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Abstract

Garcia Oliveira, Renata; Caarls, Wouter (Advisor). Online En-
sembles for Deep Reinforcement Learning in Continuous
Action Spaces. Rio de Janeiro, 2021. 88p. Tese de Doutorado –
Departamento de Engenharia Elétrica, Pontifical Catholic Univer-
sity of Rio de Janeiro.

This work seeks to use ensembles of deep reinforcement learning algo-
rithms from a new perspective. In the literature, the ensemble technique is
used to improve performance, but, for the first time, this research aims to use
ensembles to minimize the dependence of deep reinforcement learning perfor-
mance on hyperparameter fine-tuning, in addition to making it more precise
and robust. Two approaches are researched; one considers pure action aggre-
gation, while the other also takes the value functions into account. In the first
approach, an online learning framework based on the ensemble’s continuous
action choice history is created, aiming to flexibly integrate different scoring
and aggregation methods for the agents’ actions. In essence, the framework
uses past performance to only combine the best policies’ actions. In the se-
cond approach, the policies are evaluated using their expected performance as
estimated by their value functions. Specifically, we weigh the ensemble’s value
functions by their expected accuracy as calculated by the temporal difference
error. Value functions with lower error have higher weight. To measure the
influence on the hyperparameter tuning effort, groups consisting of a mix of
different amounts of well and poorly parameterized algorithms were created.
To evaluate the methods, classic environments such as the inverted pendulum,
cart pole and double cart pole are used as benchmarks. In validation, the Half
Cheetah v2, a biped robot, and Swimmer v2 simulation environments showed
superior and consistent results demonstrating the ability of the ensemble te-
chnique to minimize the effort needed to tune the the algorithms.

Keywords
Reinforcement Learning; Deep Deterministic Policy Gradient; Conti-

nuous Action Ensemble; Ensemble Learning; Hyperparameter Optimization.
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Resumo

Garcia Oliveira, Renata; Caarls, Wouter. Conjuntos Online para
Aprendizado por Reforço Profundo em Espaços de Ação
Contínua. Rio de Janeiro, 2021. 88p. Tese de Doutorado – Depar-
tamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

Este trabalho busca usar o comitê de algoritmos de aprendizado por
reforço profundo (deep reinforcement learning) sob uma nova perspectiva.
Na literatura, a técnica de comitê é utilizada para melhorar o desempenho,
mas, pela primeira vez, esta pesquisa visa utilizar comitê para minimizar a
dependência do desempenho de aprendizagem por reforço profundo no ajuste
fino de hiperparâmetros, além de tornar o aprendizado mais preciso e robusto.
Duas abordagens são pesquisadas; uma considera puramente a agregação de
ação, enquanto que a outra também leva em consideração as funções de valor.
Na primeira abordagem, é criada uma estrutura de aprendizado online com
base no histórico de escolha de ação contínua do comitê com o objetivo de
integrar de forma flexível diferentes métodos de ponderação e agregação para
as ações dos agentes. Em essência, a estrutura usa o desempenho passado para
combinar apenas as ações das melhores políticas. Na segunda abordagem, as
políticas são avaliadas usando seu desempenho esperado conforme estimado
por suas funções de valor. Especificamente, ponderamos as funções de valor do
comitê por sua acurácia esperada, calculada pelo erro da diferença temporal.
As funções de valor com menor erro têm maior peso. Para medir a influência do
esforço de ajuste do hiperparâmetro, grupos que consistem em uma mistura de
diferentes quantidades de algoritmos bem e mal parametrizados foram criados.
Para avaliar os métodos, ambientes clássicos como o pêndulo invertido, cart
pole e cart pole duplo são usados como benchmarks. Na validação, os ambientes
de simulação Half Cheetah v2, um robô bípede, e o Swimmer v2 apresentaram
resultados superiores e consistentes demonstrando a capacidade da técnica de
comitê em minimizar o esforço necessário para ajustar os hiperparâmetros dos
algoritmos.

Palavras-chave
Aprendizado por Reforço; Gradiente da política determinística profunda;

Comitê de Ações Contínuas; Aprendizado por Comitê; Otimização de
Hiperparâmetro.
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ā Average or central element of a group.

a An action.

B The minibatch.

D The replay memory or replay buffer.

di The density of each i action, a sum of Gaussian functions

centered at the proposed actions.

e The eth ensemble.

edi Squared Euclidean Distance of ith action.

g The gth group of ensembles.

i The ith aggregation.

i, j, k Indexes in a summation or within a group.

N Number of ensembles, or number of actions of the ensemble,

or number q-value of the ensemble.

N Noise.

P (s′ | s, a) Transition’s probability to state s′, from state s taking action

a.

p(st, a) The preference value of action selection in state st and action

a.

DBD
PUC-Rio - Certificação Digital Nº 1712535/CA



Q,Qt The array estimates of action-value function Qπ.

Qπ(s, a), Q(s, a) The value of taking action a in state s under policy π.

Q Q matrix.

qw The final Q-value vector qw.

qwj The final Q-value qwj related action aj.

R The set of real numbers.

R The set of all possible rewards, a finite subset of R.

r A reward.

r(a) The rank of an action a.

RHBF The Performance Measure in History-Based Framework.

ROWQE The Performance Measure in Online Weighted Q-Ensemble.

rs The reward scale hyperparameter.

Rt The return following time t.

S The set of all nonterminal states.

s, s′ The states.

T, T (t) The final time step of an episode, or of the episode including

time step t.

t Discrete time step or play number

V, Vt The array estimates of state-value function V π.

V π(s), V (s) The value of state s under policy π (expected return).

W The weights vector in Online Weighted Q-Ensemble.

Wraw The raw weights vector in Online Weighted Q-Ensemble.

DBD
PUC-Rio - Certificação Digital Nº 1712535/CA



yi The target of sample (si, ai, ri, s′i) in a minibatch.

α The step-size parameter (learning rate).

αh The step-size parameter (historical learning rate).

γ The discount-rate parameter.

µ, µ(s), µ(s | θ) The deterministic policy being learned.

π The policy (decision-making rule).

π(a | s), π(s, a) The probability of taking action a in state s under stochastic

policy π.

π(s) The action taken under the deterministic policy π.

π∗ The optimal control policy.

ρ, ρ(st, at, st+1) This is the reward (or expected reward) of a transition.

σ(qij) The Q-value qij normalized by softmax function σ.

σ(s, a) The empirical standard deviation.

τ The step-size parameter (soft target update rate).

θ, θ′ The deep network parameters.

υ, υβ A different (stochastic) behavior policy.

DBD
PUC-Rio - Certificação Digital Nº 1712535/CA



“Você não pode ensinar nada a ninguém, mas
pode ajudar as pessoas a descobrirem por si
mesmas.”

Galileu Galilei, Revista Galileu.

DBD
PUC-Rio - Certificação Digital Nº 1712535/CA



1
Introduction

This chapter aims to introduce the work presented in this thesis, pre-
senting the motivation, the ensemble methods, the objective of the work, the
contributions and, finally, the organization of the thesis chapters.

1.1
Motivation

Reinforcement learning (RL) [1] is an area of machine-learning that
enables an agent to learn in an interactive environment by trial and error.
Using feedback from its own actions and experience, it seeks to maximize
rewards, optimizing its control policy and achieving the required goals in the
process. RL is widely used for controlling environments in a model-free setting
(without knowledge of how their environments will change in response to an
action) by maximizing a reward signal in order to achieve a goal and it is based
on a mathematical framework known as a Markov Decision Process (MDP),
which describes how an environment reacts to an agent’s control input. In
order to scale RL techniques, Deep RL (based on deep neural networks) learns
its own representations of environment and can thereby learn control policies
for many common domains such as motor control [2], disease planning and
pandemic prediction [3, 4].

Deep Reinforcement Learning requires several pre-defined hyperparame-
ters, which are responsible for guiding the learning process through interaction
with an environment. There are two types of parameters: Model Parameters are
automatically estimated from the input data and saved with the final trained
model; the Model Hyperparameters, on the other hand are manually defined
in advance, and are used in the learning process to help in the estimation of
the model’s parameters. These hyperparameters are learning rates, discount
factor, reward scale, neural network layer size, replay steps, replay memory
size, minibatch size, activation function, among others. Since hyperparameters
are not automatically trained or adjusted during training, an optimal learning
result depends on manual fine-tuning.

The search for the best hyperparameters can be performed by grid
search [5], an exhaustive search technique in which a specific value of a given
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hyperparameter in the model gradually varies, while all others are frozen. After
this process is repeated for all hyperparameters, the maximum performance
result is chosen, as well as their hyperparameter configuration. This procedure
is computationally expensive because it requires many long sequential training
runs. Hence, there are several other hyperparameters optimization methods;
recent studies use bayesian optimization [6], bandit-based approach [7], genetic
algorithm [8] and sequential decision [9]. Other methods for learning optimal
parameters are population-based training (PBT) [10] and CERL [11], which
use multiple learners as a population to train neural networks inspired by
genetic algorithm, copying the best hyperparameters across the population.
Tuning parameters is hard and some approaches, such as the population based
ones, consider multiple parallel environments, which makes their real world use
more complex.

In contrast to hyperparameter tuning for supervised learning, where the
same data set can be re-used over and over, RL demands new environment
data acquisition for each configuration, since it is necessary to run the control
policy being optimized in the environment, which takes time. In addition to
that, applying this process in the real world takes even longer, and it risks
causing damage to the robot [12, 13]. Based on these assumptions and on the
need to optimize the use of the amount of environment interactions, the goal
is to learn from a single environment; in addition, the idea is to use ensemble
in continuous action spaces, seeking to improve performance and robustness.

Faced with the challenges of finding the hyperparameters in reinforce-
ment learning, and also with the requirement to make training more compat-
ible with real world testing, this work aims to bring a new approach to the
use of ensembles in Deep Reinforcement Learning. Another proposition is to
investigate if it is possible to train sets of different sets of hyperparameters to
reduce the hyperparameter tuning effort.

1.2
Ensemble Methods

Ensemble learning is a general approach to machine learning that seeks
better performance by combining predictions from multiple models. Although
there are a seemingly unlimited number of ensembles that can be developed for
a predictive modeling problem, it is widely found in the literature, for example:
tree ensembles using mean predictions; use of different algorithms using the
same data set acquisition; and ensembles that use weighted mean predictions.

Ensembles were first used in RL before the advent of deep learning
techniques [14, 15, 16] to increase performance, and recent efforts have shown
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that ensemble aggregations of deep neural networks perform better than a
single algorithm as well [17]. There are two types of ensembles in RL; the
Action Aggregation, which performs aggregation of agents’ actions, and Value
Aggregation, that performs aggregation of value functions.

Studies of Action Aggregation in RL started with majority vote decision
[14, 15] and average decision [18], with some studies using Deep Q-Learning
(DQN) [19] and Deep Deterministic Policy Gradient (DDPG) [17] algorithms
applying Deep RL. In Value Aggregation, average function value [15] and
majority vote decision [20] are used.

While ensembles in Deep RL demonstrated good results when used to
increase performance, there have been a few studies approaching the RL
ensemble behavior when using different hyperparameters, aimed at reducing
the tuning effort [5]. This thesis, therefore, aims to investigate whether
ensembles of different sets of hyperparameters can be trained to decrease the
hyperparameter tuning effort [5, 21, 22].

1.3
Objectives

This work aims to employ the ensemble, a traditional method used for
performance improvement, to research its use in minimizing the fine-tuning
efforts of the underlying algorithm’s hyperparameters, as this tuning process
is very costly and time-consuming.

Initially, the performance of existing ensemble strategies in the specific
configurations of reducing the effort of hyperparameter tuning for deep re-
inforcement learning should be executed as a baseline definition. Once the
performance of classical ensemble strategies in continuous action spaces has
been characterized, how those strategies behave in different environments and
with different hyperparameter sets should be investigated. Specifically, we aim
to investigate the use of ensembles containing algorithms that did not converge
nor achieve good performance, as that will certainly be the case when unknown
sets of hyperparameters are combined.

Next, new ensemble algorithms should be proposed in both types of
ensemble models used in RL. For Action Aggregation, we propose a History-
Based Framework (HBF) which focuses on achieving an action aggregation
strategy with minimum hyperparameter tuning effort. The framework seeks
to improve performance in various environments even with an ensemble that
contains non-converging algorithms. The performance of the framework in
comparison to the baselines in order to verify the performance in these cases
is enhanced.
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Given the possibility of using the information from the value function
to choose actions, a value aggregation strategy in development with the same
goal of reducing hyperparameter tuning effort. We propose Online Weighted
Q-Ensemble (OWQE), a weighing approach that adjusts the critics’ weights
parameters by minimizing the temporal difference error of the ensemble. Again,
its performance in comparison to the baselines.

