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Abstract

Meirelles Bodin de Moraes, Guilherme; Street de Aguiar, Alexan-
dre (Advisor); Coelho Fernandes, Cristiano Augusto (Co-Advisor).
ScoreDrivenModels.jl: a Julia Package for Generalized Au-
toregressive Score Models. Rio de Janeiro, 2021. 51p. Disser-
tação de Mestrado – Departamento de Engenharia Elétrica, Pon-
tifícia Universidade Católica do Rio de Janeiro.

Score-driven models, also known as generalized autoregressive score (GAS)
models, represent a class of observation-driven time series models. They
possess desirable properties for time series modeling, such as the ability
to model different conditional distributions and to consider time-varying
parameters within a flexible framework. In this dissertation, we present
ScoreDrivenModels.jl, an open-source Julia package for modeling, forecast-
ing, and simulating time series using the framework of score-driven models.
The package is flexible with respect to model definition, allowing the user to
specify the lag structure and which parameters are time-varying or constant.
It is also possible to consider several distributions, including Beta, Expo-
nential, Gamma, Lognormal, Normal, Poisson, Student’s t, and Weibull.
The provided interface is flexible, allowing interested users to implement
any desired distribution and parametrization.

Keywords
score-driven models; generalized autoregressive score models; time series

models; time-varying parameters; non-Gaussian models
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Resumo

Meirelles Bodin de Moraes, Guilherme; Street de Aguiar, Ale-
xandre; Coelho Fernandes, Cristiano Augusto. ScoreDrivenMo-
dels.jl: Pacote em Julia para Modelos Generalizados Au-
torregressivos com Score. Rio de Janeiro, 2021. 51p. Disserta-
ção de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Os modelos orientados por score, também conhecidos como modelos genera-
lizados de score autorregressivo (GAS), representam uma classe de modelos
de séries temporais orientados por observação. Eles possuem propriedades
desejáveis para modelagem de séries temporais, como a capacidade de mo-
delar diferentes distribuições condicionais e considerar parâmetros variantes
no tempo dentro de uma estrutura flexível. Neste trabalho, apresentamos
ScoreDrivenModels.jl, um pacote Julia de código aberto para modelagem,
previsão e simulação de séries temporais usando a estrutura de modelos
baseados em score. O pacote é flexível no que diz respeito à definição do
modelo, permitindo ao usuário especificar a estrutura de atraso e quais pa-
râmetros são variantes no tempo ou constantes. Também é possível consi-
derar várias distribuições, incluindo Beta, Exponencial, Gama, Lognormal,
Normal, Poisson, Student’s t e Weibull. A interface fornecida é flexível,
permitindo aos usuários interessados implementar qualquer distribuição e
parametrização desejada.

Palavras-chave
Modelos orientados por score; modelos generalizados de score autorre-

gressivo; modelos de séries temporais; parâmetros variantes no tempo; modelos
não-Gaussianos
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1
Introduction

Time series models with time-varying parameters have become increa-
singly popular over the years due to their advantages in capturing dynamics
of series of interest. According to [1], the mechanism driving parameter dy-
namics in this general class of models can be of two types: parameter-driven,
as in state space models [2–4], or observation-driven. In this work, we will
focus on a recently proposed class of observation-driven models wherein the
score of the predictive density is used as the driver for parameter updating
[5, 6]. These models have been referred to as generalized autoregressive score
(GAS) models, dynamic conditional score models, or simply score-driven mo-
dels. Additionally, it has been demonstrated that well-established observation
driven models, such as the GARCH [7] and conditional duration models [8],
are particular cases of the score-driven framework.

One of the main advantages of the GAS framework is its flexibility, as
it is possible to consider different non-Gaussian distributions. Moreover, the
updating mechanism is intuitive and determined by the score of the chosen
distribution. These properties have led GAS models to be applied in numerous
fields, such as finance [9, 10], actuaries [11, 12], risk analysis [13, 14], and
renewable generation [15, 16]. We also refer the interested reader to a large
online repository of works on GAS models at http://www.gasmodel.com.

This wide range of applications has motivated the development of soft-
ware packages for this class of models. For instance, there are open-source pac-
kages in Python [17], R [18], and, recently, the data consultancy company Nlitn
have made publicly available Time Series Lab (https://timeserieslab.com),
a free software developed by some of the authors of the theory developed in
[5, 6].

In this work, we present a novel open-source GAS package fully imple-
mented in Julia [19] named ScoreDrivenModels.jl [20]. One of Julia’s main
advantages is to avoid the so-called two-language problem, i.e., the depen-
dence on subroutines implemented in lower-level languages such as C, C++,
or Fortran. Julia achieves this by providing a high-level programming syntax
that allows for rapid prototyping and development without sacrificing compu-
tational performance. Thus, by providing an open-source package completely

http://www.gasmodel.com
https://timeserieslab.com
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Chapter 1. Introduction 12

written in Julia, we facilitate development and contributions by users while
also maintaining a high level of code transparency. The package allows users
to specify a wide variety of GAS models by choosing the conditional distri-
bution, the autoregressive structure, and which parameters are time-varying.
Finally, initialization procedures are implemented to make the estimation pro-
cess more robust for the case of seasonal time series.

The main contributions of this work are:

1. We extend the existing scientific literature [18], which presented a
GAS(1, 1) implementation, by providing an open-source implementation
of the procedures for GAS(p, q) models in an open-source framework.

2. The proposed implementation is entirely programmed in Julia avoiding
the so-called two language problem in the related literature [18].

3. We extend the existing literature [18] by providing relevant new features
and a correction. Firstly, mistaken calculations of the inverse scaling and
inverse square root scaling present in [18] are corrected. Secondly, we
devise a heuristic for estimating the initial parameters which makes the
overall estimation process more robust. Finally, we implement quantile
residuals as an additional feature to be used in model diagnostics.

The remainder of this dissertation is organized as follows. Section 2 pro-
vides a brief overview of the GAS framework. In Section 3, the ScoreDriven-
Models.jl package is presented, including the model specification, estimation,
forecasting, and simulation. Section 4 presents examples of applications to il-
lustrate the use of the package. Conclusions are drawn in Section 5. Finally,
the Appendix provides the derivation of the score for each implemented dis-
tribution.

DBD
PUC-Rio - Certificação Digital Nº 1712848/CA

DBD
PUC-Rio - Certificação Digital Nº 1912822/CA



2
Score Driven Models

Let yt ∈ Y ⊆ R denote the dependent variable of interest, ft ∈ P ⊂ Rk

be a vector of time-varying parameters, and F t = {f0, f1, . . . , ft} and Y t =
{y1, . . . , yt}. For simplicity of notation we define Ft−1 = (F t−1, Y t−1) denote
the sets of available information until time t. We assume that yt is generated
by the probability density function conditioned on the available information
(past data and time-varying parameters) and on the hyperparameter vector θ,
which contains the constant parameters. The predictive distribution of yt has
a closed form, represented as:

p(yt|ft,Ft−1; θ) (2-1)

In score-driven models, we start by choosing the updating mechanism for the
time-varying parameters ft is given by the following equation, referred to as a
GAS(p, q) mechanism:

ft+1 = ω +
p∑
i=1

Aist−i+1 +
q∑
j=1

Bjft−j+1, (2-2)

where ω is a vector of constants, coefficient matrices Ai and Bj have
appropriate dimensions for i = 1, . . . , p and j = 1, . . . , q, and st =
st(yt, ft, Ft−1, Yt−1; θ) is an appropriate function of past data. The unknown
coefficients in Eq. (2-2) are functions of the vector of hyperparameters θ; that
is, ω = ω(θ), Ai = Ai(θ), and Bj = Bj(θ). At instant t, the update of the
time-varying ft for the next period t+ 1 is conducted through Eq. (2-2), with

st = I−dt|t−1 · ∇t, ∇t = ∂ ln p(yt|ft,Ft−1; θ)
∂ft

, (2-3)

where∇t is the called the score and I−dt|t−1 is the scaled Fisher information
of the probability density p(yt|ft,Ft−1; θ). The scaling coefficient d commonly
takes values in {0, 1

2 , 1}. It is worth mentioning that in the case where d = 1
2 ,

it follows that I−
1
2

t|t−1 results from the Cholesky decomposition of I−1
t|t−1.

