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Abstract

Lorenzoni, Renata; Paciornik, Sidnei (Advisor); de Andrade Silva,
Flávio (Co-Advisor). Characterization of strain-hardening
cement-based composites: Deep Learning, in-situ X-ray
microCT and Digital Volume Correlation. Rio de Janeiro,
2021. 123p. Tese de doutorado – Departamento de Engenharia
Química e de Materiais , Pontifícia Universidade Católica do Rio
de Janeiro.

Considering the importance of micro and mesoscale analyses to understand
the macro behavior of materials, this work brings innovative solutions
for analyzing 3D images obtained by X-ray micro-computed tomography
(microCT). The studied material was the strain-hardening cement-based
composites (SHCC), a fiber reinforced cementitious composite that achieves
significant deformations through multiple cracks formation, resulting in a
cementitious material with pseudo ductile features. The first challenge of
this work was to recognize and quantify the constituent phases in the 3D
images of SHCC obtained by microCT. Materials with complex structures
may present images in which the internal phases cannot be distinguished by
the classical thresholding technique, requiring the use of another technique
such as segmentation by Deep Learning (DL). Therefore, this work used
DL as a solution for this task. Then, the features of each phase could
be correlated to the macro mechanical behavior of the material in in-situ
microCT tests. Another modern method for analyzing 3D images used was
the digital volume correlation (DVC). DVC is a technique that estimates
full-field strain in 3D over the entire volume of the specimen by correlating
imaging volumes of the specimen in unloaded and loaded states. Thus,
the images obtained from tensile and compression in-situ tests could have
their internal displacements measured and strain calculated. In summary,
this work brought advances to the 3D image processing and analysis field,
applied to cementitious materials, but which could also adapt for the
analysis of various materials.

Keywords
X-ray micro-computed tomography; segmentation; machine learning;

digital volume correlation; strain-hardening cement-based composite.
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Resumo

Lorenzoni, Renata; Paciornik, Sidnei; de Andrade Silva, Flávio .
Caracterização de compósitos cimentícios reforçados com
fibras: aprendizagem profunda, microTC de raio x in-
situ, correlação digital de volume. Rio de Janeiro, 2021. 123p.
Tese de Doutorado – Departamento de Engenharia Química e de
Materiais , Pontifícia Universidade Católica do Rio de Janeiro.
Considerando a importância da análise em micro e meso escala para o

entendimento do macro comportamento dos materiais, este trabalho apre-
senta soluções inovadoras para a análise de imagens 3D obtidas por microto-
mografia computadorizada de raios-X (microCT). O material estudado co-
nhecido pelo termo em inglês “strain-hardening cement-based composites”
ou pela abreviação SHCC é um compósito cimentício reforçado com fibras
que atinge deformações significativas através da formação de múltiplas fissu-
ras, estabelecendo um material cimentício com característica pseudo-dúctil.
O primeiro desafio deste trabalho foi reconhecer e quantificar as fases cons-
tituintes nas imagens 3D de SHCC obtidas por microCT. Materiais com
estruturas complexas podem apresentar imagens em que as fases internas
não podem ser distinguidas pela técnica de limiarização clássica, exigindo
o uso de outra técnica como a segmentação por Deep Learning (DL). Por-
tanto, este trabalho utilizou DL como solução para esta tarefa. Desta forma,
as características de cada fases puderam ser correlacionadas ao comporta-
mento mecânico macro do material em ensaios de microCT in-situ. Outro
método moderno de análise de imagens 3D utilizado foi a correlação digital
de volume (em inglês, digital volume correlation - DVC). O DVC é uma
técnica que estima o campo de deformação sobre todo o volume da amos-
tra, correlacionando as imagens 3D nos estados descarregado e carregado.
Assim, as imagens obtidas nos ensaios de tração e compressão in-situ pude-
ram ter seus deslocamentos internos medidos e deformações calculadas. Em
síntese, este trabalho trouxe avanços ao campo do processamento digital e
análise de imagens 3D, aplicadas a materiais cimentícios, mas que também
podem se adaptar à análise de diversos materiais.

Palavras-chave
microtomografia computadorizada de raios x; segmentação; aprendi-

zagem de máquina; correlação digital de volume; compósitos cimentícios
reforçados com fibras.
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1
Introduction

In the search for new technologies in the field of civil construction, to
build complex structures or to retrofit and strengthen old ones, new materials
have been widely developed and studied. Among them is the strain-hardening
cement-based composite (SHCC), a cement-based material that can resist
increased tensile stresses over a significant deformation range. Many studies
have shown its high mechanical performance and proved that SHCC is a
promising construction material. (1)(2)(3).

Micro and mesoscale analyses are essential for a better understanding of
the material’s behavior. For SHCC, studies such as the interface of the con-
stituent phases, the propagation of the micro-cracks, and the influence of the
fiber distribution could justify the mechanical SHCC behavior and then con-
tribute to the production of SHCC with better performance (4)(5). In this
context, computerized microtomography (microCT) is a non-destructive tech-
nique able to provide 3D images of the internal material structure, which is
already widespread in research for the qualitative and quantitative character-
ization of cementitious materials (6)(7). MicroCT can be coupled to in-situ
mechanical tests, revealing microstructural changes when the sample is sub-
jected, for instance, to compressive or tensile stresses.

The 3D images obtained from the microCT technique require specific and
challenging studies, mainly for materials with complex structures such as the
SHCC. In this scenario, digital image processing and analysis is a field that
solves tasks of getting information from images. The processing has the role
of facilitating the image visualization and/or adapting it for the quantitative
analysis step. Optimizing these steps with modern computational tools leads
to greater precision in quantitative analysis and, consequently, more accurate
results in multidisciplinary research. In this context, deep neural networks
based on machine learning known as Deep Learning (DL) may be a solution
for complex image processing and analysis tasks.

A typical image processing and analysis task is segmentation. Segmenting
an image means to separate a region of interest for a quantitative study,
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Chapter 1. Introduction 15

and this is usually done by determining a range of tones of gray in the
image histogram, a technique known as thresholding. However, materials with
complex structures may present images in which the internal phases cannot be
distinguished by the thresholding, requiring the use of another technique such
as segmentation by DL.

Machine learning uses algorithms that learn iteratively from input and
output data, allowing computers to find hidden solutions without being
explicitly programmed to do so. The basic principle of DL network is machine
training so that it learns to recognize the input that the user provides. In the
case of the DL network applied to image segmentation, the machine will be
trained to output the phase of interest.

From an in-situ microCT, a sequence of 3D images is obtained at
different loading steps of the mechanical test. In addition to the qualitative and
quantitative analysis of these images, it is possible to obtain the internal local
displacement and strain of the material in different loading stages during the
mechanical test using the technique called digital volume correlation (DVC).
DVC is another modern computational tool used for 3D image analysis. This
technique calculates displacement and strain correlating sub-volumes of the
specimen image in two subsequent loading stages.

The general purpose of this thesis was the use and application of
modern and innovative techniques in the 3D image processing and analysis
field for cement based materials. As specific purpose, the work at hand has:
developed a deep neural network able to segmenting each SHCC constituent
phases; extract features of the segmented phases and correlate them with the
mechanical behavior of the material; develop a setup for in-situ tensile and
compression microCT tests; analyze and suggest suitable DVC codes to provide
displacement and strain of in-situ tensile and compression microCT tests.

This thesis was structured in an introduction (chapter 1), literature
review (chapter 2) and four chapters of studies related to 3D image processing
of the SHCC material, and finally a chapter with conclusion and suggestion
for further works.

In chapter three microCT was used to characterize a PVA-steel fiber rein-
forced strain hardening cementitious composites. Segmentation was performed
by thresholding, in which two phases could be quantitatively analyzed: pores
and steel fibers. The hybrid composites were produced replacing PVA by steel
fibers in 25%, 50%, 75% and 100% fractions and changes in pore structure
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Chapter 1. Introduction 16

and steel fiber alignment were investigated. The results were published in the
Journal of Building Engineering and the paper was entitled "The use of X-ray
microtomography to investigate the shear behavior of hybrid fiber reinforced
strain hardening cementitious composites" (8). In the published paper, the
micro-mesostructural characterization was correlated with the behavior of the
composite when submitted to shear loading.

The first challenge of this thesis arises in chapter four. In this chapter,
a DL network to segment the constitutive phases of SHCC images obtained
from microCT was used. This step was successfully completed and the results
of the work were published in the Journal "Cement and Concrete Compos-
ites" and entitled "Semantic segmentation of the micro-structure of strain-
hardening cement-based composites (SHCC) by applying deep learning on
micro-computed tomography scans" (9).

The work presented in chapter five used the network developed to
quantify the SHCC phases of images obtained from an in-situ microCT test.
The work was published in the Journal "Cement and Concrete Research" as
"Combined mechanical and 3D-microstructural analysis of strain-hardening
cement-based composites (SHCC) by in-situ X-ray microtomography" (10). In
this research, in-situ tensile and compression microCT test were performed in
SHCC specimen and the quantitative data were related to their mechanical
response. Once again, deep learning network was essential for quantitative
image analysis.

The fourth and final study of this thesis involves the use of DVC to
measure internal displacement and strain through microCT images. Three open
source DVC codes were applied to the in-situ microCT images of tensile tests
obtained from the study of the previous chapter. The result of one of these
codes was presented in the conference: "28 Congresso da Sociedade Brasileira
de Microscopia e Microanálise" with the title "Digital Volume Correlation
(DVC) applied to in-situ microCT Images of Strain-Hardening Cement-Based
Composites (SHCC)" (11).

Finally, chapter seven concludes the importance of all the techniques
used in the thesis for the characterization of materials in general and shows
the relevant results obtained for the SHCC.
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2
Literature review

SHCC is a promising material for the civil construction industry that has
the ability to resist increased tensile force after crack formation, over a signif-
icant tensile deformation range. The increased resistance is achieved through
effective crack bridging by fibers, across multiple cracks of widths in the micro-
range (1). Such multiple cracking results in a remarkable tensile ductility prior
to failure, bringing enhanced behavior in terms of mechanical performance of
elements made of or strengthened with SHCC (2)(3)(12)(13)(14).

These positive features are achieved by a purposeful adjustment of the
material composition, which targets a micromechanical balance between the
crack-bridging behavior of the micro-fibers and the cracking behavior of the
finely-grained cementitious matrix (15)(16)(17). Moreover, the arrangement of
each constitutive SHCC micro phases also influences the material response. In
any case, it is clear that their analysis at micro- and meso-scale can explain the
macro mechanical behavior on various loading and environmental conditions
(17)(18)(19). In addition, analyses on this level can also bring information
about damage formation in the material (20)(7).

MicroCT represents a powerful tool for analyses at the micro- and meso-
levels, since it can generate a 3D representation of the material micro-structure
(7)(21)(22). This is a non-destructive technique in which its basic principle is
the attenuation of an x-ray beam when passing through the sample. As the x-
ray attenuation is related to the density and the atomic number of the material,
different phases in the material will generate different gray levels in the image.

In order to obtain information of the material’s microstructure, each of
the constitutive phases must be distinguished. This distinction in images is
done through the image processing step called segmentation. The standard
way to segment different phases in an image is by choosing a cut-off on gray
value range on their histogram (thresholding). For fiber reinforced composites
this was already done for steel fibers (22). This is facilitated by the high density
of the steel fibers compared to the surrounding cementitious matrix and the
resulting different x-ray absorption, leading to distinct bright areas. The voids
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Chapter 2. Literature review 18

are easily segmented by thresholding, which results in darker areas compared
to the matrix.

In the case of SHCC usually composed by tiny polymeric fibers, however,
several challenges arise. First, the micro-polymer fibers and the fine aggregates
in the cementitious matrices require high resolution for their detection and
accurate morphologic representation. Usually this implies in a compromise
between the resolution of the scans and the size of the scanned specimen.
Secondly, the low density of the polymer fibers does not allow their distinction
from the air inclusions just based on the gray values. Similarly, the gray-
value based segmentation of the fine aggregates from the cement matrix is not
possible due to their similar densities. Thus, more sophisticated segmentation
techniques must be applied.

The manual segmentation by human operators is not efficient and in-
volves significant uncertainties (23). On the other hand, machine learning is a
method that uses algorithms, that iteratively learn from data, allowing com-
puters to find hidden insights without being explicitly programmed where to
search (24). In this context, deep learning (DL) is a new technique which has
proven to be efficient for segmentation of materials with complex microstruc-
tures (25)(26).

Once DL technique was applied for segmentation of complex phases
in the material, their microstructure analyses by 3D images obtained from
microCT become possible. A standard way for such analysis is to characterize
the material before and after undergoing some type of mechanical test. Thus,
the appearance of damage during the test can be related to the initial
microstructure of the material. This can be achieved by an ex-situ or in-
situ microCT test. The disadvantage of the ex situ microCT approach is that
the observed damage status is inaccurately reflected because of crack closure
effects. In-situ CT measurements enable a very accurate damage assessment
even at very critical loading conditions (27).

For both cases, the pre and post test images can be compared for analysis
of internal changes that have occurred in the material. The technique that has
been widely used for this type of analysis is the digital image correlation (DIC),
in particular its 3D volumetric version digital volume correlation (DVC),
also known as volumetric DIC. The basic principle of DIC is to assess the
displacements and strains fields by comparison of two images acquired at
different stages of deformation. The first image is generally referred to as the
reference image (sample without being subjected to mechanical loading) and
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the second, acquired after an increment of deformation, as the deformed image
(28). DIC (or DVC) provides displacement vectors over a set of points (sub-
volumes) in the images, from which strains can be calculated to be used, for
example, to constrain theoretical or numerical models. Thus it is possible to
follow the evolution of displacements throughout a sample and throughout a
loading experiment (29).

In this way, the use of DL as a segmentation technique for analysis of
images obtained from in-situ microCT and the sequential use of the DVC
technique to understand internal changes according to their microstructure
may be innovative in terms of analyzing materials such as the SHCC. In short,
the motivation of this study is to achieve innovative data from the SHCC
microstructure through the development and use of modern techniques related
to 3D images.

2.1
The strain-hardening cement-based composite (SHCC)

SHCC is a special type of reinforced concretes which generates multiple
fine cracks when subjected to increasing tensile loading (30). Figure 2.1 shows
how this happens when this material is under monotonic tensile loading. As
the first crack forms, the fibers bridge the crack, leading the tensile stresses
across the crack surfaces. With increasing load, the formation of new crack
occurs. This leads to the subsequent development of another crack at the
second weakest cross-section. This repeats itself, resulting in a set of almost
uniformly distributed cracks. At the tensile strength ft the localisation of the
failure occurs, namely when one main crack develops. Due to a moderate
opening of a large number of fine cracks, a strain capacity of several percent
can be observed (31). Therefore, many types of loading and environmental
conditions have been studied for this material such as its durability, cyclic
loading, impact loading, flexural behavior, shear behavior, temperatures effect,
and the following subsection presents some works that analyzed the behavior
of SHCC under different mechanical loads and environmental conditions.
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Figure 2.1: SHCC under monotonic tensile loading (31)

2.1.1
SHCC matrices and fibers

The interfacial bonding and fiber pullout properties, the material param-
eters of the fibers and of the matrix, the distribution of flaw sizes in the matrix,
the fiber orientation and their dispersion in the matrix play an important role
in the resulting composite mechanical behavior (32). Because of this, the choice
of which matrix and fiber to be use in SHCC is of utmost importance.

Different matrices are used to manufacture SHCC, so the composition of
the matrix can be varied in each study. For conventional matrices, the amount
of the aggregate can be varied and the addition of fly ash has been constantly
used. The aggregate influences the matrix strength so that it is increased with
increasing sand. The addition of fly ash reduces the matrix strength, but the
fiber-matrix interfacial zone is modified, leading to improved fiber slip from
the matrix instead of fiber breakage (1).

Another widely used matrix is the ultra-high performance concrete
(UHPC). While very high tensile and compressive strengths are achieved,
such composites, in comparison to conventional SHCC, yield significantly lower
strain capacities which can be traced back to less pronounced multiple cracking
(18). When this matrix is used this material is also known as high-strength
strain-hardening cement-based composites (HS-SHCC).

Regarding the fibers used, several types are studied as an option for
SHCC composition. The SHCC can be mix designed, for example, with
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polyvinyl alcohol (PVA), polyethylene (PE) or steel fiber (33). Also, hybrid
fiber reinforced SHCC are studied (34)(8).

SHCC with PVA fiber is one of the most used. These fibers were analyzed
separately from the matrix and the results showed that the behavior of a single
PVA fiber can be considered as linear elastic–plastic and it was concluded that
the components of irreversible deformation cannot be neglected. It was also
concluded that PVA fiber creep can be considered insignificant (31). Other
studies were carried out to reveal rate dependence in component phases (fiber,
matrix, and fiber/matrix interface) and it was found that fiber stiffness, fiber
strength, matrix toughness and fiber/matrix interface chemical bond strength
were loading rate sensitive and they increase with loading rates in a PVA-
SHCC system. These changes in component properties result in the reduction
of tensile strain capacity of PVA-SHCC as the strain-rate increases (35).

