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Abstract

Rogozinski, Marcos; Barbosa, Carlos Roberto Hall Barbosa (Advisor); Costa
Monteiro, Elisabeth (Co-advisor). Deep learning applied to locating
ferromagnetic foreign bodies in humans. Rio de Janeiro, 2021. 95p.
Dissertagdo de Mestrado — Programa de Pos-Graduagdo em Metrologia,
Pontificia Universidade Cat6lica do Rio de Janeiro.

Ferromagnetic foreign bodies accidentally inserted in patients usually need
to be surgically removed. The methods conventionally employed for locating
foreign bodies are often ineffective due to the low accuracy in determining the
position of the object and pose risks arising from the exposure of medical staff and
patients to ionizing radiation during long-term procedures. New methods using
SQUID sensors successfully located foreign bodies in an innocuous and non-
invasive way, but they have the drawback of presenting high cost and low
portability. This work is part of new research that seeks to bring greater portability
and low cost in locating foreign bodies in the human body using GMI and GMR
sensors. The main objective of this work is to evaluate and apply the use of Deep
Learning in the development of a portable and manual device based on a GMR
sensor, including position tracking and orientation of this device from images of
known patterns obtained by a camera integrated to the device and the solution of
the inverse magnetic problem from the obtained magnetic mapping. The techniques
presented are capable of tracking the device with good accuracy and detecting the
localization of the foreign body with similar or better results than those obtained in
previous works, depending on the parameter. The results obtained are promising as

a basis for future developments.

Keywords

Metrology; Ferromagnetic Foreign Bodies; Deep Learning; GMR
Magnetometer; Convolutional Neural Networks; Device Tracking
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Resumo

Rogozinski, Marcos; Barbosa, Carlos Roberto Hall Barbosa; Costa Monteiro,
Elisabeth. Aprendizado Profundo aplicado na localizacio de corpos
estranhos ferromagnéticos em humanos. Rio de Janeiro, 2021. 95p.
Dissertagdo de Mestrado — Programa de Pos-Graduagdo em Metrologia,
Pontificia Universidade Cat6lica do Rio de Janeiro.

Corpos estranhos ferromagnéticos inseridos acidentalmente em pacientes
geralmente precisam de remocao cirargica. Os métodos convencionalmente
empregados para localizar corpos estranhos sao frequentemente ineficazes devido
a baixa precisdo na determinacdo da posicdo do objeto e representam riscos
decorrentes da exposi¢ao da equipe médica e dos pacientes a radiagdo ionizante
durante procedimentos de longa duracdo. Novos métodos utilizando sensores
SQUID tém obtido sucesso na localizagdo de corpos estranhos de forma indcua e
ndo invasiva, mas tém a desvantagem de apresentar alto custo e baixa portabilidade.
Este trabalho faz parte de pesquisas que buscam trazer maior portabilidade e baixo
custo na localizagdo de corpos estranhos no corpo humano utilizando sensores GMI
e GMR. O objetivo principal deste trabalho ¢ avaliar e aplicar o uso de Aprendizado
Profundo para a localizagdo de corpos estranhos ferromagnéticos no corpo humano
utilizando um dispositivo portatil e manual baseado em magnetometro GMR,
incluindo o rastreamento da posicdo e orientacdo deste dispositivo a partir de
imagens de padroes conhecidos obtidas por uma camera integrada ao dispositivo e
a solugao do problema inverso magnético a partir do mapeamento magnético
obtido. As técnicas apresentadas se mostraram capazes de rastrear o dispositivo
com boa precisdo e detectar a localizagdo do corpo estranho com resultados
semelhantes ou melhores do que os obtidos em trabalhos anteriores, dependendo
do parametro. Os resultados obtidos sdao promissores como base para

desenvolvimentos futuros.

Palavras-chave

Metrologia; corpos estranhos ferromagnéticos; aprendizado profundo;
magnetdmetro GMR; redes neurais convolucionais; rastreamento de dispositivo
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1
Introduction

1.1.
Contextualization

There is a high incidence of cases of metallic objects [1], ferromagnetic or
not, inserted in patients and locating the position of these so-called foreign bodies
inside the human body is essential for the effectiveness of their surgical removal
[1]-[10]. Radiological methods such as radiography, computed tomography and
radioscopy procedures are the conventional procedures available for locating these
objects [1], [4]-[10]. However, these conventionally employed methods for
locating foreign bodies are often ineffective due to poor accuracy in determining
the position and depth of the object to the skin [1], [4], [10]. Auxiliary radiological
strategies sometimes used during the surgical procedure include the introduction of
reference needles at various positions and the evaluation of the location of these
references to the object to be removed employing X-ray films or radioscopy with
takes at diverse incidence angles, which presents risks due to the the exposure of
medical staff and patients to ionizing radiation during long-term procedures [1], [4],
[10]. In [4], a method for locating ferromagnetic foreign bodies was developed and
applied to guide surgical procedures. The developed method enabled the successful
removal of metallic needles and fragments through procedures lasting about 10
minutes, with previous attempts taking up to 6 hours without success [4]. Magnetic
field measurements in these studies were performed using a SQUID
(Superconducting Quantum Interference Device) sensor, currently the most
sensitive magnetometer available [2]-[4]. However, the operation of SQUID
sensors requires cryogenic temperatures, which introduces a high cost, making it
difficult to disseminate the technique in the clinical environment [11], [12].

Thus, many studies have been carried out to develop and improve non-
invasive methods to locate foreign bodies in the human body based on the
measurement of the magnetic field and to evaluate the possibility of using sensors

with lower acquisition and operation cost [2]-[4], [6], [11]-[19]. Researchers at the
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Pontifical Catholic University of Rio de Janeiro (PUC-Rio) have focused their
efforts on studies with sensors based on the giant magnetoimpedance (GMI)
phenomenon for biomedical applications [2], [6], [11]-[15], [17]-[26], among

which the location of metallic foreign bodies.

Figure la shows a radiograph taken before a surgical procedure for the
removal of a foreign body based on the location provided by magnetic mapping [4].
The location of the needle is indicated on the image with the aid of a radiopaque
marker positioned on the skin, based on the markings obtained through magnetic
mapping using a SQUID device. Initially, in the radiographic image, the needle
fragment was interpreted as an artifact or a bone trabecula, but magnetic mapping,
initially performed to locate another foreign body that had been clearly identified
radiographically, made it possible to identify the presence and determine the
position of the tiny magnetic dipole [4]. Figure 1b, on the other hand, shows a
magnetic map generated by a 3.3 cm needle whose projection is indicated in the
image obtained by a GMI sensor [6]. In addition to GMI sensors, GMR (Giant
Magnetic Resistance) sensors are also an interesting option for locating foreign

bodies, especially concerning their acquisition and operation cost [14], [15].

0 5 10 15 20
X (cm)

(b)

Figure 1 — (a) Radiographic image indicating the location of a needle fragment, obtained

through magnetic mapping using SQUID [4]; and (b) magnetic map of a 3.3 cm needle,

whose position is projected onto the image, in in vitro measurements using a GMI sensor

(61.

Systems employing GMI or GMR sensors, although not as sensitive, have the
advantage of portability and lower operating and manufacturing complexity and

cost compared to SQUID sensors [12], [15]. However, all systems developed so far
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have been configured using a fixed structure to carry out the mapping. Figure 2
illustrates the setup used for in vivo measurements using the SQUID system [4], in
which the mapping is performed with the patient on a mobile bed and the

transduction system positioned on a fixed structure.

Figure 2 — Configuration of the measurement system using a SQUID device, positioned on
a fixed structure, for magnetic mapping for the location of foreign bodies in the human body,

developed by researchers from PUC-Rio (adapted from [4]).

More recently, researchers at PUC-Rio have been implementing efforts to
develop a device that is not only portable but also manual, using lower-cost systems
based on GMR sensors. The device is based on the Raspberry Pi platform and has
a GMR sensor, a distance sensor, and a monocular camera in its initial
configuration. The fact that the device is manual and portable, unlike currently
existing systems based on a fixed positioning structure, means that its position and
orientation in relation to the patient is not known a priori. It is, therefore, of
fundamental importance that this device can track its position and orientation in
relation to some fixed reference point on the patient so that, together with the
magnetic field measurements performed by the GMR sensor, it is possible to solve

the inverse problem and locate the foreign body in the patient.
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1.2
Motivation

With the increase in computational capacity and the reduction in the mass and
dimensions of electronic devices and sensors, different portable products appear on
the market in the most diverse sectors. In the medical field, even with greater
strictness in the approval of equipment due to strong regulations, portable
equipment is already being used commercially for some tasks such as blood
analysis, ultrasound, echocardiograms, blood glucose measurement, among others.

The company General Electric, for example, launched in 2010 a product
called Vscan, a portable ultrasound system for performing quick diagnostics that
can be used in any location and is already considered as a possible replacement for
the traditional stethoscope.

Another possible application of portable medical devices is telemedicine or
remote care. In this case, the patient or an assistant carrying a portable device can
collect the data to be analyzed remotely by a specialist. The company Basil Leaf
Technologies, 2017 winner of the Qualcomm Tricorder XPRIZE award [27], has
been improving its DxtER™ product that seeks to diagnose patient health problems
in a simple way, with a focus on telemedicine, emergency care, and primary
healthcare. The device can collect the patient's vital signs and diagnose health
conditions such as diabetes, atrial fibrillation, chronic obstructive pulmonary
disease, urinary tract infection, sleep apnea, leukocytosis, whooping cough, stroke,
tuberculosis, and pneumonia [28].

However, there is still a significant gap in the medical field of portable and
low-cost devices that can help doctors without the need for large support
infrastructure, which would facilitate the dissemination of these technologies,
promote greater equality of technical conditions of care, especially in developing
countries, in addition to enabling emergency care in remote areas or mobile care
units.

For a portable device to be successful in locating metallic foreign bodies in
patients, in addition to collecting magnetic field data, it needs to be able to track its
position and orientation in relation to a fixed point on the patient, with six degrees
of freedom: three linear, representing its position relative to the reference point in

the X, Y and Z axes, and three angulars, representing the rotation angles relative to


DBD
PUC-Rio - Certificação Digital Nº 1920727/CA


PUC-Rio- CertificacaoDigital N° 1920727/CA

22

the reference point in these three axes (Tait—Bryan angles), called, respectively,
bank or roll (¢), elevation or pitch (0) and heading or yaw (W¥). Figure 3 illustrates
the positioning of a camera and its location and orientation parameters in three-

dimensional space.

Figure 3 — Indication of the six degrees of freedom of positioning and rotating a camera in
relation to an object: the position of the camera in relation to the object in the X, Y and Z
axes and the rotation of the camera in each axis, indicated by the values ¢ (roll), 8 (pitch)

and ¥ (yaw).

The maturation of techniques in image processing and computer vision,
especially with the use of Deep Learning, has allowed the advance in the use of
low-cost portable cameras for detecting and tracking objects in various applications.
Some of these techniques are listed below:

e Object detection: recognizes a predefined object within an image, returning
a bounding box that best represents its position in the image;

e Semantic segmentation: classifies each pixel in the image into a predefined
class. It extracts the shape of one or more objects of interest from the image;

e Regression using Convolutional Neural Networks: allows mapping images
into real values, which in this research would serve as the final camera

rotation data.

Much of the research aimed at finding the position and orientation of a camera

from images has as its initial problem the detection of reference points that can be
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mapped in three dimensions [29]-[33]. More recent methods seek to solve the
problem using regression from Convolutional Neural Networks to find the position
and orientation of the camera directly from the image [34]-[41]. These methods,
however, have achieved considerably lower accuracy than previously existing
structured methods, such as 3D structure-based approaches [42].

In all the methods mentioned, it is important that the camera has a broad view
of the scene to be analyzed so that the adopted methodology can find references in
the images that serve as a basis for tracking the device.

Considering, in particular, the application in the clinical environment for
mapping and locating foreign bodies in patients, measurements are made close to
the patient, generating skin images with slight variation in color and depth, making
most of the existing methodologies unfeasible. The controlled environment,
however, allows a reference to be drawn or adhered to the patient's skin, to serve as
a basis for determining the location and orientation of the camera, and to be the
reference for the device's output data, providing accurate position diagnosis of the
foreign body. In an ideal situation, the patient would first undergo a radiographic
examination to find the approximate location of the foreign body and the reference
would be put as close as possible to this location, so the GMR sensor could get
better readings by scanning around the foreign body.

Figure 4 illustrates computer vision techniques with Deep Learning with the
potential to contribute to the identification of camera position and orientation from
a known pattern drawn on the patient's body.

During magnetic mapping for foreign body location, the use of a camera for
data acquisition brings essential benefits, such as reducing cost, mass, and size of
the final device, avoiding any interference in the magnetic sensors that could occur
with other types of sensors, in addition to allowing readings very close to the
patient. The data generated from the proposed methodology, combined with the
magnetic sensor data, could serve as a basis for mapping the spatial distribution of
the magnetic flux density generated by the foreign body. From this mapping, it is
possible to apply different methodologies to find the geometric center of the foreign
body, its depth, inclination, and rotation in relation to the reference position on the
patient's skin. The approach could contribute to the reliability of clinical diagnoses
and serve as a basis for augmented reality application in the surgical procedure for

foreign body removal.
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Figure 4 — lllustration of the various methods of computer vision with Deep Learning

potentially applicable in identifying the position and orientation of the camera based on a
reference on the patient's skin. (a) pattern drawn on the patient's skin; (b) object detection
mechanism indicates the bounding box that best represents the location of the object in the
image; (c) application of semantic segmentation in the content of the rectangle found in (b)
for the extraction of pixels belonging only to the pattern; and (d) Convolutional Neural
Network that receives the result of (c) and returns the rotation angles in the three axes.

These techniques are explained in more detail in Chapter 2 of this dissertation.

