

Marcélia Gomes Machado

Estudo Experimental da Ductilidade de Vigas em Concreto Armado Reforçadas à Flexão Utilizando Compósitos com Tecido de Fibras de Carbono

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Estruturas.

> Orientadores: Marta de Souza Lima Velasco Emil de Souza Sánchez Filho

Rio de Janeiro Julho de 2004

Marcélia Gomes Machado

Estudo experimental da ductilidade de vigas em concreto armado reforçadas à flexão utilizando compósitos com tecido de fibras de carbono

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Profa. Marta de Souza Lima Velasco, D.Sc. Orientadora Departamento de Engenharia Civil - PUC-Rio

Prof. Emil de Souza Sánchez Filho, D.Sc. Co-orientador Universidade Federal de Juiz de Fora

Prof. Giuseppe Barbosa Guimarães, Ph.D. Departamento de Engenharia Civil – PUC-Rio

> Prof. Robson Luiz Gaiofatto, D.Sc. Universidade Católica de Petrópolis

Prof. Ricardo Einsfeld, D.Sc. Universidade Estadual do Rio de Janeiro

Prof. José Eugênio Leal. Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 9 de Julho de 2004.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e dos orientadores.

Marcélia Gomes Machado

Graduou-se em Engenharia Civil na UFJF (Universidade Federal de Juiz de Fora). Na UFJF, desenvolveu projetos de Iniciação Científica na área de Viga de Concreto Armado Reforçado com Fibras de Carbono. Na PUC-Rio desenvolveu seu trabalho de pesquisa com ênfase em Concreto Armado.

Ficha Catalográfica

Machado, Marcélia Gomes

Estudo experimental da ductilidade de vigas em concreto armado reforçadas à flexão utilizando compósitos com tecido de fibras de carbono / Marcélia Gomes Machado; orientadores: Marta de Souza Lima Velasco, Emil de Souza Sánchez Filho. - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2004.

301 f. : il. ; 29,7 cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil – Teses. 2. Reforço Estrutural, 3. Concreto Armado, 4. Fibra de Carbono. I. Velasco, Marta de Souza Lima. II. Sánchez Filho, Emil de Souza. III. Pontifícia Universidade Católica. Departamento de Engenharia Civil. IV. Título.

PUC-Rio - Certificação Digital Nº 0210658/CB

Para meus queridos pais, Rita e Paulo, pelo amor, incentivo, apoio e confiança.

Agradecimentos

À minha orientadora, professora Marta de Souza Lima Velasco, pela dedicação e compreensão.

Ao meu co-orientador, professor Emil de Souza Sanchez Filho, por compartilhar comigo seu conhecimento, pela paciência, compreensão e dedicação permanente.

Aos meus amados pais, pelo apoio, carinho e compreensão ao longo deste trabalho que só foi possível por acreditarem no meu sucesso e estarem sempre ao meu lado.

Aos funcionários Ana Roxo, Euclídes, José Nilson, Evandro e Haroldo por me oferecerem condições de percorrer esse caminho, concretizando este trabalho.

Aos meus amigos, por terem sido grandes companheiros durante esta jornada, em especial ao Flávio, Renato, Ramires, Júlio, Juliana e Marcela que contribuíram muito para a conclusão deste trabalho.

Ao João Batista do IBTS – Instituto Brasileiro de Telas Soldadas, pela atenção e generosidade ao me ajudar no período de aquisição dos materiais.

À GERDAU pela doação de todo aço necessário e à LAFARGE BRASIL S.A., empresa que forneceu o concreto utilizado nas vigas ensaiadas.

Ao Guilherme Andrade da ABCP – Associação Brasileira de Cimento Portland, pela ajuda na aquisição do concreto para a confecção das vigas.

À RHEOTEC, em especial ao Prof. Robson Luiz Gaiofatto, pelo fornecimento de todo o tecido de fibra de carbono necessário e essencial para essa pesquisa.

Á CAPES pelo apoio financeiro.

Ao meu namorado Mahomed, pelo amor, carinho e compreensão durante todos os momentos de execução deste trabalho.

Ao Cris Anderson por sermos amigos pelo destino, mas grandes irmãos por escolha. Pela verdadeira amizade, preocupação e carinho.

À Fernanda, Antônio, Lincoln e Tininha, pela amizade e carinho com que me acolheram aqui no Rio de Janeiro, e ao Mahteus e Mahrcello por me proporcionarem vários momentos de alegria e felicidade, ajudando-me a superar a distancia e a saudade da minha família.

A Deus pela família maravilhosa que tenho, pelos amigos que conquistei, pela força e graça de poder realizar este trabalho.

Resumo

Machado, Marcélia Gomes; Velasco, Marta de Souza Lima; Sánchez Filho, Emil de Souza. Estudo Experimental da Ductilidade de Vigas em Concreto Armado Reforçadas à Flexão Utilizando Compósitos com Tecido de Fibras de Carbono. Rio de Janeiro, 2004. 301p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho experimental tem como objetivo estudar a ductilidade de vigas retangulares de concreto armado reforçadas à flexão utilizando compósitos com tecido de fibras de carbono.

No estudo realizado são apresentados os conceitos clássicos de ductilidade e é proposta uma nova sistemática para obtenção do índice de ductilidade, baseada nas considerações da energia elástica e da energia inelástica. A ductilidade é determinada por meio de um índice energético, que se caracteriza como uma forma mais eficiente para a determinação e análise da ductilidade em elementos estruturais.

O programa experimental consistiu no ensaio de sete vigas bi-apoiadas, sendo uma viga de referência e as demais reforçadas à flexão com tecido de fibras de carbono. Todas as vigas possuem as mesmas características mecânicas e geométricas e foram dimensionadas de modo a garantir a ruptura por flexão. A viga de referência, a primeira ensaiada, não foi reforçada e serviu para comparações de incremento de rigidez e resistência após a aplicação do reforço. As vigas reforçadas foram divididas em dois grupos. O grupo A é constituído de duas vigas, reforçadas inicialmente com uma e duas camadas de tecido de fibra de carbono. O grupo B é constituído por quatro vigas que foram reforçadas após um carregamento inicial. Neste grupo, duas vigas foram reforçadas com uma camada de tecido de fibra de carbono, correspondendo à mesma área total de reforço das anteriores.