As a consequence of the time-varying mechanism for the distribution
parameters presented in Eq. (2-2), the conditional distribution of a GAS
model is capable of continuously changing based on the considered data. This
property is illustrated in Fig. 2.1. For instance, if the time series contains

DBD
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Chapter 2. Score Driven Models 14

occasional volatility spikes, the model can capture this behavior through the
time-varying nature of the parameters.

Figure 2.1: The GAS framework allows the conditional distribution to conti-
nuously change based on the data.

2.1
Parametrization

In the GAS updating mechanism (2-2), the parameter ft ∈ P ⊂ Rk

is sometimes bounded – for example, in a Gaussian GAS model where the
variance is time-varying, we would have ft = σ2

t which can only assume positive
values by definition. However, in some cases the recursion can lead to updates
of ft /∈ P . A solution is to reparametrize the equations in order to guarantee
ft ∈ P for every update. To that end, we follow the procedure described in [5]
and present an example to illustrate it.

Let ft be the vector of time-varying parameters of a Gaussian distri-
bution. From the properties of the distribution, it follows that µt ∈ R and
σ2
t ∈ R+. Let us define a new time-varying parameter f̃t ∈ Rk and a map
h : P → Rk, which we denote the link function in the package. In the case of
the Gaussian distribution, a useful approach is to have an IdentityLink for
µt and a LogLink for σ2

t as follows:

ft =
µt
σ2
t

 , f̃t =
 µt

ln σ2
t

 (2-4)

Note that the use of this parametrization will affect the recursion in Eq.
(2-2) as well as the final expressions of st. Thus, let us derive the new recursion
for the (2-2), but this time with the guarantee that every update of ft respects
ft ∈ P . To that end, we also define the inverse map h−1(·) denoted in the
software as the unlink function: ft = h−1(f̃t). Then, we can define the GAS
updating recursion utilizing the parametrization:

DBD
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Chapter 2. Score Driven Models 15

f̃t+1 = ω +
p∑
i=1

Ais̃t−i+1 +
q∑
j=1

Bj f̃t−j+1 (2-5)

The unknown coefficients in (2-5) remain as functions of θ; that is,
ω = ω(θ), Ai = Ai(θ), and Bj = Bj(θ). However, this time, we update the
linked version of the time-varying parameters f̃t using (2-5). It is important to
note that the expressions of s̃t are different for each scaling d ∈ {0, 1

2 , 1}. To
compute these, we must use the derivative ḣ of the map h, which is simply its
Jacobian. In our example, h is defined as

h

µt
σ2
t

 =
h1(µt)
h2(σ2

t )

 =
µ̃t
σ̃2
t

 =
 µt

ln σ2
t

 (2-6)

and its Jacobian is defined as

ḣ

µt
σ2
t

 =
 ∂h1(µt)

∂µt

∂h1(µt)
∂σ2
t

∂h2(σ2
t )

∂µt

∂h2(σ2
t )

∂σ2
t

 =
1 0

0 1
σ2
t

 (2-7)

Note that ḣ is always a diagonal matrix. The reparametrized score
derivations for different scalings and different types of maps are presented
in Appendix A. Given the following definitions

ḣ(ft) = ∂h(ft)
∂f̃t

∣∣∣∣∣
ft

, Jt|t−1J >t|t−1 = I−1
t|t−1, ∇̃t =

(
ḣ
)−1
∇t, (2-8)

then the linked scaled score s̃t can be computed as follows:

s̃t =
(
ḣ
)−1
∇t, for d = 0, (2-9)

s̃t = Jt|t−1∇t, for d = 1
2 , (2-10)

s̃t = ḣI−1
t|t−1∇t, for d = 1. (2-11)

It should be noted that in the work of [18] there is an imprecision that
leads to significant errors when estimating models with inverse square root
scaling (d = 1

2). An example that shows the effects of this mistake is shown in
Appendix A.4.

2.2
Maximum likelihood estimation

In score-driven models the vector of hyperparameters θ is estimated via
maximum likelihood:

θ̂ = arg maxθ
N∑
t=1

ln p(yt|ft,Ft−1; θ) (2-12)
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Chapter 2. Score Driven Models 16

Evaluating the log-likelihood function of a GAS model is particularly
simple. Given values for the constant parameters θ, the GAS updating equation
(2-2) outputs the conditional distribution at each time period, which generally
has a closed form. Thus, it suffices to look at ln p(yt|ft,Ft−1; θ) for a particular
value of θ.

The maximum likelihood estimation is performed by global optimization
methods such as L-BFGS [21] and Nelder-Mead [22]. If the optimization routine
used to find the optimum requires derivatives this should be done numerically.
Constrained optimization can also be applied, using, for instance, a Newton
interior points method.

2.3
Forecasting

Forecasting and simulation of future scenarios are among the main
goals in time series analysis. In [23], details of the procedure for out-of-
sample confidence intervals for the time-varying parameters are discussed.
The procedure discussed in Section 4.1 of [23] is currently implemented in
ScoreDrivenModels.jl as follows:

1. Given θ̂T and the filtered state f̂T+1, draw S values y1
T+1, . . . , y

S
T+1 from

the estimated conditional density at T + 1: yT+1 ∼ p(yT+1|f̂T+1, θ̂T ) for
s = 1, . . . , S.

2. Use y1
T+1, . . . , y

S
T+1 and the recursion (2-2) to obtain the filtered values

f̂ 1
T+2, . . . , f̂

S
T+2.

3. Repeat steps 1 and 2 H times for H steps ahead generating one new
value of y and f per scenario s.

Once the procedure is over, S scenarios for the observations within the
entire horizon, ysT+k for k = 1, . . . , H and s = 1, . . . , S have been simulated.
Based on these set of scenario, one can calculate quantile forecasts, build
empirical distributions, or use them to feed decision under uncertainty models,
such as stochastic programming. Note that this method solely considers
the uncertainty of innovations. The consideration of uncertainty on both
innovations and parameters, as discussed in [23], is considered future work
for the package.
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Chapter 2. Score Driven Models 17

2.4
Diagnostics

One way to diagnose if score-driven models has captured the intrinsic
structure of the time series and its distribution is to analyze its quantile
residuals [24]. Under correct model specification the PIT, pt, of the residuals
is a standard uniform random variable U(0, 1). If this is the case, the quantile
residuals, as given by equation 2-13 where Φ is the cumulative standard
Gaussian distribution, are normally distributed by construction and one can
diagnose the model residuals using standard statistical tests. The quantile
residuals are calculated by evaluating quantiles of the cumulative density
function of the PIT of residuals.

rquantile = Φ−1(pt) (2-13)

In the case of models with a discrete distribution the PIT of the residuals
is not a standard uniform random variable U(0, 1) [25]. To address this issue the
randomized PIT is estimated. We draw each pt at random from the following
uniform distribution

pt ∼ U (Ft(yt − 1), Ft(yt)) (2-14)
Then pt are again U(0, 1) as their distribution is a mixture of uniform
distributions on sub-intervals in [0, 1] and one can diagnose the residuals using
standard statistical tests.