1.3.
Objectives

The research’s main objective is to evaluate and apply the use of Deep
Learning for the location of ferromagnetic foreign bodies in the human body using
a portable and manual device based on a GMR magnetometer (currently under
development in another master's research), including position tracking and
orientation of this device from images of known patterns obtained by a camera
integrated to the device and the solution of the inverse magnetic problem from the

obtained magnetic mapping.
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To achieve this general objective, the following specific objectives are
defined:

« Identify the Computer Vision Deep Learning methods that can be used for
tracking the position and orientation of the portable device, selecting the
most suitable for the problem at hand,

« Identify the Computer Vision Deep Learning methods that can be used to
solve the magnetic inverse problem, selecting the most suitable for the
problem in question;

« Develop a method using Deep Learning for tracking the position and
orientation of a portable device, considering its use in locating foreign
bodies in patients, from images of known patterns obtained by a camera
integrated into the device;

« Develop a method using Deep Learning to solve the inverse magnetic
problem in locating foreign bodies in patients, from the magnetic maps
measured by the device; and

. Demonstrate the applicability of this method by performing synthetic tests

based on computer simulations.

1.4.
Dissertation structure

This dissertation is structured in six chapters, ranging from the
conceptualization of the Deep Learning techniques used to the proposed
methodology, its application in a simulated situation, and the analysis of the results
obtained.

Chapter 1 refers to the introduction of the dissertation, which seeks to
establish the context of the problem to be worked on in this research, the studies
related to the theme, the existing gaps that are sought to be solved, its main
challenges, and the main steps that will be taken to obtain the expected results.

Chapter 2 describes in detail the existing Deep Learning in Computer Vision
methodologies that seek to solve problems of object detection in images, semantic
segmentation in images and regression in Convolutional Neural Networks. These

techniques are used in the methodology proposed in this research.
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In chapter 3, the methods proposed for three-dimensional tracking of the
portable device and solution of the magnetic inverse problem are described in detail,
the models used and their training process, the types of input and output data, and
the expected results.

In chapter 4, the construction of the dataset used for training the models, the
test environment, the metrics used in the measurements, the procedures performed,
and the equipment and configurations used in carrying out the experiments are
described.

Chapter 5 presents the experimental results obtained and analyzes their

applicability in clinical situations.

Finally, Chapter 6 presents the final considerations and motivation for future work.
It is considered mainly a solution that uses Deep Learning in all phases of the
process of obtaining the location of foreign objects in the human body and the
proposition of other applications that can make use of the approach proposed in this

research.
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2
Deep Learning in Computer Vision

21
Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) is a type of neural network
specialized in treating images and tensors. In a traditional artificial neural network,
neurons in one layer are connected to all neurons in the preceding layer, creating a
series of fully connected layers (FC Layers). This structure tends to create a large
number of parameters to be adjusted by the network during training, which makes
it poorly scalable. CNN replace fully connected layers with convolutional layers
(two-dimensional digital filters), reducing the number of network parameters and
thus facilitating the treatment of more data and the creation of network architectures
with more layers.

Figure 5 shows a CNN with three convolutional layers, a fully connected
layer, and some operations commonly found in this type of network, such as batch
normalization, activation function, pooling, flattening, and dropout. These

operations will be explained in more detail in the following topics.

Batch

. . -
normalization
- Flatten Activation
Activation "
" Functon | [ Function
Pooling Pooling Pooling Dropout I
Convolution 3 v
Convolution 2 Output layer
Convolution 1 Fully connected layer

Figure 5 — Example of a Convolutional Neural Network architecture with 3 convolution
layers, a fully connected layer, and several operations.
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211
Convolutional layers

A convolutional layer is characterized by applying a convolution (filtering)
operation on the input data. This operation is performed using a filter of size
n X n X Nygyers that slides over the input data by multiplying the values of each
filter position with the corresponding values in the input data and outputting the
sum of the multiplied values. The process is repeated for each position of the input
data. Figure 6 illustrates a 2D convolution in the first position of a matrix of size
4 X 4 using a filter of size 3 X 3 and the repetition of this process in all positions
of the input matrix until obtaining the final result. If the input is a tensor, as in the
case of an image with color channels, the filter will go through all layers, always
generating a matrix as output for each filter, called activation map. The output depth
of a convolution layer will be equal to the number of filters applied to the input
data, generating their corresponding activation maps. These activation maps usually
go through an activation function, adding non-linearity to the process. It is
important to note that the values of each filter are the weights to be updated by the

network, which drastically reduces the number of parameters that must be learned

by the network.
1 2 41
3 2 11
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’ / 1x1 0x2 2x4
o 00 10 e
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Figure 6 — Convolution process of an input matrix of size 4 x 4 by a filter of size 3 x 3
showing (a) a convolution in the first position of the matrix input and (b) the filter sliding
through the possible positions of the matrix and the final result of the convolutions.
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2.1.2
Activation function

Activation functions are mathematical operations, normally applied at the
output of the inner layers of a convolutional network, which introduce nonlinear
behaviors and seek to provide the network with the ability to approximate complex
arbitrary functions [43]. The currently most used functions are: Sigmoid (equation
1), tanh (equation 2), ReLU (equation 3), Leaky ReLU (equation 4) and Parametric

ReLU (equation 5), where a is learned by the network during training.
1

f@) = (1)
f(x) = tanh(x) )
f(x) = max(0,x) 3)
f(x) = max(0.1 * x, x) 4

f(x) =max(0,x) + a-min(0,x) (5)

21.3
Batch normalization

Batch normalization was proposed by loffe and Szegedy [2] as a way to
improve the backpropagation pass through the network, allow higher learning rate
values and reduce the dependence of a good initialization on the network weights.
One of the difficulties in the learning process of neural networks is that, at each
batch, the distribution of input data from a layer can vary when the weights from
the previous layer are updated, making the network try to learn something in
constant change. Batch Normalization normalizes the values at the input of each
layer so that each training batch has an average equal to zero and unitary variance,
stabilizing the learning process of the network and reducing the number of epochs
necessary for convergence. The method is commonly used in convolutional

networks and is usually applied before the activation function.

214
Pooling and unpooling layers

The pooling operation is generally used to reduce the dimensions of
activation maps and is typically used between two layers of convolution. The
operation consists of grouping the neighboring values of an activation map and
using the maximum value in each group (max. pooling) or the average value of the

group (average pooling). When using a pooling of 2 X 2, for example, four values
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will be grouped into a single value, and the dimensions of each activation map are

reduced by half, thus reducing the computational complexity of the network.
Unpooling is the inverse process in which an input pixel is transformed into

other neighboring pixels, either by repetition (nearest neighbor) or by adding zeros

(bed of nails).

Both operations are computationally efficient as they do not involve
learning new parameters. Figure 7 illustrates the operations described here.

3 3 4 4
o 3344
C
12 4 1 2 2[1 1
3 2 2 1 @ = . 2 2|1 1
-
2 1)1 1 2 1
2 3 0 40
101 1 ®)
000 O
(d)
2 0[1 0
0 00 0

Figure 7 — Operations commonly used by CNNs to change the dimensions of images and
activation maps. Dimensional reduction operations using (a) max. pooling and (b) average
pooling; and dimensional increase using (c) nearest neighbor and (d) bed of nails. In this

example, all operations use a pool size of 2 x 2.

21.5
Fully Connected Layers and Flatten Layer

In the fully connected layer, each neuron in the layer is connected to all the
outputs of the previous layer, as in a traditional artificial neural network of the
multi-layer perceptron type [44], [45]. Each link with the previous layer has a
weight that must be learned. This weight will be multiplied by the input value and
added to an offset value (bias), which is also learned by the network. The large
number of connections that are usually established in this type of layer results in a
large number of learning parameters, making the network computationally heavy.

In a convolutional network, for the fully connected layer to receive values
compatible with its operating structure, it is necessary to apply the flatten operation

to transform the output tensor of the previous layer into a vector.
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21.6
Dropout

The dropout operation is a regularization method that randomly deactivates
some neurons and their connections during training, resulting in different minor
variations from the original network. During testing, all neurons are used. The
operation prevents neurons from settling together at specific values, preventing
overfitting [46], which is when the network adjusts very well to the training values

but cannot generalize well to other input data.

21.7
Output layer

The output layer is usually composed of an activation function chosen
according to the purpose of the network. For regression networks, where you want
to obtain a single numerical value, a single output with a linear function is used. As
for classification networks, the layer will have an output for each possible class.
The softmax function is more used, as described by equation (6), which generates
anormalized vector containing the probability of each class being the one contained
in the image. In this way, it is possible to verify which class has the highest

probability of being true among the possible classes of the network.

4= — forj = 1,23..,K  (6)

Z§=1ezk

Another function used in classification networks where the result can
contain more than one class as output is the Sigmoid (equation 1), being possible to

obtain an individual probability for each class.

2.2
CNN Architectures

Several different architectures have been created in recent years for specific
purposes using convolutional neural networks. For the present work, in addition to
the basic functionalities already presented for regression and classification
networks, two areas of use of CNNs are of fundamental importance: object
detection and semantic segmentation, both described below. To embrace those
areas, we propose the use of a Mask R-CNN framework [47] in our research, since

it covers both object detection and semantic segmentation and was already widely
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used at the time of this research. The many available code repositories of the Mask
R-CNN allowed us for a quick implementation of the framework as a proof of
concept. This section provides a brief description of the areas of object detection

and semantic segmentation and an analysis of the Mask R-CNN structure.

221
Object detection

Image classification, as discussed above, is a form of object detection, as the
objective is to identify what the image represents. Another area of computer vision
called object location is concerned with locating the position of a particular class of
objects within the image. In this modality, the network seeks to return the size and
coordinates of a rectangle that surrounds the class in question. Object detection is
more complete, looking for one or more classes within an image and returning the
bounding boxes with their corresponding classes. Figure 8 shows examples of

image classification, object location, and object detection.

Image classification Object location Object detection

PLANT

Figure 8 — Examples of results for image classification, object location, and object
detection.

222
Semantic segmentation

Unlike the models presented so far, which are concerned with classifying
images or part of the image, semantic segmentation seeks to classify each pixel of
the image, generating regions that accurately represent the pixels belonging to a

class. To enable this task, the fully connected layers at the end of the network are
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replaced by convolutional layers, creating a Fully Convolutional Network (FCN).
Furthermore, the dimensions of the network output must be the same as the input
image, but keeping all layers of the network at the same resolution is quite costly
in computational terms. A solution used in many networks is to have architectures
with downsampling layers (via pooling, for example) followed by upsampling
layers (via unpooling) until the resolution of the input image is recovered.

There are also networks that perform instance segmentation, seeking to
recognize the instances of each class within an image. Figure 9 shows examples of

object detection, semantic segmentation, and instance segmentation.

Object detection Semantic segmentation Instance segmentation

Figure 9 — Examples of results for object detection, semantic segmentation, and instance

segmentation.

2.2.3
Mask R-CNN

In addition to classification and regression networks composed of the
components already presented in this chapter, this dissertation uses a Mask R-CNN
network [47]. This network is an unfolding of an evolutionary series of different
object detection architectures initiated by the R-CNN network [48] and improved
by the Fast R-CNN [49] and Faster R-CNN [50] networks. For this dissertation, the
use of this network becomes interesting for not only detecting objects but also
segmenting the objects found; for enabling its use in applications with speeds close
to real-time; because it is already a well-established network in several applications
with satisfactory results and because code repositories for several platforms already

exist, facilitating its incorporation in the simulations of this dissertation.
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The Mask R-CNN comprises two main stages: the first generates regions

containing objects of interest, and the second makes the object segmentation. It is

considered a framework since different algorithms can be used in each of the stages.

For a better understanding of the network, its operation is presented divided into

the three steps below:

1)

2)

3)

Region Proposal Network (RPN): This step is inherited from the Faster
R-CNN network [50] and is responsible for detecting regions in the
image with a high probability of containing an object of interest. The
input image is initially resized to a standard size and then passes through
a backbone, which is a traditional convolutional neural network, such as
a VGG [51] or ResNET101 [52], to extract feature maps from the image.
The framework slides rectangles of pre-defined sizes over each attribute
map to estimate if an object exists and what its size and shape are. The
regions of interest that are most likely to contain an object are passed to
the next step.

Region of Interest Alignment (Rol Align): Resizes the regions of interest
found in the RPN step to the default size of the masks that will be
generated in the next step. The method improves the Rol Pooling used
by previous networks, generating an accuracy gain between 10 % and
50 % by making a better approximation of the values of the input pixels.
In this third step, each of the proposed regions that were resized in step
2 is applied to the attribute maps of step 1 and goes through a network
of fully connected layers that, in one of its branches, improve the
position and size parameters of the enclosing rectangle found in step 1
and, in another branch, classifies the object contained in the region in
one of the existing classes. This operation is the same that already
existed on the Faster R-CNN [50] network, and the novelty in this stage
of the Mask R-CNN is the addition of another branch in the network
with two convolutional layers, without dimensional reduction, which
predicts the mask belonging to the found object. The cost function
considers the three parameters of this step: attributes of the bounding
box, object class, and object mask, training the branches together and

making the network work in a multitasking way, returning all values in
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parallel. The mask found at the end of the network is processed to

recover its original resolution, as it was resized in the two previous steps.

With this, we have at the output of our network the various objects found,

each one with the location and size of its bounding box, its class, and the pixels of

the image that belong to the object instance. Figure 10 illustrates the main

components of the Mask R-CNN network presented in this topic.
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Figure 10 — Main components of a Mask R-CNN network.
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3
Proposed Methods

The research work that encompasses the entire process of estimating the
parameters of a ferromagnetic foreign body from a portable device was divided into
three main steps:

1) Reading data from a GMR magnetometer and data from distance,
accelerometer, and gyroscope sensors, integrated into a Raspberry Pi
platform;

2) The tracking of the portable device from a monocular camera integrated
into the device so that the coordinates in which the magnetic field is
measured are known, as well as any inclinations of the device in relation
to the inertial coordinate system,;

3) The solution of the inverse problem using the data collected in the
previous steps to find the center of the needle, its depth, its angle of
inclination and its angle of rotation.

