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Abstract

Santiago, Henrique Reis; Menezes, Ivan Fabio (Advisor); Müller,
André Luis (Co-Advisor). Development of a plugin based
simulator for wellbore stability analysis and mud weight
window optimization. Rio de Janeiro, 2021. 102p. Dissertação
de Mestrado – Departamento de Engenharia Mecânica, Pontifícia
Universidade Católica do Rio de Janeiro.

Well planning presents a major challenge in the oil & gas industry. Well-
bore stability analysis is one of the most important steps during well planning
and provides the technical basis for a safe drilling operation. Therefore, com-
prehending and predicting the physical response of wells is extremely valuable
to drilling engineers. In order to achieve wellbore stability, drilling operators
control, among other factors, the internal wellbore pressure using the perfo-
ration mud weight. The mud pressure is used to balance the stresses at the
wellbore region and its value must remain inside a stable window to ensure a
safe operation. In this work, we propose a novel simulator to perform wellbore
stability analysis and to compute the optimal mud pressure window. The simu-
lator utilizes a plugin architecture, which provides a more flexible environment
to develop and extend the simulator or even perform different analyses by
exchanging one or more plugins. The ideal internal pressure and mud weight
window are computed by solving a root-finding problem based on different
failure criteria for the well. The simulator uses the Finite Element Method to
solve each geomechanical analysis during the solution procedure, assuming the
fluid-mechanical coupling and elastoplastic behavior around the wellbore. The
simulator was validated using various examples and wellbore stability analyses
were performed on a set of case studies from the literature.

Keywords
Finite Element Method; Poromechanical Coupling; Plugin Framework;

Wellbore Stability Analysis.
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Resumo

Santiago, Henrique Reis; Menezes, Ivan Fabio; Müller, André Luis.
Desenvolvimento de um simulador baseado em plugin para
otimização da janela de estabilidade de poços de petróleo.
Rio de Janeiro, 2021. 102p. Dissertação de Mestrado – Departa-
mento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

O projeto de poços de petróleo representa um dos maiores desafios
na indústria de óleo e gás. A análise de estabilidade é parte fundamental
do projeto pois fornece subsídios para perfuração e operação dos poços.
Assim, compreender e prever a resposta geomecânica de um poço durante sua
perfuração e produção é de suma importância. Para que o poço permaneça
estável durante a perfuração, busca-se controlar, dentre outros fatores, a
pressão interna ao longo de todo o processo com a lama de perfuração. Ela
tem como objetivo manter a região do furo em equilíbrio, próximo de seu
estado pré perfuração. A pressão interna no poço também deve permanecer
dentro de uma janela de estabilidade, de forma que a perfuração ocorra de
forma segura. Neste trabalho, é proposto um novo simulador para a obtenção
da janela de estabilidade ótima para perfuração de poços de petróleo. O
simulador utiliza uma arquitetura de plugins, que o permite realizar diferentes
análises apenas substituindo alguns plugins e garante maior flexibilidade para
desenvolver e estender o simulador se comparado com outros disponíveis num
formato de caixa preta. O cálculo da pressão ótima da janela de estabilidade é
realizado por meio da obtenção de raízes de funções de restrição baseadas em
critérios de falha por plastificação ou fratura do poço. Para resolver as análises
geomecânicas envolvidas, o simulador utiliza o Método dos Elementos Finitos
considerando o acoplamento fluido mecânico e o comportamento elastoplástico
no entorno do poço. São apresentados exemplos para a validação do simulador,
bem como análises de estabilidade de poços baseados em estudos de caso da
literatura.

Palavras-chave
Método dos Elementos finitos; Acoplamento Poromecânico; Framework

de Plugin; Análise de estabilidade de poço.
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1
Introduction

1.1
Motivation

Well stability problems are one of the major challenges faced by the
oil and gas industry and continues to be an issue as deepwater exploration
grows. Accidents related to well stability issues usually end up being the
main factor in the nonproductive time during drilling, accounting for 5.6%
and 12.6% of the total drilling time for nonsubsalt and subsalt on deepwater
wells, respectively [1]. Therefore, the use of newer methods and technologies is
essential to guarantee a viable exploration of what was previously a high-risk
project.

Wells are susceptible to instability issues during the drilling phase,
but it may also take place during the production stage when depletion
begins or a secondary recovery is initiated [2]. These issues are usually a
product of multiple factors involving geomechanical characteristics of the rock
formation, well trajectory and even the techniques and equipment used to drill
and operate the well. The stability analysis must consider all the different
factors involved, which frequently results in complex analysis that require
computational assistance or even simplifications to become feasible.

The well life cycle may be divided into a few steps. First, before any
actual drilling operation starts, an exploration team studies different sites to
find potential new reservoirs and gathers the initial data about the physical
condition of the region. Then, as the possible locations are determined,
an exploratory drilling step begins, opening the first wellbores to verify
the presence of hydrocarbon, as well as acquire more information of the
surrounding region with logging while drilling (LWD), measurement while
drilling (MWD) and seismic data processing techniques, to cite a few. After
the exploratory drilling ends, the operation enters an appraisal step to quantify
the volume of the reservoir. If the verdict is favorable, the project enters the
development and production step until all the economically viable reserves
deplete. In the end, all wells are decommissioned, removing all installations
and plugging the existing wells [3].
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During both the exploratory and appraisal phases, all drilled wellbores
must be deemed safe, to avoid technical and environmental accidents. Figure
1.1 shows a regular workflow used for wellbore analyses [4]. The initial data
gathered is used to estimate the material parameters, while the in-situ stresses
and pore pressure are used to compute the wellbore stresses. Then, the loads
and resistances are compared to an adequate failure criterion to create a
model to predict wellbore response. This model is continuously updated as
new information from drilling events and new logs are acquired until it stops
requiring further calibration. The model can then be used to plan new wells
in the region, to perform real-time updates during drilling operations or even
to reestimate previously measured in-situ stresses and rock properties.

Figure 1.1: General workflow for a wellbore analysis [4]

1.2
Common Issues

Figure 1.2 summarizes common causes of wellbore instability and divides
them into uncontrollable and controllable factors. Uncontrollable factors are
mostly related to the formation process of the region, where an unfavorable
setting appears, such as a high-stress field or an abnormal pore pressure field.
On the other hand, the controllable factors are related to variables in the
drilling process and are influenced by the uncontrollable factors. Therefore,
after the uncontrollable factors are discovered and modeled, a wellbore stability
analysis is required to determine the remaining variables in the drilling
operation.

Among all controllable factors listed in Figure 1.2, the bottom hole
pressure plays a crucial role in the wellbore stability. When the material is
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Figure 1.2: Common instability causes [5]

removed during the perforation, the drilling mud pressure becomes responsible
for balancing the pre-existent wellbore stresses. This pressure is the result of
the chosen mud weight - or equivalent circulating density if pressure drops
are to be considered -, which is dependent on the mud composition. Other
factors, such as well inclination, in situ stress orientation and physicochemical
interactions between the mud and the medium, also influence the final weight
(and composition) required for the mud.

The final mud weight and pressure are directly related to the existent in
situ stresses, pore pressure and rock resistance. Figure 1.3 shows an example
of the relationship between the mud weight and the other existing loads.
The minimum mud pressure (or weight) is determined by the pore pressure
and the shear resistance of the material (or the pore pressure and shear
failure gradients). If the pressure is lower than either of these values, wellbore
washouts/fluid kicks may occur or the wellbore may experience a breakout or
an excessive elliptical enlargement. As the mud pressure increases, the breakout
width reduces, at the risk of approaching the fracture pressure (or fracture
gradient). Applying a pressure higher than the fracture pressure may lead to
the initiation or propagation of fractures in the formation. Any further increase
in the mud pressure results in the loss of mud circulation until it is entirely
lost [4, 6].

As for the remaining controllable factors, other studies in the literature
discuss different approaches to each one of them. For instance, a semi-analytical
algorithm was developed in [7] to generate an optimal well path according
to the analytical solution to the optimal direction of a well [8], whereas
two different nonlinear models were proposed in [9] and [10] to reproduce
the drill string vibrations and the authors in [11] discuss the effects of the
physicochemical effects on the wellbore stability analysis. Each one of these
factors will impact the mud weight stability window and must be considered
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in a complete wellbore stability analysis.

Figure 1.3: Well failure for different mud weights [4]

1.3
Objectives

The main goal of this work is to develop a modular simulator to perform
wellbore stability analyses and to compute the optimal mud pressure window.
In particular, the specific objectives at the end of this work are:

– Develop a flexible and easily extensible simulator using a plugin archi-
tecture;

– Test different methods to compute the mud pressure window;

– Solve wellbore stability problems based on case studies from the litera-
ture.

1.4
Outline

The remainder of this thesis is divided as follows. Chapter 2 introduces
the theoretical formulation to model the physical behavior of the porous
medium studied here, showing both the mechanical equilibrium and the
single-phase fluid flow equations. Chapter 3 explains all numerical methods
implemented in this work, such as the Finite Element Method, algorithms to
solve the plasticity problem and different strategies to solve the coupled system.
Chapter 4 outlines the methodology used here and a more traditional approach
to mud pressure calculation. In Chapter 5, we present the proposed modular
simulator, based on the plugin framework developed at Tecgraf/PUC-Rio, as
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well as other software and resources needed for the simulator to work. Chapters
6 and 7 presents, respectively, several analyses to validate the simulator and
to demonstrate a possible application in real-world problems. Finally, Chapter
8 concludes the present work, highlighting possible options for future works.
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2
Theory

The goal of this Chapter is to present the main equations in the
geomechanical modeling of a deformable porous medium. Most of the theory
discussed next is taken from [12] and [13], where Biot’s theory describes the
interaction between the total stresses, effective stresses and pore pressure in
the porous medium. Tensile stresses are assumed positive and compressive
stresses are negative in the solid phase of the porous medium and pore pressure
is positive in the fluid phase. The porous medium is assumed fully saturated
with a single-phase Newtonian fluid and its state is defined by the displacement
field u and pore pressure p. Throughout this work, bold lower-case letters and
bold upper-case letters represent vectors and matrices, respectively, and both
stresses and strains are expressed as vectors unless stated otherwise.

2.1
Mechanical Equilibrium

The mechanical equilibrium equation of a porous medium derives from
the Principle of Virtual Work in Equation (2-1), assuming quasi-static condi-
tions, for a body Ω with boundary ∂Ω = Γu∪Γt. The variation of the functional
that describes the problem is

δΠ =
∫

Ω
δεT σ̇dΩ−

∫
Ω
δuT ḃdΩ−

∫
Γ
δuT ṫdΓ = 0,

u = u∗ on Γu
T σ̇ = ṫ on Γt

(2-1)

where the volume Ω is subjected to the rate of body forces ḃ, prescribed
displacement u∗ on Γu and rate of surface forces ṫ on boundary Γt opposed
by the internal reaction T σ̇, where σ̇ is the rate of total stresses and T is a
matrix related to a unit vector normal to the surface Γt. All terms of Equation
(2-1) are multiplied by the corresponding variations of the displacement field
u and total strains ε.

Imposing an additive decomposition of strains, ε becomes

ε = εe + εp + εc, (2-2)
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where the terms on the right hand side are respectively the elastic strains,
plastic strains and an aggregation of all other possible strains from other
physical effects (thermal, viscous, chemical interactions, etc). In this work,
the contributions summarized in εc are disregarded.

In a porous medium, the rate of total stresses σ̇ is

σ̇ = σ̇′′ − αmṗ, (2-3)

where σ̇′′ is the rate of effective stresses acting on the solid skeleton, ṗ is the
rate of pore pressure in the porous medium, α is the Biot’s coefficient, evaluated
from the ratio between the bulk modulus of the medium and the solid skeleton,
Equation (2-4), andm is a vector with 1 in the normal directions of the stresses
and 0 on the shear components.

α = 1− K

Ks

(2-4)

The total strains acting on the body are assumed be infinitesimal.
Therefore, the compatibility relations between strains and displacements are
given by the differential operator L,

ε = Lu, L =



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y


, (2-5)

in the 3D case. The material is assumed, at first, isotropic and linear elastic
as a simplification, although rocks often show both nonlinear elastic behavior
and anisotropy. The constitutive equation is then given by

σ̇′′ = Deε̇e = Depε̇, (2-6)

withDe as the elastic tangent operator, defined in Table 4.3 of [12] for different
problem conditions, and Dep as the elastoplastic tangent operator, discussed
later. For now, the operator will be referred to as DT , meaning the elastic or
elastoplastic operator according to the current material state.

Substituting all previous Equations in (2-1), Equation (2-1) becomes

δΠ =
∫

Ω
δuTLT σ̇′′dΩ−

∫
Ω
αδuTLTmṗdΩ−

∫
Ω
δuT ḃdΩ−

∫
Γ
δuT ṫdΓ = 0. (2-7)

In this work, the material is assumed to be under plane strain conditions.
Hence, all out-of-plane total strain components and out-of-plane shear stresses
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remain constant. The operators L and DT retain only the components related
to εxx, εyy, εxy, their respective stresses and the pair εzz,e and σzz is used to
evaluate if yielding occurs in the new stress state.

2.1.1
Yield Criteria

Even though Equation (2-7) describes the global equilibrium of the
problem, the local yield problem still needs to be addressed. Materials can
only sustain elastic (reversible) deformation up to a limit, after which it
begins to develop irreversible plastic deformations. A yield function models
this transition to the plastic regime. When it reaches zero, the material starts
to yield. Thus, an elastic domain is defined as [14]

E = {σ|Φ(σ,A) < 0} , (2-8)

where it contains all possible states of stresses σ and hardening forces A
such that the material only suffers elastic deformations. Therefore, the yield
function defines a yield surface, or hypersurface, in the stress space. Note that
σ corresponds to the effective stresses, but the symbol ′′ was dropped here for
simplicity.

When the current state of the material reaches a critical value (Φ(σ,A) =
0), it starts to yield. If stressed any further, the material develops plastic strains
and a variation in its internal variables α, a set of variables that describes the
hardening or softening behavior [14]. Their evolution is given by

ε̇p = γ̇N = γ̇
∂Ψ
∂σ

= γ̇
∂Φ
∂σ

(2-9)

and

α̇ = γ̇H = −γ̇ ∂Ψ
∂A

= −γ̇ ∂Φ
∂A

, (2-10)

where γ̇ is the plastic multiplier, a nonnegative scalar,N andH represent the
derivatives of the potential function with respect to the stresses and hardening
forces. Equations (2-9) and (2-10) are the plastic flow rule and the hardening
law. Here, it is assumed that both are associative, i.e., the plastic potential Ψ
is equal to Φ.