2.5
Checking probabilistic forecasts

Even if a model is estimated under correct specification, it still provides
no guarantee of good out-of-sample forecasts. When forecasting is a goal,
techniques to benchmark and track the performance of the forecasts should
be implemented. In particular, to evaluate probabilistic forecasts one should
keep track of the forecasting errors and scores such as the Continuous Ranked
Probability Score (CRPS) [26]. The CRPS is calculated using the a predictive
density F̂t+k|t and the observation yt+k:

CRPS(F̂t+k|t, yt+k)t,k =
∫
x

[
F̂t+k|t (x)− 1 (yt+k ≤ x)

]2
dx (2-15)

It is very common that the probabilistic forecast relies on simulated scenarios
(Xi, . . . , Xm ∼ F̂t+k|t) of that predictive density. Because of this we can
approximate the cumulative distribution function (cdf) by the equation

F̂t+k|t(x) = 1
m

m∑
i=1

1{Xi ≤ x} (2-16)

With the approximated cdf the CRPS reduces to
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CRPS(F̂t+k|t, yt+k)t,k = 1
m

m∑
i=1
|Xi − yt+k|+

1
m2

m∑
i=1

m∑
j=1
|Xi −Xj| (2-17)

Notice here that if one makes a probabilistic forecast where all of the scenarios
are the same, equivalent to a deterministic forecast, the CRPS is equivalent
to the Mean Absolute Error (MAE) as the contribution for one lead time will
be exactly |X̄ − y|. The implementation of equation 2-17 is computationally
inefficient O(m2) [27] and can be improved by adopting order statistics
X(1), . . . , X(m), thus achieving an average O(m logm) performance.

CRPS(F̂t+k|t, yt+k)t,k = 2
m2

m∑
i=1

(X(i) − yt+k)(m1{yt+k < X(i)} − i+ 1
2) (2-18)

Equation 2-18 represents the CRPS of a forecast made at time t and lead time
k. To evaluate the probabilistic forecasts performance one should gather the
CRPS in different out-of-sample periods and average the calculated CRPS for
each lead time. The preferred model is the one with minimum CRPS.

CRPS(F̂t+k|t, yt+k)k = 1
T

T∑
t=1

CRPS(F̂t+k|t, yt+k)t,k (2-19)
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3
The ScoreDrivenModels.jl package

ScoreDrivenModels.jl enables users to create and estimate score-driven
models and to perform forecasting and simulation while working purely in Julia.
Its API allows users to choose between different distributions, scaling values,
lag structures, and optimization methods. The basic code structure allows con-
tributors to add new distributions and optimization methods; technical details
about adding new features are available in the package documentation. Instal-
lation of the package is easily conducted using the Julia Package manager:

pkg> add ScoreDrivenModels

3.1
Model specification

To create a Model, the user must specify 1) the desired distribution, 2)
the scaling, 3) the lag structure, and 4) which parameters should be considered
time-varying.

1. The lag structure in a GAS(p, q) model can be specified in two ways:
either through integers p and q, which results in all lags from 1 to p and
1 to q being added, or through arrays of integers ps and qs containing
only the desired lags.

2. To specify the distribution, the user needs to choose a distribution among
the available ones that have an interface with Distributions.jl. The list of
available distributions is displayed in Table 3.1. Furthermore, we refer the
interested reader to Appendix B, where we provide details on the score
calculations for each probability density made available in the package.

3. The scaling is specified by defining the value of d, which can be 0, 1, or 1
2 ,

respectively the identity scaling, inverse scaling, and inverse square-root
scaling.

4. In order to define which distribution parameters should be time-varying,
the keyword argument time_varying_params can be used. Note that
the default behavior is to have all parameters as time-varying.
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Distribution Number of
parameters

Identity
scaling

Inverse
scaling

Inverse
square-root
scaling

Beta 2 X X X
BetaFourParameters 4 X – –
Exponential 1 X X X
Gamma 2 X X X
LogitNormal 2 X X X
LogNormal 2 X X X
NegativeBinomial 2 X – –
Normal 2 X X X
Poisson 1 X X X
TDist 1 X X X
TDistLocationScale 3 X X X
Weibull 2 X – –

Table 3.1: List of currently implemented distributions and scalings. # repre-
sent the number of parameters of the distribution.

Once the model is specified, the unknown parameters that must be
estimated are automatically represented as NaN within the Model structure.
As an example, a GAS(1, 2) model with lognormal distribution and inverse
square-root scaling can be created by writing the following line of code:

julia> Model(1, 2, LogNormal, 0.5)

Model{LogNormal,Float64}([NaN, NaN], Dict(1=>[NaN 0.0; 0.0 NaN]),
Dict(2=>[NaN 0.0; 0.0 NaN],1=>[NaN 0.0; 0.0 NaN]), 0.5)

Dict is the Julia data structure for dictionaries. Its use allows code
flexibility enabling computational simplifications for complex lag structures.
As displayed above, the unknown constant parameters to be estimated are set
as NaN. In this case, the constant parameters considered in vector ω are A1,
B1, and B2.

In some applications, however, the user might define only one of the
distribution parameters as time-varying. In the example below, the only time-
varying parameter is µt, so the keyword argument time_varying_params in-
dicates a vector with only one element, [1], representing the first parameter of
the lognormal distribution. A table that indicates the distribution parameters
and their orders is available in the package documentation. The choice of the
time-varying parameter can be expressed by the following code:

julia> Model(1, 2, LogNormal, 0.5; time_varying_params = [1])

Model{LogNormal,Float64}([NaN, NaN], Dict(1=>[NaN 0.0; 0.0 0.0]),
Dict(2=>[NaN 0.0; 0.0 0.0],1=>[NaN 0.0; 0.0 0.0]), 0.5)
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Users can also specify the lag structure by passing only the lags of interest.
Note that this feature is equivalent to defining that matrices Ai and Bj are
equal to zero for certain values i and j. An example is a model that uses lags 1
and 12, which means that only the matrices A1, A12, B1, and B12 have nonzero
entries:

julia> Model([1, 12], [1, 12], LogNormal, 0.5)

Model{Normal,Float64}([NaN, NaN],
Dict(12=>[NaN 0.0; 0.0 NaN],1=>[NaN 0.0; 0.0 NaN]),
Dict(12=>[NaN 0.0; 0.0 NaN],1=>[NaN 0.0; 0.0 NaN]), 0.5)

3.2
Estimation

Once the model is specified, the next step is estimation. Users can choose
from different optimization methods provided by Optim.jl [28]. Since this
optimization problem is non-convex, there is no guarantee that the optimal
value found by the optimization method is the global optimum. To increase
the chances of finding the global optimum, we run the optimization algorithm
for different initial parameter values. The default method is Nelder-Mead with
3 random initial parameter values, but the optimization interface is highly
flexible. Users can customize convergence tolerances, choose initial parameter
values, and, depending on the optimization method, choose bounds for the
parameters. By default, these initial values are the unconditional mean of ft+1

which is given by
E[ft+1] = ω

(
I −

q∑
j=1

Bj

)−1

. (3-1)

As an illustration, let us estimate a GAS model using the same data and
specification used in the R package GAS [18] paper with the function fit!,
the data is also available in package repository [20]. The data represents the
monthly US inflation measured as the logarithmic change of the consumer price
index. The model can be estimated as follows:

julia> Random.seed!(123)

julia> y = vec(readdlm("../test/data/cpichg.csv"))

julia> gas = Model(1, 1, TDistLocationScale, 0.0,

time_varying_params=[1, 2])

julia> f = fit!(gas, y)

Round 1 of 3 - Log-likelihood: -178.20653071457616
Round 2 of 3 - Log-likelihood: -185.28141597363677
Round 3 of 3 - Log-likelihood: -178.20684252730365
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Users also have the option to check more detailed results of the opti-
mization procedure by changing the keyword argument verbose. The default
value of this argument is 1; to check the optimization summary, users should
set the verbose level to 2, and to see the value of the objective function at
each iteration of the optimization, it should be set to 3. To avoid the printing
of outputs, users can set verbose = 0. To illustrate, results with level 2 is
depicted below.

julia> gas = Model(1, 1, TDistLocationScale, 0.0,

time_varying_params=[1, 2])

julia> f = fit!(gas, y; verbose=2)

Round 1 of 3 - Log-likelihood: -178.20685880563667
Round 2 of 3 - Log-likelihood: -178.2067301284657
Round 3 of 3 - Log-likelihood: -178.20686956876364

Best optimization result:
* Status: success

* Candidate solution
Minimizer: [3.78e-02, -2.58e-01, 1.87e+00, ...]
Minimum: 6.456766e-01

* Found with
Algorithm: Nelder-Mead
Initial Point: [3.33e-01, 5.64e-01, 2.88e-01, ...]