The first stage is the subject of another master's research in development at
PosMQI/PUC-Rio, and will provide magnetic field measurements over the scanned
area, together with an initial estimation of the device’s positions and orientations at
each magnetic field measurement point, based on the physical sensors. This master's
research sought to solve the last two stages of the work from computer simulations,
presenting methodologies based mainly on deep learning networks for the various
problems raised. Figure 11 illustrates the three stages of the complete research
work, with the stages comprised in this research marked in yellow and red. In this

chapter, we seek to present the proposed methods for solving these two steps.
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DATA FROM GMR &
OTHER SENSORS

FOREIGN BODY w%
LOCATION

Figure 11 — Steps of the research work that encompasses the entire process of discovering
foreign body parameters from a portable device. Steps 2 and 3 are the objects of this

research.

For the whole project to be viable, it is necessary to consider the existence
of a known pattern on the patient's skin, which serves as a reference image for the
camera tracking and for presenting the final data to the health professional. In a
surgical situation, the patient would initially undergo a radiographic examination,
which would indicate an approximate position of the foreign body, and, from that
position, the health professional would place such a reference pattern (e.g., by using
a sticker) on the patient's skin, approximately aligned with the foreign body, which
will be considered as the origin of the 3D coordinate system (because the system is
portable, there is no fixed frame of reference), making it possible to assign
coordinates to the magnetic field maps and allowing the solution of the inverse
magnetic problem. Figure 12 shows the pattern used in the simulations of this

dissertation as a reference adhesive to be applied to the patient's skin.

(a) (b) (©

Figure 12 — Pattern used in simulations in the position of yaw = (a) 0°, (b) 45°, and (c) 90°.
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In the following sections, the methods applied to the solution of both stages

that this research deals with will be detailed.

31
Handheld device tracking

For a correct mapping of the magnetic field generated by the foreign body
using a portable device, it is necessary to create a strategy for the location in the
three-dimensional space of the device in relation to the human body at all

measurement points so that it is possible to map the magnetic field in the form

B (x,y, z), in addition to knowing the rotation angles concerning the x (roll or bank),
y (pitch or elevation), and z (yaw or heading) axes.

Ideally, the z, roll, pitch, and yaw values would be constant in a real
application, with roll, pitch, and yaw always equal to zero, which would greatly
facilitate the experiment and improve the accuracy of the results. On a handheld
device, however, it is not possible to guarantee that these values are constant,
especially the z and yaw values, which are more difficult to control manually.

Thus, the strategy used in this research sought to estimate the x, y, z position
values and the yaw value using only a low-cost monocular camera integrated into
the device. The roll and pitch angles were not considered in this research because
their combination yielded very similar patterns that could not be distinguished with
the chosen methodology and because they can be obtained by the device's sensors
and added to the values obtained by the methodology developed here.

In addition to the aforementioned adhesive pattern, it is also necessary to
establish a reference camera so that it is possible to convert pixel values to
centimeters. For the simulations, a 5th generation iPod monocular camera was
considered, with a focal length of 3.3 mm and an aperture of /2.4, which allowed
an adhesive pattern with 4 cm of length to correspond to 349 pixels (px) in an image
with a distance of 20 cm from the camera to the pattern. Ideally, the camera should
have a shorter focal length to be used closer to the skin, as the GMR sensor loses
accuracy as it moves away from the ferromagnetic foreign body.

Figure 13 shows an overview of the system used for tracking with all its

components, each component being detailed in the following subsections.
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Figure 13 — Proposed system and its components for tracking the portable device: Mask
R-CNN network detecting the pattern position (a) and the pattern semantic segmentation
(b); calculation of yaw and z (c); buffers, filters, and bounding box and distance

adjustments.

3.1.1
Mask R-CNN network

The first step for each image captured by the device's camera is performed
by a Mask R-CNN network (Figure 10), responsible for performing two operations
in parallel:

1) Detect in the image the position of the adhesive pattern on the patient's
skin, returning a surrounding rectangle (bounding box) with the
coordinates of the rectangle's upper left corner and its height and width.
The center of this enclosing rectangle defines the initial x and y
positioning values considered by the system (Figure 13a); and

2) Recognize the image pixels belonging to the adhesive pattern on the
patient's skin. These pixels are used in the next step to calculate the yaw

and z values (Figure 13b).

3.1.2
Yaw and z calculation

To obtain the yaw values, a three-dimensional matrix was created containing

the representation of the adhesive pattern in all possible rotations in the z-axis at 1°
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steps. Each possible rotation is represented by a binary array 42 px wide by 42 px

high, where the values “1” represents the pattern. Figure 14 shows an example of a

matrix for the 45° yaw angle.
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The mask received from the semantic segmentation process (Figure 13b) is
wide, and the shortest side is filled with zeros to get a final array of 42 x 42 px. The
inner product between this matrix and the binary matrix corresponding to each yaw
value is then calculated. The estimated value for yaw is the one that corresponds to
the highest value of these internal products. It is also possible to use negative values

transformed into a binary matrix, keeping only the values of the smallest rectangle
representing the pattern. This rectangle is resized so that its longest side is 42 pixels

Figure 14 — Binary array for the pattern with yaw

VO/.2.026T oN [enbiqoedesuniad -o14-ONd

instead of zeros in the binary input matrix, penalizing values outside the input mask.

For the experiments in this research, however, the matrix with zeros produced the

best results. For this step, a CNN regression network that receives as input the mask

resulting from the semantic segmentation and returns the value of yaw was also

tested in place of the three-dimensional matrix. The CNN network, however,

produced results similar to the ones obtained by the three-dimensional matrix but

with a longer processing time and, therefore, it was not used.

Another three-dimensional matrix was created with the dimensions of the

enclosing rectangle of a reference pattern for each yaw value, the distance z of this

pattern being known based on the reference camera. From the input mask, reduced


DBD
PUC-Rio - Certificação Digital Nº 1920727/CA


PUC-Rio- CertificacaoDigital N° 1920727/CA

41

only to the rectangle that best represents the pattern, we calculate the ratio of this
mask to the reference pattern of the already known yaw value and multiply by the

reference z value to obtain the estimated z value.

3.1.3
Buffer

At the output of the two branches of the Mask R-CNN network, a buffer was
applied to process the values obtained for x, y, z, and yaw. This buffer stores the
last obtained values and replaces missing values or outliers with others using linear
interpolation. Outliers are considered values beyond two standard deviations from
the mean of the buffer values. In the case of the simulations, the buffer was not
necessary due to the highly controlled environment. On the other hand, in tests with
the reference camera, an 11-value buffer was enough to correct the outliers without

causing much delay in the results.

314
Filter

Since the bounding box and pattern mask returned by the Mask R-CNN
network suffer small fluctuations in their values, even in more controlled
environments, as shown later in Chapter 5, we applied the Savitzky—Golay filter
[53] to smooth all values in different places of the system: for yaw and z values,
which serve as a basis for the adjustment of the other values, the filter was tested
being applied before and after the adjustments; for x and y values, the filter is
applied immediately before the output, after all the adjustments have been made.
The filter was configured as a first-order polynomial with a window length of 7

coefficients and no derivative, making its processing quite fast.

3.1.5
Distance adjustment

The masks generated by the semantic segmentation tend to have the corners
rounded by the network, producing patterns a little smaller than the real one, as
illustrated in Figure 15, where can be seen how the arrowhead and the edges of the
base of the pattern are rounded in the semantic segmentation process, generating a

pattern prediction a little smaller than the actual value.
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Experiments with different pattern sizes were performed at various rotations
to compare the actual and predicted pattern sizes. The mean of all values was used
as a factor to be multiplied by all pattern size values in the predictions. The final

factor used was 1.072.

o]

(a) (b)

Figure 15 — Visualization of frame No. 253 of the simulation (a) and the semantic
segmentation result (b) with a zoom in specific parts of the pattern showing the rounding
effect, with the recognized pixels marked in green and the rest of the image transformed

into grayscale.

3.1.6
Bounding Box Adjustment

Another adjustment that became necessary was due to the difference
between the center of the pattern and the center of the bounding box generated by
the object detection network when the pattern rotates according to the yaw angle.
Through experimental analysis, it was observed that this difference reaches the
highest value at the angles 0f 45°, 135°,225° and 315°, with a displacement of about
14 px in the x and y values for the reference pattern with 88 px height, returning to
zero every 90 degrees. Figure 16a shows the difference between the center of the
bounding box and the center of the pattern for each angle of rotation on the z-axis
during a 360° rotation and Figure 16b shows the points of greatest difference
between the centers.

For this adjustment, this behavior was considered linear instead of the

behavior shown in Figure 16a. To obtain the adjustment, we used the yaw value and
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the ratio between the reference bounding box and the predicted bounding box, both
the values found during the yaw and z calculation phase, the z value being already

refined by the distance adjustment.
h ‘

(a) (b)

Figure 16 — A simulation of the pattern during a 360° rotation around the z-axis resulting

from the object detection network with (a) pink marking representing the difference between
the center of the bounding box and the center of the pattern and (b) a pink diamond showing
the center of the bounding box at yaw = 0° and pink crosses showing the highest difference

between the center of the bounding box and the center of the pattern during the simulation.

As a first step, the value of 14 px is multiplied by the ratio between the sizes
of the found pattern and the reference pattern; that is, a pattern twice the size of the
reference pattern generates a maximum displacement of 28 px, while a pattern with
half the size yields a maximum offset of 7 px. Then, transposing the predicted yaw
to values between 0° and 90°, we obtain as a multiplier factor the value 1 for the
angle of 45° and the value 0 for the angles of 0° or 90°, with the other angles being
linearly converted to an intermediate value between 0 and 1. The final result will
be the multiplication between this multiplier factor and the maximum displacement,

added to the values of x and y found in the object detection step.

31.7
Output

At the system’s output, the values of x, y, and z are converted from pixels to
centimeters using the values from the reference camera. From the value of z
obtained in the prediction, equivalence is performed with the size of the 4 cm

adhesive pattern, corresponding to 349 px at a distance of 20 cm from the camera
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to the pattern. After this conversion, the x and y values must still be converted,
based on the yaw (y) value, between the camera coordinate system and the inertial
reference system, using (7) and (8). Figure 17 shows the two coordinate systems

related to the camera, the adhesive pattern, and the foreign body.

X, = (x.cosy) — (y.siny) (7)
Y. = (x.siny) + (y.cosy) (8)

Figure 17 — The blue axes represent the values found by the simulation before the
conversion to the inertial reference system, represented by the black axes, using (7) and
(8). The position of the adhesive pattern is shown in green, and the center of the foreign

body, with the coordinates (Xo, Yo, Zo), is shown in red.

3.2
Foreign body location

This section presents the input data required for locating the foreign body,
as well as the expected data output from our system.

From the various magnetic field readings performed by the GMR sensor and
the device tracking data collected by the system proposed in this chapter, it is
possible to generate a representative matrix of magnetic flux density values and use

a CNN to discover the parameters of foreign body positioning.

3.21
CNN Input Data

In the simulation developed in this dissertation, the magnetic field map used

as input for the CNN is generated based on the Biot-Savart law for a magnetic
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dipole, integrated along the length of a needle and transformed into a color map to
facilitate visualization throughout the process.

Most images generated from imperfect or off-center scans have missing
pixels near their edges. Since interpolation cannot be applied in these situations, a
procedure was created to fill in those missing pixels. The procedure checks each
pixel in the image, from the center to its edges, in a spiral motion. If any pixels are
missing, it fills them with the average value of the available surrounding pixels.
Figure 18 shows an example of an image generated after a scan simulation without
(Figure 18a) and with (Figure 18b) the procedure to fill in the missing pixels. The

magnetic field image with the missing pixels filled in serves as input to the CNN.

(a) (b)

Figure 18 — Image examples of the magnetic field generated after a scanning simulation

without (a) and with (b) the method for filling missing pixels.

3.2.2
CNN output data

Figure 19 illustrates a needle with the expected network output parameters.
The angle of inclination 0, the angle of rotation ¢, and the depth /4 of the needle are
direct outputs of the network. The geometric center of the needle, represented in
Figure 19 by p, is obtained by calculating the center between the extreme values of
the magnetic field and adding to it an offset value A, also provided by CNN. Figure
20 shows an image of the magnetic field generated by the ferromagnetic foreign
body, which serves as an input to the CNN, with markings added to highlight some

parameters. The white markings are the minimum and maximum values of the
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magnetic field, and the black marking is the midpoint between these extremes,
while the red marking is the geometric center of the needle.

The CNN network returns the value A, which corresponds to the Euclidean
distance between the center of the extreme values of the magnetic field and the
geometric center of the needle. The calculation of A follows the procedures
presented in [3] and can be obtained by the ratio between the weighted sum of field
values and position values that are below 95 % of the minimum extreme and the
weighted sum of field values and position values that are above 95 % of the
maximum extreme. In the case of a needle with an inclination 6 = 0°, the value of
A will also be zero, while in the case of an inclined needle, the geometric center
tends to move away from the magnetic center towards the end of the foreign body

closest to the sensor.

Figure 19 — Needle position in red with (0,0,0) as its center point (p), showing needle

inclination angle (8), rotation angle (¢), and depth (h).
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x(m)

Figure 20 — Image of the color map representing the magnetic field with white markings on
its extreme values, a black marking on the central position of these extremes, and a red
marking on the geometric center of the ferromagnetic object that generated the map. The

needle is aligned with the white markings.

3.3
Integration of the steps presented

Figure 21 shows a detailed outline of the steps presented by Figure 11 in the
introduction to this chapter and detailed in the previous sections. For each reading
made by the GMR sensor, step 2 is applied, in which the image obtained by the
camera at the time of the sample is processed by the tracking system to obtain the
positioning and yaw values of the device. After the scan is completed, the GMR
readings are combined with the tracking data to produce the image of the magnetic
field. In this research, as the GMR sensor reading data are not available, the tracking
data goes through the magnetic field simulator, which generates the final map that
serves as input to step 3. In this last step, the CNN predicts the location parameters

of the foreign body.
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Figure 21 — Detailed outline of the steps presented in this chapter: (1) collecting data from
the handheld device; (2) the device tracking system and; (3) the network that receives the

collected magnetic field map and provides the foreign body localization data.
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4
CNN training

This chapter covers the CNN training performed and the parameters and
metrics used in these training for the two CNNs that make up the framework
developed in this dissertation: the Mask R-CNN used to track the portable device,
and the CNN used to locate the foreign body.