The different tensile behavior between normal fiber-reinforced concrete
and PVA fiber-reinforced was highlighted by the comparison of complementary
energy from their bridging stress and crack open curve. It was concluded
that PVA fiber features high interfacial chemical bond, frictional stress, and
slip-hardening in a cementitious matrix. Moreover, the investigation on the
effect of different fiber surface treatment composite performance revealed the
importance of interface tailoring, with a higher oiling agent content that lowers
the chemical bond interfacial friction, and surface abrasion, higher composite
strain capacity and better performance consistency are obtained (36).

Another widely used fiber is polyethylene-based fiber. If this material
has a density from 0.940 to 0.965 g/cm3 it can be called high density
polyethylene (HDPE). A study compared the behavior of three different types
of SHCC subject to uniaxial impact tensile loading: the normal-strength matrix
combined with PVA fiber, the normal-strength matrix with HDPE fiber, and
a high-strength matrix with HDPE fiber. It was concluded that the strain rate
sensitivity of the fiber-matrix interface depends strongly on the fiber type and
matrix composition (41).

Less common fibers have also been studied as an option for SHCC,
such a poly(p-phenylene-terephthalamide) (aramid), as-spun poly(pphenylene-
2,6-benzobisoxazole)(PBO_AS) and high-modulus PBO fibers (PBO_HM).
Research works that studied the tensile behavior of HS-SHCC made with these
four fibers presented their properties (table 2.1).
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Table 2.1: Physical and mechanical fiber proprieties (18).

HDPE Aramid PBO_AS PBO_HM
Diameter a [µm] 20 12 13 13
Density [g/m3] 0.97 1.39 1.54 1.56
Tensile strength [Mpa] 2500 3400 5800 5800
Modulus of elasticity [Gpa] 80 74 180 270
Elongation at break [%] 3.5 4.5 3.5 2.5
Decomposing temp. [◦C] n.a. 500 650 650
Melting temp. [◦C] 150 n.a. n.a. n.a.

n.a. - not available
a As measured with optical microscopy

These fibers were analyzed by scanning electron microscope (ESEM) and
it was seen that they have different surface textures. The HDPE fibers have
relatively deep longitudinal grooves along the entire fiber length. Both types
of PBO fibers exhibit rather smooth surfaces, while the aramid fibers show a
rough and non-uniform texture (figure 2.2) (18).

Figure 2.2: Surface textures of four types of polymeric fibers by scanning
electron microscope (ESEM) (18).

The cementitious material reinforced only with steel fibers does not
present a strain-hardening behavior (37), but this behavior can be achieved
with the hybridization of steel and PVA fibers (34), for example.
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2.1.2
Behavior of SHCC under different mechanical loads and environmental
conditions

Since the properties of cementitious materials are related to the transport
of water and aggressive chemical compounds, the study of their durability is
essential. For SHCC this becomes more prominent, once their multi-crack for-
mation cannot lead to significantly increased water or aggressive chemical com-
pounds penetration. Therefore, the multi-cracks opening must be controlled to
ensure the durability of the material.

In a preliminary research it was studied the durability of SHCC under
mechanical, chemical, and thermal actions. It was concluded that a high ductil-
ity can be taken into consideration in service life design only if the structure is
to be placed in an aggressive environment, such as marine environment (38). A
subsequent research that analyzed the durability for the same actions showed
that evidence has been presented that crack control is maintained up to large
strain levels but is not proved to what extent this crack control is valid for
different loading histories and paths (1).

Some research studied a way to reduce the penetration of fluid into the
material. A study used neutron radiography to analyze water penetration in
a neat SHCC and a SHCC produced by adding a silane-based water repellent
agent. They concluded that if SHCC is made with water repellent, an efficient
barrier against water penetration is built up and thus could consider a material
ductile and durable (39).

The SHCC was already studied under cyclic loads since a deep knowledge
of the fatigue behavior is indispensable for a safe and economical design of
structural members, as well as for building elements for which such materials
might be used. It was revealed that the hysteresis analysis of the stress–strain
curves showed that the material stiffness decreases with an increasing number
of loading cycles and a considerable partial inelastic deformation takes place
in every cycle (31). Also, in another work, it was concluded that the repeated
loading caused a decrease in the tensile strength of SHCC compared with the
results from the monotonic tests (40).

The building of new structures with enhanced impact resistance is pos-
sible using SHCC, making this study of great importance. It has already been
confirmed that in dynamic loading SHCC shows superior performance with
regard to fracture energy when compared to conventional, high-performance
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or ultra-high-performance concrete with or without fibers (2). A recent study
compared two fiber materials and concluded that the first-crack strength of
SHCC under impact loading depends not only on tensile strength and the
strain rate sensitivity of the constitutive cementitious matrix, but also on the
strength and strain rate sensitivity of the fiber-matrix interface (41).

Also motivated by the potential of SHCC in application for structural
durability, studies of pure shear behavior were done. The shear strength of the
cementitious composites was 50% higher than the ultimate strength obtained
in the direct tension tests (42). Other study showed that the shear response of
SHCCs is characterized by three phases: a linear first phase; followed by a shear
hardening phase, where the formation of multiple microcracks is observed; and
then a shear softening stage occurs, which is characterized by the formation
of macrocracks (43). For a typical behavior when the material is subjected to
tensile loading, see Figure 2.1.

It has been shown that the application of a SHCC layer to strengthen
the tensile side of a plain concrete beam increased both load carrying capacity
and ductility of beam under bending loading (44). Likewise in the case of
shear strength, which the enhance durability of structural concrete was proved
through the high ductility of the material in diagonal tension, or shear (42).

The temperature effect in SHCC has already been investigated for
three different strain rates. In that study uniaxial tension tests with in-
situ temperature control were performed at 22◦C, 60◦C, 100◦C, 150◦C. The
experiment showed that the strain capacity increases with decreasing strain
rate at temperatures of 22◦C and 60◦C, but for the temperature of 100◦C
this material property increases when the strain rate increases. At 150◦C the
investigated SHCC loses its ductility and no noticeable strain rate effect can
be observed (19).

Many SHCC research works are focused on the use of this material for
repair of concrete structures. The high ductility and strain capacity of SHCC
give this material high potential for use in applications in which high, non-
elastic deformability is needed, some of the most promising applications are
structural repair and strengthening of existing structures (13) (45).

However, the SHCC behavior is linked with several possible variations in
the material composition, such as the matrix mix composition or the type of
fibers used, as shown in the previous subsection.
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2.2
Micro-computed tomography (microCT) technique

MicroCT is a non-destructive technique that allows the investigation of
the internal structure of a sample by creating three-dimensional images. The
basic principle of microCT is a source emitting x-ray onto a sample, this x-ray
is attenuated as it passes through the sample and then detected by a detector.
This is done while the specimen holder rotates 360◦ about a single axis at
a certain step, generating a sequence of projection images. The projection
images are reconstructed using mathematical principles of tomography, finally
providing a sequence of 2D slices that compose the 3D image (46). See in Figure
2.3 a schematic illustration of x-ray microCT acquisition and reconstruction
processes.

Figure 2.3: Schematic illustration of X-ray microCT acquisition and recon-
struction processes (46).

Each internal phase of the material is distinguished in the image accord-
ing to its x-ray attenuation coefficient. The x-ray attenuation coefficient is
related to the atomic number (Z) and mass density of the chemical element or
mixture of elements in the materials’ phase. In general, for a fixed x-ray en-
ergy, lower-Z elements absorb less than higher-Z elements. Thus, the different
phases, with different atomic numbers and density, will appear with different
gray levels in the reconstructed image. Conventionally, higher-Z and density
phases show up brighter and lower-Z and density phases show up darker.

From the image obtained, the qualitative and quantitative study of these
is supported by the field known as digital image processing and analysis.
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2.2.1
Digital image processing and analysis

To obtain data of the material’s microstructure a standard procedure
is usually followed, which begins with the acquisition of the image by some
microscopy technique, see the flowchart in Figure 2.4. Succeeding image
acquisition, by microCT in the research at hand, the process can be divided
into two major steps known as digital image processing and digital image
analysis.

Figure 2.4: Standard digital image processing and analysis sequence. Adapted
from (47).

The digital image processing step can comprise three steps: pre-
processing, segmentation and post-processing. The pre-processing has the role
of adapting the image for a better visualization (qualitative) and/or to reduce
the errors of quantitative data that will be obtained in the following steps. A
classic example of pre-processing are the filters for noise reduction. Image noise
appears as pixels/voxels that do not match the surrounding region, which may
compromise the segmentation step. Properly pre-processed, the image moves
on to the segmentation step. At this point, the processes are no longer per-
formed on each pixel/voxel and but rather on groups of adjacent pixels, called
regions of interest (ROIs). Contextualizing this thesis, there are three ROI
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corresponding to three constituent phases of SHCC: pores, fibers and fine ag-
gregates. Once segmented, a post-processing step can be performed to correct
the ROIs, eliminating spurious pixels and/or objects. For instance, objects can
be eliminate by volume or aspect ratio. This step can be repeated after the
feature extraction until reaching a satisfactory result.

In the digital image analysis step quantitative data are obtained and
can be subdivided in two steps: the feature extraction and the pattern
recognition/classification. In the extraction of features, sets of pixels/voxels
connected within the ROI can be understood as objects, and features such
as volume and aspect ratio can be measured for each object. Then, with the
information of one or more features, the objects can be classified and/ or a
pattern of the features can be determined.

An image histogram is a graphical representation of the tonal distribution
in a digital image, which plots the number of pixels/voxels for each tonal value.
The same phase in the material will be represented by pixels/voxels of similar
gray levels, and this will appear as a peak in the image histogram. The standard
method of segmentation is known as a thresholding, which distinguishes an
ROI by choosing a range in the image histogram that contains the peak
corresponding to a given phase. Thus, when the peaks are not well defined
for each phase that constitutes the material, the thresholding method may not
be efficient, requiring the search for alternative methods.

The segmentation can be considered a critical step since some images
present difficulties to distinguish internal regions and that may lead to in-
accurate data. As mentioned, the microCT technique generates gray levels
according to the microstructural phase density. Therefore, if there are two or
more phases with similar density in the material, that will generate voxels with
similar gray levels for these different phases in the image. This will result in
an image histogram of the voxel gray levels in which there will be no defined
peaks for each phase.

In this context, the use of machine learning as a method for image
segmentation has been strongly explored. The main difference between the
two segmentation methods is that by thresholding the tone of the separate
pixels/voxels is the only parameter used, while the machine learning takes
into account the various attributes of groups of pixels, such as the shape and
configuration of their tones. In this way, this method can solve the trouble of
images that present overlapping peaks for two or more phases.
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2.2.2
Machine learning applied to image segmentation

All studies about analysis of 3D images of cement-based composites
presented so far used the thresholding method for segmentation of the phases.
As mentioned before, this is not suitable to the complex microstructure of
SHCC. In this context Deep Learning (DL) appears as a solution for this task.

Among several architectures of a DL network, the Convolutional Neural
Network (CNN) is one that has been widely applied to image segmentation.
CNNs already demonstrated excellent performance at tasks such as hand-
written zip code digit classification (48) and face detection (49). In recent
years, several works have shown that they can also be applied to more
challenging visual classification tasks (50), such as in materials with complex
microstructures (9) (23)(26)(51)(52)(53)(54)(55)(56).

In DL, multiple levels of representation are obtained by composing
non-linear modules that transform the representation at one level into a
representation at a higher, slightly more abstract level. For classification tasks,
higher layers of representation amplify aspects of the input that are important
for discrimination and suppress irrelevant variations (57). The networks require
as input a training set, defined by the user upon the images. The network is
trained until its outputs match the desired object classes, within a certain
error criterion. The trained network can be checked for accuracy upon a set of
reference images and is then ready to be applied to other images.

Research that used artificial neural network for segmentation of radio-
graphic images was able to identify and quantify the damaged areas caused by
drilling in composite materials. The authors justified the use of this segmen-
tation technique saying that it is easy to use, efficient, accurate and robust to
noise, common in radiographic images (52).

Neural networks also presented good results in the classification of
internal damage in steels working in creep conditions. The damage was
classified according to a database of standard images with the development
phases of the damage processes. The advantage of using neural network for
this task is that the accuracy of the traditional method vastly depends on the
place chosen to take the metallographic structure, the proper interpretation
of observed metallographic structure and the need of engagement of experts
with sufficient practical knowledge. A computer assisted method reduces the
human factor and allows an objective assessment of the material’s structure
(54).
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2.2.3
In-situ microCT

The ability to perform mechanical tests or promote other kind of inter-
action with the specimen during tomographic image acquisition is known as
in-situ microCT. This means that for the same specimen it is possible to obtain
a sequence of 3D images at different stages of mechanical loading. The advan-
tage of this technique is that it can monitor the failure patterns of materials
during the mechanical test until failure.

In-situ microCT is not a common technique to analyze the SHCC
nowadays, but has already been widely used for cement materials in general,
mainly to characterize the fracture evolution when they are under progressive
compressive loading (58)(59).

In-situ microCT images were also used to characterize microstructure
and internal damage in cement-based materials and then related to bulk
splitting strength and fracture energy (60). This energy was measured using a
first principles approach in which the bulk energy dissipated by fracture was
normalized by the surface area created, which was evaluated in such a way
that roughness, branching, and fragmentation could all be directly measured.
Results showed that, for the specimens tested, aggregate surface roughness had
little effect on strength but significant effect on fracture energy. So, 3D images
allowed to explicitly represent microstructural features into computational
models for material performance (60).

Even without the use of instrumentation during the test, the displace-
ment can be measured by DVC. A study used a sequence of 3D microCT images
to obtain the elastic modulus of concrete by DVC (59). In order to compare
the elastic modulus, the first image (before any load) was used as input for
finite element (FE) models. For this, the threshold-based segmentation sepa-
rated the concrete into three distinct phases: aggregates, voids and paste. The
results showed that microCT-image based FE models were successful, since
the elastic modulus obtained was 24.2 GPa, which is close to the experimen-
tally obtained 26.42 ± 3.20 GPa. This research proved that the combined use
of advanced techniques as in-situ microCT, DVC and image-based modeling,
offers highly-accurate, complementary functionalities for both qualitative un-
derstanding of complex 3D damage and fracture evolution and quantitative
evaluation of elastic properties of multi-phasic composite materials such as
concrete (59).
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2.2.4
Digital volume correlation (DVC)

DVC is a technique that estimates full-field displacement and strain in
3D over the entire volume of the specimen by correlating imaging sub-volumes
of the specimen in different loading states (6). DVC can be applied if there are
at least two images presenting a change in micro or mesostructure. It is based
on three main steps: acquisition of 3D images; pattern-matching correlation
procedure to measure a displacement vector field; calculation of the strain
field from the measured displacements (61)(62).

3D image acquisition needs to be non-destructive since it must not
influence the mechanical test. So, in-situ microCT fits perfectly in DVC
context. DVC can also be applied to images acquired in an ex-situ setup,
but as in in-situ experiments the specimen is not removed from the specimen
holder, results can be more accurate.

With the sequence of images of the material at different loading stages,
the local displacement can be measured. For it, the user must determine a sub-
volume in the non-deformed image and the code will search in the deformed
image for the same sub-volume through pattern-matching correlation. This
sub-volume will move across the 3D image at a step also set by the user. The
result will then be vectors that start at the center of the sub-volume in the
non-deformed image and end at the center of the sub-volume of the deformed
image. These displacement vectors are then used to calculate the strain field,
according to the size of the defined sub-volume.

DVC has already been used to investigate distinct types of materials
(63)(64)(65)(66)(58). With the relevance of these results in scientific research
of materials, DVC has gained ground as a strain mapping method of materials.
Therefore, several codes and software have been developed and improved to
support this demand (63)(67).

2.3
SHCC analyzed by microCT

Until recently, microCT has been used as a complementary technique in
SHCC research. For example, in the study that investigated the mechanical
behavior of SHCC under impact loading, microCT was performed in some
specimens that were subjected to highly dynamic spall experiments using a
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Hopkinson bar spall, see Figure 2.5. This result was analyzed qualitatively
and showed that the cracks that were observed on the lateral surface also
appear inside the material and the center of the concentric circular cracks are
located along the longitudinal axis of the specimen (2).

Figure 2.5: MicroCT image of a specimen submitted to a spall experiment (2)

In another study microCT was used for monitoring rust formation during
accelerated corrosion of SHCC reinforcement, and subsequent cover cracking.
A quantitative analysis was performed by four-phase segmentation. A manual
thresholding was applied for determination of the boundaries between these
phases: air voids and cracks, cementitious material, corrosion products, and
non-corroded steel (Figure 2.6). They are displayed as white, black, red, and
blue, respectively, in Figure 2.7.