* Convergence measures
standard-deviation <= 1.0e-06

* Work counters
Seconds run: 0 (vs limit 100000000)
Iterations: 513
f(x) calls: 802

As mentioned before, while the maximization of the log-likelihood is done
by default through the Nelder-Mead method with 3 random initial values, these
features can be changed by the user. For example, to use the L-BFGS algorithm
with 5 random initial values:

julia> gas = Model(1, 1, TDistLocationScale, 0.0,

time_varying_params=[1, 2])
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julia> f = fit!(gas, y; opt_method=LBFGS(gas, 5))

Round 1 of 5 - Log-likelihood: -178.20649316732568

Round 2 of 5 - Log-likelihood: -178.20649425266643

Round 3 of 5 - Log-likelihood: -178.20649317466822

Round 4 of 5 - Log-likelihood: -189.08548581293175

Round 5 of 5 - Log-likelihood: -355.33018234566873

Once the estimation step is finished, the user can query the results by
calling the function results:

julia> results(f)

--------------------------------------------------------
Distribution: Distributions.LocationScale{

Float64,TDist{Float64}}
Number of observations: 276
Number of unknown parameters: 7
Log-likelihood: -178.2065
AIC: 370.4130
BIC: 395.7558
--------------------------------------------------------
Parameter Estimate Std.Error t stat p-value
omega_1 0.0374 0.0311 1.2016 0.2686
omega_2 -0.2599 0.1409 -1.8454 0.1075
omega_3 1.8758 0.2914 6.4380 0.0004
A_1_11 0.0717 0.0184 3.8884 0.0060
A_1_22 0.4538 0.2139 2.1216 0.0715
B_1_11 0.9432 0.0272 34.6438 0.0000
B_1_22 0.8556 0.0743 11.5141 0.0000

This result matches the example discussed in [18] with the exception of
omega_3, due to a difference in parametrization between the two packages.
Once the parameter is recovered to its original parametrization, the result
becomes the same.

3.3
Residuals analysis

After estimating score-driven models one can use the resulting residuals
for model diagnostics. With this aim in mind, auto-correlation function,
histogram and QQ plot can be obtained using the following code:
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Figure 3.1: Plots to diagnose the quantile residuals of the model. Top left -
quantile residuals, top right - autocorrelation function, bottom left - histogram,
bottom right - QQ plot.

julia> plot(f)

In this case the output indicated in Figure 3.1 that there is still some
remaining structure in lags 1, 3, 8 and 22 and an outlier near the observation
250.

3.4
Forecasting and simulation

Forecasting in this framework is done by simulation as per Section
2.3. Function forecast runs the procedure proposed by [23] and returns a
Forecast structure that has the expected value for time-varying parameters,
observations, and the related scenarios used to find them. By default the
structure also stores the 2.5%, 50% and 97.5% quantiles.

Next, we will present forecasting results using the previously estimated
US inflation data. In the example below, the first column is the location
parameter, the second column is the scale parameter, and the third column
represents the degrees of freedom parameter.

julia> forec = forecast(y, gas, 12)

julia> forec.parameter_forecast

12x3 Array{Float64,2}:
0.134315 0.159539 6.52619
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0.16581 0.166047 6.52619
0.196429 0.171559 6.52619
0.219776 0.175266 6.52619
0.24502 0.17878 6.52619
0.267964 0.179804 6.52619
0.288719 0.182248 6.52619
0.308389 0.184335 6.52619
0.327624 0.185162 6.52619
0.348591 0.18611 6.52619
0.363832 0.186892 6.52619
0.380106 0.187219 6.52619

We can also obtain the scenarios of observations, ysT+k for k = 1, . . . , H
and s = 1, . . . , S, that generated the above forecasted values as follows:

julia> forec.observation_scenarios

12x10000 Array{Float64,2}:
1.3839 -0.378146 ... 0.561549 0.0415801
0.971144 0.116446 0.478346 0.290846
1.1637 0.439987 0.157433 -0.195271
0.50442 -0.0417178 0.204036 -0.549865
1.39936 0.149797 0.606875 -0.263888
1.04027 0.564609 ... -0.234421 0.139999
0.609759 1.2166 0.236292 0.408869
0.693315 0.057054 0.802398 0.285412
0.908195 1.06543 1.22845 0.256618
1.89531 0.566139 0.808426 0.121839
1.7671 0.813116 ... 0.639728 0.0408979
0.840164 0.72076 0.316973 0.300578

For the sake of clarity, the forecast ŷT+k is the mean of the distribution
with parameters forec.parameter_forecast.

3.5
Cross validation

One way to check the model forecasting performance is to estimate
and forecast the same model multiple times in a rolling window scheme.
In a simple manner one define a fixed number of steps ahead to predict
and perform multiple estimations and forecasts for different periods of time.
ScoreDrivenModels.jl has a cross_validation function that only requires the
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user to define a model, the number of steps ahead to forecast and an index of
the time series where the user wants to begin the rolling window. The function
will perform a rolling window scheme of estimations and forecasts for all the
periods from the desired index until the last period where it is possible to
compare forecasts and observations. Let us show an example where we want
to test the forecasting performance of two Student’s t models and plot the
mean absolute errors and mean CRPSs per lead time.

julia> gas_t = Model(1, 1, TDistLocationScale, 1.0;

time_varying_params = [1])

julia> gas_t_1_2 = Model(1, 2, TDistLocationScale, 1.0;

time_varying_params = [1])

julia> steps_ahead = 50

julia> first_idx = 150

julia> b_t = cross_validation(gas_t, y, steps_ahead, first_idx)

julia> b_t_1_2 = cross_validation(gas_t_1_2, y, steps_ahead, first_idx)

julia> plot(b_t, "GAS(1, 1) Student t")

julia> plot!(b_t_1_2, "GAS(1, 2) Student t"; legend = :topleft)

Figure 3.2: MAE and mean CRPS per lead time of two models.

Using this feature, it is straightforward to compare the forecasting per-
formance of different models. In the example above we compare a GAS(1, 1)
and a GAS(1, 2) models with inverse scaling and time-varying location pa-
rameter. From Fig. 3.2, it can be seen that the GAS(1, 1) model presented
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superior performance in terms of mean CRPS and MAE in comparison to the
GAS(1, 2).
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4
Applications

4.1
Hydropower generation in Brazil

The Brazilian system operator regularly publishes an indicator of how
much energy can be generated from water inflows among all hydropower plants
in the country. This indicator is referred to as Natural Inflow Energy (NIE).
Usually, NIE is computed in daily basis per region and then aggregated in a
monthly basis as the average of each month. The NIE works as an indicator
of the health of the reservoir levels in the Brazilian electric system and it is
an important variable for the definition of energy spot prices in each Brazilian
sub-system.

Due to the high dependency of water resources, in Brazil, the monthly
NIE is a key component of system operations and infrastructure planning
studies. In most decision under uncertainty methodologies, it is essential to
have simulated scenarios describing the empirical distribution rather than
simple point forecasts.

In this section, we present an example that generates scenarios of the
monthly aggregated NIE in the Northeastern region of Brazil illustrated in Fig.
4.1. This example employs a lognormal GAS model with tailored lag structure,
identity scaling and time-varying parameter µt. Finally, NIE scenarios are
simulated based on the fitted hyperparameters.