Todas as vigas foram concretadas, instrumentadas e ensaiadas no Laboratório de Estruturas e Materiais da PUC-Rio. Os ensaios das vigas do grupo B foram realizados com as vigas pré-ensaiadas, reforçadas sob deformação constante e em seguida levadas à ruptura. A deformação foi mantida constante durante a aplicação e o período de cura do reforço.

Os resultados obtidos em termos de carga, flecha, momento, curvatura, ductilidade energética e rotação plástica foram analisados. Os estudos realizados mostraram que o reforço com compósitos de fibras de carbono é uma técnica eficaz, que as vigas apresentam ductilidade adequada e que os índices energéticos propostos são adequados para este tipo de estudo.

Palavras-chave

Reforço Estrutural; Concreto Armado; Compósitos de Fibra de Carbono; Ductilidade.

Abstract

Machado, Marcélia Gomes; Velasco, Marta de Souza Lima; Sánchez Filho, Emil de Souza (Advisors). **Experimental Study on Ductility of Reinforced Concrete Beams Strengthened in Flexure with Carbon Fiber Composites.** Rio de Janeiro, 2004. 301p. MSc. Dissertation – Civil Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro.

The objective of this experimental work is to study the ductility of reinforced concrete beams strengthened in flexure using externally bonded carbon fiber fabric composites.

This study presents the classic concepts of ductility and proposes a new systematic to obtain the ductility index, which is based on the considerations of elastic and inelastic energy. The ductility was determined by an energetic index, which has seen to be a more efficient method to establish and analyze the ductility of structural elements.

The experimental program consisted of seven beams tests. One was used as a control beam without external reinforcement and the others were strengthened with carbon fibers in order to resist flexural load. All the beams had the same mechanical and geometrical characteristics and were designed to fail in flexure. The control beam was not strengthened and its purpose was to compare the stiffness' increase and resistance after the strength. The strengthened beams were divided in two groups. Group A was constituted by two beams, initially strengthened by one and two layers of carbon fiber fabric. Group B was formed by four beams which were strengthened after the application of an initial load. In this group, two beams were strengthened by one layer of carbon fiber fabric and the other two were strengthened by two layers, which corresponded to the same area of the others.

All the beams were cast, instrumented and tested in the Structural and Materials Laboratory at PUC-Rio. Group B tests were performed with the pretested beams strengthened under constant strain, and then loaded up to rupture. The strain was kept constant during the application and cure of the external reinforcement.

The results obtained in terms of load, deflection, resistant moment, curvature, energetic ductility indexes and plastic rotation were analyzed. The study showed that the reinforcement using carbon fiber fabric composites is an efficient technique, the beams presented adequate ductility and the proposed energetic ductility indexes are consistent formulae for this kind of study.

Keywords

Structural Strengthening; Reinforced Concrete; Carbon Fiber Composites; Ductility.

Sumário

1 Introdução	34
1.1. Considerações Gerais	34
1.2. Objetivos	35
1.3. Organização do Trabalho	36
2 Reforço Estrutural com Tecidos de Fibras de Carbono	38
2.1. Introdução	38
2.2. Compósitos de Fibras de Carbono	39
2.3. Resina Epoxídica	46
2.4. Tipos de Ruptura de Vigas Reforçadas	48
2.5. Reforço à Flexão	52
2.5.1. Análise no Estado Limite Último	54
3 Conceitos Clássicos de Ductilidade	58
3.1. Introdução	58
3.2. Índices de Ductilidade	59
3.3. Energia de Deformação	60
3.4. Índice de Ductilidade Energética	62
3.5. Ductilidade de Vigas Reforçadas	67
3.5.1. Relação Momento Fletor x Curvatura	68
3.5.2. Vigas Reforçadas com Tecido de Fibra de Carbono	70
3.5.2.1. Homogeneização da Seção	71
3.5.2.2. Seção Fissurada	73
3.5.3. Determinação dos Índices de Ductilidade Energéticos	77
3.5.4. Rotação Plástica	81
4 Estudos sobre Ductilidade de Vigas Reforçadas	86
4.1. Introdução	86
4.2. Estudo de BENCARDINO (2002)	86

4.3. Estudo de MACHIDA e MARUYAMA (2002)	89
4.4. Estudo de DUTHINH e STARNES (2001)	90
4.5. Estudo de GRACE et al. (2002)	94
4.6. Estudo de PARRA e BENLLOCH (2001)	97
4.7. Estudo de EL MIHILMY e TEDESCO(2000)	100
5 Programa Experimental	107
5.1. Introdução	107
5.2. Materiais	108
5.2.1. Concreto	108
5.2.1.1. Resistência à Compressão Simples do Concreto	109
5.2.1.2. Resistência à Compressão Diametral do Concreto	110
5.2.1.3. Módulo de Elasticidade do Concreto	111
5.2.2. Aço	113
5.2.3. Tecido de Fibra de Carbono	114
5.2.4. Materiais Necessários para a Aplicação do Tecido de Fit	ora de
Carbono	115
5.2.4.1. Resina de Imprimação	115
5.2.4.2. Resina Epoxídica	116
5.2.5. Ensaio de Resistência à Tração do Compósito de Fibra d	le
Carbono	117
5.3. Descrição das Vigas	119
5.3.1. Características Mecânicas e Geométricas das Vigas	119
5.3.2. Cálculos Básicos	121
5.3.3. Dimensionamento à Flexão	121
5.3.4. Dimensionamento à Força Cortante	122
5.3.5. Reforço à Flexão	124
5.4. Confecção das vigas	126
5.4.1. Formas	126
5.4.2. Concretagem	129
5.4.3. Execução do Reforço	129
5.4.4. Instrumentação das Vigas	130
5.4.4.1. Extensômetro Mecânico	130

