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Abstract

Junqueira, Nicole Lopes Monteiro de Barros; Paula, Igor Braga
de (Advisor); Silva, Luís Fernando Figueira da (Co-Advisor); Ra-
mos, Louise da Costa (Co-Advisor). Assessment of reduced or-
der models applied to steady-state bi-dimensional laminar
methane air diffusion flame. Rio de Janeiro, 2022. 76p. Dis-
sertação de Mestrado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

Computational fluid dynamics (CFD) is often applied to the study of
combustion, enabling to optimize the process and control the emission of
pollutants. However, reproducing the behavior observed in engineering systems
has a high computational burden. To overcome this cost, machine learning
techniques, such as reduced order models (ROM), have been applied to several
engineering applications aiming to create models for complex systems with
reduced computational cost. Here, the ROM is created using CFD laminar
non premixed flame simulation data, decomposing it, and then applying a
machine learning algorithm, creating a static ROM. This work analyzes the
effect of five different data pre-processing approaches on the ROM, these being:
(1) the properties treated as an uncoupled system or as a coupled system, (2)
without normalization, (3) with temperature and velocity normalized, (4) all
properties normalized, and (5) the logarithm of the chemical species. For all
ROM constructed are analyzed the energy of the reduction process and the
reconstruction of the flame properties fields. Regarding the reduction energy
analysis, the coupled ROM, except the ROM (4), and the logarithm ROM
converges faster, similarly to the uncoupled temperature ROM, whereas the
uncoupled minor chemical species ROM exhibits a slower convergence, as does
the coupled ROM with all properties normalized. So, the learning is achieved
with a smaller number of modes for the ROM (2), (3) and (5). As for the
reconstruction of the property fields, it is noted that there are regions of
negative mass fraction, which suggest that the ROM methodology does not
preserve the monocity or the boundedness of the properties. The logarithm
approach shows that these problems are overcome and reproduce the original
data.

Keywords
Machine learning; Computational fluid dynamics; non-premixed flames;

methane/air combustion.
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Resumo

Junqueira, Nicole Lopes Monteiro de Barros; Paula, Igor Braga de;
Silva, Luís Fernando Figueira da; Ramos, Louise da Costa. Avali-
ação de modelos de ordem reduzida aplicados à simulação
bidimensional em regime estacionário de chamas lamina-
res de difusão de metano e ar. Rio de Janeiro, 2022. 76p. Dis-
sertação de Mestrado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

Dinâmica dos Fluidos Computacional (CFD) é frequentemente aplicada
ao estudo da combustão, permitindo otimizar o processo e controlar a emissão
de poluentes. Entretanto, reproduzir o comportamento observado nos sistemas
de engenharia tem uma elevada carga computacional. Para superar este custo,
técnicas de aprendizagem de máquinas, tais como modelos de ordem reduzida
(ROM), têm sido aplicadas a várias aplicações de engenharia com o objetivo
de criar modelos para sistemas complexos com custo computacional reduzido.
Aqui, o ROM é criado usando dados de simulação de chama laminar não
pré-misturada de CFD, decompondo-os, e depois aplicando um algoritmo de
aprendizagem de máquinas, criando um ROM estático. Este trabalho analisa
o efeito de cinco abordagens diferentes de pré-processamento de dados sobre o
ROM, sendo estas: (1) as propriedades tratadas como um sistema desacoplado
ou como um sistema acoplado, (2) sem normalização, (3) com temperatura
e velocidade normalizadas, (4) todas as propriedades normalizadas, e (5) o
logaritmo da espécie química. Para todos os ROM construídos são analisados a
energia do processo de redução e a reconstrução dos campos das propriedades
da chama. Em relação a análise da energia da redução, o ROM acoplado,
exceto o ROM (4), e o ROM do logaritmo convergem rapidamente, semelhante
ao ROM da temperatura desacoplado, enquanto o ROM da espécie química
minoritária desacoplado exibe uma lenta convergência, tal como o ROM
acoplado com todas as propriedades normalizadas. Assim, a aprendizagem é
atingida com um número menor de modos para a ROM (2), (3) e (5). Quanto à
reconstrução dos campos de propriedades, nota-se que existem regiões de fração
mássica negativa, o que sugere que a metodologia do ROM não preserva a
monotonicidade ou a delimitação das propriedades. A abordagem do logaritmo
mostra que estes problemas são superados e reproduzem os dados originais.

Palavras-chave
Aprendizado de máquina; Dinâmica dos fluidos computacional; Chamas

não pré-misturadas; Combustão de metano/ar.
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1
Introduction

In this chapter, the motivation and context of this study are introduced.
Thus, the principles of laminar non-premixed flames, the Gülder burner, and
applications of computational fluid dynamics with an emphasis on combustion
are briefly described. Particular emphasis is given on the various applications
of machine learning techniques, especially in engineering and associated prob-
lems, such as modelling combustion systems.

1.1
Laminar non-premixed flames

The combustion process is present in different applications, from indus-
trial processes, the major transportation vehicles, until the most simple appli-
cation, such as the kitchen stove. Therefore, one of the issues of concern in this
area is the emission of pollutants from the combustion process of fossil fuels
which is harmful to human health and to the environment [1, 2, 3].

Combustion is a complex process involving heat and mass transfer, chem-
ical kinetics, thermodynamics, and fluid dynamics [4]. This process involves an
exothermic chemical reaction between a fuel and an oxidant that releases en-
ergy in the form of heat. Subsequently, the released energy can be transformed
into electrical or mechanical energy.

Classically, flames are classified into two groups; the premixed and the
non-premixed flames. The main difference regards the mixture between the
fuel and oxidant, at the molecular level, which happens or not prior to the
chemical reaction [4]. On the one hand, in premixed flames, the reactants are
homogeneously mixed before the reaction takes place. On the other hand, in the
non-premixed flames, the mixing is not fast enough, so the fuel and oxidant are
initially separated. A simple example of non-premixed combustion is a candle
flame [5].

In non-premixed flames, which are of interest in this work, the transport
of fuel and oxidant happens due to diffusion and the bulk convective motion
of the reaction region. As a consequence, the reaction between the substances
occurs rapidly, and the combustion products together with the heat released
are transported away from the reactive zone. Since the combustion is usually
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Chapter 1. Introduction 16

considered a fast reaction, the non-premixed flame is often controlled by the
stoichiometric rates of transport of fuel and oxidant to the reaction sheet [4].

Moreover, another classification concerns the nature of the flow, i.e.,
whether it is laminar or turbulent. In laminar flows, there are distinct stream-
lines for convective motion, in other words there is no mixing at the macro-
scopic scale (only diffusion) [6]. Whereas in turbulent flow the nature of tur-
bulence causes the flow to fluctuate in the three dimensions of the space in
time at any point in space [6]. Indeed, this turbulence phenomenon eventu-
ally facilitates the process of coarse mixing, which has a considerable influence
on non-premixed flames, as mixing the reactants is essential. In this study,
laminar non premixed flames will be the subject of interest only.

The combustion process is a multi-scale phenomenon, which means that
different processes occur at time scales, spanning several orders of magnitude.
Due to the diffusion present in flames, these time scales manifest as length
scales also [4]. However, most computational methods developed to solve
turbulence problems, originally created for non-reacting flows, treats the
turbulence phenomenon as a single-scale problem [7, 8]. When applied to the
description of turbulent flames, the multi-scale nature of combustion is often
ignored [9]. In this sense, the numerical description of the multi-scale nature of
laminar non premixed flames requires the use of more complex methodologies
than for turbulent combustion.

Indeed, one of the concerns regarding the hydrocarbon/air combustion
process is the emission of effluents, such as NOx and soot. In the case of soot,
which is a solid particulate material from the combustion of gaseous fuels,
its production can be affected by the flow regimes, pressure, for instance.
[4]. It is well known that non-premixed flames produce more soot when
compared to fuel-lean premixed flames. This can be explained, in the case of
premixed flames, by the existence of oxidizing elements at the region where soot
formation proceeds, i.e., where the breakdown of fuel molecules occurs [1, 4].

Gülder burner
Willing to study of soot formation, the well-known Gülder burner has

been often used for experiments, since it has a simple geometry and is
widely used for stable, axisymmetric, non-premixed laminar flames [10, 11, 12].
Moreover, the non-premixed flame stabilized on this burner, when compared
with others, produces a higher volumetric fraction of soot. For this reason,
industrial burners are often represented by the Gülder burner for the purpose of
studying soot formation and oxidation processes [13]. Accordingly, this burner
geometry is of interest here, even if soot formation is not.

The burner presents an axial symmetry flow and two inlets [11], as shown
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Chapter 1. Introduction 17

in Fig. 1.1a. The fuel enters through the central tube, which diameter is
11 mm, and the air enters through an annular region with a radius of 50 mm,
being responsible for the flame stabilization. Figure 1.1b shows an ethylene/air
laminar diffusion flame stabilized on a Gülder burner [11].

(a) (b)

Figure 1.1: (a) Representation of the Gülder burner and (b) Ethylene/air flame
stabilized on the Gülder burner [11].

One of the first purposes of this burner was to compare the effects
of nitrogen dilution and flame temperature on soot formation in ethylene
diffusion flames [10]. More recently, studies on the Gülder burner have been
done focusing on the soot formation characteristics in non-premixed laminar
flames of a volumetric mixture of n-heptane/butanol isomer and air, and soot
characterization when ammonia is diluted to n-heptane fuel [14, 15]. The focus
of the present work is not on comparing computational and experimental
results, despite the existing soot formation data available, rather a model of a
non sooting flame is of interest only.

Numerical applications
It is well know that, as the system under study becomes more complex,

the cost of experimental research is increased. This is related to the time
and expenses of the experiments, such as the cost of the experimental set-up
and the raw materials, or the time to calibrate all the measuring equipment.
Therefore, numerical techniques are often used to analyze different properties
using computer simulations. For instance, the computational fluid dynamics
(CFD), which is a tool widely used to analyze complex flow problems that
are of interest to industry, such as combustion processes and aerodynamic
problems [16]. Recently, such numerical methodology was used, for instance to
investigate the dispersion and generation of turbulence, using a 3D geometry, of
flammable dust mixtures which that can cause accidents in the pharmaceutical
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and chemical manufacturing industries [17]. Also, the numerical investigation
of immiscible droplets spread on a thin liquid substrates, with the fluid volume
technique, coupled with the piecewise linear interface calculations method,
was applied to obtain a time evolution of the droplet dynamics [18]. For
different unmanned aerial multi-rotor vehicles, CFD simulation with high-order
accurate schemes were performed to understand the complex flow associated to
such engines, thus facilitating the design for a more efficient, safer and quieter
aerial vehicle [19]. Those are a few examples only of the pervasive use of CFD
to solve a plethora of science and engineering problems.

Concerning the use of CFD in combustion, it has enabled the analysis of
different flow properties, such as the species mass fraction and temperature dis-
tribution. However, a faithful description of flames, needs to describe detailed
chemical mechanism of the combustion process, and consequently the chemical
kinetics related to the fuel oxidation. Furthermore, the detailed mechanism,
and its different time and length scales, introduce a significant computational
burden related to the simulation time and memory demanded [20]. There-
fore, performing a CFD parametric study of combustion processes is often not
feasible. Therefore, the application of artificial intelligence, machine learning,
and data driven techniques to engineering problems is becoming important to
overcome this computational shortcoming [21, 22, 23].

1.2
Machine learning

Machine learning (ML) is an evolving branch of computational algo-
rithms. In particular, it include models that improve from different available
data, and which are based on fundamental mathematics, linear algebra, opti-
mization, and regression [24]. In other words, ML are algorithms which per-
formance improves as it is exposed to more data. Ideally, ML generalizes the
given data, learning its patterns and correlating them with the outcomes that
are intended to be predicted in the field. Once the model is validated, it can
be applied, to new database values [25]. Examples of machine learning include
identifying objects in images, selecting relevant search results, and machine
translation [26].

These learning algorithms can be classified according to their structure,
which can be supervised or unsupervised, depending on the information
available to the model [25]. Supervised learning is the most common form
of ML, where the goal is to make predictions of a target by having expert
knowledge learning, providing corrective information to the algorithm [26].
In unsupervised approach, the learning occurs without training data being
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labeled, where the goal is to find a structure in the data [25, 24].
Regarding the data used in the learning process, machine learning

approaches can be divided into two groups, online and offline. Online models
learn the characteristics of the system while the data is being collected, e.g.,
artificial neural networks applied to image recognition [26]. Concerning fluid
dynamics applications, the estimation of the eddy viscosity has been developed
using online identification, which enabled an adaption of a reduced order model
to changes of the flow configuration [27]. On the contrary, offline models learn
the behavior based on previously collected data. For instance, the ROM of the
Navier-Stokes equations of a flow passing a cylinder has used an offline data
collection [28].