In this model we utilize lags 1 to 4 for the score and 1, 2, 3, 10, 11, 12 for
the autoregressive components. Although the main goal of this experiment is
to elucidate the software syntax, this model was chosen based on the Bayesian
Information Criteria of candidate models. The resulting model can be written
as follows:

µt+1 = ω1 +∑4
i=1 Aist−i+1 +B1µt +B2µt−1 +B3µt−2+

B10µt−9 +B11µt−10 +B12µt−11,

ln(σ2
t+1) = ω2

(4-1)

In this model the initial parameters µ1, . . . , µ12, σ2
1, . . . , σ

2
12 are unknown

and must be estimated. Although the parameters µ1, . . . , µ12, σ2
1, . . . , σ

2
12 could

be included in the vector of hyperparameters θ, this would add 24 extra
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Figure 4.1: NIE in the Northeastern region of Brazil.

parameters to be estimated and thus significantly increase the computational
cost of the estimation.

For this reason, different procedures to approximate the initial para-
meters are usually employed. In ScoreDrivenModels.jl, we implement the
procedure described in [16]. The first step is to separate the original time
series yt into 12 time series containing solely the observations of same
month, i.e., {y1, y13, y25, . . . , y1+12n}, {y2, y14, y26, . . . , y2+12n}, . . . , {y12, y24,

y36, . . . , y12+12n}, and then the second step is to estimate the parameters
µ1, . . . µ12, σ2

1, . . . , σ
2
12 using maximum likelihood in the correspondent time

series. This means that µ2, σ
2
2 will be estimated using the time series {y2, y14,

y26, . . . , y2+12n} and so on for other pairs of initial parameters. Note that this
procedure, which is implemented by the function dynamic_initial_params in
our package, is relevant for ensuring good estimation results when considering
seasonal time series. The model is estimated as follows:

julia> Random.seed!(123)

julia> y = vec(readdlm("../test/data/nie_northeastern.csv"))

julia> y_train = y[1:400]

julia> gas = Model([1, 2, 3, 4], [1, 2, 3, 10, 11, 12],

LogNormal, 1.0; time_varying_params=[1])

julia> initial_params = dynamic_initial_params(y_train, gas)

julia> f = ScoreDrivenModels.fit!(gas, y_train;
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initial_params=initial_params)

julia> plot(f)

Figure 4.2: Quantile residuals of the log normal GAS with inverse scaling
model. Top left - quantile residuals, top right - autocorrelation function,
bottom left - histogram, bottom right - QQ plot.

Once the model is estimated we can generate 1000 NIE scenarios for the
next 60 months following the methodology discussed in Section 2.3. We will
utilize forecast in order to obtain the quantiles as well. The data set used to
estimate the model used data from January 1961 until April 1994. To illustrate
the adequacy of our model forecast, we present in Fig. 4.3 an out-of-sample
study, where the simulated scenarios (gray lines), and related quantiles (red
dotted lines) from May 1994 until April 1999 are contrasted to the actual
observed values.

julia> forec = forecast(y_train, gas, 60;

S = 1_000, initial_params = initial_params)

4.2
GARCH model

One of the advanced features of ScoreDrivenModels.jl is allowing users to
change the default parametrization. An example of a different parametrization
is the GARCH(1, 1) GAS model. It can be shown that a GAS(1, 1) is equivalent
to a GARCH(1, 1) if the function h is the identity (we refer the interested

DBD
PUC-Rio - Certificação Digital Nº 1712848/CA

DBD
PUC-Rio - Certificação Digital Nº 1912822/CA



Chapter 4. Applications 31

Figure 4.3: NIE scenarios in the Northeastern region of Brazil.

reader to Appendix A.3 for further details). To ensure the equivalence, the
user must define the identity link function for both time-varying parameters.
To do this the user must overwrite three ScoreDrivenModel.jl methods as
detailed in the following example:
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julia> function ScoreDrivenModels.link!(param_tilde::Matrix{T},

::Type{Normal}, param::Matrix{T},

t::Int) where T

param_tilde[t, 1] = link(IdentityLink, param[t, 1])

param_tilde[t, 2] = link(IdentityLink, param[t, 2])

return

end

julia> function ScoreDrivenModels.unlink!(param::Matrix{T},

::Type{Normal},

param_tilde::Matrix{T},

t::Int) where T

param[t, 1] = unlink(IdentityLink, param_tilde[t, 1])

param[t, 2] = unlink(IdentityLink, param_tilde[t, 2])

return

end

julia> function ScoreDrivenModels.jacobian_link!(

aux::AuxiliaryLinAlg{T}, ::Type{Normal},

param::Matrix{T}, t::Int) where T

aux.jac[1] = jacobian_link(IdentityLink, param[t, 1])

aux.jac[2] = jacobian_link(IdentityLink, param[t, 2])

return

end

Once the methods have been overwritten for the Normal distribution,
the recursion will apply the IdentityLink in both parameters and the user
can proceed to the estimation step. Below, we run an example provided in [29]
for daily German mark/British pound exchange rates. Note that there are also
bounds being provided for the hyperparameter estimation through lb and ub.

julia> y = vec(readdlm("../test/data/BG96.csv"))

julia> initial_params = [mean(y) var(y)]

julia> ub = [1.0, 1.0, 0.5, 1.0]

julia> lb = [-1.0, 0.0, 0.0, 0.5]

julia> gas = Model(1, 1, Normal, 1.0, time_varying_params = [2])

julia> initial_point = [0.0, 0.5, 0.25, 0.75]

julia> f = fit!(gas, y; initial_params = initial_params,

opt_method = IPNewton(gas, [initial_point]

ub=ub, lb=lb))

Round 1 of 1 - Log-likelihood: -1106.598367006442

julia> results(f)
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--------------------------------------------------------
Distribution: Normal
Number of observations: 1974
Number of unknown parameters: 4
Log-likelihood: -1106.5984
AIC: 2221.1967
BIC: 2243.5480
--------------------------------------------------------
Parameter Estimate Std.Error t stat p-value
omega_1 -0.0062 0.0085 -0.7373 0.5019
omega_2 0.0108 0.0029 3.7732 0.0196
A_1_22 0.1534 0.0266 5.7726 0.0045
B_1_22 0.9593 0.0144 66.6015 0.0000

The results obtained above are the same as the ones found in the Section
4.1 of [29], with the exception of one parameter. This is due to a difference
in the parametrizations of the models – the demonstration of the equivalence
between the hyperparameters of the GAS model and the GARCH model can
be found in Appendix A.3. Note that, following the demonstration in A.3, we
have β1 = B1 − A1 = 0.8059, which is exactly the reported value in [29].

We have also run the same example using the R package rugarch [30]
and obtained the same result, thus further illustrating the equivalence of the
GARCH(1, 1) and the Normal GAS(1, 1) under this parametrization.
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5
Conclusion and discussion

The ScoreDrivenModels.jl package provides a general framework for
score-driven models and represents a user-friendly, off-the-shelf tool. The
package is fully implemented in Julia, thus not depending on subroutines
written in lower-level languages such as C or Fortran. The model specification
is flexible and allows defining any desired lag structure, as well as any
distribution due to a tailored dependency on the Distributions.jl package.
The estimation procedure is based on numerical optimization algorithms such
as Nelder-Mead or L-BFGS and employs the well-known package Optim.jl.
Special initialization procedures are implemented to robustify the estimation
process for the case of seasonal time series. Available forecasting and simulation
procedures allow users to study future data from the estimated model. Finally,
the examples provided in Section 4 illustrate the functionalities of the package
as well as possible applications. In particular, we discussed a time series model
that only generates positive scenarios, which is a very desirable characteristic
for this application and a source of many discussions throughout the Brazilian
energy sector. The software continues to evolve, new features such as an
heuristic for the initial hyperparameter and unobserved components modeling
are considered as future research topics. The software documentation can be
found in https://lampspuc.github.io/ScoreDrivenModels.jl/latest/

During the conception of this work, we came across the many challenges
of implementing score-driven models. We would like to list insights gained from
experience as well as challenges that are yet to be faced, also known as research
opportunities

– Insights

– We found that the choice of initial parameters of the updating
mechanism significantly influences the estimation procedure and
that efficient initial parameters choices are problem-dependent. In
particular, it is a good practice for seasonal time series to use
heuristics based on seasonal unconditional statistics such as the one
described in Section 4.

