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Abstract

Barbosa Coutinho, Daniel José; Fabricio Garcia, Alessandro (Advisor).
Revealing Interacting Factors in Decay of Software Design.
Rio de Janeiro, 2021. 84p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Developers constantly perform code changes throughout the lifetime of
a project. These changes may induce the introduction of design decay over
time. Design decay may be reduced or accelerated by interacting factors that
underlie each change. These factors may come from specific actions of change
or repair – e.g., refactorings – to how developers contribute and discuss the
changes. However, existing studies do not explain how these factors interact
and influence design decay. They solely tend to focus on a few types of
factors, and often consider them in isolation. Interactions between factors
may cause different outcomes than those previously studied. Studying factors
in isolation may not properly explain what are the most relevant set of
interacting factors that influence design decay. This may indicate that existing
approaches to avoid or mitigate design decay are misleading since they do not
consider potentially relevant interactions between various factors. Thus, this
dissertation reports an investigation that aims to increase the understanding
of how a wide range of interacting factors can influence design decay in
order to facilitate the investigation of which practices can be used to avoid
or mitigate design decay. To this end, we performed an in-depth analysis to
fill knowledge gaps on two types of factors: process-related (i.e., related to
changes and their produced outcomes) and developer-related (i.e., related to
the developer working on the changes) factors. We focused on analyzing the
effects of potential interactions between the aforementioned factors and 12
sub-factors with regards to how they affected modules with different levels
of decay. We observed diverging decay patterns in these modules. Our results
indicate that both types of factors can be used to distinguish between different
decay levels in classes. We have also observed that: (1) individually, the
developer-related subfactor that represented first-time contributors, as well
as the process-related one that represented size of the changes, did not exert
negative effects on the changed classes. However, when analyzing specific factor
interactions, we saw that changes where both of these factors interacted tended
to have a negative effect and led to decay. Interestingly, this behaviour did not
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alter even when the change was introduced via pull request (which usually
triggers a code review process); (2) surprisingly, extraction-type refactorings
often do not have a positive effect on code quality, while, by contrast, move
refactorings were mostly positive. We also discuss how these findings in this
dissertation can aid developers and researchers in improving their guidelines
for the avoidance and monitoring of design decay.

Keywords
Design Decay; Software Quality; Software Metrics.
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Resumo

Barbosa Coutinho, Daniel José; Fabricio Garcia, Alessandro.Relevando
Fatores Interativos na Degradação do Design de Software. Rio
de Janeiro, 2021. 84p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Desenvolvedores realizam mudanças de código constantemente durante
a vida de um projeto de software. Essas mudanças podem induzir a degra-
dação progressiva do design. A degradação do design pode ser reduzida ou
acelerada por fatores que interagem em cada mudança. Esses fatores podem
variar desde uma mudança ou ação de reparo específica – e.g., refatorações
– até a maneira como os desenvolvedores contribuem e discutem mudanças.
Entretanto, estudos anteriores não exploram como esses fatores interagem e
influenciam na degradação do design. Eles apenas focam em alguns fatores e
tendem a os investigar em isolamento. Estudar os fatores em isolamento pode
não explicar adequadamente qual é o conjunto mais relevante de interações
entre fatores e qual sua influência na degradação do design. Isso pode indicar
que abordagens existentes para evitar ou mitigar a degradação do design são
incompletas, já que elas não consideram interações entre fatores que podem
ser relevantes. Portanto, essa dissertação relata uma investigação que almeja
aumentar a compreensão sobre como uma ampla gama de interações entre fa-
tores pode afetar a degradação do design, para que consequentemente possam
ser investigadas práticas efetivas para evitar ou mitigar esse fenômeno. Para
tal fim, nós realizamos uma análise aprofundada buscando preencher lacunas
no conhecimento existente sobre dois tipos de fatores: fatores relacionados ao
processo (i.e. relacionados às mudanças e seus resultados produzidos) e fatores
relacionados ao desenvolvedor (i.e. relacionados ao desenvolvedor trabalhando
nas mudanças). Nós focamos em analisar os efeitos de possíveis interações en-
tre os fatores previamente mencionados e uma série de sub-fatores, no que diz
respeito como essas interações afetam módulos que sofreram diferentes níveis
de degradação. Por exemplo, nós observamos que: (1) individualmente, tanto
o sub-fator relacionado ao desenvolvedor que representa um desenvolvedor no-
vato (que está contribuindo pela primeira vez), quanto o sub-fator relacionado
ao processo que representa tamanho de uma mudança, não se mostraram re-
lacionados a efeitos negativos na qualidade de código das classes alteradas.
Porém, analisando interações entre fatores, nós observamos que mudanças em
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que esses dois fatores interagem tendem a ter um efeito negativo no código,
causando degradação. Interessantemente, esse comportamento não se alterou
mesmo quando mudança foi introduzida através de uma pull request (o que
frequentemente inicia um processo de revisão de código), (2) surpreendente-
mente, refatorações de extração frequentemente não tem um efeito positivo
na qualidade do código, enquanto, em contrapartida, as refatorações de movi-
mentação foram predominantemente positivas. Nós também discutimos como
esses achados apresentados na dissertação podem ajudar desenvolvedores e
pesquisadores na melhoria de suas diretrizes sobre como evitar e monitorar a
degradação do design.