Equations (2-9) and (2-10) together with the additive decomposition of
strains (2-2), the constitutive relations in (2-6) and the conditions (2-11), (2-12)
and (2-13), i.e.

Φ ≤ 0, (2-11)

γ̇Φ = 0, (2-12)
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and

γ̇ ≥ 0, (2-13)

define the basic aspects of a general elastoplastic model [14].
The complementary condition

γ̇Φ̇ = 0 (2-14)

is introduced to write an expression for the elastoplastic tangent operator. If
the material is still in the elastic domain, γ remains constant (γ̇ = 0). When
it starts to yield all stress states must obey Φ = 0 and therefore

Φ̇ = ∂Φ
∂σ
σ̇ + ∂Φ

∂A
Ȧ = N̄T σ̇ + H̄T Ȧ = 0. (2-15)

Substituting (2-2) , (2-6) and

Ȧ = ∂A

∂α
α̇ = Gα̇, (2-16)

in (2-15), γ̇ can be written as

γ̇ = N̄TDeε̇

N̄TDeN − H̄TGH
. (2-17)

The last step is to substitute (2-17), (2-2) and (2-9) in (2-6). The
elastoplastic tangent operator becomes

Dep = De −
(DeN )(DeN̄ )T

N̄TDeN − H̄TGH
. (2-18)

The operator defined in Equation (2-18) is also referred to as the continuum
elastoplastic tangent operator.

After defining a yield model, the next step is to solve the elastoplastic
problem with a suitable algorithm to properly evaluate the plastic multiplier,
plastic strains and the other necessary variables. Chapter 3 discusses specific
algorithms to solve the plasticity problem. The reader is referred to [14], [15]
and [16] for a more in-depth description of the basic theory of plasticity.

2.1.1.1
von Mises

The von Mises (VM) criterion was proposed in [17]. It relates the uniaxial
yield strength of a material, σY , measured in a traction test, to the second
invariant of the deviatoric stress tensor, J2. Mathematically, the perfectly
plastic version of the yield criterion is

Φ =
√

3J2 − σY =
√

(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

2 − σY . (2-19)
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Physically, it represents a correlation for the maximum allowable devia-
toric energy stored in a material before yielding, as it is insensitive to the mean
stress. This characteristic is also present in the graphical representation of the
function in the principal stress space, illustrated in Figure 2.1. The surface
becomes an infinite cylinder, with its axis aligned with the mean stress axis.

Figure 2.1: Yield surface of the von Mises criterion

2.1.1.2
Mohr-Coulomb

In the Mohr-Coulomb (MC) criterion, Mohr proposed that the failure
would be determined by the larges Mohr’s circle acting on a point and
consequently controlled by σ1 and σ3. On the other hand, Coulomb suggested
that failure would occur when a combination of the normal and shear stresses,
σn and τn, respectively, acting on a specific plane reached a critical value [18].
Two material parameters, the cohesion, c, and the angle of internal friction, φ,
determine the critical value. The yield function is written as

τn = c− σn tanφ (2-20)

or

σ1 − σ3

2 cosφ = c cosφ− σ1 + σ3

2 sinφ, (2-21)

in terms of the principal stresses. Unlike the VM criterion, Equation (2-21)
leads to a pressure-sensitive behavior, commonly found in soils, rocks and
concrete.
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Equation (2-21) can also be cast into an invariant representation, in
Equation (2-22), which is more suited to numerical simulations [15]. The yield
function now depends on the Lode angle θ, defined in Equation (2-23), and
indirectly on the third invariant of the deviatoric stress tensor J3, i.e.

Φ =
(

cos θ − 1√
3

sin θ sinφ
)√

J2 + I1

3 sinφ− c cosφ (2-22)

θ = 1
3 sin−1

−3
√

3J3

2J
3
2
2

 ,−π6 ≤ θ ≤ π

6 . (2-23)

Even though the MC criterion is one of the most used in the literature to
model the elastoplastic behavior of rocks, it still has some major disadvantages.
Firstly, its yield surface is a hexagonal pyramid, as shown in Figure 2.2, which
results in nondifferentiable points in respect to the stresses on the apex and
along the edges that pass through the apex. To solve the differentiability
issue, all edges are rounded off following a procedure described in [15]: directly
evaluate Equation (2-22) on θ = ±π

6 before differentiating the Equation. As
for the apex, a hyperbolic approximation is employed [19]. The "smoothened"
equation becomes

Φ =

√√√√(cos θ − 1√
3

sin θ sinφ
)2

J2 + a2 sin2 φ+ I1

3 sinφ− c cosφ, (2-24)

where a is the semi major axis of the hyperbola measured from the apex of
the yield surface in the (σn, τn) space.

Figure 2.2: Yield surface of the MC criterion, from [14]

Another known issue is related to conservative predictions when using the
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criterion [20, 21]. Despite recognizing the role of compressive stresses on the
plastic behavior, Equation (2-21) implies that the mean principal stress does
not influence the material response. Additionally, for an associative plastic
potential, Equation (2-21) leads to dilatant plastic deformations, which are
often too excessive [14].

Different modifications are present in the literature for the MC function
to solve the differentiability issue. For instance, the Drucker-Prager criterion
may be used to avoid the nondifferentiable edges of the yield surface. It
consists of a modification of the VM equation to account for the effects of
the hydrostatic component of the stress tensor on material strength, adjusted
according to different approximations of the MC yield surface [14, 22]. The final
yield surface is a cone in the principal stress state, leaving only the apex as a
nondifferentiable point. A second option is to use C1 and C2 approximations of
the MC criterion when the current stress state is close to an edge [23, 24, 25].
A final option is to use a multiplanar representation of the MC criterion, along
with subdifferentials and a suitable algorithm to solve the plasticity problem
[14, 26]. Other adjustments include the use of nonassociative plastic potential,
replacing the friction angle in Equation (2-21) by a smaller one, called the
dilatancy angle, or replacing completely the MC criterion by one that explicitly
considers the role of the medium principal stress on material strength, such as
the Mogi-Coulomb criterion [27].

2.1.1.3
Modified Cam Clay

The last yield criterion used in this work is the Modified Cam Clay
(MCC), a modification of the original logarithmic Cam Clay. It provides a few
advantages when compared to the classical yield functions presented before: it
uses a capped yield surface, unlike the previous ones, while also considering the
coupled volumetric response of the material when subjected to shear strains up
to the Critical State and the nonlinear elastic response through the variation of
the bulk modulus according to the hydrostatic stress. The model also requires a
small set of physically sound material parameters, which may have contributed
to its popularity. However, it is also worth mentioning that the model may be
inadequate to predict the behavior of heavy overconsolidated soils [28].

The yield function used for the MCC criterion [14] is expressed as

Φ = 1
b2 (p− pt + a)2 + q2

M2 − a
2, (2-25)

where p is the hydrostatic pressure (not to be confused with the pore pressure),
q is the von Mises equivalent stress, pt is the tensile yield hydrostatic stress, a is
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the radius of the elliptical yield surface in the (p, q) space,M is the inclination
of the Critical State Line and b is defined as

b =

1, p ≥ pt − a

β, p < pt − a
, (2-26)

with β as a material parameter. The corresponding yield surface is represented
in Figure 2.3 in the (p, q) space and in Figure 2.4 in the principal stress space.

Figure 2.3: Yield surface of the MCC criterion, from [14]

Unlike the original version of the Cam Clay criterion, Equation (2-25) is
always differentiable (as long as β > 0 in (2-26)). If the same model is assumed
to be associative, the material shows a dilatant volumetric plastic response for
a stress state in the subcritical region (p < pt−a) or a compressive response if
it is in the supercritical region (p > pt − a). Plastic volumetric and deviatoric
strains continuously increase during yielding until the pair (p,q) reaches the
critical state at the intersection between the critical state line and the yield
surface. At that point, the material starts to yield with no volumetric variation.

When using the MCC criterion, it is often assumed that the material also
presents variable elastic properties. The variation bulk modulus of the material
becomes a function of the hydrostatic pressure, Equation (2-27),

K̇ = vṗ

κ
, (2-27)

where v is the specific volume and κ is the slope of the swelling line, illustrated
in Figure 2.5. In this situation, the shear modulus or the Poisson coefficient
has a fixed value, with all other elastic parameters computed from the pair
bulk modulus and shear modulus/Poisson coefficient. The material elastically
deforms while following the swelling line, e.g. segment cb of Figure 2.5, until
it reaches the virgin consolidation line at point b. At this point, it starts to
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Figure 2.4: Yield surface of the MCC criterion in the principal stress space
with the hydrostatic pressure axis as a blue dashed line

develop plastic strains and a new consolidation takes place. If the material is
then unloaded, it will deform at a new swelling line, for instance, segment ed
of Figure 2.5.

A final feature usually present in the MCC model is an exponential
isotropic hardening law defined from the slopes of the virgin consolidation
line, λ, and the swelling line. The hardening law becomes [29]:

ȧ = a
v

λ− κ
ε̇v,p, (2-28)

representing an increase in the ellipsis radius based on volumetric plastic strain.
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Figure 2.5: Virgin compression line and swelling line, from [30]

2.2
Fluid Flow Governing Equation

The fluid flow governing equations for a fully saturated medium comes
from the mass balance equation applied to both solid and liquid phases of a
macroscopic volume of a porous medium

∂(1− n)ρs
∂t

+ div [(1− n)ρsvs] = (1− n)
ρs

∂ρs

∂t
− ∂n

∂t
+ div [(1− n)vs] = 0

(2-29)
and

∂n

∂t
+ n

ρw
∂ρw

∂t
+ 1
ρw

div [nρwvws] + ndivvs = 0, (2-30)

where ρ, v and n and ṁ represent the density of a phase, the velocity of a phase
and the porosity of the medium. The single superscript indicates which phase
the terms refer to, while the double superscript ws indicates the relative term
between the fluid and solid phases. In both equations, the medium undergoes
only small deformations.

Two more hypotheses are considered next: the liquid and solid phases
are compressible and the fluid transport in the porous medium is a slow
phenomenon. The first one implies that
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1
ρw
∂ρw

∂t
= 1
ρw

1
Kw

∂p

∂t
, (2-31)

neglecting thermal effects, where Kw is the bulk modulus of the liquid phase,
and, for the solid phase,

1
ρs
∂ρs

∂t
= 1

1− n

[
(α− n) 1

Ks

∂p

∂t
− (1− α)divvs

]
. (2-32)

As for the second hypothesis, a slow transport in a single-phase saturated
porous medium allows the application of Darcy’s Law, relating the fluid
velocity with the pore pressure gradient in the medium and its permeability
matrix K, together with the fluid’s dynamic viscosity µ

vw = 1
µ
K (−∇p+ ρwg) . (2-33)

Adding Equations (2-29) and (2-30), substituting (2-31), (2-32) and
(2-33) and replacing the time derivatives with the ˙ symbol, the final equation
for the fluid flow in the porous medium becomes

(
α− n
Ks

+ n

Kw

)
ṗ+ αdivvs + 1

ρw
div

[
ρw
K

µ
(−∇p+ ρwg)

]
= 0 (2-34)

The final step to reach the desired governing equation for the fluid flow
is, in light of Equation (2-5), to make the substitution

divvs = mT ε̇ = mTLu̇ (2-35)

and cast (2-34) in its weak form:

∫
Ω

[
−(∇w)TK

µ
(−∇p+ ρwg) + wTαmTLu̇+wT

(
α− n
Ks

+ n

Kw

)
ṗ
]
dΩ+∫

Γq

wT q

ρw
dΓ = 0,

(2-36)

with the following boundary conditions for prescribed pore pressure p∗ on Γp
and mass flux q on Γq, with direction n

p =p∗ on Γp,

ρw
K

µ
(−∇p+ ρwg) · n =q on Γq,

dΩ = Γ =Γp ∪ Γq,

wherew represents an arbitrary set of functions, discussed later in chapter 3. In
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this work, it is assumed that the medium has isotropic constant permeability,
even though it may vary spatially, and therefore K becomes a multiple of the
identity matrix.

Equations (2-7) and (2-36) and their respective boundary conditions
represent the set of governing equations for the problems discussed in this
work. The system can be further simplified if it is assumed that the pore
pressure field remains constant throughout the analysis or if the material is
purely elastic. On the other hand, some simplifications can be removed or
changed to consider a more realistic behavior of the soil or rock. For instance,
a generalized plane strain state may replace the traditional plane strain state,
where the displacement perpendicular to a cross-section is allowed, but the
strains do not vary in the direction perpendicular to the cross-section, leading
to the representation of a more accurate stress and strain state even in a two-
dimensional model [31, 32]. Another example is the use of a dual-porosity
field [32, 33, 34] to more accurately reproduce the behavior of naturally
fractured rocks or the use of the Cosserat theory to reproduce the behavior of
cemented/non-cemented granular materials [35]. Finally, the model can also
consider nonisothermal conditions and viscous behavior, leading to a third
governing equation to calculate the temperature field, new terms in Equations
(2-7) and (2-36) and local modifications to consider the presence of viscous
strains together with the plastic strains.
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3
Finite Element Method

3.1
Residual Equations

In order to solve the system of Equations (2-7) and (2-36), the Finite
Element Method was used. We start by noting that, since the deformation
and fluid flow are slow phenomena, the ˙ symbol is dropped in (2-7), and as a
result, the equation becomes:

δΠ =
∫

Ω
δuTLTσ′′dΩ−

∫
Ω
αδuTLTmpdΩ−

∫
Ω
δuTbdΩ−

∫
Γ
δuT tdΓ = 0 (3-1)

Next, the body Ω is discretized into small elements, and the displacement
and pore pressure fields are represented by values assigned to each node.
Element-wise shape functions combine the nodal data to compute the values at
any point. If these functions are Lagrange functions, the nodal values become
the nodal displacement u and pore pressure p. The following expressions relate
the nodal values and shape function to the field values:

u = Nuu p = N pp, (3-2)

whereNu is a number of element nodes by number of degrees of freedom matrix
for the displacement field, while N p is a number of element nodes by 1 matrix
since there is only one pressure field. In this work, only the linear T3 and Q4
are used with equal order interpolations for both fields. Both elements should
give a suitable approximation of the displacements and pore pressure provided
that the medium never reaches an undrained limit state. Substituting (3-2)
into (3-1) and imposing that the variation of the functional must remain zero
for any virtual increment, we obtain the discretized equation the mechanical
equilibrium ∫

Ω
BTσ′′dΩ−

∫
Ω
αBTmN ppdΩ− fu = Ru, (3-3)

where the contributions of the body forces, surface loads and any other external
forces are summarized in fu. Ru represents the residual of the left-hand side
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of (3-3), due to the approximation of the actual displacement field with the
Lagrange polynomials. Finally, the B matrix is the result of the product
between Nu and L and relates the nodal displacements to their respective
strains.