– We understand that some models diverge without a proper scaling
coefficient d. Even when choosing the correct coefficient d, the

https://lampspuc.github.io/ScoreDrivenModels.jl/latest/
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Fisher information might not be the best scaling matrix. Also,
it is not easy to calculate the Fisher information analytically for
some distributions, and one example is the Weibull distribution. An
alternative to the Fisher information is to scale using the Hessian
matrix or a moving average of Hessian matrices.

– Empirically we observe that slightly different initial points on the
log-likelihood maximization can lead to very different objective
values. We tackled this problem by running the maximization with
different initial points and analyzing if they converge to the same
objective.

– Future research topics

– Study how the consideration of initial parameters as part of the
hyperparameters vector affect the estimation procedure. Some inte-
resting questions: Considering the initial parameters as hyperpara-
meters improve the maximum likelihood considerably? Considering
the initial parameters as hyperparameters improve the forecasting
performance of score-driven models? In other words, does it cause
overfitting? When considering initial parameters as hyperparame-
ters, what should be the heuristics to choose initial optimization
points?

– Compare the forecasting performance of different updating mecha-
nisms, e.g., GAS(p, q) dynamics against unobserved components
dynamics.

– Extensively study and compare heuristics for choosing the initial
points in the optimization routine. Implement estimation procedu-
res that use automatic differentiation techniques and analyze if there
are any differences in speed and accuracy compared to estimation
procedures that use finite difference techniques.
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A
Notes on parametrizations

The use of different link functions and scaling coefficients gives rise to
different parametrizations and, therefore, different models. In this appendix,
we present and explore modeling variants due to the choice of link functions
and values for the scaling coefficient.

A.1
Possible Parametrizations

There are three mapping functions available in ScoreDrivenModels.jl.
Within the context of the software we call them Links. Each one of them can
be used as the default mapping function for a given distribution implemented
in the package.

– Identity link: f̃ = f where f ∈ R and f̃ ∈ R

– Log link: f̃ = ln (f − a) where f ∈ [a,∞) and f̃ ∈ R

– Logit link: f̃ = ln
(
f−a
b−f

)
where f ∈ [a, b] and f̃ ∈ R

A.2
Score Derivations for Different Scaling Values

In this section we derive expressions (2-9), (2-10), and (2-11).

A.2.1
Scaling d = 0

For d = 0 the score is simply equal to

∇̃t = ∂ ln p(yt|yt−1, ft)
∂f̃t

, (A-1)

which is equivalent to

∇̃t = ∂ft

∂f̃t
· ∂ ln p(yt|yt−1, ft)

∂ft
. (A-2)

Notice that one can show by the inverse function theorem that this is the
inverse of the Jacobian ḣ. Thus, it follows that

∇̃t =
(
ḣ
)−1
∇t. (A-3)
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By proceeding the calculus above indicated, we show that

∇̃t =
∂ ln p(yt|yt−1,µ,σ2)

∂µ
∂ ln p(yt|yt−1,µ,σ2)

∂σ̃2

 =
1 0

0 1
σ2
t

−1 ∂ ln p(yt|yt−1,µ,σ2)
∂µ

∂ ln p(yt|yt−1,µ,σ2)
∂σ2

 (A-4)

∇̃t =
∂ ln p(yt|yt−1,µ,σ2)

∂µ̃
∂ ln p(yt|yt−1,µ,σ2)

∂σ̃2

 =
1 0

0 σ2
t

∂ ln p(yt|yt−1,µ,σ2)
∂µ

∂ ln p(yt|yt−1,µ,σ2)
∂σ2

 (A-5)

∇̃t =
∂ ln p(yt|yt−1,µ,σ2)

∂µ̃
∂ ln p(yt|yt−1,µ,σ2)

∂σ̃2

 =
 ∂ ln p(yt|yt−1,µ,σ2)

∂µ
∂ ln p(yt|yt−1,µ,σ2)

∂σ2 · σ2
t

 . (A-6)

A.2.2
Scaling d = 1/2

The original scaled score is st = Jt|t−1∇t as in considered in [5]. Thus,
recall that

I−1
t|t−1 = Jt|t−1J >t|t−1. (A-7)

In this case, the new scaled score is s̃t = J̃t|t−1∇̃t. Thus, if ∇̃t =
(
ḣ
)−1
∇t and

J̃t|t−1 is yet to be calculated, we have

It|t−1 = E
[
∇t∇>t

]
(A-8)

Ĩt|t−1 = E
[(
ḣ
)−1
∇t∇>t

(
ḣ
)−1

]
(A-9)

Ĩt|t−1 =
(
ḣ
)−1

E
[
∇t∇>t

] (
ḣ
)−1

(A-10)

Ĩt|t−1 =
(
ḣ
)−1
It|t−1

(
ḣ
)−1

. (A-11)

As
(
ḣ
)−1

is a diagonal matrix, in the above development we omitted the
transpose operator. So, the inverse of the reparametrized information matrix
is equal to

Ĩ−1
t|t−1 = ḣI−1

t|t−1ḣ (A-12)

Ĩ−1
t|t−1 = ḣJt|t−1J >t|t−1ḣ. (A-13)

Hence, it follows that

J̃t|t−1J̃ >t|t−1 = ḣJt|t−1J >t|t−1ḣ (A-14)

J̃t|t−1 = ḣJt|t−1, (A-15)

which lead us to conclude that for this type of scaling s̃t = st. This becomes
clear in the following development:

s̃t = J̃t|t−1∇̃t (A-16)
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s̃t = ḣJt|t−1
(
ḣ
)−1
∇t, (A-17)

In the case that Jt|t−1 is diagonal, because ḣ is diagonal we have

s̃t = Jt|t−1∇t = st. (A-18)

A.2.3
Scaling d = 1

In this case, the scaled score is equal to st = I−1
t|t−1∇t and the reparame-

trized scaled score is equal to s̃t = Ĩ−1
t|t−1∇̃t. As previously calculated we have

that

Ĩ−1
t|t−1 = ḣI−1

t|t−1ḣ (A-19)

∇̃t =
(
ḣ
)−1
∇t. (A-20)

Therefore,

s̃t = Ĩ−1
t|t−1∇̃t (A-21)

s̃t = ḣI−1
t|t−1ḣ

(
ḣ
)−1
∇t (A-22)

s̃t = ḣI−1
t|t−1∇t (A-23)

s̃t = ḣst. (A-24)

A.3
Different Parametrizations Lead to Different Models

One of the examples given in [5] shows the equivalence between a
GARCH(1, 1) and GAS(1, 1) with Normal distribution and d = 1. An
important note on this fact is that the models are only equivalent if the
variance, σ2, is considered a time-varying parameter, i.e., if the link is the
identity function. Therefore, if a log link is used to ensure a positive value
for σ2, for instance, the equivalence will not hold. As this calculations are not
shown in any other work and they reveal relevant insights that can be tested
in through our software, we provide further details in the sequel.

