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Abstract

Amaral, Gustavo. Feijó, Bruno. Baffa, Augusto. Generation Of Music For Games

Integrated To The Plot With Deep Learning Techniques. Rio de Janeiro, 2021.

49p. Final Graduation Project Report – Center of Science and Technology,

Department of Informatics. Pontifical Catholic University of Rio de Janeiro.

In this project, a study was developed regarding the generation of musical

content for games through different deep learning techniques. In it, in addition to

the construction of a theoretical framework to support future projects, the

implementation of a system capable of parameterizing feelings, through the

Arousal/Valence model, and thus, able to materialize the musical generation

integrated to the plot, was also addressed. Therefore, for the generation of the

musical content, the Transformer was used as deep learning model. Moreover,

aiming to optimize it, the process was integrated with a multilayer music

generation technique and the system itself was implemented in Typescript and

Python with NestJS and TensorFlow/Magenta as main frameworks respectively.

Keywords

Musical Generation. Games. Deep Learning. Transformer. Multilayer. Arousal

Valence.



Resumo

Amaral, Gustavo. Feijó, Bruno. Baffa, Augusto. Geração de Música Para Jogos

Integrada Ao Enredo Com Técnicas De Aprendizado Profundo. Rio de Janeiro,

2021. 49p. Relatório do Projeto Final de Graduação – Centro Técnico Científico,

Departamento de Informática. Pontifícia Universidade Católica do Rio de Janeiro.

Neste projeto foi desenvolvido um estudo referente a geração de conteúdo

musical para jogos por meio de diferentes técnicas de aprendizado profundo.

Nele, além da construção de um arcabouço teórico para a fundamentação de

projetos futuros, abordou-se também a implementação de um sistema capaz de

parametrizar sentimentos, por meio do modelo de Excitação/Valência, e assim,

concretizar a geração musical integrada ao enredo. Por conseguinte, para a

confecção da geração musical, utilizou-se o Transformer como modelo de

aprendizado profundo. Em somatório, visando otimizá-lo, o processo foi

integrado a uma técnica de geração musical multicamadas e o sistema em si foi

implementado em Typescript e Python com NestJS e TensorFlow/Magenta como

principais frameworks respectivamente.

Palavras-Chave

Geração Musical. Jogos. Aprendizado Profundo. Transformer. Multicamadas.

Excitação Valência.
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1. Introduction

Video games are an ever-growing part of our world. As the industry

evolves, the quality and standards of video games are improving rapidly, making

it an everlasting experience for gamers. That said, there are many factors that

contribute to these enhanced environments. Among them, sound effects stand

out as one of the most important features to increase the players' immersion.

In a game, we have visual, narrative and musical manifestations

intertwined. However, this entanglement does not reach its full potential, as it

does not take into account parameters inherent to the player himself, and his

interactions with several other elements of the game. With this in mind, using

deep learning techniques, this project aims to explore the scientific and technical

challenges of generating music for games, intending to investigate the integration

of the game's plot with the musical narrative.

Not only is this topic innovative, but the area of   games in computing itself

is not very explored, with few specialists, which makes the present project a

strategic opportunity of research. Furthermore, the importance to explore this

research theme arises from a wide spectrum of needs, ranging from cost

reduction and deadlines during the development of games until the realization of

interactive storytelling integrated to the narrative musical. In this project,

computer games refer to video games in their various genres, excluding board

games (e.g. Chess, Go). As for the various purposes that a game can have, the

present project refers to games in a broad way, whether they are games for

entertainment or for more general applications like “serious games” type.
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2. Current Situation

Recent deep learning techniques, which are the recent evolution of

artificial neural networks and are part of the arsenal of artificial intelligence

techniques, have become reference techniques for various applications, such as

face or voice recognition, translation, synthesis of voice, weather, games, etc. A

recent area of   application is the creation of content (music, image, text, etc.),

which has become increasingly important on the international stage, as

witnessed by the recent arrival of “big players”, such as Google (with the

creation, in 2017, of the Magenta Project1, focused on artistic creation, especially

music) and Spotify (with the creation, in 2018, of the Creator Technology

Research Lab2, focused on musical creation). Also noteworthy is the recent

creation of several micro-companies dedicated to the potential market (AIVA3,

Amper Music4, Hexachords5 etc.), to create music for videos and documentaries.

The basic idea is to learn a musical style from a corpus of musical

examples (for example, Celtic melodies, choirs by J. S. Bach6, jazz harmonies

etc.) and then generate new music from the learned style. For example,

supervised learning techniques and feedforward architectures can be used, for

example, to generate polyphonic accompaniments (counterpoint) in the style of

Bach's choirs. Systems such as DeepBach (Hadjeres et al. 2017) pass the

musical Turing test7. Unsupervised learning techniques and new types of

generative architectures, such as variational autoencoders (Doersch 2016) or

antagonistic architectures (generative adversarial networks) (J. Goodfellow et al.

2014), can be used to generate new music inspired by the learned style. Several

current techniques and research challenges focus on the ability to control the

generation (for example, to follow a pre-existing harmony, to adjust the number of

notes, etc.), to impose or emerge a structure and to encourage originality (Briot

and Pachet 2018).

A domain with great potential is the generation of music for games.

Modern games have very sophisticated visual characteristics and also complex

and interactive narratives that are complemented by sounds and soundtracks.

7 Difficult to decide whether the composer is human or artificial

6 Johann Sebastian Bach was a German composer and musician of the late Baroque
period.

5 Hexachords website: http://hexachords.com/
4 Amper Music website: https://www.ampermusic.com/
3 AIVA website: https://www.aiva.ai/
2 Spotify for Artists website: https://artists.spotify.com/
1 Magenta Project website: https://magenta.tensorflow.org/
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However, the quality of current soundtracks is usually limited by two reasons: the

track is generated from relatively simple models; or the musical quality is good

but the soundtrack sound is predefined and with little capacity for dynamic

adaptation to the context of interaction with the player(s).

Also there are very few publications on automatic music generation for (or

with) games. For example, Prechtl et al. 2014 propose the generation of chord

sequences influenced by the danger of the current situation8. This emotional

parameter influences the generation parameters9 by a model of Markov via a

change in the values   of the transition matrix. Engels et al. 2015 present another

system, also based on a hierarchical Markov model, to model various sections of

the narrative, but without the interactivity of the control proposed by the predicted

system. Another approach, tried previously by Prof. Feijó (Soares de Lima et al.

2005), consists of the dynamic and automatic selection of predefined musical

excerpts, depending on the current situation in the game. A technique used in

practice by professionals is “layered” production, with the recording separately

from the string part, the metal part and percussions in order to dynamically

modulate the orchestration (for example, adding metals and percussions to

emphasize a dramatic situation) (Stuart 2019), but with the score remaining

static.

9 Time, volume, major or minor chord, etc.
8 The metric used is the distance between the player and the enemies.
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3. Proposal And Objectives

The main objective of this project is to explore the scientific and technical

challenges of music generation for games using deep learning techniques. The

project intends to present a critical view of this new area and propose new

research directions. In particular, this project aims to investigate the integration of

the game's plot with the musical narrative.

In this context, we intend to map the parameters of the game’s narrative10

to the control of the generation of the music, through a conditioned neural

network architecture.

As explained in the current situation section, there are very few

publications on music generation for games and even then, with very preliminary

experiments. Thus, due to its innovative content, this project will be of an

exploratory type and with some “proof of concept”.