MicroCT images were acquired during accelerated exposure to corrosion.
A single vertical slice was selected to monitor this exposure, and from the
first scan after the reference (second image in Figure 2.7) several cracks were
clearly visible. Subsequent scans showed the formation of new cracks, without
the formation of a single major crack. The rust layer around the steel bar had
a relatively uniform thickness, with the exception of the contact with the large
air void. These scans also suggest that the corrosion products penetrate into
the air void, thereby relieving some of the pressure which would otherwise be
exerted onto the surrounding material (68).
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Figure 2.6: 3D image histogram of SHCC reinforced by carbon steel rod.
Dashed lines indicate the threshold for segmentation of each phase (68).

Figure 2.7: Monitoring of the SHCC corrosion process by segmented microCT
images sequence (68).
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In this work the voxel size was about 16 µm and in the histogram (Figure
2.6) it is possible to see that there is no peak that differentiates the fibers from
the cement paste. So, in the image what they call paste, would be paste with
fibers. This happens because of the small difference in density between these
materials, requiring a higher resolution to maybe differentiate them in an image
by thresholding.

From the works available in the literature only steel fibers could be
distinguished from the cementitious matrix by intensity thresholding, since
steel and cementitious material have enough density difference. Also, steel
fibers commonly have larger sections and lengths than other fibers such as
PVA and PE, making it easier to identify them for the same resolution.
A study analyzed microstructural characteristics of hybrid (steel and PVA)
fiber reinforced concrete through microCT images and correlated it with their
mechanical properties (69). In this study only steel fibers were segmented, see
Figure 2.8. Also note that the voxel size of 0.1 mm x 0.1 mm x 0.5 mm did
not allow the visual distinction of the PVA fibers in the cementitious matrix.

Figure 2.8: (a) 2D slices microCT image of steel-PVA fiber reinforced concrete;
(b) segmented image (purple: matrix, green: pores, red: steel fibers) (69).
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Until recently, fibers such as PVA and PE inside a cementitious matrix
could not be analyzed quantitatively due to the limitations of segmentation
techniques. Machine learning applied to image segmentation can be a solution
to such limitation and this is one of the key points of this thesis.
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3
The use of X-ray microtomography for microstructural char-
acterization of PVA-steel fiber reinforced strain hardening ce-
mentitious composites

The mechanical behavior of SHCC is highly related to its micromechan-
ical response and can be improved by fine-tuning its microstructure. Thus,
the study of each constituent phase and the interaction between them is es-
sential. Although the studies demonstrate the positive effect of hybridization
of the SHCC, little is known about microstructural changes when steel fibers
are introduced to replace part of the PVA. In order to obtain information re-
garding the material microstructure, imaging techniques are required. In this
context, micro-computed tomography (microCT) appears as an efficient tech-
nique for 3D analysis of material microstructure (7)(21)(70) and internal dam-
age (20)(71)(58). The resolution of the images obtained from this technique
are typically on a meso scale and dependent on the diameter of the scanned
specimen (72). Regarding SHCC microstructure, PVA fiber tiny size imposes
the need of a suitable resolution for its 3D representation. Conversely, con-
stituent phases such as macro pores and steel fibers can be readily discrimi-
nated with resolutions reached in specimens’ sizes typical of laboratory tests
(73)(74)(75)(76). It is also facilitated by the great difference in average density
and atomic number of these phases chemical composition, resulting in different
X-ray absorptions. The high density and atomic number of the steel fibers as
compared to the surrounding cementitious matrix gives rise to distinct bright
volumes. On the other hand, the air voids result in darker regions when com-
pared to the matrix. In this way, the orientation of the steel fibers has already
been analyzed in specimens of steel fiber reinforced concrete and has been
correlated with behaviors such as post-cracking (77) or tensile response (78).

3.1
SHCC Composition and Mixing Protocol

This research investigated a normal-strength matrix reinforced with PVA
and steel fibers. As dry materials, a high-early strength cement type CPV-ARI
from LafargeHolcim and a fly ash from Pozofly were used. According to the
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suppliers, they have densities of 3120 kg/m3 and 2350 kg/m3, respectively.
A quartz river sand with particle sizes ranging from 75 to 212 µm and 2700
kg/m3 density, was used as fine aggregate. A superplasticizer (Glenium 51) and
a viscosity modifying agent (Mastermatrix UW410), both supplied by BASF,
were used to adjust the rheological properties of the composites. Regarding the
fiber reinforcement, a constant volume fraction of 2.0% was adopted. Hybrid
compositions were produced by replacing PVA by steel fibers in 25%, 50%,
75% and 100% fractions. The PVA fibers used in this study were produced by
Kuraray Co. They have a diameter of 40 µm, a cut length of 12 mm and a
density of 1260 kg/m3. The steel fibers were supplied by Ganzhou Daye. The
fibers have a diameter of 120 µm, a cut length of 13 mm and a density of
7850 kg/m3. Table 3.1 presents the nomenclature of the investigated SHCC
with their respective compositions. The SHCC mixtures were prepared using
a 5 L planetary mixer. First, cement, fly ash and fine aggregate were mixed
for 1 min. Next, superplasticizer and water were added for 1 min. Then, the
materials were mixed for 5 min until they reached the desired rheology. The
polymeric and steel fibers were added to the matrix during the following 2
min. After the mixing procedure, the materials were placed into the molds and
cured until they reached appropriate strength. The specimens were molded in
the horizontal direction to prevent fiber segregation. After 24 h, the specimens
were demolded and stored under constant temperature (21◦C) and humidity
(65%) for 14 days, before testing.

Table 3.1: Mixture composition of SHCC under investigation (kg/m3).

Mix Cement Fly Quartz Water VMA* SP* Fiber Volume
Ash Sand Fraction (%)

PVA Steel
P2.0 505 621 536 336 1.2 11.7 2.0 -
P1.5S0.5 505 621 536 336 1.2 11.7 1.5 0.5
P1.0S1.0 505 621 536 336 1.2 11.7 1.0 1.0
P0.5S1.5 505 621 536 336 1.2 11.7 0.5 1.5
S2.0 505 621 536 336 1.2 11.7 - 2.0
*VMA: viscosity modifying agent; SP: superplasticizer Glenium 51.
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3.2
MicroCT and image processing

The microCT scanning and image processing protocol were performed in
a Zeiss-Xradia 510 Versa. All specimens were imaged prior to shear testing,
totaling ten microCT scans. Taking into consideration the analysis’ region of
interest and the desired resolution, the height of the scans was approximately
40 mm. Figure 3.1 (a) shows a specimen placed in the microCT test position
highlighting the approximate scanned region of interest (ROI). The scans were
approximately 2-hours long and the conditions were 140 kV voltage, 10 W
power, 0.4X macro lens, 1601 projections images at 1-second exposure time.
The reconstruction was done using the filtered back projection method and
generated 3D images with a voxel volume of (18.5 µm)3.

Figure 3.1: (a) SHCC specimen placed between X-ray source and detector,
highlighting in red the scanned region and (b) X-ray scanned volume after
cropping.

A systematic image processing workflow protocol was followed for all
ten 3D images obtained. First, all images were carefully cropped to eliminate
external regions and darker parts caused by the X-ray cone effect. After
cropping, the ROI was set to approximately 4 mm above and below the
notch, as shown in Figure 3.1 (b) for P1.0S1.0 scanned specimen. Then, the
edge-preserving non-local means low-pass filter (79) available as a FIJI plugin
(80), was applied in order to reduce image noise. Pores and steel fibers were
segmented using the thresholding method. Thresholding segmentation is done
by setting a range of gray shades in the image histogram for each phase of
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interest. The pores and the background represent the darkest area of the image
since it is the least dense part of the investigated specimen, the air. This means
that in the image histogram, pores and the background are represented by the
same tonal range. Thus, to discriminate the pores from the background, the
matrix and steel fibers were initially segmented, the internal pores were filled,
and then the pores were obtained by subtracting the 2 images (7). On the
other hand, the good contrast between the steel fibers and the matrix allowed
for direct thresholding segmentation.

The pores were studied in two different complementary steps. The first
was intended to correlate porosity with the mixture composition of SHCC.
In this step, segmented objects up to three voxels and/or with sphericity less
than 0.3 were eliminated, since these objects do not correspond to pores, often
resulting from segmentation problems at the edges. Sphericity is a function of
the volume and of the surface area, in which spherical pores have sphericity
close to 1 (7). From this segmentation the 3D porosity was determined and to
verify the porosity distribution along the specimen, the 2D porosity of some
axial slices were plotted. Once the crack patterns are influenced by the pores
structure (81), the second step aimed to verify the influence of the largest
pores on the fracture of the material. In this case, only pores with equivalent
diameter > 1 mm were considered, and their position was compared with the
2D position of the cracks obtained by the DIC test in order to check possible
crack nucleation or propagation trend points. All hybrid specimens had their
pores larger than 1 mm plotted in 3D. The x and z axes were indicated for
comparison with the images obtained from DIC. A separate scale was set for
pores above 3 mm, avoiding concentration of pores of the same color on the
scale.

Fiber orientation study was performed only on steel fibers. As the
specimens are larger due to the shear test configuration, the achieved resolution
is not enough to distinguish the PVA fibers. Moreover, the very bright steel
fibers lead to a compression of the dynamic range in the dark range of the other
phases (matrix, pores, PVA fibers), thus decreasing the contrast between them.
Two steps were performed for the steel fibers: quantification of fiber dispersion
and orientation. As the fiber content was set in the mixture composition and
the scanned volume was around the notch, the fiber content obtained by image
analysis should indicate whether there is a concentration of fibers near the
notch. In the present work the fibers were mixed randomly, so two angles
should be studied, phi (φ) and theta (θ), as shown in Figure 3.2. The z-axis is
longitudinal to the specimen and the y-axis is the width of the specimen. The
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orientation measurements were carried out with software Dragonfly (Object
Research Systems, Montreal, Canada).

Figure 3.2: Phi (φ) and theta (θ) angle – schematic representation.

As the steel fibers have a diameter of 120 µm and the pixel size of an
image section is 18.5 µm, this means that around six pixels define the steel fiber
section diameter. To ensure that two or more fibers analyzed are not connected,
a morphological operation of erosion was performed on large volume segmented
objects. Thereunto, a systematic procedure was carried out: objects with a
volume greater than 0.35 mm3 were separated and erosion was applied to them.
If fibers were still connected in the same object, the procedure was repeated.
A meaningful number of pixels representing the fiber allowed that erosion
was executed without eliminating the fibers, but only slightly shrinking and
thinning them. Next, the analysis was done through the frequency distribution,
such that the phi angle showed the relative frequency of each value within a
bin range of 5◦, starting at 0◦ and ending in 90◦, and theta angle showed the
percentage frequency of each value within a bin range of 5◦, starting at 0◦ and
ending in 180◦.

3.3
3D images processing and analysis results

Table 3.2 shows the results obtained in the microCT analysis for each
specimen tested. It presents the values obtained for the pore volume (mm3),
the steel fiber volume (mm3), the entire analyzed volume (mm3), the porosity
(%) and the steel fiber content (%). From the results, it is possible to see
that the porosity is greater the higher the percentage of steel fibers instead of
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PVA fibers. Figure 3.3 shows the porosity along the ROI of specimens P2.0_1,
P1.0S1.0_1 and S2.0_1. This result presented a random distribution, without
a preferential position for pore concentration.

Table 3.2: Porosity and Steel fiber Content (%).

Mix Pore volume Steel fiber Analyzed Porosity Steel fiber
(mm3) volume volume (%) Content

(mm3) (mm3) (%)
P2.0_1 403.7 - 7446.3 5.4 -
P2.0_2 333.8 - 8039.2 4.2 -
P1.5S0.5_1 188.8 64.9 7711.3 2.4 0.8
P1.5S0.5_2 258.8 47.3 7139.5 3.6 0.6
P1.0S1.0_1 248.8 107.9 7819.9 3.2 1.4
P1.0S1.0_2 274.7 118.3 7334.4 3.7 1.6
P0.5S1.5_1 171.0 151.5 6495.9 2.6 2.3
P0.5S1.5_2 206.4 194.8 7454.6 2.8 2.6
S2.0_1 120.8 217.1 7696.6 1.6 2.8
S2.0_2 127.6 213.5 7861.8 1.6 2.7

Figure 3.3: 2D porosity measured from 12 mm top to 12 mm bottom slices at
2 mm spacing.

By comparing the specimens P2.0_1 and S2.0_1, produced with 2.0% of
PVA and steel fibers, respectively, the porosity decreases from 5.4% to 1.6%,
a reduction of a factor greater than 3. Figure 3.4 shows the pore distribution
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randomly colored of the mentioned specimens. The differences between the
composites can be observed. Only the P1.5S0.5_1 (2.4%) specimen did not
follow the porosity trend, which does not invalidate the conclusion since the
porosity is affected by the material preparation.

Figure 3.4: 3D representation of the segmented pores of the specimens (a)
P2.0_1 and (b) S2.0_1.

Figure 3.5 shows the 3D representation of pores larger than 1 mm in
diameter and the steel fibers distributed in each hybrid specimen studied. The
three largest pores in the hybrid specimens were separated on a cyan color scale.
The equivalent diameters of these pores are 3.0, 3.5 and 4.3, in the specimens
P0.5S1.5_2, P1.5S0.5_1 and P1.5S0.5_2, respectively. No pertinent relation
between the position of the macropores and the crack pattern was found.

This result was expected since the PVA fibers are smaller particles
scattered in the matrix and for the same fiber contents (%) there is a
meaningful greater number of fibers, being more conducive to the formation of
voids. According to (82)(82), the use of micro polymeric fibers may increase the
number of internal microdefects, which can affect both the multiple cracking
behavior and the tensile strength of the composites. The results obtained in
the present research confirm that PVA fibers increase the pore volume.

DBD
PUC-Rio - Certificação Digital Nº 1721453/CA



Chapter 3. The use of X-ray microtomography for microstructural
characterization of PVA-steel fiber reinforced strain hardening cementitious
composites 42

Figure 3.5: 3D pores larger than 1mm equivalent diameter in the hybrid
specimens: (a) P1.5S0.5_1; (b) P1.5S0.5_2; (c) P1.0S1.0_1; (d) P1.0S1.0_2;
(e) P0.5S1.5_1; (f) P0.5S1.5_2.

Table 3.2 also shows that the steel fiber content in the volume around the
notch, obtained by image processing, is at least 20% greater than the steel fiber
content inserted in the mixture, in some cases reaching more than 70%. The
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steel fiber content obtained for the specimen S2.0_1 is 2.8%, for example, while
the theoretical volume fraction is only 2.0%. The result obtained represents a
40% higher fiber volume fraction. For the hybrid specimen P0.5S1.5_2, a 73%
higher fiber volume fraction was observed. The results may be associated to the
reduced dimensions of the notch region (9.5 mm thickness and 18 mm width),
which may affect the steel fiber distribution along the specimen. The results
confirm the tendency of particle concentration in the cementitious matrix when
a tapering in the structure occurs. In this sense, larger specimen’s dimensions
should be adopted in order to reduce the fiber concentration in the notch
region, which can affect the test results.

Regarding the orientation of the fibers, the qualitative interpretation of
the images in Figure 3.5 showed that they seem to be randomly distributed. On
the other hand, the distribution of Figure 3.6 (a) presents a slight tendency for
the steel fibers to be more axially oriented (Phi = 0◦) the higher the percentage
contents of steel fibers. As the PVA fiber content increases, however, the
orientation of Phi angles tends to be higher. This corroborates with the recent
study results on steel fiber orientation in steel-PVA fiber reinforced concrete
(84). The results show that the percentage content of each type of fiber can
influence their orientation and distribution in the cementitious matrix.

Figure 3.6: Phi (a) and theta (b) angle distribution as quantification of fiber
orientation.

The orientation related to the theta angle shows a remarkable pattern,
regardless of the steel fiber content, see Figure 3.6 (b). Theta is the angle from
the X-axis of the fiber projection on the XY plane, and the distribution results
showed that theta angle is preferably 0◦ or 180◦. This means that the fiber
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projection tends to be aligned with the larger side of the cross-section of the
specimen. The results obtained can be explained by the tiny thickness of the
specimen (9.5 mm), which tend to induce a 2D distribution of the fibers. In
(84) study, the theta angle distribution was random, since the geometry of the
specimen analyzed has a square cross-section.

3.4
Conclusions

The pore analysis showed that specimens made with PVA fibers have
a likely tendency to higher porosity than those made with steel fibers. This
result can be understood as the smaller particles dispersed in the matrix are
conducive to the formation of pores. This justifies the increase in strength
obtained in direct tensile tests when steel fibers are introduced to replace
smaller fibers (82). Also, it may contribute to the gain in strain hardening
behavior for higher percentages of PVA, since the higher number of pores
may facilitate the formation of multiple fine cracks. On the other hand, the
porosity influence was not observed in the shear response, in which the steel
fibers specimens presented lower maximum shear stresses than hybrids and
PVA fibers specimens.

It was also found that the largest pores do not affect the formation and
propagation of cracks for this mechanical test configuration. Stating that the
weaker zone for starting cracks is the notch.