1.4
Contributions

The research presented the following contributions:

– A study of classical aggregation ensembles in reinforcement learning with
Deep Deterministic Policy Gradient and online learning [5];

– An investigation of how performance-enhancing algorithms address the
new purpose of reducing tuning effort of hyperparameters;

– A method of evaluating the ensemble of algorithms and groups to
measure the proposed aggregation techniques. To measure the sensitivity
to the hyperparameter settings, groups that mix different amounts of
good and bad DDPG parameterizations;

– The development of the History-Based Framework the first study to
seek optimized learning techniques for deep ensemble reinforcement
as a way to reduce the hyperparameter tuning effort with differently
parameterized algorithms;

– The creation of the History-Based Framework (HBF) implementation for
continuous actions to allow multiple aggregation compositions, in order
to use the configuration that best suits the environment [21]. The DDPG
implementation with differently parameterized settings are trained online
in the simulated rigid body dynamics named as MuJoCo environment
[23] in the OpenAI Gym toolkit [24];

– The HBF’s contributions lie in the maintenance of a temporal moving
average of policy scores and selecting the actions of the best scoring
policies;

– The creation of Online Weighted Q-Ensemble (OWQE) as a value
aggregation strategy to use a weighing approach that adjusts the critics’
weights by minimizing the temporal difference error of the ensemble; and

– The use of classic control environments to evaluate the ensembles and
the validation of the presented distinct ensemble approaches with more
complex environments such as Half Cheetah v2, and Swimmer v2 of the
MuJoCo environment [23] in the OpenAI Gym toolkit [24].
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1.5
Organization

This dissertation is organized in 6 chapters, organized as follows:
Chapter 2: describes the reinforcement learning algorithms and back-

ground on the RL ensemble aggregation.
Chapter 3: explains the methodology developed for the analysis of the

hyperparameters fine-tuning reduction effort, while also presenting the newly
created ensemble methods: the action and the value aggregation strategies,
History-Based Frameworkfor Action Ensemble and the Online Weighted Q-
Ensemble.

Chapter 4: describes the configurations used in the experiments, the
hyperparameters, and also the groupings performed to assemble the ensembles.

Chapter 5: presents the results from the experimentation structure de-
scribed in Chapter 4, and provides analysis and discussions of each methodol-
ogy as well.

Chapter 6: presents conclusions achieved after observing the results of the
experiments, and points out where the solutions of this work can be applied
in future work.
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2
Ensemble Reinforcement Learning

This chapter summarizes related work on Ensemble RL. First, general
reinforcement learning algorithms will be described in order to present the
theory and the step-by-step evolution of the algorithms until arriving at the
description of the algorithm used in the experiments, Deep Deterministic Policy
Gradient (DDPG). Subsequently, the related work of Ensemble RL will be
presented, as well as the conventional continuous action ensemble aggregation
strategies.

2.1
Reinforcement Learning (RL)

Reinforcement Learning (RL) [1] is widely used for controlling environ-
ments in a model-free setting in order to maximize a reward signal for achiev-
ing a goal. RL is a third machine learning paradigm, in addition to supervised
learning, where the learned data is previously classified by labels, or unsuper-
vised learning, where characteristics are extracted from unlabeled data. In RL,
the agent seeks to achieve a goal from interaction with an environment. The
samples of this interaction are partially labeled by the reward signal. Partially,
because the rewards only give short-term feedback while the objective is to
optimize the sum of these rewards.

The active decision-making agent learns by interacting with its environ-
ment, where the actions are picked using a mapping from situations to actions.
This situations are numerically captured through sensors and called as state.
After the agent runs an action, a numerical reward signal is assigned and used
to update the resulted next state.

RL is based on a mathematical framework known as Markov Decision
Process (MDP) which describes how an environment reacts to an agent’s
control input. A Markov Decision Process is a 4-tuple 〈S,A, P, ρ〉, where S
is a set of states called the state space, A is a set of actions called the action
space, P (st+1 = s′ | st = s, at = a) is the transition function (the probability
that action a ∈ A in state s ∈ S at time t will lead to state s′ ∈ S at time
t + 1, or the dynamics) and, ρ(st, at, st+1) ∈ R is the reward (or expected
reward) of such a transition. The agent receives a reward at each time step,
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after transitioning from state s to state s′, due to action a. The state and
action spaces may be finite or infinite.

Agent

Environment

st+1

rt+1

state st

reward rt

action at

Figure 2.1: Reinforcement Learning.

Figure 2.1 illustrates how the interaction functions in RL to solve
sequential decision problems. An active decision-making agent interacts at
discrete time steps and a certain state st ∈ S, taking an action at ∈ A which
results in a reward rt+1 ∈ R and a next state st+1. The objective of the RL
is to accumulate the maximum expected return (sum of rewards, see Eq. (2-
1)), while it interacts with the environment by updating the policy π, which
represents a mapping from states to action probabilities used by the agent.
The policy π(a|s) represents the probability of taking action a in state s.

Rt = rt+1 + rt+2 + · · ·+ rT (2-1)
The maximum expected return E {Rt} has two different definitions, one of

them for episodic tasks, which are defined by tasks with a finite amount of time
T , such as playing a game; in that case, Eq. (2-1) represents the return. The
other definition is related to continuing tasks, which do not have a naturally
episodic definition, in that case a discounted factor (γ ∈ [0, 1]) is used to trade
off the importance of immediate and later rewards in order to avoid infinite
sums, Eq. (2-2).

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (2-2)

Since the agent’s actions, that follow π, affect the future states of the
environment, the expected return starting from a certain state s depends on
the policy. This is captured in the value function V π(s), Eq. (2-3). Another
value function, Qπ(s, a), considers the expected return starting in state s and
taking a as the first action, and only then following π, Eq. (2-4).
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V π(s) = Eπ {Rt|st = s} = Eπ
{ ∞∑
k=0

γkrt+k+1|st = s

}
(2-3)

Qπ(s, a) = Eπ {Rt|st = s, at = a} = Eπ
{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
(2-4)

Algorithms that use Eq. (2-3) or (2-4), for example, can therefore reason
about the possible utility of taking different actions in the same state, in general
choosing the one that maximizes the return:

π(a | s) =

 1, if a = arg maxa′ Q(s, a′)
0, otherwise

(2-5)

2.1.1
Q-Learning Algorithm

Q-Learning is the most iconic classical reinforcement learning algorithm.
It is known as off-policy, because it learns the value function (expected return)
of the optimal control policy π∗, or the target policy, while following some
other (exploratory) behavior policy υ. that is required for convergence of the
algorithm to the optimal solution; otherwise, it would get stuck in a local
maximum.

Q-Learning is an iterative algorithm that in every control step updates
the state-action values by Eq. (2-6) using a temporal difference error that
measures the difference between the expected value given the next state
r′ + γmaxa′ Q(s′, a′) and the current estimate Q(s, a).

Q-Learning uses a learning rate α ∈ [0, 1] which weighs the relative
importance of old and new estimates, effectively implementing an exponentially
weighted low-pass filter.

Q(s, a) = (1− α)Q(s, a) + α
[
r′ + γmax

a′
Q(s′, a′)

]
= Q(s, a) + α

[
r′ + γmax

a′
Q(s′, a′)−Q(s, a)

] (2-6)

Real world tasks tend to be continuous and normally are too large to learn
all states and its possible actions. To tackle these problems, a parameterized
value function Q(s, a; θt) can be learned using a linear or nonlinear function
approximator, rewriting the Eq. (2-6) into Eq. (2-7), where the parameters
are updated towards a target value y, using stochastic gradient descent on the
difference between the target and the current value Q(s, a; θ).

y = r + γmax
a

Q(s′, a; θ)

θ′ = θ + α [y −Q(s, a; θ)]∇θQ(s, a; θ)
(2-7)
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Classically, the value function is represented by a linear-in-parameters
approximator, since it provides convergence guarantees. The use of a neural
network to represent the parameterized value function may make the algorithm
unstable. Specifically, since the targets are always changing, the value function
may diverge to infinity.

2.2
Deep Reinforcement Learning (Deep RL)

Reinforcement Learning (RL) demands a lot of interaction with the envi-
ronment to solve high-dimensional continuous state-space problems. Conven-
tional function approximators do not have the ability to learn the represen-
tations required to effectively abstract such spaces, requiring careful manual
feature extraction. To become more efficient, most research in the last few
years has focused on the combination of RL and deep learning techniques.

Deep learning is widely known for being able to automatically learn rep-
resentations from data, thus avoiding the manual (and error-prone) feature ex-
traction while simultaneously reducing the required interaction time. However,
several adjustments had to be made in order to avoid the general instability
of neural networks in a reinforcement learning setting [25].

2.2.1
Deep Q-Learning

Deep Q-Learning (DQN) [25] was the first combination of Deep Learning
and the Q-Learning algorithm. It was applied in the Arcade Learning Envi-
ronment (ALE) using discrete actions. ALE is a framework designed to allow
reinforcement learning agents to play arbitrary Atari 2600 games, with over
500 original games played in a single game screen of 210x160 pixels with 128-
color palette and a maximum of 18 action inputs to the game via a digital
joystick.

DQN uses a replay memory (D) in each iteration, which stores samples
obtained from the environment during training. This allows them to be
continually re-used for value function updates, a process called experience
replay. Consecutive state transitions have a strong correlation, so sampling
from the memory is randomized in order to reduce the variance of the updates.
The advantage of sampling non-correlated data from the model is to avoid
“forgetting” the data.

In addition, DQN also uses a target network, which is a copy of the main
network, that is used to calculate the target values in Eq. (2-7). Its parameters
θ′ are copied from the main network parameters θ every τ steps; otherwise, the
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parameters values are frozen. DQN uses this new target shown in Eq. (2-8),
which stabilizes the learning because the targets change more slowly, reducing
divergence.

The main network is updated as in Q-learning, but using standard deep
learning techniques such as ADAM [26] instead of simple gradient descent.
The loss function is given in Eq. (2-9), where the expectation is taken over a
minibatch B ⊂ D of experienced transitions. The sample yi, used in E(s,a,r,s′),
have the sample i ∈ B, where (s, a, r, s′) ∈ i.

yi = r + γmax
a′

Q(s′, a′; θ′) (2-8)

L(θQ) = E(s,a,r,s′)
[
(yi −Q(s, a; θ))2

]
(2-9)

2.2.2
Deep Deterministic Policy Gradient (DDPG)

DDPG is an actor-critic algorithm applicable in high-dimensional contin-
uous action tasks [27]. It is an approach based on the off-policy Deterministic
Policy Gradient (DPG) algorithm [28]. The critic Q(s, a) learns to approxi-
mate the Bellman Equation as in deep Q-learning [25]. DDPG optimizes the
critic by minimizing the loss (Eq. (2-10) and (2-11)), where the function ap-
proximator is parameterized by θQ. The s and a is the state and action in the
transition, r is reward and s′ represents the next state.

The main network also is updated as in Q-learning, but using standard
deep learning techniques such as ADAM [26] instead of simple gradient descent.
The loss function is given in Eq. (2-10), where the expectation is taken over
a minibatch B ⊂ D of experienced transitions. The sample yi is applied in
target network Q(·|θQ′) and used in E(s,a,r,s′), have the sample i ∈ B, where
(s, a, r, s′) ∈ i.

L(θQ) = E(s,a,r,s′))

[(
yt −Q(s, a|θQ)

)2
]

(2-10)
where

yt = rt + γQ(s′, µ(s′)|θQ′) (2-11)
The Bellman error of the value function of the target policy is the

performance objective, averaged over the state distribution of the behavior
policy. It is learned from a parameterized actor function µ(s|θµ), which
deterministically maps states to a specific action. Equations (2-12) and (2-13)
presents the actor update, which takes a step in the positive gradient criteria
of the critic, with respect to the actor parameters. Applying the chain rule, J
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represents the expected return from the start distribution and υβ a different
(stochastic) behavior policy.

J = Est∼υβ
[
Q(s, a)|s=st,a=µ(st)

]
(2-12)

∇θµJ = Est∼υβ
[
∇θµQ(s, a)|s=st,a=µ(st)

]
= Est∼υβ

[
∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ|s=st)

] (2-13)

Taking advantage of the off-policy data, experiments are stored for use
as a Replay Buffer, inducing sample independence. The samples s, a, r, s′ are
generated by exploring sequentially the environment and storing them in the
replay buffer (D). Every time step, a minibatch is sampled uniformly from the
replay buffer, updating the actor and critic. The buffer size is big enough to
avoid overfiting [29]. Figure 2.2 illustrates this process.

Environment

s a

Q(s, a)

Replay Bu�er

r

s'
s

a

DDPG

μ
Q

Figure 2.2: Deep Deterministic Policy Gradient (DDPG) algorithm [27], its
interaction with the environment and the storage of transactions in the Replay
Buffer.

Note that yt in Eq (2-11) depends on θQ
′ , a target network used to

stabilize the network learning with a time delay. DDPG introduces a “soft”
target update, so the target network actor and critic network weights update
is performed slowly. The slow update is done using a exponentially decaying
average as in Eq. (2-14). This technique stabilizes the problem of learning the
action-value function and brings the problem closer to the case of supervised
learning [27].

θ′(t) = τθ′(t−1) + (1− τ)θ′(t) with τ ∈ [0, 1] (2-14)
The exploration in continuous action spaces is a challenge in RL. A noise

N is added to sample the policy π = µ(st|θµt ) + N , using the Ornstein-
Uhlenbeck process [30] to generate temporally correlated exploration for
exploration efficiency in physical environments that have momentum (θN =
0.15 and σN = 1). The Ornstein-Uhlenbeck process models the velocity of a
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Brownian particle with friction, which results in temporally correlated values
centered around zero [27]. Below is a presentation of some related works using
ensembles in both discrete and continuous action spaces, applying either action
or value ensembles.

2.3
Ensembles in Discrete Action Spaces

In discrete action spaces, the individual algorithms in the ensemble can
be combined by looking only at a limited available action set.

2.3.1
Action Ensembles in Discrete Action Spaces

For discrete action ensembles, each algorithm outputs a list of action
preferences, which are then combined through methods such as majority
voting, rank voting, Boltzmann multiplication, and Boltzmann addition [14].
Its efficiency was shown in maze problems of different complexities. The
aggregations were tested with several classical RL algorithms, using both
tabular representations and neural network function approximations.