An independent simulation was performed for each type of network, and a
final simulation was performed using the two networks together. It is important to
highlight that, in the case of the Mask R-CNN, the same network was used in both
simulations; on the other hand, the network used to locate the foreign body was
trained with different datasets and parameters for each simulation, despite using a

very similar architecture.

4.1
Development environment

As a development and training environment for the convolutional networks,
the Google Collaborative Platform [54] was used with the Python programming
language in version 3.7 [55] and the machine learning libraries Tensorflow in
version 1.15 [56] and Keras in version 2.3.1 [4]. The platform has a GPU and 12
Gb of RAM, in addition to 20 Gb of disk space shared with other Google services.

4.2
Mask R-CNN

4.21
Dataset

To create the dataset, images of the adhesive pattern were superimposed on
images of skin texture collected on the internet. Generating these images artificially
allows us to create a wide variety of combinations of skin types and pattern
placement, which is very important for creating a network with good generalization,

although it doesn't exactly match a real image of the patient.
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For the adhesive pattern, images with variations of roll, pitch, and yaw were
generated since, at this time of the research, the intention was to work with the
device’s rotation in the three axes. The pattern was implemented in green with
values in the RGB system of (0,255,0) as this is a hue rarely found on the naked
body, except in cases of tattoos, being a way to facilitate its identification by the
CNN or any other method of recognition. However, as the proposed device is
portable and can be used in different lighting situations, such as remote assistance
or assistance in a mobile ICU, three variations of green were created for each image
of the pattern: the first with the reference green; the second with random values of
green between 205 and 255 and random values of red and blue between 0 and 25;
and the last with random values of green between 153 and 255, and random values
of red and blue between 0 and 50. In total, 1 836 images of the pattern were
generated, considering the variations in inclination angles and shades of green.

The selected skin texture images sought to represent not only the different
types of skin tone existing but also different types of ambient lighting, different
body hair thicknesses, the presence of wounds or changes in the skin, the presence
of black and colored tattoos, and the presence of other objects not associated with
the patient but positioned nearby. This variety seeks to create a network capable of
recognizing the pattern in the most diverse situations, making the algorithm more
robust than a methodology based only on image colors. Initially, 249 images were
selected, which were enlarged using rotation in 90°, 180°, and 270°, making a final
total of 996 images.

In the end, each adhesive pattern image was resized to simulate different
distances and combined with a skin pattern image, generating 1 836 final images.

Figure 22 shows some examples of the final images, resized to a square format.
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Figure 22 — Example of images generated to compose the dataset of the Mask R-CNN
network.

After creating the final set of images, each image was manually annotated
using the VGG Image Annotator software [57] to indicate the polygon that best
represents the adhesive pattern. The final number of images in the dataset could
easily be extended with new combinations of the adhesive pattern with the skin
images. However, because the annotation process is laborious and time-consuming,
the final number of images was limited to the 1 836 files already mentioned and, in
the training process, new images were generated along with the corresponding
annotations using data augmentation, as presented in the following subsections.

Figure 23 shows an annotation made on one of the dataset images.

() (b)
Figure 23 — Dataset image detail without (a) and with (b) the polygon indicating the

adhesive pattern.
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4.2.2
Training parameters

As a basis for the convolutional network training process, a previously
realized implementation of the Mask R-CNN network for Python 3, Keras, and
TensorFlow [58] was used. For the framework backbone (Figure 9), a ResNet101
network [52] pre-trained with the MS COCO dataset [59] was used. Due to the
reduced size of the dataset described in section 4.2.1 for a network of this size, only
the stages five and higher of the network were trained, leaving the others fixed with
the pre-trained weights. To increase the number of images in the dataset (data
augmentation), horizontal and vertical flip, rotation at every 90°, the addition of
gaussian blur, and pixel multiplication were used, with these operations being
applied and combined at random during training.

The images were resized to 2048 px wide by 2048 px high with three color
channels for training. Among the parameters used, the training had a learning rate
of 0.01, a value of 500 steps per epoch with 100 validation steps per epoch, which
in this case it represents a training set of 250 images with 50 validation images for
each epoch and a limit for selecting regions of interest of 90 %. For all other

parameters, the code repository defaults were used.

423
Training metrics

The model was trained in different configurations of the parameters
presented in the previous subsection, including data augmentation variations, until
reaching the parameters with the best results. Each training was run for a maximum
of 120 epochs, usually interrupted by Google Collaborative runtime outages. In this
case, the new training was started from the final weights of the previous training.

No automatic way to end the training (early stopping) was used. Decisions
were taken based on a visual analysis of the graphs for the total loss function over
the time for training and validation and of the result obtained with the test images.

The total network loss function is the sum of the several Mask R-CNN
network loss functions. The first set of losses concerns the RPN (described in
subsection 2.2.3 and illustrated in Figure 10) and can be divided into the

classification loss and the bounding box loss, according to
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1 . 2 . .
L{p:}) = 2 BCE(p;, p;) + EZiZjE{x,y,w,h}pR(tij — ), 9)

N¢is

classification bounding box

where p; is the output value for anchor 7, p; is the real value for anchor i, N is the

size of the mini-batch, and N, is the number of anchor positions.

The function R is given by
R() = {le E,SOJT;: f)];fllzlﬂvji;e ’ (10)
and the input parameters of R(x) are

b = TN (1

ty = 2, (12)

tw = log (1), (13)

ti, = log (:T;) (14)

b = (15)

by = P2 (16)

tiw = log (wi;) , and (17)

tn = log (22). (18)

la

In equations (11) to (18), x;, vi, wi, and A; are the central coordinates, width,
and height of rectangle i; x;, xi; and X;, are the x values for the prediction, for the
anchor and ideal rectangle value, respectively (same for y;, w; , and /).

Finally, the BCE in equation (9) is the binary cross entropy, given by

Lpcg = Y-y tilog(p;), (19)

where ¢ is the true binary value and p; is the softmax probability (equation 6) for
class i.
The second set of losses concerns the framework's final network (Figure 10)

with its three outputs, according to

LEp)) = Xi| —log®) +TjeceywmR(t; — &) + X1<ksk BCE @i, Dir)

classification bounding box mask

(20)
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where p; is the true class output/probability value for rectangle i and K is the number
of classes.

Figure 24 shows the evolution of the total loss over the 40 training epochs
of the network chosen for this research, and Figure 25 shows some examples of the
application of the test set on the network with the mask found and the confidence
value of the network in the class found, which, in this case, is naturally high because

a single class is used.

055 0.55
0.45 0.45
0.35 0.35
0.25 0.25
0 5 10 15 20 25 30 35 40 4 -5 0 5 10 15 20 25 30 35 40 4f
(a) (b)

Figure 24 — Graph representing the value of the loss function (y-axis) over the epochs (x-

axis) for training (a) and validation (b) of the Mask R-CNN network used in this research.

pattern 0.996

pattern 0.993

(a) (b) (©)

Figure 25 — Prediction of the Mask R-CNN network for images in the test set, indicating the
mask found and a confidence value in predicting the class of 0.996 (a), 0.993 (b), and 0.993

(c).
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4.3
CNN for foreign body location

4.31
Architecture

For the location of the foreign body, an architecture based on the VGG
network [51] was used, with fewer convolutional layers due to the low complexity
of the problem. As explained in the introduction to the chapter, different networks
were used in the two simulations performed for the location of the foreign body.
However, the architecture used in all tests was similar, varying only the number of
learnable parameters and output values that each network produces. Figure 26
illustrates the different architectures used, detailing their layers and the type of
output produced. Networks (a) and (b) are classification networks, with network (a)
producing a single probability vector for all output values and network (b)
producing a probability vector for each output value. Networks (c) and (d) are
regression networks, the only difference between them being the fact that network
(d) has an output for the value of A. The final activation function and loss function
also vary depending on the type of output desired. Regression networks use a linear

activation function and an MSE (mean squared error) loss function, given by

MSE(B) = <3,(0; - 6,)", 1)

where 0 is a scalar parameter, 0 is an estimator of the scalar parameter, and N is the
number of samples. The network (a), as it has a single output vector, uses a Sigmoid
activation function (equation 1) and a binary cross entropy loss function (equation
10), producing an individualized probability for each position of the output vector.
The network (b) uses a softmax activation function (equation 6) and a categorical

cross entropy loss function, given by

Lep = Xisitilog(py) (22)

where ¢ is the true value and p; is the softmax probability (equation 6) for class i,

producing a vector whose sum of probabilities equals 1 for each output value.
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(a) (b) (©) (d)

Convolution (3x3) + Batch Normalization + ReLU
Max pooling (3x3)
Max pooling (2x2)
Fully connected
M Final activation

Figure 26 — Architecture variations used in simulations for foreign body location.

4.3.2
Dataset

The two training sessions performed for the location of the foreign body had
different datasets and training parameters, despite being very similar. In this and
the following subsections and chapters, only the training of the model used in the
final simulation will be detailed, which is an unfolding of the tests performed in the
first simulation. Details of the initial simulation can be analyzed in [60], annex 1 to
this dissertation.

The dataset for the final localization network was constructed by simulating
the magnetic field data as described in subsection 3.2.1, simulating a reading from
the handheld device during a full scan. Each scan corresponds to a path taken by
the device in a zigzag pattern along a 20 cm x 20 cm area centered on the adhesive
pattern.

The scans were created by applying random variations to a reference path
on the values of x, y, z, and yaw, with the roll and pitch values kept constant at zero.

Four different irregular paths were created and, for each of them, 2 376
images were created representing the magnetic field generated by a magnetic
foreign body of the straight needle type. These images cover a variation in depth
(h) from 50 mm to 150 mm every 10 mm, a variation in inclination angle (8) from
-60° to 60° every 15°, and a variation in the rotation angle (¢) from 0° to 360° every
15°. The delta value (A) was calculated from the magnetic field values for each

input according to the procedure presented in [3]. The final dataset comprises 9 504
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images with corresponding 4, 0, ¢, and A values. Figure 27 shows in (a) an unaltered
scan path, with an ideal magnetic field map, and in (b) to (e), the four paths used in
the dataset, with their corresponding magnetic field maps for the parameters /2 = 60
mm, 6 = 15° ¢ = 45° and A = 0.56 mm. The images went through the process

described in subsection 3.2.1 to fill in missing pixels in the final image.

Figure 27 — A perfect scan and the generated magnetic field map (a) and the tracking
variations used in the dataset (b, ¢, d, €) with the corresponding magnetic field map for h =
60 mm, 6 = 15°, ¢ =45° and A = 0.56 mm.

43.3
Training parameters

The final configuration of the model, illustrated in Figure 26d, has a total of
1 534 788 parameters to be learned, with 56 960 of them being shared between 4,
0, ¢, and A. The final configuration of filters per layer can be seen in Figure 28.
Since the rotation can also be inferred directly from the magnetic field values, an
equivalent model without the rotation branch was also tested, with a total of
1 165 251 parameters to be learned. Both models, with and without the rotation
branch, were also tested with absolute A values and with negative and positive A

values.
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Figure 28 — Foreign body localization CNN showing the filter size and number of filters

(N x N x M) for the convolutional layers and the number of units for the dense layers.

The network expects a input image 80 px per 80 px. The dataset was
randomly separated into disjoint sets with 60 % of the data for training, 20 % for
validation, and 20 % for testing. After experimental analysis, the Adam optimizer
was used with a learning rate of 0.0001, and dropout of 0.25 for the convolutional
layers and of 0.5 for the dense layer was used to prevent overfitting, when the
network perfectly learns the training set but cannot generalize well to new input
data. To control the training time, early stopping was used to end the training if
there was no improvement in the loss function result in the validation for ten epochs,
only the model with the best result being preserved during the entire training. Figure
29 shows the evolution of training and validation data while Table 1 shows the final
values for all values associated with the magnetic source location parameters (4, 6,

¢, and A) in MSE (equation 12) and MAE (mean absolute error), given by
~ 1 ~
MAE(9) = ~XiL[6: — 6, (23)

where 6 is a scalar parameter, 8 is an estimator of the scalar parameter, and N is

the number of samples.
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Figure 29 — Evolution of mean absolute error (MAE) and mean squared error (MSE) for

training (blue) and validation (orange) data along the epochs for depth (h), inclination (8),

rotation (®), and delta (A) values.

Table 1 — Final mean absolute error (MAE) and mean squared error (MSE) values for

training and validation data.

h 0 D A
training 2.14 1.86 4.16 0.16
MAE validation 2.16 1.92 4.15 0.16
MSE training 7.27 5.00 29.47 0.05
validation 7.51 5.21 29.62 0.05
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Results

This chapter presents the experimental results obtained in the simulations
carried out. In section 5.1, only the simulation performed for the device’s tracking
system is analyzed, and section 5.2 describes the final simulation results, including

the foreign body’s location.

5.1
Mobile device tracking system results

The system adjustments shown in Figure 13 were created according to the
needs that arose during the experiments carried out, having as a starting point the
results of the Mask R-CNN network. Figure 30 shows the results for the x and y
coordinates using four different system configurations.

Configuration A represents the output of the Mask R-CNN network without
the proposed adjustments, and it is possible to observe how the predicted values
oscillate around the real values. This fluctuation is intensified by varying the values
of z and yaw, as both are used in converting pixels to centimeters and converting
the camera coordinate system to the inertial reference system.

In configuration B, filters are included in the system to smooth out the
values, solving the fluctuation problem and bringing the output values closer to the
real values, especially when there is no rotation or variation in z.

In configurations C and D, all adjustments are used, obtaining results very
close to the real ones, with the only difference between each configuration being
the position of the z and yaw filters, which are applied at the system output in
configuration C and before the adjustments in configuration D. This difference
mainly affects the x and y values, since they are dependent on the yaw and z values
for the bounding box adjustment and the conversion to the inertial reference system,

although in the simulation both configurations presented similar results.
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Figure 30 — View of the device’s x and y positions for four different system configurations:
without the proposed adjustments (A), with filters (B), with the complete set of adjustments,
and filters applied at the output (C) or before the adjustments (D). The blue line represents
the real values, and the orange line represents the output of the proposed system, with

values in cm.