The steel fiber content (%) around the notch obtained by image analysis
seems to be evidence that there is a concentration of steel fibers in the notch,
probably due to the taper during molding of the specimen. The fiber orientation
in theta (θ) angle is controlled by the tiny thickness (9.5 mm) of the specimen.
However, the fiber orientation in phi (φ) angle showed a pattern when the fibers
are randomly mixed. The fiber orientation showed a pattern when the fibers
are randomly mixed. A slight tendency towards axial orientation was observed
when increasing the PVA replacement amount by steel fibers. However, it
was not enough to impact the mechanical behavior of the material. For this
purpose, at least further research including change in orientation during the
manufacture process of the specimens is suggested.

DBD
PUC-Rio - Certificação Digital Nº 1721453/CA



4
Semantic segmentation of the micro-structure of strain-
hardening cement-based composites (SHCC) by applying
deep learning on micro-computed tomography scans

Renata Lorenzoni, Iurie Curosu, Sidnei Paciornik, Viktor Mechtcherine,
Martin Oppermann, Flavio Silva.

DOI: 10.1016/j.cemconcomp.2020.103551

Abstract

Considering the multi-phase constitutive nature of strain-hardening
cement-based composites (SHCC) and the decided influence of their microme-
chanics on overall material behavior, appropriate analytical methods are nec-
essary for the representation of their microstructure and micro-kinematics. In
this respect, micro-computed tomography (microCT) is an efficient, nonde-
structive technique, which can couple experimental testing with scale-linking
numerical simulations. However, for a detailed analysis of microstructure, ap-
propriate segmentation techniques must be applied which can accurately dif-
ferentiate and represent the individual material phases and other features of in-
terest. Given the small scale of analysis, the typical resolution of common com-
puted tomography, and the small differences among the material constituents
in terms of density and x ray absorption as well, the application of common
segmentation techniques to SHCC is ineffective. In this work, a Deep Learning
technique was applied to the microCT images of two different SHCC. The Deep
Learning network parameters were analyzed and optimized on a high-strength
SHCC and applied to the automatic segmentation of a typical normal-strength
SHCC. The results obtained are highly promising and quantitatively in accor-
dance with the composition of the samples analyzed. It was possible to segment
the polymer fibers and the air voids from the cementitious matrices accurately,
while the accuracy of the quartz-sand particles’ segmentation imposed addi-
tional challenges and proved dependent on the properties of the surrounding
hydrated phase.
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4.1
Introduction

Strain-hardening cement-based composites (SHCC) represent a distinct
type of fiber-reinforced concretes which yield controlled multiple cracking
when subjected to increasing tensile loading (30). The multiple cracking
in the strain-hardening phase results in remarkable tensile ductility before
failure localization (softening) occurs. Furthermore, it ensures several positive
features in terms of the mechanical performance and durability of elements
made of or strengthened with SHCC (1)(3)(13)(14). Such superior properties
are achieved by purposeful adjustment of the material composition, which
targets a micromechanical balance between the cracking behavior of the fine-
grained cementitious matrix and the crack-bridging behavior of the polymer
microfibers (15)(16)(17).

The micromechanical “fine tuning” of SHCC compositions results in a
high dependence of their mechanical behavior on various loading and envi-
ronmental factors (14)(17)(18)(19). To understand and tailor the material re-
sponse to various actions, appropriate micromechanical investigations such as
single-fiber pullout and tension tests, are indispensable (14)(16)(85)(86). Be-
sides the information delivered on the mechanics of SHCC at the constituent
level, the micromechanical parameters obtained can be assembled in analytical
(15)(16)(85) and/or numerical (87)(88)(89) models for scaling up and predict-
ing the material behavior at the composite and structural scales.

However, the micromechanical tests on separate constitutive phases do
not reproduce all the microstructural interactions in the composites. Further-
more, scaling down and reproducing thermal, dynamic and long-term loading
conditions in micromechanical experiments is challenging and involves high
levels of uncertainty. The active micromechanical mechanisms and damage
processes in the composites can be assessed in dedicated testing configurations
involving in addition non-destructive monitoring techniques such as Acoustic
Emission (4)(90) or micro-computed tomography (microCT). The latter also
enables an explicit representation of the decisive constitutive phases of SHCC,
such as fibers, binder matrix, aggregates, and air voids, which can be coupled
with detailed numerical modelling techniques (88)(89)(91)(92)(92)(94)(95).

DBD
PUC-Rio - Certificação Digital Nº 1721453/CA



Chapter 4. Semantic segmentation of the micro-structure of strain-hardening
cement-based composites (SHCC) by applying deep learning on
micro-computed tomography scans 47

MicroCT represents a powerful tool for coupled experimental-numerical
analyses at the micro- and meso-levels since it can generate a 3D-representation
of the material’s microstructure (96)(97). With regard to cementitious com-
posites, this technique was used to describe and quantify the internal damage
mechanisms occurring under various actions at the fiber-level, for example,
mechanical (22) or thermal (7). Moreover, in-situ microCT analyses make pos-
sible observation of the development of damage and deformations over time
(20)(70), while the quantification of the corresponding kinematics, either global
or local, can be done in the framework of Digital Volume Correlation (DVC)
(98).

For the detailed reconstruction of the microstructure of fiber-reinforced
composites, the specific material’s constitutive phases must be differentiated
and segmented based on objective criteria. The segmentation of steel fibers and
air voids in cementitious matrices is relatively straightforward and is usually
done based on the gray-values of the corresponding voxels in the microCT
images (22). This is facilitated by the high density of the steel fibers as
compared to the surrounding cementitious matrix and the resulting different
x ray absorptions, thus giving rise to distinct bright areas. Conversely, the air
voids result in darker areas when compared to the matrix. In the case of low
density fibers they can also be resolved based on the grayscale of the image,
such as polymer fibers (99). Although these fibers have dark tones as well as
air voids, both can be differentiated by a shape criterion later.

In the case of SHCC, however, several challenges arise. First, the polymer
microfibers and the fine aggregates in the cementitious matrices require high
resolution for their detection and accurate morphologic representation. Usually
this implies a compromise between the resolution of the scans and the size
of the scanned specimen. Secondly, the low density of the polymer fibers
does not allow their distinction from the air voids based on the gray values
only. Similarly, the gray-value-based segmentation of the fine aggregates from
the binder matrix is not possible due to their similar densities. Thus, more
sophisticated segmentation techniques must be applied.

Manual segmentation by human operators is inefficient and involves
significant uncertainties (23). On the other hand, machine learning is a method
that uses algorithms which iteratively learn from data, allowing computers to
formulate hidden insights without being explicitly programmed in respect of
where to search (24). In other words, this technology uses a system to discover
from raw data the representations needed to feature detection or classification
automatically.
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In this work a machine-learning-based segmentation method was applied
to two different types of SHCC made of different fibers and cementitious
matrices. The first composition studied consisted of a high-strength matrix
and 6 mm-long, ultra-high molecular weight polyethylene (UHMWPE) fibers
in a volume ratio of 2% (18). The other composition was a normal-strength
SHCC made with 2% volume fraction of 12 mm-long polyvinyl alcohol (PVA)
fibers (14)(42). These materials exhibited different morphologies at the micro-
scale, resulting in distinct features of the microCT images.

To demonstrate the efficiency and potential of the Deep Learning (DL)
segmentation technique, the high-strength SHCC was adopted as reference
material for machine training. The segmented constituent phases were the air
pores, fibers, and quartz sand particles. With the aim of showing that the same
training can be applied to similar images, the trained network was directly
applied to segment the normal-strength SHCC. Thereby it would be possible
to confirm the suitability and high potential of this technique for describing
the 3D micro-morphology of complex, multi-phase cementitious composites,
such as SHCC.

4.2
Deep Learning technique and segmentation parameters

The Convolutional Neural Network (CNN) technique involves machine-
learning which has performed excellently at tasks such as hand-written zip
code digit classification (48) and face detection (49). In recent years, several
works have shown that they can be also applied to more challenging visual
classification tasks (50), such as in materials with complex microstructures
(23)(26)(51)(52)(53)(54)(55)(56). These applications make increasing use of a
class of techniques called Deep Learning (DL).

In DL, multiple levels of representation are obtained by composing
non-linear modules that transform the representation at one level into a
representation at a higher, slightly more abstract level. For classification tasks,
higher layers of representation amplify aspects of the input that are important
for discrimination and suppress irrelevant variations (57). The networks require
as input a training set defined by the user upon the images. The network is
trained until its outputs match the desired object classes within a certain error
criterion. The trained network can be checked for satisfactory accuracy on a
set of reference images and is then ready to be applied to other images.
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For purposes of this work, CNN were developed within the Dragonfly
software platform, which uses the popular DL TensorFlow engine in a user-
friendly image processing environment. TensorFlow is a machine-learning
system that operates on large scale and in heterogeneous environments such as
image classification (100). In Dragonfly, TensorFlow was adopted along with
Keras-format, Python-encoded CNN (101). It applies CNN in providing the
users with an interface for connecting inputs and outputs, tuning parameters,
iterating training, and inferring final results from new inputs (102).

There are several architectures for Deep Learning networks. The differ-
ences among them lie in the combination of convolution and pooling made
from the input image. In this study the U-NET architecture was employed
(103). This network has been shown to be efficient in segmenting biomedical
images, in which very few annotated images were required for training.

The network takes the pixel intensities as input and the number of
outputs is given by the number of phases to be segmented; additionally, there
is an extra phase representing all the remaining image pixels not specified for
training. In this project three phases of the material were segmented: fibers,
sand particles and air voids.

A training set is prepared by manually marking objects of the different
classes. Normally, for a typical 3D image with 1000 to 2000 layers, reasonable
results can be achieved by training with just 10 to 20 training layers.

The training requires the optimizing of some parameters for better
performance of the network. In the Dragonfly platform six parameters are
required: patch size, stride-to-input ratio, number of epochs, batch size,
optimization algorithm, and loss function.

The input images are divided into windows, sequentially scanned, and
provided to the network. The patch size is expressed by the size of this window.
The stride-to-input ratio is the displacement step of the analysis windows. The
input pixel values go through a sequence of convolution and pooling operations
until a final output is calculated. The result is then propagated backwards
through the network and an error is calculated.

An epoch corresponds to one forward and backward propagation through
the network. In each pass the error is reduced by adjusting the internal network
weights using an optimization algorithm. As the number of parameters that
must be optimized in an epoch is many times too big to feed to the computer
GPU, it is divided into several smaller batches. The batch size is the number
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of training samples in one forward and one backward pass. The loss function
is a method for evaluating how well an algorithm models the given data. The
loss function results in a large number if the predictions deviate too much from
reality. However, in the learning process the loss function reduces the error in
prediction. After a suitable number of epochs, the error reaches a predefined
minimum value and the training stops.

4.3
SHCC compositions

The SHCCs analyzed in the current work represent typical compositions
for their strength classes and have been comprehensively investigated by the
authors in previous works (14)(42)(104). The SHCC mixtures were named
according to the corresponding combinations of matrix and fibers, in which
the normal-strength and the high-strength matrices were given the indices M1
and M2, respectively.

The high-strength SHCC matrix (M2) was specifically designed for
an effective composite action with hydrophobic microfibers made of ultra-
high molecular weight polyethylene (UHMWPE), produced under the brand
name Dyneema SK62 by DSM (the Netherlands). These fibers, which will be
abbreviated as PE in this paper, have an average diameter of 20 µm, a cut
length of 6 mm and a density of 970 kg/m3. Their volume ratio in M2-PE is
2%.

To ensure proper anchoring of the short, hydrophobic microfibers, the
cementitious matrix should exhibit high strength and packing density. For
this reason, the M2 matrix has a high cement content and a low water-to-
binder ratio of 0.18. Silica fume (SF) was added in a moderate amount as a
partial cement replacement to improve the frictional bond between the fiber
and the matrix further; see Table 4.1. The micromechanical criteria for strain-
hardening and multiple cracking in SHCC as well as the geometric nature of the
polymer microfibers do not allow for the use of common aggregates since they
increase the toughness of the matrix and negatively affect the distribution of
the fibers (30)(1)(13)(14)(3)(15)(16). However, a small amount of quartz sand
was added to ensure a certain stiffness and to avoid exaggerated shrinkage.

The PVA fibers used in the normal-strength SHCC (M1-PVA) are
Kuralon REC-15 fibers produced by Kuraray, Japan. Their diameter is 40
µm; the cut length is 12 mm while their density is 1300 kg/m3. As opposed
to the PE fibers, the PVA fibers are highly hydrophilic and as such develop a
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Table 4.1: Mixture compositions of SHCC under investigation.

M2-PE M1-PVA
kg/m3 kg/m3

CEM I 42.5 R-HS - 505
CEM I 52.5 R-SR3/NA 1460 -
fly ash - 621
silica fume 292 -
quartz sand 0.06 – 0.2 mm 145 536
PCE superplasticizer 25 10
PVA fibers - 26
UHMWPE fibers 20 -
water 315 338
viscosity modifier - 4.8

strong chemical bond with the cement-based matrices. To limit bond strength
and avoid premature fiber rupture during crack formation, the cementitious
matrices in PVA-SHCC are to have moderate strength and density. This is
usually achieved by replacing a high portion of cement with fly ash, as shown
in Table 4.1. Given the larger diameter of the PVA fibers in comparison to the
PE fibers, and the large amount of fly ash used, a higher amount of quartz
sand could be used in M1 without compromising its ductility.

The sand particles have different mechanical properties in comparison to
the surrounding cementitious matrices, and their segmentation is interesting
for micro-scale numerical simulations as well as for the general purpose of
automatic aggregate segmentation in concretes and mortars. According to the
mixture design, the volume ratio of quartz sand in M2-PE is approximately
5.3%, while in M1-PVA it is 19.5%. The particle size distribution of the quartz
sand was measured using a laser diffraction particle size analyzer; it will be
presented in sub section 5.5.2.1.

4.4
Specimen preparation and 3D-image acquisition

In the context of numerical modelling of SHCC with discrete fiber repre-
sentation (104), dumbbell-shaped specimens were produced with a small thick-
ness in the gauge length, see Figure 4.1. The small thickness of approximately
3.5 mm was intended to facilitate a proper experimental basis for 2D simula-
tions, in which specific constraints regarding fiber orientation and distribution
were encountered (104).
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Figure 4.1: Original dog-bone specimen with a 3.5 mm thickness in the gauge
length from which the SHCC strips for microCT investigations were extracted.

The small thickness of the specimens was achieved by pressing a hori-
zontal plate into a prismatic mold filled with SHCC until the spacers arrested
further displacement, see Figure 4.2. The applied pressure squeezed the fresh
SHCC outward toward the open ends of the molds, which formed the thick
end blocks for specimen fixation in the testing setup. The displacement of the
fresh SHCC toward the end of the mold led to a longitudinal orientation of
the fibers, which was a desired aspect both with regard to the numerical sim-
ulations and microCT scanning. Note here that the fiber orientation generally
depends on the extent of the induced flow and the rheological properties of
fresh SHCC.

Figure 4.2: Schematic representation of a longitudinal section through the mold
showing the imposed flow of fresh SHCC through applied pressure. Note that
the excess material was already removed during the production process.

The dumbbell-shaped specimens were demolded after 24 hours of sealed
curing in the molds. The mold elements were made of polyvinyl chloride (PVC),
which is a hydrophobic polymer. Thus, the casted specimens had no moisture
loss. After extraction from the molds, the specimens were stored in sealed plas-
tic bags for 26 days under constant temperature (22◦C) and relative humidity
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(65% RH). Given that the microCT scans require comparable dimensions of
the scanned cross-section in order to avoid beam hardening/attenuation effects,
smaller SHCC stripes were subsequently cut longitudinally from the middle of
the SHCC plates as shown in Figure 4.1. The miniature specimens scanned
in the microCT represented thin strips of 100 mm length, 10 mm width, and
3.5 mm thickness. Besides the purpose of microstructure segmentation, these
specimens facilitated in-situ tension tests accompanied by microCT analyses,
which will be the subject matter of a future study. Note that the testing age
of the specimens for numerical simulations as well as for in-situ microCT was
28 days, which is a standard age for determining the mechanical properties of
cementitious materials.

The microCT scans were performed using a Nanotom X ray computer
tomograph, which has an open high-power nano focus X ray tube transmission
with a diamond target and a target material for X ray generation is wolfram
(tungsten)(106), rotating sample holder and detector setup. The specimen was
fixed vertically about the specimen’s longitudinal axis; see Figure 4.3. The area
of observation in the middle of the thin SHCC stripes was approximately 10
mm x10 mm.

Figure 4.3: SHCC specimen fixed in the sample holder in front of the x ray
source.
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The scan parameters for the M2-PE specimen were: 100 kV voltage, 100
µA current and 1441 projections. A 16 bits image reconstruction is normalized
according to the attenuation coefficients of the material phases, in which the
0 intensity of the image histograms is the least attenuating phase, while the
highest intensity (65535) refers to the most attenuating phase, that is, the
densest of the specimen. After reconstruction 1333 slices were obtained and
each slice had 2212 by 1276 pixels. The voxel volume was (4.0 µm)3. The scan
parameters for the M1-PVA specimen were: 90 kV voltage, 100 µA current and
1441 projections. After reconstruction 1384 slices were obtained and each slice
had with 1753 by 940 pixels. The voxel volume was (4.8 µm)3.