The machine learning application field embraces different fields of knowl-
edge, such as engineering, biomedical, and finance [29, 30, 31]. For example,
the ML has already been applied to the analysis of genome sequencing data
sets or applications in agricultural supply chains in different phases [32, 33].
However, such algorithms are not yet widely accepted in the operation of engi-
neering systems because they are often considered to be black-box models, i.e.,
the algorithms learn without prior knowledge about the underlying physics of
the problem or its restrictions [26, 34]. To overcome such limitation, it has
been proposed to combine ML with first principles models of a engineering
systems [34, 35]. An example is the physics-informed machine learning used
to predict the critical heat flux with superior performance over standalone
approaches [36].

Concerning the combustion process, machine learning techniques appli-
cations have been used for over a decade, as highlighted in reviews [21, 38]. A
reduced order model based on CFD simulations results for oxy-coal combus-
tion enabled the estimation of the average outlet temperature of the burned
gases for a given fuel and oxidant mass flow rates, and also to determine the
inlet mass flow rate required to obtain the desired temperature [39]. However,
the application of a non-intrusive reduced order model for an unstable flow
using an approach which combines the POD with a feed-forward neural net-
work [40]. Recently, a non-intrusive methodology, using the proper orthogonal
decomposition and an interpolation method, has been applied to construct a
digital twin using CFD simulations and real-time measurements of an indus-
trial system [41].

Reduced order model is a ML technique, which starts with the application
of a reduction method to the data. For instance, singular value decomposition
(SVD) or proper order decomposition (POD) are usually applied as reduction
methods, and then an interpolation/integration method is applied to learn the
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behavior of the system. As an example, the application of the POD approach
for a ROM of the Navier-Stokes equation was used with different methods of
integration/interpolation, and then, the results were compared [28]. Another
recent application of the reduction method SVD was used coupled with the
interpolation method genetic aggregation response surface (GARS) to predict
the behavior of a laminar premixed inverted conical flame [37].

The particular application of reduced order model techniques to combus-
tion covered different problems, such as the description of flame properties of a
laminar premixed flame, where steady CFD reactive simulations were used to
create the ROM, and also, the analysis of the infrared radiation emitted by a
reacting, supersonic, turbulent jet that used numerical simulation to construct
the ROM dataset [37, 42]. Furthermore, an approach that blends data-driven
learning with the theoretical foundations was proposed for a single injector
combustor of a rocket engine to predict the properties profiles, such as pres-
sure and temperature [23]. For a similar problem, a physics-based data-driven
method was proposed to learn the physics of a single-injector combustor ROM
using high-fidelity simulations [43].

Even if turbulent flames typifies most practical combustion industrial
processes, the multi-scale physics of laminar flames enables the study of
combustion from the perspective of the computational cost of high-fidelity
CFD simulations. The associated multiple time and length scales present in
such flames increase the complexity of the models and of the learning process.
Furthermore, the application of reduced order model methodology is not as
explored for laminar non-premixed flames, as it is for turbulent flames [37, 21].

1.3
Objectives

This work has been developed in the context of a partnership between
Ansys/France and PUC-Rio which is devoted to the study of reduced order
models applied to combustion problems. The general goal of the present
study is the development of reduced order models for multi-scale combustion
processes. More precisely, the reconstruction of flame properties and the issue
concerning the monotonicity of the reduced model reconstructed properties are
studied here.

The main objective of this work is to develop reduced order models of
methane/air laminar non-premixed flame stabilized on a Gülder burner, using
CFD results to construct ROM. The corresponding specific objectives are:

– To analyze the influence of pre-processing the learning data, which are
the CFD modelled combustion properties, on the ROM results, i.e.,:
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− The impact of creating a ROM for each uncoupled flame property
or treating the properties as a coupled system;

− The effect of normalizing the data set, including the species data
since some minority species mass fraction are of the order of magnitude
of 10−6;

− The influence of applying a logarithm transformation of species
mass fraction to construct the ROM;

– To develop an analysis of the reconstructed modes energy content of each
methodology applied to the learning data;

– To compare the CFD and ROM results.

1.4
Manuscript organization

This work is organized in four chapters:

1. Introduction: motivation and objectives;

2. Numerical methodology: A brief description of the mathematical for-
mulation of the conservation equations for a combustion problem. The
boundary conditions applied to the burner, the mesh and computation
domain used. The methodology for reduced order models and the studied
learning data pre-processing.

3. Results and Discussion: A brief discussion of the flame configuration and
the computational fluid dynamics result for a validation case. The dis-
cussion regarding the properties profiles reconstruction and the analysis
of the reconstructed modes energy content for the different reduced order
models created.

4. Conclusions and Perspectives: The conclusions and perspectives for
future works are discussed.
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2
Numerical methodology

In this chapter, the proposed numerical methodology is presented. First,
the procedure used to model a non premixed flame is described in terms of
the main equations, the domain of interest and the computational domain
meshing and solution procedures. Then, the steps to construct a reduced order
model are described: the collection of data; application of an algorithm of
data reduction; separate the data according its importance; and interpolate
the reduced data.

2.1
Mathematical formulation

The equations for solving a fluid flow with heat and mass transfer may
be summarized by the solution of the general transport equation [7].

∂(ρφ)
∂t

+ O · (ρ~vφ) = O · (ΓOφ) + S. (2-1)
The first term represents the transient effect, the second and third terms

represent the convection and diffusion effects, respectively, and the source
term is the last one. The properties φ, Γ and S change according to the
conservation equation considered, and ρ represents the density. The present
flow modeling involves the solution of the conservation equations of total mass,
energy, momentum and individual species, which are written as [4]:

∂ρ

∂t
+ O · (ρv) = 0, (2-2)

ρ
Dv
Dt

= −O · P + ρ
N∑
i=1

(Yifi), (2-3)

ρ
De

Dt
= −O · q −P : (O · v) + ρ

N∑
i=1

Yifi · Vi, (2-4)

ρ
DYi
Dt

= ωi − O · (ρYiVi), i = 1, ..., N. (2-5)
In the total mass conservation, Eq. (2-2), there are transient and convec-

tive terms, i.e., the mass variation with time and the net mass flow. However,
there is no diffusion and neither a source term, so φ = 1, and the terms Γ and
S are null. At the linear momentum equation, Eq. (2-3), φ is the velocity (v),
Γ is the viscosity µ and S contains a part concerning the body force (fi), the
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pressure gradient and one viscous part. The influence of viscosity µ and the
pressure appear by expanding the stress tensor (P) as [4]:

P =
[
p+

(2
3µ− k

)
(O · v)

]
U− µ

[
(Ov) + (Ov)T

]
, (2-6)

where p is the hydrostatic pressure, k is the bulk viscosity coefficient, U is the
unit tensor, and the superscript T is the matrix transpose. Thus, relating the
viscous stress with the strain rate for Newtonian fluids. Note that the coefficient
k, the bulk viscosity, is often neglected, but not necessarily in combustion cases,
since the density variation is large [4, 44].

The energy conservation equation, Eq. (2-4), includes the chemical model,
sensible and flow kinetic energies. The energy sources that can change the
internal energy are due to the energy flux incident at the boundary, the work
done on the system by the surface forces and by the body forces [4]. The heat
flux vector (q) is influenced by the heat transfers through: conduction in the
presence of temperature gradient; mass diffusion due to different heat contents
of species; the second-order diffusion, the Dufour effect; and the radiation heat
transfer vector, that is important for flames with heavy soot loading [4, 45].
This term may be written as:

q = −λOT + ρ
N∑
i=1

hiYiVi +RoT
N∑
i=1

N∑
j=1

(
XjDT,i

WiDi,j

)
(Vi −Vj) + qr, (2-7)

where λ is the thermal condutivity, hi is the specific entalpy of species i,
Ro is the universal gas constant, Wi is the molecular weight of species, and
Di,j is the binary diffusion coefficient for species i and j. The radiant heat
flux (qr) accounts for the radiation effect in all directions, it depends on the
temperature as on the nature of the participating medium. This radiation term
is important for flames with heavy soot loading, i.e., for problems where there
is large formation of soot, such as furnace or wildland fires [4, 1]. The species
diffusion velocity may be computed by solving:

OXi = ∑N
j=1

(
XiXj

Di,j

)
(Vj −Vi) + (Yi −Xi)

(
Op
p

)
+
(
ρ
p

)∑N
j=1 YiYj (fi − fj)

+∑N
j=1

[(
XiXj

ρDi,j

) (
DT,j

Yj
− DT,i

Yi

)] (
OT
T

)
,

(2-8)
where Vi is the diffusion velocity.

Equation (2-8) is derived from the multi-component transport theory,
and shows that mass diffusion in the presence of four terms is respectively
influenced by: the concentration gradient; a pressure gradient (barodiffusion);
body forces gradient, such as an electromagnetic field; and a temperature
gradient (Soret effect or thermophoresis)[4]. The Soret diffusion coefficient
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(DT,i) represents the influence on the molecular transport of the temperature
gradient.

Regarding the species transport equations, it considers the Soret thermal
diffusion effect, which influences the diffusion velocity (Vi) [46, 47]. Such
effect causes heavy molecules to diffuse less rapidly, and light molecules
to diffuse more rapidly, towards heated surfaces and includes the effect of
enthalpy transport due to species diffusion in the energy equation [48]. Note
that classical mixing law formulations are used to determine the transport
properties as a function of temperature, composition and pressure [4].

In Eq.(2-5), ωi is the mass reaction rate, which is related to the molar
reaction rate ω̂i through ωi = Wi · ω̂i, where Wi is the molar mass. The
molar reaction rate is expressed by the Arrhenius’ law, which describes the
chemical kinetics rate, enabling to determine the variation in the specific
reaction rate constant with temperature. Assuming a single, forward chemical
reaction represented by:

N∑
i=1

aiMi
kf→ products, (2-9)

where Mi represents the chemical species i and ai is the corresponding molar
concentration coefficient, kf is the specific reaction rate constant, and the
subscript f denotes the direction of this reaction, in this case the forward one.
It is important to emphasize the existence of reversible reactions, also present
in the combustion process, in which associated to every forward reaction there
is a corresponding backward reaction [4, 44].

In order to relate, the rates of change in the molar concentration of the
chemical species in a reaction, such as Eq. (2-9), is used the reaction rate (ω),
which is proportional to the product of the concentrations of the reactants [4]:

ω = kf (T )
N∏
i=1

[Mi]ai . (2-10)

The dependence of the reaction rate on temperature requires the reaction
rate specification, which is given by the Arrhenius law [4]:

kf (T ) = Ae(−Ea/RoT ), (2-11)
where Ea is the reaction activation energy, A is a frequency factor (preexpo-
nential) and R◦ is the universal gas constant.

In order to simplify the equations to be solved, hypotheses are applied
to the problem considered, i.e., the steady state combustion process and
incompressible fluid. This allows to neglect the time derivative terms in Eqs. (2-
2) - (2-5). Another important hypothesis is that all gases present in the
combustion process are perfect gases. This enables relating the pressure (p)

DBD
PUC-Rio - Certificação Digital Nº 2020913/CA



Chapter 2. Numerical methodology 25

to the temperature (T ), density, universal gas constant and the average molar
mass (W ):

p = ρR◦T/W, (2-12)
where W = ∑

XiWi. For instance, in the case of an open system that does
not have any pressure forcing, the influence of the pressure might be ignored,
causing the product ρ and T to be constant, thus, ρT is strongly coupled.
Tab. 2.1 summarizes the hypotheses used to solve the equations and the
equations where it interferes.

Table 2.1: The hypotheses used and the equations it directly interferes with.

Hypotheses Equations
steady state ∂( )/∂t = 0 2-2; 2-3; 2-4; 2-5
incompressible flow ρ =constant 2-2; 2-3; 2-4; 2-5
perfect gas - 2-12
absence of gravity ~g = 0 2-3 ; 2-4
absence of radiation qr = 0 2-4

2.1.1
Chemical reaction mechanism

It is possible to determine the final state of the combustion process based
on the initial state and using chemical and thermodynamic equilibrium such
as minimization of free Gibbs energy and equilibrium constant calculations.
However, in such an approach the reactions paths that lead the initial mixture
to the obtained products, or the time it takes, are not available. This is why the
detailed knowledge of the chemical reaction paths is required when combustion
process details are of interest, which is the case here. Figure 2.1 illustrates
some reaction pathways for a typical detailed kinetic mechanism of methane
oxidation. The use of detailed chemistry is necessary when modeling controlled
kinetic phenomena, such as the slow formation of products and pollutant
species, and the ignition and extinction of flames.