Table 2 presents, for each network output variable, considering the system

configurations presented in Figure 30, the RMSE errors, given by

RMSE(9) = \/%zgvzl(éi - el-)z, (24)

where 0 is a scalar parameter, 0 is an estimator of the scalar parameter, and N is the

number of samples.
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The values present a slight improvement when applying only the filter (Fig.
30b). In contrast, with all the proposed adjustments (Fig. 30c and Fig. 30d), the

complete system produces considerably lower errors for x, y, and z.

Table 2 — RMSE values for the different system configurations with the best results

obtained marked in bold

System X (cm) y (cm) z (cm) yaw (°)
Configuration
A 0.368 0.318 3.667 1.577
B 0.348 0.290 3.555 1.059
C 0.157 0.091 1.159 1.059
D 0.157 0.092 1.236 1.059

Figure 31 shows a breakdown of the results of configurations B and C. This
figure shows how the adjustments affect the values of x, y, and z. The z values are
affected by the distance adjustment, while the x and y values are affected by the
improvement in z values combined with the bounding box adjustment.

The results obtained were satisfactory, mainly for the values of x and y with
RMSE results close to 1 mm. It is important to highlight that, although the
simulation promotes a much more controlled environment, producing images that
facilitate the work of the Mask R-CNN, the speed in the variation of values and the
amplitude of these variations in the simulation is much greater than those expected
in a real situation. For example, z values have a variation greater than 40 mm, and
yaw values have a variation greater than 90°, when both should be approximately

constant in a real situation, with yaw = 0°.
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Figure 31 — Comparison between configurations B and C for each analyzed variable, with
real values in blue, network output values in gray, and the difference between them in

orange. X, y, and z values are in cm and, yaw values are in degrees.
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5.2
Simulation results for foreign body location

5.21
Mobile device tracking

The first step in the final simulation was the creation of a new scan trajectory
for the device, different from those used in the Mask R-CNN training and closer to
what would occur in a clinical application, as described in subsection 4.3.2. This
trajectory is performed manually by the clinician around the object in order to get
as close as possible to the ideal trajectory shown in Figure 27a. With these new
trajectories, the configuration C of the tracking network was performed, generating
the magnetic maps with the necessary distortions, which served as input to the
foreign body location network.

Figure 32 shows the difference between the x and y coordinate values
between the simulation and the output of the proposed system. For this simulation,
samples were generated every 1 cm. It is important to highlight that the original
simulation trajectory is already different from the ideal trajectory shown in
Figure 27a, and the variation of this trajectory will generate a magnetic field map
with a different distortion, but not necessarily worse than that of the simulation. The
experiment serves mainly to compare the results of this new trajectory, closer to the

real one, with those obtained in the initial simulation, presented in section 5.1.
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Figure 32 — Visualization of x and y positions of the device's trajectory for simulating the
scan performed for foreign body location. The blue line represents the real values, and the

orange line represents the output of the proposed system, with values in cm.

Figure 33 compares the real values and the system output for x, y, z, and yaw
values. In this figure, system’s difficulty in detecting small variations in the yaw
value is evident. With values varying widely within a small margin, the filter also
fails to bring the expected benefit. The values of z, on the other hand, undergo a
significant improvement as they are practically constant, while x and y still show
good results. Table 3 details, for all system output variables, the RMSE values

(equation 24), the maximum error, and the expanded type A uncertainty, given by

w(6) = 2% \/ﬁ v (0 - 0,)° 25)

where 0 is a scalar parameter, 0 is an estimator of the scalar parameter, and N is the

number of samples.


DBD
PUC-Rio - Certificação Digital Nº 1920727/CA


PUC-Rio- CertificacaoDigital N° 1920727/CA

66

X y
15 15
10 x T = % | 10 oy
| A )
| T
5 | 5 “
| “ -
0 T s e st DL LS PO | Ohe 0 —-»\wm.‘.gj\/,»\,\fﬁmﬁﬂ/x,;. L T - N—— ™
HoOhNaVMmMONYSHOLNOGUNORSIFdRLNAY 00000 HRULUANOUY MON T ARUNDTLOONT RN O
NNNNNNNNNNNNN BRI FHAYdCSARAAARRNAmMmmn®mI S
5 5 b
| "\.
10 ! : v y v v 10 O
-15 -15
z yaw
6 8
5 —‘.l\”\..u\‘w,f\-r"\f\hr‘l.‘—‘j"\. y‘\/‘\‘."--,\/—‘-,m."\.'\‘_\v"a_"u‘ 6 (‘
4 4 ﬁ i L
| | \
\
2 n { LU )
| M ] 1A 0 |
3 A I L uf
0 "W i 1) 1L 00 AP ) [l
Bsiin PN gk Einlgdala dingis o 2 9|
2 @ : & ¥ NS RS S & N‘
2 ‘ THE SSES RNIHENE- R 5
1 YR ]
\ A
4 1
) ‘
0 \m ——. VAW PP N T N 6
- ® NOLNMOR ST AIRIVNAYNONTHRNRDO
mmmmm SRMORISABBRNIOITARAS &
NNNNNNNNNNNNNNNNNN 9
1 -8

Figure 33 — Comparison between real values in blue and network output values in gray for
each network output value, with the difference between them indicated in orange. x, y, and

z values are in cm, and yaw values are in degrees.

Table 3 — RMSE, Maximum Error and Expanded Type A uncertainty for Device Tracking

) Expanded Type A
Output value RMSE Maximum Error
uncertainty (95 % coverage)
X 0.255 cm 0.919 cm (@ 4.0 cm) 0.205 cm
y 0.198 cm | 0.799 cm (@ -10.0 cm) 0.034 cm
z 0.102 cm 0.292 cm (@ 5.1 cm) 0.001 cm
yaw 1.963° 7.000° (@ 0°) 3.932°

Considering an Intel Dual-Core i5 2.7 GHz CPU with 8 GB of DDR3
memory, a processing time of approximately 7.5 s was obtained for each processed
image, with the Mask R-CNN network being responsible for more than 99 % of this
value. In the case of the simulation performed with 440 frames and 44 s duration,
the total processing time would be approximately 55 min without using the buffer,
an unfeasible time for a clinical application. Using the Google Collaborative
configuration with a GPU, the time for each image drops to 2 s, with the total time
for the simulation being close to 15 min. Even in this configuration, the processing

time is still high, in addition to the increased cost that the GPU brings to the device.
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Nevertheless, the use of a newer version of Tensorflow and a non-shared

environment should improve the performance of the system.

5.2.2
Foreign body localization

Among the variations of the model described in subsection 4.3.3., the
network with the rotation branch and absolute A values was used, as it presents in
the test set a total MSE value (equation 21) slightly better than the network with
positive and negative A values, mainly due to the better result of the rotation
parameter. The other individual values of MSE and MAE (equation 23) are
equivalent between the two networks, with the network without the rotation branch

obtaining much lower values, as shown in Table 4.

Table 4 — Mean absolute error (MAE) and mean square error (MSE) values for the network
with the rotation branch and absolute A values (A), the network with the rotation branch
and real A values (B), and the network without the rotation branch and absolute A values
(C).

h (cm) 0() D (°) A (cm)
MAE A 2.21 1.84 423 0.15
B 2.13 1.70 445 0.17
C 3.86 2.62 - 0.35
MSE A 7.78 4.82 30.73 0.05
B 7.26 438 34.14 0.05
C 22.26 10.26 - 0.28

As the selected network only presents absolute values of A at the output, the
system must invert the sign when the rotation value is between 90° and 270° with
negative inclination values and when the rotation value is between 270° and 90°
with positive inclination values.

Table 5 presents the results of the selected network for the test set on RMSE
values (equation 24), maximum error, and expanded type A uncertainty (equation

25) for all network output values.
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Table 5 — RMSE, maximum error and expanded type A uncertainty for foreign body

localization

expanded type A uncertainty

Output value RMSE Maximum Error
(95 % coverage)
depth & 2.8mm | 12.6 mm (@ 130 mm) 5.6 mm
inclination 6 2.2° 7.0° (@ 60°) 4.4°
rotation ¢ 5.5° 19.9° (@ 345°) 11.1°
displacement A 0.2 mm 1.1 mm (@ 8.6 mm) 0.4 mm

The proposed model shows an improvement in the maximum error for A

compared to the results obtained in [3] while providing similar results to those

obtained in the initial simulation [60], Annex 1 to this dissertation, for the other

variables in terms of expanded uncertainty of the type A. Figure 34 presents the

scatter plots between the network output values and the true values, and Figure 35

presents the prediction error histograms for each network output value, both for the

test dataset. It is important to note that, although the network has a maximum A

error of 1.1 mm, most of the A error values are contained within a range between -

0.5 mm and 0.5 mm.
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Figure 34 — Scatter plots for the test dataset between the network output values (y-axis)

and the true values (x-axis) for depth (h), inclination (8), rotation (¢), and displacement (A).
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Figure 35 — Histogram for the test dataset for the network prediction error with values count

(y-axis) and error values (x-axis) for depth (h), slope (8), rotation (¢), and offset (A).

The network inference time was approximately 0.38 s using the same CPU

configuration described in the previous subsection, which makes the methodology

suitable for applications with low response time on low-cost devices.
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6
Conclusions and Future Works

6.1
Conclusions

This research aimed to evaluate the application of recent advances in
artificial intelligence in proposing a low-cost portable device for locating foreign
bodies accidentally inserted into the human body, based on the magnetic field
generated by the foreign body. For this purpose, a GMR sensor and a monocular
camera commonly found in electronic devices were considered, a configuration
costing about 10 000 times less than the high-precision SQUID devices currently
found on the market. In addition to the cost, the proposed device brings other
benefits such as lightness, portability, safety, non-invasiveness, being able to work
at room temperature, in addition to bringing the possibility of remote care or mobile
ICU care.

The research was divided into two main phases, one that seeks to track the
position and orientation of the device in relation to a reference point on the patient's
body based on a camera integrated into the device, and another that seeks to
discover the position, rotation and inclination of the foreign body based on the data
collected in the previous step together with the GMR sensor data.

In chapter 2, the basic concepts for the implementation of the methods
proposed for the two phases were presented, and these methods are presented in
chapter 3. In section 3.1, the system based on the Mask R-CNN network for device
tracking and, in section 3.2, the convolutional neural network that serves as the
basis for the localization of the foreign body was detailed. In chapter 4, the training
processes of the proposed systems were detailed, and in chapter 5, the results of the
simulations were presented.

The results obtained in tracking the device were quite satisfactory,
especially for the positioning values in relation to the reference point on the patient,
with RMSE results ranging between 1 mm and 2.6 mm for x, y, and z values. These

results are of particular importance, as knowing the relative position between the
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device and the patient is fundamental for the inverse problem algorithm, and, as the
device is portable, there is no fixed reference available for this measurement. A
possible alternative would be to employ inertial navigation from triaxial
accelerometer signals, but the typical drift of such sensors would significantly
reduce the quality of the position estimate, in addition to the difficulty in defining
an initial reference point on the patient skin. In the case of the device orientation
angles, although it is desirable that the image-based system would also produce
reliable results, there are low-cost gyrometers on the market that can fulfill this role
more robustly or be used in conjunction with the camera to produce better results.
The processing time of the network, however, needs to improve so that it can be
used in a clinical situation. More modern and efficient convolutional networks or a
simulation with fewer samples per second can help mitigate the problem.

The CNN results for foreign body localization are also positive. The value
of A, used to find the center of the needle, with an RMSE of 0.2 mm, presents a
significant improvement over previous works [3] and, combined with a depth value
with an RMSE of 2.8 mm, indicates a good result in locating the foreign body in
the patient. The foreign body inclination value also had good results, with an RMSE
of 2.2° and a maximum error of 7.0°, while the foreign body rotation value, which
had the worst results with an RMSE of 5.5°, can be inferred from the magnetic field
data, possibly yielding more reliable results. Another positive factor in using the
CNN for foreign body localization is that it showed generalizability by producing
results from skewed tracking data that was not in its training dataset. This quality
indicates that errors in the device tracking process can be smoothed over by the
location network, creating a relationship between the two steps distinct from a

simple overlap of errors.

6.2
Future works

Several improvements can be proposed for the methods presented in this
research. As the Deep Learning area is recent and undergoes constant changes, new
methods of object detection and semantic segmentation appear every year with
better results and faster response times. These methodologies can not only increase

the accuracy of the results and the response time but also dismiss the adjustments
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that were created in this research to compensate for the errors presented by the Mask
R-CNN network. As an example, we can mention the PANet network [61],
considered an evolution of the Mask R-CNN network; the SiamMask [62], which
promises a speed of 55 fps and has as one of its outputs the bounding box rotated
towards the object, which could maybe be used by the system as an initial yaw
value; and the EfficientDet [63] network, which has obtained good results in
detecting objects with low use of computational resources and can be used alone or
as a backbone of the Mask R-CNN network. A pure semantic segmentation
approach is also feasible, with the position of the pattern being obtained by the
bounding box of the mask found by the network. The UNet network [64] is a good
starting point of experimentation. Finally, other techniques like Template Matching
and Watershed should also be tested for accuracy and speed analysis.

Another important point to be analyzed is the possibility of integrating the
tracking system with data obtained by physical sensors, mainly for device
orientation. A distance sensor can also bring greater reliability to the results in
combination with the z value obtained by the system.

For the foreign body localization CNN, it would be interesting to perform a
reference simulation with perfect values of the magnetic field and test different
distortions of this field from different trajectories in order to try to assess how much
the network can maintain the results regardless of the generated distortions.