2.3.1.1
Majority Voting

In this method, each algorithm votes for a single action, the one with
the highest preference. The discrete action that received the most votes is
the chosen action. The possible actions for each state are A(st) = a1, · · · , am.
Figure 2.3 shows an ensemble composed by 3 RL agents: two of them choose
the action a2 while one chooses the action a1, so the Majority Voting method
chooses the action a2. If two or more actions tie in the choice, the action will
be randomly chosen among them.

a1 a2
a3

2

a1 a2
a3

3

a1 a2
a3

1

0.3
0.7

0.2
0.3

0.4 0.3 0.4
0.5

0.1

Figure 2.3: Majority Voting.

DBD
PUC-Rio - Certificação Digital Nº 1712535/CA



Chapter 2. Ensemble Reinforcement Learning 28

2.3.1.2
Rank Voting

In rank voting, action selection preferences are not used directly but
instead ranked and weighted.

The action selection policy of this algorithm is πit, where πit = πit(st, at).
Eq. (2-15) presents the sum of rankings as a means of choosing the action of
the ensemble. The rank is rit(a[j]) ≥ rit(a[k]) if πit(a[j]) ≥ πit(a[k]). An example
of how the ranking can be assembled is that the most preferred action is
associated with the highest weight m, the second most preferred one with the
weight m-1, and this goes down to the least preferred action with weight 1.

p(st, a[i]) =
∑
i

rit(a[i]) (2-15)

2.3.1.3
Boltzmann Multiplication

This method seeks for a selection of actions by multiplying all the action
selection preferences of the ensemble as in Eq. (2-16), thereby treating the
preferences as probabilities. The highest value of p(st, a) indicates the action
to be selected, in case of a tie the action is chosen at random.

p(st, a[i]) =
∏
j

πjt (st, (a[i]) (2-16)

2.3.1.4
Boltzmann Addition

Similar to the Rank Voting method, it sums all action selection prefer-
ences of the ensemble. Note that, this method is a specificity of Rank Voting,
in which rjt = πjt , presented in Eq. (2-17).

p(st, a[i]) =
∑
j

πjt (st, (a[i]) (2-17)

2.3.2
Q-Ensembles in Discrete Action Spaces

In Q-ensembles, multiple value functions are learned over a single shared
action set. These are then combined to make a common decision about
which action is more preferable. As such, instead of considering only action
preferences such as done in action ensembles, Q-ensembles consider expected
returns as a basis for ensemble aggregation.

One of the earliest uses of Q-ensembles was the combination of multiple
regression trees into a random forest [31]. In this Fitted Q Iteration (FQI)
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approach, the reinforcement learning problem was reformulated as a sequence
of standard supervised learning problems, where themselves were solved using
an ensemble method. FQI and a variant that uses a neural network instead of
a random forest (Neural Fitted Q Iteration, NFQ) were precursors to DQN,
and in fact use the same loss function.

The most popular Q-ensemble method (used in FQI) is Q-average aggre-
gation, where the individual Q values are simply averaged. Neural networks
ensembles [15] used Neural Fitted Q-iteration and Q-averages aggregation in
the pole balancing environment. Comparing majority voting action aggregation
and the Q-averaging value aggregation, the former improved performance, plus
the ensembles used different network topologies. A predicted state-values V (s)
uses average value state ensemble and compared with majority voting [18].
The tests were performed in 20x20 mazes (5 agents) and tic-tac-toe (3 agents).
The ensemble cases performed better than the ones using a single algorithm,
but no clear advantage of action or state-value ensembles was found.

The Ensemble DQN is presented [19] solving in parallel K DQN losses,
with the average being the Q-value ensemble, QE, as proposed in Eq. (2-18).

QE(s, a) = 1
K

K∑
i=1

Q(s, a; θi) (2-18)

Different discount factors were employed in the Q-learning ensemble
modules [32]; in this scenario, the policy episode is selected through the ε-
Greedy selection strategy, due to maximization of the average reward. Multiple
discounting reinforcement learning brings an interesting study of optimality
with a tree MDP and a grid world MDP. The ensemble is composed by Q-
learning algorithms with different γ, which varies between (0.01, 0.99). The
tests use 99 γ-modules [32]. The ε-Greedy selection presents a decay over
episodes. In a performance test, it was found that an ensemble of 12 (MDP
tree) and 6 (grid world) algorithms was needed to achieve the highest average.

Inspired by Bayesian reinforcement learning, upper confidence bounds
(UCB) exploration via Q-ensemble [20] was tested using Arcade Learning
Environment Atari games, where using the UCB presents a slight improvement.
The average of the normalized learning curve of all games for each algorithm
was used and compared with the ensemble majority vote and Double DQN
[33]. The calculation of the UCB is based on {QK} outputs, so the empirical
standard deviation (σ) and empirical mean(µ) of {Qk(st, a)}10

k=1 are used to
choose the action. Besides that, another hyperparameter, λ, is necessary for
tuning the algorithm, Eq. (2-19). The UCB is composed by an empirical
standard deviation σ(st, a) of {Qk(st, a)}10

k=1 and an empirical mean µ(st, a) of
{Qk(st, a)}10

k=1; the λ should maximize this UCB, which results agent’s chosen
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action.

at ∈ arg max
a
{µ(st, a) + λσ(st, a)} (2-19)

Another algorithm that uses Atari suite, in addition to performing
validation in an n-state MDP environment is called Enhancing Reinforcement
in Q-Ensembles. The share-in-learning knowledge update [34] considers the
estimate of the best Q value. The loss function is presented in Eq. (2-20). The
result showed improvement in the game score for some of the six Atari Games
indicating faster learning through robust estimates; however, the quantity of
algorithms used in the simulations was not presented, only the necessity to
tune this number was highlighted.

Li(θi) = Es,a,r,s′ [(r + γQk(s′, arg max
a′

Qbest(s′, a′; θi); θ−i )

−Qk(s, a; θi))2]
(2-20)

Recently, Distributional Reinforcement Learning uses an ensemble of i
DQN agents, each independently trained but with the same architecture and
hyperparameters, running in different Atari 2600 Game environment [35]. The
ensemble selects its action by a type of average of the estimated Q-values of
each agent. Instead of directly estimating Q-values, it uses a finite support z
of 51 points and learns discrete probability distributions φ(x, a; θ) over z via
softmax transfer. The empirical study uses a subset of Atari 2600 games, the
method showed improvement when compared to the single run.

2.4
Ensembles in Continuous Action Spaces

In continuous action spaces, the individual algorithms do not share a
limited action set over which statistics can be calculated; instead, actions need
to be combined in a continuous space.

2.4.1
Action Ensembles in Continuous Action Spaces

In continuous action ensembles, binning, data center, and density-based
[16] were presented using the cart-pole swing-up benchmark as well as a
gas turbine simulation. The density-based aggregation is an interpretation
of majority voting for the continuous action spaces. This variant showed a
better performance result using the policy gradient neural rewards regression
algorithm.
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Seeking a sample efficient way [36] of training any aggregation method
chosen from the literature into one environment, a cycling learning rate with
defined maximum and minimum learning rate values was able to converge.
Figure 2.4 shows the changes in the learning rate. When the learning rate
returns to the beginning of the cycle (eg: 0.01), there is a drop in performance,
even though the learning curve shows more significant variance when the
learning rate resets.

Figure 2.4: Cycling Leaning Rate. Source: [36]

The Bootstrapped aggregated multi-DDPG [17] (BAMDDPG), is struc-
tured with Multiple DDPG networks for optimizing controllers (policies) in
continuous actions spaces, using three DDPG networks, each one with a sepa-
rate simulation environment. The limitation of this approach is the difficulty in
carrying out training in real world, which is a single environment, with minimal
intervention. Although BAMDDPG also considered alternating the training of
the different policies in the same environment, the performance behavior was
not made explicit, as the presented results uses multiple environments; there-
fore, the mean action aggregation was used. Tests carried out with 3 and up
to 5 sub-policies demonstrated promising results; however, the ones with more
than 10 sub-policies showed degradation in the cumulative reward.

Recently, a History-Based Framework for online continuous action en-
sembles in Deep RL optimized the technique of continuous action ensembles
to improve performance and robustness as well as to avoid parallel environ-
ments, in order to make the system applicable to real-world robotic applica-
tions [5, 21]. In this study, ensembles were used for the first time to decrease
the adjustment effort of the algorithms’ hyperparameters.

Below is introduced the ensemble aggregation of pre-learned policies [16],
in addition to the simple mean aggregation, these three techniques form a base
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case in experiments.

2.4.1.1
Mean

Mean aggregation simply returns the arithmetic mean of the ensemble
actions, or the sum of all values divided by the total number of values. If we
are dealing primarily with well-tuned hyperparameters algorithms, this should
lead to a good ensemble action.

2.4.1.2
Density Based

Density-based aggregation was created as an extension of majority voting
to continuous actions spaces. The density of each action di is a sum of Gaussian
functions centered at the proposed actions, as shown in Figure 2.5. The final
chosen action is the one with the highest density in the action space.

Figure 2.5: Illustration of Density Based Aggregation.

Equation (2-21) calculates the action density, with the exponent being
the sum of the difference between the N actions of the ensemble and the
actual action ai, considering a m-dimensional action vector. Contemplating an
environment with more than 1 action, the different dimensions in the action
space will usually not have same scale, and as a result they are normalized for
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the interval [−1, 1]. The distance (basis function width) parameter r must be
chosen empirically. As such, this is not a parameter-free algorithm.

di =
N∑
j=1

e
−
∑m

l=1(ail−ajl)
2

r2 (2-21)

2.4.1.3
Data Center

As opposed to Density Based aggregation, data center aggregation is a
parameter-free algorithm. In the first step, the Euclidean distance is calculated
for each action with respect to the mean of the action ensemble. The action
with the longest distance is removed and the procedure is repeated until only
two actions remain. Finally, the average (Mean Aggregation) of the last two
actions is the chosen one, as seen in Algorithm 1.

Algorithm 1: Datacenter Pseudocode.
while |A| > 2 do

µ = (∑ ai)/|A|
for each element ai in |A| do

di = ||ai − µ||
end
j = arg max

i
di

A ← A \ {aj}
end
data_center = (∑ ai)/2

2.4.2
Q-Ensembles in Continuous Action Spaces

In continuous action Q-ensembles, the chosen actions consider the value
function, which must be estimated as part of some actor-critic method. In the
area of Deep RL, a DDPG actor ensemble has been used to choose a good
action applying an average critic ensemble, which means the outputs of the
critic networks are combined by taking average [37]. It is noteworthy that each
critic’s output is calculated using each action. Equation (2-18) introduces the
Q-Ensemble, but instead of using the predefined actions set, here we use the
actions of the actors ensemble.

A good performance with Q-ensembles was achieved with 10 DDPG
instances on bipedal walking, resulting in increased learning speed and fewer
falls. On the other hand, an approach using a confidence vector (cit(st, rt) ∈
(0, 1]) was used employing the Q-ensemble; however, instead of using a DDPG
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ensemble, an approach inspired on DDPG architecture with several critical
heads was taken [38]. Both works showed significant improvement compared
to the single run.

2.5
Policy Selection in Training Phase

In order to perform ensemble aggregation, the individual algorithms need
to be trained. This can be done in many ways, but the most popular ones are
pre-training, alternate training, and parallel environments.

These training modes reflect how the policy will be chosen in the
ensemble, leading or not to a better convergence of the learning curve.
Considering the use of a single environment in RL, it is important to pursue
the self-adaptation feature of the algorithm while learning the environment.
After the training phase, during the inference phase, the algorithm will always
choose the aggregated action of the ensemble.

2.5.1
Pre-training

Pre-training often appears in ensembles composed of algorithms prior
to the Deep RL ensemble. All algorithms are previously trained for later use
in the ensemble, which demands a large computational effort. During action
ensemble selection there is no more training/learning of the algorithms, even
if there is training or tuning of the parameters associated with the ensemble’s
functioning.

2.5.2
Alternately Persistent

Comparing to pre-trained, the alternately persistent should have efficient
data learning due to the use of shared replay memory. In recent literature cases,
when a single environment is used, [36, 17] the training phase applies the
Alternately Persistent mode, where at each training episode, a single policy is
selected to be executed in a round-robin fashion. At each step of the evaluation,
the action aggregation technique is applied.

2.5.3
Parallel Environment

Another approach used is the one with multiple environments being
trained independently and in parallel [17]. Thus, there is no concern about
selecting different policies during training since each algorithm will have the
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agent’s policy and its environment. Each trained policy will participate, in the
validation or testing phase, in the ensemble’s aggregation algorithm, in order
to select the ensemble’s action.
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3
Ensemble Aggregation Methods

In this chapter, Section 3.1 starts out by describing a new method for
policy selection in the training phase. Section 3.2 proposes the application
of known continuous action aggregation strategies from classical literature to
DDPG ensembles with the intent to reduce the hyperparameter fine-tuning
effort. Section 3.3 proposes a new history-based framework to improve the
performance of the classical aggregation strategies. This research uses only
the actions generated by the actors. Finally, in Section 3.4, a further analysis
of ensembles to fine-tuning the hyperparameters is done which also takes the
critics’ output into account.

3.1
Online Training

The selection policies described in Section 2.5 consider that the ensemble
algorithms are fine-tuned and focus on increasing the performance of the
ensemble. As the objective of this work involves joining non-converging and
converging algorithms while not using multiple environments, it was necessary
to use another method of policy selection during training. Using Alternately
Persistent training, for example, allocates the same amount of time for good
and bad policy developing algorithms. As such, even algorithms that will never
learn a good policy are allowed to act, which may damage to the robot or
environment when applied to real world.

In our proposed Online Training mode, we perform ensemble action
selection throughout the training, so that the ensemble can select the policy
actions that are most promising. At each step in every training episode, the
action aggregation technique is applied, as the idea is to take advantage of a
time-related learning action once all DDPG are learning together.