5.4.4.2. Extensômetros Elétricos de Resistência	131
5.4.4.3. Deflectômetros Elétricos	131
5.5. Execução dos Ensaios das Vigas	132
5.6. Descrição dos Ensaios	134
5.6.1. Viga de Referência	134
5.6.2. Viga Al	135
5.6.3. Viga All	136
5.6.4. Viga BI-1	137
5.6.5. Viga BI-2	139
5.6.6. Viga BII-1	140
5.6.7. Viga BII-2	141
6 Análise dos Resultados	143
6.1. Introdução	143
6.2. Capacidade Resistente das Vigas	143
6.3. Gráficos Obtidos nos Ensaios	147
6.4. Índices de Ductilidade	147
6.4.1. Índices de Ductilidade de Flecha	148
6.4.2. Índices de Ductilidade de Curvatura	149
6.5. Índices de Ductilidade Energética	151
6.5.1. índices de Ductilidade Energética de Flecha	151
6.5.2. índices de Ductilidade Energética de Curvatura	152
6.6. Análise das Cargas	153
6.6.1. Cargas de Fissuração	154
6.6.2. Cargas de Escoamento	154
6.6.3. Cargas de Ruptura	155
6.7. Análise das Flechas	156
6.8. Curvas Experimentais Momento x Curvatura	158
6.9. Análise da Rigidez das Vigas	160
6.9.1. Rigidez de fissuração	161
6.9.2. Rigidez de escoamento	162
6.9.3. Rigidez de ruptura	162
6.10. Análise Comparativa dos Índices de Ductilidade	163

6.11. Rotação Plástica	170
7 Conclusões e Sugestões para Trabalhos Futuros	172
Referências Bibliográficas	177
Anexo A - Fotos	183
Anexo B - Resultados dos Ensaios das Barras de Aço	207
Anexo C - Dados obtidos pelo Extensômetro Mecânico	214
Anexo D - Gráfico dos Ensaios das Vigas	236
Anexo E - Determinação dos Momentos e Curvaturas	263
Anexo F - Determinação da Energia Total e Energia Elástica	272
Anexo G - Determinação dos Índices de Ductilidade Energética	291
Anexo H - Determinação da Rotação Plástica	296

Lista de figuras

FIGURA 2.1 - Diagrama tensão-deformação específica de fibras e metais; adaptada de BEBER (2003). 41 Figura 2.2 – Compósito epóxi carbono: de com fibras de 42 www.rheotec.com.br (2002). Figura 2.3 - Reforço em vigas de concreto armado utilizando os PRFC; www. master builders.com.br (2003) 44 Figura 2.4 – Tecido de fibra de carbono; www.masterbuilders.com.br (2003)44 Figura 2.5 – Diagrama tensão-deformação específica de tecidos de fibras de carbono (MASTER BUILDERS TECNOLOGIES, 1996). 45 Figura 2.7 – Efeito de peeling off na interface concreto/compósito; adaptada de BEBER (2003) 52 Figura 2.8 – Diagrama esquemático dos parâmetros da seção transversal reforçada. 54 Figura 2.9. – Hipóteses para o comportamento mecânico da armadura de flexão consideradas no dimensionamento do reforço à flexão. a) guando a armadura negativa atinge o escoamento; b) quando a armadura negativa não atinge o escoamento. 55 Figura 2.10 – Fluxograma da metodologia de determinação da resistência à flexão; adaptada de ARAÚJO (2002). 56 Figura 3.1 – Diagramas tipo que permitem analisar a energia potencial de deformação de elementos de concreto armado: a) carga x flecha; b) momento x curvatura; c) momento x rotação; adaptados de NAAMAN e JEONG (2001). 61 Figura 3.2 – Diagrama carga x flecha ($P \ge \delta$) real e teórico para obtenção das parcelas de energia; adaptada de ARAÚJO (2002). 63 Figura 3.3 – Comparação das parcelas da energia elástica e energia inelástica; adaptada de NAAMAN e JEONG (2001) 64 Figura 3.4 – Esquema para a obtenção do índice de ductilidade energética: (a) curva teórica $P \times \delta$; (b) determinação da inclinação da linha de fechamento do triângulo que define a área da energia elástica; adaptada de ARAÚJO (2002). 66 Figura 3.5 - Parâmetros básicos de uma viga solicitada à flexão. 68 Figura 3.6 – Estágios básicos da relação momento x curvatura. 69 Figura 3.7 – Parâmetros geométricos da seção reforçada com CFC. 71 Figura 3.8 - Relação tri-linear $M \times k$. 74 Figura 3.9 - Consideração do momento no estágio de ruptura da seção. 75 Figura 3.10 - Relação bi-linear $M \times k$. 75 Figura 3.11 – Gráfico carga x flecha teórico. 78 Figura 3.12– Gráfico teórico da relação momento x curvatura. 81 81 Figura 3.14 – Esquema das curvaturas das vigas. Figura 3.15 – Área delimitada pela curvatura de fissuração. 82 Figura 3.16 – Esquema para obtenção de triângulos analisando-se a curvatura relativa ao escoamento. 83 Figura 3.17 – Esquema para obtenção da relação de triângulos analisando-se a curvatura relativa à ruptura. 84 Figura 4.1 – Índice de Ductilidade pela norma da JSCE; adaptada de MACHIDA e MARUYAMA (2002). 90 Figura 4.2 – Momento x curvatura para os valores experimentais e valores teóricos; adaptada de DUTHINH e STARNES (2001) 93 Figura 4.3 – Parâmetros geométricos das vigas ensaiadas; adaptada de GRACE et al. (2002). 96 Figura 4.4 – Detalhamento das vigas ensaiadas; adaptada de PARRA e BENLLOCH (2001). 98 Figura 4.5 – Curva carga x flecha teórica para vigas de concrete armado reforçadas com polímeros reforçados com fibras (PRF); adaptada de EL MIHILMY e TEDESCO (2000). 102 Figura 4.6 – Relação de momento x curvatura para vigas reforçadas com PRF; adaptada de EL MIHILMY e TEDESCO (2000). 105 Figura 5.1 – Diagrama tensão x idade do concreto utilizado. 110 Figura 5.2 – Gráfico tensão x deformação específica dos corpos-de-prova de concreto. 113 Figura 5.3. – Dimensões dos corpos-de-prova para ensaio de tração;