In this work, the chemical reactions in the methane/air flames and
its time scales are accounted for using a skeletal kinetic mechanism, called
DRM19. Such reduced kinetics, based on the detailed GRI-Mech 1.2, contains
19 species plus N2 and Ar and 83 chemical reactions [49]. Since Eq. (2-5) is the
conservation of individual species, for this mechanism, it is solved for all 21
species. Thus, the combustion calculations involve a significant computational
burden, when compared to the solution of pure fluid problems.

By comparing the methane oxidation pathways in Fig. 2.1 against the
reactions in the DRM19 mechanism, it is seen that all chemical species are
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Figure 2.1: Reaction paths in methane flames, where the thickness of the arrows
indicates the importance of individual pathways [4]. The green rectangles
represent the paths not found in the DRM19 mechanism.

present in the mechanism except: CH; C2H3 and C2H2. The absence of C2H2

makes it unsuitable to predict the formation of high molecular weight species,
such as soot, since acetylene is the precursor of the formation of benzene and
higher molecular weight aromatics in hydrocarbon combustion. The CH2

∗ is the
highly active singlet methylene radical, which is de-energized from collisions
with molecules, in the case of Fig. 2.1; M or O2, becoming the CH2, which
is more stable, and the HCO, respectively. In DRM19, CH2

∗ also forms CH3;
C2H4; CO and CH2O. Another difference is the oxidation of carbon monoxide,
such that the DRM19 mechanism has three additional reactions beyond that
shown in Fig. 2.1. In addition, the DRM19 mechanism also includes the
oxidation of hydrogen, but there is no formation or consumption of H2O2.
The species present in the mechanism are solved throughout the domain of
interest, using the boundary and initial conditions given in section 2.1.2.

Note that the numerical performance of the DRM19 was tested against
the GRI-Mech for ignition delay and laminar flame speed simulations [49]. The
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ignition delay was studied for different initial conditions of pressure, fuel-air
stoichiometric ratio and temperature, presenting a deviation typically within
6-8% with respect to GRI-Mech 1.2. It was also shown that the accuracy
of DRM19 drops at lower temperatures and higher pressures. Regarding the
adiabatic flame, the maximum mole fractions of H, OH and CH3 at 1 atm and
10 atm were also analyzed. The results for both pressures were similar with
respect to the peak mole fractions, it is also noted that for the 10 atm results
the DRM19 performs better for the lean to stoichiometric mixtures [49]. The
adiabatic flame speed was accurately predicted with an error equal to 8% for
atmospheric pressure and 11% for 10 atm.

This mechanism was also applied to determine a premixed methane/air
flame in heated tubes and the Sandia turbulent flames [50, 51]. Regarding non-
premixed flames, the DRM19 was used to model a one-dimensional counter flow
and a two-dimensional coflow using a biogas mixture (methane diluted with
carbon dioxide) as fuel, and compared against other kinetic mechanisms [52].
Another application was the investigation of the “flame street” phenomenon
that presents itself on non-premixed flames in narrow channels, where the flame
is divided into small segments. In that case, a methane/oxygen combustion in
a micro channel was modeled using DRM19 [53].

To model a reactive flow it is necessary to define, first, some characteristic
properties of the flame, e.g., the stoichiometric ratio, the flow regime, the
fuel, and if the flame is premixed or not. This requires the selection of the
burner, which determines both boundary conditions and flaming regimes. Here,
a methane/air laminar non premixed flame stabilized on the Gülder burner is
studied. The obtained flames are characterized by well-defined fields which
ease the analysis of the properties.

2.1.2
Computational domain and boundary conditions

It is indispensable to define the geometry of the domain of interest and
the mesh where the simulation is effected. Thus, here the numerical simulation
setup is now given, such as the boundary conditions, and the calculation
methods.

The computational domain used to represent the Gülder burner is shown
on Fig. 2.2. The dimensions of the fuel and air inlets, and the burner wall
thickness are the same as for the burner shown on Fig. 1.1b, radius of 5.5 mm
and 43.5 mm for the fuel and air inlets, and a wall thickness of 1 mm. Since
the studied flame is axisymmetric, due to the chosen burner characteristics,
a two dimensional geometry is used. Figure 2.2 presents a representation of
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the domain of interest and its boundary conditions, using different colors to
represent each of them. The axis of symmetry is the 160 mm length yellow line,
the four grey lines represent the walls, the outlet and the two inlets are the red
and the blue lines, respectively. There are two types of walls in this domain;
the burner wall, which has an adiabatic, non catalytic, no-slip condition,
and the one representing the outer boundary, which has a slip and constant
temperature condition. The walls between the burner inlets are denominated
as burner walls, and the free boundary is the external right boundary, with a
length of 150 mm.

Figure 2.2: Representation of the Gülder burner computational domain and
its dimensions. (A): internal part, (B): external part.

The burner was designed to ensure that the flame is laminar, and the fuel
flow at the outlet of the fuel tube is hydrodynamically developed. Therefore,
the length of the tube is long enough, such that the flow does not vary in its
axial direction. Such length for the laminar case is a function of the Reynolds
number (Le ∼= 0.05DRe) [6]. The length of the fuel and air feeding tube are 60
mm and 50 mm, respectively.

As the flame studied is a non premixed flame, air and fuel enter the
domain of interest through different inlets, as shown on Fig. 2.2, such that the
mixing of reactants only occurs at the reaction zone. Concerning the inflow
conditions, at the inlets, the species molar fraction, temperature, pressure and
the inlet velocity are given. The air is a mixture composed by 21% O2 and
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79% N2, and the fuel is methane. Air and fuel have prescribed temperature
and pressure of 300 K and 1 atm, respectively.

In this work, the impact of varying the fuel inlet velocity is discussed.
A total of 20 different velocity values are considered and simulations are
performed for equally spaced within chosen thresholds. Table 2.2 presents the
Reynolds number and the Froude number, defined as Fr=v/

√−→g D, for the
fuel velocity thresholds limits. The inlet velocities are chosen according to
the experimental study where the air inlet velocity is constant and uniform,
vz|a,in =60 cm/s, and the fuel inlet velocity (vz|f,in) is uniform and varies
between 1.75 and 4.38 cm/s, as shown in Tab. 2.3 [54].

Table 2.2: Prescribed fuel inlet velocity (vz |f,in), Reynolds number (Re), Froude
number (Fr) and computed flame length (Lf ) for the lower and higher velocities
studied.

vz |f,in [cm/s] Re Fr Lf,c [cm]
1.75 11.38 0.05 1.42
4.38 28.48 0.13 3.50

Table 2.3: The 20 prescribed fuel inlet velocity (vz |f,in) studied. The blue col-
ored cases represents the validation cases in the ROM construction presented
in Sec. 2.2.

Case vz|f,in [cm/s] Case vz|f,in [cm/s]
1 1.75 11 3.06
2 1.91 12 3.23
3 2.08 13 3.31
4 2.24 14 3.39
5 2.41 15 3.56
6 2.57 16 3.72
7 2.65 17 3.89
8 2.74 18 4.05
9 2.90 19 4.21
10 2.98 20 4.38

The length of the domain, from the burner outlet to the gas exit, is
100 mm, which has been estimated based on the experimental flame height
[54]. Table 2.2 gives the computed flame heights for the lowest and highest
velocity modeled cases, being smaller than the domain height. The numerical
flame height is obtained by determining the distance, between the tube exit
and the position of the maximum mass fraction of the H radical along the
symmetry axis, i.e., along the centerline of the computational domain.
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Although the acceleration of gravity influences the studied flames, as
shown in Tab. 2.2 through the Froude number, all cases were solved by
neglecting gravity. In other words, since the objective of the work is to use the
results obtained through CFD to build ROM, an analysis of a non premixed
flame in the absence of gravity is considered only.

For the purpose of meshing, the domain is divided in two parts, the
internal part (A) is composed of the central tube, where there is only fuel flow,
and the estimated mixture region, where the chemical reactions occur. The
external part (B) includes the air entrance and the outlet, in other words, air
and burned gases flows only. This division enables the use of different mesh
sizes along the domain.

2.1.3
Numerical methods of solution

In this work, the multi-scale problem is solved using the Ansys software
Fluent 2019 R3, which applies finite volume [7, 45]. Since those methods are
quite standard, no further discussion is developed here.

The stiff chemistry solver is used to advance the reaction in the species
transport equation, which consists in a fractional step algorithm for pressure-
based unsteady simulations [55, 56]. In the first step, the chemistry in each cell
is solved at constant pressure for the flow time-step, using the In Situ Adaptive
Tabulation technique. Then, the convection and diffusion terms are treated as
in a non-reacting simulation. For a pressure based steady case, this method
approximates the reaction rate (ωi) in the species transport equation as [48]:

R∗i = 1
τ

∫ τ

0
Ridτ (2-13)

where τ is the fictional appropriate time-step, the default being one tenth of
the minimum convective or diffusive time-scale in the cell [48]. As τ tends to
zero, the approximation becomes exact [48]. On the other hand, as τ tends to
infinity, the approximation R∗i tends to zero, the numerical stiffness (chemical
timescales) is alleviated, meaning, no reaction. In this work the configurations
used of the stiff chemistry solver are the default and it is applied every iteration.

The detailed chemical kinetics mechanisms contain several intermediate
species in addition to the principal species: the fuel, oxidant, and products.
Since these intermediate species evolve at very different reaction rates, the
time scales for species formation and consumption are different by several
orders of magnitude [4]. To accurately determine the species evolution, the
numerical time integration requires very small time sub-steps, causing large
computational simulation time [48]. One way to speed up this process is
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through the in-situ adaptive tabulation integration (ISAT) tool [48].
The ISAT has been widely used as an integration method in combustion

simulations [57, 58]. It is employed to integrate the stiff chemistry to reduce the
burden of a direct integration of the chemistry [57, 48]. The method tabulates
the chemistry mappings during the simulations with error control, acceler-
ating the solution time. The numerical error in this dynamical tabulation is
controlled by the predefined ISAT error tolerance. Note that the smaller the
error tolerance, the higher memory and time required to build the ISAT table
[48]. In addition, the performance of ISAT decreases in flames with large time
scales, since more work is required on the integrator of the ordinary differential
equation [57]. In this work, the ISAT table is used as integration method, and
with an error tolerance of 10−4.

2.1.4
Adaptive computational mesh

To properly describe the chemical reaction and all of its scales, a refined
mesh is necessary. However, using a refined mesh in the whole computational
domain makes the computational cost of the simulations infeasible. To over-
come this problem, the domain divided in two parts, thus enabling to decrease
the computational cost by defining the refined mesh at the combustion region
only, i.e., where it is needed. Since the internal part (A) contains the reactive
zone, it has a more refined mesh. Such internal part has a rectangular mesh,
with an initial size of 100 µm and 1 mm in the radial and axial directions,
respectively. The external part (B) has a uniform mesh with a size of 1 mm.
Even though a refined mesh is used at part A, those meshing spacings are
not enough to properly compute the combustion scalars, especially the minor
species. Therefore, a mesh adaptation tool is used to refine and coarsen the
mesh when needed.

The adaptive mesh refinement is usually performed to reduce the numer-
ical error with reduced numerical cost. It is a resource that enables the refine-
ment and/or coarsening of the mesh based on numerical solution data [59, 60].
The purpose is to add mesh cells/nodes where it is necessary, since computa-
tional meshing is a rationed resource — especially in 3D cases. Therefore, this
enables the flow characteristics to be solved accurately.

Here, the procedure used for the mesh adaptation is the hanging node
adaptation [48]. The meshes generated by this method have nodes on edges and
faces [48, 59]. This adaptation technique gives the ability to operate on meshes
with different cell shapes, including hybrid meshes. For example, in the case of
a 2D mesh refinement, a quadrilateral cell is split into four quadrilaterals, as
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shown in Fig 2.3, whereas 3D case with an original hexahedral cell is divided
into eight identical hexahedrons.

One of the controls used in this adaptation is the maximum refinement
level, which specifies the maximum number of times the original cell edge
can be divided on two new edges [61]. For example, a maximum refinement
level of 2 can split a quadrilateral cell up to 16 subcells, as shown on Fig.
2.3. Although the hanging node scheme provides significant mesh flexibility,
it requires additional memory to retain the mesh hierarchy used by the
mesh rendering and adaptation operations, when compared to a structured
mesh [62, 61].

Figure 2.3: Representation of the hanging node adaption for two-dimensional
quadrilateral cell. In this adaption, the original cell is divided upon 4n, where n
is the max refinement level. The left square represents the original quadrilateral
cell, and the right the cell divided into 16 subcells. Adapted from [48].

Assuming that maximum solution error occurs in high gradients regions,
the so-called gradient adaption approach, that is one of the three options
available in Fluent, is used. In this approach, the Euclidean norm of the
gradient of a defined property is multiplied by a characteristic length scale,
i.e., for a two dimensional problem, the gradient function has the form [63, 64]:

|ei1| = (Acell)(r/2) |Of | , (2-14)
where ei1 is the error indicator, Acell is the cell area, r is the gradient volume
weight, and Of is the Euclidean norm of the gradient of the defined field
property f .