A similar procedure derives the final equations for the nodal pore
pressures. Employing the Galerkin Method, the shape functions Nu and N p

replace the weight functions in (2-36):

∫
Ω

[
−(∇N p)TK

µ
(−∇N pp) +N pTαmTBu̇ +N pT

(
α− n
Ks

+ n

Kw

)
N pṗ

]
dΩ+

f p = Rp,

(3-4)

where f p is the summation of the gravitational contribution with the mass
flow through a surface and, just as in the previous case, Rp is the residual of
the mass balance equation.

Once (3-3) and (3-4) are provided, the next step is to apply a suitable
time integration scheme. Here, the Newmark scheme will be employed to relate
the velocities and rate of pore pressure from (3-4) with the displacements and
pore pressures at the current time n and the next unknown state n + 1 after
a time step ∆t. The equation becomes [36]:

ẋn+1 = δ (xn+1 − xn)
β∆t −

(
δ

β
− 1

)
ẋn, (3-5)

where x represents both displacements or pore pressure and their respective
rates when the ˙ is applied and β and δ are the Newmark parameters. If β and
δ are set to 0.25 and 0.5, respectively, the scheme will satisfy the necessary
conditions for unconditional stability and convergence:

δ ≥ 0.5, β ≥ 0.25 (0.5 + δ)2 . (3-6)

The final step to obtaining the system of algebraic equations for the
discretized model is to use the Newton-Raphson (NR) method once (3-5) is
substituted in (3-4). The final system is


∂Ru

∂un+1
∂Ru

∂pn+1

∂Rp

∂un+1
∂Rp

∂pn+1


i

δu
δp


i+1

= −
 Ru

β
δ
∆tRp

n+1

i+1

,

u
p

n+1

i

+
δu
δp


i+1

=
u
p

n+1

i+1

,

(3-7)
with the overlines on u and p dropped, while the superscripts n + 1 and n

indicate which time the term refers to, the subscript i + 1 and i refers to the
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iterations of the Newton-Raphson algorithm and

∂Ru

∂un+1 =
∫

Ω
BTDTBdΩ (3-8a)

∂Rp

∂pn+1 =
∫

Ω

β

δ
∆t (∇N p)T K

µ
(∇N p) +N pT

(
α− n
Ks

+ n

Kw

)
N pdΩ (3-8b)

− ∂R
u

∂pn+1 = ∂Rp

∂un+1

T

=
∫

Ω
αBTmN pdΩ. (3-8c)

Equation (3-8a) is the usual stiffness matrix, whereas (3-8b) is the Jaco-
bian matrix of the fluid problem, composed of the permeability and compress-
ibility matrices, respectively, and equation (3-8c) represents the coupling term
between the mechanical and fluid systems.

Even though the time integration described in (3-5) is unconditionally
stable and convergent and the system presented in (3-8) assumes that the
porous medium remains fully saturated at all times, numerical oscillations have
been reported throughout the literature when dealing with the system (3-8)
and its variations [37, 38, 39, 40]. One of the first reports of this phenomenon
was in [37], in which the authors noticed the oscillations on the permeable
boundaries where loads were applied used the accuracy condition of the
consolidation problem to define a minimum initial time step based on the mesh
size and the rock properties. In [38], the authors elaborated further into the
causes of the numerical oscillations, attributing them to a discretization error
and a parabolic variation of the pore pressure field, and proposed a smoothing
process to reduce the oscillations in 2 and 3D problems. Then, different error
estimates were obtained for the case of discretization of the consolidation
problem using the backward Euler method instead of the Newmark method
[39]. Finally, a recent work revisited the initial time step requirements to avoid
numerical oscillations and derived a new relation between the mesh size and
minimum time step to satisfy the Discrete Maximum Principle [40]. Here, the
following equation calculates the minimum initial time step for each simulation
[40]:

∆t ≥ h2µ

0.5k

(
α2

4D + 1
6

(
α− n
Ks

+ n

Kw

))
, (3-9)

where k is the permeability of the medium (one of the diagonal entries of the
matrix K), D is the constrained modulus of the rock and h is the element
length, computed as the square root of the element area. The initial time step
used in all simulations will then be double the largest one computed from all
elements in the permeable boundary of the model.
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3.1.1
Return Mapping Algorithm

The general scheme to solve Equations (3-3) and (3-4) was described
in the previous section. However, a numerical procedure is still needed to
locally update the stress state under elastoplastic conditions. In this regard,
the plasticity problem is seen as a local problem, solved separately from the
global system, given a displacement increment from the global solution. The
general idea of the local procedure is discussed next. As a side note, under
plane stress conditions, specific modifications are needed in the local problem
to keep the global system unchanged, but these differences will not be discussed
here [14, 41].

This procedure is a simple two-step algorithm. The first step is to assume
that the total strain increment computed from the displacement increment, eq.
(2-5), is purely elastic. Since all deformations are presumably elastic, Equation
(2-6) uses the elastic tangent operator and the current elastic trial strain
increment εtriale to calculate a new stress state, called elastic trial stress σtriale ,
and update the hardening forces and internal variables to elastic trial state. If
(2-11) still holds, then the current state remains inside (or at the boundary of)
the elastic stress surface. Else, a plastic corrector, or return mapping algorithm,
is needed to compute the actual stresses and strains such that conditions
(2-11), (2-12) and (2-13) hold [14]. Once the plastic corrector step computes
the new corrected stresses and plastic strains, the other remaining properties
and attributes of the model are updated and a new iteration of the global NR
algorithm begins.

Different plastic corrector schemes have been proposed throughout the
literature. The most used schemes are: a group of Closest Point Projection
(CPP) methods, based on single-step numerical integration methods that leads
to an implicit or explicit system of equations [14, 29, 41], mathematical pro-
gramming methods, where the plasticity problem becomes a convex optimiza-
tion problem according to the yield criterion [42, 26], and the Cutting Plane
Algorithm (CPA), where the consistency condition is explicitly integrated [43].
A less common approach is to use other differential-algebraic equation meth-
ods, which leads to more complex systems.

In this work, the Cutting Plane Algorithm (CPA) was chosen as the
return mapping algorithm. The algorithm, proposed in [44], is based on a
steepest descent strategy [45] and requires only an iterative solution of an
explicit equation in the current trial state.

The main idea behind the CPA is to solve the linearized version of the
yield condition at the current state. In order to compute the new state at the
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iteration k+ 1 of the algorithm, Equation (2-15) is rewritten in its discretized
form [14]

Φ(σn+1
k+1 ,A

n+1
k+1) = Φ(σn+1

k ,An+1
k ) +NT∆σn+1 +HT∆An+1 = 0.

∆σn+1 = σn+1
k+1 − σn+1

k

∆An+1 = An+1
k+1 −An+1

k

(3-10)

∆σn+1 and ∆An+1 are then substituted using the discrete form of eq (2-6)

∆σn+1 = De∆εn+1
e (3-11)

and

∆An+1 = G∆αn+1. (3-12)

Using an explicit form of eqs (2-9) and (2-10) and noting that ε̇p = −ε̇e, the
increment of the plastic multiplier can be computed as:

∆γ = Φ(σn+1
k ,An+1

k )
N̄TDeN − H̄TGH

(3-13)

The pseudo-code for the CPA is presented in Algorithm 1. It requires only
simple derivatives of the yield function and the plastic potential with respect
to the stresses and hardening forces, which leads to a simple implementation
of the algorithm with no need to use third-party implementations to solve the
plasticity problem. The simplicity also allows for the use of more complex yield
models, where the required derivatives are readily available in general. Besides
its simplicity and flexibility, the CPA also presents quadratic convergence rate
[44, 46].

The consistent tangent operators should also be addressed to use return
mapping algorithms in a FE program. In [47], the authors introduced the
concept of a consistent elastoplastic tangent operator, which accounts for the
change in the stress evaluated from a return mapping algorithm given an
infinitesimal strain increment [45]. The continuum operator from (2-18), on
the other hand, is derived from the constitutive law and flow rules and does
not lead to a consistent scheme. Therefore, to ensure optimal convergence of
the global NR algorithm, the consistent operator should be used instead of the
continuous operator.

The need for a consistent tangent operator in FE programs represents
one of the main drawbacks of the CPA. Unlike CPP methods, with the iterative
solution of an implicit function, or in the case of optimization methods, with
well-known direct and adjoint methods for differentiation, the CPA solves a

DBD
PUC-Rio - Certificação Digital Nº 1912749/CA



Chapter 3. Finite Element Method 35

Algorithm 1: CPA
given σprev = σn+1

i , Aprev = An+1
i and εn+1

p,0 = εn+1
p,i

k = 0
δεe,k = δε, δεp,k = 0
compute De

compute G
compute the elastic trial: σn+1

k = σprev +Deδεe,k
compute Φk

while Φk > tol do
compute N , H , N̄ and H̄
solve eq. (3-13)
δεe,k+1 = δεe,k −∆γN
δεp,k+1 = δεp,k + ∆γN
δαk+1 = ∆γH
compute De

compute G
σn+1
k+1 = σprev +Deδεe,k+1
An+1
k+1 = Aprev +Gδαk+1

update other relevant material properties
compute Φk+1

k = k + 1
end
σn+1
i+1 = σn+1

k , An+1
i+1 = An+1

k , εn+1
e,i+1 = εn+1

e,k and εn+1
p,i+1 = εn+1

p,k

sequence of explicit equations. As a result, the linearization to compute a
consistent operator is a complex task, and implementations of the algorithm
remain using the continuum operator [14, 43, 45]. Despite the suboptimal
convergence with the continuum operator, it was later verified that, as long
as the load steps remain relatively small, the continuum operator with the
CPA leads to almost identical results similar to other methods with consistent
operators [45]. Recently, a novel iterative procedure to compute the operator
when using the CPA was derived, but it will not be considered here [43].

Finally, it is worth addressing the use of a variable Young modulus when
dealing with the MCC model. Here, an explicit version of equation (2-27)
computes the bulk modulus at the known stress state. This treatment is
appropriate for the case studies present in the following chapters, where the
loads are monotonic. However, if the simulation has cyclic loads, this explicit
form of (2-27) may lead to nonconservative behavior, and a tangential modulus
should be used [48]. Other variations related to the return mapping equations
and plasticity modeling using the MCC model are discussed in a series of
contributions by Borja, such as [48] and [49].
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3.2
Coupled Solution Procedure

With the plasticity problem addressed, the remaining step to solve the
mechanical equilibrium and the fluid flow governing equation is the solution
of the system (3-7). Two strategies are commonly employed to solve the fully
coupled system. The first one is to solve Equation (3-7) with an adequate linear
system solver based on the matrix properties. For the governing equations
and associative yield criteria considered here, Equations (3-8a) and (3-8b)
are symmetric positive definite matrices. Hence, the system (3-7) becomes a
symmetric indefinite matrix. Direct solvers exploring the matrix symmetry
or iterative unsymmetric solvers, such as the Preconditioned Biconjugate
Gradient method, if the mechanical equilibrium equation is multiplied by −1,
are among the options of linear solvers available in this situation.

The second approach to solve the fully coupled problem is to use a
staggered solution strategy [13, 42, 50, 51] to solve (3-7). Assume that the
system in Equation (3-7) is represented byA11 A12

A21 A22

n+1

i

δx1

δx2


i+1

=

F1(xn+1
1,i ,x

n+1
2,i )

F2(xn+1
1,i ,x

n+1
2,i )

 . (3-14)

Then, by keeping x2 constant, we solve

An+1
11,iδx1,i+1 = F1(xn+1

1,i ,x
n+1
2,i ) (3-15)

and update x1 using the regular NR scheme. Next, we solve

An+1
22,iδx2,i+1 = F2(xn+1

1,i ,x
n+1
2,i ), (3-16)

computing F2 with the updated value of x1. Then, we return to the first
equation, with the updated value of x2 in F1 and the process is repeated until
x1 and x2 converge for a given tolerance. With this strategy the coupling
nature of the problem is enforced iteratively at every timestep of the solution.
The terms An+1

11,i and An+1
22,i in Equations 3-15 and 3-16 correspond to the

matrices defined in Equations 3-8a and 3-8b, respectively. Since both systems
are now composed of symmetric positive definite matrices, the Preconditioned
Conjugate Gradient (PCG) method [52] is used to solve the linear system. Even
though the addition of another iterative process may seem computationally
expensive, the staggered procedure still presents some benefits over a direct
solution of Equation 3-7:

– only mechanical iterations are required since the only source of nonlinear-
ity presented here is the yielding behavior of the medium. The staggered
procedure leads to an iterative solution of the mechanical problem fol-
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lowed by the linear flow problem. As long as only a small portion of
the model yields, the staggered solution will be more efficient than the
coupled solution [42];

– different simulators for the mechanical or fluid problem can be used to
solve the coupled problem with only minor modifications [13]. For the
plugin simulator, different plugin schemes for both problems are readily
combined to perform coupled simulations by providing extra plugins,
discussed in Chapter 5;

– the procedure is easily extended to simulate different physical conditions.
The single-phase fluid problem can be replaced by a two-phase flow (to-
gether with an appropriate linear solver), while the mechanical problem
remains the same, or the thermal coupling can be introduced by solving
the thermal equations after the displacements and pore pressure incre-
ments are available.