ASTM D 3039. 118
Figura 5.4- Esquema de carregamento e seção transversal das vigas
(cotas em cm). 120
Figura 5.5 - Diagramas de esforços solicitantes das vigas; a) digrama de
momento fletor; b) diagrama de força cortante. 120
Figura 5.6 – Detalhamento das armaduras das vigas. 123
Figura 5.7 - Disposição do tecido de fibra de carbono; a) disposição ao
longo do comprimento para todas as vigas; b) vigas AI, BI-1, BI-2; c) vigas
AII,BII-1,BII-2. (cotas em cm) 124
Figura 5.8 – Seção transversal das formas (cotas em cm). 126
Figura 5.9 – Detalhamento das formas – vista superior; 127
Figura 5.10 – Detalhamento das formas – vista lateral. 128
Figura 5.11 - Posicionamento das placas de alumínio para medição da
deformação do concreto com deflectômetro mecânico. (cotas em cm). 129
Figura 5.12 - Posicionamento dos deflectômetros elétricos e dos
extensômetros elétricos de resistência. 132
Figura 5.13- Sistema de aplicação de carga.133
Figura 6.1 - Gráfico comparativo entre as cargas de ruptura teóricas e
experimentais das vigas ensaiadas. 144
Figura 6.2 - Gráfico comparativo entre as cargas de ruptura e
experimentais para as vigas do grupo A. 145
Figura 6.3 - Gráfico comparativo entre as cargas de ruptura experimentais
para as vigas do grupo B. 145
Figura 6.4 - Gráfico comparativo entre as cargas de ruptura e
experimentais das vigas reforçadas e da viga de referência. 146
Figura 6.5 - Gráfico comparativo do índice de ductilidade de flecha das
vigas reforçadas em relação à VR. 149
Figura 6.6 - Gráfico comparativo do índice de ductilidade de curvatura das
vigas reforçadas em relação à VR. 150
Figura 6.7- Gráfico comparativo do índice de ductilidade energético de
flecha das vigas reforçadas em relação à VR. 152
Figura 6.8 - Gráfico comparativo do índice de ductilidade energético de
curvatura das vigas reforçadas em relação à VR. 153

Figura 6.9 – Gráfico carga x flecha de todas as vigas ensaiadas. 157 Figura 6.10 – Gráfico momento x curvatura das vigas ensaiadas. 159 Figura 6.11 – Gráfico comparativo da rigidez de fissuração entre as vigas 161 reforçadas e a viga VR. Figura 6.12 – Gráfico comparativo da rigidez de escoamento entre as vigas reforçadas e a viga VR. 162 Figura 6.13 – Gráfico comparativo da rigidez de ruptura entre as vigas reforcadas e a viga VR. 162 Figura 6.14 – Gráfico comparativo dos índices de ductilidade para a viga VR. 164 Figura 6.15 - Gráfico comparativo dos índices de ductilidade para a viga AI. 164 Figura 6.16 - Gráfico comparativo dos índices de ductilidade para a viga All. 165 Figura 6.17 - Gráfico comparativo dos índices de ductilidade para a viga 165 BI-1. Figura 6.18 - Gráfico comparativo dos índices de ductilidade para a viga BI-2. 166 Figura 6.19 - Gráfico comparativo dos índices de ductilidade para a viga BII-1. 166 Figura 6.20 - Gráfico comparativo dos índices de ductilidade para a viga BII-2. 167 Foto A.1- Ensaio de compressão diametral do concreto. 183

Foto A.2 – Corpos-de-prova de concreto antes e depois do ensaio.184Foto A.3 – Sistema de aplicação de carga e realização do ensaio.184Foto A.4 – Tecido de fibra de carbono utilizado no sistema de reforço das
vigas.185Foto A.5 – Tecido de fibra de carbono com destaque para (a) sentido das
fibras e (b) costura no verso do tecido (b).185Foto A.6– Corpos-de-prova de compósitos de fibra de carbono com placas
de alumínio nas extremidades.186

Foto A.7- Ensaio dos corpos-de-prova de compósitos de fibra de carbono

com placas de alumínio nas extremidades com destaque para a (a) frente e o (b) verso. 186 Foto A.8 - Equipamentos utilizados para a realização e aquisição dos dados do ensaio nos corpos-de-prova de fibra de carbono. 187 Foto A.9 – Detalhe da ruptura de um dos corpos-de-prova de compósito de fibra de carbono durante a realização do ensaio. 187 Foto A.10 – Resina de Imprimação (a) preparação e (b) mistura pronta para a aplicação. 188 Foto A.11 – Resina epóxi (a) componentes A e B da resina; (b) preparação da resina para a aplicação. 188 Foto A.12 - Armadura das vigas ensaiadas. 189 Foto A.13 - Formas das vigas. 189 Foto A.14 – Preparação das vigas para a concretagem; posicionamento das armaduras nas formas das vigas. 190 Foto A.15 – Vigas Concretadas. 190 Foto A.16 – Extensômetro usado nas barras de aço da armadura. 191 Foto A.17 - Extensômetro elétrico usado no compósito de fibra de carbono. 191 Foto A.18 – Extensômetro mecânico utilizado na leitura das deformações do concreto durante o ensaio das vigas. 191 Foto A.19 – Posicionamento dos deflectômetros elétricos usados para medir as flechas nos ensaios das vigas VR, AI e AII. 192 Foto A.20 - Posicionamento dos deflectômetros elétricos usados para medir as flechas nos ensaios das vigas BI-1, BI-2, BII-1 e BII-2. 192 Foto A.21 – Pórtico utilizado para a realização dos ensaios. 193 Foto A.22 – Sistema de aquisição de dados. 194 Foto A.23 – (a) aplicação da resina epóxi na superfície que receberá o tecido; b)duas camadas de tecido preparadas para serem aplicadas. 194 Foto A.24 – Ruptura da viga VR por esmagamento da zona de 195 compressão. Foto A.25 - Detalhes do esmagamento do concreto na zona de compressão. (a) vista da parte da frente da viga; (b) vista do outro lado da viga. 195