In this work, a gradient mesh adaptation based on the temperature is
applied, with a refinement and coarsening thresholds of 10 K/m and 300 K/m,
respectively. A trial and error procedure, based on the temperature sensitivity
test in mesh adaptation and the ignition method [65], was performed to
determine the threshold values for the case of the laminar non-premixed flame
with the fuel inlet velocity of 17.5 cm/s, and is not shown here for brevity.
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The temperature gradient is well known to ensure an appropriate adap-
tation criterium for combustion systems [49]. In this work, an adaptation based
on a single property, temperature, is done every 25 iterations. As an example
of the use of such an adaption procedure, for the case of vz|f,in = 4.38 cm/s, the
initial mesh has 11,667 nodes, and in the end of the simulation it has 93,168
nodes, i.e., 81,501 nodes more than the original mesh.

Ignition of the reactive simulation is performed using a high-temperature
region, combined with the adaptive mesh procedure. Departing from a con-
verged isothermal simulation result, a patch of 3 mm in the radial and 5 mm
in the axial direction is set at the stoichiometric line (YCH4,st = 0.055) 1 mm
above the fuel feed tube outlet. This patch is initialized with a temperature
of 1,800 K, which is the methane adiabatic flame temperature. Once this re-
active simulation converges, the temperature field obtained is used as, in the
remaining reactive simulations, as ignition trigger.

2.2
Reduced order model

In order to obtain high-fidelity CFD simulations, there is a high com-
putational cost, especially in relation to memory and simulation time, which
often makes a parametric study unfeasible. Therefore, machine learning tech-
niques, such as reduced order models, have been applied to overcome this
shortcoming [21, 28].

Reduced order models enables a simple representation of complex sys-
tems, without losing the main characteristics of those [25, 77, 21]. In this work,
a software is used to create ROM for combustion, called the Static ROM of
Twin Builder from Ansys, as shown in Fig. 2.4. Its construction is divided
in four steps; (1) choosing the learning dataset, (2) decomposing the data in
simplified form, (3) retaining the main characteristics of the learning set and
(4) applying a machine learning interpolation.

Figure 2.4: Scheme of the procedure for constructing reduced order models for
static systems (Static ROM).
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The first step consists on obtaining representative data of the system of
interest, of which 60% is used to learn the model, and the remaining 40% to its
validation. One may note that the learning set must include the extremes of the
parametric space, in order to avoid an extrapolation when the obtained ROM
is used. In the second step, a singular value decomposition (SVD) is applied
to decompose and obtain the system modes. The SVD organizes the modes in
decreasing order, such that the higher mode values retain the most important
characteristics of the system of interest. At the third step, the decomposed
system is filtered, retaining only the most important characteristics, i.e., the
higher order modes. This procedure generates a reduced base which is used
to describes the entire system [66]. The accuracy of the ROM is influenced by
several factors, for example, the data available, the number of modes used on
the reduction of the learning set, and the interpolation method error [23].

Finally, the interpolation is performed with Genetic Aggregation Re-
sponse Surface (GARS), which applies a selection process to determine what
type of response surface (RS) better describes the system [67, 68]. Since GARS
can be defined as a weighted average of a set of response surfaces, and has a
cross-validation process, where the risk of an algorithm spreading the data
set is estimated, this method presents an improved reliability when compared
to other classical response surface [67, 69]. A reduced model is then created
to describe the behavior of the studied system, for an arbitrary value of the
variable parameter. Then, the prediction of the validation data may be per-
formed. Following, a brief description of the methodologies involved on the
ROM is presented.

2.2.1
Singular value decomposition

The singular value decomposition of a matrix is the factoring of a real,
or complex, matrix into three matrices U , Σ and V T [66]. The SVD takes
a high-dimensional data and transforms it into key features of that data.
This decomposition has many different applications, for instance, in signal
processing and statistics, in recommender systems and in algorithms for facial
recognition [24].

Figure 2.5 shows a scheme of the data matrix A, used to create the
reduced order model, its decomposition and reduction. The columns are the
cases modeled separated as learning data, and the rows are the information
of each cell of the domain. Note that the data provided to create the ROM
has the same number of rows, which means that even though CFD simulations
use adaptive meshing, the data provided to the ROM is extracted from a
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uniform mesh. To do that, the converged results for each fuel inlet velocity are
interpolated on the uniform initial mesh and then extracted, in order to create
a dataset to build the ROM. Note that this procedure degrades the accuracy
of the obtained results.

Figure 2.5: Scheme of the singular value decomposition to build a basis of
vectors representative of any system.

Regarding the decomposition properties, U and V are unitary matrices
and known as left and right singular vectors, respectively. The Σ matrix is
diagonal with non negative numbers hierarchically ordered, called as singular
values. Since those are ordered in terms of importance, it is possible to ignore
the smaller singular values and approximate the matrix A only in terms of the
first few dominants columns [66]. Assuming that the number of rows is much
larger than the number of columns, restricting the number of non zero singular
values, as there are only m linearly independent rows and columns of the data
matrix A [24, 66].

One may note that the SVD reduction process does not find the exact
data matrix A, but approximate one. The truncation of SVD is interesting
because it is economical to describe the data present in the matrix A using
as few modes as possible from the columns of U and V . In Fig. 2.5, the SVD
matrices presents three different colors, representing two different reductions.
It is possible to see that as the amount of modes increases a more accurate,
but more complex, model is found [66].

2.2.2
Genetic aggregation response surface (GARS)

In this work, the fourth step of the ROM construction, as seen in the
schematic of Fig. 2.4, is the GARS interpolation method discussed above.
It is constructed using four different integration methods [68, 70]; polynomial
regression, Kriging, support vector regression and moving least squares [71, 72,
73, 74]. Here, the GARS uses a selection process to determine the combination
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of response surface (RS) that best describes the system, which, in this work,
are the flame properties fields.

The genetic aggregation algorithms (GA) are based on the principle of
natural selection, which means that it improves the population from generation
to generation, making the algorithm more effective [24, 69]. To achieve this
improved algorithm, different process are used, such as crossover, mutation
or replication [67]. Nevertheless, the Genetic Aggregation Response Surface
(GARS) is a method based on GA algorithms using different response surface
methods as population, e.g., full second order polynomial, kriging, neural
network [75, 76].

This method was used, for instance, to analyze the pressure and strain
fields to study the formation of pressure ulcers and to create a real-time model
to prevent pressure ulcers in the sitting position [77]. Furthermore, it was
applied to investigate the configuration of the parameters of single-wound heat
exchangers, aiming to determine the optimal configuration [69].

In order to preserve the accuracy of the RS on the design points and
its stability, a universal criterion consisting of a three components measuring
model quality; cross-validation, internal accuracy on the design points, and a
roughness penalty was proposed [68, 67]. So, based on this criterion a surrogate
model selection algorithm known as the Genetic Aggregation using a penalized
predictive score (PPS) has been proposed [75];

Âm(x) =
m∑
l=1

ωlŝ
(l)(x), (2-15)

where, Âm represents the aggregation ofm surrogate models (ŝ) weighed by ωl,
which is calculated using the PPS method. The genetic aggregation algorithm
is applied in the reduced base to create a model that describes the system
behavior for an arbitrary value of the variable parameter. In the present work,
the variable parameter is the fuel velocity.

It is worth to note that, in combustion problems, it is important to
account for of some physical restrictions. More specifically, with respect
to the combustion scalars, monotonicity, positivity, and boundedness are
critical properties [44, 45]. Note also, that other problems, such as bankruptcy
predictions, or medical diagnosis that use machine learning algorithms, also
have to be concerned with monotonicity restrictions [78]. Therefore, a ROM
methodology for describing these problems has to guarantee these three
properties.

In the case of interpolations used for the discretization of conservation
equations, high-order accuracy methods are known to enforce these proper-
ties, such as weighted-essentially-non-oscillatory (WENO) and total variation
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diminishing (TVD) [79, 80]. However, the methods used in GARS are not
monotonicity preserving [71, 72, 73, 74]. As a consequence, the reduced order
model here obtained are not expected to enforce these three properties.

2.3
ROM application

In this work, the fields of 23 properties (temperature; velocity compo-
nents and the species mass fraction, except for the activated CH∗2) for each
fuel inlet velocity modeled with CFD are used to create the reduced order
model representative dataset of the methane/air laminar non-premixed flame.

However, when performing the ROM of this flame an issue related to
the monotonicity of the combustion properties obtained has been observed,
this will be further detailed in chapter 3. To overcome this problem, different
methodologies are proposed to pre-process the available data, which are
presented in the following.

2.3.1
Learning data pre-process

It is well known that the data provided for learning has a remarkable im-
pact on the model prediction. As a consequence, knowing its main character-
istics is important to achieve a representative ROM. For that, data processing
tools should be used to give insights thus, facilitating the learning process.

Here, the methodologies applied to pre-process the CFD data in different
ways are discussed. First, a methodology regarding the properties being treated
as uncoupled or a coupled system in the construction of the ROM is presented.
Indeed, since in the combustion process all the flame properties are closely
coupled through the chemical reaction, is interesting to study the effect of
coupling (or not) these properties to construct the ROM, thus, considering it
a single system.

Figure 2.6 presents two schemes that represents the uncoupled and
coupled methodology. In this figure, there are 5 properties (A, B, C, D and E).
For the uncoupled methodology, Fig. 2.6a, each property has their respective
ROM, that means that property A data only influences itself and its reduced
order model. On the other hand, the coupled methodology, Fig. 2.6b, has only
one reduced order model, created using the data of all 5 properties, such that
all properties impact each other.

By coupling the properties, an information concerning the system studied
is considered. In other words, as in the combustion process, the result of the
coupled ROM is influenced by all the properties, which is not the case for the

DBD
PUC-Rio - Certificação Digital Nº 2020913/CA



Chapter 2. Numerical methodology 38

uncoupled ROM. Thus, it is expected that the result is more faithful to the
one obtained by CFD, than the uncoupled ROM results.

(a)

(b)

Figure 2.6: Uncoupled (a) and coupled (b) ROM scheme.

Moreover, willing to facilitate data learning process even more the
ROM, other pre-processing methodologies are applied to the data. More
specifically, two other methodologies are applied to the learning dataset: (i) the
normalization of the properties, and (ii) the logarithm of the chemical species.
Following, these methodologies are presented.

Normalization of properties
Each of the 23 transported properties have values that differs in several

orders of magnitude. For example, the maximum temperature reaches about
2,100 K and the minor chemical species, such as the CH2 radical, have a
maximum mass fraction of 3 · 10−5. This should be taken into account when
coupling the properties, because the singular values are sorted in hierarchical
order, which implies that quite small values can be ignored in order to
approximate the matrix only on the first dominant terms. Therefore, the
effect of normalizing the data must be studied, and this pre processing is
widely used in other problems using machine learning or system identification
techniques [24, 29, 25].

Therefore, the normalization goal is to change the different data values
to a common scale, without biasing the differences in the value ranges. As the
studied flame is multi-scale, the impact of the normalization of temperature,
velocity components, and species are investigated such that:
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T ∗ = T (k)− T0

Tad − T0
, u∗ = u(k)

umax
, umax = u0

Tad
T0
, Y ∗i = Yi(k)

Yi,max
, (2-16)

where T ∗, u∗ and Y ∗i are the normalized temperature, velocity component and
species i mass fraction. T0 is the temperature of fresh gas, 300 K; Tad is the
adiabatic flame temperature of stoichiometric methane/air mixtures, 2,236 K;
u0 is the air inlet velocity, 60 cm/s, and Yi,max is the maximum concentration
of the species i found when the CFD simulation converges.

One may note that, to estimate the temperature and velocity bounds
in the reactive case, the reference temperature in the chemical equilibrium
(Tad) and the velocity are known. However, each chemical species maximum
concentration is unknown a priori, since they depend on the process details.
Thus, the estimation of a reference for these parameters is not straightforward.
To understand the influence of normalization, a reduced order model using the
properties coupled (1) without the normalization, (2) with the normalization
of temperature and velocity, and (3) with all properties normalized are studied.

Logarithm of species
The application of the logarithm to the computed species mass fractions

reactions is proposed based on previous knowledge of classical combustion
systems. Indeed, the spatial decrease of the mass fractions due to diffusion
and convection process is exponential [4].