The staggered procedure must also be stable to provide an appropriate
numerical solution. The scheme presented here, termed drained split, is only
conditionally stable according to the von Neumann stability analysis and
requires [51]

α2

D

(
α− n
Ks

+ n

Kw

)−1
< 1, (3-17)

where α is the Biot’s coefficient, n is the porosity,Ks andKw are the solid grain
and fluid compressibilities, respectively, and D is the constrained modulus.

Other partitioning strategies can be used to derive different staggered
solution schemes, such as the fixed strain split, where the fluid problem is solved
first and is also conditionally stable, and the undrained split and fixed stress
split, which are unconditionally stable. For more details on other partitioning
strategies for the coupled problem, the reader is referred to [51] and [53].
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4
Wellbore Stability Analysis

The goal behind a wellbore stability analysis is to determine the safe mud
weight window or mud pressure window. According to the functional window
defined in figure 1.3, figure 4.1 shows an example of a mud weight window for
a vertical well. In the upper region of the well, the lower limit is determined
by the pore pressure, whereas the limit in the lower region is determined by
the shear failure. The main challenge of a stability analysis, besides accurately
measuring and mapping the properties, pore pressure and loads, is to compute
correctly both shear failure and fracture pressure and gradients, as they will
depend on both the quality of the data and the available models to reproduce
the physical behavior.

Figure 4.1: Example of a safe mud pressure window [54]

Next, two different approaches to perform a wellbore stability analysis
are described. The first one consists of an analytical solution used for specific
wellbore projects. The second one is a numerical procedure, which serves as
the basis for more complex stability analyses.
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4.1
Analytical Solution

A brief review of wellbore stability models was presented in [55]. In
this work, the authors discussed and compared several models, from linear
elastic ones to nonlinear constitutive models, considering the influence of
fluid flow and anisotropic properties. They also highlighted the importance
of an appropriate yield criterion compatible with the formation behavior.
The wellbore stability analysis would then follow the traditional steps of a
geomechanical analysis:

– Estimation of in situ stresses and pore pressure;

– Estimation of material properties;

– Choice of an adequate constitutive model and yield criterion;

– Computation of the stresses at the wellbore wall;

– Comparison of the wellbore stresses with the chosen failure criterion.

This procedure is general and can be applied theoretically to any wellbore
analysis, but could lead to laborious work when used to compute the minimum
and maximum internal pressure for a wellbore. Later, this procedure was used
to solve the wellbore stability analysis using the MC criterion [21]. The authors
then derived a closed-form solution to compute the mud pressure stability
window for vertical wells, which is still used nowadays [20, 56].

The closed-form solution assumes that the medium is fully saturated,
but has no poromechanical coupling effects. The stresses at the wellbore wall
are computed using the Kirsch solution and then rewritten in the cylindrical
coordinate system. The final radial, hoop and axial stresses (σrr, σθθ and σzz,
respectively) are substituted in the MC criterion. For each combination of
σrr, σθθ and σzz, indicating the plane that the failure occurs, a breakout or
fracture pressure is evaluated. The required breakout (fracture) pressure will
be the highest (smallest) pressure from Table 4.1 (or 4.2) and Equations (4-1)
to (4-6). In Equations (4-1) to (4-6), σv, σH and σh are the vertical, maximum
horizontal and minimum horizontal stresses. As a side note, all compressive
stresses and the pore pressure p in both tables and in Equations (4-1) to (4-6)
have positive signs, while tensile stresses have negative signs, following the
notation from [21].

Stress Regime Minimum allowable internal pressure
σzz ≥ σθθ ≥ σrr Pwb1 = (B − C)/q
σθθ ≥ σzz ≥ σrr Pwb2 = (A− C)/(1 + q)
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Continuation of table 4.1
Stress Regime Minimum allowable internal pressure
σθθ ≥ σrr ≥ σzz Pwb3 = A− C − qB

Table 4.1: Minimum allowable internal pressure for each possible stress regime
using MC criterion [21]

Stress Regime Maximum allowable internal pressure
σrr ≥ σθθ ≥ σzz Pwf1 = C + qE

σrr ≥ σzz ≥ σθθ Pwf2 = (C + qD)/(1 + q)
σzz ≥ σrr ≥ σθθ Pwf3 = (C − E)/q +D

Table 4.2: Maximum allowable internal pressure for each possible stress regime
using MC criterion [21]

q = tan2
(
π

4 + φ

2

)
(4-1)

A = 3σH − σh (4-2)

B = σv + 2ν (σH − σh) (4-3)

C = 2c cosφ
1− sinφ − p (q − 1) (4-4)

D = 3σh − σH (4-5)

E = σv − 2ν (σH − σh) (4-6)

Additionally, when estimating the fracture pressure with the MC crite-
rion, the authors also proposed that a tensile cutoff should be used to address
the overestimation of the tensile strength. Since the hoop stress is the first to
become tensile on the vertical well, it is directly compared with the tensile
strength. Rewriting the hoop stress solution using the in situ stresses and the
internal pressure, the final equation to compute the fracture pressure according
to the tensile strength T0 is

Pwc = D − p− T0. (4-7)

The final fracture pressure is then the smallest one computed from the
equations in Table 4.2 and Equation (4-7).

After both breakout and fracture pressures are computed, (4-8) can be
used to relate the pressures to their respective mud weights,
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ρmud = Pw
g × TV D

, (4-8)

where TV D stands for true vertical depth. Alternatively, other correlations can
be used to consider the pressure drops and compute the equivalent circulating
density.

A similar procedure is repeated in [21] for the Mogi-Coulomb criterion,
but it will not be presented here. As mentioned, the Mogi-Coulomb criterion
considers the influence of the mean principal stress and is less conservative if
compared to the MC criterion. Both criteria used in [21] lead to a similar trend
on the mud weight stability window, although the Mogi-Coulomb criterion
yields a slightly larger window.

4.2
Numerical Solution

Several numerical procedures were proposed to solve a more general well-
bore stability analysis or to deal with specific challenges in particular projects.
Even though the analytical solution is still relevant for wellbore projects, the
conditions required for the solution to be directly applicable (vertical well, no
form of coupling, use of MC or the Mogi-Coulomb criterion, linear elastic con-
ditions) may be too restrictive. Recent works tested different methodologies,
including the use of Transversely Isotropic constitutive equations to create well-
bore models [2] or the addition of uncertainties related to the data available for
the analysis, either by considering the spatial variability of the material prop-
erties [57, 58], employing Reliability Assessment Methods [59] or Quantitative
Risk Analysis [6].

In this work, we adopt the same strategy from [57, 58, 60, 42] to determine
wellbore failure. Instead of assuming failure when the yield function reaches
zero, the wellbore is allowed to yield to some extent. The function that
describes the wellbore failure is

F1 = A(Pw, t)− A∗, (4-9)

where A∗ is the maximum allowable yielded area and A(Pw, t) is the yielded
area at time t for the internal pressure Pw. Equation (4-9) is used to compute
both breakout and fracture pressures, just like in Tables 4.1 and 4.2. Besides
using Equation (4-9), the fracture pressure can also be determined with the
original form of Equation (4-7),

F2 = σ1(Pw, t)− T0, (4-10)

where σ1(Pw, t) is the highest effective principal stress.
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In order to use Equations (4-9) and (4-10) to compute the ideal mud
pressure window, any type of model is required provided it can evaluate
the yielded area and the maximum effective stress. Here, a plugin-based FE
simulator, discussed in Chapter 5, will be used to compute both results and
solve the equations to determine the required internal pressures. The simulator
will also be capable of computing the ideal mud pressure for inclined wells,
considering different yield criteria and the poromechanical coupling, but will
remain limited to the hypothesis presented in chapters 2 and 3.

The main goal of this approach to compute the ideal mud pressure win-
dow isn’t to decide if Equations (4-9) and (4-10) are the most suited ones to
model wellbore failure, but to derive a general framework capable of evaluat-
ing the optimal mud pressure and weight for a given failure condition. Other
functions could also be used to verify if the wellbore deformation is within
acceptable ranges, such as the breakout width, the diameter enlargement/re-
duction or sand production.

The final step to compute the optimal mud pressure window is to
minimize and to maximize the mud pressure such that F1 ≤ 0 and F2 ≤ 0
and that the pressure remains inside the initial mud window based on the
pore pressure, fracture pressure and lithostatic stress. Instead of performing
an optimization analysis, the required mud pressures for each limit according to
Equations (4-9) and (4-10) are computed by solving a root finding problem in
the form of F1 = 0 and F2 = 0, since it consists of a one-dimensional problem,
following [42, 57, 58, 60]. The mud window will then be a combination of the
roots of F1 and F2 and the initial mud window. A brief revision on the methods
implemented in the simulator to solve this class of problems is presented next.

4.2.1
NR and Accelerated NR

The first method presented here is the Newton-Raphson method, already
used in Chapter 3 to solve the nonlinear problem, together with a modification
to increase its convergence rate. The general root-finding problem is defined
as [52]:

given: f : I = (a, b) ⊆ R→ R, find x∗ ∈ I such that f(x∗) = 0, (4-11)

where the interval I is a subset of the real domain, f represents either the
yielded area or the maximum effective stress functions and x∗ is the root of f .
The method computes a sequence of solutions xk using the iteration function
φ

DBD
PUC-Rio - Certificação Digital Nº 1912749/CA



Chapter 4. Wellbore Stability Analysis 43

xk+1 = φ(xk) = xk −
f(xk)
f ′(xk)

= xk −∆ (4-12)

to evaluate the k+1-th term. Since Equations (4-9) and (4-10) are evaluated
as results of a numerical simulation and do not have an explicit form for the
general problem, f ′(xk) is computed using a first order frontal finite difference
scheme.

The NR method is one of the most efficient methods used to solve the
root finding problem. The method presents a convergence of order 2, at the
expense of an increased cost per iteration to compute the derivative. However,
it still has some drawbacks when used to solve the wellbore problem:

– It requires a initial guess in order to start the solution and converge
to the right solution. This can be avoided by using the input data for
the wellbore model (pore pressure, litostathic stress, etc) to estimate an
initial guess;

– The value of Equation (4-9) depends on the current state of the material.
If the wellbore enters the elastic domain during the solution of the
problem, it may not be possible to compute the derivative at that point.
Therefore, when using (4-9), initial guesses which are likely to be outside
the mud pressure stability window are favored;

– Equation (4-9) itself is not continuous due to the spatial discretization of
the model. The mesh around the wellbore should be as refined as possible
to ensure that the value of A(Pw, t) is close to A∗ and that the derivative
does not evaluate to 0 for a small perturbation in the internal pressure;

Recently, a variant of the traditional NR method was proposed with a
higher rate of convergence. The accelerated NR uses a numerical approximation
of the second derivative of f to compute a better prediction of xk+1 [61]. The
new iteration function now is

xk+1 = φ(xk) = xk −
∆
F

(4-13)

where

F = 1
2 +

√
max

(
0, 1

4 − A
est
2 ∆

)
(4-14)

and

Aest2 =
3
f(xk−1)− f(xk)

xk−1 − xk
− f ′(xk−1)− 2f ′(xk)

(xk−1 − xk) f ′(xk)
. (4-15)

Aest2 represents an estimate of the actual second derivative of f and serves as
a correction term for the derivative. If xk is close to the root, Aest2 ∆ is close to
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zero and (4-13) tends to (4-12). On the other hand, if Aest2 ∆ > 0.25, F remains
limited to 0.5.

Even though the accelerated NR still has the disadvantages presented
before, it has an increased convergence order of

√
3 + 1 [61]. Therefore, this

method is expected to have at most the same number of function evaluations
as the traditional NR, while only requiring that xk−1 and f(xk−1) are saved
and Equations (4-14) and (4-15) are evaluated. Additionally, seeing that
(4-15) requires two pairs of point and function values to estimate the second
derivative, the first step will always use the regular NR method, although
different initialization strategies could be employed [61].

4.2.2
False Position

The second method discussed here is the False Position (FP) method,
also known as Regula Falsi method. Unlike the NR method, the FP method
requires a closed interval [xa, xb] such that

f(xa)f(xb) < 0. (4-16)

Therefore, the interval has at least 1 root of f . Again, the initial data of the
model is used to define the input parameters for the FP method. The initial
interval is defined based on the available pore pressure and lithostatic stress.
Thus, if the initial interval indicates that the breakout pressure is outside the
interval for instance, then the lower limit for the mud pressure would be the
current pore pressure.

The method uses the following iteration equation to search for the roots
inside the interval [52]

xk+1 = φ(xk, xk′) = xk −
xk − xk′

f(xk)− f(xk′)
f(xk), (4-17)

where xk is the current point and xk′ is the last point such that Equation
(4-16) is true for f(xk) and f(xk′). After (4-17) is solved, xk′ becomes

xk′ =

xk if f(xk)f(xk+1) < 0

xk′ otherwise
(4-18)

This procedure ensures that, throughout the solution, the interval will
always have one root of the problem. The FP method also doesn’t use the
derivatives of the function, avoiding some of the NR problems related to
derivatives at the cost of an order of convergence of 1.

Several modifications to the traditional FP method are discussed in
the literature. Here, the method is coupled with the Aitken’s acceleration
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technique, also known as Aitken’s δ2 method [52, 62]. It is a general procedure
initially proposed to convert a convergent sequence xk into a more rapidly
convergent sequence. The technique is to compute the next step of the
convergent sequence with

xait = xkφ(φ(xk))− φ(xk)2

φ(φ(xk))− 2φ(xk) + xk
. (4-19)

Note that, in the previous equation, φ(xk) = xk+1 and φ(φ(xk)) = xk+2, which
means that the FP method performs 2 regular iterations before using (4-19).

The main idea behind Equation (4-19) is to predict the next term of the
sequence by extrapolating the error of each term, defined as

ek = φ(xk)− xk. (4-20)

Since Equation (4-20) is 0 for x∗, the method tries to predict the next step
by drawing a line between (xk, ek) and (xk+1, exk+1). The result is Equation
(4-19), where xait is the prediction from the extrapolation. For this reason, eq.
(4-19) is also referred as Aitken’s extrapolation formula.

Although the Aitken acceleration technique may seem simple, it yields
good performance improvements. When it is used in conjunction with a
linearly convergent method (e.g. the FP method), the Aitken method converges
quadratically to the solution. However, when it is paired together with the FP
method, the Aitken result should be used with care as it is not guaranteed it
will remain inside the current interval.