The voxel size is determined by 1) ratio of distance between source and
specimen to distance between specimen and detector, and 2) size of the volume
to be scanned. The positioning of the sample between x-ray source and detector
can be adjusted to ensure a desirable geometrical magnification of the scanned
volume. Furthermore, there are several parameters, such as power, voltage,
exposure time etc., that should be optimized in order to ensure an appropriate
image quality.

4.5
Results and discussion

Figure 4.4 shows the scanned volumes of each sample.

Figure 4.4: X ray scanned volumes from the M2-PE and M1-PVA specimens.
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Although the focus of this work is the deep learning segmentation
technique, a pre-processing sequence needed to be applied in the images. Pre-
processing is a typical procedure for microCT images which mainly aims to
improve image visualization and make further steps, such as segmentation,
easier. In this work, pre-processing made it easier for the user to detect the
phases for network training. It has also been found that deep learning shows
better results in preprocessed images. A flow chart with the used software for
each step is shown in Figure 4.5 for a better follow up of the next sections.

Figure 4.5: Image processing sequence with the corresponding software.

Even though the bulk density of M2 is higher than that of M1 (14), the
dense sand particles are relatively well distinguishable in M2-PE images; see
Figure 4.6. This is not the case for the M1-PVA image; see Figure 4.7. Hence,
the methodology of this work was to create a network to identify pores, fibers,
and sand in M2-PE and then use the same network to identify pores and fibers
in M1-PVA images.

4.5.1
Image processing

First, both images were carefully cropped to eliminate the external re-
gions. An automatic contrast expansion was applied to improve the visibil-
ity of the phases. As a positive side effect, this also reduced contrast differ-
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ences between the several image layers, which can arise during image acqui-
sition/reconstruction. The non-local means filter, an edge-preserving low-pass
filter (79) available as a FIJI plugin (80), was applied to reduce noise. The
result of its application with automatic sigma estimation is exemplified by a
2D slice of M2-PE image in Figure 4.6 The edges between the phases are con-
siderably sharper in comparison to the unfiltered images, thus making manual
delineation for training much easier. It was also verified that noise reduction
was critical for the DL method, especially in the identification of the sand
phase.

Figure 4.6: Noise reduction M2-PE image: (a) before and (b) after the
application of the 2D non-local means filter.

Besides the air voids and the fibers, three material phases can be
distinguished in the microCT slices in Figure 4.6b. The round, dark-gray areas
are the sand particles. These are surrounded by the light-gray hydrated binder
phase and by bright areas, which most probably represent unhydrated cement
particles and clumps of SF particles. The relatively high amount of unhydrated
cement is normal for high-strength cementitious matrices due to the low water-
to-binder ratio. As for the possible presence of SF clumps: the small amount
of very fine aggregates does not allow for sufficient internal shear action for
breaking all clumps of fines during the mixing process.

In M1-PVA the fibers have larger diameter and length and the air void
content of the binder matrix is lower. The contrast of the image is different
due to the different densities of the matrices of the two types of SHCC under
investigation. It was verified that this difference in the quantity and size of
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voids and fibers did not influence the generalization of the network. However,
applying a network to images with different contrast ranges showed that the
network was very sensitive to that feature and did not work well.

As a solution for that, a technique called histogram matching was applied
(107). This technique can be used to normalize two images or normalize layers
of the same image based on the histogram of a reference input image. Thus,
an image used as input to train the network was also used as a reference
to normalize the histogram of the images to which the network was applied.
Figure 4.7 shows an original M1-PVA image and the same layer after histogram
matching was applied based on an M2-PE image as reference.

Figure 4.7: Histogram matching: (a) original M1-PVA image and (b) the same
layer after histogram matching based on an M2-PE reference image.

4.5.2
Segmentation of SHCC’s constituents

A standard way of segmenting different phases of a material in an image
is to choose a cut-off on the gray-value range of the pixel intensity histogram
(thresholding). However, this is only possible in cases where the different phases
have different peaks in the histogram.

The histograms of all 2D slices of the M2-PE and M1-PVA images are
shown in Figure 4.8. An assessment before and after application of non-local
means was made, showing that the noise reduction filter concentrates the peaks
in a lower range of gray value. In the case of M2-PE, better separation between
the peaks for sand and matrix was observed.
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Figure 4.8: Histograms for all layers of the 3D image: M2-PE and M1-PVA; the
red curves correspond to the original image; the black filled curves correspond
to the images filtered with the non-local means filter.

The first peak in both cases can be attributed to air voids, which are
represented by the darkest pixels in the image. However, there is some overlap
between the intensity ranges of pores and fibers, and thus a simple thresholding
cannot be used. Shape criteria could in principle be used to discriminate among
them. However, the fibers also share intensity ranges with sand particles in M2-
PE and with the matrix in M1-PVA. Additionally, as in the case of the fibers,
resolution is a limiting factor in segmenting smaller particles, i.e. particles with
diameters comparable to the voxel size. Thus, the quantification of the phases
of interest requires the use of another technique, such as Deep Learning.

4.5.2.1
Deep Learning training and segmentation

The training database for each present class is determined by regions
of interest (ROI’s) delineated manually from a subset of 2D slices. First, the
training database was prepared in 10 slices from the M2-PE image as shown in
Figure 4.9, where the delineated voids, fibers and sand are shown in blue, red
and green, respectively. These ROI’s are then provided as output to train the
network, and the original image (Figure 4.9a) is used as input. The training
was subsequently performed with the parameters shown in Table 4.2. Once
trained, the network can be applied to all slices and/or other images of the
same type.
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Figure 4.9: Phase drawing for network training: (a) original M2-PE image and
(b) image with drawn samples of voids (blue), fibers (red) and sand (green).
Please refer to the digital version of the manuscript for color clarification.

Table 4.2: Deep learning parameters.

Input (patch) size (pixels) 128
Stride to input ratio 1
Epochs number 50
Batch size 64
Loss function Categorical cross entropy
Optimization algorithm Adam

The network result applied to the M2-PE image is shown in Figure 4.10.
The 3D images display each segmented phase, i.e. voids in blue, fibers in red
and sand in green.

Initially, a segmentation of voids by thresholding in M2-PE image was
carried out in order to compare with the results obtained by Deep Learning.
A threshold intensity of 27000 was used in the histogram, which resulted in
the segmentation of some fibers as well. To eliminate segmented fibers, the
sphericity parameter was used. Sphericity is a function of the volume and of
the surface area of a void (7); objects of sphericity less than 0.2 were eliminated.
By this method the porosity was 2.8%, while the porosity according to DL was
3.0%. These values are very similar, i.e. less than 10% difference, but visually
the result of the DL is better since separation by shape leads to some errors.
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Figure 4.10: 3D images of M2-PE segmented by Deep Learning: voids, sand,
fibers and all phases together. Please refer to the digital version of the
manuscript for color clarification.

The fiber volume fraction obtained by DL was 1.7%, slightly lower
than the fraction actually used when producing the SHCC samples (2%). A
possible reason for this relates to the small fiber diameter of approximately
20 µm which, with a voxel size of (4 µm)3, leads to an inaccurate geometrical
representation of the fiber cross-section and, as a result, of the fiber volume.
A more accurate method involves counting the fibers in the microCT slices
and considering their real diameters to calculate their surface and/or volume
ratio. Using this method, the resulting volume fraction of fibers is 2.4%.
The deviation from the design value can be related to the non-uniform fiber
distribution in the donor specimens.
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Figure 4.11 compares the nominal particle size distribution of the quartz
sand, as measured using a laser diffraction particle size analyzer, to the particle
size distribution yielded by image analysis of the DL segmented objects. Note
that nominal distribution characterizes the quartz sand as bulk and not in
SHCC. Due to the difficulty in determining the boundary between the sand
and the surrounding hydrated phase, the segmentation of the sand particles did
not show sharp boundaries. That is why the evaluated sand content by volume
in M2-PE was not close to the percentages given by the mixture composition,
8.2% vs 5.3%, respectively. The particle size distribution yielded DL is given
by the Max Feret Diameter, which is the longest distance between any two
points along each object boundary at an arbitrary angle. Despite the obvious
difference, the estimation can be regarded as reasonable. In future research,
the authors will considerably extend the number of samples taken from each
SHCC plate specimen produced, so that a representative statistical evaluation
can be performed. In the presentation at hand, however, the authors have
focused on the image processing methodology as such.

Figure 4.11: Comparison between the nominal particle size distribution of the
quartz sand and the distribution yielded by image analysis based on the DL
segmented sand in M2-PE.

The same network was eventually applied to the M1-PVA image and the
result is shown in 3D in Figure 4.12. The porosity in this case was 2.4% and
the deduced fiber volume fraction was 1.4%. By counting the number of fibers
crossing different slices and dividing their real cross-section by the surface area
of the respective slice, the resulting volume fraction of fibers is 1.8%. Similarly,
for M2-PE a higher resolution is needed for a more accurate representation of
the fiber volume.
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Figure 4.12: Segmented 3D voids (blue) and fibers (red) in M1-PVA image by
Deep Learning. Please refer to the digital version of the manuscript for color
clarification.

Note that a successful segmentation represents an essential step for
further analytical, nondestructive investigations of the constitutive structure
of the materials under study. The quantification of pore size distribution,
aggregate content and particle size distribution, fiber volume fraction, and
orientation etc. with traditional techniques (such as microscopy, mercury
intrusion, etc.) involves considerably higher efforts and sample destruction
(5)(108). The 3D-fiber segmentation using Deep Learning can yield a more
accurate and efficient quantification of these parameters (109).

4.6
Conclusions and outlook

Micro-computed tomography applied to SHCC is an extremely valuable
tool in analyzing their microstructure and potentially in assessing the damage
developing in such materials due to various actions. An objective quantification
of the material morphology and damage requires an accurate segmentation of
the relevant constitutive phases and of cracks. In this context, SHCC represent
a challenging class of materials because of the imposed scale of observation and
physical properties of typical constituents.
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The Deep Learning technique is a novel method with a high potential
for an accurate and efficient segmentation of complex microstructures, which
cannot be performed by applying common methods such as the gray-value
thresholding. When a good training basis is developed, it can be applied
in the automatic segmentation of other similar images. This principle was
demonstrated in the current work on two different types of SHCC. The training
set was developed based on a high-strength SHCC made with Dyneema fibers,
in which polymer fibers, voids and quartz sand particles were distinguished.
The same set was applied to a normal-strength SHCC made with PVA fibers.
The automatic segmentation was successful in the case of fibers and air
voids, while quartz sand particles could not be differentiated because of their
corresponding gray-value range being heavily overlapped with that of the
surrounding hydrated cement phase. To elucidate this issue, the morphology of
M1 will be characterized by the authors with complementary methods, such as
ESEM, EDX etc. and solutions will be proposed for a more detailed microCT
segmentation of matrices similar to M1, e.g. with contrast enhancing agents.

The in-situ experimental testing of SHCC specimens represents the next
step for a coupled experimental-numerical analysis of SHCC at the micro-scale.
Crack formation and propagation depending on the loading mode and material
morphology represent the declared goal for future studies. In this context, the
quantification of the global and local deformations in the framework of Digital
Volume Correlation (DVC) is a challenging but highly interesting task.

DBD
PUC-Rio - Certificação Digital Nº 1721453/CA



5
Combined mechanical and 3D-microstructural analysis of
strain-hardening cement-based composites (SHCC) by in-situ
X-ray microtomography

Renata Lorenzoni, Iurie Curosu, Fabien Leonard, Sidnei Paciornik, Vik-
tor Mechtcherine, Flavio Silva, Giovanni Bruno

DOI: 10.1016/j.cemconres.2020.106139

Abstract

The paper presents the results of a series of combined mechanical
and in-situ morphological investigations on high strength strain-hardening
cement-based composites (SHCC). Tension and compression experiments were
performed in a CT scanner employing a dedicated mechanical testing rig. The
in-situ microtomographic scans enabled correlating the measured specimen
response with relevant microstructural features and fracture processes. The
microstructural segmentation of SHCC was performed in the framework of
Deep Learning and it targeted an accurate segmentation of pores, fibers and
aggregates. Besides their accurate volumetric representation, these phases were
quantified in terms of content, size and orientation. The fracture processes were
monitored at different loading stages and Digital Volume Correlation (DVC)
was employed to spatially map the strains and cracks in the specimens loaded
in compression. The DVC analysis highlighted the effect of loading conditions,
specimen geometry and material heterogeneity at the mesolevel on the strain
distribution and fracture localization.

Keywords: SHCC; in-situ X-ray microCT; microstructure; Deep Learn-
ing; Digital Volume Correlation

5.1
Introduction

Strain-hardening cement-based composites (SHCC) are fiber-reinforced
cementitious materials that can withstand considerable tensile stresses over
a significant deformation range before failure localization (30). Such a tensile
behavior is a result of the formation of multiple cracks in the strain-hardening
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phase, ensuring additionally a marked crack control at large deformations (1).
These features make SHCC suitable for retrofit and strengthening applications
as well as for new structural elements aiming enhanced durability, damage
tolerance and energy dissipation (1)(31)(42)(43)(44)(19)(38)(39).

The superb tensile behavior of SHCC is achieved through micromechan-
ical fine-tuning of the matrix composition according to the employed fibers,
targeting a balanced relation between the fracture toughness and strength of
the cementitious matrix, mechanical and geometric properties of the fibers
and fiber-matrix interaction (16)(110)(111). Various analytical models have
been developed for predicting the crack opening and multiple cracking behav-
ior of SHCC under tension (112)(113)(86) and shear (114)(115). These models
rely on data from micromechanical experiments, such as single-fiber pullout
and tension tests (116), and on analytical and statistical assessments of fiber
orientation and distribution (117)(118) and flaw size distribution (119)(120).
Besides enabling a performance-based material design, these models represent
a handy tool for predicting and interpreting such phenomena as strain rate
sensitivity (121)(17)(122), assess the effects of different mechanical and sur-
face properties of the fibers (123), and can deliver input constitutive laws for
numerical simulations at larger scales (123). However, the assembly of the ex-
perimentally determined micromechanical parameters into analytical and phe-
nomenological models can only roughly approximate the composite behavior.
Furthermore, these models do not consider various effects which accompany
the experimental upscaling, such as the effect of size on crack formation and
propagation, effect of fiber content on porosity and on the effective fiber an-
chorage (125), etc. Thus, there is a need for an intermediate assessment scale,
which would involve a realistic and discrete consideration of the material mor-
phology to assess the composite response under various loading and exposure
conditions. Furthermore, a combination of experimental and numerical investi-
gations at this scale of observation would enable the definition of sound consti-
tutive laws for SHCC, involving basic micromechanical and fracture mechanical
parameters.

Traditional methods for morphologic assessment, such as microscopy, in-
volve destructive specimen preparation techniques and deliver only limited
information about the spatial distribution of the analyzed components (108).
On the other hand, X-ray computed tomography (microCT) represents an ef-
fective non-destructive method for a 3D representation of the material consti-
tutive structure (126). Furthermore, this technique can be used to analyze the
internal damage extent in cementitious materials due to mechanical loading,
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thermal exposure or delayed chemical reactions (127)(71)(128)(7). For a com-
prehensive experimental scale-linking, the X-ray computed tomography should
be coupled with real-time deformation and damage processes. In-situ microCT
investigations can enable an accurate damage assessment (27)(129)(59) and re-
late it to the relevant microstructural features of the material (130). Moreover,
the analysis of active deformation and damage processes can be complemented
by Digital Image Correlation (DIC) in 2D or by Digital Volume Correlation
(DVC) in 3D (28)(29)(58)(129). Besides enabling a detailed assessment of the
origin and type of fracture, this could also facilitate a coupled experimental-
numerical analysis at the meso-level.

In a previous work by the authors (9), microCT was employed to volumet-
rically map the microstructure of two different types of SHCC. However, the
pronounced overlap of the gray value spectra (21)(131)(109)(95)(23)(52)(54)
of the individual constitutive phases in the X-ray scans restricted the use of
traditional methods for the microstructural segmentation. This served as in-
centive to perform the segmentation in the framework of Deep Learning (DL)
(51), which enabled an accurate segmentation of fibers, pores and fine sand
particles, as well as the quantification of their size distribution, volume fraction
and orientation.