3.2
Classical Aggregations in DDPG with Continuous Action Spaces

To establish a baseline, we first considered action aggregation strategies
that have already been developed and successfully used in literature, applying
them to DDPG ensembles with the intent to verify the behavior of these
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aggregations when used with ensembles that have different hyperparameter
settings.

Figure 3.1 illustrates the classical ensemble aggregation strategy, where
the (1) Ensemble Aggregation uses the aggregations methods described in Sec-
tion 2.4.1, receiving the (A) Action Ensemble and the output (F) Final Action.
The tested aggregation methods are Mean aggregation (Section 2.4.1.1), Den-
sity Based (Section 2.4.1.2) and Data Center (Section 2.4.1.3).

(1)
Ensemble

Aggregation

(A)
Action

Ensemble

(F)
Final
Action

Figure 3.1: Classical Ensemble Aggregation Strategy.

3.2.1
Evaluating Ensemble Performance

Firstly, it is interesting to compare the simulations considering the policy
selection modes during training. As the focus is on using a single environment,
two selection modes are used, Alternately Persistent (Section 2.5.2) and Online
Training (Section 3.1). This policy selection mode comparison is essential
to the analysis of how much it influences the chosen ensemble group and
final aggregation performance, as well as whether there is variability across
environments.

Furthermore, there is no comparative methodology in the literature for
ensembles that minimize hyperparameter tuning effort. The main difference
is that for the normal intent of performance improvement, all individual
algorithms can be expected to perform at least reasonably well, while reducing
hyperparameter tuning some will have very bad performance. Therefore, it was
necessary to create a comparison methodology that, in addition to comparing
the ensembles, also uses the Best Single as a performance reference. For this,
some single algorithms were generated and evaluated in each test environment,
with their performances being ordered. The best and worst ones were used in
the ensemble composition, with the best performance of the environment being
used as benchmark for comparison against Best Single, used as continuous
action aggregation baselines.

For this, 3 ensemble groups were built. The first one demonstrates the
performance of aggregations according to the more traditional use of ensemble
techniques, and the other two seek to build ensembles with more and fewer non-
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converging algorithms, to find out how aggregations manage the best action
policy choice.

As such, the three groups (3 best, good and bad) were created. Section 4
organizes the details of the experimental settings.

3.3
History-Based Framework (HBF)

Ordinarily, ensemble aggregation considers pre-learned policies, and this
study aims to do it with an online training mode. Given that the policies
are learned, simple aggregation of actions is not expected to perform well.
Assuming that the policy performance is time-correlated, the proposed frame-
work uses the historical performance to make its decisions; therefore, it seeks
to take advantage of mutual learning while using the moving average histor-
ical performance. As such, policies with bad performance in the past can be
avoided. To accomplish this, the framework introduces a scoring function to
measure the individual policies’ performances.

The ensemble framework was created to select the best ensemble action.
Figure 3.2 presents a generic view of HBF. First, a (G.1) Scoring function
running the (G.A) Action Ensemble to assign weights, represented by (G.B)
Scores, referring to the quality of each action used in the aggregation function.
Figure 3.3 presents an example of ordering the action weights (c2, c1, c3). Those
(G.B) Scores serve as inputs to the (G.2) Moving Average, which will generate
the HBF’s (G.C) Scores. The main idea is to take advantage of the learning
process iteration to pursue better policies.

The (G.C) Scores is a variable that, throughout the learning process,
stores a qualitative weighting of actions. This variable, or memory structure,
aims to create a measure that qualifies those policies generating better actions
than others. This is important for the ensemble, as it means avoiding the
selection of policy actions that do not have a history of selecting good actions.

Figure 3.4 presents the (G.B) Scores delivery to the (G.2) Moving
Average function. The intention of Moving Average step is to reduce the fast
switching in the algorithm’s agents’ choice, noticed empirically, enabled the
learning of the ensemble. Although considering that the ensemble can make a
better trade-off between exploration and exploitation [14], it has been found
empirically the difficulty for the ensemble aggregations to maintain consistency
when simply selecting the action with the highest-scoring in the ensemble.
Thus, the importance of creating a history of the scores was realized, favoring
recent actions and reducing the action chattering between the algorithms.

In this comparison, it is interesting to note that in Figure 3.4 the score c̄2
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(G.1) Scoring

(G.D)
Final

Action

(G.2) 
Moving
Average

(G.B)Scores

(G.C)
Scores

(G.3)
Ensemble

Aggregation

(G.A)

Action

Ensemble

Figure 3.2: Generic History-Based Framework (HBF).

has the highest value before and after the (G.2) Moving Average function. On
the other hand, the score c1, even though it has the second-best score, wasn’t
enough to result in c̄1 > c̄3. The intention of this presentation of the Generic
HBF is to offer the mechanism intuition, and the updated implementation is
presented in Section 3.3.1.

Figure 3.5 presents the last stage of the Generic HBF. In this step, the
(G.C) Scores are used to aggregate the actions by executing the aggregation
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(G.1)
Scoring

a1 a3a2

c1 c3c2

Figure 3.3: History-Based Framework — Example of three agent actions
({a1, a2, a3}— (G.A) Action Ensemble) that are the input to the (G.1) Scoring
function and present in their output. The actions are sorted according to
the scoring, referring to the aggregation used and the (G.B) Scores values
({c2, c1, c3}).

(G.2) Moving
Average

c2 c3 c1

c2 c3 c1

c1 c3c2

Figure 3.4: History-Based Framework — Example of actions and their scores
serve as input to (G.2) Moving Average, presenting (G.C) Scores as output,
a permanent structure that seeks to qualify policies through their actions.

function ((G.3) Ensemble Aggregation), resulting in the (G.D) Final Action.
As opposed to classical ensemble aggregations, this function has access to the
policies’ averaged scores, which enables it to make a more informed decision.

3.3.1
HBF Implementation

After presenting the Generic History-Based Framework in Figure 3.2, our
specific implementation will now be presented step-by-step, concretely explain-
ing the methods, such as the (G.1) Scoring and the (G.3) Ensemble Aggre-
gation. In order to explore the best way to define the historical performance,
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(G.3)
Ensemble

Aggregation

a2

c2 c3 c1a1 a3a2

Figure 3.5: History-Based Framework — Example of the last step of the
Generic HBF that receives the actions and the ordered (G.C) Scores. The
actions are selected according to the scores then aggregated ((G.3) Ensemble
Aggregation) resulting in (G.D) Final Action of the ensemble.

the framework allows different scoring functions. Before explaining it, it is im-
portant to highlight the History-Based Parameter and Active Set Aggregation
mechanisms.

– History-Based Parameter: The History of the Scores works like a
low-pass filter by allowing low frequencies to pass without difficulty, and
attenuates (or reduces) the amplitude of frequencies higher than the
cutoff frequency. The scores parameter accumulates the performances
at each time step, using the historical learning rate αh as shown in Eq.
(3-1).

scores = αh · scores+ (1− αh) · scores (3-1)

Where αh is the parameter of an exponential moving average filter in
the same way that the learning rate α is used in the classical Q-learning
algorithm. It has an exponential adjustment in which a lower αh discounts
newer observations more, lowering the cutoff frequency of the low-pass
filter. In addition the Eq. (3-1) allows to store only one value and not a
vector of scores acquired over time, for example.

– Active Set Aggregation: Action Filtering takes advantage of perfor-
mance history to filter out inherently bad policies. Since the scores qual-
ify which policies tend to be good, this allows applying a filter that sep-
arates the considered good and bad actions. Performing these separation
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tasks in online mode, while the algorithms are learning, adds a dynamic
and flexible mechanism to the algorithm, contributing to its learning.

So, the actions are ranked according to scores, and only some are selected
to be used in the final aggregation step. The best ones compose a new
action ensemble, and a new aggregation is performed to select the best
action from the active set. The percentage of selected actions is chosen
empirically.

Figure 3.6 presents a complete view of the HBF. The hexagonal structures
represent the input or output data of the methods, which are illustrated in the
rectangular structures.

The framework allows different scoring functions to explore the best way
to define historical performance. Such a scoring method may itself require
the definition of an ensemble center, so at the beginning of Figure 3.6, an (1)
Ensemble Aggregation uses methods described in Section 2.4, to find (B) Center
Action. This step is only necessary when the Squared Euclidean Distance is
used in the next function — (2) Scoring.

The (A) and (B) data serve as input to (2) Scoring, which calculates a
weighting of values and, a score, for each action — (C) Scores. The following
methods are specifically used or adapted for this scoring step: Data Center
Ranking, Density Scores and Squared Euclidean Distance. If the framework is
used to implement the aggregations already presented in literature, no function
is chosen here. In that case, all actions have the same weight, which is the
baseline. The (2) Scoring can be instantiated by these functions:

– Data Center Ranking: The Data Center Ranking uses the same
concept as the data center (Section 2.4.1.3), which is used to the selection
of the center element. During the selecting process, the one farthest from
the center is set to be removed. Data Center Ranking returns the step
at which the particular policy’s action was removed, where the largest
value is the center itself.

– Density Scores: The density of each action (di) is presented in Section
2.4.1.2. In this scoring, the scores assigned to each action are exactly di.
As such, the biggest value is assigned to the center.

– Squared Euclidean Distance: Although this is a simple approach, it is
very effective and widely used in literature [39]. Equation (3-2) presents
the square of the difference between a policy action and some chosen
aggregate action ā, which can be calculated using any of the ensemble
aggregation techniques described in Section 3. The values are multiplied
by -1 such that the best action has the highest value.
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Action
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Figure 3.6: History-Based Framework Implementation.

DBD
PUC-Rio - Certificação Digital Nº 1712535/CA



Chapter 3. Ensemble Aggregation Methods 44

edi =
N∑
j=1

(aij − āj)2, (3-2)

where i is a chosen action, j is index from 1 to N (number of ensemble
actions) and ā the average or central element of a group pointed by
ensemble aggregation techniques.

The (3) Moving Average uses the (C) Scores to update the (D) Scores,
history-based variable, presented in Equation (3-1). Section 3.3.1 describes in
detail the Moving Average function.

The next function of the framework is the (4) Percentile Filtering, where
a specified percentage of the actions in the (A) Action Ensemble is selected
based on the order of scores to form the (E) Active Set Actions. The idea is
to use the scores’ history to filter the best actions, safeguarding those policies
that perform well over time. This is the main way in which the scores are
used to influence the final actions. In general, for all aggregations the shortest
distance usually means better value, so a descending score is used in (4)
Percentile Filtering. In the case of Density Based aggregation, the highest
density represents the best action, so the order is ascending.

Finally, the (F) Final Action is selected by the (5) Active Set Aggregation.
The aggregations used here are Best, Data Center, Density Based and Mean.
The best aggregation selects the best action based on the scores, Eq (3-1); in
this configuration flow , the (4) Percentile Filtering function is not relevant.

The code used in the framework can be found online1.

3.3.2
Performance Measure in History-Based Framework

To measure the overall performance of the framework setups, in order to
select the best overall strategy used for validation, the average relative regret
is calculated.

As seen in Fig 3.7, regret is the area between the curve that represents
the optimal controller and the curve to be evaluated. This metric compares
the best performing aggregation with the others; therefore, larger values mean
worse overall performance.

To calculate the average relative regret as in Eq. (3-3), the episode return
pe,g,i of agent i on environment e and ensemble group g is subtracted from
the best result on that environment/group, and normalized by that same
maximum. This is then summed over all environments.

This metric was chosen to compare the different forms of action aggrega-
tion between different environments built with HBF, as it has the property of

1https://github.com/renata-garcia/grl
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Optimal Controller

Controller to Be Evaluated

Figure 3.7: Illustration of regret metric which is the integrated difference in
performance between the optimal controller and controller to be evaluated
(green area).

being invariant to multiplication of rewards by a constant factor. The strategy
with the least regret is the one chosen for validation.

RHBF(i) =
∑
e

∑
g

∣∣∣∣∣maxj pe,g,j − pe,g,i
maxj pe,g,j

∣∣∣∣∣ (3-3)

3.4
Online Weighted Q-Ensemble (OWQE)

In the HBF, there is no use of value function information. The methodol-
ogy to be presented seeks to process this information to contribute to the best
choice of the action ensemble. Our Q-ensemble model builds upon the Actor-
Critic Ensemble method, by weighing the critics’ predictions. Such a weighing,
similar to conventional classifier Boosting [40], aims to emphasize the input
of the critics that better estimate the environment when selecting the ensem-
ble action. Considering that the DDPG ensemble hyperparameters are chosen
based on user-experience without having their performance guaranteed, it is
important that critics with bad performance do not destabilize the final policy.

3.4.1
Inference

Figure 3.8 presents the Q matrix generation in DDPG Online Weighted
Q-Ensemble. The ensemble is composed of n DDPG agents, each composed of
a critic Qi = Q(·; ζi) and an actor µj = µ(·; θi), i, j ∈ 1 . . . n. At state s at a
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given time step t, each actor µj calculates an action aj. Subsequently, each of
the actions is evaluated by all critics, generating the corresponding Q-values
Q(s, aj; ζi). The generation of these values results in a matrix Q with elements
qij.

μn

μ1

μ2

Q1

Q2

Qn

s

�

�

�

a1 a2 ... an

Q

...

...

... ...

...

......

q12q11

q21

q1n

q22 q2n

qn1 qn2 qnn

Figure 3.8: Q matrix generation in DDPG Online Weighted Q-Ensemble. Each
critic Qi evaluates the actions suggested by all actors µj, and the resulting
values are normalized using the softmax function σ.

