{k-1}^{(i)})p(\mathbf{z}_{k}|\mathbf{z}_{k-1}^{(i)})}{p(\boldsymbol{\tau}_{k}|\mathbf{z}_{k-1}^{(i)})},$$
(B.39)

Substituição de (B.39) em (B.35) resulta em

Esta escolha para a densidade *por importância* é ótima uma vez que dado $\mathbf{z}_{k-1}^{(i)}, w_k^{(i)}$ assume o mesmo valor, qualquer que seja o valor da amostra gerada de $q(\mathbf{z}_k | \mathbf{z}_{k-1}^{(i)}, \boldsymbol{\tau}_k)$. Portanto, condicionado a $\mathbf{z}_{k-1}^{(i)}, \operatorname{Var}(\tilde{w}_k^{(i)}) = 0$.

No entanto na maior parte das aplicações não é possível utilizar a densidade por importância ótima. Para isto, seria necessário gerar amostras a partir de $p(\mathbf{z}_k | \mathbf{z}_{k-1}^{(i)}, \boldsymbol{\tau}_k)$ e calcular a integral de (B.40), e isto é possível para condições restritas (por exemplo quando o espaço de estados é discreto). Uma alternativa é construir aproximações sub-ótimas para a densidade por importância utilizando-se técnicas de linearização locais. Tais linearizações usam uma densidade por importância Gaussiana para aproximar $p(\mathbf{z}_k | \mathbf{z}_{k-1}^{(i)}, \boldsymbol{\tau}_k)$.

A escolha mais conveniente para a densidade *por importância*, do ponto de vista de implementação, é

$$q(\mathbf{z}_k | \mathbf{z}_{k-1}^{(i)}, \boldsymbol{\tau}_k) = p(\mathbf{z}_k | \mathbf{z}_{k-1}^{(i)})$$
(B.41)

Substituindo (B.41) em (B.34) resulta

$$w_k^{(i)} \propto w_{k-1}^{(i)} p(\boldsymbol{\tau}_k | \mathbf{z}_k^{(i)}) \tag{B.42}$$

Observa-se que neste caso as medidas τ_k são desprezadas no processo de geração das partículas, o que nem sempre é desejável. Embora a densidade mostrada em (B.41) seja amplamente utilidade por sua praticidade, em muitos casos uma escolha mais cuidadosa da fdp por importância pode melhorar o desempenho do filtro.

Reamostragem

O segundo método pelo qual o fenômeno de degenerescência pode ser reduzido é denominado de *reamostragem*. A idéia básica da reamostragem é eliminar partículas que têm peso relativamente pequeno, gerando-se novas partículas , $\{\tilde{\mathbf{z}}_{k}^{(i)}\}_{i=1}^{N_{s}}$, com fdp dada por

$$p(\mathbf{z}) = \sum_{i=1}^{N_s} w_k^{(i)} \delta(\mathbf{z} - \mathbf{z}_k^{(i)}) \quad , \tag{B.43}$$

onde $\mathbf{z}_{k}^{(i)}$ é a *i*-ésima partícula antes do processo de reamostragem. Na prática isto corresponde a gerar amostras $\tilde{\mathbf{z}}_{k}^{(i)}$ tal que $\Pr(\tilde{\mathbf{z}}_{k}^{(i)} = \mathbf{z}_{k}^{(j)}) = w_{k}^{(j)}$. As amostras resultantes são iid, com distribuição dada por (B.43). Após a reamostragem os pesos associados a $\{\tilde{\mathbf{z}}_{k}^{(i)}\}_{i=1}^{N_{s}}$ são todos iguais, i.e,

$$\tilde{w}_k^{(i)} = 1/N_s, \qquad i = 1, \dots, N_s .$$
 (B.44)

A reamostragem *sistemática*, isto é, fazer a reamostragem a cada iteração, é um procedimento muito utilizado nos diversos métodos de filtragem por partícula. No entanto, o esforço computacional adicional para realizá-la deve ser considerado.

Talvez a melhor alternativa seja considerar uma solução de compromisso, em que a reamostragem é feita somente quando $\hat{N}_{eff} < N_s/k$, onde $k \ (> 1)$ é um fator a ser escolhido.