In order to avoid applying the logarithm in regions where chemical species
are absent, a truncation parameter (εc) is imposed on the mass fractions data.
Then, the log10 is applied to the data set before the ROM construction, i.e.,

Ŷi = max(Yt, 10−εc). (2-17)

Ȳi = log10

(
Ŷi
)
. (2-18)

This set of operations is performed for all the chemical species, for each
fuel input velocity modeled. After the learning process the results obtained
with the ROM (for the validation cases) are exponentiated, so as to recover
is Yi. Then, these results are interpolated on the uniform mesh, analyzed and
compared with the other pre-processing results. In addition, a study of the
influence of the parameter εc on the final result is performed also. This is
effected by analyzing the reconstructed mass fractions and the influence on the
singular values, in order to determine the value of the truncation parameter
that best suits all species reconstruction. The three truncation parameter
values chosen are 8, 10 and 12, which are all smaller than the maximum mass
fractions found for the minor species.
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2.3.2
ROM nomenclature

As different methodologies for pre-processing the properties data are con-
sidered, a nomenclature is suggested to synthesize the construction information
from each ROM. The nomenclature chosen to classify the reduced order mod-
els studied summarizes the main information regarding the data pre-processing
and the ROM construction. It states, for example, the methodologies applied
to the learning data, such as normalization or logarithm, whether the ROM
has uncoupled or coupled combustion properties, the number of learning cases,
and the number of modes used. The nomenclature is given as:

ROM
(c|m|p)
(i,j) , (2-19)

where the subscript (i, j) refers to the number of learning cases and the
number of modes, respectively; and the superscript (c|m|p) refers to the data
organization:

– the first item, c, states if the combustion properties are treated as an
uncoupled (u) or a coupled (c) system;

– the second, m, refers to the methodology applied to the learning data.
Table 2.4 relates the studied methodologies to the symbols used in the
nomenclature.

– the last item, p, is the specific property studied, for example: vx and vy
for the axial and radial velocity or T for the temperature.

Table 2.4: Methodologies applied to the learning data and its symbols.

methodology symbol
without normalization w

normalization of temperature and velocity nt,v

normalization of all properties nall

logarithm of species l

In the case of the coupled ROM, a slightly different nomenclature is used
(pc, ps). Meaning that first is stated that the properties that are coupled, and
then the property of interest. For example; the result of OH mass fraction
obtained by the reduced order model using 12 learning cases and 5 modes,
with all properties normalized and coupled, is denoted:

ROM
(c | nall | all,OH)
(12,5) .
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3
Results and discussion

In this chapter, the results obtained are presented and discussed. Firstly,
those corresponding to the use of CFD are introduced, with the aim of
describing the structure of the methane/air flame by means of twelve different
flame properties. Then, the results of different created ROM are analyzed,
beginning with a data decomposition analysis and, then, comparing different
ROM predictions, for each applied method, with the CFD data.

It should be stressed that each CFD computation required around 15 days
to reach convergence, using 18 cores of a 24 CPU in a computer with 32 GB of
memory using Windows 10. The processor is the AMD Ryzen 9 3900X 12-core,
running at 3.79GHz. The software used was Ansys Fluent, version 2020 R2, for
flow analysis and flame calculation, and static ROM from Ansys Twin Builder,
version 2020 R1, to create the ROM.

The exact solution to an iterative problem, such as the CFD simulation
is unknown, however, one aims to be sufficiently close to the exact solution
for a desired accuracy. There are several approaches to verify the convergence
of numerical problems, such as the residue curve or the Richardson extrap-
olation [81]. In this work, the approach based on the observation of minor
variations in different properties along the CFD iterations is adopted. Due to
the adaptive meshing process, the upstream adaptation interferes in the down-
stream outcome. So to verify the necessity to further mesh refinement, at each
mesh adaptation the variations in the temperature and the OH radical, CO
and CH2 radical mass fractions fields were observed. When a sufficiently refined
mesh is reached, the simulations proceed without the adaptation while expect-
ing to converge. This convergence verification is done by checking the profile
of CH2 radical, because, in addition to being a minor species, it has a thinner
and longer distribution when compared to OH or CH3 radicals. Furthermore,
each simulated case involves a total of 252,200 iterations.

3.1
Non premixed flame structure

In order to discuss the influence the fuel flow Reynolds number, Fig. 3.1
shows a qualitative comparison of the classic flame structure at the extremes

DBD
PUC-Rio - Certificação Digital Nº 2020913/CA



Chapter 3. Results and discussion 42

of the studied velocity range, where the lowest velocity appears on the left and
the highest velocity on the right. The first figures (3.1a, 3.1b and 3.1c) present
the velocity components and the temperature, whereas the remaining figures
(3.1d, 3.1e and 3.1f) reproduce the mass fraction field of three chemical species:
OH, CH2 radicals and CO. Those have been chosen to represent intermediate
species with different length scales.

(a) vx. (b) vy. (c) T .

(d) YOH . (e) YCH2 . (f) YCO.

Figure 3.1: Comparison between the flame structures obtained with CFD for
the lower (left), vz|f,in = 1.75 cm/s, and higher (right), vz|f,in = 4.38 cm/s,
prescribed fuel inlet velocity. The color map limits are vx ∈ [0, 67.7] cm/s;
vy ∈ [−17.2, 17.2] cm/s; T ∈ [300, 2, 158] K; YOH ∈ [0, 3.89 · 10−3];
YCH2 ∈ [0, 2.67 · 10−5]; YCO ∈ [0, 5.11 · 10−2]. The color map goes
from blue (minimum) to red (maximum). The fuel and air inlets are limited
by the white rectangle at the lower most part of the images.

The axial and radial components of the velocity field are shown in Figs.
3.1a and 3.1b, respectively. One may note that along the flame, the axial
component of the velocity, vx, increases as it gets further away from the fuel
tube exit. This behavior is explained by the increasing temperature, as shown
in Fig. 3.1c, which affects the density within the reaction zone. Indeed, based
on the conservation of the total mass equation [Eq. (2-2)] and the perfect
gas equation of state [Eq. (2-12)]: as the temperature increases, the velocity
increases. As for the radial component, vy, most of the domain (fuel inlet tube
and the regions far from the flame front) is green for both the lowest and
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highest fuel velocities, meaning that the velocity is close to zero, as expected
according to mass conservation. Specifically, within the fuel feed tube, from
the differential equation of continuity [Eq.(2-5)] considering the hypotheses of
steady state, two-dimensional and incompressible fluid, once the flow becomes
fully developed, the velocity no longer varies in the x direction. Since the
velocity at the wall is zero, the radial component of the velocity is zero when
the flow becomes fully developed [7]. However, when comparing the two cases,
the region of positive radial velocity is larger for the case of vz|f,in = 4.38 cm/s,
Fig. 3.1b (right). This larger vy value is associated to the corresponding larger
∂vx/∂x.

Examining the temperature profile, Fig. 3.1c, a high temperature region
is seen, representing the flame region. The maximum temperature is 2, 138 K
for the slowest fuel inlet velocity (left), and for the largest velocity (right) is
2, 153 K, both which are close to the adiabatic flame temperature for methane
(2, 236 K). Downstream the maximum temperature, a temperature decrease
is observed along the y axis, due to the combustion products mixture with
air, which is at 300 K. As expected, the fuel inlet velocity has a significant
influence on the flame, as seen when comparing both temperature profiles (left
and right). Indeed, as the fuel inlet velocity increases, the flame lengthens.
Moreover, at the lowest fuel velocity case, there is a region within the fuel tube
that has a temperature greater than 300 K, which means that the unreacted
fuel is being preheated by the flame via heat conduction when the lowest
velocity is considered.

Figures 3.1d, 3.1e and 3.1f show the mass fraction fields of hydroxyl rad-
ical (OH), carbon monoxide (CO) and methylene radical (CH2), respectively.
The position and shape of the flame are often estimated using the OH mass
fraction profile. The highest concentration of OH is present near the tube walls
for both inlet velocity values. However, for the higher fuel velocity, the region
of maximum OH concentration and, thus, the flame height are longer. Note
that the OH concentration along the streamwise direction decreases due to
the progressive dilution by combustion products. This is observed for all in-
termediate species. Furthermore, carbon monoxide is present within the flame
region, and for the case of lower fuel velocity, CO is found within the fuel inlet
tube also. Such a mass diffusion phenomena is associated to the increase on
the fuel temperature inside the tube, seen in Fig. 3.1c. It is worth to note that,
for the higher velocity case (right), the region of maximum concentration of
this chemical species is wider than the region found for the lower fuel velocity
case (left).

Regarding the mass fraction field of CH2 radical, Fig. 3.1e, a mass fraction
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of the order of 10 ppm is seen, and the region where CH2 is present is quite
narrow, approximately 500 µm. One may note that this species is the one
with the smallest time and length scales, being quickly created and consumed
within the reactive region, and thus is an effective indicator of the flame front
position [37]. The maximum concentration is located near the burner wall, and
for the lowest fuel inlet velocity case is 29 ppm. Note that this property was
used as the convergence parameter, i.e., when the field of the mass fraction of
CH2 stops varying, all other variables are assumed to be converged.

A total of 23 flame properties are obtained from the CFD simulations:
the velocity components, temperature, and the 20 chemical species present in
the DRM19 mechanism. Although some of these species qualitatively resemble
each other, for the sake of completeness it is interesting to analyze more than
three species, and at an intermediate fuel inlet velocity value, since there is a
large influence of the fuel inlet velocity on the flame, as seen in Fig. 3.1. In
addition, the species concentration spare over sever orders of magnitude, and
arise at different locations during the combustion process.

Therefore, in order to characterize the flame, and subsequently compare
qualitatively with the results obtained from the reduced order models, in the
interest of brevity, twelve flame properties are analyzed throughout of this
work, as shown in Fig. 3.2. As in the following section these twelve properties
are compared with the ROM results. The fuel inlet velocity chosen represents
one of the validation cases, i.e., cases that are not used in the construction of
the reduced model. The first three of these properties are the axial and radial
components of velocity and the temperature, Figs. 3.2a - 3.2c, respectively.
Then, the mass fractions of H, OH and HO2 radicals, Figs. 3.2d - 3.2f are
respectively given, which are related to the hydrogen oxidation mechanism.
Finally, Figs. 3.2g - 3.2l present the species encountered in the oxidation of
methane, and those are: CH4, CH3 radical, CH2 radical, CH2O, HCO radical,
and CO respectively.

The chosen species represent the different mass fraction scales and their
different profiles, representative of the major, intermediate and minor species
involved on the combustion process. One should also note that five of those
species (CH4, CH3, CH2O, HCO, and CO) are in the central path of the
methane oxidation chain, in Fig. 2.1. The CH2 is a minority species that is of
significant importance as an intermediate species, which is rapidly consumed,
as on the diagram in Fig. 2.1. The CH2 pathway is the second most important
in the decomposition of CH3 and the formation of HCO, as may be seen in
that figure.
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(a) vx. (b) vy. (c) T .

(d) YH . (e) YOH . (f) YHO2 .

(g) YCH4 . (h) YCH3 . (i) YCH2 .

(j) YCH2O. (k) YHCO. (l) YCO.

Figure 3.2: Flame properties obtained with computational fluid dynam-
ics (CFD) for the validation case with prescribed fuel inlet velocity of
vz|f,in = 3.1 cm/s. The color map limits are vx ∈ [0, 67.7] cm/s; vy ∈
[−17, 17] cm/s; T ∈ [300, 2, 151] K. YH ∈ [0, 1.1 · 10−4]; YOH ∈ [0, 3.9 · 10−3];
YHO2 ∈ [0, 2.3·10−5]; YCH4 ∈ [0, 1]; YCH3 ∈ [0, 1.2·10−3]; YCH2 ∈ [0, 2.8·10−5];
YCH2O ∈ [0, 1.13 ·10−4]; YHCO ∈ [0, 5.1 ·10−6]; YCO ∈ [0, 5.1 ·10−2]. The color
map goes from blue (minimum) to red (maximum). The fuel inlet is located
at the bottom right side, and at the left side is the air inlet.
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In Figure 3.2a, the axial velocity increases along the symmetry axis, and
the highest velocity in the profile corresponds to the air flow. Figure 3.2b
shows the radial velocity, where most of the domain is green, i.e., the radial
velocity is zero. Also, there are two non-zero regions, one positive and one
negative, which accounts for the mixing of the reactants downstream the fuel
supply tube. Those velocity components are qualitative similar to those given
in Fig. 3.1.

The temperature field, Fig. 3.2c, presents an increase along the x axis
from the exit of the fuel supply tube until it reaches the maximum temperature
of 2,151 K. Then, the temperature starts to decrease, but it remains higher
than the temperature of fresh gases (300 K). This is due to the diffusion of the
burned gases and mixing of these gases with the unreacted air. It is worth to
note that a high temperature region inside the tube is not seen, as it occurs in
the lower velocity case, given in Fig. 3.1c.