Foto A.26 - Ruptura do compósito entre o meio do vão e ponto de aplicação de carga.(vista lateral direita) 196 Foto A.27 – Detalhes da parte do compósito após a ruptura com destaque para a camada de concreto arrancada; (a) frente e (b) verso. 196 Foto A.28 - Ruptura do compósito entre o meio do vão e ponto de aplicação de carga.(vista lateral esquerda) 197 Foto A.29 – Detalhe do meio da viga após a ruptura mostrando a fissuração ocorrida durante a realização do ensaio. 197 Foto A.30 – Viga logo após a ruptura por flexão seguida do rompimento do compósito de fibra de carbono. 198 Foto A.31 – Detalhe do compósito de fibra de carbono após a ruptura. (vista frontal esquerda da viga) 198 Foto A.32 – Detalhe do compósito de fibra de carbono após a ruptura. (vista frontal direita da viga) 199 Foto A.33 – Compósito de fibra de carbono após a ruptura, com destaque para as partes de concreto. 199 Foto A.34 – Viga logo após a ruptura por flexão seguida do rompimento do compósito de fibra de carbono, com arrancamento da camada de concreto. 200 Foto A.35 – Detalhe da ruptura com destaque para a ruptura do tecido de fibra de carbono. 200 Foto A.36 – Detalhe do compósito após a ruptura arrancando a camada de cobrimento de concreto. 201 Foto A.37 – Parte central da viga após a ruptura do compósito de fibra de 201 carbono. Foto A.38 – Detalhes da fissuração antes da ruptura da viga; (a) vista frontal – lado esquerdo e (b) vista frontal lado direito. 202 Foto A.39 – Viga após a ruptura do compósito de fibra de carbono. 202 Foto A.40 – Detalhes da fissuração da viga e da ruptura do compósito. 203 Foto A.41 – Parte central da viga após a ruptura explosiva do compósito de fibra de carbono. 203 Foto A.42 – Detalhe da ruptura da viga com descolamento quase total do

compósito de fibra de carbono.

204

Foto A.43 – Detalhe das duas camadas de compósito de fibra de car	ono
colados na viga.	205
Foto A.44 – Descolamento do compósito de fibra de carbono.	205
Foto A.45 – Viga após a ruptura do compósito.	206
Foto A.46 – Detalhe da ruptura do compósito de fibra de carbono.	206

Figura B.1 - Diagrama tensão x deformação específica da primeira barra de aço ensaiada com diâmetro nominal de 5,0 mm. 207 Figura B.2 - Diagrama tensão x deformação específica da segunda barra de aço ensaiada com diâmetro nominal de 5,0 mm. 207 Figura B.3 - Diagrama tensão x deformação específica da terceira barra 207 de aço ensaiada com diâmetro nominal de 5,0 mm. Figura B.4 - Diagrama tensão x deformação específica da primeira barra de aço ensaiada com diâmetro nominal de 6,3mm. 208 Figura B.5 - Diagrama tensão x deformação específica da segunda barra 208 de aço ensaiada com diâmetro nominal de 6,3mm. Figura B.6 - Diagrama tensão x deformação específica da terceira barra de aço ensaiada com diâmetro nominal de 6,3mm. 208 Figura B.7 - Diagrama tensão x deformação específica da primeira barra de aço ensaiada com diâmetro nominal de 6,3mm. 209 Figura B.8 - Diagrama tensão x deformação específica da segunda barra 209 de aço ensaiada com diâmetro nominal de 6,3mm. Figura B.9 - Diagrama tensão x deformação específica da terceira barra 209 de aço ensaiada com diâmetro nominal de 6,3mm. Figura B.10 - Diagrama tensão x deformação específica da primeira barra 210 de aço ensaiada com diâmetro nominal de 6,3mm. Figura B.11 - Diagrama tensão x deformação específica da segunda barra de aço ensaiada com diâmetro nominal de 6,3mm. 210 Figura B.12 - Diagrama tensão x deformação específica da terceira barra de aço ensaiada com diâmetro nominal de 6,3mm. 210 Figura B.13 - Diagrama tensão x deformação específica da primeira barra

de aço ensaiada com diâmetro nominal de $10mm$.	211
Figura B.14 - Diagrama tensão x deformação específica da segunda	barra
de aço ensaiada com diâmetro nominal de $10mm$.	211
Figura B.15 - Diagrama tensão x deformação específica da terceira	barra
de aço ensaiada com diâmetro nominal de $10mm$.	211
Figura B.16 - Diagrama tensão x deformação específica da primeira	barra
de aço ensaiada com diâmetro nominal de 12,5 mm.	212
Figura B.17 - Diagrama tensão x deformação específica da segunda	barra
de aço ensaiada com diâmetro nominal de 12,5 mm.	212
Figura B.18 - Diagrama tensão x deformação específica da terceira ba	arra
de aço ensaiada com diâmetro nominal de 12,5 mm.	212
Figura C.1 – Gráfico seção transversal x deformação específica da	i viga
VR.	217
Figura C.2 – Gráfico seção transversal x deformação específica da	i viga
AI.	220
Figura C.3 – Gráfico seção transversal x deformação específica da	i viga
All.	223
Figura C.4 – Gráfico seção transversal x deformação específica da	i viga
BI-1.	226
Figura C.5 – Gráfico seção transversal x deformação específica da	i viga
	. 229
Figura C.6 – Gratico seção transversal x deformação específica da	i viga
DII-I. Figura C.7 – Gráfico seção transversal y deformação específica da	zoz
RII-2	235
	200
Figura D.1 – Diagrama carga x deformação específica do aço referen	ite ao

extensômetro 1 da viga VR. Figura D.2 – Diagrama carga x deformação específica do aço referente ao extensômetro 2 da viga VR. 236