10 e.g. story genre, dramatic arc of the storyline, type of player, emotions, personality and
relationships of the characters
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4. Preliminary Studies

To evaluate options for automatic music generation, and acquire

knowledge about the topic, a study based on (Briot et al. 2019) was made, where

a multi-criteria conceptual framework based on five dimensions was evaluated:

objective, representation, architecture, challenge and strategy.

This typology is aimed at helping the analysis of the various perspectives

(and elements) leading to the design of different deep learning-based music

generation systems. Therefore, allowing a better approach of the project

implementation.

That said, the next sections analyze each one of these dimensions, since

they will be the basis for most of the development in this project.

4.1 Objective

The first dimension, the objective, is the nature of the musical content to

be generated, and we may consider five main facets of it:

4.1.2 Type

The musical nature of the generated content. Examples are a melody, a

polyphony or an accompaniment.

4.1.3 Destination

The entity aimed at using (processing) the generated content. Examples

are a human musician, a software or an audio system.

4.1.4 Use

The way the destination entity will process the generated content.

Examples are playing an audio file or performing a music score.

4.1.5 Mode

The way the generation will be conducted, i.e. with some human

intervention (interaction) or without any intervention (automation).
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4.1.6 Style

The musical style of the content to be generated. Examples are Johann

Sebastian Bach chorales, Wolfgang Amadeus Mozart sonatas, Cole Porter songs

or Wayne Shorter music. The style will actually be set though the choice of the

dataset of musical examples (corpus) used as the training examples.

4.2 Representation

The representation is the nature and format of the information (data) used

to train and to generate musical content. Examples are signal, transformed

signal11, piano roll, MIDI or text.

4.2.1 Audio

The first type of representation of musical content is audio signal, either in

its raw form (waveform) or transformed.

4.2.1.1 Waveform

The most direct representation is the raw audio signal: the waveform. The

advantage of using a waveform is in considering the raw material untransformed,

with its full initial resolution. Architectures that process the raw signal are

sometimes named end-to-end architectures. The disadvantage is in the

computational load: low level raw signal is demanding in terms of both memory

and processing.

4.2.1.2 Transformed

Using transformed representations of the audio signal usually leads to

data compression and higher-level information, but at the cost of losing some

information and introducing some bias. A common example is the spectrum,

obtained via a Fourier transform. Another option is the chromagram, a variation

of the spectrogram, discretized onto the tempered scale and independent of the

octave.

4.2.2 Symbolic

Symbolic representations are concerned with concepts like notes,

duration and chords, which will be introduced in the following sections.

11 e.g. a spectrum, via a Fourier transform
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4.2.2.1 Note

In a symbolic representation, a note is represented through the following

main features, and for each feature there are alternative ways of specifying its

value, such as pitch, duration and dynamics.

4.2.2.2 Rest

Rests are important in music as they represent intervals of silence

allowing a pause for breath. A rest can be considered as a special case of a note,

with only one feature, its duration, and no pitch or dynamics. The duration of a

rest may be specified by: absolute value, in milliseconds (ms); or relative value,

notated as a division or a multiple of a reference rest duration, the whole rest

having the same duration as a whole note.

4.2.2.3 Interval

An interval is a relative transition between two notes.

4.2.2.4 Chord

A chord is a set of at least 3 notes (a triad).

4.2.2.5 Rhythm

Rhythm is fundamental to music and conveys the pulsation as well as the

stress on specific beats. Rhythm introduces pulsation, cycles and thus structure

in what would otherwise remain a flat linear sequence of notes. We may consider

three different levels in terms of the amount and granularity of information about

rhythm to be included in a musical representation for a deep learning

architecture: None, only notes and their durations are represented, without any

explicit representation of measures, which is the case for most systems;

Measures, measures are explicitly represented; Beats, information about meter,

beats, etc.

4.2.3 Format

The format is the language (i.e. grammar and syntax) in which a piece of

music is expressed (specified) in order to be interpreted by a computer.
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4.2.3.1 MIDI

Musical Instrument Digital Interface (MIDI) is a technical standard that

describes a protocol, a digital interface and connectors for interoperability

between various electronic musical instruments, softwares and devices. MIDI

carries event messages that specify real-time note performance data as well as

control data.

4.2.3.2 Piano Roll

The piano roll representation of a melody (monophonic or polyphonic) is

inspired from automated pianos. This was a continuous roll of paper with

perforations (holes) punched into it. Each perforation represents a piece of note

control information, to trigger a given note. The length of the perforation

corresponds to the duration of a note. In the other dimension, the localization of a

perforation corresponds to its pitch.

4.2.3.3 Text

Music can also be formatted as text, below we introduce some important

formats analyzed in this project.

4.2.3.3.1 Melody

A melody can be encoded in a textual representation and processed as a

text.

4.2.3.3.2 Chord and Polyphony

When represented extensionally, chords are usually encoded with

simultaneous notes as a vector. Another representation is to represent chords

horizontally, as sequences of constituent notes, i.e. a chord is represented as an

arbitrary length-ordered sequence of notes, and they are separated by a special

symbol, as with sentence markers in natural language processing.

4.2.3.3.3 Markup Language

This is the case of general text-based structured representations based

on markup languages,  like for instance the open standard MusicXML12.

12 MusicXML is the standard open format for exchanging digital sheet music. It allows you
to collaborate with musicians using different music applications.
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4.2.3.3.4 Lead Sheet

Lead sheets are an important representation format for popular music

(jazz, pop, etc.). A lead sheet conveys in upto a few pages the score of a melody

and its corresponding chord progression via an intensional notation. Lyrics may

also be added. Some important information for the performer, such as the

composer, author, style and tempo, is often also present.

4.2.4 Temporal Scope

An initial design decision concerns the temporal scope of the

representation used for the generation data and for the generated data, that is

the way the representation will be interpreted by the architecture with respect to

time.

4.2.4.1 Global

In this first case, the temporal scope of the representation is the whole

musical piece. The deep network architecture (typically a feedforward or an

autoencoder architecture) will process the input and produce the output within a

global single step.

4.2.4.2 Time Step

In this second case, the most frequent one, the temporal scope of the

representation is a local time slice of the musical piece, corresponding to a

specific temporal moment (time step). The granularity of the processing by the

deep network architecture (typically a recurrent network) is a time step and

generation is iterative. Note that the time step is usually set to the shortest note

duration, but it may be larger.

4.2.4.3 Note Step

In this approach there is no fixed time step. The granularity of processing

by the deep network architecture is a note. This strategy uses a distributed

encoding of duration that allows to process a note of any duration in a single

network processing step. Note that, by considering as a single processing step a

note rather than a time step, the number of processing steps to be bridged by the

network is greatly reduced.
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4.2.5 Meta Data

In some systems, additional information from the score may also be

explicitly represented and used as metadata, such as: note tie; fermata;

harmonics; key; meter; and the instrument associated to a voice.

4.2.5.1 Note Hold Or Ending

An important issue is how to represent if a note is held, i.e. tied to the

previous note. This is actually equivalent to the issue of how to represent the

ending of a note.

4.2.5.2 No Enharmony (Note Denotation)

Most systems consider enharmony, i.e. in the tempered system A♯ is

enharmonically equivalent to (i.e. has the same pitch as) B♭, although

harmonically and in the composer’s intention they are different.

4.2.5.3 Feature Extraction

Although deep learning is good at processing raw unstructured data, from

which its hierarchy of layers will extract higher level representations adapted to

the task, some systems include a preliminary step of automatic feature

extraction, in order to represent the data in a more compact, characteristic and

discriminative form. One motivation could be to gain efficiency and accuracy for

the training and for the generation. Moreover, this feature based representation is

also useful for indexing data, in order to control generation through compact

labeling, or for indexing musical units to be queried and concatenated.