Thus, let us develop the GAS recursion for both cases. Recall the Normal
probability density function (pdf):

p(yt|yt−1, µ, σ
2) = 1√

2πσ2
e

(
−(yt−µ)2

2σ2

)
. (A-25)

The log-pdf is:
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ln p(yt|yt−1, µ, σ
2) = −1

2 ln 2π − 1
2 ln σ2 − 1

2
(yt − µ)2

σ2 . (A-26)

To calculate the score with respect to σ2 we need to calculate the following
derivative: ∂ ln p(yt|yt−1, µ, σ

2)
∂σ2 = −1

2σ2 + (yt − µ)2

2σ4 . (A-27)
Then, we calculate the Fisher information as follows:

−E
[
∂2 ln p(yt|yt−1, µ, σ

2)
∂σ2∂σ2

]
= 1

2σ4 . (A-28)

Now if we proceed to write the GAS(1,1) recursion using the inverse scaling
d = 1, we find

σ2
t+1 = ω + A1st +B1σ

2
t (A-29)

σ2
t+1 = ω + A1((yt − µt)2 − σ2

t ) +B1σ
2
t . (A-30)

By assuming µ = 0 under correct specification, the recursion becomes

σ2
t+1 = ω + A1(y2

t − σ2
t ) +B1σ

2
t , (A-31)

which is equivalent to the GARCH(1,1) model

σ2
t+1 = α0 + α1y

2
t + β1σ

2
t . (A-32)

Note that there is sufficient degrees of freedom to make the correspondence
between the parameters of the two models, e.g., α0 = ω, α1 = A1, β1 = B1−A1.

Now let us work with a different parametrization to assure a positive value
to σ2. The approach suggested in [5] is to use a map h(·) = ln(·), i.e., σ̃2 = ln σ2.
When we use this parametrization the recursion adapts the following way: σ2

t = h−1(σ̃2
t ),

σ̃2
t+1 = ω + A1s̃t +B1σ̃

2
t .

(A-33)

And we shown in the previous section that s̃t = ḣst. In this case ḣ = 1
σ2
t
, so

the recursion assumes the following form: σ2
t = h−1(σ̃2

t ),
σ̃2
t+1 = ω + A1

y2
t−σ2

t

σ2
t

+B1σ̃
2
t .

(A-34)

If we rewrite the recursion solely in terms of σ2 we have

ln
(
σ2
t+1

)
= ω + A1

y2
t − σ2

t

σ2
t

+B1 ln
(
σ2
t

)
. (A-35)

In this case however, it is impossible to choose the parameters ω,A1 and B1

to meet a recursion equivalent to (A-32).
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A.4
Imprecision in the R GAS package

In [18], they develop the relations for the score and Fisher information
when dealing with reparametrizations. The relations that they state are correct
but incomplete for the understanding of the GAS updating mechanism. In
fact, these missing informations are mistakenly programmed in their package.
This mistakes cause problems in cases where users request for calls where
the mapping is not the identity mapping and the scaling is either the "Inv"
or "InvSqrt". To be more specific, let us explain the error with the inverse
scaling. In their work they state that:

Ĩt|t−1 =
(
ḣ
)−1
It|t−1

(
ḣ
)−1

. (A-36)

which is correct, but they do not mention what should be the expression
for Ĩ−1

t|t−1. The correct expression for Ĩ−1
t|t−1 is:

Ĩ−1
t|t−1 =

(
ḣ
)
I−1
t|t−1

(
ḣ
)
. (A-37)

but the programmed on in their work is currently:

Ĩ−1
t|t−1 =

(
ḣ
)−1
I−1
t|t−1

(
ḣ
)−1

. (A-38)

leading to a wrong s̃t. The correct expression for st under in-
verse scaling should be ḣĨ−1

t|t−1∇t but the programmed one on [18] is(
ḣ
)−1
I−1
t|t−1

(
ḣ
)−1 (

ḣ
)−1
∇t. A very similar mistake occurs for the inverse

square root scaling, this time the correct one should be Jt|t−1∇t but the cur-
rently programmed one is Jt|t−1

(
ḣ
)−1
∇t.
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B
Scores

GAS models can be still considered a relatively recent technology. The
derivation of the analytical form of the score is hard to find in the literature or
simply nonexistent. In this context, this paper also aims to provide users with
a technical reference for the presented software. Therefore, in this Appendix,
we provide detailed information on the score calculation for each distribution
considered in the package.

B.1
Beta

Density function

p(yt|yt−1, α, β) = yα−1
t (1− yt)β−1

B(α, β) where B(α, β) = Γ(α)Γ(β)
Γ(α + β) ,

α ∈ R+, β ∈ R+, Γ(·) is the Gamma function.

E[yt|yt−1] = α

α + β
,

VAR[yt|yt−1] = αβ

(α + β)2(α + β + 1)

Score calculation

∇t =
∂ ln p(yt|yt−1,α,β)

∂α
∂ ln p(yt|yt−1,α,β)

∂β


ln p(yt|yt−1, a, c, α, β) = (α− 1) ln yt + (β − 1) ln(1− yt)− lnB(α, β)

∇α
t = ∂ ln p(yt|yt−1, α, β)

∂α
= ln yt + ψ(α + β)− ψ(α)

∇β
t = ∂ ln p(yt|yt−1, a, c, α, β)

∂β
= ln(1− yt) + ψ(α + β)− ψ(β)

B.2
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Beta four parameters

Density function

p(yt|yt−1, a, c, α, β) = (yt − a)α−1 (c− yt)β−1

(c− a)B(α, β) where B(α, β) = Γ(α)Γ(β)
Γ(α + β) ,

a, c ∈ R α, β ∈ R+

E[yt|yt−1] = a+ (c− a) α

α + β
,

VAR[yt|yt−1] = (c− a)2 αβ

(α + β)2(α + β + 1)

Score calculation

∇t =



∂ ln p(yt|yt−1,a,c,α,β)
∂a

∂ ln p(yt|yt−1,a,c,α,β)
∂c

∂ ln p(yt|yt−1,a,c,α,β)
∂α

∂ ln p(yt|yt−1,a,c,α,β)
∂β


ln p(yt|yt−1, a, c, α, β) = (α− 1) ln (yt − a) + (β − 1) ln(c− yt)

− (α + β − 1) ln (c− a)− lnB(α, β)

∇a
t = ∂ ln p(yt|yt−1, a, c, α, β)

∂a
=−α + 1

y − a
+ α + β − 1

c− a

∇c
t = ∂ ln p(yt|yt−1, a, c, α, β)

∂c
=β − 1
c− y

− α + β − 1
c− a

∇α
t = ∂ ln p(yt|yt−1, a, c, α, β)

∂α
= ln(yt − a)− ln(c− a) + ψ(α + β)− ψ(α)

∇β
t = ∂ ln p(yt|yt−1, a, c, α, β)

∂β
= ln(c− yt)− ln(c− a) + ψ(α + β)− ψ(β)

B.3
Exponential

Density function

p(yt|yt−1, λ) = λe−λyt λ ∈ R+

E[yt|yt−1] = 1
λ
,

VAR[yt|yt−1] = 1
λ2

Score calculation

∇t =
[
∂ ln p(yt|yt−1,λ)

∂λ

]
ln p(yt|yt−1, λ, k) = lnλ− e−λyt
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∇λ
t = ∂ ln p(yt|yt−1, λ)

∂λ
= 1
λ
− yt

B.4
Gamma

Density function

p(yt|yt−1, α, k) = yα−1
t e−

yt
k

Γ(α)kα , α ∈ R+, k ∈ R+

E[yt|yt−1] = αk,

VAR[yt|yt−1] = αk2

Score calculation

∇t =
∂ ln p(yt|yt−1,α,k)

∂α
∂ ln p(yt|yt−1,α,k)

∂k


ln p(yt|yt−1, α, k) = (α− 1) ln yt −

yt
k
− ln Γ(α)− α ln k

∇α
t = ∂ ln p(yt|yt−1, α, k)

∂α
= ln yt − ψ(α)− ln k

∇k
t = ∂ ln p(yt|yt−1, α, k)

∂k
= yt
k2 −

α

k

B.5
Logit-Normal

Density function

p(yt|yt−1, µ, σ
2) = 1

yt(1− yt)
√

2πσ2
e

(
− (logit(yt)−µ)2

2σ2

)
, µ ∈ R, σ2 ∈ R+

E[yt|yt−1] = e

(
µ+σ2

2

)
,

VAR[yt|yt−1] =
(
eσ

2 − 1
)
e(2µ+σ2)

Score calculation

∇t =
∂ ln p(yt|yt−1,µ,σ2)