The DDPG networks are updated independently, since they use different
hyperparameters. This creates a challenge when analyzing the Q matrix to
select the ensemble action because their Q-value magnitudes may not be
directly comparable. We propose the use of a softmax function σ to normalize
the values of a critic for the different actions, Eq. (3-4). The σ(qij) normalizes
q-value, qij, over all q-values related to that Qi value function. Initially, it
was thought to normalize with respect to actions: that is, to get all the q-
values generated with an action aj. However, this approach would maintain
the distortions, as each value function has a generalization of the knowledge
of the environment, and its result about different actors’ actions, µj, is very
close to each other.

σ(qij) = eqij∑n
k=1 e

qik
(3-4)

Figure 3.9 presents how the weights form the q-values matrix, Q. The raw
weights Wraw are normalized with the same softmax function σ to ensure they
form a proper distribution, resulting in W . Then, we calculate the weighted
average using weight vector W of length n to calculate the critic ensemble
prediction for all actions, Eq. (3-5), where W = 1

n
1 results in the standard Q

value averaging.

qw = W TQ (3-5)
Due to the normalization of the Q matrix, this procedure is equivalent

to interpreting each critic as defining a softmax policy over the suggested
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Figure 3.9: Final Q value generation in DDPG Online Weighted Q-Ensemble.
The final Q-value qwj of each action aj is the sum of the critics’ values
{q̄1j, q̄2j, · · · , q̄nj}, weighted by their respective weights wi.

actions, and averaging the resulting action probabilities (also called Boltzmann
addition [14]). The final ensemble action, at, is the one with the highest
probability, Eq. (3-6).

a = µz(s), (3-6)
where z = arg max qw.

Figure 3.10 presents the complete image of the Online Weighted Q-
Ensemble Model explained step-by-step.

3.4.2
Online Training Weights

All DDPG agents are trained in a single environment, using a shared
replay buffer. The behavior policy υβ is either derived from the ensemble
action (online training) or from each actor in sequence on a per-episode basis
(alternate training). The former can be expected to learn faster, while the
latter ensures at least some near on-policy transitions for all actors, increasing
robustness.

The raw weights, Wraw, are initialized uniformly, and passed through a
softmax layer before being used for the weighting. Therefore, at the beginning
of the training, the critic weights W remain close to the uniform distribution.
During training, we minimize the temporal difference (TD) error of the critic
ensemble by minimizing the loss

L(Wraw) =
∑

(s,a,r,s′)∈D

n∑
i=1

wiδ
2
i

δi = ri + γiQ(s′, µ(s′; θ′i); ζ ′i)−Q(s, a; ζi).
(3-7)
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Figure 3.10: Online Weighted Q-Ensemble. Each critic Qi evaluates the actions
suggested by all actors µj, and the resulting values are normalized using the
softmax function σ. The final Q-value qwj of each action aj is the sum of the
critics’ values {q̄1j, q̄2j, · · · , q̄nj}, weighted by their respective weights wi.
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Minimizing Eq. (3-7) reduces the weights of the critics with higher
squared TD error, which can be assumed to have a worse value function
prediction. Since ∑iwi = 1, due to the softmax function applied to Wraw,
this increases the better critics’ weight.

The code used in the Online Weighted Q-Ensemble can be found online2.

3.4.3
Performance Measure in Online Weighted Q-Ensemble

This metric compares the different forms of aggregation between different
environments, and unlike the performance metric presented in Section 3.3.2,
it has the property of being invariant to the addition of a constant (instead
of just constant multiplication), which allows better robustness in comparing
environments that have performance values at different scales. To be invariant
to both addition of and multiplication by a constant means that the variance
within an environment, with performances ranging from 1000−1100, will have
the same weight as one with performances from 0− 500.

Therefore, to measure the overall performance of the aggregations used,
the average relative regret is calculated over all environments and ensemble
groups:

ROWQE(i) =
∑
e

∑
g

∣∣∣∣∣ maxj pe,g,j − pe,g,i
maxj pe,g,j −minj pe,g,j

∣∣∣∣∣ (3-8)

where pe,g,i is the performance of aggregation i in environment e for ensemble
group g.

2https://github.com/renata-garcia/wce_ddpg
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4
Simulations

This chapter describes how the simulations were setups, Section 4.1
explains the model architecture used through methodologies. Section 4.2
shows the organization of the Ensemble Groups that allowed evaluating the
methodologies. The Strategy Experiments of History-Based Framework and
Online Weighted Q-Ensemble are presented in Sections 4.3 and 4.4. Lastly
Section 4.5 presents the environments, that run in a fast physics simulator.

4.1
Model Architecture

Initially, the environments were executed with the architecture model
described as follows in Section 4.1.1, which was used as a basis to generate
the configurations of the others 31 DDPG algorithms. The total of 32 DDPG
algorithms were executed in the environments and ordered according to the
last episode’s average performance. This procedure was used to assemble the
sets for each experiment.

In the case of the Online Weighted Q-Ensemble Model, the same method-
ology was followed with the exception of two hyperparameters. In order to pre-
vent any bias in the TD Error calculation, the discount factor γ and reward
scale rs values were frozen at 0.99 and 0.01 respectively, and other parameters
were varied.

Hyperparameters influence the speed of learning and the ability to
generalize the algorithm, as they are variables related to the network structure
and its training. The value ranges used to compose the trained DDPG
algorithms are shown in Table 4.1. These ranges were based on the DDPG
algorithm presented for continuous action environments [27]. In the next
section, the initial configuration of the architecture is described.

4.1.1
Initial Configuration of the Architecture

The default actor and critic networks have two hidden layers with 400
and 300 neurons, respectively, as recommended in the original DDPG paper
[27]. The neural networks learn using Adam Optimizer [26], with the actor and
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Table 4.1: Table with the Hyperparameters’ Description used to Build each
Algorithm of the Ensemble.

Hyperparameters Value Description
discount factor 0.98 or 0.99 Discount factor used in the Q-learning

update.
reward scale 0.01, 0.1 or 1 Scaling factor applied to the environ-

ment’s rewards.
soft target 0.01 Update rate of the target network
update rate weights.
update interval 10 or 100 Steps number, or frequency, with

which the soft target update
is applied.

learning rate 0.001 and 0.0001 Update rate used by AdamOptimizer.
replay steps 64, 128 or 256 Number of minibatches used in a

single step.
minibatch size 16, 64 or 128 Number of transitions from the

environment used in batch to update
the network.

layer size 50, 100, 200, 300 Number of neurons in regular densely-
and 400 connected NN layers

activation function relu or softmax Activation function of the hidden layers.
replay memory 1000000 Size of the replay memory array that
size stores the agent’s experiences in the

environment.
observation steps 1000 Observation period to start replay

memory using random policy.

the critic learning rates of 10−4 and 10−3, respectively. The discount factor is
γ = 0.99, reward scale is rs = 0.1 and the soft target updates are τ = 0.001
with an update interval of 1. The exploration noise uses an Ornstein-Uhlenbeck
(OU) process [30], which is specific to explore physical environments that
have momentum. The OU parameters are θN = 0.15 and σN = 1.0 for all
simulations discussed in this work. The importance of this technique is to avoid
temporally correlating the exploration, because pure white noise would not lead
to significant deviation. From these DDPG initial values, some modifications
were made in order to improve the performance in each environment. The
number of inputs of the actor and critic networks, as well as the number of
outputs of the actor depend on the environments, as described in Section 4.5.

4.2
Ensemble Groups

In order to verify the efficiency of ensembles, we used an approach
testing groups of good and bad parametrizations with different algorithms
(DDPG instantiated with different parameters). For this, 32 DDPG agents
with distinct hyperparameters were individually tested. Good hyperparameters
in one environment will not necessarily remain in the others; as such, the
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classification of a parameterization as either good or bad depends on the
environment.

Therefore, each environment was extensively executed to find the best
performance, performing a narrow grid search for each hyperparameter. Upon
finding a high performance for one variable, it was frozen and a grid variation
was performed on another variable, until the process ended. This is compu-
tationally quite costly, yet it is important in the discovery of the best single
DDPG baseline for comparisons.

The groups focus on measuring the interference of bad hyperparameters
in the methods. For this, 2 sets of groups were created, one for the action
aggregation and the other for the value aggregation, with the 3 best group
being used as baseline. The average end performance of 31 (10 in case of
Half Cheetah and Swimmer) learning runs was used to order the individual
parameterizations.

4.2.1
3 Best or 3 Good Group

After running the 32 single DDPG for each specific environment, the
three best hyperparameter parametrizations (algorithms) are grouped. Some-
times called 3 Best Group and sometimes called 3 Good Group.

4.2.2
Action Aggregation Groups

After ranking the individual performances, the 12 best ones were classi-
fied as good, and the 12 worst as bad. Table 4.2 summarizes the composition
used in Classical Aggregations in DDPG with Continuous Action Space, while
Table 4.3 summarizes the composition of the groups formed in the History-
Based Framework tests.

Table 4.2: Composition of test configurations. Groups of DDPG parameteri-
zations used in Classical Aggregations, with Continuous Action Space.

parameterizations 3 best good bad
best 3 12 4
worst 0 4 12

Table 4.3: Composition of test configurations. Groups of DDPG parameteri-
zations used in the History-Based Framework tests.

parametrizations good mid bad
best 12 8 4
worst 4 8 12

DBD
PUC-Rio - Certificação Digital Nº 1712535/CA



Chapter 4. Simulations 53

4.2.2.1
Good Group

This ensemble is composed by 16 DDPG, as the idea is to gather 75%
of the group, 12 good algorithm parameterizations and reserve 25%, 4 bad
parameterizations that are not well configured, to result in a non-convergence
of learning. The idea is to verify the ensemble’s learning strategy behavior when
the individual parameterizations are not exclusively good, therefore certifying
the learning resilience.

4.2.2.2
Mid Group

This ensemble is also composed by 16 DDPG, but splitting the algorithm
parameterizations group in half, with 50% being the good parameterizations
and the other 50% the bad ones (non-convergence of learning).

4.2.2.3
Bad Group

Opposite to the previous compositions, 75% of this group is composed
by bad parameterizations and 25% of good parameterizations. As the majority
is composed of bad parameterized non-coverging algorithms, it becomes an
immense challenge to carry out learning, based on those good algorithms.

4.2.3
Value Aggregation Groups

4.2.3.1
1 Good 1 Bad Group

The ensemble is composed of 2 DDPG, one well parameterized and the
other poorly parameterized, which results in the non-convergence of learning.
The idea is to verify the learning strategy behavior when there is a high
performance distinction between two algorithms.

4.2.3.2
1 Good 3 Bad Group

The ensemble is composed of 4 DDPG, one well and three poorly
parameterized, which result in the non-convergence of learning. The idea here
is to verify the learning strategy behavior when 75% of the algorithms do not
converge.
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4.2.3.3
1 Good 7 Bad Group

The ensemble is composed of 8 DDPG, one well and seven poorly
parameterized, and once more the learning convergence is avoided verifying
the learning strategy behavior when a large percentage of algorithms do not
converge.

4.3
Strategy Experiments of History-Based Framework

Since many ensemble strategies for continuous reinforcement learning
use pre-learned algorithms [16], such simulations were also performed for
comparison purposes. The base case considers just the data center, density
based and mean strategies.

Table 4.4 introduces the history-based framework instances (Section 3.3)
with the first set of chosen DDPG being the base case strategies highlighted
at the top of the table. A composition of acronyms was created, in order to
enable the identification of the History-Based Framework configuration.

– DC: Data Center;

– DB: Density Based;

– M: Mean;

– DCR: Data Center Ranking;

– DS: Density Scores; and

– ED: Squared Euclidean Distance.

Table 4.4: Ensemble Strategies Configuration of History-Based Framework.

strategy ensemble
aggregation

percentile
filtering scoring ah

active set
aggregation

B
A
SE

DC — — — 1.0 data center
DB — — — 1.0 density based
M — — — 1.0 mean

DCR-B — — data center ranking 0.01 best
DS-B — — density scores 0.01 best

M-ED-B mean — euclidean distance 0.01 best
DCR-DC — 25% data center ranking 0.01 data center
DS-DB — 25% density scores 0.01 density based
M-ED-M mean 25% euclidean distance 0.01 mean
M-ED-DC mean 25% euclidean distance 0.01 data center
M-ED-DB mean 25% euclidean distance 0.01 density based
DC-ED-DC data center 25% euclidean distance 0.01 data center

Initially a class of instances was chosen, performing only history-based
score filtering while choosing the best-scoring policy at the end of the process.
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These three strategies are indicated in the table by: DCR-B, DS-B and M-ED-
B.

Another experiment was to perform active set aggregation. For this, after
history-based filtering 25% of the actions with the best moving average, scores
are selected and used to calculate the final action. It is important to point out
that other values, such as 50% and 75%, were empirically tested in the history-
based filtering configuration, however, only with 25% it was empirically noticed
that the selective grouping contributes to the improvement of performance.

These three history-based strategies are indicated in the table as DCR-
DC, DS-DB, and M-ED-M. For consistency, we applied the same style of ag-
gregation function during scoring and active set aggregation. Finally, other ex-
periments were performed, based on the observed performance of the previous
strategies. These three strategies are presented at the end of table: M-ED-DC,
M-ED-DB and DC-ED-DC.

In the comparative results always the mean and the 95% confidence
interval over 31 runs (10 in case of Half Cheetah) are shown, considering that
randomly observed samples larger than 30 may be supposed to be normally
distributed [40, p.280]. The strategies presented in bold numbers are those
whose mean is within the 95% confidence interval of the best ensemble result,
while strategies with a mean within or above the 95% confidence interval of
the best single policy are marked with an asterisk.

In order to measure the overall performance of the framework setups to
select the strategy used for validation in the Half Cheetah v2 environment, the
average relative regret is calculated as in Eq. (3-3).