Regarding the species involved in the hydrogen oxidation, Fig. 3.2d and
Fig. 3.2e show that the intermediate mass fractions of H and OH, respectively,
have a similar spatial distribution. Both species have a maximum concentration
near the anchoring region, at the air-side burner wall, and exhibit a local
maximum at the symmetry axis. The air and fuel side refer to the reactant
inlets, being limited by the burner wall, which has a thickness of 1 mm
(represented by the white rectangle at the lowest part of the Fig. 3.2). It should
be stressed that this 1 mm white rectangle should be used to provide a scaling
reference to the dimensions of all figures that exhibit properties fields. The air
side is located at the left bottom and the fuel side at the right bottom parts of
those figures. However, the OH mass fraction field has a longer region of high
concentration, and also it is more spread out along the axis of symmetry than
the other hydrogenated species. With respect to the maximum mass fraction,
the hydrogen atom H is of the order of magnitude of 10−4, and the hydroxyl,
OH, is of the order of 10−3.

The mass fraction of HO2, Fig. 3.2f, on the other hand, has a maximum
mass fraction of 10−5, and it is thus considered a minor species. The mass
fraction field of HO2 is shorter and does not seem to exhibit a local maximum
at the symmetry axis. The region of maximum concentration is also smaller
(3 mm) and lies close to the anchoring region. Among the species derived from
hydrogen oxidation, the HO2 mass fraction has the anchoring region located
in the 2 mm prior to the fuel feeding tube outlet, having a slightly larger
anchoring region when compared to the other species. One may note that
these three species (H, OH and HO2) have an anchoring at the air side.

As the studied flame is non-premixed, in the fuel feed tube only the
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chosen fuel, methane, is found, as shown in Fig. 3.2g. One may note that near
the end of the feed tube the methane concentration starts to decrease until it is
completely consumed. The black line on Fig. 3.2g represents the stoichiometric
surface for the methane/air mixture.

The CH3 species is the first to be formed in the oxidation of methane,
as shown in Fig. 2.1. The mass fraction field of CH3 is presented on Fig. 3.2h,
where qualitative similarities to the profile of H and OH mass fraction can be
seen. Nevertheless, the maximum concentration of CH3 is located at the burner
wall, and also exhibits a local maximum at the symmetry axis. However, the
CH3 characteristic length is considerably smaller than H and OH, which is
explained because it is an intermediate species and is completely consumed at
the very beginning of the methane oxidation path. Note that the stoichiometric
surface is located around the middle of the CH3 profile. Comparing the mass
fractions of CH4 and CH3, which are of the order of 1 and 10−3, respectively,
one may note that methane is a major species, and CH3 as a minor one.

The CH2 mass fraction field, depicted at Fig. 3.2i, is characterized by
being thin (0.8 mm at 1 mm after the fuel feeding tube outlet) and long,
having a maximum near the anchoring region at the air side. Note that, besides
the anchoring, the CH2 field is closer to the air side than to the fuel side, in
comparison to the CH3 and CO mass fraction fields. This species is one of the
minor species, with a maximum mass fraction of the order of 10−5. Moreover,
the CH2O mass fraction field, given in Fig. 3.2j, is also located close to the
air side, and, in contrast to CH2, the profile is more spread out. Regarding
the order of magnitude, such species is considered to be minor intermediates,
having a maximum mass fraction of 10−4.

The HCO mass fraction field, which may be seen at Fig. 3.2k, highly
resembles the CH2 profile (Fig. 3.2i), with a thin outline and located mainly
at the air side. In addition, it is also a minor species, with a maximum mass
fraction of 5 · 10−6. Moreover, a small difference on the characteristic length of
the field is seen, such that the HCO is shorter than the CH2.

The last property to be analyzed is the mass fraction of carbon monoxide,
given in Fig. 3.2l. Unlike the other species produced from methane oxidation,
CO shows a maximum concentration along the inner region of the flame, and
not at the flame front. First, the concentration of this species increases along
the axis of symmetry and, as it is consumed, the concentration decreases. One
may note that, as in the temperature profile (Fig. 3.2c) there is no CO inside
the fuel feeding tube, such as was the case for the vz|f,in of 2.11 cm/s, shown
in Fig. 3.1f. Regarding the maximum concentration of CO, on the order of
magnitude of 10−2, it may be considered a major species.
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Finally, it should be emphasized that the same properties and the same
representation of Fig. 3.2 will be adopted herein to describe the results of
the different ROM. However, for the sake of brevity, a repetition of the flame
properties distribution will be avoided whenever it is possible.

3.2
Reduced order models

The data used to construct the different ROM is taken from the 20
reactive CFD simulations, where only the fuel input velocity varies. From each
CFD case, a total of 23 property fields are extracted to build the data set.
Depending on the methodology applied in learning data pre-processing step,
discussed in section 2.3.1, these properties are treated either separately or as
a coupled system. Since it has been decided to use 60% of the CFD cases as
learning data, 12 of the 20 numerical simulations are randomly separated to
construct the reduced order model, so that all ROM have the same learning
cases. For the purpose of comparing the results the ROM, as well as the use of
the same learning cases, the same number of modes, five, is also used. Then,
from a total of 8 validation cases, only three velocities values, 2.1, 3.1, and
4.1 cm/s, are selected to reconstruct the property profiles using the ROM
methodology.

Here it is presented the analysis regarding the data decomposition and
the reconstruction of 12 flame properties, for all reduced order models created.
First, it is analyzed the uncoupled methodology results, followed by the
coupled ones. Then, are presented the results of the logarithm pre-processing
methodology. For sake of brevity, the data for the velocity of 3.1 cm/s is
exposed and discussed in depth only.

3.2.1
Uncoupled properties

In order to study the influence of varying the number of modes on the
precision of the reduced order model, Fig. 3.3 presents the singular values of
the decoupled ROMs, for five different flame properties. For the sake of brevity,
OH, CH2 and CO2 mass fractions, temperature, and radial velocity are shown
only. The y axis displays the singular values normalized by the sum in a log10

scale, and the x axis, the number of modes. The logarithm scale has been
chosen to underscore the order of magnitude variations of the singular values
computed.
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Figure 3.3: Singular values, normalized by the sum, as a function of the number
of modes for five properties of the ROM (u|w|p)

(12,5) . The y axis is represented in a
logarithm with base 10 scale and the x axis is a linear scale. •: vy; H: T ; �:
YOH ; �: YCH2 ; F: YCO2 .

In a general overview, all properties show a similar behavior; by construc-
tion, the first modes have higher singular values and, as the number of modes
increases, the singular value decreases. This is a feature of the SVD decompo-
sition, where the singular values are ordered in a decreasing value, such that
that the information given by first modes retains the main characteristics of
the considered system. It is worth to note that for temperature, radial velocity
and CO2 mass fraction, the decrease is steeper than for the OH and CH2 mass
fractions. This becomes clear by tracing a horizontal line at y = 100 and exam-
ining the number of modes the singular value is below the line. For instance,
the temperature, radial velocity and CO2 with five modes, all are below this
line. However, for OH and CH2 this is only observed at the ninth and twelfth
modes, respectively. This underscores that learning these flame properties is
harder than the velocity components or temperature.

The reconstruction of the ROM (u|w|p)
(12,5) flame properties fields is shown

in Fig. 3.4. These fields are now compared to those obtained with CFD, the
validation data, given in Fig. 3.2. Concerning the axial velocity component,
given in Fig. 3.4a, it may noticed that the ROM prediction has a pronounced
local minimum at the vicinity of the symmetry axis, in one region with constant
velocity represented by the yellow color. However, in the CFD case (Fig. 3.2a)
there is only a narrowing of that same yellow region, indicating a less smaller
extremum.
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(a) vx. (b) vy. (c) T .

(d) YH . (e) YOH . (f) YHO2 .

(g) YCH4 . (h) YCH3 . (i) YCH2 .

(j) YCH2O. (k) YHCO. (l) YCO.

Figure 3.4: Flame properties obtained with ROMu|w|p
(12,5) for the validation case

with prescribed fuel inlet velocity of vz|f,in = 3.1 cm/s. vx ∈ [0, 67.7] cm/s;
vy ∈ [−17, 17] cm/s; T ∈ [300, 2, 151] K. YH ∈ [0, 1.1 · 10−4]; YOH ∈
[0, 3.9 · 10−3]; YHO2 ∈ [0, 2.3 · 10−5]; YCH4 ∈ [0, 1]; YCH3 ∈ [0, 1.2 · 10−3];
YCH2 ∈ [0, 2.8 · 10−5]; YCH2O ∈ [0, 1.13 · 10−4]; YHCO ∈ [0, 5.1 · 10−6];
YCO ∈ [0, 5.1 · 10−2]. The color map goes from blue (minimum) to red
(maximum). The fuel inlet is located at the bottom right side, and at the
left side is the air inlet.
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The radial velocity, on the other hand, Fig. 3.4b, shows no apparent
discrepancy from the CFD case. Most of the domain has zero velocity,
represented by the green color, with two non-zero regions, at the fuel and
air inlets vicinity, near the wall, and at the fuel tube outlet, where there
is a positive and a negative region. Regarding the limits (extrema) of axial
and radial velocities, this uncoupled ROM predicts the same values as those
obtained by CFD. The temperature profile is shown in Fig. 3.4c, and is also
quite similar to the one obtained by CFD, Fig. 3.2c. One small difference is
that ROM (u|w|T )

(12.5) predicted a maximum temperature of 2,418 K, whereas the
CFD-resolved maximum temperature is 2,151 K.

Examining now the chemical species, it can be seen that all reconstructed
results, with notable exception CO, Figs. 3.4d - 3.4k, exhibit a negative mass
fraction region, that is represented by the white color, which is physically
impossible. This negative mass fraction problem in the uncoupled ROM
reconstruction is found for 15 out of 20 of the reconstructed species, with
various orders of magnitude. One may note that the results for OH and HO2,
Figs. 3.4e and 3.4f, show a smaller region of negative mass fraction than the
others species, such as CH2 (Fig. 3.4i). The fact that the ROM predicts a
result that is not found in any CFD case suggests that the interpolation used
in the ROM methodology, GARS, does not preserve neither the monotonicity
nor the boundedness of the properties, which are indispensable qualities for
combustion studies.

Despite these shortcomings, the species fields obtained by the uncoupled
ROM are some what similar to those obtained by CFD. One notable difference
is in the mass fraction of H, Fig. 3.4d, where although the ROM (u|w|H)

(12.5) reaches
a maximum at symmetry axis, as in the CFD, the mass fraction of H of the
uncoupled ROM is smaller than 2.2 · 10−5, which is the average mass fraction
concentration seen at the same region in the CFD case. Another example is
the ROM (u|w|CH2)

(12.5) , Fig. 3.4i, where the characteristic length of the CH2 field
is shorter, by almost 2 mm than, that shown in Fig. 3.2i.

Finally, concerning the carbon monoxide mass fraction field of the
uncoupled ROM, presented in Fig. 3.4l, one may note that the reconstructed
field is slightly longer than the one given by CFD (Fig. 3.2l). Another relevant
issue is that the ROM

(u|w|CO)
(12.5) result shows a region with maximum mass

fraction of 0.053, which is higher than the one solved by CFD, 0.051.
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3.2.2
Coupled properties

The analysis of the impact of the decomposition of the data, discussed
in the previous section, establish that some properties have a steeper energy
decay with the number of modes than others. In addition, some chemical
species exhibit a negative mass fraction region or a region where the mass
fraction exceeds the expected and solved by CFD. In other words, the ROM
do not respect the positivity, monotonicity and boundedness properties of the
scalars. Therefore, in order to evaluate the effect of the different coupling
methodologies, the comparison of the energy related to the reduced order
model with the properties treated as uncoupled

(
ROM

(u|w|p)
(12,5)

)
and treated

as coupled
(
ROM

(c|w/n|all)
(12,5)

)
, is given in Fig. 3.5. This figure shows the results

corresponding to three methodologies of the coupled properties, one without
normalization (w), the other two cases with normalization being applied, using
Eq. (2-16): one having only the temperature and velocity normalized (nt,v), and
another with all properties normalized (nall).

Figure 3.5: Singular values, normalized by the sum, as a function of the number
of modes. The y axis is represented in a logarithm with base 10 scale and the
x axis is a linear scale. ×: ROM (c|w|all)

(12,5) ; +: ROM (c|nt,v |all)
(12,5) ; ∗: ROM (c|nall|all)

(12,5) ; O:
ROM

u|w|T
(12,5) ; �: ROM

u|w|OH
(12,5) .