∂µ
∂ ln p(yt|yt−1,µ,σ2)

∂σ2


ln p(yt|yt−1, µ, σ

2) = − ln (yt(1− yt))−
1
2 ln 2πσ2 − (logit (yt)− µ)2

2σ2

∇µ
t = ∂ ln p(yt|yt−1, µ, σ

2)
∂µ

= logit (yt)− µ
σ2
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∇σ2

t = ∂ ln p(yt|yt−1, µ, σ
2)

∂σ2 = −1
2σ2

(
1− logit (yt)− µ)2

σ2

)

B.6
Lognormal

Density function

p(yt|yt−1, µ, σ
2) = 1

yt
√

2πσ2
e

(
− (ln yt−µ)2

2σ2

)
, µ ∈ R, σ2 ∈ R+

E[yt|yt−1] = e

(
µ+σ2

2

)
,

VAR[yt|yt−1] =
(
eσ

2 − 1
)
e(2µ+σ2)

Score calculation

∇t =
∂ ln p(yt|yt−1,µ,σ2)

∂µ
∂ ln p(yt|yt−1,µ,σ2)

∂σ2


ln p(yt|yt−1, µ, σ

2) = − ln yt −
1
2 ln 2πσ2 − (ln yt − µ)2

2σ2

∇µ
t = ∂ ln p(yt|yt−1, µ, σ

2)
∂µ

= ln yt − µ
σ2

∇σ2

t = ∂ ln p(yt|yt−1, µ, σ
2)

∂σ2 = −1
2σ2

(
1− (ln yt − µ)2

σ2

)

B.7
Negative binomial

Density function

p(yt|yt−1, r, p) = Γ(yt + r)
yt!Γ(r) pr (1− p)yt , r ∈ R+, p ∈ [0, 1]

E[yt|yt−1] = pr

1− p,

VAR[yt|yt−1] = pr

(1− p)2

Score calculation

∇t =
∂ ln p(yt|yt−1,r,p)

∂r
∂ ln p(yt|yt−1,r,p)

∂p


ln p(yt|yt−1, r, p) = ln Γ(yt + r)− (ln yt!Γ(r)) + r ln p+ yt ln(1− p)

∇r
t = ∂ ln p(yt|yt−1, r, p)

∂r
= ψ(yt + r)− ψ(r) + ln p
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∇p
t = ∂ ln p(yt|yt−1, r, p)

∂p
= r

p
− k

1− p

B.8
Normal

Density function

p(yt|yt−1, µ, σ
2) = 1√

2πσ2
e

(
−(yt−µ)2

2σ2

)
, µ ∈ R, σ2 ∈ R+

E[yt|yt−1] = µ,

VAR[yt|yt−1] = σ2

Score calculation

∇t =
∂ ln p(yt|yt−1,µ,σ2)

∂µ
∂ ln p(yt|yt−1,µ,σ2)

∂σ2


ln p(yt|yt−1, µ, σ

2) = −1
2 ln 2πσ2 − (yt − µ)2

2σ2

∇µ
t = ∂ ln p(yt|yt−1, µ, σ

2)
∂µ

= yt − µ
σ2

∇σ2

t = ∂ ln p(yt|yt−1, µ, σ
2)

∂σ2 = −1
2σ2

(
1− (yt − µ)2

σ2

)

B.9
Poisson

Density function

p(yt|yt−1, λ) = e−λλyt

yt!
, λ ∈ R+

E[yt|yt−1] = λ,

VAR[yt|yt−1] = λ

Score calculation

∇t = ∂ ln p(yt|yt−1, λ)
∂λ

ln p(yt|yt−1, λ) = −λ+ yt ln λ− ln yt!

∇λ
t = ∂ ln p(yt|yt−1, λ)

∂λ
= yt − λ

λ
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B.10
Student’s t

Density function

p(yt|yt−1, ν) = 1
√
νB

(
1
2 ,

ν
2

) (1 + y2
t

ν

)−ν+1
2

, ν ∈ R+

E[yt|yt−1] = 0,

VAR[yt|yt−1] = σ2 ν

ν − 2 for ν > 2, ∞ for 1 < ν ≤ 2, undefined otherwise.

Score calculation

∇t =
[
∂ ln p(yt|yt−1,ν)

∂ν

]
ln p(yt|yt−1, ν) = −1

2 ln ν − lnB
(1

2 ,
ν

2

)
−
(
ν + 1

2

)
ln
(

1 + y2
t

ν

)

∇ν
t = ∂ ln p(yt|yt−1ν)

∂ν
= 1

2

(
(ν + 1) y2

t

νy2
t + ν2 −

1
ν
− ln

(
y2
t

ν
+ 1

)
+ ψ

(
ν + 1

2

)
− ψ

(
ν

2

))

B.11
Student’s t with Location and Scale

Density function

p(yt|yt−1, µ, σ
2, ν) = 1

√
σ2νB

(
1
2 ,

ν
2

) (1 + (yt − µ)2

σ2ν

)−ν+1
2

, µ ∈ R,

σ2 ∈ R+ ν ∈ R+

E[yt|yt−1] = µ,

VAR[yt|yt−1] = σ2 ν

ν − 2 for ν > 2, ∞ for 1 < ν ≤ 2, undefined otherwise.

Score calculation

∇t =


∂ ln p(yt|yt−1,µ,σ2,ν)

∂µ
∂ ln p(yt|yt−1,µ,σ2,ν)

∂σ2

∂ ln p(yt|yt−1,µ,σ2,ν)
∂ν


ln p(yt|yt−1, µ, σ

2, ν) = −1
2 ln νσ2 − lnB

(1
2 ,
ν

2

)
−
(
ν + 1

2

)
ln
(

1 + (yt − µ)2

σ2ν

)

∇µ
t = ∂ ln p(yt|yt−1, µ, σ

2, ν)
∂µ

= (ν + 1) (yt − µ)
(yt − µ)2 + σ2ν
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∇σ2

t = ∂ ln p(yt|yt−1, µ, σ
2, ν)

∂σ2 = −ν σ2 − (yt − µ)2

2σ2
(
νσ2 + (yt − µ)2

)
∇ν
t = ∂ ln p(yt|yt−1, µ, σ

2, ν)
∂ν

= 1
2

(
(ν + 1) (yt − µ)2

ν (yt − µ)2 + σ2ν2
− 1
ν
− ln

(
(yt − µ)2

σ2ν
+ 1

))
+

1
2

(
ψ
(
ν + 1

2

)
− ψ

(
ν

2

))

B.12
Weibull

Density function

p(yt|yt−1, λ, k) =


k
λ

(
yt
λ

)k−1
e(−

yt
λ )k x ≥ 0,

0 x < 0,
λ ∈ R+, k ∈ R+

E[yt|yt−1] = λΓ (1 + 1/k) ,

VAR[yt|yt−1] = λ2
[
Γ
(

1 + 2
k

)
−
(

Γ
(

1 + 1
k

))2]

Score calculation

∇t =
∂ ln p(yt|yt−1,λ,k)

∂k
∂ ln p(yt|yt−1,λ,k)

∂λ


ln p(yt|yt−1, λ, k) = ln k + (k − 1) ln yt − k ln λ−

(
yt
λ

)k
∇λ
t = ∂ ln p(yt|yt−1, λ, k)

∂λ
= k

λ

((
yt
λ

)k
− 1

)

∇k
t = ∂ ln p(yt|yt−1, λ, k)

∂k
= 1
k

+ ln
(
yt
λ

)(
1−

(
yt
λ

)k)
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C
Computational Details

The results in this paper were obtained using Julia 1.4.2 and ScoreDri-
venModels v0.1.10. Figures were generated with Plots.jl v1.4.3. In order to
guarantee that the results of the examples are exactly the same as the ones
reported, we recommend the interested user to activate the Project.toml
in the repository’s example folder using Julia’s Pkg manager.
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