4.4
Strategy Experiments of Online Weighted Q-Ensemble

To validate our value aggregation model, its performance was tested by
ablating the two differences with respect to Q-value averaging: using a weighted
average and Boltzmann addition. This results in the following combinations:

– Softmax TDError : uses the model presented in Section 3.4;

– TDError : skips the softmax normalization of the Q-values presented in
Eq. (3-4);

– Softmax Average: maintains W = 1
n
1, but otherwise implements the

model of Section 3.4; and

– Average: standard Q-value averaging.

The average policy ensemble, with independently trained DDPG agents
and without a Q-ensemble, recently presented good performances with 3
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fine-tuned hyperparameter sets [17] in a single environment 2D robot arm
simulator. Based on this result, one ensemble group with 3 fine-tuned DDPG
(3 Best) instances is used to validate the model.

However, the Weighted DDPG Ensemble Model seeks to minimize the
effort of fine-tuning in an ensemble, and to that end 3 more ensemble groups
were created mixing good (fine-tuned) and bad (not fine-tuned and non-
converging) DDPG hyperparameters: 1 Good and 1 Bad; 1 Good and 3 Bad;
and 1 Good and 7 Bad.

In addition, two types of training mode are used in order to expand
the model validation. In the alternate training mode, at the beginning of each
training episode, the policy is chosen alternately between each of the algorithms
of the ensemble [17], Section 2.5.2. In the online training mode and in the
ensemble testing phase, the ensemble action is chosen at each episode step,
Section 3.1.

As also occurred in the simulation of the HBF, simple control problems
were chosen as environments, and two harder robotic tasks were picked to
evaluate scalability. In all cases, the episodes start at the resting point of the
environment, the observations are in trigonometric format and there are 1000
observation steps before starting training. The ranges of the hyperparameters
are given in Table 4.1, except the discount factor γ and the reward scale rs
which are frozen in 0.99 and 0.01 respectvelly.

The specific environments used are the Inverted Pendulum Swing-up
and Cart-Pole environments from the Generic Reinforcement Learning Library
(GRL) 1, Half Cheetah v2 and Swimmer v2 from the OpenAI Gym framework
[24] with the MuJoCo environments [23]. Swimmer v2 was used as a final
validation for hyperparameter randomization. For this environment, 30 random
configurations of ensembles, formed with 8 DDPG, were executed. The network
architecture and the hyperparameters were randomly generated within the
limits already used (Table 4.1).

In order to measure the overall performance of the framework setups to
select the strategy used for validation in the Swimmer v2 environment, the
OWQE average relative regret is calculated as in Eq. (3-8).

4.5
Environment

The environments used in the experiments are Inverted Pendulum Swing-
up, Cart Pole, Cart Double Pole, Half Cheetah v2, and Swimmer v2. The

1GRL Library (Generic Reinforcement Learning Library)
(https://github.com/wcaarls/grl).
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first three ones are provided by the Generic Reinforcement Learning Library
(GRL) 2. The last two are used from the OpenAI Gym framework [24] with
the MuJoCo environments [23]. The training environments consider random
initialization to avoid overfitting to a single starting condition.

4.5.1
Inverted Pendulum Swing-up (PD)

The pendulum is a free pole, attached only by an axis that, if there is
no external force, remains in the stable equilibrium at the down position, as
shown in Figure 4.1. The goal is to learn the necessary torque to swing the
pole, rotate it on the axis and maintain balance on the unstable equilibrium
of the top position [41]. It does not have enough torque to accomplish this in
one swing, so it has to learn to swing back and forth to gain energy. The pole’s
angle is observed in terms of its sine and cosine, in order to avoid the [−π, π]
wrapping problem (more details of training and variables characteristics can
be found in Table 4.5). The reward function is represented by (4-1), where x
are the state variables, pendulum angle α and angular velocity α̇, while u is
the control action in volts.

ρ(x, u) = −xTQrewx−Rrewu
2 (4-1)

where

Qrew =
5 0

0 0.1

 , Rrew = 1

Table 4.5: Variables of Inverted Pendulum Swing-up Training.

condition values
init: random position of pole.
goal: swinging pendulum up so it maintains upright.
observation (1) pendulum position sin(α).
variables: (2) pendulum position cos(α).

(3) velocity α̇ of the pole.
control action: (1) motor voltage u.
α range: [−π, π].
α̇ range: [−12π, 12π].
u range: [−3, 3] V.

4.5.2
Cart Pole (CP)

The Cart Pole problem consists of a cart that moves back and forth
along a no friction track with the task of balancing a pole attached by an

2GRL Library (Generic Reinforcement Learning Library)
(https://github.com/wcaarls/grl).
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θ

Figure 4.1: Illustration of the Inverted Pendulum Swing-up Model.

un-actuated joint as shown in Figure 4.2. The goal is to learn how to swing
up and balance the pole just by moving the car around the track [42, 43].
The observation variable, as in the inverted pendulum swing-up environment,
considers information derived from the angle, now along with the cart position.
Table 4.6 shows the training details and variable characteristics. The reward
function is represented in Equation (4-2).

ρ(x, θ, ẋ, θ̇) = −2x2 − 0.1ẋ2 − θ − 0.1θ̇2 (4-2)

4.5.3
Cart Double Pole (CDP)

As in the cart pole, a pole is attached by an un-actuated joint to a cart,
which moves along a no friction track [44]. But this time, another pole is
attached by an un-actuated joint to the first pole as shown in Figure 4.3. The
poles start near upright, and the goal is to prevent the system from falling over,
with the reward function being represented by Equation (4-3). The observation
variable considers information derived from both angles and the cart position.
The training and variables characteristics are found in Table 4.7. The episode
ends prematurely when the pole is more than 15 degrees from the vertical, or
when the cart moves more than 2.4 meters from the center.

ρ(x, θ1, θ2) = 6.2− |x| − |θ1| − |θ2|; (4-3)
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Table 4.6: Variables CP Training.

condition values
init: car in middle and pole in a random position.
goal: swing pole up and maintain it upright.
observation (1) position of the cart on the track (x).
variables: (2) angle of the pole with the vertical (θ).

(3) cart velocity (ẋ).
(4) angular velocity (θ̇).

control action: (1) force u applied to the cart.
θ range: [−π, π].
θ̇ range: [−5π, 5π].
x range: [−2.4, 2.4].
ẋ range: [−10, 10].
u range: [−15, 15] V.

θ

F

x

Figure 4.2: Illustration of the Cart Pole Model.

Table 4.7: Variables Cart Double Pole Training.

condition values
init: car in middle and pole in upright position.
goal: maintain it upright.
observation (1) position of the cart on the track (x).
variables: (2) angle of the pole 1 with the vertical (θ1).

(3) angle of the pole 2 with the vertical (θ2).
(4) cart velocity (ẋ).
(5) angular velocity of pole 1 (θ̇).
(6) angle velocity of pole 2 (θ̇2).

control action: (1) force u applied to the cart.
θ1 and θ2 range: [−π, π].
θ̇1 and θ̇2 range: [−5π, 5π].
x range: [−2.4, 2.4].
ẋ range: [−10, 10].
u range: [−20, 20] V.

4.5.4
Half Cheetah v2 (HC)

Half Cheetah is a walking animal in a 2D environment [23, 45]. Figure 4.4
shows the six joint points of the half cheetah to which torque can be applied in
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θ1

F

θ2

x

Figure 4.3: Illustration of the Cart Double Pole Model.

order to control this two-legged walking robot. For each leg, the three degrees
of freedom correspond to thighs, shins and feet. The seventeen observation
variables and six actions are described in more depth in Table 4.8.

x

z
y

θ1

θ2

θ3

θ4

θ5

θ6

Figure 4.4: Illustration of the Half Cheetah v2 Model.

4.5.5
Swimmer v2 (SW)

Swimmer is a three-link robot in a viscous fluid in a 2D environment [23].
This simulation’s goal is to make it swim forward as fast as possible. Figure
4.5 shows the two joint point of the swimmer which receive torque. The eight
observation variables and two actions are described in Table 4.9 [46].
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Table 4.8: Variables of Half Cheetah v2 Training.

condition values
init: random variables.
goal: learn to walk alone as fast as possible.
observation (1) x position, range [0, 1] meter.
variables: (2) y angle, range [−π, π].

(3) z position, range [0, 1] meter.
(4) hind foot angle (θ1), range [−π, π].
(5) hind shin angle (θ2), range [−π, π].
(6) hind thigh angle(θ3), range [−π, π].
(7) front foot angle (θ4), range [−π, π].
(8) front shin angle (θ5), range [−π, π].
(9) front thigh angle (θ6), range [−π, π].
(10) x velocity, range [−1, 1] m/s.
(11) y angular velocity, range [−10, 10] m/s.
(12) z velocity, range [−1, 1] m/s.
(13) hind foot angular velocity (θ̇1), range [−10, 10] m/s.
(14) hind shin angular velocity (θ̇2), range [−10, 10] m/s.
(15) hind thigh angular velocity (θ̇3), range [−10, 10] m/s.
(16) front foot angular velocity (θ̇4), range [−10, 10] m/s.
(17) front shin angular velocity (θ̇5), range [−10, 10] m/s.
(18) front thigh angular velocity (θ̇6), range [−10, 10] m/s.

control action: (1) torque hind thigh, range [−1, 1] N m.
(2) torque hind shin, range [−1, 1] N m.
(3) torque hind foot, range [−1, 1] N m.
(4) torque front thigh, range [−1, 1] N m.
(5) torque front shin, range [−1, 1] N m.
(6) torque front foot, range [−1, 1] N m.

x

θ1

θ2

θ3

Figure 4.5: Illustration of the Swimmer v2 Model.

DBD
PUC-Rio - Certificação Digital Nº 1712535/CA



Chapter 4. Simulations 62

Table 4.9: Variables of Swimmer v2 Training.

condition values
init: random variables.
goal: swim forward as fast as possible.
observation (1) x position, range [0, 1].
variables: (2) x velocity, range [−1, 1].

(3) angle 1 (θ1), range [−π, π].
(4) angle 2 (θ2), range [−π, π].
(5) angle 3 (θ3), range [−π, π].
(6) angular velocity 1 (θ̇1), range [−10, 10].
(7) angular velocity 2 (θ̇2), range [−10, 10].
(8) angular velocity 2 (θ̇3), range [−10, 10].

control action: (1) torque 1, range [−1, 1] N m.
(2) torque 2, range [−1, 1] N m.
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5
Results

This chapter summarizes the results simulated. Section 5.1 presents the
algorithm’s individual results which compose the ensemble’s validation groups
according to their performance. In Section 5.2 results are presented comparing
classical aggregations using DDPG. Sections 5.3 and 5.4 present the results
and their discussions of the History-Based Framework and Online Weighted
Q-Ensemble.

5.1
Individual Results

The performance execution of the individual action ensemble experiment
algorithms proposed in the action aggregation study is presented in Table
5.1, where the performance values used to form groups from the best and the
worst algorithms are shown. All environments have high different performance
variations, with the exception being the Cart Double Pole, probably due to its
initial state being already close to the equilibrium state. After sorting the 32
algorithms by performance, only the 12 best and 12 worst are presented, as
the others are not used in the ensemble groups.

Furthermore, Table 5.2 presents the performance of the individual algo-
rithms in Q-ensemble experiments, displaying the three best and the 7 worst
performances per episode. The algorithm hyperparameter values are shown
previously in Table 4.1, note that these performance values are different from
Table 5.1 because the experiments do not consider varying the discount factor
and reward scale. Furthermore, these values were generated in a new frame-
work created from scratch in Python Language1 on the other hand the values
in Table 5.1 were generated in GRL framework2. All individual performance
simulations are presented in Appendix A, yet in the Tables cited 5.1 and 5.2,
only the performances of the algorithms selected to participate in ensemble
compositions are presented.

1https://github.com/renata-garcia/wce_ddpg
2https://github.com/wcaarls/grl
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Table 5.1: Parameterizations Chosen by Environment and Their Performance
in Action Ensemble.

Inverted
Pendulum

Cart
Pole

Cart Double
Pole

Half
Cheetah

B
E

ST

−792±14 −344±86 616±1 1419±73
−794±15 −378±112 602±10 1407±333
−797±16 −472±153 588±19 1378±85
−801±22 −484±303 585±34 1275±69
−803±18 −509±204 585±15 1267±300
−808±19 −538±284 575±36 1255±115
−815±20 −613±191 558±56 1247±150
−816±24 −682±387 538±31 1235±107
−818±26 −769±351 531±57 1208±150
−820±22 −952±363 529±59 1194±122
−824±23 −984±208 500±36 1145±203
−827±22 −1033±269 495±44 1135±127

W
O

R
ST

−3508±0 −2860±737 343±93 775±286
−3508±0 −3071±577 330±53 758±194
−3508±0 −3366±574 284±31 708±205
−3508±0 −4037±1686 282±37 629±325
−3508±0 −4274±2297 275±100 602±350
−3508±0 −4572±84 269±35 525±351
−3523±6 −4599±72 266±32 483±295
−3585±47 −4645±61 262±30 262±258
−3605±29 −4695±17 241±28 215±250
−3653±76 −4704±15 230±42 138±245
−3897±120 −4709±12 180±87 −14±24
−3962±107 −4712±13 30±11 −29±10

Table 5.2: Parametrizations by Environment and Their Performance used in
Value Ensemble.