The successful segmentation of SHCC’s microstructure facilitates a cou-
pled mechanical-microstructural analysis of the composites, as presented in
the paper at hand. A high-strength SHCC was investigated, consisting of a
fine-grained cementitious matrix and ultra-high molecular weight polyethy-
lene (UHMWPE) microfibers. The in-situ microCT analysis consisted of ten-
sion and compression tests on miniature SHCC specimens. The scans were
performed prior to load application as well as at different pre-peak and post-
peak loading stages. Another novelty of the presented research is that the
essential microstructural features of the loaded specimens (including fibers)
were not only visually presented, but also explicitly segmented using DL, and
quantitatively analyzed in terms of orientation, size and content. Furthermore,
the fibers and pore analysis could be directly related to the measured load-
deformation histories, as well as to the strain distribution and crack formation
in the specimen by means of DVC. The paper focuses on the testing and eval-
uation methodologies based on a small but representative experimental series.
A detailed analysis of the material behavior at the meso-scale will be a matter
of more extensive upcoming studies.
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5.2
Materials and experimental investigations

5.2.1
SHCC composition

The high-strength SHCC analyzed in the current work consists of a high-
strength cementitious matrix, which was purposefully designed for an effective
composite action with hydrophobic UHMWPE micro-fibers (42)(18)(14). This
composite was extensively investigated at different scales of observation in pre-
vious works (18)(132)(133) and its microstructure was successfully segmented
in the previous work using DL (9). The high-strength SHCC shows a high
ductility under quasi-static tensile loading at common observation scales (18),
making it interesting to analyze the multiple cracking and fracture processes
also at the micro- and meso-scales.

The cementitious matrix of the investigated SHCC had a high cement
content and a low water-to-binder ratio of 0.18. Silica fume was added in
a moderate amount as partial cement replacement, see Table5.1. Given the
micromechanical requirements for strain-hardening and multiple cracking, only
a limited amount of aggregates was added in form of fine quartz sand with a
maximum particle size of 200 µm. A higher content or size of aggregates would
increase the fracture toughness of the matrix and negatively affect the fiber
distribution, both effects being undesirable with regard to steady-state and
multiple cracking (131).

Table 5.1: Composition of the high-strength SHCC under investigation.

Components Content in kg/m3

CEM I 52.5 R-SR3/NA 1460
Silica fume 292
Quartz sand 0.06 – 0.2 mm 145
Superplasticizer 25
UHMWPE fibers (2% by vol.) 20
Water 315

The UHMWPE (PE, for short) fibers are produced by DSM, The
Netherlands, under the brand name Dyneema SK62 (134). According to the
information provided by the producer, the fibers have an average diameter of
20 µm, a cut length of 6 mm and a density of 970 kg/m3. Their tensile strength
is 2500 MPa, while the Young’s modulus is 80 GPa (134).
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In a previous study by the authors, this high-strength SHCC was in-
vestigated on its tensile behavior using dumbbell-shaped specimens with a
cross-section of 24 mm x 40 mm in the gauge portion and a gauge length of
100 mm. The compressive strength was measured on cubes with side length of
100 mm. Both the tension and compression experiments were performed at an
age of 14 days. The average first crack stress was 3.8 MPa, the tensile strength
was 7.6 MPa with the strain at peak load (strain capacity) of 3.9% in average,
while the compressive strength was 134 MPa (18).

5.2.2
Specimens for tension experiments

The mechanical investigations in the current work were part of a wider
framework involving numerical simulations of SHCC with discrete fiber mod-
elling at the micro- (92) and meso-scales (104). The numerical investigations
at the micro-scale are aimed at formulating a consistent two-scale homog-
enization framework to simulate SHCC under dynamic loading, while the
meso-scale model should allow a detailed analysis of the composite behavior
depending on material morphology and micromechanical properties. Finally,
both approaches aim at defining representative volume elements for an efficient
and reliable modelling of SHCC at the macro-scale (132). In previous works,
dumbbell-shaped specimens with novel geometrical features were produced and
tested for an appropriate experimental basis for 2D numerical investigations
(104), see Figure 5.1. A detailed description of the specimen production tech-
nique was presented in (9). This specimen shape was attained by pressing a
horizontal plate into a special mold filled with fresh SHCC until the specimen
got the desired thickness. The applied pressure squeezed fresh SHCC outward
towards the open ends of the molds, in this way inducing a unidirectional fiber
orientation.

Figure 5.1: Dumbbell-shaped SHCC specimen from which the miniature tensile
specimens were extracted for the in-situ microCT investigations.
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However, in the current work the in-situ testing rig and the specimen
gripping principle imposed spatial and geometrical constraints, respectively,
which only allowed testing specimens with dimensions considerably smaller
than those presented in Figure 5.1. For this reason, miniature plate-like
specimens were extracted from the specimens in Figure 5.1 and tested in
tension. Similar to the previous work by the authors (9), the specimens for
the tension tests were extracted from the 3.5 mm-thick gauge portion of the
dumbbell-shaped specimens, as indicated with white stripes in Figure 5.1.
The miniature specimens were cut as 10 mm-wide stripes in the longitudinal
direction of the samples using a 1.5 mm-thick disc saw. They had a length of
60 mm and, in order to localize failure in the observation zone of the microCT,
notches were cut on both specimen sides with an approximate depth of 2 mm;
Figure 5.2. The total length of 60 mm allowed for a free specimen length of 35
mm, their ends being clamped in the 12 mm-wide gripping jaws of the testing
rig.

Figure 5.2: Miniature SHCC specimens for tension experiments.

These specimen dimensions also facilitated a relatively small voxel size
in the 3D reconstructions (or pixel size in the 2D slices). Ensuring a voxel size
smaller than the dimensions of the features of interest, e.g. fiber diameter, is
important for allowing their semantic segmentation.

For specimen preparation, the freshly cast dumbbell-shaped samples were
cured in sealed molds for 24 hours. The subsequent curing after specimen ex-
traction was done in sealed plastic bags in a climatic chamber with constant
temperature of 20◦C and relative humidity of 65% for 26 days. Subsequently,
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the thin stripes were cut and stored again in sealed plastic bags for approx-
imately 2 months. Due to logistical constraints, the specimen age at testing
was approximately 3 months.

5.2.3
Specimens for compression experiments

From previous studies it was known that the compressive strength of the
investigated SHCC at an age of 14 days ranges between 130 and 140 MPa
(18)(14). effects and the specific boundary conditions, a maximum specimen
cross-section of 30 mm2 was preliminary imposed. The compression samples
were not produced from the plate-like elements described above, since with
cross-section dimensions of 3.5 mm the specimen height should have been
inadequately small, in order to avoid stability issues in compression. Note that
a small specimen height would lead to extensive image quality problems due
to X-ray scattering from the metallic loading elements at the top and bottom
boundaries of the specimens. Because of this, the compression specimens were
extracted from larger dumbbell-shaped SHCC specimens commonly used in
uniaxial tension tests and described in detail in previous studies; see e.g.
(18). The same curing conditions and testing age were adopted as for the
tensile specimens. The miniature specimens had square cross-sections with
side dimensions of 5 mm, while their height was 15 mm; see Figure 5.3.

Figure 5.3: Miniature SHCC specimens for compression experiments.

For a detailed demonstration of the range of parameters which can be
investigated with the help of in-situ microCT tests, the miniature compression
specimens were extracted both longitudinally and transversally from the
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dumbbell-shaped samples. Given that the primary (i.e. donor) dumbbell-
shaped specimens were produced intending a longitudinal fiber orientation,
the miniature compressive specimens featured predominantly uni-directional
fiber orientation either in the longitudinal or transversal direction.

5.2.4
Scanning device and in-situ testing configuration

The in-situ microCT tests were performed in the facilities of the Federal
Institute for Material Research and Testing (BAM) in Berlin, Germany, using
an industrial GE VTomeX CT scanner. The scan conditions were 70 kV and
160 µA and each scan had a duration of 1 hour. After reconstruction, 2024
slices with 750 x 1250 pixels were obtained with a voxel size of (13 µm)3. In
the previous study by the authors, the segmentation of two types of SHCC was
carried out on microCT scans with a voxel size of (4 µm)3. It will be shown
in this study that, despite the fiber diameter of around 20 µm, a voxel size of
(13µm)3 is appropriate for the detection and segmentation of the fibers using
DL.

The mechanical testing stage CT5000 produced by Deben, UK, is pre-
sented in Figure 5.4. The testing rig limited the proximity of the specimen to
the X-ray source, thus limiting also the extent of geometric magnification. It
has a load capacity of 5 kN both in tension and compression, and a maximum
stroke of 10 mm. The maximum specimen length for tension tests is 70 mm
while for compression the maximum height is 49 mm. Since the compression
specimens were only 15 mm high, cubic aluminum elements with side dimen-
sions of 10 mm were used to induce the load and enable the operation of the
compression testing rig in its middle stroke range. Aluminum was chosen in-
stead of steel because of its relatively low density and limited negative effects
on the X-ray scans at the specimen ends. The displacement rate in the ten-
sion experiments was 0.1 mm/min, while in the compression tests it was 1
mm/min. Given that the loading processes were stopped for each CT scan in
the in-situ tests, the displacement rate played only a secondary role, as it will
be discussed in the next sections.

Figure 5.4b presents an exposed tensile specimen clamped in the testing
device. After specimen fixation in the gripping elements, a vitreous (glassy)
carbon support tube was installed on the stage over the specimen, as shown
in Figure 5.4a. The thickness of the tube wall was 3 mm, its height was 285
mm and the diameter was 117 mm. The role of the tube is that of a stiff frame
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around the specimen, which ensures the load transfer and specimen support,
at the same time being transparent to X-rays. In tension tests the tube works
in compression, while in compressive tests it works in tension. Prior to testing,
the steel gripping element on the top of the specimen is tightened to the cap
of the glass tube and the vertical steel rods connecting the top and bottom
jaws are removed. In compression, the sample’s height is measured accurately,
and the rig jaws spaced accordingly (spacing slightly larger than the sample’s
height). The sample is placed between the jaws, the rig is then closed and the
jaw placed into contact with the sample (loading force of 10 N). The force and
displacement are then reset to zero and the compression test is started.

Figure 5.4: a) In-situ testing rig installed in the CT scanner and b) exposed
tensile specimen clamped in the testing device (without the support tube).

Prior to the in-situ tests with X-ray scans, preliminary mechanical tests
were performed accompanied by 2D radiography with a sampling rate of one
image every two seconds. These experiments were aimed at assessing the
mechanical response of the samples in order to define the force and/or the
displacements at which the loading should be stopped for the X-ray scans in
the subsequent in-situ tests. These 2D radiographic scans were only performed
in one direction, i.e. they did not involve stage rotation. Although not discussed
in detail in the current work, the 2D scans present a certain potential with
regard to a statistical assessment of the distributed fracture process, as well
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as for the observation of damage development and structural changes with a
considerably higher time resolution compared to the 3D microCT scans.

5.2.5
Image processing and Digital Volume Correlation (DVC)

A pre-processing intended to reduce noise was applied to all reconstructed
microCT images using the non-local means filter (79), which is an edge-
preserving low-pass filter available as a FIJI plugin (80). Image processing
and analysis, including traditional and DL segmentation, as well as volume,
shape and orientation measurements were carried out with Dragonfly (Object
Research Systems, Montreal, Canada), similar to the previous study by the
authors (9).

To map and quantify the strains in the compressed specimens, DVC eval-
uation was performed with the software VIC-Volume (Correlated Solutions,
North Carolina, USA). For this purpose, the software locates a specific sub-
volume in two or more sequences of images and performs image matching with
optimal accuracy. The optimal matching is performed through minimization
or maximization of a metric function that quantifies the level of similarity in
sub-volumes between the reference and deformed volumetric images. In order
to reduce the computation time that is accrued for the large volumetric images,
the least square form is used as metric function (135).

The sub-volume size must be set by the user through a parameter called
“subset size” in a way that each of the sub-volumes contains a pattern of
sufficient contrast. Thus, the subset was chosen such that it has one or more
phases within it. Figure 5.5 presents a scheme of the arrangement of voxels,
subset and the entire analysis volume. The amount of analyzed sub-volumes
depends on the defined “step size”, so that large step sizes result in smaller
output data but run faster. This parameter should not be too large so that
image information is not lost, and not too small so that the computer can
process efficiently. All sub-volumes can have the same weights by choosing
the uniform weight or can follow a Gaussian influence. The user must also
choose the order of the interpolation, with higher orders offering more accurate
results. Three variations of the least square form are offered by the software as a
correlation criterion: square differences, normalized square differences and zero-
normalized square difference. Finally, the multi-processor parameter indicates
the number of used parallel threads (136). The DVC parameters used in this
work are summarized in Table 5.2.
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Figure 5.5: Schematic with object volume, sub-volumes and voxel elements.

Table 5.2: Correlation parameters for DVC.

Subset size 25
Step size 10
Subset weights Gaussian weights
Interpolation Optimized 6-tap
Criterion Normalized squared differences
Multi-processor 24

5.3
Results and discussion

5.3.1
Tension experiments with in-situ 2D X-ray scans

The reference tension experiments were accompanied by 2D X-ray (ra-
diographic) scans instead of 3D X-ray tomography. In these tests the loading
process was continuous, which enabled defining the reference range of force
and deformation attained by the SHCC specimens, in order to determine the
load stages at which the X-ray scans should be performed in the 3D in-situ
investigations. Furthermore, the radiographic scans were performed also prior
to load application for assessing the presence of micro-cracks, which were not
visible by visual inspection and which could possibly be induced during speci-
men clamping or even during specimen preparation. Actually, initial cracking
was an issue in the performed testing series, which was traced back to the
bending and torsion efforts generated in the specimens during the tightening
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of the top gripping elements to the carbon casing. This issue is related to the
gripping configuration, to the small specimen cross-section and to the presence
of notches.

Nevertheless, the presence of micro-cracks (usually one single crack) prior
to load application did not hinder the combined evaluation of the material mor-
phology and mechanical behavior, since failure localization occurred elsewhere
after a pronounced multiple cracking phase, as shown in Figure 5.6 and Figure
5.7. The representative stress-displacement curve of a notched high-strength
SHCC specimen presented in Figure 5.6 shows a non-linear ascending branch
before the first stress drop at 14 MPa. This is a result obtained with an initial
crack induced during specimen clamping, see first scan in Figure 5.7. The stress
was calculated according to the reduced cross-section in the notched region of
the sample. The equivalent peak force in the presented curve is approximately
300 N.

Figure 5.6: Tensile stress-displacement curve corresponding to a preliminary
tension test accompanied by 2D X-ray scanning. Numbers 1 to 4 correspond
to specific values for which radiographic images were acquired; see Figure 6.7.

Note that the attained tensile strength is considerably higher compared to
the results obtained on specimens of common dimensions and geometries (42)
(18). One of the reasons for the high tensile strength is the unidirectional fiber
orientation in the miniature specimens, as it will be demonstrated later in this
section. Also, the small specimen cross-section facilitated steady-state cracking
and a uniform crack opening at failure localization, in this way exploiting the
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crack bridging capacity of the fibers uniformly along the entire crack length,
as shown in Figure 5.7. Finally, the presence of notches usually leads to an
enhanced tensile strength in SHCC (42)(122)(14), which can be traced back
to the fact that the notches impose failure in predefined locations, which do
not necessarily coincide with the weakest cross-sections in the specimens from
the material point of view, e.g. due to larger flaws.

Figure 5.7: Selected 2D X-ray images acquired during a reference tension
experiment corresponding to the numbers show in Figure 5.6.
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5.3.2
Tension experiments with in-situ microCT scans

The stress-displacement curve of a representative tensile test is presented
in Figure 5.8 and 2D slices from the corresponding microCT scans are presented
in Figure 5.9. Similar to the specimen presented in Figure 5.6 and Figure 5.7, a
micro-crack was detected prior to load application, which explains the shallow
initial ascending branch in the stress-displacement curve. However, as in the
reference specimen presented in Figure 5.7, the initial crack did not cause
failure localization.

Figure 5.8: Tensile stress-displacement curve of an in-situ microCT test indi-
cating the displacement stages at which the microCT scans were performed.
Numbers 1 to 8 correspond to values for which complete tomographic scans
were acquired.

The load stages at which the CT scans were performed are numbered and
indicated with red circles corresponding to the 2D slices presented in Figure 5.9.
The microCT scans were usually performed immediately after crack formation
in order to reduce the chance of new crack occurrence during the scanning
process. Note that the stress drops included in the red circles do not necessarily
indicate crack formation. According to the 2D slices presented in Figure 5.9,
new cracks formed only between stages 3-4 and 4-5. Thus, the stress drops
corresponding to the red circles result from specimen relaxation during the
scanning processes, which took approximately 1 hour each. Despite reaching
the same tensile stress as in the reference experiment, the effective deformation
of the sample seems to be significantly affected by the loading interruptions.
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A DIC or DVC analysis could compensate for this drawback and could as well
facilitate the assessment of the stress-opening histories of individual cracks.
However, in this paper the potential of DVC will be demonstrated only based
on compressed specimens.

Figure 5.9: Longitudinal 2D slices from 3D tomographic scans of the in-situ
tested specimen, showing the crack pattern and growth at different loading
stages according to the curve in Figure 5.8.

Besides the analysis of crack pattern and crack growth, the sequence of
2D slices in Figure 5.9 facilitated the estimation of crack openings at specific
load stages. Crack opening was derived by counting pixels in the crack at a
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certain location by FIJI software. Note, however, that the accuracy is limited
by the pixel size of (13µm)2. Figure 5.9 shows the crack widths at an arbitrary
selected location. An accurate derivation of crack width should be performed
by means of Digital Image (or Volume) Correlation. This was, however, beyond
the purpose of this study.