4.2.6 Expressiveness

4.2.6.1 Tempo

If training examples are processed from conventional scores or

MIDI-format libraries, there is a good chance that the music is perfectly

quantized, i.e. note onsets are exactly aligned onto the tempo, resulting in a

mechanical sound without expressiveness. One approach is to consider symbolic

records, in most cases recorded directly in MIDI, from real human performances,

with the musician interpreting the tempo.
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4.2.6.2 Dynamics

Another common limitation is that many MIDI-format libraries do not

include dynamics (the volume of the sound produced by an instrument), which

stays fixed throughout the whole piece. One option is to take into consideration (if

present on the score) the annotations made by the composer about the

dynamics, from pianissimo ppp to fortissimo fff. As for tempo expressiveness,

another option is to use real human performances, recorded with explicit

dynamics variation, the velocity field in MIDI.

4.2.7 Encoding

Once the format of a representation has been chosen, the issue still

remains of how to encode this representation. The encoding of a representation

(of a musical content) consists in the mapping of the representation, composed of

a set of variables, e.g. pitch or dynamics, into a set of inputs13 for the neural

network architecture.

4.2.7.1 Value Encoding

Value encoding is to directly encode the variable as a scalar whose

domain is real values (continuous variables). An example is the pitch of a note

defined by its frequency in Hertz, that is a real value within the ]0,+∞[ interval. Or,

encode the variable as a real value scalar, by casting the integer into a real

(discrete integer variables). An example is the pitch of a note defined by its MIDI

note number, that is an integer value within the {0,1,... ,127} discrete set. Or,

lastly, encode the variable as a real value scalar, with two possible values: 1, for

true, and 0, for false (boolean/binary variables). An example is the specification

of a note ending.

4.2.7.2 One-hot Encoding

One-hot encoding is to encode a categorical variable as a vector having

as its length the number of possible elements, in other words the cardinality of

the set of possible values. Then, in order to represent a given element, the

corresponding element of the encoding vector is set to 1 and all other elements

to 0. This frequently used strategy is also often employed for encoding discrete

integer variables, such as MIDI note numbers.

13 Also named input nodes or input variables.
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4.2.7.3 Many-hot encoding

Similar to one-hot encoding, but where all elements of the vector

corresponding to the notes or to the active components are set to 1.

4.2.8 Dataset

The choice of a dataset is fundamental for good music generation. At first,

a dataset should be of sufficient size14 to guarantee accurate learning. If the

dataset is very heterogeneous, a good generative model should be able to

distinguish the different subcategories and manage to generalize well. On the

contrary, if there are only slight differences between subcategories, it is important

to know if the “averaged model” can produce musically-interesting results.

4.2.8.1 Transposition and Alignment

A common technique in machine learning is to generate synthetic data as

a way to artificially augment the size of the dataset, in order to improve accuracy

and generalization of the learnt model. In the musical domain, a natural and easy

way is transposition, i.e. to transpose all examples in all keys. In addition to

artificially augmenting the dataset, this provides a key (tonality) invariance of all

examples and thus makes the examples more generic. Moreover, this also

reduces sparsity in the training data. An alternative approach is to transpose

(align) all examples into a single common key.

4.3 Architecture

The architecture is the nature of the assemblage of processing units (the

artificial neurons) and their connexions. Examples are a feedforward architecture,

a recurrent architecture, an autoencoder architecture and generative adversarial

networks.

4.3.1 Feedforward

A multilayer neural network, also named a feedforward neural network, is

an assemblage of successive layers of basic building blocks. In this network, the

information moves in only one direction, forward, from the input nodes, through

the hidden nodes (if any) and to the output nodes, there are no cycles or loops in

the network.

14 i.e. contain a sufficient number of examples.
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4.3.2 Autoencoder

An autoencoder is a neural network with one hidden layer and with an

additional constraint: the number of output nodes is equal to the number of input

nodes.

4.3.3 Variational

A variational autoencoder (VAE) has the added constraint that the

encoded representation, the latent variables, by convention denoted by variable

z, follow some prior probability distribution P(z). Usually, a Gaussian distribution

is chosen for its generality. This constraint is implemented by adding a specific

term to the cost function, by computing the cross-entropy between the values of

the latent variables and the prior distribution. As with an autoencoder, a VAE will

learn the identity function, but furthermore the decoder part will learn the relation

between a Gaussian distribution of the latent variables and the learnt examples.

4.3.4 Restricted Boltzmann Machine (RBM)

A restricted Boltzmann machine (RBM) is a generative stochastic artificial

neural network that can learn a probability distribution over its set of inputs.

4.3.5 Recurrent (RNN)

A recurrent neural network (RNN) is a feedforward neural network

extended with recurrent connexions in order to learn a series of items (e.g., a

melody as a sequence of notes). The input of the RNN is an element xt of the

sequence, where t represents the index or the time, and the expected output is

the next element xt+1. In other words the RNN will be trained to predict the next

element of a sequence.

In order to do so, the output of the hidden layer reenters itself as an

additional input (with a specific corresponding weight matrix). This way, the RNN

can learn, not only based on the current item but also on its previous own state,

and thus, recursively, on the whole of the previous sequence. Therefore, an RNN

can learn sequences, notably temporal sequences, as in the case of musical

content.

4.3.6 Convolutional

Convolutional neural network (CNN or ConvNet) architectures for deep

learning have become commonplace for image applications. The concept was
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originally inspired by both a model of human vision and the convolution

mathematical operator. This resulted in efficient and accurate architectures for

pattern recognition, exploiting the spatial local correlation present in natural

images.

The basic idea is to slide a matrix (named a filter, a kernel or a feature

detector) through the entire image (seen as the input matrix) and for each

mapping position, compute the dot product of the filter with each mapped portion

of the image, and then sum up all elements of the resulting matrix.

This will result in a new matrix (composed of the different sums for each

sliding/mapping position), named “convolved feature”, or also “feature map”. The

size of the feature map is controlled by three hyperparameters: depth (the

number of filters used); stride (the number of pixels by which we slide the filter

matrix over the input matrix); and zero-padding (the padding of the input matrix

with zeros around its border).

4.3.7 Conditioning

The idea of a conditioning (sometimes also named conditional)

architecture is to parametrize the architecture based on some extra conditioning

information, which could be arbitrary, e.g., a class label or data from other

modalities. The objective is to have some control over the data generation

process. In practice, the conditioning information is usually fed into the

architecture as an additional and specific input layer.

4.3.8 Generative Adversarial Networks (GAN)

The idea is to train simultaneously two neural networks: a generative

model (or generator) G, whose objective is to transform a random noise vector

into a synthetic (faked) sample, which resembles real samples drawn from a

distribution of real images; and a discriminative model (or discriminator) D, which

estimates the probability that a sample came from the real data rather than from

the generator G.

This corresponds o a minimax two-player game, where one agent's gain

is another agent's loss. The core idea of a GAN is based on the "indirect" training

through the discriminator, which itself is also being updated dynamically. This

basically means that the generator is not trained to minimize the distance to a

specific image, but rather to fool the discriminator. This enables the model to

learn in an unsupervised manner.
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4.3.9 Reinforcement Learning (RL)

The basics of reinforcement learning can be summarized by: an agent

within an environment sequentially selects and performs actions in an

environment; each action performed brings it to a new state; the agent receives a

reward (reinforcement signal), which represents the fitness of the action to the

environment (current situation); the objective of the agent being to learn a near

optimal policy (sequence of actions) in order to maximize its accumulated

rewards (named its gain).

