fechar

SIMULAÇÕES EM ENGENHARIA ELÉTRICA

 

 

 

 

 

 

 

detalhes

 

 

 

 

 

 

 

SECOND ORDER RLC CIRCUITS IN DIFFERENT TOPOLOGIES

CIRCUIT WITH RL IN PARALLEL AND C IN SERIES

Consider the circuit:


The circuit will be studied for two output variables: (1) the voltage in the capacitor, v_{C}(t); and (2) the voltage in the Rl connection, v_{RC}(t).

The transfer functions for the two output variables are:

H_{C }(s)=\frac{\frac{1}{RC}\: s+\frac{1}{LC}}{s^{2}+\frac{1}{RC}s+\frac{1}{LC}}
H_{RL}(s)=\frac{s^{2}}{s^{2}+\frac{1}{RC}s+\frac{1}{LC}}


The Laplace Transforms of the output variables when a generic input v(t), whose Laplace Transform is V(s), is applied are:

V_{C}(s)=H_{C}(s)\: V(s)=\frac{\frac{1}{RC}\: s + \frac{1}{LC}}{s^{2} + \frac{1}{RC}s + \frac{1}{LC}}\: V(s)
V_{RL}\left ( s \right )=H_{RL}(s)\: V\left ( s \right ) = \frac{s^{2}}{s^{2} + \frac{1}{RC}s + \frac{1}{LC}}\: V\left ( s \right )


The time domain expressions of both voltages can be found applying the Inverse Laplace Transform, as follows:

v_{C}(t)=\mathfrak{L}^{-1}\left [ V_{C}(s) \right ]=\mathfrak{L}^{-1}\left [ \frac{\frac{1}{RC}\: s + \frac{1}{LC}}{s^{2} + \frac{1}{RC}s + \frac{1}{LC}}\: V(s) \right ]
v_{RL}(t)=\mathfrak{L}^{-1}\left [ V_{RL}(s) \right ]=\mathfrak{L}^{-1}\left [ \frac{ s^{2}}{s^{2} + \frac{1}{RC}s + \frac{1}{LC}}\: V(s) \right ]


Compute the responses to the chosen input functions. Define the parameters and write them in the “boxes”.

•Responses in the Time Domais

Impulse Response of the Voltage in the Capacitor

R =  \Omega     C =  F     L =  H

     Final Time =  s

    


Impulse Response of the Voltage in the RL Parallel Connection

R =  \Omega     C =  F     L =  H 

     Final Time =  s

    


Step Response of the Voltage in the Capacitor

R =  \Omega     C =  F     L =  H 

     Final Time =  s

    


Step Response of the Voltage in the RL Parallel Connection

R =  \Omega     C =  F     L =  H 

     Final Time =  s

    


• Responses in the Frequency Domain - Bode Plot

Bode Plot of the Voltage in the Capacitor

R =  \Omega     C =  F     L =  H 

     Frequency from to  Hz

    


Bode Plot of the Voltage in the RL Parallel Connection

R =  \Omega     C =  F     L =  H 

     Frequency from to  Hz

    



voltar