Other modifications to the traditional FP method are reviewed in [63]
and [64].
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5
Plugin based Simulator

5.1
Tectos and Ghem

Tectos is a pre and post-processing software developed by the Geological
Modeling (MGEO) group at Tecgraf/PUC-Rio. The program has tools to
create bidimensional models by manually defining the limits of the section or by
importing the geometry data from other programs. Once the user determines
the geometry, the next step is to add different attributes and attach them to
each face, edge and vertex of the model to represent the physical loads and
conditions that the user wishes to simulate, as depicted in Figure 5.1. After the
user informs all the inputs to the software, Tectos writes a neutral file 1, which
can be processed by the simulation software. Once the simulation ends, Tectos
is also capable of reading simulation results and helping the user to visualize
them, query results at specific points, create functions using the current results
that generate new results, and export the result data as a table to be used by
other software, among other functionalities.

Figure 5.1: Tectos geomechanical attribute tab

1https://web.tecgraf.puc-rio.br/neutralfile/

https://web.tecgraf.puc-rio.br/neutralfile/
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The analysis itself, on the other hand, is handled by Ghem. It is a numeri-
cal simulation tool that uses the FEM to solve a variety of geomechanical prob-
lems, including viscoelastoplastic, thermo-fluid mechanical and incompressible
analyses. It also can run parallel simulations using a shared-memory approach
using the available threads on a CPU.

Both Tectos and Ghem were used in different geomechanical studies, e.g.
rift extension modeling [65, 66], stress implication in karst formations [67, 68],
salt tectonics [69, 70] and numerical simulation of field studies in different
Brazilian basins [71, 72, 73]. Here, Tectos will provide the necessary input
data for the simulations and will be used to visualize and export the results.
All simulations will be performed using the new plugin simulator and Ghem
will be used to assist in some validation examples.

5.2
TopS Data Structure and TopSim Framework

In this section, we present the tools used to create the simulator: the TopS
data structure and the TopSim framework, both developed by the Reservoir
and Visualization group at Tecgraf/PUC-Rio. They work together to provide
the necessary resources to develop a complete and modularized simulator.

The TopS library is responsible for handling all topological information
related to the model. It provides a complete, yet compact, data structure by
explicitly representing nodes and elements while implicitly representing all
other topological entities [74]. The library also provides the usual two- and
tridimensional linear and quadratic elements used in FE analysis, but only T3
and Q4 are considered here. Besides topological data, TopS also creates and
manages attributes associated with all topological entities, for instance model,
element and node attributes. These attributes are used to represent all the
necessary quantities related to a physical simulation, such as displacements,
loads and pore pressures, and will be accessible to all plugins in the simulator.
All related APIs to create and manipulate entities and attributes can be found
in [74] and [75].

Meanwhile, the TopSim framework provides all the necessary tools to
create and load all the desired plugins. The kernel of the framework is composed
of the Plugin Manager. It is responsible for loading and querying plugins for
the application, based on an input file. Unlike the previous one, where the
neutral file format is used, this second input file is termed configuration file
and is written using the Lua 2 format, illustrated in Figure 5.2. It is essentially
a set of tables describing the connectivity between plugins, their names and

2https://www.lua.org/

https://www.lua.org/
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1 -- Pre - defined host plugin (fixed structure )
2 App{
3 description = "FE analysis ",
4 -- required interface for App: iRun
5 -- required interfaces for TopS: iElement , iMaterial
6 interfaces = {
7 IRun = " GhemRun ",
8 IElement = {
9 GhemQ4Mechanical = " GhemQ4Mechanical ",

10 },
11 IMaterial = {
12 MOHRNAV = " MOHRNAV " ,
13 },
14 },
15 }

Figure 5.2: Example of Lua configuration file with the required plugins.

interfaces. At the start of the execution, the Plugin Manager reads and loads all
the specified plugins. Once the file is processed, all plugins and the application
itself can now use the manager to query other plugins and the simulation can
start [75].

TopSim also requires a single model representation to run a simulation. It
uses the TopS library to create such model and shares it with all loaded plugins.
With this strategy, all plugins are capable of sharing information among
themselves by creating and modifying model, element and nodal attributes,
and of accessing all topological entities from the model with the TopS API.
As a consequence, two different plugins do not need to be connected in order
to share information nor the information needs to be defined in the API of
a plugin, increasing the flexibility to develop and exchange new plugins in a
larger scheme.

The third requirement to use the TopSim framework is the obligatory
plugins in the configuration file. Every configuration file starts with a prede-
fined host plugin, named "App" in Figure 5.2. It uses three other plugins: one
plugin to provide the service IRun, which is the first user-defined plugin called
in all simulations, one or more element plugins and an optional material plu-
gin. Both element and material plugins will be available to all other plugins in
the scheme through Plugin Manager. If one plugin requires any other plugin,
it must be specified in the configuration file.

A few concepts need an introduction before discussing particular part
of a plugin scheme in the next section. First, each plugin should perform a
specific service for the application or other plugins. A service interface, or
interface, specifies the API for each service. It is recommended to keep all
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arguments to a minimum in the API since TopS is responsible for sharing most
of the information between plugins. Each plugin specifies the service execution
with the implementation of the interface functions. They can also have plugin
interfaces if they require other plugins to do a task for them [75]. For instance,
consider the Newton Raphson plugin, detailed later. During its execution, it
will call a function from the service interface ConvergenceCriterion to check
if the solution converges. The actual metric used to check convergence will
depend on the plugin specified in the configuration file. Once the plugin
computes the value, it is stored in an attribute in the model, where the NR
plugin checks to compare to a given tolerance.

5.3
Plugin Scheme

Figure 5.3 presents a general plugin scheme used to run a mechanical
analysis and will be used as an example to show different aspects of the
plugin simulator. Element and material plugins are omitted here and will be
discussed at the end of this section. The scheme in Figure 5.3 is divided into
four major groups: one responsible for controlling the simulation flow, one for
I/O communication, one regarding the analysis itself and a last one to solve
the linear system.

5.3.1
Main, Driver and Algorithm

The main plugin provides the service IRun required by the host plugin
to start a simulation. All plugins that implement this service also receive the
command arguments that were informed when the application started. Here,
the main plugin processes two arguments: the names of the neutral file with
the input data, mandatory for every analysis, and an optional argument to
specify the name of the output file. Both are stored as model attributes and
will be used by the I/O plugins to open and create the required files. After the
plugin finishes processing the arguments, it proceeds to call the reader plugin
to create all necessary attributes, elements and nodes, and then a driver plugin,
detailed next.

Driver plugins are responsible for controlling the evolution of a simula-
tion. Here, two driver plugins are used: a LoadStepDriver and a TimeStep-
Driver, for transient analyses. The LoadStepDriver, presented in Figure 5.3,
implements the regular load step strategy, commonly used in mechanical anal-
yses, solving the current analysis with successive load increments until the full
load is applied to the model. It reads the required number of load steps from
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a model attribute and creates a new load step factor attribute to control the
load. During the simulation, it loops through the number of load steps, up-
dates the load factor for each step, and calls for a Algorithm plugin to solve the
current analysis. The plugin also requires up to two different Writer plugins:
one obligatory plugin to write model results at user defined print-steps during
the analysis and one optional plugin to write algorithm results, such as total
number of iterations and error, for every loadstep.

An Algorithm plugin should specify the necessary steps to solve the
current analysis. In the example of Figure 5.3, the simulator uses a NR
algorithm plugin to solve a mechanical problem. The plugin itself doesn’t make
any computations; it only calls the Analysis service to compute the residual
vector, the Jacobian matrix and the solution increment at the current step.
The operations are performed by the other plugins, updating the necessary
attributes at each stage of the NR algorithm. To keep the NR plugin as general
as possible, it also needs a ConvergenceCriterion plugin to compute the error at
the current iteration. In the scheme represented in Figure 5.3, the ResIncrProd
plugin computes the error and stores the value in an attribute. The NR plugin
reads the value and compares it with an user-defined tolerance to check the
convergence. Another feature of the NR plugin is the optional requirement of
a Writer plugin to update the output information at every iteration.

Besides the NR plugin, other implemented Algorithm plugins are the
StaggeredProcedure and the FalsePosition. The former is used in coupled anal-
yses, as illustrated in Figure 5.7 discussed later, while the latter implements the
FP method to solve one-dimensional problems (e.g. computation of the ideal
internal pressure at a given depth). The FalsePosition plugin will also use an
Analysis, a ConvergenceCriterion and a Writer plugin, in a similar fashion to
the NR plugin.

5.3.2
Reader and Writer

Reader and writer plugins will be responsible for the communication
between the simulator and other pre- and post-processing tools. They should
be freely exchangeable to allow for the integration with multiple software, but
should always use the same attributes to ensure compatibility with the other
plugins.

Only one reader plugin is used here, NfReader, which specializes in
reading the neutral file with all the tags used by Tectos. The model, empty at
first, is populated as the plugin reads the topological data. Then, the plugin
reads the remaining information of the file, such as nodal supports, prescribed
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pore pressure and initial stresses, creating separate attributes for each one.
Once it reaches the final tag of the file, all data has been added to the model,
and the simulation is ready to start.

During the simulation, when a Driver plugin reaches a user-specified
load or time step or at the end of an Algorithm plugin iteration, it may
request a writer plugin to save the current state of the model to an output
file. The NfrBin plugin then retrieves specific nodal attributes, e.g. nodal
displacement and pore pressure, and begins to save the current results. It
also loops through the elements and uses the IElement plugin from the Plugin
Manager to compute specific simulation results at the Gauss points and writes
them in the output file. Finally, it writes all data in a binary file format using a
third-party library developed at Tecgraf/PUC-Rio to export results to Tectos.
This highlights another feature of a modular simulator: it doesn’t oblige the
whole simulator to depend on specific libraries; only the plugins that use an
external library will require it.

5.3.3
Analysis, DoFManager and Boundary Condition

The Analysis, DoFManager and BoundaryCondition services are related
to the problem itself. A combination of all three plugins will determine which
kind of analysis will be solved. In this example, the StaticFEM, Displace-
mentDoF and MechanicalBdryCnd plugins indicate that the scheme will per-
form a static (or quasi-static) FE analysis to compute the displacements in a
body.

The StaticFEM plugin is a general plugin to perform static FE analysis.
As required in the Analysis service interface, the plugin must define the
methods to compute the residual vector, the Jacobian matrix, to solve the
system and to update the attributes with the solution of the linear system. In
the example illustrated in Figure 5.3, the NR plugin asks the StaticFEM plugin
to compute the residual vector. The StaticFEM first calls for an BoundaryCond
service to process analysis-specifc boundary loads and then loop through the
elements, using the IElement service to compute the element-wise residual
vector. For each element contribution, the StaticFEM assembles the element
vector in a global residual vector according to the degree of freedom (DOF)
numbering. As the NR algorithm proceeds, the StaticFEM again loops through
the elements and uses the IElement service to compute the element-wise
Jacobian matrix, but this time also uses a SparseMatrix service to assist in the
matrix assembly. A third important task of the StaticFEM plugin is to solve
the resulting linear system. Since each FE analysis may benefit of different
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linear solvers, the plugin uses a LinearSolver service to compute the system
solution. With the solution at hand, it calls for a DOFManager service to
update analysis specific attributes and then uses the IElement service interface
one more time to update element information. With this implementation, the
StaticFEM plugin becomes a versatile plugin for different FE analyses, only
defining the general routines for FE simulation.

Both DoFManager and BoundaryCond services are separated from the
StaticFEM plugin to handle the different attributes for each kind of analysis.
In this example, the DisplacementDoF plugin provides the DoFManager ser-
vice. It creates and handles analysis specific attributes (e.g. displacements),
initializes attributes used by different plugins, such as the global load vector
and generates a DOF numbering, also stored as an attribute. The Mechani-
calBdryCnd provides the BoundaryCond service and follows a similar philos-
ophy. It handles analysis-specif boundary conditions, such as nodal loads and
supports, and stores this information in the previous global load vector when
requested.

5.3.4
LinSolver and SparseMatrix

The LinSolver and SparseMatrix services are required to solve the ma-
trix system obtained when using the FEM. Here, we use the PCG [52] to solve
all linear systems from Chapter 3 since the Jacobian matrices from Equations
(3-8a) and (3-8b) are symmetric and positive definite. The plugin MgeoSolver-
Wrapper works in a similar manner to the NfrBin plugin: it uses the MgeoSolver
library, a third-party library developed by the MGEO group, with a parallel
version of the solver. The plugin retrieves all necessary attributes and the
sparse matrix and passes both as arguments to the library.

The SparseMatrix is a service designed to help the simulator manipulate
the Jacobian matrix in a memory efficient sparse format. Instead of storing
all the matrix entries, a sparse representation omits some or all null elements.
In Figure 5.3, the CSRMatrix plugin uses the Compressed Sparse Row (CSR)
format to store the matrix, saving only the nonzero entries, their column and
the index of the non zero array for each row [75], since the solver library requires
a CSR representation. All other plugins use a SparseMatrix plugin if they
need to manipulate the matrix and do not demand a specific representation.
Other used formats are the Compressed Sparse Column (CSC) and the Skyline
[12, 75], but these will not be used here.

DBD
PUC-Rio - Certificação Digital Nº 1912749/CA



Chapter 5. Plugin based Simulator 53

5.3.5
Other Plugins

A few other plugins are present in the scheme to provide minor services
for others. One example is the ConvergenceCriterion plugins, usually requested
by Algorithm plugins. Each plugin implements its metric to check convergence
based on specific attributes. Then, the error is stored in an attribute in the
model to be used by other plugins. An example is the the ResIncrProd plugin,
from Figure 5.3. It retrieves the current residual vector and the last linear
system solution to compute the convergence error as

ei =

N∑
k=1
|Rk,iδxk,i|

||R0||
(5-1)

where ||R0|| is the Euclidean norm of the initial residual vector and ei, Rk,i

and xk,i are respectively the convergence error, the k-th entry of the residual
vector and the k-th term of the solution increment at the i-th iteration of the
NR algorithm.
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5.3.6
IElement

Unlike the previous plugins, IElement plugins work slightly differently in
the scheme. The host plugin requires an IElement plugin to start a simulation,
depicted in Figure 5.2, and it is not connected to any other plugins in the
scheme. Once all plugins are loaded from the configuration file, all element
plugins are added to the Plugin Manager and can be accessed by any other
plugin using the manager’s API in Figure 5.4 at any point of a simulation.