4.3.10 Compound

Often compound architectures are used. Some cases are homogeneous

compound architectures, combining various instances of the same architecture,

e.g., a stacked autoencoder, and most cases are heterogeneous compound

architectures, combining various types of architectures, e.g., an RNN

Encoder-Decoder which combines an RNN and an autoencoder.

4.4 Challenge

A challenge is one of the qualities (requirements) that may be desired for

music generation.

4.4.1 Ex Nihilo Generation

Suppose that our objective is to generate a melody on its own (not as an

accompaniment of some input melody) while being based on a style learnt from a

corpus of melodies.

4.4.1.1 Decoder Feedforward

The first strategy is based on an autoencoder architecture. Through the

training phase an autoencoder will specialize its hidden layer into a detector of

features characterizing the type of music learnt and its variations.

One can then use these features as an input interface to parameterize the

generation of musical content. The idea is then to: choose a seed as a vector of

values corresponding to the hidden layer units; insert it in the hidden layer; and

feedforward it through the decoder.

This strategy, that we name decoder feedforward, will produce a new

musical content corresponding to the features, in the same format as the training
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examples. In order to have a minimal and high-level vector of features, a stacked

autoencoder is often used.

The seed is then inserted at the bottleneck hidden layer of the stacked

autoencoder and feed forwarded through the chain of decoders. Therefore, a

simple seed information can generate an arbitrarily long, although fixed-length,

musical content.

4.4.1.2 Sampling

Another strategy is based on sampling. Sampling is the action of

generating an element (a sample) from a stochastic model according to a

probability distribution.

The main issue for sampling is to ensure that the samples generated

match a given distribution. The basic idea is to generate a sequence of sample

values in such a way that, as more and more sample values are generated, the

distribution of values more closely approximates the target distribution. Sample

values are thus produced iteratively,

For musical content, we may consider two different levels of probability

distribution (and sampling):

● Item level or vertical dimension – at the level of a compound musical item,

e.g., a chord. In this case, the distribution is about the relations between

the components of the chord, i.e. describing the probability of notes to

occur together.

● Sequence-level or horizontal dimension – at the level of a sequence of

items, e.g., a melody composed of successive notes. In this case, the

distribution is about the sequence of notes, i.e. it describes the probability

of the occurrence of a specific note after a given note.

With that in mind, an RBM (restricted Boltzmann machine) architecture is

generally used to model the vertical dimension, i.e. which notes should be played

together. And an RBM (restricted Boltzmann machine) architecture is generally

used to model the vertical dimension, i.e. which notes should be played together.

4.4.2 Length Variability

An important limitation of the single-step feedforward strategy and of the

decoder feedforward strategy is that the length of the music generated (more

precisely the number of times steps or measures) is fixed. It is actually fixed by

the architecture, namely the number of nodes of the output layer. To generate a
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longer (or shorter) piece of music, one needs to reconfigure the architecture and

its corresponding representation.

4.4.2.1 Iterative Feedforward

The standard solution to this limitation is to use a recurrent neural network

(RNN). The typical usage is to:

● Select some seed information as the first item (e.g., the first note of a

melody);

● Feedforward it into the recurrent network in order to produce the next item

(e.g., next note);

● Use this next item as the next input to produce the next next item;

● And repeat this process iteratively until a sequence (e.g., of notes, i.e. a

melody) of the desired length is produced.

4.4.3 Content variability

A limitation of the iterative feedforward strategy on an RNN is that

generation is deterministic. Indeed, a neural network is deterministic. As a

consequence, feed forwarding the same input will always produce the same

output. As the generation of the next note, the next next note, etc., is

deterministic, the same seed note will lead to the same generated series of

notes. Moreover, as there are only 12 possible input values (the 12 pitch

classes), there are only 12 possible melodies.

4.4.3.1 Sampling

Fortunately, the usual solution is quite simple. The assumption is that the

output representation of the melody is one-hot encoded. In other words, the

output representation is of a piano roll type, the output activation layer is softmax

and generation is modeled as a classification task.

The default deterministic strategy consists in choosing the class (the note)

with the highest probability. We can then easily switch to a nondeterministic

strategy, by sampling the output which corresponds to a probability distribution

between possible notes.

By sampling a note following the distribution generated, we introduce

stochasticity in the process and thus variability in the generation.
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4.4.4 Expressiveness

One limitation of most existing systems is that they consider fixed

dynamics (amplitude) for all notes as well as an exact quantization (a fixed

tempo), which makes the music generated too mechanical, without

expressiveness or nuance.

A natural approach resides in considering representations recorded from

real performances and not simply scores, and therefore with musically grounded

(by skilled human musicians) variations of tempo and of dynamics.

Note that an alternative approach is to automatically augment the

generated music information (e.g., a standard MIDI piece) with slight

transformations on the amplitude and/or the tempo.

In the case of an audio representation, expressiveness is implicit to the

representation. However, it is difficult to separately control the expressiveness

(dynamics or tempo) of a single instrument or voice as the representation is

global.

4.4.5 Melody-harmony Consistency

When the objective is to simultaneously generate a melody with an

accompaniment, expressed through some harmony or counterpoint, an issue is

the musical consistency between the melody and the harmony.

Although a general architecture, such as MiniBach, is supposed to have

learnt correlations, interactions between vertical and horizontal dimensions are

not explicitly considered.

4.4.6 Control

A deep architecture generates musical content matching the style learnt

from the corpus. This capacity of induction from a corpus without any explicit

modeling or programming is an important ability.

However, like a fast car that needs a good steering wheel, control is also

needed as musicians usually want to adapt ideas and patterns borrowed from

other contexts to their own objective and context, e.g., transposition to another

key, minimizing the number of notes, finishing with a given note, etc.

4.4.6.1 Dimensions of Control Strategies

Arbitrary control is a difficult issue for deep learning architectures and

techniques because neural networks have not been designed to be controlled. In
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the case of Markov chains, they have an operational model on which one can

attach constraints to control the generation.

However, neural networks do not offer such an operational entry point and

the distributed nature of their representation does not provide a clear relation to

the structure of the content generated.

Therefore, most strategies for controlling deep learning generation rely on

external intervention at various entry points (hooks) and levels: input; output;

input and output; encapsulation/reformulation.

4.4.6.1.1 Sampling

Sampling from a stochastic architecture (such as a restricted Boltzmann

machine (RBM)), or from a deterministic architecture (in order to introduce

variability), may be an entry point for control if we introduce constraints into the

sampling process. This is called constrained sampling.

Constrained sampling is usually implemented by a generate-and-test

approach, where valid solutions are picked from a set of random samples

generated from the model. But this could be a very costly process and, moreover,

with no guarantee of success. A key and difficult issue is therefore how to guide

the sampling process in order to fulfill the constraints.

4.4.6.1.2 Conditioning

The idea of conditioning (sometimes also named conditional architecture)

is to condition the architecture on some extra information, which could be

arbitrary, e.g., a class label or data from other modalities.

In practice, the conditioning information is usually fed into the architecture

as an additional input layer. This distinction between standard input and

conditioning input follows a good architectural modularity principle. Conditioning

is a way to have some degree of parametrized control over the generation

process.

The conditioning layer could be a simple input layer. An example is a tag

specifying a musical genre or an instrument in the WaveNet system. Or, some

output of some architecture, being the same architecture, as a way to condition

the architecture on some history, or even another architecture.