A cut-off value was selected on the gray-value range of the pixel inten-
sity histogram (threshold) for segmenting the voids (pores, cracks and back-
ground), since these are considerably different from the matrix and sand par-
ticles in terms of density and X-ray absorption, as shown in Figure 5.10. The
background was eliminated from pores and cracks by performing a subtrac-
tion operation of the denser specimen phases from the entire specimen vol-
ume/envelope (7).

Figure 5.10: Histogram of a 2D slice from a tensile specimen with the pixel
intensity range of each phase. The spectrum corresponds to scan nr. 5 in Figure
5.9.

The cracks were represented as a single object, which could easily be
separated from the pores. However, since the pixel intensity range referring to
voids presents a slight overlap with the range referring to fibers, see Figure
5.10, a few fibers were initially segmented together with the pores, but were
subsequently eliminated using shape criteria. The segmented pores and cracks
are presented in Figure 5.11. It can be assumed that in the tensile specimens
the notches defined to a large extent the fracture processes, the pores having
only a secondary role.
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Figure 5.11: Segmented pores and crack in the tensioned specimen at loading
stage 5.

The detection and segmentation of pores was carried out in the
size/volume range enabled by the resolution of the reconstructed volumes.
The voxel size of (13µm)3 defined the bottom limit of the segmented pores,
meaning that the capillary pores in low micrometer and sub-micrometer ranges
cannot be distinguished in these images. While few pores of this kind caused
some image noise, pores with equivalent diameter larger than 0.05 mm were
considered for pore volume distribution analysis in Figure 5.12. The equiva-
lent diameter was calculated considering the pore as a sphere. The quantitative
evaluation indicates that more than 85% of pores were smaller than 0.15 mm,
while the largest pore was approximately 1.20 mm in diameter. The calculated
volume fraction of pores was 1.8%.

Given that the intensity ranges of fibers are partly overlapped with those
of sand particles, it was necessary to apply additional criteria and DL to
discriminate fibers and sand. The 3D segmented sand particles and cracks
are presented in Figure 5.13, while the 3D segmented fibers are presented in
Figure 5.14.
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Figure 5.12: Pore volume distribution in the tensile specimen tested in-situ.

Figure 5.13: Segmented sand particles and cracks in the tensioned specimen at
loading stage 5.

The calculated fiber volume fraction in the presented specimen is 2.4%.
Note that this derived volume fraction is not representative for the entire donor
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specimen but only stands for the local fiber content, which slightly differs from
the nominal volume fraction of 2.0 %. Once segmented, each fiber is treated
as an object that can be analyzed regarding its orientation. This orientation
is given by the angle between the major axis of an object (i.e. fiber) and
the transversal XY plane of the specimen, see angle phi – φ in Figure 5.15.
The z-axis is longitudinal to the specimen and the y-axis is the width of the
specimen.

Figure 5.14: Segmented fibers in the tensile specimen at loading stage 5.

Figure 5.15: Phi angle – schematic representation.
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The results from the analysis of the inclination angle are presented in
Figure 5.16. The relative frequency is represented by the blue bars and the
cumulative frequency is represented by the orange line. Obviously, the fibers
show a predominantly longitudinal orientation with regard to the loading
direction (Z axis), which is a result of the production technique of the thin
specimens, as described in the previous work (9).

Figure 5.16: Phi angle distribution as quantification of fiber orientation in a
tensile SHCC specimen.

5.3.3
Compression experiments with in-situ 3D X-ray scans

The segmentation methodology of the constitutive phases in the spec-
imens intended for compression tests was identical as for the tensile speci-
men. Figure 5.17 shows the scanned volumes of two specimens intended for
compression tests. One specimen was extracted in the longitudinal direction
from the original dumbbell-shaped specimen (M-PE-Long), while the other
was extracted in the transversal direction (M-PE-Trans). Without a quantita-
tive evaluation of fiber orientation, it is obvious that the fibers exhibit mainly
a unidirectional orientation. Depending on the extraction direction, in the first
specimen they are oriented longitudinally according to the loading direction,
while in the second specimen they are oriented transversally.
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Figure 5.17: Segmented pores and fibers in two compression specimens with
different fiber orientation.

As in the case of the tensile specimen, the fiber orientation was quantified
according to the angle φ (i.e. relative to the transversal plane in the specimens).
Figure 5.18 shows that the fiber orientation in the compression specimens
is even more unidirectional than in the tensile specimens. The fiber volume
content in M-PE-Long was 1.8 % while in M-PE-Trans it was 2.4 %. Same
as for the tensile specimen, the different values of fiber content indicate a
non-uniform fiber distribution in the donor specimens.

A simple visual inspection of the images in Figure 5.17 suggests that
the amount of larger pores in M-PE-Long is apparently higher than in the M-
PE-Trans specimen. This is confirmed by the pore size distributions presented
in Figure 5.19. In both cases more than 90% of the pores are smaller than
0.15 mm diameter. However, in M-PE-Trans the maximum pore diameter
reaches a value of 0.83 mm, while in M-PE-Long the pore diameter reaches
maximum values of 1.43 mm3. Nevertheless, M-PE-Trans yields a higher
porosity compared to M-PE-Long, 3.1% versus 2.7%. Note that these miniature
specimens were extracted from the same donor specimen and the differences
in porosity and fiber content among them only indicate the variation of these
parameters throughout the larger specimens.
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Figure 5.18: Phi angle distribution representing fiber orientation in the M-PE-
Long and M-PE-Trans specimens relative to their transversal planes.

In the mechanical experiments, the force-displacement histories were
provided directly by the testing rig. The compressive stress-displacement
curves are presented in Figure 5.20. The curves correspond to M-PE-Long
and M-PE-Trans specimens indicating also the load stages at which the
displacement increments were stopped for performing the X-ray scans, which
took approximately one hour each. The equivalent peak forces in the presented
experiments were approximately 2.6 kN. Given the relatively high loads
sustained by the compressed specimens, the compliance of the testing device
had a significant influence on the apparent specimen deformation, given that
the peak load was attained at a displacement of 0.4 mm. Furthermore, similar

DBD
PUC-Rio - Certificação Digital Nº 1721453/CA



Chapter 5. Combined mechanical and 3D-microstructural analysis of
strain-hardening cement-based composites (SHCC) by in-situ X-ray
microtomography 86

Figure 5.19: Pore size distribution in M-PE-Long (blue) and M-PE-Trans
(orange).

to the tension experiments, pausing the loading process at certain load levels
resulted in progressive load drops until displacement re-initiation, which is
especially clear in the ascending branches of the curves. Nevertheless, the
miniature specimens yielded a compressive strength of approximately 110 MPa,
which have the same order of magnitude as the values obtained on large
cylindrical (140 MPa) (14) and cubic specimens (134 MPa) (18). Note that
the performed experiments do not form a representative statistical basis for
an accurate evaluation of the mechanical properties of the composites under
investigation. However, it will be shown further in this section that certain
geometric features of the specimens and the strong effect of the pores at this
small scale could be the main reasons behind a somewhat lower compressive
strength values as in the previous studies on the same SHCC.

Representative 2D slices from the tested specimens corresponding to the
loading stages indicated in Figure 5.20 are presented in Figure 5.21. Four 3D
scans were performed during each experiment, the first scan being performed
prior to load initiation – Step 0, while the second was performed during the
ascending stage – Step 1, see Figure 5.20. Already at Step 1 at an approximate
stress level of 70 MPa, multiple micro-cracks formed over a significant height.
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Figure 5.20: Stress-displacement curves from the compression experiments
indicating additionally the stages at which the microCT scans were performed.

Despite this, both specimens could be further loaded until approximately 110
MPa. The scans in Step 2 were performed immediately after the peak. At this
stage, not only the crack length but also the crack openings are significant.
More than that, the post-peak region is characterized by mixed crack opening
with a significant shear component in the crushing zone.

Digital Volume Correlation (DVC) was performed using the Vic-Volume
software. Given the low time resolution of the performed scans and the rapid
and pronounced damage development starting with Step 1, the evaluation on
both specimens was only performed based on Steps 0 and 1. The entire volume
of the specimens was selected as an area of interest in the DVC analyses.

The results of the DVC evaluations are presented in Figure 5.22. The
2D image used to present these results was the same slice presented in Fig-
ure 5.21 (S0). The compressive strains along the Z-axis are represented in the
top images, all with negative sign. The bottom images present the positive
transversal strains. The DVC evaluations captured clearly the strain concen-
trations around the pores, which subsequently led to fracture localization.

Note that the displacements at Step 1 were approximately 0.25 mm;
see Figure 5.20, which should correspond to an equivalent strain of 0.017 [-].
However, the highest strains yielded by the DVC in the longitudinal direction
were approximately 0.010 [-], indicating the considerable compliance of the
testing device and the adjacent assembly, such as the load inducing elements.
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Figure 5.21: Sequence of CT scans of M-PE-Long (top) and M-PE-Trans
(bottom).

Figure 5.23 presents that the DVC evaluations captured the apparently
eccentric axial loading in the specimen, this being a result of a non-parallelism
of the specimen faces. This inexact geometry leads to the formation of a crack,
see Figure 5.21 in S1. Subsequently, in S2, another crack forms from a large
pore. Finally, it is noted in S3 that the fracture occurs due to the joining of
these two cracks.
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Figure 5.22: DVC analysis of the strain distribution in M-PE-Long at the
pre-peak loading Step 1 adopting the pre-loading Step 0 as reference. Strains
along Z-axis are represented in the top images and the transversal strains along
X-axis are represented in the bottom images.

Considering the similar peak forces of the tested specimens in conjunction
with their different pore content and size distribution, fiber content and
orientation as well as non-uniform loading, it becomes obvious that these
parameters have concurrent effects and their individual influences can be
only assessed based on an extensive experimental series involving additionally
specimens without fibers. Also, as shown in Figure 5.13, the sand particles
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Figure 5.23: DVC analysis of the strain distribution in M-PE-Trans at the pre-
peak loading Step 1 adopting the pre-loading Step 0 as reference. Deformation
along Z-axis is represented in the top images and the transversal deformations
along X-axis are represented in the bottom images.

are considerably smaller than the larger pores and they are also uniformly
distributed. Because of this, numerical simulations of SHCC at this scale can
imply a homogenized matrix without an explicit discretization of aggregates.

Additionally, it should be mentioned that DVC was also applied to the
tension experiments. On one hand, as opposed to the compression tests, the
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low strains prior to fracture did not allow for an accurate strain mapping.
Furthermore, in the tension experiments the notches determined the fracture
zone and the cracks exhibited a steady-state growth. On the other hand, in
the compression tests the strains prior to fracture were significant, the cracks
propagated gradually and they originated around the pores.

5.3.4
Conclusions and outlook

A high-strength strain-hardening cement-based composite (SHCC) was
experimentally investigated in a combined mechanical-morphological frame-
work. The tension and compression experiments were carried out on spe-
cially prepared miniature specimens in a testing rig integrated in an industrial
computed microtomography. The small specimen dimensions enabled a high
resolution of the 3D reconstructions and, in this way, also a detailed three-
dimensional representation of their morphology in terms of pore content and
size distribution, fiber content and orientation, as well as distribution of fine
sand particles. The constituents’ discretization involved an advanced segmen-
tation technique based on DL.

The specimens tested in compression were additionally evaluated using
Digital Volume Correlation for mapping and quantifying the corresponding
strain fields and fracture initiations. The DVC analysis demonstrated the
influence of pores on strain concentration and fracture localization, but also
highlighted the effect of imperfect specimen geometry on the load distribution
in the specimen cross-section.

It was demonstrated that such a combined analysis delivers considerably
more information compared to the traditional micromechanical experiments
solely by highlighting the pronounced heterogeneity of SHCC at the micro-
level and by relating it to the composite mechanical behavior.

However, at this scale of observation, the effect of notches and pores
appeared to be decisive on the fracture localization both in tension and
compression. At larger scales of observation, it could be expected that the effect
of such defects would be smeared by other features of statistical or structural
nature. For generating more representative data, the experiments should be
performed on larger specimens, which would require a different testing rig and
possibly SHCC compositions with lower strength. This should be, however,
adjusted based on the purpose of the investigation, since larger specimens
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will lead to a lower scan accuracy (i.e. larger voxel size) and will impair the
possibility of segmenting the finer constituents, such as fibers.

Moreover, the scanning duration should be reduced in order to limit
relaxation effects and allow a higher time resolution of the microCT scans.
For a more detailed analysis of crack formation and propagation, considerably
smaller scanning intervals and lower displacement rates should be considered.

For assessing the crack bridging action of the fibers in compression as well
as the effects of fiber distribution and orientation on the compressive behavior
of the composites at the micro-scale, a larger tests series is required involving
specimens with and without fibers.

Finally, the microCT in-situ methodology should be assessed regarding
its potential in monitoring and quantifying active deterioration mechanisms
in the specimens, e.g. at elevated temperatures, both with and without
mechanical loading.
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6
Digital Volume Correlation analysis of the tensile behavior of
strain-hardening cement-based composites (SHCC)

6.1
Introduction

Strain-hardening cement-based composites (SHCC) are fiber-reinforced
cementitious materials that achieve significant deformations through multiple
cracks formation (30)(31)(18). The fibers act as bridges that block the further
propagation of the cracks that previously occurred in the matrix. This means
that will occur a multiple cracks formation before the material fails. Thus,
the deformation of the material is directly linked to the amount of formed
cracks. Moreover, the durability of the material is associated with the width of
these cracks, since cracks allow water and chemicals to penetrate (1). As the
crack opening behavior is strongly related to the macro behavior of the SHCC,
meaningful studies have used digital image correlation (DIC) technique to
measure the crack opening during tensile loading (14)(137)(138)(139). In this
scenario, DVC appears as a powerful solution in the case where cracks can be
analyzed in 3D throughout the interior of the specimen.

DVC is a technique that estimates full-field strain in 3D over the entire
length of the specimen by correlating imaging volumes of the specimen in
unloaded and loaded states (140). Shortly, it can be elucidated in three main
steps sequence: acquisition of 3D images; use pattern-matching correlation
procedure to measure a displacement vector field; calculation of the strain field
from the displacement measured (61)(62). Advances in 3D image acquisition
allowed DVC to gain ground as a strain mapping method (140). Henceforth,
DVC has been effectively used to investigate distinct types of materials
(63)(64)(65)(66)(58) and correlation codes have been improved to estimate
more accurate displacement vectors (63)(141).

A traditional method for acquisition of volume images is by X-ray mi-
crocomputed tomography (microCT), which has been widely used for dam-
age analysis of cementitious materials (127)(71)(7). A testing device combined
with microCT is required to obtain sequences of 3D images at different loading
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stages, a technique known as in-situ microCT (58)(60)(59). These devices of-
ten present instrumentation difficulties, since they are tiny devices that impair
coupling of load cells or LVDTs and the results lead to additional deformations
from the equipment. Therefore, a local deformation analysis may be more ap-
propriate for such a test.

For cementitious materials, DVC has been commonly used to map
internal displacement or strain distribution during in-situ microCT mechanical
testing, highlighting local values on damages already detected in the microCT
image (58)(142). Some authors detected microcracking estimated as one tenth
of the voxel size in lightweight concrete images, detecting early age cracks
which wouldn’t have been noticed on the microCT images (143).

Given the typical microCT resolution and the size of the crack’s width
formed in a SHCC tensile test, occasionally minor cracks cannot be identified
in the images. Due to this soft internal deformation, a DVC analysis needs a
suitable code that can provide relevant information. This chapter focuses on
testing suitable DVC free codes for SHCC in-situ tensile test analysis. The
tested codes could not predict cracks formed in subsequent loading stages, but
they showed relevant results on the mechanical behavior of the material during
the tensile test.

6.2
DVCs free codes

Since DVC was required in material characterization research, many
codes and software have been developed. Some software may present a
friendlier user interface and bring more suitable parameter settings for some
materials. On the other hand, for some analyzes, freely available codes can fit
the user’s needs. In the work at hand, three free codes applied to images ob-
tained from an in-situ tensile test were evaluated and compared: the diamond
DVC code; the Fast-Iterative Digital Volume Correlation Algorithm (FIDVC)
and the Software for the Practical Analysis of Materials (SPAM).

6.2.1
Diamond DVC

Diamond DVC code was applied in the field of biomechanical systems,
more specifically to evaluate musculoskeletal behavior through understanding
the mechanical function of a joint. Images in nanoscale were obtained via
synchrotron x-ray tomography (sCT) allowing DVC-based strain fields to be
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calculated from displacements with an accuracy below 100 nm (141). Diamond
code is available in (141) and provided for Linux x64 or Windows. OnWindows,
the c++ code is run at the command prompt, which reads a simple text file that
contains required keywords and parameters. Three existing inputs are required:
a reference and correlated (deformed) image in a single uncompressed raw data
file and the point cloud name of tab-txt nxyz file. The latter is a file containing
data for all measurement points in the Region of Interest (ROI). In which, n
is a number for the point and x y z are the coordinates of the corresponding
points in the image. Also, a base output file name for results of code execution
is required.