Inverted
Pendulum

Cart
Pole

Half
Cheetah

B
E

ST

−754±13 −239±34 4084±1271
−766±13 −271±61 3790±0
−769±20 −293±64 3194±1551

W
O

R
ST

−1293±773 −1424±300 1623±556
−1318±109 −1445±292 1414±263
−1653±727 −1498±256 1397±266
−1691±811 −1617±326 1292±323
−2280±814 −1716±1008 873±723
−2846±977 −2000±1437 −240±0
−4030±964 −2364±929 −583±94

5.2
Classical Aggregations in DDPG with Continuous Action Spaces

This section presents the comparison results of the DDPG execution
using the mean aggregation and the continuous action aggregations [14]
presented in literature. The groups used were 3 best, tested with Mean
aggregation, good and bad, with the latter being used in order to verify
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the ensemble resilience in the use of non-converging algorithms. The other
aggregations used were Data Center (Section 2.4.1.3) and Density Based
(Section 2.4.1.2).

The performance values of each experiment represent the average of the
last 10 episode returns in the learning runs. In the Tables 5.1 and 5.2, the
final result is presented with an average performance over 30 runs and its 95%
confidence interval, except the Half Cheetah environment that always uses a
10 runs average due to its computational complexity. The best single DDPG
algorithm is presented as a benchmark for performance comparison.

The executions of the ensemble, which showed an intersection of the
mean and its confidence interval with Best DDPG, are highlighted in bold.
The experiments were run several times to achieve an expected reliability for
comparison purposes [40].

Analyzing Tables 5.3 and 5.4, it can be seen that the 3 best group in
Alternately Persistent training performs very well with any chosen strategy;
even the simple Mean strategy works properly in this learning mode, but it
does not in the Online Learning.

However, with the Data Center strategy in Online Learning, the 3 best
performs equal to or even better than Alternately Persistent, and with a
narrower confidence interval, indicating a more stable learning. This stability
becomes interesting when the results of the good group compared: for this case,
the Data Center Online Learning always converges, although the ensemble
includes non-learning-capable algorithms.

Table 5.3: Comparison Performance of Classical Aggregations Ensemble in
DDPG with Continuous Action Space in Alternately Persistent.

DDPG Alternately Persistent
3 best good bad

PD

Best −792± 14
Mean -839±43 −1613±174 −4041±118

Data Center -795±11 -804±10 −1784±406
Density Based -922±136 −1080±161 −2361±259

C
P

Best −344± 86
Mean -416±154 −962±273 −2550±334

Data Center -573±312 −901±228 −2472±347
Density Based -477±172 −1551±205 −2770±370

H
C

Best 1419± 73
Mean 3474±822 2205±634 551±412

Data Center 2321±618 2040±423 1332±83
Density Based 2205±459 1441±195 1041±110

Besides that, in the 3 best and good ensembles the Data Center strategy
shows very good results when compared with the best DDPG, with the
exception being the good group in the Cart Pole environment in Alternately
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Table 5.4: Comparison Performance of Classical Aggregations Ensemble in
DDPG with Continuous Action Space in Online Learning.

DDPG Online Learning
3 best good bad

PD
Best −792± 14
Mean −1786±369 −2836±280 −4252±109

Data Center -794±11 −854±24 −2221±326
Density Based −1412±229 −1607±266 −2834±249

C
P

Best −344± 86
Mean −1333±336 −2103±243 −3409±290

Data Center -291±58 -484±167 −1760±345
Density Based -344±120 −1110±193 −1378±194

H
C

Best 1419± 73
Mean 314±302 −53±17 −100±20

Data Center 2159±342 1942±198 1284±294
Density Based 1424±415 613±392 555±267

Persistent training mode. Data Center aggregation in the bad group of the
Half Cheetah environment even shows performance almost on par with the
best single strategy for both training modes.

On the other side, Density Based aggregation does not stand out from the
single’s best performance in training. Although it converges in all environment
in the 3 best group with Alternately Persistent training, its mean is always
below the best other strategy.

To show the learning behavior, we present the learning curves of different
aggregation techniques with the good group in all environments and both
training modes. The Alternately Persistent learning is presented in Figure
5.1, with the Inverted Pendulum presenting distinct performances for each
aggregation, while, in Figure 5.2, Cart Pole struggled to reach a better
performance. In Figure 5.3, Half Cheetah showed a huge performance leap
in the early seconds between the Data Center and Mean, yet both ended with
an equal performance.

In Online learning, Data Center presented the best performance in all
environments, mostly because the other aggregations present worse behavior
in this mode. Although they start comparably, the performance becomes more
erratic as time goes on.

Figure 5.4 compares the best algorithm learning curve with the good
group, which was trained with Alternately Persistent learning in the Half
Cheetah environment. Data Center learns comparably in the beginning, but
surpasses the best performance later on. The Mean aggregation worked just as
well at the end, even though it presented a low capacity in the initial stage
of learning. Both show the possibility of further performance improvement if
learning were extended.
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Figure 5.1: Alternately Persistent and Online Learning of mostly good Group
in Inverted Pendulum Swing-up.

Figure 5.2: Alternately Persistent and Online Learning of mostly good Group
in Cart Pole.

Figure 5.3: Alternately Persistent and Online Learning of mostly good Group
in Half Cheetah v2.
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Figure 5.4: Half Cheetah v2 Performance for the good Hyperparameterizations
in Alternately Persistent Learning.

5.3
History-Based Framework (HBF)

This section presents the results of experiments performed on the History
Based Framework.

5.3.1
Ensemble of Pre-Trained Algorithms

In ensemble research, it is common to use previously trained algorithms,
and this work follows this tradition: below are presented the tables containing
pre-learned algorithm simulations. Table 5.5 presents the inverted pendulum
environment, while Tables 5.6 and 5.7 present cart pole and cart double pole.
All of them show that many of the presented ensemble strategies have an equal
or better performance than the best base case (without history).

In the good group, almost all the strategies performed better than the
best single policy, with the exception being the cart double pole environment,
that, in this case, only DC-ED-DC stood out. Analyzing the tables, it is seen
that the best results are found predominantly in the new strategies created by
the History-Based Framework.

Looking at the mid group, it is interesting to note that some strategies
maintain performance, although half of the algorithms participating in the
ensemble do not learn. For the bad group, only the cart double pole maintains
convergence, probably because, in this test case, the episodes start near the
the equilibrium end point.
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Table 5.5: Pendulum Results for Different Ensemble Strategies (31 runs).

strategy pre-learned learning online learning
good mid bad good mid bad

B
A
SE

DC -779±11* -894±89 -2327±367 -850±25 -1075±80 -2244±321
DB -846±75 -1406±189 -2553±279 -1594±264 -2633±342 -2810±254
M -1416±115 -2851±116 -4043±62 -2835±286 -3574±172 -4234±108

DCR-B -775±10* -874±176 -2388±428 -804±17* -841±59 -2477±413
DS-B -794±22* -1188±325 -3339±206 -1783±343 -2233±376 -3468±79

M-ED-B -1067±353 -1490±509 -3359±518 -810±18 -1358±442 -2343±584
DCR-DC -770±10* -876±180 -2386±430 -791±13* -1008±176 -2341±375
DS-DB -796±33* -1471±398 -3433±135 -846±24 -1105±94 -2346±379
M-ED-M -793±20* -884±63 -2174±486 -894±159 -1139±251 -2369±374
M-ED-DC -778±13* -786±12* -1765±489 -790±11* -783±12* -1677±444
M-ED-DB -782±11* -799±13* -1713±486 -793±10* -861±77 -1448±306
DC-ED-DC -775±11* -864±182 -2066±471 -806±14 -974±201 -1913±400

Table 5.6: Cart Pole Results for Different Ensemble Strategies (31 runs).

strategy pre-learned learning online learning
good mid bad good mid bad

B
A
SE

DC -392±51* -507±162 -1062±247 -463±170 -783±261 -1684±364
DB -931±138 -1189±144 -1582±183 -1077±206 -1317±279 -1322±214
M -516±109 -878±222 -1637±233 -2153±254 -2805±249 -3411±294

DCR-B -306±54* -571±230 -1180±326 -434±143 -831±319 -1895±435
DS-B -860±148 -1373±173 -2190±240 -920±272 -2020±379 -2316±365

M-ED-B -379±115* -985±326 -2349±542 -379±99* -1382±410 -2483±392
DCR-DC -275±54* -550±220 -1141±313 -727±351 -812±303 -1450±440
DS-DB -380±54* -510±157 -1062±249 -462±164 -735±288 -1338±289
M-ED-M -268±27* -363±160* -924±247 -632±158 -1851±431 -2624±504
M-ED-DC -244±20* -315±144*-1083±418 -296±94* -913±441 -2474±604
M-ED-DB -263±24* -352±157* -953±269 -236±24* -766±377 -1659±531
DC-ED-DC -228±15* -362±170* -837±291 -340±121* -677±367 -912±291

Table 5.7: Cart Double Pole Results for Different Ensemble Strategies (31
runs).

strategy pre-learned learning online learning
good mid bad good mid bad

B
A
SE

DC 609±10 554±27 485±32 565±42 392±60 551±33
DB 222±62 225±65 183±57 278±61 234±49 296±65
M 535±42 435±45 317±35 88±12 89±11 84±11

DCR-B 603±18 502±42 436±43 612±2 598±12 577±26
DS-B 292±64 258±58 218±53 523±51 368±52 477±48

M-ED-B 577±27 477±51 406±47 552±41 419±52 287±48
DCR-DC 613±3 509±39 435±39 611±2 595±12 560±27
DS-DB 610±7 555±26 499±33 247±31 530±48 462±57
M-ED-M 603±10 546±38 479±40 485±36 292±40 258±29
M-ED-DC 611±3 557±33 494±40 606±7 571±25 467±45
M-ED-DB 606±8 561±29 488±39 606±6 599±10 534±31
DC-ED-DC 614±3* 587±24 500±41 606±5 600±10 560±27

Table 5.8: Half Cheetah v2 Validation Results (10 runs).

strategy pre-learned learning online learning
good mid bad good mid bad

DC 1324±144 1043±249 1002±146 1945±222*1870±201* 1325±322
DC-ED-DC 1501±39* 817±459 1166±83 2057±72* 1962±229*1515±174*
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5.3.2
Ensemble Online Training

In the ensemble online training, the individual DDPG policies are trained
from scratch during execution, learning together. Table 5.5 presents the
inverted pendulum environment, while Table 5.6 and 5.7 present the cart pole
and cart double pole, again showing that many of the presented ensemble
strategies have an equal or better performance than the best base case, mainly
for the good group.

In the mid group, cart pole does not present good convergence. The bad
group of cart pole presents performance compared to mid for the DC-ED-DC
strategy. This environment performs better when policies are more consistent.
The DC-ED-DC strategy presented the lowest error as calculated by Eq. (3-3),
having a 2.3% average relative regret.

Figures 5.5 and 5.6 show the learning curves of the DC and DC-ED-DC
strategies.

5.3.3
Half Cheetah Test

Half Cheetah [23] is a complex environment, chosen to validate the
strategy of the online continuous action ensembles. It seeks the goal of a bipedal
walk, and its environment is tested with DC (best base case strategy) and
DC-ED-DC (best strategy with the lowest error method as described in the
Section 4.3) for the comparison of results. Table 5.8 presents the pre-learned
and the online learning ensemble strategies’ performance in the Half Cheetah
environment respectively. The noteworthy result is that Half Cheetah learns
consistently better for online learning when compared to the best individual
simulations. Considering the best single parameterization in our set, the DC-
ED-DC online learning strategy shows 45% improvement in the good group
(2057±72 vs. 1419±73), proving that. Overall, the DC-ED-DC is consistently
better, or at least equal to mid group, the base case DC. Besides that, training
policies online presents much better results than using pre-learned policies.

Finally, to test the decreased hyperparameter tuning effort in our ap-
proach, random continuous values of the hyperparameters’ intervals described
in Section 3.3 were generated. Note that, due to the choice’s randomness, the
chosen parameters naturally tend to fall more in the middle than at the range’s
extremes, generating more acceptable average values (Table 4.1). For a random
test, 30 ensembles with 16 parameterizations were generated and run once. In
the previous experiments, the formation for groups always ensured that at least
4 algorithms (good groups) were not able to converge, opposed to the random
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Figure 5.5: Illustration of DC and DC-ED-DC Learning Curves of PD and CP
environment.

generation ones, where no such control was made. The random Half Cheetah
v2 hyperparameter ensemble, using the DC-ED-DC strategy, resulted in the
mean performance of 3684±626.

5.3.4
Discussion

Although in the literature the Density Based aggregation strategy shows
better results in the performed experiments [14, 15, 16], the case studies
analyzed in this thesis have shown more consistent Data Center results. One
reason may be the need to parameterize Density Based algorithm, which may
have negatively influenced the performance. An other consideration is that
both the off-policy algorithm and the environments are different, yet there are
good results in the combined framework strategies that include the Density
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Figure 5.6: Illustration of DC and DC-ED-DC Learning Curves of CDP and
HC environment.

Based algorithm.
Regarding the separation of the tests into groups, the good group pre-

sented better results, as expected. Another point is that the best ensemble
strategies in the good group responded considerably better than the best indi-
vidual algorithm, while the Density Based strategy performed less consistently;
that means that the best ensemble results improve robustness and accuracy as
expected [47]. Although the best strategy varies with the group and environ-
ment, DC-ED-DC showed more consistent overall performance than all other
strategies, including the baselines.

Looking at the other groups, the mid group was, for some cases, able
to keep up with the expected good performance, allowing significant leeway in
the choice of hyperparameter realizations. In the bad group, the cart double
pole and Half Cheetah environments presented a surprising performance,
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comparable to the best tuned run. The former environment already started in
the final position equilibrium, while the latter showed the ability to maintain
excellent performance over the best individual algorithm, mainly because of
the 45% improvement demonstrated in the good group.

The final fully randomized validation test demonstrated the performance
of hyperparameters found randomly within the composition expected in a
realistic DDPG implementation. In the Half Cheetah environment, it can be
seen that the strategies performed surprisingly well compared to the single
run.