4.4.6.1.3 Input Manipulation

The idea is that the initial input content, or a brand new (randomly

generated) input content, is incrementally manipulated in order to match a target
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property. Note that control of the generation is indirect, as it is not applied to the

output but to the input, before generation.

4.4.6.1.4 Input Manipulation and Sampling

Another option is the combination of the input manipulation strategy with

the sampling strategy, thus acting both on the input and the output

4.4.6.1.5 Reinforcement

The idea of the reinforcement strategy is to reformulate the generation of

musical content as a reinforcement learning problem: using the similarity to the

output of a recurrent network trained on the dataset as a reward and adding user

defined constraints, e.g., some tonality rules according to music theory, as an

additional reward.

4.4.6.1.6 Unit Selection

The unit selection strategy is about querying successive musical units

(e.g., one measures long melodies) from a database and concatenating them in

order to generate a sequence according to some user characteristics.

Querying is using features which have been automatically extracted by an

autoencoder. Concatenation, i.e. “what unit next?”, is controlled by two LSTMs,

each one for a different criterium, in order to achieve a balance between direction

and transition.

This strategy, as opposed to most of the other ones, which are bottom-up,

is top-down, as it starts with a structure and fills it.

4.4.6.2 Style Transfer

The idea in this approach, named style transfer, designed for images, is to

use a deep convolutional feedforward architecture to independently capture the

features of a first image (named the content), and the style (as a correlation

between features) of a second image (named the style).

Gradient-based learning is then used to guide the incremental

modification of an initially random third image, with the double objective of

matching both the content and the style descriptions.

The style transfer technique for images is effective and relatively

straightforward to apply. However, as opposed to paintings, where the common

representation is two-dimensional and uniformly digitalized in terms of pixels,
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music is a much more complex object with various levels and models of

representation.

More specific types of style transfers are: the Composition Style Transfer,

working on symbolic representations; the Timbre Style Transfer, using various

kinds of sources (various styles of music as well as speech); and the

Performance Style Transfer.

4.4.7 Structure

One challenge is that most existing systems have a tendency to generate

music with no clear structure or “sense of direction”. In other words, although the

style of the generated music corresponds to the corpus learnt, the music appears

to wander without any higher organization, as opposed to human composed

music which has some global organization (usually named a form) and identified

components, such as an overture, an allegro, an adagio or a finale in classical

music; or an AABA or an AAB form in jazz; or even a refrain, a verse or a bridge

in song music.

4.4.8 Originality

The issue of the originality of the music generated is not only an artistic

issue (creativity) but also an economic one, because it raises the issue of

copyright.

One approach is a posteriori, by ensuring that the generated music is not

too similar15 to an existing piece of music. Therefore, existing algorithms to detect

similarities in texts may be used.

Another approach, more systematic but even more challenging, is a priori,

by ensuring that the music generated will not recopy a given portion of music

from the training corpus.

A solution for music generation from Markov chains has been proposed, it

is based on a variable order Markov model and constraints over the order of the

generation through some min order and max order constraints, in order to attain

some sweet spot between junk and plagiarism. However, there is not yet a

solution for deep learning architectures.

15 e.g. in not having recopied a significant number of notes of a melody.
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4.4.8.1 Conditioning

Two possible methods to control creativity are: restricting the conditioning

by inserting the conditioning data only in the intermediate convolution layers of

the generator architecture; and decreasing the values of the two control

parameters of feature matching regularization, in order to reduce the requirement

for the closeness of the distributions of real data and generated distributions of

real and generated data.

4.4.8.2 Creative Adversarial Networks

Another more systematic and conceptual direction is the concept of

creative adversarial networks (CAN), as an extension of the generative

adversarial networks (GAN) architecture.

4.4.9 Incrementality

A straightforward use of deep architectures for generation leads to a

one-shot generation of a musical content as a whole in the case of a feedforward

or autoencoder network architecture, or to an iterative generation of time slices of

a musical content in the case of a recurrent network architecture.

This is a strong limitation if we compare this to the way a human

composer creates and generates music, in most cases very incrementally,

through successive refinements of arbitrary parts.

4.4.10 Interactivity

An important issue is that, for most current systems, generation of

musical content is an automated and autonomous process. Some interactivity

with a human user(s) is fundamental to obtaining a companion system to help

humans in their musical tasks (composition, counterpoint, harmonization,

analysis, arranging, etc.) in an incremental and interactive manner.

4.4.11 Adaptability

One fundamental limitation of current deep learning architectures for the

generation of musical content is that they paradoxically do not learn or adapt.

Learning is applied during the training phase of the network, but no

learning or adaptation occurs during the generation phase. However, one can

imagine some feedback from a user, e.g., the composer, producer, listener, about

the quality and the adequacy of the generated music.
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This feedback may be explicit, which puts a task on the user, but it could

also be, at least partly, implicit and automated. For instance, the fact that the user

quickly stops listening to the music just generated could be interpreted as

negative feedback. On the contrary, the fact that the user selects a better

rendering after a first quick listen to some initial reproduction could be interpreted

as positive feedback.

Several approaches are possible. The most straightforward approach,

considering the nature of neural networks and supervised learning, would be to

add the newly generated musical piece to the training set and eventually retrain

the network. This would reinforce the number of positive examples and gradually

update the learnt model and, as a consequence, future generations.

However, there is no guarantee that the overall generation quality would

improve. This could also lead the model to overfit and loose some generalization.

Moreover, there is no direct possibility of negative feedback, as one cannot

remove a badly generated example from the dataset because there is almost no

chance that it was already present in the dataset. At the junction between

adaptability and interactivity, an interesting approach is that of interactive

machine learning for music generation

4.4.12 Explainability

A common critique of sub-symbolic approaches of Artificial Intelligence

(AI), such as neural networks and deep learning, is their black box nature, which

makes it difficult to explain and justify their decisions.

Explainability is indeed a real issue, as we would like to be able to

understand and explain what (and how) a deep learning system has learned from

a corpus as well as why it ends up generating a given musical content.

4.5 Strategy

The strategy represents the way the architecture will process

representations in order to generate the objective while matching desired

requirements.

Examples are single-step feedforward, iterative feedforward, decoder

feedforward, sampling and input manipulation. As they've already been covered

in previous sections, they won't be approached here.
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5. Methodology

From the point of view of the game, we intend to investigate the use of

music generation in different game genres. The greatest interest is in games with

a deeper narrative such as: RPG; action-adventure games; and simulation

games. Still, there is also the possibility to analyze casual games and music

games16.

The most important issue of associating interactive storytelling with

musical narrative must start from the pioneering experiments of the

ICAD/VisionLab17 group with cinematography and music (Soares de Lima et al.

2005) (Soares de Lima et al. 2017). Scene events are created by the plot

generator and the scene type is automatically calculated by the system based on

parameters of the narrative. In a first approximation, for example, a fear scene,

the soundtrack must have fast times, dissonances and small variations in pitch.

Another possibility is to work directly with the parameters of the narrative, such

as: genre of the story; dramatic arc of the plot; type of player; player behavior;

and emotions, personality and relationships of the characters. Finally, the

experiences of the ICAD/VisionLab group with personality models, behavior

models and forecasting techniques in the generation of interactive storylines

should be analyzed as mechanisms to support the generation of music for games

(Soares de Lima et al. 2018a) (Soares de Lima et al. 2018b).

Currently, there are several ways to approach the issue of generating

music in an adaptive way to a narrative, via a set of control parameters (as, for

example, in the system of Prechtl et al. 2014. An even more ambitious goal is a

combined generation of narrative and music. In this project, we chose deep

learning as the basis of learning and generation. The first advantage is to take

advantage of the recent innovations in generative architectures and the means to

control them. The advantage of this approach over a formulation based on

Markov models is twofold: more precise style learning (greater conformity) and

learning less prone to plagiarism. A large-order Markov model also has good

corpus compliance, but there is a tendency to recopy sequences from the corpus

and thus generate plagiarism.