Finally, it is essential to implement the system on the Raspberry PI platform
to perform the integration with the GMR sensor to validate the results in a real
situation. The processing time issue found in this research could be solved with one
of the solutions proposed in this section or by implementing a Bluetooth connection
between the Raspberry Pi device and an external machine with GPU capabilities.
Unfortunately, due to the COVID-19 pandemic, laboratory work was impaired

during the period of this research, limiting the results to the simulations presented.
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Abstract—This paper presents an algorithm based on
Convelutional Neural Networks (CNN) to find the depth, angle
of inclination and angle of rotation of a foreign object inside the
human body based on images of the magnetic field generated by
it. The key challenge is to be able to provide information with

applications, which includes medical imaging [18,19]. This
progress is accompanied with concem on the part of the
medical and scientific community, since deep leaming is an
emerging field, still in constant change, and most of the
scientific work produced cannot be implemented due to lack

enough accuracy to enable it to be used in surgical pr
We tested three different CNN architectures handerafted for
predicting the values and proposed two different approaches for
calculating their level of confidence in order to provide
trustworthy information. The experiments are performed on a
dataset of 1911 magnetic maps that simulate the measurements
performed by a low cost magnetic transducer based on the
phenomenon of giant magnetoimpedance (GMI). Our best
model achieved a micro-average Fl-score of 66 % for the depth,
100% for the angle of inclination and 98 % for the angle of
rotation in the test dataset, and estimated the level of confidence
correctly in 98.5 % of all cases and underestimated it in only
147 % of all cases.

his

Keywordy—magnetic  foreign  body, gmi magnetometer,
- lational meural "

[ INTRODUCTION

Finding the position of foreign objects inside the human
body is primordial for the effectiveness of their surgical
removal [1]. There is a high incidence of cases of magnetic
metallic objects inserted in patients [2,3,4] and the available

hods for the localizati ofthosc bj _,suchas
radiography, ¢ d and py
procedures are often ineffective due to thc long duration of the
procedure or inaccuracy finding very small objects and also
pose risks for patients and the doctor, since they use radiation
[1]. Rescarchers from the Pontificia Universidade Catélica do
Rio de Janciro (PUC-Rio) have been developing low-cost
magnetic transducers based on the phenomenon of giant
magnetoimpedance (GMI) with enough sensitivity to detect
the magnetic field g d by fi ctic objects in the
human body [1]. In this paper we use ¢ simulated data that
mimics the signal provided by such magnetometer in order to
estimate the object’s position.

Many studies have been camied out to dc\clop and
improve non-invasive methods to find fi ]| in the
human body based on its magnetic field [2] [16]. Reference
[17], in particular, used four separate artificial neural networks
to estimate the x coordinate, the depth, the length and the angle
of inclination of a needle based on dam generated by a

of ity, lack of standardization and lack of regulation
[20,2I] Thcsc CONCems are even grcatcr when the proposed
is intended to be autc gulation of Artificial

Intelligence is a current discussion topic in many countries and
ethical issues such as explicability are also a challenge yet to
be solved [22].

In this rescarch, we analyzed the behavior of three
different CNN topologies based on a shorter version of a VGG
model [23] to find the depth, the angle of inclination and the
angle of rotation of a needle based on images of the magnetic
field simulated data generated in a previous work [1].
Considering that the purpose of this study is to validate a
computational model that will assist in high-precision surgical
procedures and untreated outliers may cause dangerous
results, we also look into two methods of obtaining the
confidence of the predictions from those models in order to
provide more reliable results.

The rest of the paper is organized as follows. Section I1
discusses the dataset and the different network architectures
tested. The results obtained and the hod: d for
estimating the confidence of the models are shown in Section
11T and the conclusion is presented in Section IV,

IL. PROPOSED METHOD

A. Dataset

The data used in this study is the result of work described
in [1], who developed an automatic measurement system,
u:ommllcd through the LabVIEW environment, to record the

flux density generated by a needle, using a magnetic
transducer based on  the phenomenon  of  giant
magnetoimpedance (GMI). The model suggested by [1]is a
development of the work in [17], since it takes into account an
average of the field in the length of the sensor and the
distortion that is caused by the motion of the needle in the
process, both aspects that provide more accurate

results and were not considered in the former work. The
resulting data is a set of 1 911 matrices containing the
ic map (b | umgc) of the magnetic flux
dmslty values over the measuring region. These files

snmulauonmodcl In recent ycars specially with the progr
of deep 1 g, convolt | neural networks (CNN) have
been used extensively in computer vision in a vast range of
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wpass a variation in depth (h) from 50 mm to 150 mm in
5 mm steps, a variation in inclination angle (8) from 0° to %07
in 15° steps and a variation of rotation angle (®) from 0° to
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Fig. 1. Visaalization of a necdle position (i rod) with p as its center
point, showing the needle length (1), inclimation angle (8), rolation angle
(@) and depth (8) [17].

1807 in 157 steps. Fig. | shows the different parameters used
in this study. We had to eliminate 252 files from the dataset,
since rotation of the needle with an inclination angle of 90° in
any given depth always produce the same magnetic flux
density values. That issue reduced our dataset to 1 659 files
and left us with very few examples for that inclination angle.

To allow for a broader and less biased range of results,
some steps were taken to augment the data. The first step, done
in MATLAB, was to invert the magnetic flux values to
generate maps similar to the original ones but with the
magnetic poles of the needle inverted (e.g, a data with
parameters h = 55 mm, 0 = 60° and @ = 0° would become h =
55 mm, 6 =-60° and ® = 180°). Another modification done in
MATLAB was the introduction of Gaussian noise with

d dard deviations in the magnetic flux
values in mdcr to make our CNNs more robust and simulate
signal degradation compatible with those found in commercial
equipment. We created a dataset with low noise using rand

B. Convolutional Neural Networks Models

Although the challenge of finding numeric values with a
neural network is primarily a regression problem, we also
wanted to treat it as a classification problem so that we could
analyze the vector of probabilities gencrated by that kind of
network to suggest the confid of the rk's
We also compared two classification architectures, one that
shares all the layers to produce a single vector of probabilitics
and one that shares only part of the layers and outputs one
vector of probabilities for each task. In the model that outputs
a single vector of probabilitics containing all the classes
(Model A), all layers of the network are shared between the
tasks, which should provide for a good generalization of the
network [24,25]. After training, the prediction vector is
separated into three smaller vectors, one for each value we
want to predict (depth, angle of inclination and angle of
rotation) so we can more casily analyze the results and
compare with the other models. In Model B, the first layers
are shared, and the last layers are specific for each task. This
approach should also provide for good generalization while
keeping most part of the learnable parameters specific for each
task. This model retums three vectors of probabilities, one for
cach task, with all the probabilities in a vector summing to
one. The last network architecture tested (Model C) is the
same as Model B, except for the last layer, which outputs a
single real number for cach task.

We tested the networks with different number of layers to
find the right size for the amount of data available. If more
data becomes available in the future or the number of tasks
increases, such as finding also the size of the needle, we could
possibly add more layers to the network to obtain similar or
better results. The parameters were kept mainly equal between

standard deviation values between 0.001 and 0.002 and a high
noise dataset using standard deviation values between 0.002
and 0.003. Finally, we rotated the g di to achi

a full range of inclination anglcs between -90° and 90° and
rotation angles between 0° and 360°. By combining all files,
we ended up with 16 758 images in our dataset. Fig. 2
il the p of data ion from our original
files to the final dataset and Fig. 3 show examples of generated
images varying in depth, inclination, rotation and noise by
their smallest step value. It is important to note the subtlety in
the depth changes, which are hard to notice by the human eye
and will also be harder for the CNNs to predict precisely,
especially considering images with the presence of noise.

-
T, e nome N

2002 « 0 « 0,003

-

Fig. 2. The process of data asgmentation from the original files 10 the
final dataset. Magnetic flux valoes are inverted to simulate pole
invertion and Gaussian moise with andom standard deviation is added
to simelate signal degradation. Finally, images are rotate to achive all
possible positions.

the models, with the p of Model A using a learning
rate of 10* while Model B and C used a leaming rate of 107,
Initially, Model A had a bad result in predicting depth values,
50 a single task model with the same architecture was trained
only for the depth values and the weights from that network
after training were transferred to Model A to be used as the
initial weights for the network. This procedure allowed for a
10% to 15% improvement for all metrics in the prediction of
the depth values while not compromising the other tasks. Fig.
4 shows the network architecture for the final models with
detailed inf¢ ion about the p and functions used.

It is important to note that Model A uses a sigmoid
activation function in the last layer with a binary crossentropy
loss function in order to produce a single output vector with
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Fig. 5. Examples of gencrated images varying is depth, inclination,
rotation and noise by their smallest step value.
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Fig. 4. Network architecture for the final models. Model A outpuls
single vector with independent probabilities, Model B owtputs ocne
vector with probabdlities summing to ane for coch task and Model C
outputs 3 real number for cach task

independent probabilities for each class; Model B uses a
softmax activation function in the last layer with a categorical
crossentropy loss function in order to produce vectors of
probabilities that sum to one for each task; and Model C uses
a linear activation function in the last layer with a mean square
crror loss function in order to produce real numbers as outputs
for each task. Another important distinction between the
networks is the difference in the number of parameters that
have to be trained: 4 928 634 for Model A, 7 638 138 for
Model B and 1 793 763 for Model C. Since most of the
parameters in a CNN are concentrated in the fully connected
layers in the end of the network, Model C has much less
parameters since its last layer has only one neuron, while
Model B has fewer parameters than Model A since its layers
are shared between all tasks.

I ReEsULTS
A. Convolutional Neural Networks Results

To test the performance of the proposed models, we used
60% of our images for training, 20% for validation and 20%
for testing. This division was done in a way to keep the same
number of images per class in cach dataset, which is especially
important in the case of the images with 90° of rotation, where
we had fewer samples and needed to ensure a good
representation in all phases of the process. We trained our data

TABLEI RESULTS FROM THE TEST DATA
Depth l Inclination l Rotation
mlﬂ@h\'((ﬂt J nﬁl(l’\)-l\ffﬂt
Model A
Precision 0487047 059/099 051/091
Recall 048/ 048 099 /087 091/091
¥ |.score 048047 0.59 ) 0.89 091/091
Model B
Precision 0677067 1.00/1.00 098/098
Recall 066 /067 1.00/099 098 /098
Flacore | 066/ 0.67 1.00/1.00 0.98 ) 0.98
Model €
Precision 053/0.52 099/084 087 /087
Recall 0537053 099 /085 087 /087
F|.score 0.53/0.52 0.59/0.84 0.87 /087

Fig. £. Heat map of the confusson matrix for each task in cach model
for the test data. The depth predictions are scattered but mot too far from
the tree value, and they Jose precision as the depeh values gets higher.
In the rotation graphs, the “wholes™ in the 90° and -90° values due 1o
lack of samples compared 10 the other rotation values

in mini batches of 64 samples and limited our training to 40
epochs but allowed it to terminate carlier if the validation
accuracy did not improve for 5 epochs.

The results obtained with the test data are shown in Table
1 and evidence a greater difficulty of the network in predicting
depth values, while obtaining very good results in the other
two tasks. The precision metric is the ratio of cormrectly
predicted positive observations to the total predicted positive
observations, the recall metric is the ratio of cormrectly
predicted positive observations to the all observations in the
actual class and the F1 score is the weighted average of
Precision and Recall [26]. The macro-average method
computes the metric independently for cach class and then
take its average while the micro-average method will
aggregate the contributions of all classes to compute the
average metric, which will take into account any class
imbalance. Micro-average and macro-average values are very
similar, showing a good balance of prediction values for all
the classes.

Another view of the results is shown in Fig. 5, where we
plotted a heat map of the confusion matrix for each task in
cach model for the test data. From these maps we can better
see that the depth predictions are scattered but not too far from
the true value, and they lose precision as the depth values gets
higher. In the rotation graphs we can see the “holes” in the %07

Model A Model B Madel €

i

e | i ’

Fig 6. Plot of the distance of the predicted vabaes in the test sl to the
troe values, Values from Model C were rosmded %o the nearest cliuss of
the crigimal dotaset
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Fig. 7. Result of summing the probability vectors for coch task for
comrect predictions and predictions above and below the true value
Vestors were shifted so the predicted value is always in the middle of
the vector. The graphs show bow the weights of the probabilities tend
towands the side of the true value.
and -90° values due to lack of samples compared to the other
rotation values, but this does not imply worse results.

As the data that support this study are very specific, we did
not find other results that could be compared with those
obtained.

B. Confidence Measurements

Slnoc the rcsuhs of our prcdn:mm are meant to be used in
1 to convey not only the
pnd.lcwd values, bul also the confidence level of the result.
The fact that those types of images are not commonly used by
doctors and are not easy to interpret makes the importance of
a reliable information even greater. For that purpose, in Fig. 6
we plotted the di of the predicted values in the test set
to the true values. Values from the regression model (Model
C) were rounded to the nearest class of the original dataset.
From those plots we can see that the values are not scattered,
but even in the rotation predictions of our best model (Model
B), were we got close to perfect results, we get values that are
far from the true value and could lead to disastrous outcome
in a surgical procedure if not panied by some kind of

warning.

Our first approach was to calculate the root mean square
error (RMSE) between the prediction values and the true
values in the test data for each class in cach task and use that
as a basis for confidence. The resulting value of the RMSE for
cach class is used directly by the regression model while the
classification models rounds it up to the next step value.