5.4
Online Weighted Q-Ensembles (OWQE)

In this section, the simulation results of the OWQE are presented.
Figure 5.7 shows the final performance and its confidence interval. Each bar
graph compares the performance on the 4 ensemble groups for the different
aggregations, with separate graphs showing distinct environments and training
modes.

It is observed that the online training mode almost always outperforms
alternate training; furthermore, there is no significant variation between the
aggregations in the 3 Best ensemble performance. Ensembles with a majority
of bad parameterizations perform worse, which is especially evident in the more
complex Half Cheetah v2 environment.

In general, the Softmax TDError aggregation performs better, or within
the confidence interval, than the other aggregations with the 1 Good 3 Bad
performance, on par with the single best and 3 Best ensemble even in the Half
Cheetah v2 environment.

Regarding the single ablations, there is no obvious trend as for which has
the better performance. In fact, sometimes they perform worse than simple Q-
averaging. However, looking at the average relative regret presented in Table
5.9, the critic weighing (TDError aggregation) has a larger influence than
Boltzmann averaging (Softmax Average), although it is clear that both are
required for our model’s final performance.

Table 5.9: Average relative regret result – OWQE – Eq. (3-3) over the
pendulum, cart pole and Half Cheetah v2 environments and all ensemble
groups, using online training.

Average Softmax
Average TDError Softmax

TDError
5.5059 6.0599 4.9232 2.3890
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Figure 5.7: Performance of Weighted DDPG Ensemble Model comparing
groups (3 Best, 1 Good 1 Bad, 1 Good 3 Bad and 1 Good 7 Bad) and
Q-Aggregation (Average, Softmax Average, TD Error, Softmax TD Error).
Columns separate the Alternately and Online training and the lines present
the environments: inverted pendulum, cart pole, Half Cheetah v2 and swimmer
v2. The graphic bar also shows the error bar of the 95% confidence interval.
The horizontal line marks the mean of 10 single run and the shadows area
represents the 95% confidence interval
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The Swimmer v2 validation uses 30 different ensembles, each with 8
randomly generated parameterizations. The performance of the full model
(Softmax TDError aggregation) was compared with simple Q-averaging, using
online training. The mean and confidence intervals are 85 ± 13 for averaging,
and 110± 18 for our model, showing a significant improvement.

5.4.1
Learning Curve

Figure 5.8 shows the online training mode learning curves of the 1
Good 1 Bad and 1 Good 3 Bad ensembles for the Average and Softmax
TDError aggregations. In the inverted pendulum, Softmax TDError learns
a bit faster than Average, while in the cart-pole this behavior is reversed. In
both environments learning is stable with good end performance, with Softmax
TDError having higher mean and lower final variance.

In Half Cheetah v2, the performance difference is huge. Both curves show
high variance, but in both ensemble groups Softmax TDError performs much
better. Specifically, Average does not manage to learn in the 1 Good 3 Bad
ensemble, while Softmax TDError maintains almost the same performance as
in the 1 Good 1 Bad group.

5.4.2
Action Preference and Q-Weights

To better understand our model’s behavior, an investigation of how the
actions are chosen was made. Figure 5.9 presents the behavior of the Half
Cheetah v2 MuJoCo environment, where in the left column are the assigned
weights to each critic — Q-Weights (W), and in the right the percentage of
different actors’ actions chosen in the episode. All bad parameterizations have
the same color, while the good ones are highlighted.

At the beginning of the learning process, the W are uniformly dis-
tributed, and at the end the weights tend to choose the critic with the lowest
calculated TD Error. The same process happens with the counted actions; the
beginning of the learning process has shown an equal distribution of the cho-
sen actions, while at the end the choice of actions is influenced by the critics’
acquired Q-Weights.

The first row shows the 3 Best group, where each parameterization
has a different color. Intuitively, the expectation is that both weights and
action choices should stay equally distributed, since all parameterizations have
roughly the same individual performance. Initially, this is not the case, as some
choices may learn faster than others, but, at least for the actions, the end result
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Figure 5.8: Learning Curve of Online Weighted Q-Ensemble with 1 Good 1 Bad,
and 1 Good and 3 Bad and Q-Aggregation (Average, Softmax TD Error). All
cases are online training, lines present the environments: inverted pendulum,
cart pole and Half Cheetah v2. The graphic also shows the 95% confidence
interval.
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Figure 5.9: Counter Action and Q-Weights of Online Weighted Q-Ensemble
with 3 Best, 1 Good 1 Bad, 1 Good and 3 Bad, and 1 Good and 7 Bad and Q-
Aggregation Softmax TD Error). All cases are online training in Half Cheetah
v2 environment. The graphic also shows the 95% confidence interval.
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is as expected. Note that one critic has a very low weight, but it’s actor’s action
is chosen normally (red line). This shows that having a higher TD-error critic
does not always imply on a worse actor.

The second row presents the 1 Good 1 Bad group, which is composed of
two opposing models algorithm, with an expectation that the good algorithm
will be chosen from the beginning. Indeed, there is a very clear distinction from
the Q-Weights, that is reflected in the choice of actions with little noise. The
third row of Figure 5.9 presents the 1 Good and 3 Bad group, which behaves
similarly to the 1 Good 1 Bad, but with more challenges, as there are more
bad parameterizations to compete with.

Finally, the 1 Good and 7 Bad group shown in the last row struggles to
find the good agent. The Q-Weights do not manage to converge to the best
individual critic, nor is its action chosen more often than the others. However,
the results in Figure 5.7 show that the ensemble still reaches an adequate
(although not optimal) performance.

Overall, the best individual agent has both lower weight and its actions
are generally chosen less in larger ensembles. Even so, there is an improvement
in the final performance when Softmax TDError is used.

5.5
Discussions

In the results presented, it was clear that the classic strategies ensembles
are only good for 3 best. In the History-Based Framework, an action ensemble ,
there is a behavior change because aggregations that work well in good groups
are presented, that is, when there are 25% of non-converging algorithms.
Adding the q-value information in the selection of the ensemble’s action by
Online Weighted Q-Ensemble, it was noticed that it achieves good results even
with a large majority of non-converging algorithms. For this, groups with only
1 convergent algorithm were tested with varied numbers of non-convergent
algorithms.

All experiments are intended to demonstrate the use of the amount of
environment interactions. Therefore, there are no investigations into the cost-
benefit of computational effort. All experiments were performed on worksta-
tions with or without a dedicated video card for processing. Table 5.10 presents
a reference of computational effort, the machine used in this example is an In-
tel(R) Core(TM) i7-7700 CPU @ 3.60GHz, with a GeForce GTX 1080 8GB
and 16 GB Ram Memory.
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Table 5.10: Computational effort reference in Online Weighted Q-Ensemble
using a workstation configured with an Intel(R) Core(TM) i7-7700 CPU @
3.60GHz, with a GeForce GTX 1080 8GB and 16 GB Ram Memory.

Environment Group Aggregation Time (min)
Inverted Pendulum Swing-up Single — 22
Inverted Pendulum Swing-up 1 Good 1 Bad Softmax TDError 53
Inverted Pendulum Swing-up 1 Good 7 Bad Softmax TDError 107

Half Cheetah v2 Single — 145
Half Cheetah v2 1 Good 1 Bad Softmax TDError 482
Half Cheetah v2 1 Good 7 Bad Softmax TDError 1970
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6
Conclusions and Future Proposals

The comparison with the classical aggregation in continuous action spaces
demonstrates that it is possible to improve the grid search performance with
the use of a DDPG ensemble. When testing an ensemble with 3 Best DDPG,
the best aggregation cannot be highlighted; however, when we use the good
group, it is realized that the Data Center strategy presents good performance
and the narrowest confidence interval. When using algorithms with unreliable
hyperparameter tuning, the bad group, the Data Center demonstrated its
capability to learn as well as fine-tuning a single agent, but only in the Half
Cheetah environment. The baseline algorithms are good for ensembles of good
parameterizations, but performance almost always goes downhill if bad ones
are included.

The study regarding continuous action ensembles with the History-Based
Framework (HBF) propose learning control policies from scratch, demonstrat-
ing that the hyperparameter tuning need a reduction in DDPG algorithms
when tested with the Half Cheetah environment. In order to achieve this result,
a history-based framework considering the ensemble’s historical performance
was introduced, with a capability of capturing different compositions of en-
semble strategies, presenting the ones that performed best. The best strategy,
DC-ED-DC, takes the squared Euclidean distance of each action from the data
center’s action center and performs the moving average by updating the scores,
selecting 25% of the best scoring ones and applying the data center algorithm
again. A comparison was made with state-of-the-art ensemble strategies, and it
demonstrated that the chosen strategy outperforms the baseline algorithms. It
also demonstrated the advantage in simulation of using an ensemble algorithm
over individual algorithms. In the classical environments, pre-learned strate-
gies mostly showed better results than online learning; however, evaluating in
the Half Cheetah environment, it is shown that the approach to online learn-
ing policies made a very significant difference, improving performance for both
the base case and the best strategies (DC-ED-DC). The HBF was designed to
work with online learning and a single environment, since it has advantages in
the system’s applicability in real-world robotic applications.

Adding the q-value information in the selection of the ensemble’s action,
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the Online Weighted Q-Ensemble (OWQE) was designed to decrease the
hyperparameter tuning effort, using q-values continuous action spaces. Based
on previous works, which use an average of Q-ensembles in an actor-critic
setting, we introduced a weighing approach that adjusts the critics’ weights
by minimizing the temporal difference error of the ensemble as a whole.
Additionally, instead of combining the Q-values directly, they were applied
through a softmax layer, in order to focus on relative preferences rather than
absolute values. In both simple and complex robotic simulation environments,
our model showed better results than the standard Q-value averaging, and
managed to maintain performance comparable to the best individual run
even if the ensemble included up to 3-7 bad parameterizations. Validation
using ensembles with 8 randomized parameterizations also showed superior
performance compared to the q-value averaging. Such as before, it was aimed
at the system’s applicability in real-world robotic applications, so the tests
used a single environment.

In future works, it would be interesting to extend the simulations to
more environments, evolving the validations for use in real robots. Other
interesting points to be further expanded in possible subsequent works are
the acceleration of learning from the beginning curves and the extension of
tests with further algorithms, such as TD3 and SAC. One of the perceived
limitations of the HBF was the lack of q-values (value functions) usage;
therefore, the OWQE was developed, in order to fill this gap and improve the
ensemble’s performance. Upcoming work on OWQE may include the gamma
and reward scale hyperparameters optimizations. Furthermore, it learns in
the OWQE 1 Good 7 Bad group evaluations, but with great variations in
performance when compared between environments. As the real world has
only one real environment, this entire study was directed to it, but, for
future researches, there are interesting possibilities, e.g., the improvement of
performances for all environments or the use of multi environments in order
to accelerate learning techniques, such as transfer learning.
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A
Appendix — Single Run

Table A.1: Parametrizations by Environment and Their Performance in Action
Ensemble.

Inverted
Pendulum

Cart
Pole

Cart Double
Pole

Half
Cheetah

B
E

ST

−792±14 −344±86 616±1 1419±73
−794±15 −378±112 602±10 1407±333
−797±16 −472±153 588±19 1378±85
−801±22 −484±303 585±34 1275±69
−803±18 −509±204 585±15 1267±300
−808±19 −538±284 575±36 1255±115
−815±20 −613±191 558±56 1247±150
−816±24 −682±387 538±31 1235±107
−818±26 −769±351 531±57 1208±150
−820±22 −952±363 529±59 1194±122
−824±23 −984±208 500±36 1145±203
−827±22 −1033±269 495±44 1135±127

M
ID

D
L

E

−873±173 −1202±300 481±79 1119±115
−875±30 −1207±495 476±64 1112±140
−906±172 −1300±377 473±70 1100±126
−986±53 −1391±496 451±87 1096±170
−996±61 −1931±453 427±39 1084±388
−1245±314 −2048±415 423±52 991±162
−1723±442 −2626±390 380±58 883±165
−3386±269 −2637±540 357±59 809±241

W
O

R
ST

−3508±0 −2860±737 343±93 775±286
−3508±0 −3071±577 330±53 758±194
−3508±0 −3366±574 284±31 708±205
−3508±0 −4037±1686 282±37 629±325
−3508±0 −4274±2297 275±100 602±350
−3508±0 −4572±84 269±35 525±351
−3523±6 −4599±72 266±32 483±295
−3585±47 −4645±61 262±30 262±258
−3605±29 −4695±17 241±28 215±250
−3653±76 −4704±15 230±42 138±245
−3897±120 −4709±12 180±87 −14±24
−3962±107 −4712±13 30±11 −29±10
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Table A.2: Parametrizations by Environment and Their Performance used in
Online Weighted Q-Ensemble.

Inverted
Pendulum

Cart
Pole

Half
Cheetah

B
E

ST

−754±13 −239±34 4084±1271
−766±13 −271±61 3790±0
−769±20 −293±64 3194±1551

M
ID

D
L

E

−781±67 −386±220 3094±647
−781±16 −409±148 2651±0
−791±30 −480±279 2551±706
−801±28 −529±309 2548±1181
−805±31 −725±872 2158±765
−808±29 −738±865 1988±656
−885±61 −1263±167 1897±257
−925±45 −1337±264 1795±199
−964±49 −1350±210 1722±215
−1190±50 −1401±169 1712±232

W
O

R
ST

−1293±773 −1424±300 1623±556
−1318±109 −1445±292 1414±263
−1653±727 −1498±256 1397±266
−1691±811 −1617±326 1292±323
−2280±814 −1716±1008 873±723
−2846±977 −2000±1437 −240±0
−4030±964 −2364±929 −583±94
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