17 A research & development lab on visualization, digital television/cinema, and games at
PUC-Rio in Brazil.

16 i.e. games that challenge the player to follow sequences of movement or to develop
specific rhythms.
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To map parameters from narrative to generation control, we propose the

use of a conditional architecture, also called conditioning. In practice, this

strategy (Briot et al. 2019) means adding a specific entry to the neural network to

parameterize the generation. An example of conditioning is an architecture for

generating melody conditioned by text (lyrics) (Yu et al. 2021). This architecture,

called conditional LSTM-GAN, combines a GAN18 architecture, a recurring

network architecture, in practice a LSTM19, and a text conditioning.

This type of architecture is an interesting starting point for the project. The

advantage of using a recurring network is that the generation is iterative20 and,

thus, can adapt dynamically to the dynamics of the game's narrative. The

granularity of the generation (note, measure...) can be configured according to

the type of narrative, depending on the minimal granularity of the interactive

narrative. The melody (or melodies, or the melody and the chord) can be

generated in real time and transformed into music audio from real-time sound

synthesis, also controllable. An alternative architecture to GAN is a VRAE21

(Fabius and R. van Amersfoort 2014), which offers additional control possibilities

by manipulating the values   of the latent variables of the autoencoder22.

22 They constitute a compressed and abstract representation - variational - of the
examples of songs learned, the variations corresponding to the dimensions of variation
among the examples, such as the texture, the duration of the notes, etc.

21 Variational Recurrent Autoencoder
20 Note by note or measure after measure.
19 Long Short-Term Memory.
18 Generative Adversarial Networks.
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6. Performed Activities

After preliminary studies, it was decided that we should analyze tools that

would serve as a basis for the development of the idealized system. In this

context, it was concluded that the Magenta Project would be the most suitable

framework for the situation due to several factors, among them, being open

source and an extremely powerful tool for music generation.

6.1 The Magenta Framework

Magenta is built on top of Tensorflow, and like it, it has a great Python

dominance regarding its use. However, for a first contact I chose to use

Magenta.js, a version of the framework used to create music directly from the

browsers23, due to my greater ease with web development in relation to game

development. Moreover, the Javascript version offered a higher delivery speed

focused on materializing theoretical knowledge about music generation and the

framework itself.

Figure 1. Magenta Project logo24

24 Source: https://magenta.tensorflow.org/assets/magenta-logo-bottom-text.png
23 Although it can also be used with Node.js.
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6.2 First Efforts

So, inspired by the musical ambiance of sites like the one of the game
Illuvium25 I started the project implementation aiming to deliver a new experience
for users in the web environment.

On a website, as in games and movies, the user has a journey to go,
regardless of the type of conversion desired. However, unlike the film or game
industry, the music resource is rarely used in the web context. Thus, the idea
was, as in a game, to use automatic music generation, with Magenta.js, to
produce musical content for the site, according to the user's usage.

For that, I set up a small MVP26, hosted locally, where according to the
mouse's scroll position on the site, parameters of the music generation would be
changed, providing a unique and immersive experience for the user.

Given time limitations, only a single parameter was varied using several
available models: the temperature of the model, that is, the randomness rate of
the predictions. This implementation was made so that the temperature varied
according to the position of the user's mouse scroll, thus, when entering the site,
on a screen mostly composed of images, the music is more aggressive, however,
when navigating to the lower sections of the site, composed mostly of text, it
calms down and more closely follows the style of the samples that the model was
trained on.

In this first moment, we used many of the main models available in
Magenta for Javascript, such as MusicRNN27 and MusicVAE28, all of them already
trained with pre-trained hosted checkpoints available in the Magenta
documentation29. However, it is noteworthy mentioning the delay in loading the
models in the browser, which can be observed as a possible problem for future
implementations of the proposal in question.

Figure 2. The home view of the developed MVP site

29 Found at: https://www.npmjs.com/package/@magenta/music#model-checkpoints
28 Found at: https://www.npmjs.com/package/@magenta/music#musicvae
27 Found at: https://www.npmjs.com/package/@magenta/music#musicrnn
26 Minimum Viable Product
25 Found at: https://illuvium.io/
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6.3 The System Development

Afterwards, with a better definition of the necessary requirements for the

automatic music generation system for games, I was able to use the knowledge

obtained in the experience above, to effectively start the implementation in the

context of games.

To this end, the maximum possible abstraction of the context of the game

itself was admitted, since all elements, except the musical creation, will be

covered in another project in the future.

So, I thought of an implementation that followed this paradigm and was as

far as possible decoupled from the creation of the game itself. That said, inspired

by the Docker architecture30 of server and client, I decided to try to implement a

similar one: a server responsible for music creation, and several clients,

responsible for using the generated music in the most diverse environments,

being game engines like Unity and Unreal, or even games created directly in the

browser.

Thus, in addition to keeping the project agnostic about the use of

generated music, the project's scalability is also greatly increased, centralizing all

the logic and computational cost of AI music creation in specialized machines

and environments.

In this project, however, the idea is to focus only on server development,

that is, on the challenge of the musical generation. For that, I decided to break

this challenge into smaller and more efficient problems. That is, instead of

training a single model capable of producing all types of musical content, I

planned the implementation of several specialized models, responsible for

generating specific content for each musical type, all of which should be

controlled by a large capable state machine to choose which network will be

active in a given request, according to the parameters provided.

In continuity, to generalize the environment of the games, and encompass

a wide range of possible types of games, the first network I chose to explore was

the one responsible for generating the ambient music of the game. So I started

my research on efficient models for this particular task where I found the Music

Transformer (Anna Huang et al. 2018), an attention-based neural network that

can generate music with improved long-term coherence.

30 Explained at: https://docs.docker.com/get-started/overview/#docker-architecture
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To build the server, Typescript was used with Nest.js, an architectural

framework built on top of Node.js. Unfortunately, Majenta.js still doesn't support

Music Transformer, so it was necessary to migrate to the main version of

Magenta in Python. At first, to reduce setup time, we used a container already

made and available by Dan Jeffries, Chief Technology Evangelist at Pachyderm,

in a work in partnership with Project Magenta (Jeffries 2020). At this first moment

there was no need to run away from this container as no architectural changes to

the network were required, however, in a future moment this was necessary.

The model itself already had a pre-trained checkpoint, where it was

trained with ambient music. Since it already provides incredible results, the

checkpoint was used in the server implementation, although, if new training

would be necessary, there was already an entire pipeline available with

Pachyderm31, a platform that enables you to run your data science experiments

in a reliable and reproducible way linking together a bunch of loosely coupled

frameworks into a smoothly scaling AI generating machine. This approach has

several advantages, but a particularly attractive one, given the short time and

limited resources of this project, is the easy use of computing resources in the

cloud to carry out the training in the desired time. Thus, this same pipeline was

used to train any other musical styles needed in the rest of the implementation.

Therefore, to use this same configuration in the Nest.js environment, I

developed an endpoint on the server so that every request made on it, a new

container is executed, responsible for generating a new song based on the

parameters received, at first, only the duration of the song. To take full advantage

of the great musical coherence of Music Transformer, durations longer than 2

minutes have always been used, guaranteeing better results.