Figure 3.5 shows that the energy required to reconstruct the ROM
using the coupled properties without a normalization is similar to the energy
necessary to the temperature ROM. This can be explained by considering that
the singular values are controlled by the highest absolute value property, in this
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case temperature, which is of the order of 103. Despite the normalization of the
temperature and velocity, the energy content is still similar to that required
to reconstruct the temperature, which can be explained by the remarkable
difference between the orders of magnitude of the different species, which are
significantly smaller than one. In contrast, considering the coupled case with
all properties normalized, one notices that the decrease of the energy present
in each mode is more similar to the uncoupled OH ROM, i.e., it is slower than
the other coupled ROM. One way to illustrate this is to draw a horizontal line
at y = 1. Indeed, one notices that for both ROM

(c|w|all)
(12,5) and ROM

(c|nt,v |all)
(12,5) ,

in the fourth mode the energy is smaller than 1. On the other hand, for the
ROM

(c|nall|all)
(12,5) , this occurs only in the seventh mode. Therefore, these results

indicate that the coupled normalized properties learning process is limited by
the combustion scalars, that are “harder” to learn, which are the intermediate
species.

Figure 3.6 presents the fields of the 12 flame properties for the cou-
pled ROM without normalization. When comparing qualitatively with the
ROM

(u|w|vx)
(12,5) , Fig. 3.4a, it can be seen that the axial velocity profile, Fig. 3.6a,

resembles the profile solved by CFD (Fig. 3.2a), having a continuous uniform
velocity represented by the yellow color near the axis of symmetry, presenting
only a smaller narrowness than that observed in Fig. 3.2a. Regarding the radial
velocity component and the temperature profile, in a qualitatively comparison,
these do not show significant differences between these two ROM results. An
interesting point is that, in both reduced order models, the maximum tem-
perature prediction is smaller than that solved by CFD (2,151 K), but are
identical for the ROM (u|w|T )

(12,5) and for the ROM (c|w|all)
(12,5) , the maximum temper-

ature is 2,148 K.
Regarding the chemical species, the ROM

(c|w|all)
(12,5) result also shows,

for all chemical species, except CO, regions of negative mass fractions.
However, a noticeable decrease of the associated white area may be seen
in the fields of the H, HO2, CH4, CH3, CH2, CH2O and HCO given in
Figs. 3.6d, 3.6f, 3.6g, 3.6h, 3.6i, 3.6j, and 3.6k, respectively. For CO, Fig. 3.6l,
a region is also found where the mass fraction exceeds that solved by CFD,
having the same maximum mass fraction of 0.053. It is worth noting that in
both, ROM (u|w|p)

(12,5) and ROM (c|w|all)
(12,5) , the maximum limits of the mass fractions

are the same, exhibiting only an minor discrepancy at the fifth decimal for the
species: H, CH2O, CH3O, C2H5.
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(a) vx. (b) vy. (c) T .

(d) YH . (e) YOH . (f) YHO2 .

(g) YCH4 . (h) YCH3 . (i) YCH2 .

(k) YHCO. (l) YCO.

Figure 3.6: Flame properties obtained with ROM
(c|w|all,p)
(12,5) for the validation

case with prescribed fuel inlet velocity of vz|f,in = 3.1 cm/s. The color
map limits are vx ∈ [0, 67.7] cm/s; vy ∈ [−17, 17] cm/s; T ∈ [300, 2, 151] K.
YH ∈ [0, 1.1 · 10−4]; YOH ∈ [0, 3.9 · 10−3]; YHO2 ∈ [0, 2.3 · 10−5]; YCH4 ∈ [0, 1];
YCH3 ∈ [0, 1.2 · 10−3]; YCH2 ∈ [0, 2.8 · 10−5]; YCH2O ∈ [0, 1.13 · 10−4];
YHCO ∈ [0, 5.1 · 10−6]; YCO ∈ [0, 5.1 · 10−2]. The color map goes from blue
(minimum) to red (maximum). The fuel inlet is located at the bottom right
side, and at the left side is the air inlet.
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(a) vx. (b) vy. (c) T .

(d) YH . (e) YOH . (f) YHO2 .

(g) YCH4 . (h) YCH3 . (i) YCH2 .

(j) YCH2O. (k) YHCO. (l) YCO.

Figure 3.7: Flame properties obtained with ROM (c|nt,v |all,p)
(12,5) for the validation

case with prescribed fuel inlet velocity of vz|f,in = 3.1 cm/s. The color map
limits are vx ∈ [0, 67.7] cm/s; vy ∈ [−17, 17] cm/s; T ∈ [300, 2, 151] K.
YH ∈ [0, 1.1 · 10−4]; YOH ∈ [0, 3.9 · 10−3]; YHO2 ∈ [0, 2.3 · 10−5]; YCH4 ∈ [0, 1];
YCH3 ∈ [0, 1.2 · 10−3]; YCH2 ∈ [0, 2.8 · 10−5]; YCH2O ∈ [0, 1.13 · 10−4];
YHCO ∈ [0, 5.1 · 10−6]; YCO ∈ [0, 5.1 · 10−2]. The color map goes from blue
(minimum) to red (maximum). The fuel inlet is located at the bottom right
side, and at the left side is the air inlet.
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The results of the ROM using the coupled methodology with temperature
and velocity normalization, shown in Fig. 3.7, are quite similar to those
obtained by the coupled ROM without normalization (Fig. 3.6). For this reason
only a brief analysis of these data is performed.

In a qualitative comparison, the chemical species fields of the
ROM

(c|nt,v |all)
(12,5) resemble those of the ROM

(c|w|all)
(12,5) and ROM

(u|w|all)
(12,5) , when

comparing the overall structure, thickness, and characteristic length of the 9
chosen species. Despite the normalization of temperature and velocity, there is
no perceivable decrease in the negative mass fraction regions, or a significant
change from the mass fraction extrema. The maximum temperature in the
coupled ROM with the temperature and velocity normalization is 2,418 K
also. It is interesting to note that in the SVD modes energy distribution,
shown in Fig. 3.5, the ROM (c|nt,v |all)

(12,5) is quite similar to the ROM (c|w|all)
(12,5) , which

underscores the observed fields similarity of the reconstructed properties.
However, the results obtained with the coupled ROM using the data

from all species normalized, Fig. 3.8, are different to those from the other
coupled ROM. For the velocity components, Figs. 3.8a and 3.8b show fields
quite similar to those obtained by CFD. The temperature field, Fig. 3.8c, is
also quite similar, qualitatively speaking, to those obtained by the other ROM.
However, the maximum temperature seen in the ROM (c|nall|all)

(12,5) is 2,120 K,
which is smaller than the ones obtained in the other two coupled ROM and in
the uncoupled ROM.

Regarding the chemical species, Figs 3.8d - 3.8l, one may notice that
the negative mass fraction region is decreased when compared to the other
reduced order model results (Figs. 3.4, 3.6 and 3.7). Yet 10 species still exhibit
regions of negative mass fraction, in particular: H, O, OH, CH3, CH2, and
HCO. Nevertheless, the order of magnitude of these negative regions has been
reduced, going from 10−3 to 10−8.

A major difference between the results obtained by the reduced order
model methodology, for ROM (c|nall|all)

(12,5) , is seen in the fields of the chemical
species: H, OH, CH3, CH2, CH2O and HCO (Figs. 3.8d, 3.8e, 3.8h, 3.8i, 3.8j
and 3.8k). Indeed, that these fields exhibit a spatial bifurcation. In addition,
the CH3 profile is more spread out and less defined when compared to the other
results (Figs. 3.4h, 3.6h and 3.7h). This problem could perhaps be overcomed
by adding new cases to the dataset given in the learning step [82].
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(a) vx. (b) vy. (c) T .

(d) YH . (e) YOH . (f) YHO2 .

(g) YCH4 . (h) YCH3 . (i) YCH2 .

(j) YCH2O. (k) YHCO. (l) YCO.

Figure 3.8: Flame properties obtained with ROM (c|nall|all,p)
(12,5) for the validation

case with prescribed fuel inlet velocity of vz|f,in = 3.1 cm/s. The color map
limits are vx ∈ [0, 67.7] cm/s; vy ∈ [−17, 17] cm/s; T ∈ [300, 2, 151] K.
YH ∈ [0, 1.1 · 10−4]; YOH ∈ [0, 3.9 · 10−3]; YHO2 ∈ [0, 2.3 · 10−5]; YCH4 ∈ [0, 1];
YCH3 ∈ [0, 1.2 · 10−3]; YCH2 ∈ [0, 2.8 · 10−5]; YCH2O ∈ [0, 1.13 · 10−4];
YHCO ∈ [0, 5.1 · 10−6]; YCO ∈ [0, 5.1 · 10−2]. The color map goes from blue
(minimum) to red (maximum). The fuel inlet is located at the bottom right
side, and at the left side is the air inlet.
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Figure 3.8g shows the CH4 mass fraction, one may see that the fuel
concentration inside the tube, near the fuel outlet (bottom right corner) is
less than 1, more precisely, around 0.8. The methane concentration starts to
decrease at x = 57 mm, 3 mm before the fuel feeding tube outlet. In contrast,
the CO mass fraction of ROM (c|nall|all)

(12,5) (Fig. 3.8l) has a region of maximum
concentration, around 2.5 mm, which is smaller than that of ROM (u|w|CO)

(12,5) ,
ROM

(c|w|all)
(12,5) and ROM (c|nt,v |all)

(12,5) . In addition, the mass fraction of CO is more
spread out along the x direction, and for the ROM (c|nall|all)

(12,5) the maximum CO
height is 34 mm, from the outlet of the fuel feeding tube.

In order to further characterize the apparent minor species fields bifurca-
tions, a number of learning modes and cases is now increased. For that matter,
three new reduced order models are constructed. Two using 12 learning cases
with 10 and 12 modes, and one using 16 learning cases (80% of the dataset
cases) and 10 modes. These showed that, despite the increase in the number
of modes and learning cases, the problem in describing the species remains a
difficult task, and significant differences have not been obtained. On a positive
note, the negative mass fraction region slightly decreased. Since no remark-
able differences were obtained, and for the sake of brevity, such results are not
presented here.

One of the major concerns regarding the numerical simulations involving
combustion is mass conservation, which is commonly expressed as ∑Yi = 1.
Thus, to verify that the ROM methodology does guarantee mass conservation,
an analysis of the residual of this sum, i.e., rYi

= 1−∑Yi was performed also.
It is worth noticing that, although some of the chemical species reconstructions
present negative mass fractions regions, in none of the ROM the conservation
of mass is violated. Indeed, the reconstructed rYi

error is randomly distributed
for all ROM, having a maximum standard deviation of continuity of 10−7.
These results are not given here for the sake of brevity.

3.2.3
Logarithm of species pre-processing

Aiming to solve the monotonicity problem faced by the uncoupled and
coupled ROM, here the application of the logarithm to the learning data is
proposed, as given by Eqs. (2-17) - (2-18). In order to study the influence
of this method, the effect of truncation parameter is first analyzed, for three
values of εc, where εc is the negative exponent of the truncation parameter.
The values of εc arbitrarily chosen are 8, 10 and 12.

Accordingly, three reduced order models, using the logarithm technique
presented in section 2.3.1, are constructed for those values of εc. Figure 3.9
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presents the corresponding singular values normalized by the sum, as a function
of the number of modes for four species, one minor (CH2), one intermediate
(OH) and two major species (CO and CO2).

(a) YOH (b) YCH2

(c) YCO (d) YCO2

Figure 3.9: Singular values normalized by the sum as a function of the number
of modes for the ROM (u|w|p)

(12,5) and ROM
(u|l|p)
(12,5) , for three different truncation

parameters. εc is the negative exponent of the truncation parameter chosen
as the minimum value of the mass fraction range. 5: ROM (u|w|p)

(12,5) ; +: εc = 8;
�: εc = 10; ×: εc = 12. The y axis is represented in a logarithm with base 10
scale and the x axis is a linear scale.

A qualitatively similar behavior is noticed for all results shown in Fig. 3.9.
Indeed, the singular values of ROM (u|w|p)

(12,5) are larger than those found for
ROM

(u|l|p)
(12,5) , for every mode. Also, for all species, except CO2, the singular

values of the uncoupled ROM are at least an order of magnitude larger than
for the ROM where the logarithm pre-processing is applied to the learning
data.

Regarding the singular values corresponding to the different truncation
parameters, for the mass fraction of OH, seen in Fig. 3.9a, initially there is no
significant discrepancy. However, beyond the sixth mode, a difference between
the singular values for each one of the truncation parameters εc is observed.
For instance, for the parameter, εc = 12, the mode values are larger than when
εc = 8. Regarding the minor species CH2, given in Fig. 3.9b, one may notice
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a difference between the singular values, starting from the second mode. Also,
when εc = 12, the decrease is smaller when compared to εc = 10 and 8. For
the major species CO and CO2, Fig. 3.9c and Fig. 3.9d, the singular values
corresponding to the three εc chosen are remarkably similar.