The element plugin itself - or rather, its scheme - is represented in
Figure 5.5. The plugin MechanicalFEAnalysis is the element plugin used in
this example and it is responsible for computing the residual vector of an
element and the element Jacobian for a mechanical problem, in addition to
the body and surfaces forces. It requires two other services: the ShapeFunc
service and the WorkConjugate. The first one calculates the element shape
functions and its derivatives at the element Gauss points, in this case for a Q4
element. The second service computes the element-wise Jacobian matrix and
internal forces contributions to the residual vector, since both are related to
the chosen compatibility and constitutive equations.

The Engineering plugin provides the WorkConjugate service, indicating
that the current analysis assumes infinitesimal strains and uses the Cauchy
stress tensor. The plugin then requests other services such as Compatibility,
Constitutive and PlaneStrain, to compute the compatibility matrix and the
tangent operator and to update the current stresses and strains. In Figure
5.5, the plugin ContinuumPln returns the compatibility matrix for continuum

1 auto* element_plugin = PluginManager :: GetAppElementInterface (
m_model , elemtype );

2 if (! element_plugin )
3 {
4 SetErrorf ("Error: missing element plugin %s", m_model ->

GetElemTypeName ( elemtype ));
5 throw false;
6 }
7

8 auto* material_plugin = PluginManager :: GetAppMaterialInterface (
m_model , matid);

9 if (! material_plugin )
10 {
11 SetError ("Error: missing material plugin ");
12 throw false;
13 }

Figure 5.4: Plugin Manager function calls to request elements and materials
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elements under plane stress or strain states, whereas the PlnHooke plugin
provides the tangent operator and the PlaneStrain plugin assists in the
computations under plane strain conditions. The engineering and PlnHooke
plugins also use the IMaterial service during their execution, but the necessary
plugins are requested directly from the Plugin Manager and are omitted in
Figure 5.5.

The main goal behind the element plugin scheme presented in Figure 5.5
is to achieve a flexible design that can be re-utilized in different analyses. A
similar scheme, where a T3 plugin replaces the Q4 plugin, solves a FE analysis
using T3 elements, or the Engineering plugin may be replaced by a new plugin
which considers the large displacement effects in the simulation and demands
the non linear compatibility matrix from the plugin ContinuumPln. Other
analyses also benefit from the plugins presented here, such as the single-phase
fluid flow analysis discussed in Chapters 2 and 3, where the compatibility
matrix may be used to account for the contributions of the displacement field.

Figure 5.5: Element plugin scheme in a mechanical analysis

5.3.7
IMaterial

Material plugins work similarly to element plugins: they are also oblig-
atory in the host plugin and can be accessed by any other plugin during the
simulation through the Plugin Manager. Figure 5.6 shows a simple design for
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an elastoplastic analysis with a von Mises material. The plugin MechanicalMat
uses both an ElasticBehavior service to model the elastic behavior as well as
a ReturnMapping and a YieldCriterion service to model the plastic behavior.
The IsoHooke plugin computes the elastic tangent operator, while the CPA
plugin updates the stresses for a given strain increment and, in this situation,
computes the continuum elastoplastic tangent operator. The vonMises plugin
computes the VM yield function and its derivatives, when requested by the
CPA plugin.

In this scheme, the CPA was implemented in a separate plugin from the
yield criterion since the algorithm leads to a simple implementation where it
only needs the yield function, yield function derivatives and plastic potential
derivatives. Another option would be to merge both plugins and create a
return mapping plugin attached to a specific yield criterion [14]. This merged
implementation allows for modifications on the return algorithm to benefit
from certain characteristics of each criterion, a trade-off between a more general
solution and a more specific and optimized one. A secondary advantage of
designating the Return Mapping service as a part of the material scheme is
that a single simulation may naturally handle multiple materials, each one
with a different Return Mapping algorithm for the local plasticity problem,
using only the TopSim API.

Figure 5.6: Material scheme for a VM material
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5.3.8
Well Stability Scheme

The plugin scheme presented so far provides the necessary tools to
perform a FE simulation and serves as the basis to run different analyses. For
instance, to solve the well stability problem, a slightly altered scheme - one
that is capable of running coupled analyses - is used alongside other plugins
as shown in Figure 5.7. The new one uses a different main plugin, specific
for well stability analysis, that handles multiple output files and requires an
Algorithm service. This example uses the same NR plugin, but this time the
optional Writer plugin is present. During the stability analysis, the Algorithm
plugin calls for the writing process at each iteration and uses a different
ConvergenceCriterion and Analysis plugins. While the plugin L2Relative only
computes the relative norm, the RestrictionAnalysis plugin solves equation
(4-9) or (4-10) using a Simulator interface since its solution requires a numerical
simulation. Any third-party software is feasible here as long as there is a plugin
that communicates with the simulator. In Figure 5.7, a PluginSimulator scheme
indicates that it will connect itself with a plugin scheme similar to the previous
one to run the simulation.

Figures 5.8 and 5.9 summarize the modifications required to run a cou-
pled analysis. The simulation demands a TimeStepDriver to control the solu-
tion process. During each time step, it calls the Staggered plugin, responsible
for the staggered procedure. It solves the mechanical and the fluid flow anal-
ysis until the displacement and pore pressure fields converge. The Mechanical
Scheme in Figure 5.8 corresponds to a similar scheme to the one presented
in Figure 5.3, starting at the NR plugin. The Fluid Flow Scheme, on the
other hand, uses a SPPorePressureDOF and a SPPorePressureBdryCnd plu-
gins to provide the DOFManager and BoundaryCond services, respectively.
With the solution of the current time step at hand, the TimeStepDriver calls
the TimeStepHeuristic service to compute the next time step and the simula-
tion proceeds until it reaches the total simulation time. The Driver plugin in
Figure 5.8 also uses the binary file writer plugin to save simulation results at
user-specified time steps.

As for the element scheme in Figure 5.9, it must provide the required
services for both mechanical and fluid flown analyses. For this reason, a Stag-
geredFEAnalysis plugin retrieves a model attribute from TopS to determine
which FEAnalysis plugin should be used to compute element-wise vectors and
matrices.
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6
Validation

This chapter contains a set of simple problems to test and validate
the implementations and the simulator presented so far. Tectos was used to
generate all models and meshes and it was also responsible for reading the
result files from the simulator and exporting the results to a numeric data file.
The data in the exported file is then compared to the analytical solution of
each problem using a Matlab script.

6.1
Elastoplastic Cylinder with von Mises Material

The first example is a long elastoplastic thick-walled cylinder subjected
to internal pressure [14]. The model is a cross-section of the cylinder, shown
in Figure 6.1, assumed to be in plane strain conditions. In Figure 6.1, a, b
and c are the inner, outer and plastic front radius, respectively, and P is the
internal pressure. The VM criterion is used to model the plastic behavior of
the material assuming an elastic-perfectly plastic behavior.

Figure 6.1: Cross-section of the elastoplastic cylinder [14]

If P is too low, the material will remain within the elastic range and the
analytical solution is given by Lamé’s equations. Once the internal pressure
surpasses a certain threshold, the stress distributions in the plastic area,
a ≤ r ≤ c, are given by [76]:

σrr = Y

[
−1

2 − ln
(
c

r

)
+ c2

2b2

]
(6-1)
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and

σθθ = Y

[
1
2 − ln

(
c

r

)
+ c2

2b2

]
, (6-2)

where Y = 2 ∗ σY /
√

3 and r is the radial coordinate. In the elastic area,
c ≤ r ≤ b, the stresses are given by:

σrr = −Y c
2

2b2

(
b2

r2 − 1
)

(6-3)

and

σrr = Y c2

2b2

(
b2

r2 + 1
)

(6-4)

The plastic front radius can be calculated by solving Equation (6-5) for
a given internal pressure.

P

Y
= ln

(
c

a

)
+ 1

2

(
1− c2

b2

)
. (6-5)

The parameters used for this model are represented in Table 6.1. Two
values for internal pressure were used: 75 MPa, in the elastic range, and 180
MPa, in the plastic range. The plastic front radius in the Table 6.1 corresponds
to the internal pressure in the plastic range. Figure 6.2 shows the geometry
of the model used in this example. Only a quarter of the cross-section is
represented, with a 50x70 Q4 mesh.

Parameter Unit Value

Inner Radius (a) mm 100

Outer Radius (b) mm 200

Plastic Front (c) mm 159.29

Young Modulus (E) GPa 210

Poison (ν) - 0.3

Yield Strength (σY ) MPa 240

Table 6.1: Parameters for the cylinder model [14]

As seen in Figures 6.3 and 6.4, all numerical results matches the analytical
solutions presented in the elastic and elastoplastic ranges.
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Figure 6.2: Quarter cylinder
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Figure 6.3: Stresses vs radial coordinate, 75 MPa
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Figure 6.4: Stresses vs radial coordinate, 180 MPa
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6.2
Circular hole in a Infinite Mohr Coulomb Material

The next validation model is similar to the previous one. This time, the
elastic-perfectly plastic behavior is modeled by the Mohr-Coulomb criterion
and the model, depicted in Figure 6.5, can be seen as a cylindrical hole in a
soil. Unlike the von Mises model, this time a bi-axial isotropic stress state is
applied to all four faces faces and the displacement is restricted in the outer
edges of Figure 6.5. It is assumed that the situation represented by this model
is still under plane strain conditions [77].

Figure 6.5: Cylindrical hole in a Mohr Coulomb material

The solution of this problem is given in [78]:

σrr = P −
(
P − 1

Kp + 1 (2P −Kc)
)(

R0

r

)2
, (6-6)

for the radial stresses, and

σθθ = P +
(
P − 1

Kp + 1 (2P −Kc)
)(

R0

r

)2
, (6-7)

for hoop stresses. In Equations (6-6) and (6-7), P represents the stresses acting
in both directions, r is the radial coordinate and R0 is given by:

R0 = a

 2
Kp + 1

P + Kc

Kp−1
Kc

Kp−1

 1
Kp−1

, (6-8)

where a is the hole radius, and both Kp and Kc are given by Equations (6-9)
and (6-10), respectively.

Kp = 1 + sinφ
1− sinφ (6-9)
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Figure 6.6: Stresses vs radial coordinate

Kc = 2c tan
(
π

4 + φ

2

)
(6-10)

Table 6.2 shows the material, geometry and load input parameters used
in this model, where P is the value applied in σxx and σyy. The mesh consists
of a 160x80 Q4 mesh on each quadrant, totalizing 51200 elements.

Parameter Unit Value

Inner Radius (a) m 1

Outer Radius (b) m 21

Young Modulus (E) GPa 10

Poison (ν) - 0.2

Cohesion (c) MPa 3.45

Friction Angle (φ) ◦ 30

Pressure (P ) MPa 30

Table 6.2: Parameters for the MC hole model [77]

Figure 6.6 compares the analytical results with the numerical ones. By
directly applying the prescribed stresses directly on each surface, the material
starts to yield at a non differentiable point of the yield surface and the entire
model yields. However, the techniques described in [15] proved to be sufficient
to ensure good numerical results.

6.3
Oedometric Test

The third validation test represents an oedometer test in a soil sample
to verify the implementation for the MCC model. As mentioned in chapter
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3, the Young modulus is assumed to change according to the hydrostatic
compressive pressure acting on the medium. The model, represented in Figure
6.7, has an initial hydrostatic stress acting on the material and is subjected
to a compressive load acting on the upper edge, while all other edges have
their movement restricted. The mesh used in this model consists of a 50x20
Q4 elements. All the remaining parameters in this model are summarized in
Table 6.3.

Figure 6.7: Oedometer test model

Parameter Unit Value

Dimensions (LxH) mm 70x20

Hyd. Stress MPa -0.1

Load MPa -0.3

Poison (ν) - 0.3

# Loadsteps - 50

β - 1

Critical State Line Slope (M) - 1.2

Hyd. Yield Stress (Pt) MPa 0

Virgin Consolidation Line Slope (λ) - 0.077

Swelling Line Slope (κ) - 0.0066

Initial ellipsis radius (a0) MPa 0.1

Initial void ratio (e0) - 0.788

Table 6.3: Parameters and loads for the MCC hole model [30]

The model was simulated using the plugin simulator and its results were
compared to the results from Ghem. All results were taken in a point at the
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middle of the model. Figures 6.8 to 6.11 show the results for this simulation.
It is possible to see that all the results from the plugin simulator match the
ones from the current simulation, with a small difference in the final Young
modulus.

Figure 6.10b shows the behavior of the model is compatible to the
one in Figure 2.5. The preconsolidated soil follows the swelling line until
approximately the 20th loadstep, when it starts to yield. From there on, the
material returns to the virgin compression line and continues to yield until
the end of the analysis. The slope of both sections of the line in Figure 6.10b
are approximately −6.6918 × 10−3 and −7.808710−2, in agreement with the
material parameters used for the simulation.

Figure 6.11 also shows the same characteristic. Assuming that the soil,
in its virgin state, was loaded with an hydrostatic stress of -0.2 MPa and then
unloaded until it reached -0.1 MPa, it would end up at the the point (-0.1, 0) in
Figure 6.11. After, as the vertical load increases under plane strain conditions,
the soil deforms elastically inside the yield surface and then plastically as
the ellipsis radius (or preconsolidation pressure) increases until the end of the
simulation.
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Figure 6.8: Vertical displacement vs # Loadsteps
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Figure 6.9: Strains vs # Loadsteps
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6.4
Poroelastic Column

In order to validate the implementation used for the coupled problem,
two more test cases were used. The first one represents a one dimensional
consolidation problem of a saturated poroelastic column. Figure 6.12 shows
the model used to simulate this problem, where a load p∗ and a prescribed
pore pressure are applied on the top edge of the model. All parameters used
in this model are summarized in Table 6.4.