236

Figura D.3 – Diagrama carga x deformação específica do aço referente ao

extensômetro 3 da viga VR. 236
Figura D.4 – Diagrama carga x deformação específica do aço referente ac
extensômetro 4 da viga VR. 237
Figura D.5 – Diagrama carga x deformação específica do aço referente ac
extensômetro 5 da viga VR. 237
Figura D.6 – Diagrama carga x deformação específica do aço referente ac
extensômetro 6 da viga VR. 237
Figura D.7 – Diagrama carga x flecha referente ao deflectômetro 1 da viga
VR. 238
Figura D.8 – Diagrama carga x flecha referente ao deflectômetro 2 da viga
VR. 238
Figura D.9 – Diagrama carga x flecha referente ao deflectômetro 3 da viga
VR. 238
Figura D.10 - Diagrama carga x deformação específica do aço referente
ao extensômetro 1 da viga AI. 239
Figura D.11 - Diagrama carga x deformação específica do aço referente
ao extensômetro 2 da viga AI. 239
Figura D.12 - Diagrama carga x deformação específica do aço referente
ao extensômetro 3 da viga AI. 239
Figura D.13 - Diagrama carga x deformação específica do aço referente
ao extensômetro 4 da viga AI. 240
Figura D.14 - Diagrama carga x deformação específica do aço referente
ao extensômetro 5 da viga AI. 240
Figura D.15 - Diagrama carga x deformação específica do aço referente
ao extensômetro 6 da viga AI. 240
Figura D.16 - Diagrama carga x deformação específica do tecido de fibra
de carbono referente ao extensômetro 7 da viga AI. 241
Figura D.17 - Diagrama carga x deformação específica do tecido de fibra
de carbono referente ao extensômetro 8 da viga AI. 241
Figura D.18 - Diagrama carga x deformação específica do tecido de fibra
de carbono referente ao extensômetro 9 da viga AI. 241
Figura D.19 – Diagrama carga x flecha referente ao deflectômetro 1 da
viga AI. 242

Figura D.20 – Diagrama carga x flecha referente ao deflectômetro 2 da 242 viga Al. Figura D.21 – Diagrama carga x flecha referente ao deflectômetro 3 da 242 viga AI. Figura D.22 - Diagrama carga x deformação específica do aço referente ao extensômetro 1 da viga All. 243 Figura D.23 - Diagrama carga x deformação específica do aço referente ao extensômetro 2 da viga All. 243 Figura D.24 - Diagrama carga x deformação específica do aço referente 243 ao extensômetro 3 da viga All. Figura D.25 - Diagrama carga x deformação específica do aço referente ao extensômetro 4 da viga All. 244 Figura D.26 - Diagrama carga x deformação específica do aço referente ao extensômetro 5 da viga All. 244 Figura D.27 - Diagrama carga x deformação específica do aço referente ao extensômetro 6 da viga All. 244 Figura D.28 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 7 da viga All. 245 Figura D.29 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 8 da viga All. 245 Figura D.30 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 9 da viga All. 245 Figura D.31 – Diagrama carga x flecha referente ao deflectômetro 1 da viga All. 246 Figura D.32 - Diagrama carga x flecha referente ao deflectômetro 2 da 246 viga All. Figura D.33- Diagrama carga x flecha referente ao deflectômetro 3 da viga All. 246 Figura D.34 - Diagrama carga x deformação específica do aço referente ao extensômetro 1 da viga BI-1. 247 Figura D.35 - Diagrama carga x deformação específica do aço referente ao extensômetro 2 da viga BI-1. 247 Figura D.36 - Diagrama carga x deformação específica do aço referente

ao extensômetro 3 da viga BI-1. 247 Figura D.37 - Diagrama carga x deformação específica do aço referente ao extensômetro 4 da viga BI-1. 248 Figura D.38 - Diagrama carga x deformação específica do aço referente ao extensômetro 5 da viga BI-1. 248 Figura D.39 - Diagrama carga x deformação específica do aço referente ao extensômetro 6 da viga BI-1. 248 Figura D.40 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 7 da viga BI-1. 249 Figura D.41 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 8 da viga BI-1. 249 Figura D.42 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 9 da viga BI-1. 249 Figura D.43– Diagrama carga x flecha referente ao deflectômetro 1 da 250 viga BI-1. Figura D.44- Diagrama carga x flecha referente ao deflectômetro 2 da 250 viga BI-1. Figura D.45- Diagrama carga x flecha referente ao deflectômetro 3 da viga BI-1. 250 Figura D.46 - Diagrama carga x deformação específica do aço referente ao extensômetro 1 da viga BI-2. 251 Figura D.47 - Diagrama carga x deformação específica do aço referente ao extensômetro 2 da viga BI-2. 251 Figura D.48 - Diagrama carga x deformação específica do aço referente ao extensômetro 3 da viga BI-2. 251 Figura D.49 - Diagrama carga x deformação específica do aço referente 252 ao extensômetro 4 da viga BI-2. Figura D.50 - Diagrama carga x deformação específica do aço referente 252 ao extensômetro 5 da viga BI-2. Figura D.51 - Diagrama carga x deformação específica do aço referente ao extensômetro 6 da viga BI-2. 252 Figura D.52 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 7 da viga BI-2. 253

Figura D.53 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 8 da viga BI-2. 253 Figura D.54 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 9 da viga BI-2. 253 Figura D.55– Diagrama carga x flecha referente ao deflectômetro 1 da viga BI-2 254 Figura D.56- Diagrama carga x flecha referente ao deflectômetro 2 da viga BI-2. 254 Figura D.57– Diagrama carga x flecha referente ao deflectômetro 3 da 254 viga BI-2. Figura D.58 - Diagrama carga x deformação específica do aço referente ao extensômetro 1 da viga BII-1. 255 Figura D.59- Diagrama carga x deformação específica do aço referente ao extensômetro 2 da viga BII-1. 255 Figura D.60 - Diagrama carga x deformação específica do aço referente ao extensômetro 3 da viga BII-1. 255 Figura D.61 - Diagrama carga x deformação específica do aço referente ao extensômetro 4 da viga BII-1. 256 Figura D.62 - Diagrama carga x deformação específica do aço referente ao extensômetro 5 da viga BII-1. 256 Figura D.63- Diagrama carga x deformação específica do aço referente ao extensômetro 6 da viga BII-1. 256 Figura D.64 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 7 da viga BII-1. 257 Figura D.65 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 8 da viga BII-1. 257 Figura D.66 - Diagrama carga x deformação específica do tecido de fibra de carbono referente ao extensômetro 9 da viga BII-1. 257 Figura D.67– Diagrama carga x flecha referente ao deflectômetro 1 da 258 viga BII-1. Figura D.68- Diagrama carga x flecha referente ao deflectômetro 2 da 258 viga BII-1. Figura D.69 *- Diagrama carga x flecha referente ao deflectômetro 3 da