A description of the voxel data files that are targeted for analysis are
defined, such as the bit depth and the geometry of both reference and correlated
input image volumes.

Afterward, one must define the geometry and size of the subset (subvol-
umes) around each search point, defining the subset on which pattern matching
correlation will be applied. The traditional geometry used in the subsets of the
DVC codes are cubes. Also, the number of interpolation points within each
subset needs to be defined, and the reference image volume is used to establish
templates with arbitrary point locations. For cubes, a uniform grid is gener-
ated. This parameter is strongly related to computation time.

Finally, required parameters for the default optimization process such as
expected maximum displacement, degree-of-freedom set for the final stage of
the search, objective function and interpolation method have to be defined in
the text file.

The results are provided in a text file containing the coordinates of the
displacement u, v and w for each nxyz point.

6.2.2
FIDVC

The other code used in this work is available on GitHub of "Franck
Laboratory - Cell mechanics & soft materials" and called Fast Iterative Digital
Volume Correlation Algorithm (FIDVC) (144). It is a MATLAB code, that
determines the 3D displacement fields at low computational cost. Even though
being CPU-based, it does not require extreme computational effort and can
be easily run on conventional computers in a non-exorbitant time.
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FIDVC is a 3D full-field measurement technique for determining large
deformation internal displacement fields in soft materials and to validate it an
example based on simulated deformation fields was performed. A zero-strain
deformation of a polyacrylamide hydrogel embedded with 0.5 micron-sized
fluorescent particles was experimentally acquired by laser scanning confocal
microscopy (LSCM) and then rigidly translated by 4.4 voxels along one
direction through simulation (145).

The technique utilizes a classic fast Fourier transform (FFT) based
cross-correlation formulation in conjunction with the iterative deformation
method (IDM). The IDM warps the reference and deformed images by an
incremental displacement field (u = (u1,u2,u3)) until they reach the same final
configuration. This configuration is estimated in terms of the cross-correlation

coefficient (C(du)=
L
2∑

x= −L
2

f(x).f̂(x + du), in which f(x) is a function related

to the gray level intensity values of the reference and f̂(x) of the deformed
image). In each iteration, a convergence criterion based on the normalized
sum of squared error is performed and the code stop when the error is less
than the defined threshold error. So, the displacement field is determined by
the last iteration calculated. In this code the user needs to provide the reference
and deformed 3D images saved in a three-dimensional matrix (intensity values
are stored at x, y and z position) in .mat files. These files names, such as the
output file are defined in the main run code. Also, in the main run file the user
can change the default subset size. The step size is determined by a file called
dm.mat contained in the path, that can be easily changed by the user as well.
The results are provided in three 3D matrices, corresponding to the u, v and
w displacements.

6.2.3
SPAM

The calculation of displacements by SPAM is quite similar to Diamond.
Both use the sum of square differences as the error function of differences
between loaded and unloaded specimen images. SPAM uses Newton optimiza-
tion to iteratively find the minimum of the error function by small increments
on the deformation matrix. Diamond code minimizes the error function by
the Gauss-Newton method, which is an iterative algorithm to solve nonlinear
least-squares problems. SPAM linearizes the error function using the Taylor
expansion, in order to simplify the computation of the gradients. On the other
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hand, Diamond does not mention linearization in (141), and due to the closed
code it is not possible to know if linearization is performed.

SPAM is a Python package containing a series of toolkits for handling and
correlating 3D fields for applications in material science/mechanics (67). The
first step uses a robust registration tool based on (28)(29) with some cutting
edge tools from (146). This step generates a tsv file that contains information
regarding a registration of the images before and after the deformation. This
tsv file, in addition to the tiff of un- and deformed images, will be required in
the next step.

The following step involves running the script that calculates the dis-
placement. As in previous codes cited in this work, the user can set the step
size and the subset. This calculation is basically done by minimizing the error
function, which is the classic sum-of-squares difference between the un- and
deformed images. The SPAM displacement script improves the previous work
of (29), that searched the space of displacements, rotations, etc. making small
steps to decrease the error. The incremental (147) approach for image correla-
tion was implemented. The results of this step are a sequence of tiff images, in
which each pixel contains a displacement information of each point calculated.

Once the displacement gradient fields are determined, either infinitesimal
or finite strain values can be computed from it. The SPAM code advantage
is that it provides the strain calculation, supported by basic notions of
continuum mechanics. Continuum mechanics is based on the calculation of the
transformation gradient tensor (F), in which the strains are computed based
on a local variation in a displacement field relative to the neighbors’ points.
SPAM uses a Q8 shape function linking 8 neighboring nodes. The strain can
be calculated in a general framework known as large (finite) strain theory.
However, if the calculated displacements are much smaller than any dimension
of the sample, an infinitesimal strain theory can be used. In this work, a small
strains framework was assumed. The results were provided as a sequence of
tiff images.

6.3
Results and discussions

The image sequences were obtained from an in-situ tensile microCT
already presented in the authors’ previous work (chapter 5) (10). The reference
microCT, step 1, was performed with the unloaded specimen. In the subsequent
steps, the tensile test was stopped at relevant points of the stress-strain curve
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and microCT was performed. From the eight microCT sequences shown in
(10), steps 2 and 8 were excluded. This is due to the fact step 2 does not
present relevant internal deformation, and step 8 represents the failure of the
material. Thus, the present work will analyze 6 step sequences.

First, all volumes were aligned using the dataset registration tool in
Dragonfly software (Object Research Systems, Montreal, Canada). This proce-
dure automatically registers datasets by applying the scaling, rotations, and/or
translations required to match features between two datasets. Thus, steps 2
to 6 were registered using step 1 as a fixed dataset. A parameter available for
registering datasets is the "use a fixed mask", which restricts the calculations
to the defined 3D region. Since the loading is carried out by pulling one side
of the specimen, on the opposite side the mask was set in order to align the
images according to the least deformed volume in the specimen. The calcula-
tion was performed using linear interpolation, that considers the closest 2x2
neighborhood and then takes a weighted average of the four pixels to arrive
at a final interpolated value, and the registration metric used was "mutual
information".

Also, in the Dragonfly software, all volumes were cropped to reduce com-
putational effort during DVC processing. Thus, the new datasets were ex-
tracted from the same clip box, which was determined to cover the entire
crack formation up to step 6. The size of the images should fit some require-
ments of the DVC codes tested. Moreover, as the goal was to compare the
three codes, results using the same parameters applied in the same points in
the image should bring a more accurate analogy.

In order to run the Diamond code, it is required that the cloud points are
internal to the image to prevent the subset from exceeding the edges. The first
point calculated in the FIDVC code is on the first voxel of the image and in
the SPAM is one step size into the volume. Therefore, it is important that the
input image sizes are divisible by the step size (8 voxels), so that the border
points calculated by the FIDVC/SPAM could be eliminated and the internal
ones would match the points calculated by the Diamond code. Furthermore,
the FIDVC code requires that the size of the input image should be divisible
by 0.5 times the size of the subset. The subset used was (32 voxels)3. Taking
notice of these issues and in order to facilitate the next steps, the cropping
was performed resulting in 6 datasets with 224 slices and 336 x 336 pixels each
one, see Figure 6.1
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Figure 6.1: Red highlights a cropped volume used as input for the three DVC
codes tested with the origin of the X Y Z axis. Yellow highlights the 2D section
to be analyzed.

As the resulting datasets had no background, the point clouds of the
ROI set for the Diamond code could be chosen uniformly, and were generated
with a step of 8 voxels. However, the point clouds were restricted to 32 voxels
from the surface to avoid surface edge effects during the correlation process.
This resulted in 25725 points uniformly distributed in the ROI. The subset
size was defined as a 32 voxels edge cube, and 5000 points to distribute within
the subset.

In the FIDVC code, there are no point clouds previously defined. Those
are created from image size and step size inputs. The result are 3D matrices of
43x43x29. After that the edge values were eliminated in a way that the final
matrices were 35x35x21. This procedure means the same 25725 points defined
for the Diamond code. SPAM generated 27 sequences of 41x41 pixels image,
which were then also cropped to create in 21 sequences of 35x35 pixels images,
that is the same 25725 points analyzed by the two other codes.

The three DVC codes were processed five times with inputs from two
subsequent steps. First, step 1 was defined as a reference (non-deformed) image
and step 2 as a deformed image. In the last "run" the reference and deformed
images had steps 5 and 6, respectively, as input. It was performed in this way
to avoid the code getting lost when searching for the corresponding subset
since non-subsequent steps could present huge deformations. Furthermore,
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displacement vectors could be summed to obtain the accumulated steps’
displacements if this information was required.

To facilitate the visualization and analysis, all results were plotted in 2D
overlapped on the final loaded dataset input in the Dragonfly software. This
means that, for example, the displacement or strain calculated from step 1 to
step 2 was overlapped on the step 2 dataset. Figure 6.2 shows the plotted y-axis
displacements results of Diamond, FIDVC and SPAM codes, in which the same
scale range was defined, from -4 to 2. The measurements of the displacements
are given in voxels.

The results of three methods were consistent. However, FIDVC code
presents more precise displacement details within the SHCC microstructure,
such as greater deformations concentrated in pores, which cannot be distin-
guished by the Diamond and SPAM codes. On the other hand, as they provide
a more generic analysis, the Diamond and SPAM code indicate the existence
of a non-uniform tensile strain in the y-axis direction. Given that the y-axis
grows downward, negative values mean tension. Thus, since the first sequence
of steps, the Diamond and SPAM code results present higher displacement on
the upper left of the specimen, which becomes more prominent in subsequent
steps. It may indicate a torsion in the specimen during the test, that could
be confirmed analyzing other axis displacements, as the x and z-axis that will
be investigated in the following. In the last step (displacement 5-6), this non-
linearity in the y-axis does not occur anymore. At this point, the larger and
uniform displacements above the top crack and the smaller and uniform dis-
placements below it become evident, suggesting that this crack will open until
the material fails.

Displacement values obtained by SPAM and Diamond were quite similar.
The displacements from step 3 to 4 obtained by SPAM were plotted in the
open-source software ParaView (148). The displacements are represented by
arrows that start at the points set for the calculation (in step 3) and point to
the direction that these have moved (in step 4). For better visualization, only
4.500 of the 25.725 calculated points were plotted and the arrows were scaled
by a factor of 6. The top part of Figure 6.3 presents these arrows colored
according to the magnitude of the displacement vector, in which the trend
of internal displacement is perceived at this stage of the test. Despite being
a direct tensile test and displacements just on the y-axis were expected, the
arrows point to displacements also on the x and z-axis. Also, it can be seen
that the vector sizes are larger in the upper left corner, which was expected
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Figure 6.2: Plotted y-axis displacements (in pixel) obtained by Diamond DVC
code (left), FIDVC (middle) and SPAM (right) overlapped on the final loading
dataset.
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since the displacements on the y-axis are more expressive and Figure 6.2 had
already shown that for displacements in the y-axis.

Figure 6.3: Displacements from step 3 to step 4 obtained by SPAM code
represented by arrows. Color scale based on the magnitude of the displacement
(top) and on each separate axis (bottom).

Due to the displacements occurring in the three directions, plotting
vectors with the color scale based on each separate axis can provide relevant
information. This is shown at the bottom of the Figure 6.3. The plot with color
scale based on x-axis displacement shows that the upper part of the specimen
moved in the x-axis more than the bottom part. Color scale based on z-axis
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displacement shows that the upper left part has a greater displacement on the
z-axis than the rest of the specimen. This was used to check the occurrence of
torsion in the specimen during the test.

Once the displacement gradient fields are determined, strain values can
be computed. The strain script computed the strain field under the hypothesis
of small strains, meaning that for every point in the field the strain tensor
e is computed using the Q8 element (67). Figure 6.4 shows these eyy results.
The strain calculation brought some interesting information about the crack
opening and relaxation. Note in the sequence that until step 3, the first crack
formed concentrates greater strain. From step 4 on, when the top crack appears,
the strain decreases in the lower cracks, and the strain in the upper cracks
becomes more prominent. This means that there is a relaxation in the bottom
crack and the strain concentrated in the upper crack, where the rupture occurs.
Previous work by the author (10) shows the failure coming from the top crack.
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Figure 6.4: Plotted y-axis strain (eyy) obtained by SPAM overlapped on the
final loading dataset of each analysis.

6.4
Conclusions

Regarding computational performance, the three codes tested were simi-
lar. All of them could be run on a commercial computer with viable time spent,
for the image size used (336 x 336 x 224 pixels) and DVC parameters defined
in this work.

Comparing the results, the Diamond and SPAM codes presented practi-
cally identical displacement results. This is due to the similarity of the calcu-
lations used in both codes. FIDVC code presented more detailed information
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such as pore displacement concentrations, which cannot be perceived in the
Diamond and SPAM codes. On other hand, Diamond and SPAM codes showed
crucial information about non-axial displacements, which proved that a torsion
occurred during the in-situ test.

The strain result calculated from SPAM code brought information about
the crack opening and relaxation during the in-situ test, showing the crack
responsible for the material failure at the end of the test.

In a previous work by the authors (10) it was mentioned that DVC
commercial code was tried in these tensile experiments, but the results did
not allow for an accurate strain mapping like for the compression tests, due
the low strains prior to fracture. The codes applied in the present study proved
to be more suitable for the analysis of these low displacements. Even though,
the DVC results still indicate that the fracture zone was determined by the
notches and reveal no relation to the presence of pores, as was evidenced a
strain concentration around the pores in the compression tests. Although the
FIDVC code proves that there were concentrations in the pores, this was not
decisive for the failure of the material in this tensile test. Possibly the influence
of the torsion that occurred in the specimen has outweighed the influence of
the pores for the failure of the material.

The results also showed a significant difference in the order of magnitude
of the displacements obtained by DVC and by the in-situ device (Figure 5.8).
This may be related to equipment deformation, which in these tests cannot be
resolved by other instrumentation techniques such as strain gages or LVDTs.
Therefore, it is important that the deformation analysis of the material is done
through techniques such as DVC.
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Conclusions and future works

Steel fibers and pores within the cementitious matrix were easily dis-
tinguished on images obtained by X-ray microtomography. Therefore, seg-
mentation by the traditional thresholding method works well for these two
SHCC phases. Hybrid fiber reinforced strain-hardening cementitious compos-
ites showed a slight tendency towards the axial orientation of the steel fibers
when increasing the PVA replacement amount by steel fibers. Also, when in-
creasing the PVA replacement amount by steel fibers, the porosity decreases.
In this work the PVA fibers could not be analyzed.

In smaller SHCC specimen made only with PVA or PE fibers, in which
it was possible to obtain a higher resolution, the fibers were segmented
through machine learning. The algorithm used was of the deep learning type,
and the ideal parameters were successfully determined. PVA and PE fibers
were accurately segmented and were quantified in volume and orientation.
These networks also identified the pores and sand particles. The pores did
not necessarily need to be segmented by deep learning, the segmentation by
thresholding is sufficient given the difference in density of the air and matrix
phases. The sand segmentation showed that they are uniformly distributed.
Also, because sand particles are considerably smaller than the larger pores,
numerical simulations of SHCC at this scale can imply a homogenized matrix
without an explicit discretization of aggregates.

The results of segmentation by DL were qualitatively evaluated and also
compared with the volume fractions actually used in producing the SHCC
specimens. However, evaluation metrics, such as error rates and confusion
matrix, should be done in further works. For that, a training data needs to be
destined for the validation of the results.

From the segmentation by deep learning, the quantification of the SHCC
constituent phases could be correlated with their mechanical behavior through
an in-situ test. In the sequence of images obtained from the in-situ test, DVC
was applied. For compression SHCC tests the DVC analysis demonstrated the
influence of pores on strain concentration and fracture localization, and also
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highlighted the effect of imperfect specimen geometry on the load distribution
in the specimen cross-section. For tensile SHCC tests, DVC showed the loading
path that occurred during the test. For example, a displacement tendency in
the direction of the non-axial axes characterized a torsion during the test, in
addition to the tensile loading.

This work used innovative techniques to present relevant solutions for
mesoscale characterization of SHCC materials through processing and analysis
of 3D images. The microstructural quantification and its mesoscale mechanical
response were the main gains for SHCC research, and other advances can be
suggested from this work.

Future works could use the phases segmented in this work by DL as
input for mesoscale numerical models, thus being able to validate models not
yet validated.

MicroCT techniques that achieve higher resolutions would allow the
microstructural quantification in larger specimens, facilitating the correlation
with mechanical laboratory tests. In addition to making the segmentation of
internal phases more accurate, either by thresholding or by deep learning.
Synchronton light microCT is a promising technique for this task.

Furthermore, different in-situ mechanical tests coupled with DVC analy-
sis would improve the material’s characterization. The mechanical testing stage
with higher load capacity would allow for a greater variety in mechanical tests
and specimen sizes.

Lastly, future research could use these techniques for analysis and char-
acterization of other materials. Segmentation by deep learning is quite suitable
for any material with complex microstructure and DVC can be applied to any
material that has enough microstructural variation.
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