Figure 6.12: Poroelastic column model

Parameter Unit Value

Dimensions (LxH) m 1.4x7

Load (p∗) MPa -1

Prescribed pore pressure MPa 0

Initial pore pressure MPa 0

Young Modulus (E) GPa 1.44

Poison (ν) - 0.2

Biot (α) - 0.7778

Permeability (k) mD 190

Porosity (n) - 0.19

Viscosity (µ) Pas 0.001
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Continuation of Table 6.4

Parameter Unit Value

Grain Compressibility (Ks) GPa 36

Fluid Compressibility (Kw) GPa 2.887

Simulation Time s 100

Table 6.4: Parameters and loads for the poroelastic column model [42]

The analytical solution for this problem uses the following undrained
properties [42]:

νu = 3Ku − 2G
2(3Ku +G) (6-11)

and

Ku = K

(
1 + α2Kf

(1− α)(α− n)Kf + nK

)
, (6-12)

where K is the bulk modulus of the soil matrix, G is the shear modulus and
Ku and νu are the undrained bulk modulus and Poison coefficient, respectively.
The pore pressure field is then given by:

p = ηp∗

GS
[1− F1(χ, τ)]. (6-13)

In equation 6-13, the final pore pressure field is computed using F1, an
infinite series:

F1(χ, τ) = 1−
∞∑
k=1

2
M(k) sin (M(k)χ) e−4τM(k)2

, (6-14)

where χ and τ are the adimensional depth and time,

χ = y

H
(6-15)

and

τ = 2kG(1− ν)(νu − ν)
α2(1− 2ν)2(1− νu)

t

4H , (6-16)

respectively, and

M(k) = π(2k + 1)
2 . (6-17)

η and S are

η = α(1− 2ν)
2(1− ν) (6-18)

and
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Figure 6.13: Pore pressure distribution in the poroelastic column

S = 3η(1− νu)
GB(1 + νu)

, (6-19)

where B is the Skempton coefficient:

B = αKf

(α− n(1− α))Kf + nK
. (6-20)

The problem was solved using the plugin simulator with the coupled
scheme. Figures 6.13a and 6.13b shows the pore pressure results computed
via the simulator and Equation (6-13). The first image shows the variation
of the pore pressure at a point located in the middle of the bottom of the
column. There is a sudden increment due to the undrained response as the loads
are instantly applied and then the pore pressure dissipates as the simulation
advances. The second picture shows the distribution of the pore pressure field
along a line through the middle of the column 10 seconds after the start of the
simulation. Both numerical results matched the analytical ones.

6.5
Poroelastic Wellbore Problem

The final validation example is a simulation of the poroelastic response
of a borehole. This model represents a simplified version of the actual drilling
process. The material is assumed to be under a non hydrostatic stress state
and to have a constant initial pore pressure field. Then, an "instantaneous"
borehole is introduced in the middle of the model and all internal forces and
pore pressure at the edges of the borehole are removed. It is assumed that this
problem occurs at plane strain conditions, provided that the time needed to
drill through a distance equal to five times the borehole radius is greater than
a characteristic time tc in Equation (6-21) [79].
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tc = a2µ(1− 2ν)
2kG(1− ν) (6-21)

This problem was first solved by Detournay and Cheng in [79]. The
authors solved this problem by sub dividing it in three loading modes (an
axysimmetric load, a purely deviatoric load and a prescribed pore pressure at
the borehole wall) and superposing the solution of the three modes. While the
first loading mode is solved using the Lamé solution for thick cylinders, the
other two modes are solved in the Laplace transform domain. The complete
solution for all three modes in the Laplace domain as well as the solution in the
time domain at small times can be found in [79]. Here, the numerical results
are compared to the small time solution of the stresses and pore pressure fields.

Figure 6.14 represents the model used to solve this problem with the
plugin simulator. It consists of a square model with a hole in the center and
a Q4 mesh with 40x40 elements. All results were taken at the yellow line,
with 21.037◦ of inclination, after 0.1 seconds in order to ensure the small time
condition. Table 6.5 presents all material parameters and loads used in this
simulation.

Figure 6.14: Wellbore model

Parameter Unit Value

Dimensions (L) m 6

Wellbore Radius (a) m 0.1

Initial Effective Horizontal Stress (σ′′0,xx) MPa -30

Initial Effective Vertical Stress (σ′′0,yy) MPa -50
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Continuation of Table 6.5

Parameter Unit Value

Initial pore pressure (p0) MPa 15

Young Modulus (E) GPa 1.44

Poison (ν) - 0.2

Biot (α) - 0.7895

Permeability (k) mD 1.9

Porosity (φ) - 0.19

Viscosity (µ) Pas 0.001

Grain Compressibility (Ks) GPa 38

Fluid Compressibility (Kw) GPa 2.884

Total Time s 10

Table 6.5: Parameters and loads for the well model [42]

Figures 6.15 and 6.16 show the results for this simulation. The introduc-
tion of a borehole in the medium locally disturbs the stress and pore pressure
fields. This disturbance is a result of the stress concentration effects from the
borehole together with the pore pressure variation and persists until approx-
imately 1 meter from the center of the borehole, where all results return to
their respective far field values. As the simulation continues, the pore pressure
dissipates even further into the model and its effects can be seen in greater
distances. All figures indicate that the simulator is capable of reproducing the
analytical results.
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Figure 6.15: Total stresses vs radial distance from the center, after 0.1 s
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Figure 6.16: Shear stress and Pore pressure vs radial distance from the center,
after 0.1 s
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7
Case Study

This Chapter presents a set of case studies where the simulator computes
the ideal mud weight or pressure window. The main goal here is to test the
simulator under different conditions as similar as possible to real applications.

7.1
Sarvak Formation

The first problem is based on a case study about the Sarvak reservoir, in
the Abadan Plain, Iran [20]. The study presents several experimental data
about the three different wells, denoted well A, B and C, including well
perforation logs, image logs and rock mechanical test results from vertical
plug samples from the region. All the available data was then used to compute
the mud weight stability window for each well using the analytical solution
and their results were compared with the actual mud weight used during the
perforation.

A similar model to the one presented in Figure 6.14 is used here. Figure
7.1a shows the complete model, with a modification to the mesh: it has a
refined region around the wellbore, Figure 7.1b, to better represent the yielded
area, while using a coarser T3 mesh to reduce the overall computational
cost of this simulation. The model has a total of 9680 nodes and 11076

(a) FE model for the Sarvak case study (b) Zoom at the borehole region

Figure 7.1: Sarvak case study model
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elements. Table 7.1 shows the values of each parameter for this model, where
the material parameters, stresses and pore pressure field are average values
of the experimental data form [20]. Following the hypothesis from [20], no
poromechanical coupling was assumed for this model.

Parameter Unit Value

Dimensions (L) m 5

Wellbore Radius (a) m 0.108

Initial Effective Maximum Horizontal Stress (σ′′H) MPa -36.58

Initial Effective Minimum Horizontal Stress (σ′′h) MPa -28.80

Initial Effective Vertical Stress (σ′′0,v) MPa -36.78

Initial pore pressure (p0) MPa 33.68

Young Modulus (E) GPa 9.55

Poison (ν) - 0.31

Biot (α) - 1

Cohesion (c) MPa 7.71

Friction Angle (φ) ◦ 39.71

# Load Steps - 5

Table 7.1: Parameters and loads for the Sarvak case study [20]

This problem was solved using the numerical procedure described before
to compute the lower limit of the mud weight window. Table 7.2 shows the
parameters used as the initial input to define the starting point or initial
interval in the stability analysis with the three methods described in chapter
4 (NR, accelerated NR and FP).

Parameter Unit Value

Initial mud pressure (Pw) MPa 32

Initial mud pressure range MPa 34 - 43

Limit plastic area (A∗) m2 0.002

Tolerance - 0.005

Table 7.2: Stability analysis parameters for the Sarvak case study

Table 7.3 presents the results for each method alongside the analytical
solution. All three found similar internal pressures and areas. The solution path
for both NR and accelerated was the same, indicating that Aest2 ∆ << 0.25.
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As for the solution using the FP method, even though it required one more
function evaluation, most of the evaluations were from models that remained
in the elastic range, hence there wasn’t a significant increase in the simulation
time. All three analyses resulted in internal pressures approximately 10%
smaller than the analytical result, since the analytical pressure doesn’t allow
the model to yield.

Method N. f. eval. Pressure (Pa) Plastic Area (m2)

NR 11 38520726.13 0.001903

Accelerated NR 11 38520726.13 0.001903

FP 12 38466289.18 0.001998

Analytical - 42367635.27 -

Table 7.3: Results for the Sarvak case study

Figure 7.2 portrays the final plastic area at the solution for the NR
analysis. The maximum horizontal stress from Table 7.1 was applied in the
y-direction, causing the material to yield perpendicularly at the x-direction.
Yielding stats at the wellbore wall at 0◦and 180◦and advances in both circum-
ferential and radial directions.

Figure 7.2: Yielded area for the Sarvak case study at the final internal pressure.
The red area indicate the zones where yielding occurs.

As for the mud weight, no equivalent depth was informed in [20] corre-
sponding to the average values in 7.1. Assuming that the typical value for the
pore pressure gradient under normal formation conditions is around 0.48 psi/ft
(approximately 10.86 kPa/m), an equivalent depth for this section of the well
would be 3162 m. Using this depth and the final pore pressure from the FP
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method, the required mud weight is 1240.08 kg/m3 or 77.42 pcf, in agreement
with the mud weight used during perforation, 82 pcf [20].

7.2
Tensile Stress Validation

This case study aims to compute the ideal mud pressure using the tensile
failure condition. It consists of a theoretical model of a vertical well section
considering the poromechanical coupling of the medium [60]. The FE model
uses a similar mesh to the one in Figure 7.1a, with a refined region near the
wellbore, but this time with 16459 nodes and 18154 elements. Tables 7.4 and
7.5 show the parameters used for the numerical model and for the stability
analysis, respectively.

Parameter Unit Value

Dimensions (L) m 6

Wellbore Radius (a) m 0.1

Initial Effective Maximum Horizontal Stress (σ′′H) MPa -35

Initial Effective Minimum Horizontal Stress (σ′′h) MPa -20

Initial Effective Vertical Stress (σ′′0,v) MPa -40

Initial pore pressure (p0) MPa 15

Young Modulus (E) GPa 14.4

Poison (ν) - 0.2

Biot (α) - 0.222

Cohesion (c) MPa 10

Friction Angle (φ) ◦ 35

Permeability (k) mD 10

Porosity (n) - 0.2

Viscosity (µ) Pa s 10−3

Grain Compressibility (Ks) GPa 36

Fluid Compressibility (Kw) GPa 2.8

Total time h 12

Table 7.4: Parameters and loads for the tensile failure case study [60]
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Parameter Unit Value

Initial mud pressure (Pw) MPa 35

Initial mud pressure range MPa 15 - 43

Tensile Resistance (T0) MPa 0

Tolerance - 10−7

Table 7.5: Stability analysis parameters for the tensile failure case study

The numerical results are presented in Table 7.6. It also shows the result
of the analytical solution for comparison, even though the analytical solution
doesn’t account for the poromechanical coupling. In this simulation, the results
for the numerical and the analytical solution were almost identical, indicating
that the poromechanical coupling had only a minor influence on the results.
Furthermore, all three methods yielded the same internal pressure, most likely
due to the model remaining in the elastic range at the solution.

Method N. f. eval. Pressure (Pa) σ′′1 (Pa)

NR 11 28168314.84 -5.65e-06

Accelerated NR 9 28168314.84 7.64e-07

FP 11 28168314.84 1.80e-06

Analytical - 28330000 -

Table 7.6: Results for the tensile failure case study

Figure 7.3 shows the final maximum effective principal stress around
the wellbore at the end of the simulation. As expected, the maximum effective
stress appears at the wellbore wall, at the direction of the maximum horizontal
stress.

7.3
Gulf of Mexico

The following case study reproduces a common challenge in the Gulf
of Mexico (GoM) region and other offshore drilling operations: the stress
perturbations caused by nearby salt bodies. The presence of a salt body has a
significant influence on the surrounding areas as it redistributes the loads to the
neighboring regions. In [80], the authors created several models with idealized
salt geometries, e.g. spherical, sheet and column, found in the GoM region to
compute the modified stress state. Each model uses the gravitational load to
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Figure 7.3: Maximum principal effective stress at the end of the analysis

calculate the initial vertical stress and, using the known far-field stress ratios1,
the horizontal stresses. Then, the model is "released" to let the viscous behavior
of the salt take place. The inelastic deformation of the salt redistributes the
stresses at the adjacent regions until the deviatoric stresses (or the Mises
equivalent stress) in the salt reach a small value. At this point, the viscous
strains of the salt become minimal and the stresses reach its final value [80].

In this work, the plugin simulator computes the minimum mud pressure
of an inclined well located near the spherical salt body from [80]. The model
assumes that the material follows the MC criterion and has poromechanical
fluid mechanical coupling. Table 7.7 presents the geometry, loads and material
parameters for this simulation. The elastic material parameters are the same
as the ones from [80], whereas the yield model and other material parameters
required for the fluid flow analysis are from [81]. The model permeability was
estimated from a permeability-porosity trend, depicted in Figure 7.4, from a
case study of a nearby field in the GoM [82]. The wellbore section model has
20327 nodes and 22050 elements.

Parameter Unit Value

Dimensions (L) m 6

Wellbore Radius (a) m 0.1

1ratio between the horizontal and vertical stresses
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Continuation of Table 7.7

Parameter Unit Value

Well Inclination ◦ 60

Minimum Horizontal Stress Azimuth ◦ 90

Initial Effective Maximum Horizontal Stress (σ′′H) MPa -57.29

Initial Effective Minimum Horizontal Stress (σ′′h) MPa -87.99

Initial Effective Vertical Stress (σ′′0,v) MPa -103.79

Initial pore pressure (p0) MPa 68.2

Young Modulus (E) GPa 9.5

Poison (ν) - 0.25

Biot (α) - 0.3667

Cohesion (c) MPa 2.5

Friction Angle (φ) ◦ 30

Permeability (k) mD 1

Porosity (n) - 0.154

Viscosity (µ) Pas 10−3

Grain Compressibility (Ks) GPa 10

Fluid Compressibility (Kw) GPa 2.25

Total time h 24

Table 7.7: Parameters and loads for the GoM case study [80, 81, 82]

Figure 7.4: Permeability vs Porosity trend [82]
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Table 7.8 presents the parameters related to the wellbore stability
analysis. The initial mud pressure for the NR and accelerated NR solutions
is an estimative based on the far-field pore pressure, with a suitable maximum
value for the mud pressure range. The model uses the same limit plastic area
as the first case due to the similar well radius.