viga BII-1.	258
Figura D.70- Diagrama carga x deformação específica do aço refere	nte ao
extensômetro 1 da viga BII-2.	259
Figura D.71- Diagrama carga x deformação específica do aço referen	nte ao
extensômetro 2 da viga BII-2.	259
Figura D.72- Diagrama carga x deformação específica do aço referen	nte ao
extensômetro 3 da viga BII-2.	259
Figura D.73 - Diagrama carga x deformação específica do aço refe	erente
ao extensômetro 4 da viga BII-2.	260
Figura D.74 - Diagrama carga x deformação específica do aço refe	erente
ao extensômetro 5 da viga BII-2.	260
Figura D.75 - Diagrama carga x deformação específica do aço refe	erente
ao extensômetro 6 da viga BII-2.	260
Figura D.76 - Diagrama carga x deformação específica do tecido de	e fibra
de carbono referente ao extensômetro 7 da viga BII-2.	261
Figura D.77 - Diagrama carga x deformação específica do tecido de	e fibra
de carbono referente ao extensômetro 8 da viga BII-2.	261
Figura D.78 - Diagrama carga x deformação específica do tecido de	e fibra
de carbono referente ao extensômetro 9 da viga BII-2.	261
Figura D.79- Diagrama carga x flecha referente ao deflectômetro	1 da
viga BII-2.	262
Figura D.80- Diagrama carga x flecha referente ao deflectômetro	2 da
viga BII-2.	262
Figura D.81- Diagrama carga x flecha referente ao deflectômetro	3 da
viga BII-2.	262
Figura F.1 – Diagrama teórico $P imes \delta$.	272
Figura F.2 – Diagrama teórico $M imes k$.	277
Figura F.3 – Diagrama $P \times \delta$ da viga VR.	281
Figura F.4 – Diagrama $P imes \delta$ da viga Al	282
Figura F.5 – Diagrama $P imes \delta$ da viga All	283
Figura F.6 – Diagrama $P \times \delta$ da viga BI-1.	283

Figura F.7– Diagrama $P imes \delta$ da viga BI-2	284
Figura F.8 – Diagrama $P \times \delta$ da viga BII -1.	285
Figura F.9 – Diagrama $P \times \delta$ da viga BII-2.	285
Figura F.10 – Diagrama $M \times k$ da viga VR.	286
Figura F.11 – Diagrama $M \times k$ da viga AI.	287
Figura F.12 – Diagrama $M \times k$ da viga AII.	287
Figura F.13 – Diagrama $M \times k$ da viga BI-1.	288
Figura F.14 – Diagrama $M \times k$ da viga BI-2.	288
Figura F.15 – Diagrama $M \times k$ da viga BII-1.	289
Figura F.16 – Diagrama $M \times k$ da viga BII-2.	289

Lista de Tabelas

Tabela 2.1- Propriedades típicas dos principais tipos de fibra; adaptada d	е
Matthys-2000, apud ARAÚJO (2002). 4	1
Tabela 2.2 – Características e aspectos de instalação de mantas e tecido	S
de fibra de carbono. 4	5
Tabela 2.3 – Modos de ruptura possíveis, adaptado de BEBER (2003). 4	9
Tabela 4.1 - Índices de ductilidade.8	8
Tabela 4.2 - Relação de ductilidade entre as vigas reforçadas e a viga d	е
referência. 8	8
Tabela 4.3 – Propriedades do laminado de carbono.9	1
Tabela 4.4 – Propriedades do adesivo.9	2
Tabela 4.5 – Resultados de DUTHINH e STARNES (2001).9	4
Tabela 4.6- Propriedades mecânicas*das fibras utilizadas.9	5
Tabela 4.7 - Propriedades das resinas epóxi.9	5
Tabela 4.8 – Comparação dos resultados das vigas ensaiadas.9	7
Tabela 4.9 – Propriedades mecânicas dos materiais de reforço.9	8
Tabela 4.10 - Resultados dos ensaios das vigas e os índices d	е
ductilidade. 10	0
Tabela 5.1 – Consumo de material por m^3 de concreto.10	9
Tabela 5.2 – Resultados dos ensaios de resistência do concreto	à
compressão. 10	9
Tabela 5.3 – Resultados do ensaio de resistência à compressã	0
diametral. 11	1
Tabela 5.4 – Resultado dos ensaios de corpos-de-prova de concreto. 11	2
Tabela 5.5 – Módulo de elasticidade do concreto.11	3
Tabela 5.6 - Geometria dos corpos-de-prova recomendada para ensaio d	е
tração em materiais compósitos com matriz polimérica (AST	V
D3039/3039M). 11	8
Tabela 5.7 - Resultados dos ensaios de resistência à tração dos corpos	3-
de-prova de tecido de fibra de carbono revestidos com resina epóxi. 11	9
Tabela 5.8 – Verificação do reforço à flexão.12	5

Tabela 5.9 – Dados obtidos no ensaio da viga VR.	134
Tabela 5.10 - Dados obtidos no ensaio da viga AI.	136
Tabela 5.11 - Dados obtidos no ensaio da viga AII.	137
Tabela 5.12 - Dados obtidos no ensaio da viga BI -1.	138
Tabela 5.13 - Dados obtidos no ensaio da viga BI-2.	140
Tabela 5.14 - Dados obtidos no ensaio da viga BII-1.	141
Tabela 5.15 - Dados obtidos no ensaio da viga BII-2.	142
Tabela 6.1 – Valores das cargas e modos de ruptura das vigas	
ensaiadas.	144
Tabela 6.2 – Valores das cargas e flechas para as vigas ensaiadas.	148
Tabela 6.3 – Valores de momento e curvatura calculados.	148
Tabela 6.4 – Índices de ductilidade de flecha.	149
Tabela 6.5 – Índices de ductilidade de curvatura.	150
Tabela 6.6 - Índices de ductilidade energética de flecha.	151
Tabela 6.7- Índice de ductilidade energética de curvatura.	153
Tabela 6.8 – Dados experimentais relativos à fissuração das	vigas
ensaiadas.	154
Tabela 6.9 - Dados experimentais relativos ao escoamento da arma	adura
longitudinal das vigas.	154
Tabela 6.10 – Dados experimentais relativos à ruptura das vigas	155
Tabela 6.11 – Dados experimentais de carga e flecha para o LVDT2.	156
Tabela 6.12 - Dados das flechas obtidas nos ensaios e suas respec	tivas
variações em relação á VR.	157
Tabela 6.13 – Momentos e curvaturas das vigas.	158
Tabela 6.14 - Dados das curvaturas obtidas e suas respectivas varia	ções
em relação á VR.	159
Tabela 6.15 – Rigidezes das vigas.	160
Tabela 6.16 - Índices de ductilidade calculados.	163
Tabela 6.17 - Análise estatística dos índices de ductilidade para todas	s as
vigas reforçadas em relação à VR.	168
Tabela 6.18 - Análise estatística dos índices de ductilidade para as	vigas
do grupo A.	168
Tabela 6.19 - Análise estatística dos índices de ductilidade para as	vigas