(a) (b)

Figure 3.10: Singular values normalized by sum (a) and the cumulative energy
(b) as a function of the number of modes. �: ROM (u|w|OH)

(12,5) ; �: ROM (u|l|OH)
(12,5) ;

×: ROM (c|w|all)
(12,5) ; ∗: ROM (c|nall|all)

(12,5) .

The energy of the SVD modes can be represented in at least two
forms, the first one as the energy present in each mode, and the other
as the cumulative sum of this energy, as given in Fig. 3.10. As previously
stated, as the number of modes increases the energy of each mode decreases,
and consequently the cumulative energy increases. Figure 3.10 displays both
the singular values normalized by the sum (Fig. 3.10a) and the cumulative
energy (Fig. 3.10b) for the ROM

(u|w|OH)
(12,5) , ROM (c|w|all)

(12,5) , ROM (c|nall|all)
(12,5) , and

ROM
(u|l|OH)
(12,5) . One may notice that the singular values of the ROM (u|l|OH)

(12,5) ,
until the fourth mode, have a similar behavior to the ROM (c|w|all)

(12,5) , and from
the sixth mode forward, this steepness becomes smaller. In addition, in the
eleventh and twelfth modes, the energy of the ROM (u|l|OH)

(12,5) is very close to the
ROM

(c|nall|all)
(12,5) energy.
In particular, the energy decrease is higher when the logarithm is applied

to the species, when compared to the uncoupled ROM of the chemical
species. An interesting point is that the energy present in the first mode is
highest for the ROM (u|l|OH)

(12,5) , followed by the ROM (c|w|all)
(12,5) , ROM (c|nall|all)

(12,5) , and
ROM

(u|w|OH)
(12,5) , this is more clearly seen in Fig. 3.10b.
In order to further analyze the influence of the εc truncation parameter

on the reconstruction of the chemical species fields, Fig. 3.11 exhibits the OH
mass fraction for the three εc chosen. Notably, there is no visible qualitative
difference between these three fields, and they also resemble the field obtained
with CFD, Fig. 3.2e. Moreover, the apparent monotonicity problem seen in
the previous OH mass fraction results seems to be solved when using such
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logarithm pre-processing method. To further assess whether this data pre-
processing indeed solves the positivity, monotonicity and boundedness mass
fraction problem, Fig. 3.12 presents fields of the 9 species (H, OH, HO2, CH4,
CH3, CH2, CH2O, HCO and CO) discussed previously in this work.

(a) εc = 12. (b) εc = 10. (c) εc = 8.

Figure 3.11: OH mass fraction field obtained with the uncoupled reduced order
model, using as learning data the logarithm of the chemical species data for
three different εc, for the validation case with prescribed fuel inlet velocity of
vz|f,in = 3.1 cm/s. εc is the negative exponent of the truncation parameter
chosen for the data that the logarithm is applied as the minimum value of
the mass fraction range. The OH mass fraction varies between [0, 3.8 · 10−3].
The color map goes from blue (minimum) to red (maximum). The fuel inlet is
located at the bottom right side, and at the left side is the air inlet.

The main difference observed in the ROM (u|l|p)
(12,5) results is that none of

chemical species reconstructions present a negative mass fraction region. In
fact, the minima of all the mass fractions obtained are positive and greater
than zero, on the order of magnitude of 10−11. Note that some of the fields
obtained using the logarithm pre-processing methodology are somewhat similar
to the other ROM. However, the results for the mass fraction of CH3 and
CH2O, Figs. 3.12e and 3.12g, are discrepant. Indeed, one may note that the
mass fraction of CH3 maximum along the symmetry axis is clearly visible.
Concerning the mass fraction of CH2O, there is a local maximum at the
symmetry axis, which is not seen in the CFD case (Fig. 3.2).

It is worth to note that Fig. 3.12d shows two horizontal colored lines
at the top and bottom left of the image. This is due to the interpolation of
the results in the mesh, and does not interferes with the CH4 mass fraction
field. Regarding the CO mass fraction field, Fig. 3.12i, it is noted that there is
still a region with a YCO > 0.051, similar to that found in the ROM (u|w|CO)

(12.5) ,
ROM

(c|w|all,CO)
(12.5) and ROM (c|nt,v |all,CO)

(12.5) . Concerning the continuity criteria, the
maximum standard deviation increases to 10−5, but the error (rYi

= 1−∑Yi)
still remains randomly distributed.
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(a) YH . (b) YOH . (c) YHO2 .

(d) YCH4 . (e) YCH3 . (f) YCH2 .

(g) YCH2O. (h) YHCO. (i) YCO.

Figure 3.12: Flame species obtained with ROM
(u|l|p)
(12,5) for εc = 10, for the

validation case with prescribed fuel inlet velocity of vz|f,in = 3.1 cm/s.
The color map limits are YH ∈ [0, 1.1 · 10−4]; YOH ∈ [0, 3.9 · 10−3];
YHO2 ∈ [0, 2.3·10−5]; YCH4 ∈ [0, 1]; YCH3 ∈ [0, 1.2·10−3]; YCH2 ∈ [0, 2.8·10−5];
YCH2O ∈ [0, 1.13 ·10−4]; YHCO ∈ [0, 5.1 ·10−6]; YCO ∈ [0, 5.1 ·10−2]. The color
map goes from blue (minimum) to red (maximum). The fuel inlet is located
at the bottom right side, and at the left side is the air inlet.

As a further analysis of the effect of this pre-processing step, Figs. 3.13
and 3.14 shows along the symmetry axis the mass fractions of OH and CO,
respectively. Figure 3.13a shows the mass fraction of OH along the axis of
symmetry for the CFD results, ROM (u|w|OH)

(12.5) and ROM
(u|l|OH)
(12.5) . Analyzing

these results one may confirm that the curve corresponding to ROM (u|w|OH)
(12,5)

exhibits a non-monotonic behavior between 70 and 80 mm, i.e., the OH
mass fraction increases and then decreases to a negative value, which is
physically impossible, returning to a positive value near 80 mm. Regarding
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the ROM
(u|l|OH)
(12.5) results, Fig. 3.13a shows that a distinction between the

different curves (different εc values) and the CFD result is not observed until
80 mm. The CFD result has a maximum OH mass fraction slightly upstream,
when compared to the other curves. As for the maximum OH mass fraction,
the curves of CFD and εc = 8 are the largest, and the peak of the curve
of ROM (u|w|OH)

(12.5) is the smallest. Nevertheless, the curves of ROM (u|l|OH)
(12.5) for

εc = 10 and 12 are quite similar to each other.
Examining now the logarithm representation of the OH mass fraction,

given at Fig. 3.13b, one can further verify the influence of the chosen truncation
value. As expected, truncating εc = 8 loses the most information, i.e., nearly
all the information between the 60 and 65 mm. However, for εc = 12, the curve
closely resembles the CFD curve, and for εc = 10, the curve loses a smaller
amount of information than for εc = 8 in the same interval. Downstream
65 mm, no significant difference between the CFD results and the different
ROM

(u|l|OH)
(12.5) is seen. Furthermore, this logarithm representation shows that,

regarding ROM
(u|w|OH)
(12.5) , an YOH increase occurs upstream the other results

and, they only agree downstream 80 mm. Moreover, between 70 and 75 mm an
oscillation is seen in the curve, where the non-monotonic behavior in Fig. 3.13a
is seen. Moreover, one may note that in the logarithm of OHmass fraction curve
of the uncoupled ROM, there is a segment without the dashed line, between
75 - 80 mm, since this is the location where the OH mass fraction is negative
in Fig. 3.13a

Figures 3.14a and 3.14b depict the results corresponding to the carbon
monoxide mass fraction and its logarithm representation, respectively. These
figures show rather minor quantitative discrepancies between the ROM and
CFD results. One difference from the CO mass fraction is near the 70 mm
region. Indeed, in Fig. 3.14a, the CFD and εc = 12 curves continue to rise
until reaching a maximum, near 75 mm. Discrepancy from the other curves,
which show a slower increase until at this position, where it starts to rise more
rapidly, before reaching a maximum near 75 mm.

The obtained results clearly underscore the benefits of using the loga-
rithm pre-processing of the data prior the learning step. Indeed, both the mono-
tonicity and boundedness properties are preserved, and learning is achieved
with a smaller number of modes, when compared to the unprocessed data.
The success of this strategy may be attributed to the fact that the exponential
tails of the chemical species spatial distribution, which contain relevant data
to be learned, and are thus better captured. Furthermore, this pre-processing
step effectively spatially widens the fields of minor species, which also eases the
learning. Finally, this pre-processing also should provide a more generalizable

DBD
PUC-Rio - Certificação Digital Nº 2020913/CA



Chapter 3. Results and discussion 64

re-scaling of species mass fractions and other properties that span over several
orders of magnitude.

(a) YOH .

(b) log10 YOH .

Figure 3.13: Mass fractions of OH along the symmetry axis. The y axis is
the species mass fraction and the x axis is the distance in the flow direction
[mm], where 60 mm is the outlet of the fuel’s feeding tube. Black solid line:
CFD; black dashed line: ROM (u|w|OH)

(12,5) ; colored lines: ROM (u|l|OH)
(12,5) , where the

different colors represents each truncation parameter (εc) analyzed. εc = 8 is
represented by the magenta line, εc = 10 by the red line, and εc = 12 by the
blue line.
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(a) YCO.

(b) log10 YCO.

Figure 3.14: Mass fractions of CO along the symmetry axis. The y axis is
the species mass fraction and the x axis is the distance in the flow direction
[mm], where 60 mm is the outlet of the fuel’s feeding tube. Black solid line:
CFD; black dashed line: ROM (u|w|CO)

(12,5) ; colored lines: ROM (u|l|CO)
(12,5) , where the

different colors represents each truncation parameter (εc) analyzed. εc = 8 is
represented by the magenta line, εc = 10 by the red line, and εc = 12 by the
blue line.

DBD
PUC-Rio - Certificação Digital Nº 2020913/CA



4
Conclusion and perspectives

In this work, a study of different reduced order models of an non-premixed
laminar flame has been performed using the data from computational fluid
dynamics simulations to learn these models. This study aimed to compare the
impact of different data pre-processing methodologies on the data reduction
and reconstruction of the flame property fields. Besides the qualitative and
quantitative comparison between CFD and ROM results, an energy analysis
as a function of the modes of the singular value decomposition algorithm, has
been performed for each constructed ROM.

The reduced order model was built from the fields of 23 flame properties
obtained by CFD, where only the fuel inlet velocity varies. In order to reduce
the computational cost of reactive simulations associated with the mesh and
the number of chemical reactions to be solved, an adaptive mesh tool based
on the temperature gradient and a reduced chemical kinetics mechanism were
used. Despite this, each CFD simulation has required, an average of 15 days
to reach convergence. Usually, machine learning algorithms require a large
amount of data. Yet, despite this, the database to construct the ROM was
created from 20 CFD simulations of different fuel inlet velocities.

A total of five approaches to data pre-processing have been adopted.
The first one is the decoupled ROM, where each property has its own ROM.
Then, it has been proposed to treat the properties as a single system, since in
combustion the properties are coupled. Thus, three coupled ROM have been
created, one without normalization of the properties, another with temperature
and velocity normalization, and a third with all properties normalized. All
these ROM presented a problem in the reconstructed fields: the presence of
negative mass fraction regions. In other words, the machine learning algorithm
does not guarantee the monotonicity, positivity, and boundedness of the
properties, and these are important in combustion scalars. Furthermore, the
reconstruction of the coupled ROM with all the properties normalized shows
bifurcations in some fields, such as OH mass fraction, which suggested that
the number of data provided for the ROM is insufficient.

The last pre-processing approach studied is the proposed logarithm of
the chemical species. The original obtained results show that monotonicity
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and boundedness problems are overcome. Furthermore, when compared to
the uncoupled chemical species ROM, the learning is achieved with a smaller
number of modes. In light of the obtained results, perspectives for this work
include:

– Increase the dataset of CFD simulations, since the accuracy of the
reduced model is related to the amount of data provided in the learning
step [25, 82]. In particular, the influence of the number of learning cases
should be assessed, for the case of the coupled ROM with all normalized
properties.

– The analysis of the influence of flame properties coupling using the
logarithm of the chemical species. This would provide two relevant
information on the system under study: the properties couplings and
the exponential tails of the chemical species spatial distribution.

– The development of monotonicity preserving high-order interpola-
tion method, e.g., essentially non-oscillatory (ENO) or weighted ENO
(WENO) on the ROM result. These methods have been applied to prob-
lems such as aero-acoustics and image processing and would need to be
extended to the present context.

– Application of ROM methodology to a three-dimensional flame con-
figuration case using, for instance, a square cross-section burner. This
three-dimensional simulation, which should increase the complexity of
the problem has been initiated, but limitations on the computer avail-
ability due to multiple and frequent power outages have precluded its
conclusions.
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