Figure 3. The view from the console when the server receives a request and generates
it’s output

31 Pachyderm website: https://www.pachyderm.com/
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After testing the music generation a few times and verifying that

everything was working correctly, two new challenges were addressed, one, the

time needed to generate a new song, and the other, the system output through

MIDI files.

To solve the first problem, two options were evaluated, one the use of

high-performance cloud computing, which ended up being discarded, at least for

the time being, due to the lack of time to explore and evaluate the costs and

qualities of possible existing services, and the second, which was implemented,

using CUDA32, the parallel computing platform and programming model

developed by NVIDIA for general computing on GPUs33. With this decision, the

time taken to generate one music was reduced by approximately 9 times, which,

even though it can still be optimized, has already solved the problem in that first

moment.

One of the problems to do this in the local environment, was the fact that

the containers in the local machine were runned with Docker Desktop, from

within the WSL, which, with it's current windows 10 version, didn’t have the

support for GPU usage. So, to solve that, the container option had to be

discarded and a submodule of the project, in python, was created. This

submodule was implemented with the exactly same environment of the previous

container but now, running directly from the local machine and, therefore, with

access to the GPUs.

For the second challenge, the effectiveness of the separation of the

system into client and server was further corroborated. And this because, as it

was possible to consider the client as a black box, having its implementation free

for the environment that best suits it, the MIDI format became perfect.

Unlike regular audio files like MP3s or WAVs, MIDI files don't contain

actual audio data and are therefore much smaller in size. They instead explain

what notes are played, when they're played, and how long or loud each note

should be. Files in this format are basically instructions that explain how the

sound should be produced once attached to a playback device or loaded into a

particular software program that knows how to interpret the data.

This makes MIDI files perfect for sharing musical information between

similar applications and for transferring over low-bandwidth internet connections.

The small size also allows for storing on small devices like floppy disks, a

33 Graphical Processing Units
32 Compute Unified Device Architecture
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common practice in early PC games. Furthermore, they allow even more

customization of the client according to their needs, without having to change the

flow of music generation in any way.

Thus, to check the quality of the system outputs and simulate a client

using the server, a music creation software, Ableton Live34, was used. This

choice was made mainly by the quality and quantity of instruments provided by

this tool, including great instruments for ambient music, such as Seashore Pad

and Pitched Ambience.

6.4 The Musical Creation

After that, I started to effectively experience the musical creation itself.

However, when using only one instrument to perform the generated songs, the

result was poor, without the various complements that are present in a good

musical composition. So, I started to generate songs from different samples and

put them to play simultaneously with different instruments. The observed result is

that one can easily change the final result of the composition by just turning on,

turning off or changing any of the songs being played at that moment.

Therefore, when analyzing the performance of different results of musical

generation, at the same time, and with different instrumentation, the idea of

  composing the system not only by state machines with specific musical styles,

but also by layers that could dynamically change the music generation as needed

came up.

With this idea in mind, 4 layers were defined to be implemented35 with the

first one being the most constant and the last one the most aggressive, and the

intermediate layers being of gradual transition between the former ones. So, if

the game was in a calm environment, only the first layers would be active, or if it

was following a dangerous situation, only the last ones would be active, and so

on.

35 Although this value could be easily changed if needed
34 Ableton Live website: https://www.ableton.com/
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Figure 4. The visualization of the four established layers at the Ableton Live’s software

6.5 First Results

In conclusion, it was possible to generate, in a very short space of time,

very interesting results, proving the initial premise that this model and this

architecture would work very well in the context of the proposed music creation.
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7. The System

The server side of the system was built in Typescript with NestJS. It
handles all backend requests and logic like data storage and schedules. For
music generation, a submodule built in Python with Magenta / Tensorflow was
used. With this configuration, the main idea is that the request is handled by the
server and then, if necessary, the sub-module is activated to generate the music.

7.1 The Proposed System

The first proposal to the system came up as the following scheme:

Figure 5. The schema of the proposed system

1. User’s client requests a music.
2. The server maps the user feeling through the provided

parameters.
3. It uses the mapped feeling to start the music generation.
4. After the music is generated, it attaches metadata such as

instruments
5. It delivers the request response with the music to the final user.

7.2 Mapping Emotions

With the base structure of the system defined, as approached in the last

section, the need to evaluate parameters capable of integrating the game’s plot

and it’s emotions with the music generation, arised.
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To address that, some options were studied, like the use of game

analytics to map the player’s and game’s emotion. But, for this first approach, we

wanted something simple, easily replicable to a lot of different projects, and

mostly agnostic from the game itself.

So, it was decided to ignore the huge amount of data that could be used

in the map of emotions, and focus only in just two dimensions: arousal and

valence.

7.3 The Arousal Valence Model

In this model, an emotion can be mapped using two parameters, the

intensity of the feeling, the arousal, and the kind of feeling (e.g. if it’s positive,

negative, neutral etc.), the valence.

Figure 6. The arousal valence model36

For this first system, there was no need to use many feelings, since we

36 Source:
https://i.pinimg.com/originals/68/71/3a/68713ad7906a141a51ab1f604ae70137.jpg
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could easily decrease the complexity by establishing just a few and projecting an

implementation able to scale up for the future.

That said, to this project were used nine feelings, shown by the grid

below:

Figure 7. The developed arousal valence scheme, using a map with nine feelings

7.4 Generating The Player’s Music

To the generation of the music itself, four models were evaluated:
MusicVAE37, MusicRNN38, GANSynth39 and MusicTransformer. As explained in
Huang et al. 2018, because of its deeper long-term structure the
MusicTransformer was the chosen one.

7.4.1 MusicTransformer

Briefly, the transformer is an attention-based neural network that can
generate music with improved long-term coherence.

39 GANSynth is a method for generating high-fidelity audio with Generative Adversarial
Networks (GANs).

38 A MusicRNN is an LSTM-based language model for musical notes.

37 MusicVAE is a variational autoencoder made up of an Encoder and Decoder, along
with a data converter for converting between Tensor and note sequence objects for input
and output.
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7.4.2 Attention

As excellently elucidated by Chris Nicholson in his introduction to
attention (Nicholson), attention takes two sentences, turns them into a matrix
where the words of one sentence form the columns, and the words of another
sentence form the rows, and then it makes matches, identifying relevant context.

Figure 8. Attention example40

7.4.3 Self Attention

But the amazing thing about attention is that you don’t need to lay out two
different sentences, you can lay out the same sentence, to learn about it’s
important words, rather than the difference between two translations, this is
called “self attention'' as explained in Jeffries 2020.

40 Source: https://wiki.pathmind.com/images/wiki/attention_translation_grid.png
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Figure 9. Self attention example41

7.4.4 Performance

In short, with self attention, Transformers can encode each word with how
important it is to every other word. That means they don’t just know about the few
words that came before it, like RNNs, while knowing nothing about the words to
come. Transformers know about every word in the sentence, forwards and
backwards. That means they excel at both small and larger clusters of
information and how they relate to each other. Thus, they are much better at
developing a long term memory about what it’s learned.

7.4.5 Relative Attention

With that in mind, it was developed the Music Transformer, a transformer
with relative attention, a small modification in the original model, but which was
responsible for enabling its use in the musical context, as shown in Huang et al.
2018.

While the original Transformer captures self-reference through attention, it
relies on absolute timing signals and thus has a hard time keeping track of
regularity that is based on relative distances, event orderings, and periodicity.
Using relative attention, which explicitly modulates attention based on how far
apart two tokens are, the model is able to focus more on relational features.

41 Source: http://jalammar.github.io/images/t/transformer_self-attention_visualization.png
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Relative self-attention also allows the model to generalize beyond the
length of the training examples, which is not possible with the original
Transformer model.