do grupo B.	168
Tabela 6.20 - Rotação Plástica das vigas	170

Tabela B.1- Resumo dos dados obtidos nos ensaios à tração nas barrasde aço.213

Tabela C.1 – Leitura do extensômetro mecânico durante o ensaio da viga VR. 214 Tabela C.2 – Determinação da deformação específica do concreto. 215 Tabela C.3 - Dados para obtenção do gráfico seção transversal x deformação específica. 217 Tabela C.4 – Leitura do extensômetro mecânico durante o ensaio da viga AI. 218 Tabela C.5 – Determinação da deformação específica do concreto. 218 Tabela C.6 - Dados para obtenção do gráfico seção transversal x deformação específica. 220 Tabela C.7 – Leitura do extensômetro mecânico durante o ensaio da viga All. 221 Tabela C.8 – Determinação da deformação específica do concreto. 221 Tabela C.9 - Dados para obtenção do gráfico seção transversal x deformação específica. 223 Tabela C.10 - Leitura do extensômetro mecânico durante o ensaio da viga BI-1. 224 Tabela C.11 – Determinação da deformação específica do concreto. 224 Tabela C.12 - Dados para obtenção do gráfico seção transversal x deformação específica. 226 Tabela C.13 – Leitura do extensômetro mecânico durante o ensaio da viga BI-2. 227 Tabela C.14 – Determinação da deformação específica do concreto. 227 Tabela C.15 - Dados para obtenção do gráfico seção transversal x deformação específica. 229 Tabela C.16 – Leitura do extensômetro mecânico durante o ensaio da viga BII-1. 230

Tabela C.17 – Determinação da deformação específica do concreto.230Tabela C.18 - Dados para obtenção do gráfico seção transversal x232deformação específica.232Tabela C.19 – Leitura do extensômetro mecânico durante o ensaio da233viga BII-2.233Tabela C.20 – Determinação da deformação específica do concreto.233Tabela C.21 - Dados para obtenção do gráfico seção transversal x235

Lista de Símbolos

Romanos

- A_{f} Área da seção transversal do tecido de fibra de carbono
- *A*_s Área da seção da armadura longitudinal de tração
- A's Área da seção da armadura longitudinal de compressão
- A_{sw} Área da seção de um estribo
- *b* Largura da seção
- *b*_{*f*} Largura do compósito de fibra de carbono
- c Cobrimento
- CFC Compósito de fibra de carbono
- d Altura útil da seção
- *E_c* Módulo de elasticidade do concreto
- *E_f* Módulo de elasticidade do compósito de fibra de carbono
- *E_s* Módulo de elasticidade do aço
- E_{tot} Energia total
- *E_{el}* Energia elástica
- *E*_{inel} Energia inelástica
- f_c Resistência do concreto à compressão
- f_{Ck} Resistência característica à compressão do concreto
- f_{ct} Resistência do concreto à tração
- f_{fu} Resistência última à tração do compósito de fibra de carbono
- $f_{\rm ff}$ Resistência do compósito de fibra de carbono à tração

- f_{v} Resistência de escoamento da armadura longitudinal
- f_{vk} Resistência característica à tração do aço
- *R_c* Força de compressão no concreto
- R_{cs} Força de compressão no aço
- R_{tf} Força de tração no compósito de fibra de carbono
- R_{TS} Força de tração no aço
- *h* Altura da viga
- *J*_{CR} Momento de inércia da seção fissurada
- M Momento fletor
- M_{CR} Momento fletor de fissuração
- M_{y} Momento fletor quando do escoamento da armadura longitudinal
- M_{μ} Momento fletor de ruptura
- M_R Momento fletor resistente
- *M*_{sd} Momento fletor de cálculo
- P Carga
- *P*_{*CR*} Carga de fissuração
- *P*_v Carga de escoamento da armadura longitudinal
- P_u Carga de ruptura
- *s* Espaçamento entre os estribos
- *t_f* Espessura do compósito de fibra de carbono
- *x*₀ Distância da linha neutra à borda comprimida do concreto
- z Braço de alavanca

Gregos

- δ_{CR} Flecha para a carga de fissuração
- $\delta_{\mathbf{y}}$ Flecha para a tensão de escoamento do aço da armadura longitudinal
- δ_{u} Flecha para a carga de ruptura
- ε_c Deformação específica do concreto
- ε_{c0} Deformação específica prévia do concreto
- ε_{Cu} Deformação específica última do concreto
- ε_{f} Deformação específica do compósito de fibra de carbono
- \mathcal{E}_{fe} Deformação específica efetiva do compósito de fibra de carbono
- \mathcal{E}_{fu} Deformação específica última do compósito de fibra de carbono
- ε_s Deformação específica do aço
- γ_c Coeficiente de segurança do concreto
- γ_s Coeficiente de segurança do aço
- γ_{f} Coeficiente de segurança do compósito de fibra de carbono
- k_{CR} Curvatura para a carga de fissuração
- k_{y} Curvatura quando da tensão de escoamento da armadura longitudinal
- k_{u} Curvatura para a carga de ruptura
- φ_{pl} Rotação plástica
- μ Índice de ductilidade
- μ_{δ} Índice de ductilidade energética de flecha
- μ_k Índice de ductilidade energética de curvatura
- ρ_s Taxa geométrica de armadura do aço tracionado

- ρ_s Taxa geométrica de armadura do aço comprimido
- ρ_{f} Taxa geométrica de armadura do compósito de fibra de carbono
- ξ Coeficiente adimensional
- ω_s Taxa mecânica da armadura longitudinal de tração
- ω_s Taxa mecânica da armadura longitudinal de compressão
- ω_{f} Taxa mecânica do reforço em compósito de fibra de carbono