Parameter Unit Value

Initial mud pressure (Pw) MPa 68

Initial mud pressure range MPa 68 - 80

Limit plastic area (A∗) m2 0.002

Tolerance - 0.004

Table 7.8: Stability analysis parameters for the GoM case study

The results for this simulation are presented in Table 7.9. Again, all
three analyses reached similar mud pressures and yielded zones. Once more,
the solution path for the NR accelerated method was the same as the NR
one, but this time the FP method required only 2/3 of the function evaluations
if compared to the NR method for this combination of initial mud pressure,
initial mud pressure range and tolerance. Unlike previous cases, there is no
analytical closed-form solution for this problem to compare with the numerical
counterparts.

Method N. f. eval. Pressure (Pa) Plastic Area (m2)

NR 9 72700828.2 0.002

Accelerated NR 9 72700828.2 0.002

FP 6 72710754.64 0.00199854

Table 7.9: Results for the GoM case study

7.4
Espírito Santo Basin

The final case aims to study a wellbore instability issue reported for the
well 3-BRSA-1229-ESS, at block BM-ES-22A, Espírito Santo Basin, Brazil. It
was part of an offshore operation to explore and evaluate a subsalt reservoir.
The wellbore project had four drilling stages: two initial stages before reaching
the salt body, a third stage at the salt body and the last one after the salt body.
During the third and fourth stages, the operators faced significant difficulties,
such as rate of penetration reduction and risk of stuck pipe in the salt, and
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presence of shear failure zones in the subsalt region [69].
In [69], the author used Tectos to reproduce the experimental data from

well logs and study the slat influence in the subsalt zone stresses. Figure 7.5
shows the FE model created from seismic images of the region. It consists
of three distinct zones: the salt region (in pink), a subsalt region, where the
material has an elastoplastic behavior, and a third elastic zone in the rest of
the model. The yellow and blue lines indicate well 3-BRSA-1229-ESS and the
water level, respectively.

Figure 7.5: FE model from the seismic image [69]

This model presents some unique features if compared to the previous
ones discussed here. Some material parameters of the elastic and elastoplastic
zones, namely the Young modulus, Poisson coefficient, Biot coefficient and bulk
density, have spatial distributions related to the depth. Here, each parameter
is assumed to be a linear function of the depth with the linear coefficients
extracted from the data in [69]. Furthermore, the elastoplastic behavior in
the subsalt zone was modeled using two yield criteria, the MC and MCC
models, but only the former will be considered for the numerical analysis.
The MC model will be used to provide an analytical solution for comparison.
As for the salt layer, the Double Mechanism (DM) creep law describes its
viscous behavior. A mathematical description of the DM law is detailed in
[83, 84, 85, 86], where the authors used the DM model to reproduce the
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behavior of halite salt rock found in the Espírito Santo basin. The numerical
procedure to consider the viscous forces is described in [87, 88].

Following the procedure discussed in the previous case study, an initial
analysis in Tectos computes the vertical stresses from the gravitational and
water column loads. Then, a second analysis, also using Tectos and Ghem,
uses the effective stress ratio to compute the horizontal stresses and the model
is released for the viscous effects to take place. Tables 7.10 and 7.11 presents
the parameters for the two elastoplastic models. Equation (7-1) provides the
initial ellipsis radius for the MCC model since the initial radius isn’t available.
For more information regarding the material parameters and loads for the FE
model, the reader is referred to [69].

a0 =

q2

M2|p|
+ |p|+ pt

1 + β
(7-1)

Parameter Unit Value

Virgin Compression Line slope (λ) - 0.131

Swelling Line slope (κ) - 0.011

Critical State Line slope (M) - 0.750

Initial void ratio (e0) - 0.430

Table 7.10: MCC criterion parameters [69]

Parameter Unit Value

Cohesion (c) MPa 2.59

Friction Angle (φ) ◦ 19.4

Table 7.11: MC criterion parameters [69]

Figure 7.6 presents the VM equivalent stress for the model after a
hundred years. At this point, the VM stress was less than 1 MPa, which is
considered sufficiently small [80]. Figure 7.7 on the other hand shows which
parts of the elastoplastic zone developed plastic strains. Even though a short
section of the well path is still inside the elastic domain, the material at that
region remains close to yielding.
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Figure 7.6: VM equivalent stress after a hundred years

Figure 7.7: Yielded zone after a hundred years
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The horizontal yellow line in Figures 7.6 and 7.7 indicates the wellbore
section used for the following stability analysis. The section uses the stresses
and material properties results from the initial analysis as input parameters.
The mesh in this model has 17000 nodes and 18756 elements. Table 7.12
shows the complete list of parameters related to the wellbore section model.
The permeability, porosity and both grain and fluid compressibilities are not
specified in [69]. Here, both permeability and porosity were taken from a case
study of a nearby reservoir [89], while the compressibilities were estimated
from the material database of Tectos. As for the hole radius, since the well
used a 9 5/8 in + 9 7/8 in casing, it is assumed that the drilling tool diameter is
12.25 in [56]. The wellbore section model has 20327 nodes and 22050 elements.

Parameter Unit Value

Dimensions (L) m 9

Wellbore Radius (a) m 0.1555

TVD m 4440

Initial Effective Maximum Horizontal Stress (σ′′H) MPa -24.693

Initial Effective Minimum Horizontal Stress (σ′′h) MPa -24.286

Initial Effective Vertical Stress (σ′′0,v) MPa -36.312

Initial pore pressure (p0) MPa 43.620

Young Modulus (E) GPa 16.631

Poison (ν) - 0.368

Biot (α) - 0.65

Ellipsis radius (a) MPa 19.3

Permeability (k) mD 270

Porosity (n) - 0.247

Viscosity (µ) Pas 0.001

Grain Compressibility (Ks) GPa 60

Fluid Compressibility (Kw) GPa 2.250

Total time h 12

Table 7.12: Parameters and loads for the wellbore section [69, 89]

Table 7.13 presents the values used for the stability analysis. The plastic
area criterion is used to compute the lower and upper limits of the mud
pressure window. The stability analysis with the tensile resistance is omitted
here because the simulator did not find a solution even at a much higher
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pressure than the one found with the plastic area criterion.

Parameter Unit Value

Initial mud pressure - lower limit (Pw) MPa 48

Initial mud pressure range - lower limit MPa 48 - 52

Initial mud pressure - upper limit (Pw) MPa 58

Initial mud pressure range - upper limit MPa 55 - 59

Limit plastic area (A∗) m2 0.004805

Tolerance - 0.0005

Table 7.13: Stability analysis parameters for the wellbore stability analysis

Tables 7.14 and 7.15 shows the results for the lower and upper limits. In
both cases, all three methods reached similar internal pressures, but the plastic
area for both NR and accelerated NR resulted in a final area approximately 8%
smaller than the required value. This indicates that the plastic area in Equation
4-9 is extremely sensitive to variations in the internal pressure for the material
parameters and loads in this model. In this case, numerical approximation
errors influence the derivative from the finite difference method and may
deteriorate NR results. Nevertheless, all methods required the same number
of function evaluations for the specified initial point, mud pressure range and
tolerance.

Method N. f. eval. Pressure (MPa) Plastic Area (m2)

NR 9 51247360.56 0.00444778341

Accelerated NR 9 51247360.56 0.00444778341

FP 9 51236054.03 0.0047912

Table 7.14: Results for the lower limit of the mud pressure window

Method N. f. eval. Pressure (Pa) Plastic Area (m2)

NR 11 55739269.02 0.004821167966

Accelerated NR 11 55739269.02 0.004821167966

FP 11 55738396.44 0.00479926476

Table 7.15: Results for the upper limit of the mud pressure window

Figures 7.8 and 7.9 compare the numerical results from the NR method
with the analytical solution and the MC parameters from Table 7.11. The
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numerical solution provided a much narrower window than the analytical one,
indicating the project could be more challenging than the analytical solution
may suggest. The results also demonstrate the combined influence of a different
yield criterion, in this case, a capped instead of an uncapped criterion, and the
influence of the poromechanical coupling in the results. Using the TVD for
the wellbore section from Table 7.12, the final mud weight window is 9.76 ppg
to 10.62 ppg, whereas the actual mud window available in the well log is 9.7
ppg to 12ppg [69]. The actual values used during the operation in that region
were initially 10.4 ppg and then 11ppg. Even though the numerical result was
similar to the project values, these results depend on the limit plastic area and
material parameters, which were not available directly for that region.

Figure 7.9 also presents a few points of the solution path for the mud
window, with an "x" marker, and the solution, with a "*" marker. The
window starts with a wider range and, in this case, converges to the narrower
mud pressure interval. The difference between the two predictions shows the
influence of the poromechanical coupling and the MCC yield criterion in the
final mud window.
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Figure 7.8: Mud pressure window
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Figure 7.9: Zoom at the wellbore section depth
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8
Conclusion

This thesis presented a novel simulator to perform wellbore stability
analysis and to compute the optimal mud pressure window. The simulator
utilized two different equations to describe the wellbore failure and calculated
the required mud pressure for each equation utilizing root-finding algorithms.
During the solution process, the simulator used the FEM to solve the required
geomechanical analyses. At the end of the process, the simulator informed the
user of the desired mud pressure according to each condition, as well as the
displacements, strains, stresses and pore pressures around the wellbore.

The initial part of this work described the theory used to model the ge-
omechanical problem. The model assumed the rock formation was a deformable
porous medium. For simplicity, it presented isotropic linear elastic behavior ac-
cording to Hooke’s Law until a limit stresses state described by a suitable yield
function, e.g., VM, MC and MCC criteria. If stressed any further, it would start
to develop plastic strains. The medium was also assumed fully saturated with
a single-phase Newtonian fluid and Darcy’s law related the pore pressure gra-
dients to the flow velocities. Biot’s theory described the interaction between
the pore pressure and the effective stresses. Both mechanical and fluid flow
equations yielded a coupled partial differential equation system in terms of the
porous matrix displacement and pore pressure.

Here, we used the FEM to solve the coupled system. The method divided
the domain into elements and utilized the nodal values to approximate the
displacement and pore pressure fields. The material elastoplastic behavior was
treated as a local problem, at each Gauss point. Hence, if the material yielded
for a given displacement and pore pressure increment, the simulator used the
CPA to update the stresses such that the final stress state obeys the desired
yield function. Therefore, the solution procedure consisted of solving a matrix
system to compute displacement and pore pressure updates and then utilizing
the CPA to find the new stresses at each element. Instead of directly solving
the full matrix system, we used a Staggered Solution Procedure to divide the
fully coupled simulation into two problems: a mechanical and a fluid flow one.
With this strategy, the indefinite coupled matrix system becomes two smaller
positive definite matrices and now the nonlinearity was only present in the
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mechanical analysis.
As for the wellbore stability analysis, we considered two approaches

to evaluating the required mud pressure: an analytical closed-form and a
numerical solution. The former used known elasticity solutions to compute
the stresses around the wellbore and rewrote the MC criterion at Φ = 0 or
at the tensile cutoff in terms of the in-situ stresses to calculate the limit mud
pressure for a vertical well. The latter generalized the failure condition for the
well with the total plastic zone area around the wellbore or for the maximum
effective stress to compute the mud pressure. Then, a root-finding algorithm
iteratively solved a sequence of geomechanical analyses to find the optimal mud
pressure. In this approach, the wellbore stability analysis was not as limited
to model simplifications and could better reproduce the physical behavior of
the medium around the wellbore.

All the methods and equations previously discussed were implemented
in a novel simulator based on a plugin architecture. It provided a more flexible
environment to develop the software to include several methods and solve
different analyses. In this work, the simulator could run both FE or wellbore
stability analyses assuming multiple conditions (e.g., poromechanical coupling,
different yield criteria, elastic or elastoplastic behavior, different element types)
by adding or exchanging specific modules in a plugin scheme. The plugin
framework also allowed other third-party plugins to be included in the scheme,
making the simulator even more flexible.

The final part presented several validation examples and case studies
to test the plugin simulator. The simulator was able to reproduce a series
of analytical solutions for simplified problems. It also successfully estimated
the ideal mud pressure and mud weight for four case studies under different
conditions. All results were within an acceptable range from the analytical
solution or the actual mud pressure and weight, when available. As for the
root-finding methods used to find the numerical solution, both FP method
and the combination of the NR method with the finite difference scheme
produced similar results in terms of the final mud pressure and number
of function evaluations required to reach the solution. The accelerated NR
method required only a small modification to be implemented, but was only
able to provide a reduction in the number of function evaluations in one of the
four case studies presented here.

8.1
Future Works

Suggestions for future works include:
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– Thermal coupling. The presence of thermal stresses greatly influences
the final state at the wellbore. By adding the thermo-poromechanical
coupling to the problem, the simulator can consider other relevant
parameters in the stability analysis, namely the mud temperature;

– Generalized Plane Strain. In this work, each stability analysis uses
a section under plane strain conditions. If a generalized plane strain
condition is used instead, the simulator also consider out-of-plane shear
stresses, especially relevant for inclined wellbore sections;

– Different Return Mapping algorithms and yield criteria. Only a
few yield criteria and one return mapping algorithm were implemented
here. Other yield criteria, for example, weak plane and triaxial criteria,
together with suited return mapping algorithms may result in better
predictions for certain models and/or faster simulations;

– Dual Porosity Model, multiphase flow and variable permeabil-
ity and porosity. The simulator assumes the porous medium is fully
saturated with a single-phase fluid. This hypothesis allows for the initial
poromechanical analyses, but it may be too simplistic for some geome-
chanical analyses in regions where the medium may not be fully saturated
or may be fractured;

– Low Permeability. Low permeability models represent a numerical
challenge and often require changes in the formulation or element type.
New element plugin schemes could be implemented to better simulate
these situations;

There are two main objectives behind these suggestions. First, it will
allow the simulator to reproduce a wider range of real cases and consequently
more stability analyses. Second, it will explore the flexibility of a plugin
framework.

Furthermore, the present simulator may also be used to study other
geomechanical phenomena, such as the influence of different in-situ stress states
in the final breakout area or the use of other failure criteria to characterize
wellbore failure.
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