7.4.6 The Strategy System

One of the challenges encountered in developing the project was to
efficiently implement a system capable of coherently generating different musical
genres and types.

For this, as explained before, a state machine pattern was devised, but as
with this first system transitions have not yet been explored, a strategy pattern
was implemented. In it, each strategy has a specialized model, already trained, to
generate a specific type of music. Three models were used, one trained with
happy music, one with neutral music and the other with sad music.

Figure 10. Code of the angry strategy, an example of implementation to illustrate the
content of a strategy

With this implementation, the system is able to support as many
strategies as needed, simply implementing the isInRange method to determine
whether a strategy is active or not, in addition to having to choose the model it
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will use and the active layers for this strategy, a topic that will be covered in the
next section.

7.4.7 The Layering System

As already shown before, a layering system had been proposed, but now,
it was integrated with the arousal valence model, meaning that the arousal would
now be directly connected to the layering system, resulting in the final scheme
integrating the strategies, the layers and the arousal valence model.

Active Layers / Music Generation Model

Figure 11. The final scheme, integrating strategies, layers and the arousal valence model

With this, the system is able to change the music output just by changing
a layer, or its instrument, or even its duration. To further optimize the song
generation process, the system has always saved at least one song of each
strategy in memory, generating only a new one, if the current one has already
been heard.

7.5 The Implemented System

After these considerations, the implemented system ended up a little different
from the proposed one, embracing all the changes mentioned above.
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Figure 12. The implemented system scheme

1. User’s client requests a music.

2. The server maps the user feeling through the arousal valence

parameters.

3. It fetches, from memory, a song correspondent to the mapped

feeling.

4. If no music is being generated, with the music transformer, it starts

the generation of the most used layers.

5. After the music is fetched, it attaches metadata, such as layers

configuration.

6. Delivers the request response with the music to the final user.

7. With the generated music refreshes the memory.
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8. Final Considerations

Thus, in this project, we were able to start a research on music generation
with deep learning for games, using very interesting techniques such as the
arousal valence model, for emotion mapping, and the layer system, to optimize
the process of generating music.

Furthermore, this study also led to the implementation of a
proof-of-concept system, using a very interesting and promising model, which is
the Music Transformer.

Finally, in a very short time, we got a working system capable of
generating unique and controlled music for games, including some very good
samples, using parameters to integrate it into the game's storyline, which was the
main goal of the project.

8.1 Future Works

As the project implementation time was short, here we address some
possible themes that would integrate very well into the current research and
system presented in this report, but which were not addressed here due to lack of
time.

8.1.1 Improved System Input

For this first approach, only the arousal valence model was used to map
the player's emotions. But as explained before, there is a lot of data that could be
used to improve this process, for instance, all the data retrieved from a game
analytics system, e.g., age, gender, in-game events, etc.

Another option would be to increase the number of dimensions used in
system input. At the moment, only arousal and valence are being considered,
resulting in a 2D mapping, but it would be very interesting to have more
dimensions, making it possible to map 3D structures or even nD spaces with
many dimensions.

Thus, a very interesting work that could be studied in the future would be
the improvement of input systems, either by integration with game analytics data
or by increasing dimensions in the emotion mapping model.

8.1.2 Use Of Image Recognition

Another really nice option for optimizing the feeling map could be the use
of image recognition to predict players' emotions, or at least assist in the mapping
process.

8.1.3 Multiple Input Sources

At this time the system only receives one source of arousal and valence
parameters, but there may be cases where several sources can be much more
efficient, for example you may have many parameters coming from the game
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map, player, plot etc. that you could compute and use to improve the system's
emotion mapping.

Another thing to assess in this approach is the possibility of negative
sources, for example, there may be cases where you don't want to intensify the
feeling the player is having, that is, if the player is sad, you may want him to have
an happier experience, or at least a less sad one, then you could simply use a
negative weight for the source of players' emotions.

8.1.4 Multiple Levels State Machine

As proposed before, a good feature would be the implementation of a
state machine pattern, tracking the transitions of the player's emotions. With this,
the system would be able to use the music transformer to interpolate between the
currently playing music and the next one, generating transitions for the generated
music.

Even more, with the implemented state machine, you can implement
multi-level states, adding new abstraction levels to the models, for example, you
could have a macro level for the game theme, a medium level for the music
genre and a micro level for a more granular analysis of the player's own feeling.

8.1.5 Scale Up The System

Another important thing to be studied, would be ways to scale up the
system. The idea of this topic is to attempt to build an architecture capable of
generating music for thousands of players at same time, for a MMORPG as an
example.

In that context the server would have to be deployed in a cloud
environment, but it would need a deep analysis of what technology should be
used to do so, since there are a lot of infrastructure technologies such as
dockerized options as AWS ECS42, FaaS43 options as Google Cloud Functions44

etc.
Another important thing to be studied would be ways to scale the system.

The idea of   this topic is to try to build an architecture capable of generating music
for thousands of players at the same time, for an MMORPG for example.

In this context, the server would have to be deployed in a cloud
environment, but an in-depth analysis of what technology should be used, as
there are many infrastructure technologies such as dockerized options like AWS
ECS, FaaS options like Google Cloud Functions etc. that could be used in this
process.

44 Are scalable pay-as-you-go functions as a service (FaaS) to run your code with zero
server management. Found at: https://cloud.google.com/functions

43 Function as a Service - Is a category of cloud computing services that provides a
platform allowing customers to develop, run, and manage application functionalities
without the complexity of building and maintaining the infrastructure typically associated
with developing and launching an app.
Source: https://en.wikipedia.org/wiki/Function_as_a_service

42 Amazon Elastic Container Service - Is a fully managed container orchestration service
that makes it easy for you to deploy, manage, and scale containerized applications.
Found at: https://aws.amazon.com/ecs/?nc1=h_ls
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8.1.6 Analyze The MusicTransformer

Perhaps the most interesting option of all would be the attempt to improve
the musical transformer model. One possibility is to analyze other variations of
the vanilla transformer model, such as the FastTransformer (Vyas et al. 2020)
and try to apply their modifications to the MusicTransformer. Another possibility
would be the analysis of other components in the transformer, such as analyzing
the control of the music generation process by changing the number of latent
variables and dimensions in its encoders and decoders (Briot 2020).
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Appendix A: Schedules

1. Planned

Activities

Deadlines

Mar

2021

Apr

2021

May

2021

June

2021

July

2021

Aug

2021

Sept

2021

Oct

2021

Nov

2021

Dec

2021

Project I

Form Delivery

Theme Study

Objectives Alignment

Proposal Delivery

Proposal Response

Align Requirements and Plan R&D

Create the First Project Proposals

Delivery of the Final Report

Project II

Build First "Proof of Concept"

Prototypes and Experiment

Preparation and Execution of Tests

Perform the Analysis of Results

Final Project Delivery II

Final Project Stands II

Table 1: The planned schedule
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2. Current

Activities

Deadlines

Mar

2021

Apr

2021

May

2021

June

2021

July

2021

Aug

2021

Sept

2021

Oct

2021

Nov

2021

Dec

2021

Project I

Form Delivery

Theme Study

Objectives Alignment

Proposal Delivery

Proposal Response

Align Requirements and Plan R&D

Create the First Project Proposals

Delivery of the Final Report

Project II

Build First "Proof of Concept"

Prototypes and Experiment

Preparation and Execution of Tests

Perform the Analysis of Results

Final Project Delivery II

Final Project Stands II

Table 2: The current implemented schedule