We also created an approach to benefit from the
probabilities vector retumed by the classification methods.
We analyzed those probabilitics in three different situations:
when the prediction was correct, when the prediction was
above the correct value and when the prediction was below
the correct value. Fig. 7 shows the results of summing the
probability vectors for each task in the situations described
above. We shifted the vectors, so the predicted value is always
in the middle of the vector. From the plots we can clearly see
that when the prediction is correct, the nearby probabilities are
somchow symmetric, while when prediction is not correct, the
probabilities are skewed towards the side of the correct value.
The graphs shown are only for Model B, but Model A
presented a similar behavior. Taking advantage of this, we
created a procedure to sum the class values weighted by the

TABLE II. COMPARISON OF PREDICTED VALUES WITH AND
WITHOUT UNCERTAINTY MEASURES FOR EACH MODEL
Witheut Uncertalaty
Correct Wrong
| Dep. 1652 1509
Model a2 3418 43
Rot 342 39
Lot 29.00% 2091%
| Dep. 2305 1156
Model B |2 — =
Rot 3380 81
Tot. 88.03% 11.9™%
| Dep. 1765 1587
Model ¢ =25 — —
Rot 2902 430
Tot 29.46% 20.84%
Weighted Sum Errer
Overrased Covrect Underrated
LDep 2169 1176 115}
- 2,
Model A Inc. 24 3438 1
[ i 256 2456 2
Tot. 30.3%% 68.46% 121%
| Dep (1] 312 149
Model B Inc. 1] 3481 [}
Rot i 3454 4
Tot. 0.03% 98 4% 147T%
RMSE Ervor
Overrated Correct Underrated
M. 559 2299 163
Modd A Inc 0 3461 0
Rot. 148 3296 17
Tol 11.05% 87.22% 1.73%
| Dep. $13 2882 6
Model B Inc. 0 3461 0
Rot 1] 3456 3
Tol 4.94% M09 0.97%
| Dep. 249 2910 183
Model C Inc. 0 3352 0
Rot 213 3079 60 |
Tol 4.69% 92 89% 242%

* Dap = Diepih, Ine. = lexbiomtion, Red. = Rosation, Tot = Tota)

probability vector and calculate the absolute diffc of this
result to the predicted value. That final value gives us an idea
of how sure the network is about its prediction. When we
divide the resulting value by the step value of the class, we get
the number of steps of confidence for the prediction. In our
tests, we defined that the minimum level of confidence is one
step and results above that value are rounded down to the
nearest step.

Table 2 shows the percentage of correct and wrong
predictions in the test set by cach model and the results of
using both fid procedures p d in this section.
The d values where the confidence
predicted was higher ﬂum needed, while the underrated
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Nonrelated images

Extreme noise

Fig. 8.V i of the pred with the ponding image in different ions for all models.

column represents values where the confidence predicted was
not enough to reach the true value. All results got less than
2.5% of underrated confidence, and Model B using the
weighted sum procedure obtained the best correctness with
98.50% of correct value/confidence prediction. Another
important aspect is that all underrated predictions have a low
level of confidence and are within two steps of distance from
the true value, so when we present our model’s predictions,
not only we show the confidence values, but we also
emphasize it with colors ranging from green, for high
confidence, to red, for low confidence so doctors can clearly
interpret the models’ response.

Fig. 8 shows the visualization of the predictions with the
corresponding image in different situations for all models. All
models are accurate in their responses but present different
characteristics. Model B seems to be overconfident in extreme
situations while Model A is more conservative even in more
usual predictions. This is an mm'csung behavior since the

confidence ing for the model’s
precision. Model C is the only one mly able to predict values
beyond those p d in the , but the lack of

a vector of probabllmcs makes it mmcmcly oonﬁdcnt even in
unusual situations.

IV. CONCLUSION AND FUTURE WORK

This paper proposed different CNN architectures to be
used as a tool for finding foreign objects in the human body
based on the image of their magnetic field. We analyzed the
obtained results and suggested different procedures to
calculate the confidence of the predicted values, due to the
importance of not proposing very dispersed values without a
warning for use in surgical applications. The results obtained
in this study show that CNN have great potential to provide
reliable results for future use in commercial applications. Qur
best model achieved a micro-average precision of 66 % for the
depth, 100 % for the angle of inclination and 98 % for the
angle of rotation in the test dataset, and estimated confidence
correctly in 98,50% of all cases and underestimated it in only

l A7% of all cases. Further research should be done with larger

ts to include more p such as the size of the
needle, its thickness and other characteristics that could be
found in real situations.
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Appendix B: Tracking system for magnetic foreign bodies
localization using a portable device
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Abstract — This paper presents a tracking system to find the
position and yaw rotation of a handheld device based on the
imaging of an adhesive marker attached to a person's body.
Our goal is to provide accurate data that can be combined with
data from a giant magnetoresistance sensor to be able to locate
a foreign body inside a human body for surgical 1. We

This paper presents the preliminary efforts to track the
handheld device’s position and rotation using only a
monocular camera, with four degrees of freedom: x, y, z, and
rotation along the z-axis (yaw). The physician must move the
dcncc parallel and close to the patient's body with small

ions in z and no ions in the x and y axes (roll and

tested the system with a series of computer simulations and
analyzed the results obtained. Qur best setup provided a Root
Mean Square Error of less than 1.6 mm for the x coordinate,
less than | mm for the y coordinate, less than 1.2 cm for the z
coordinate and less than 1.1° for the yaw rotation value in a

pitch). The use of a single camera for portable device tracking
could be beneficial considering its small size and mass, low
cost, lack of susceptibility to external interference, and lack
of interference to the high sensitivity magnetic sensor.

The rest of the paper is orgamzcd as follows. Section 2
di the hardware, the lation, and the

test with wide variations of all values. The results ob d
are promising and open the way for the combination of data
with the portable magnetic sensor.

Keywords: bi etism, ic fi
body, GMR, data fusnon convolunonal ncuml nctworks

1. INTRODUCTION

A non-invasive technigue for locating magnetic foreign
bodies using a high sensitivity magnetic transducer allowed
successful removal of metallic needles, reducing surgery time
mgmﬁcamly [l] This study, however, was carried out using

2 Qu Interference Device (SQUID),
w‘luch. despite bclng the most sensitive magnetometer
available, operates at ultra-low lcmpcramrcs wnh the
disadvantages of high operating and ing costs.

signal processing mclhods used in our experiments. The
results obtained are shown in Section 3 and the conclusion is
presented in Section 4.

2. MATERIAL AND METHODS

2.1. Hardware

Since the p dure is designed for i g the human
skin, which is mostly homogencous, we had to create an
adhesive marker that could be attached to the skin surface to
serve as a reference point for tracking the device and for
showing the results ylcldcd by thc system. Our simulation is
based on an ordi cial with a
focal length of 3. 3 mm and an aperture of /2.4, which
allowed for a marker with a length of 4 cm to correspond to

These aspects difficult the di ination of this imp,
technique in the healthcare sector [2].

More recently, studies have bccn conducted at our lab

ing at developing low-cost mag ducers based on
the p he of gwnl i d (GMI) and giant
nmgnctorcsmancc (GMR) with sufficient sensitivity  to
detect the magnetic field generated by metallic objects in the
human body [2-9]. The portability feature of these new high
sensitivity magnetic sensors operating at room temperature
opens the possibility of configuring them as handheld
devices. This alternative design  could reduce the
measurement  system's  complexity, promoting  its
dissemination in the clinical environment.

However, gnetic field pping using a
device requires developing a strategy for the relative three-
dimensional localization of the mobile device in relation to
the skin surface. This step would be critical to proceed with

handheld

349 pixels in the image with a distance of 20 c¢m to the

. The camera and the physical pattern were not used in
the simulation; they only served as a reference for the
conversions between pixels (px) and centimeters. Ideally, the
camera would have a smaller focal length than our reference
camera so it could be used closer to the body, since the GMR
sensor loses accuracy as it moves away from the target object,
but the main goal here is the proof-of-concept.

2.2, Simulation

Our simulation was done with an image of the reference
pattern centered over a skin texture (Fig. 1). The image was
moved, rotated and zoomed in and out according to pre-
recorded values. This p g d 345 images, which
then were combined into the final simulation movie with a
frame rate of 10 Hz.

The values used to move and zoom the image were

converted from pixels to centimeters based on our reference

the inverse problem's solution and ly esti the
locanonofthcobjectinﬂlcpaﬁmt‘sbody[l].

bined with the rotation values, which were
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Fig. 1. Pattern simulation at yaw = (" combined with the skin
texture image used in the simulation.

already defined in degrees, to serve as ground truth values for
later comparison with the test predictions.

The x and y values, representing the distance from the
center of the reference pattem to the center of the image, were
further processed with (1) and (2) to convert them from the

camera coordinate system to an i 1 frame of refi

with yaw values () in radians.
KXo = (x.cosy) = (y.siny) [B)]
Yo = (x.siny) + (y.cosy) 2

Fig. 2 illustrates how finding the position and rotation
angles of the device in the inertial frame of reference is one
of the necessary steps to solve the magnetic inverse problem
to estimate the position, rotation and inclination of the foreign
object inside the human body.

2.3. Prediction process

2.3.1. Convolutional Neural Network

The first step in the prediction process is to feed cach
image into a Convolutional Neural Network (CNN) to detect
the panan position in the image and apply semantic

ion to sep the pixels pertaining to the
backgmtmd pattem. We used the Mask R-CNN architecture

Fig. 2. The blue axis represents the values found by the
simulation before convertion to the inertial frame of reference,
which i3 represented by the black axis. The position of the
pattern sticker is shown in and the center of the foreign
body with center in (Xo,Y0,Ze) is shown in red.

[10] since it is capable of doing both procedures
simultaneously with a frame rate of 5 Hz

To train our model we built a dataset of 1835 images
composed of skin textures downloaded from the internet with
or without hair, bruises and tattoos, combined with views of
our pattern in different shades of green and different angles of
rotation in the z-axis (yaw). Each image was annotated by
hand with polylines for training. Our model uses a ResNet
101 backbone [11] initialized with pre-trained weights from
the MS COCO dataset [12], with only stage 5 and up of the
ResNet being trained with our datsct We also used random
data ion during trai with flips, rotation,
gaussian blur and pixel mﬂupllcalmn by random values. One
output of the Mask R-CNN is a b g box rep ti
the pattern’s position in the image. The ot.lmomp\.n mamask
of the pixels that represent the pattern in the image.

2.3.2. Mask tensor
To find the yaw of the pancm and to better approxumtcthc
x, y and z values, we d a tensor

L

g the p
in cach possﬂalc yaw angle in steps of 1 dcgmc We first
created an image of the pattern with a height of 88 px in each
angle with a transparent background. We then cropped cach
image to fit the pattern perfectly, padded the sides of the
image as needed with transparency to make it into a square
shape, resized it to 48 x 48 pixels and transformed the image
into a matrix of zeros and ones, with ones representing the
pattern and zeros representing the background. Finally, we
combined all matrices into a tensor where the index value
represents the yaw angle. When the system receives the mask
representing the pattern from the semantic segmentation
model, it does the same steps of cropping, padding, resizing
and converting to a matrix so it can be compared to our
reference tensor. After conversion, the pattern representation
is multiplied by every matrix in the tensor and cach matrix is
summed, so the index with the highest value indicates the yaw
of the pattem.
Along with the mask tensor, we also created a separate
tensor representing the size of the bounding box that perfectly
hes the refe I with a height of 88 px at any
given yaw angle. With that, we can compare the size of the
bounding box returned by the objec( dc(ocuon model to find
the height of the predicted y the Z value
using the dimensions found wnh our reference camera of
20 cm distance for a 349 px pattem.

2.3.3. Signal processing

Different adjustments are made during the prediction
process. A buffer was created in the output of the CNN to
detect outliers or missing values. In both cases, the value is
substituted by linear interpolation. Outliers are defined as
wvalues that are more than two standard deviations away from
the buffer's mean value. We found out that, for our
simulations, the buffer was not needed, since the output of the
CNN had no missing frames or any high inaccuracy, due to
the controlled environment of the simulation, but in tests
made with the real camcm a buffer with 11 values was

Y to OV data.

Another required adjustmcnt is due to the difference
between the center of the pattern and the center of the
bounding box when the pattem rotates. By experimental
analysis, we found that this difference peaks at 45°, 135°,
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225° and 315° angles, with a displacement of around 14 px in
x and y values for the reference pattem with 88 px of hdghl,
returning to zero at every 90 d For our estimati
considered this behavior to bc linear and unod the yaw valuc
and the ratio b the box and the
predicted bounding box to find the adjusuncnt ‘needed.

During the sxmulauom, we also discovered that thc masks
g d by the ic ion were g the
comers of the pattem, Icadmg to a consistently shorter
prediction of the marker size. We did some experiments with
different sizes in various positions and rotations to compare
the amount of difference between the real and predicted
pattern size and used the mean of all values as a factor to be
multiplied by all pattem size values of our predictions.

Since the predicted bounding box and p mask have
small fluctuations in its values even in more controlled
environments, we applied the Savitzky-Golay filter [13] to
smooth all values in different places of our system: for yaw
and Z: values, which serve as a basis for adjusting the other
values, we tested the filter being applied before and after the
adjustments; for x and y values the filter is applied just before
the output, after all adjustments have been made. The filter
was set up as a first-order polynomial with a window length
of 7 coefficients and no derivatives. After all processing
stages, the x and y values are converted to the inertial frame
of reference using (1) and (2). Fig. 3 shows the prediction
process with all its components.

3. RESULTS

3.1. Simulation results
The results were obtained in an iterative process of
visualizing the data for each variable alonc and in groups to

\:

Fig 4. Plot of X, Y. and y values showing the trajectory of
the pattern with the true values in blue and the prediction
values for setups a, b, ¢, and d in orange, with values in cm.

all and we can clearly see how the values fluctuate around or
close to the true values.

That behavior is also caused by fluctuations in the Z. and
yaw values, since they are used for the conversions from
pixels to centimeters and from the camera coordinate system
to the inertial frame of reference. In Setup B, we used the filter
at the output of the system to smooth the values, getting a
better approximation. The prediction, however, moves away
from the true values in some parts of the simulation,

ially when the marker is rotating and zooming. Setup C

find out how they i and by
adjustments. Fig. 4 shows the combination of X and Y.» valuw

and D mcludc the bounding box and the pattem size
with the only difference that in Setup C the filter

in four different system setups. Setup A has no adj at

Fig. 3. The prediction p with object detection (a),
ion (b), the predicted mask and mask tensor
(c), and other ad)

is appllcd to the yaw and Z values at the output, after
adjustments have been made, while in Setup D they are
applicd before any adjustments. That difference should affect
mainly the X: and Y- values, since they are dependent on the
yaw and Z values for the bounding box adjustment and the
conversion to the inertial frame of reference, although in our
simulation both setups presented similar results. In Table 1,
we can see how the filter improves the Root Mean Square
Error (RMSE) of all values in Setup B, while the adjustments
of the latter two setups promote an even bigger drop in error
for the X,, Y. and Z values. Since the values obtained by the
comparison of the predicted mask with the mask tensor were
satisfactory, yaw values do not have any adjustments besides
filtering and are not affected in those latter models.

Fig. 5 shows how the adjustments affect the X., ¥, and Z
values. The Z values are affected by the pattern size factor
adjustment, while X. and ¥, values are affected by the

Table 1. RMSE for different predsction setups.

xfem) ylem) z{em)  yaw()
Setup A 0368 0318 3667 1577
Setup B 0.348 0.290 3.555 1.059
Setup C 0157 0091 1159 1059
_Setup D 0.157 0.092 1.236 1.059
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Fig. 5. Companson between Setup B and C for each vanable analysed. True values are shown m blue, prediction values are shown in
grey, and the difference between them 1s shown i orange. The x, y, and z values are in cm, and the yaw values are in degrees.

improvement in Z- values bined with the bounding box
adjustment.

[4] E.C. Silva, L. A. P. Gusmiao, C. R. Hall Barbosa, E. Costa
Monuim. F. L. A. Machado, “High ullsilivily 5ianl

4. CONCLUSIONS AND FUTURE WORKS pedance (GMI) .
\-emnphmmmng. Meas. Sci. Technol., v. 29, pp. 035106
This paper proposed a bination of different ;) Ffocl‘lmsu L. A. P. Gusmio, C. R. H. Barboss, E. Costa
procedures to track the position and yaw ion of a portabl “'A,, i k-iwhxy aimed at
device based on a reference pattem, using only a | improving the phase y of GMI sensoes,” Meas. Sci.
The proposed system includes a CNN for object Technol,, v. 25, pp. 115010, 2014.
d ion and ic i a buffer for outlier [6] L.G.S. Fortal C. R. H. Barb: E. Costa M iro, E. C.

detection, a mask comparison algorithm, adjustment
algorithms and filtering. A computer simulation was done to
test the system and the results obtained showed good RMSE
values for the dcaired application. Further work should be

done to test the sy in real situations and to include roll
and pitch values i m the pmdxctlom Data f\mon should also be
idered by paring and possibly 1g data from

1 2y in order to obtain even

better accuracy in the nxults providing reliable data to our
final goal, which is to use a handheld high sensitivity
magnetic sensor to find the position, angle of rotation and
angle of inclination of a foreign body inside the human body.
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Appendix C: Convolutional Neural Network for non-

invasive magnetic foreign body localization in the human

body
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Abstract. Fer gnetic foreign bodies accidentally inserted in patients usually need to be
surgically removed. Their location can be estimated by measuring the magnetic field generated
by the object and solving the magnetic inverse problem to locate the source based on the
magnetic field maps configuration. Considering fer gnetic straigh dles (hypodermic or
sewing, for example) and a comp imulation of the magnetic flux density based on Biot-
Savart’s Law, this paper presents an algorithm based on Convolutional Neural Networks
(CNN) to find the depth, the angles of inclination and rotation and the center of the needle
inside the human body. The proposed model presents low RMSE values and type A
measurement uncertainty for the depth, the inclination angle, the rotation angle, and for the
displacement A between the midpoint of the distance connecting the magnetic field extreme
values and the foreign body center, all of which adequate for use in therapeutic procedures.

1. Introduction

Foreign bodies with ferromagnetic properties needing surgical removal are frequent in medical
practice. Their location is conventionally performed by employing radiography, computed
tomography, and radioscopy procedures [1,2]. However, besides their drawback regarding ionizing
radiation exposure, these available strategies do not provide accurate object position information,
leading to long-lasting and unsuccessful surgical procedures [1]. In 2000, a non-invasive and
innocuous technique based on magnetic field maps was developed, demonstrating highly accurate
ferromagnetic foreign bodies localization, thus providing their rapid and successful surgical removals
[1,3]. A Superconducting Quantum Interference Device (SQUID), the most sensitive magnetometer,
was employed for the magnetic mapping. Despite the relevant advantages, SQUID systems' operation
presents drawbacks of high-cost and cryogenic temperature requirements.

Low-cost magnetic transducers to locate ferromagnetic objects in the human body, based on the
Giant Magnctoimpedance (GMI) or Giant Magnetoresistance (GMR) effects, have been recently
investigated [4-7)]. These are initiatives to overcome the cost disadvantage of the non-invasive and
innocuous technique when employing a superconducting sensor, thus allowing it to be better suited to
comply with the Biometrology Principles recommended for incorporating the device in the healthcare
sector [8].

A group of rescarchers at Pontifical Catholic University of Rio de Janeiro (PUC-Rio) is currently
testing the use of a portable device with low-cost GMR sensors to find the depth /, angle of inclination
4, angle of rotation @, and geometric center of a ferromagnetic foreign body in the human body. As
many computer vision investigations applied to medical images have been performed recently using
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convolutional neural networks (CNN) [9,10], incipient initiatives are being implemented for applying
CNN architectures for estimating the location parameters of this new technique being developed [11].
This paper addresses a more advanced step of this research by developing a CNN architecture able to
solve the magnetic inverse problem and accurately provide these positioning parameters, based on a
simulation of the magnetic field map generated by the foreign body, as would be detected by a
magnetometer integrated into a portable device.

The rest of the paper is organized as follows. Section 2 presents the materials and methods,
including the proposed CNN archi , the dataset used in our experiments, the hyperparameter
configuration, and the experimental protocol. Section 3 shows the Its obtained, while Section 4
summarizes the main conclusions.

2. Materials and Methods

2.1. Ferromagnetic Foreign Body

Figure 1 illustrates a needle with the parameters used in this study. The inclination angle &, rotation
angle ¢, and depth h of the needle are direct outputs of the network. The geometric center of the
needle, represented in figure 1 by p, is obtained by calculating the center between magnetic field
extreme values and adding to it a displacement value A, also provided by the CNN. Figure 2 shows an
example image of the magnetic field generated by the ferromagnetic foreign body, which serves as the
input for our CNN, with added markings to highlight some parameters. The white markings are the
minimum and maximum values of the magnetic field, and the black marking is the middle point
between those extremes, while the red marking is the geometric center of the needle. Our CNN returns
the value A, which cormresponds to the difference between the center of the magnetic field extreme
values and the needle’s geometric center.

/
v,

'
|
|
Ih
|
00,0 ! Figure 1. Visualization of a needle position
/ (in red) with (0,0,0) as its center point p,
showing the necedle inclination angle 6,
rotation angle ¢, and depth A.

yom)

Figure 2. Colormap image representing the
magnetic field with white markings on its
extreme values, a black marking at the center
between their positions, and a red marking at
the geometric center of the ferromagnetic
object that gencrated the map.
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2.2. Dataset

The dataset was built by simulating the magnetic ficld data that would be read by our portable device
during a complete scan. Each scan corresponds to a path taken by the device in a zig-zag pattern over a
20 em x 20 cm arca centered on a known reference, consisting of a marker affixed to the patient skin.
The output values obtained from the CNN, along with the reference point marked on the patient's skin,
will be used by the medical team to guide the surgical strategy.

The magnetic ficld data was generated based on the Biot-Savart law for a magnetic dipole,
integrated over the length of the needle (50 mm). The scans were created by applying random
variations to a reference path in the positions x, y and z, and in the z-axis' rotation (yaw). Rotations in
the x and y axes (roll and pitch, respectively) were kept constant at zero.

Four different irregular paths were used and, for cach one of them, 2 376 images were created
representing the magnetic field generated by the dipole. These images encompass a variation in depth
h from 50 mm to 150 mm, in 10 mm steps, a variation in inclination angle # from -60° to 60°, in 15°
steps, and a varation of rotation angle ¢ from 0° to 360° in 15° steps. The delta A value was
calculated from the magnetic field values for each entry according to the procedure presented in [3].
The final dataset comprises 9 504 images with corresponding h, 6, ¢ and A values. Figure 3 shows in
(a) an undisturbed scan path, with a perfect magnetic field map generated and, from (b) to (¢), the four
paths used in our dataset, with their corresponding generated magnetic field maps for the parameters

=60 mm, #=15° ¢=45"and A = 0.56 mm. .
& | |
k (@ (@)
- - = - |

Figure 3. A perfect scan and magnetic ficld map (a) and the tracking variations used in our datasct
(b, ¢, d, ¢) with the corresponding magnetic ficld map, for h = 60 mm, & = 15°, ¢=45%and A = 0.56
mm.

()

Most images with imperfect scan paths or not completely centered have missing pixels near their
edges. Since interpolation cannot be applied in those situations, we have created a procedure to fill in
those missing pixels. The procedure checks each image pixel, from the image’s center to its edges, in a
spiral movement. If any pixel is missing, it fills it with the average value of the available surrounding
pixels. Figure 4 shows the same image as figure 3¢ after a scan simulation without (figure 4a) and with
(figure 4b) our procedure to fill in missing pixels.

(a) )

Figure 4. An image of the magnetic ficld
map without (a) and with (b) the method to
fill in missed values from the scan procedure.

Congresso Brasileiro de Metrologia 3

91


DBD
PUC-Rio - Certificação Digital Nº 1920727/CA


PUC-RIo- CertificagaoDigital N° 1920727/CA

(. A
18.a 21 de Oxtutwo de 200 8‘8

2.3. Convolutional Neural Network Model

The proposed network is based on a shorter version of a VGG architecture [12] setup for regression,
with branches for each output value to be found (A, #, ¢ and A). The first layers of the network are
shared, and the last layers are task-specific. We expected that this approach provides good
genceralization while keeping most of the learnable parameters specific for each task.

At its input, the network expects an image of the magnetic field values with 80 x 80 pixels with
three color channels in RGB format for cach pixel (red, green, and blue values). The network uses a
linear activation function in the last layer with a mean squared error loss function in order to produce
real numbers as the output for each task. Figure 5 shows the proposed network with the types of layers
used and the number of filters for cach layer.

80 x 80 x 32
26x 26 x 64
13x13x64
i - 1 | |
\ - - !
2| s s 1)
i i i i
h 0 o A Figure 5. Proposed network showing the

) type of layers, the number of filters per layer,
" Convolution (3x3) + Batch Normalization and the output for each task: the depth h, the

+RelU ) inclination angle &, the rotation angle ¢, and
B Max pooling (3x3) the displacement A between the position of

Max pooling (2x2) the center of the forcign body and the

F}‘" m midpoint between the positions of the
W Linear activation extreme magnetic field values.

2.4. Hyperparameter tuning

The model was tested with different numbers of layers and different numbers of filters per layer in
search of the best results considering the size of our dataset. The final configuration, shown in figure
5, has a total of 1 534 788 learnable parameters, with 56 960 of those being shared between h, 0, ¢
and A. Since the rotation can also be inferred from the magnetic field values directly, we also tested an
equivalent model without the rotation branch with a total of 1 165 251 learnable parameters. Both
models, with and without the rotation branch, were also tested with absolute A values only and
considering negative and positive A values.

2.5. Experimental protocol

The dataset was randomly separated into disjoint sets, 60 % for training, 20 % for validation, and 20 %
for testing. After experimental analysis, we used the Adam optimizer with a learning rate of 0.0001,
and dropout was used to help prevent overfitting. Early stopping with a patience of 10 and model
checkpoint callbacks were employed to control the training time and save only the best model during
training. For the code, we used the Keras framework with Tensorflow backend. Figure 6 shows the
evolution of the training and validation data for all values associated with the parameters of the
magnetic source location (h, 4, ¢ and A).
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Figure 6. Evolution of Mean Absolute Error (MAE) and Mean Square Error (MSE) for the training

(blue) and validation (orange) data over the epochs for the depth /i, inclination 6, rotation &, and
delta A values.

3. Results

Table 1 shows the results obtained for the model presented in figure 5 for cach output variable. The
model was trained using only absolute A values because it presented better results than using negative
and positive A values. The model with the rotation branch also provided better results than the model
with only the depth, inclination, and A branches. The final application should consider the absolute A
values and invert the signal when the rotation is between 90° and 270°, with negative inclination, or
when the rotation is between 270° and 90°, with positive inclination.

Table 1. Root Mean Square Error (RMSE), maximum error, and expanded type A
uncertainty for each output variable for the test data.

Output variable ~ RMSE Max. Error Expanded Type A uncertainty
depth h 28mm  12.6 mm (@ 130 mm) 5.6 mm
inclination & 22° 7.0° (@ 60°) 4.4°
rotation ¢ 5.5° 19.9° (@ 345°) 1.1°
displacement A 0.2 mm 1.1 mm (@ 8.6 mm) 0.4 mm

Figure 7 presents the scatter plots between predicted and true values, and figure 8 presents the
histograms of the prediction errors, both for the test data. The proposed model shows an improvement
in maximum error for A compared to [3] while providing similar results for the other varables in
terms of expanded type A uncertainty as those obtained in [11].
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Figure 7. Scatter plot of the test data between predicted and true values for depth (A), inclination (6),
rotation (@), and displacement (A) values.
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Figure 8. Histogram of the predicted error in the test data for depth (/), inclination (&), rotation (¢ ),
and displacement (A) values.

4. Conclusion and future work

This paper proposed a novel CNN architecture to locate foreign objects in the human body based on
their magnetic ficld map image. Our best model achieved an RMSE value in the test data of 2.8 mm
for the depth h, 2.2° for the inclination angle 6, 5.5° for the rotation angle ¢, and 0.21 mm for the
displacement A between the midpoint of the distance connecting the magnetic field extreme values
and the foreign body center.

The obtained low RMSE and type A uncertainty values, also providing information regarding A
values, a crucial localization parameter, with better performance than (3], point toward the promising
feature of the proposed CNN to contribute to the accuracy of the non-invasive localization of
ferromagnetic foreign bodies using a low-cost and portable transducer, thus providing the essential
information for a safe, quick and successful surgical procedure for object removal [8). Future steps in
the study involve implementing the developed algorithm to solve the inverse problem from
experimental magnetic maps.
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