Palavras-chave
Degradação do Design; Qualidade de Software; Métricas de Software.
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1
Introduction

Changes are constantly being made to software systems that are in active
development. In modern software development, developers usually submit their
changes to version control repositories. Often, those repositories are hosted on
social coding platforms, which are either open or private to an organization.
This strategy allows developers to review and discuss the contents of each
change made to the software.

Over time, especially without preventive measures, these changes increase
the complexity of the system and reduce its overall quality [2]. One key facet of
degradation of software quality is called design decay, in which design decisions
made by developers in the aforementioned changes introduce problems [3],
e.g., negative impacts on program maintainability and extensibility [4, 5].
Design decay can affect distinct modules differently, given that its evolution
is asymmetrical and different modules can be introduced to the system with a
variable set of preexisting design problems.

Developers and researchers tend to rely on different types of software
symptoms to identify design decay [5]. Previous studies frequently use code
smells for this purpose [6, 7]. Code smells are code structures, occurring in
isolation or together, which may suggest the presence of design problems [8].
In this work, we will be utilizing another key type of symptom: those symptoms
affecting the internal quality attributes of a software. We will directly utilize
alterations to four IQAs to identify design decay: cohesion, coupling, complexity
and inheritance. Another IQA, size, while often not used to identify design
decay, may also be relevant as a complementary information.

Design decay can be affected by a myriad of factors, which may act
singularly or simultaneously to affect (either to avoid, slow down or accelerate)
the decay process [6, 9, 7, 10]. Due to the large number of ways in which those
factors may be encountered, and the possibility of the presence of confounding
factors, it can be challenging to pinpoint whether and to which extent each
factor influences decay.

In this work, we are going to consider two of these types of factors:
the process-related factors and the developer-related factors. These factors
were chosen because there are known ways to observe and measure them
during the evolution history of a project, allowing the development of a
preventive approach to avoid design decay. One example where such an
approach (based on factors’ monitoring) could be developed would be in a code
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Chapter 1. Introduction 15

review environment. Given the ever-growing popularity of collaborative version
control platforms such as GitHub, the usage of the pull-request development
model, where developers review and discuss code changes, is increasingly more
common. In such an environment, it could be valuable to developers if a tool
could be able to monitor certain interactions between influential factors, in
order to assist developers in prioritizing which changes should be reviewed
more carefully. These two aforementioned factors are explained as follows.

The process-related factors are factors directly related to activities gov-
erning the program changes and their produced outcomes. Previous studies
have shown that some traditional metrics included in this category are good
indicators of changes that impact design decay [6]. This group of metrics will
be combined in this work as measures of the factor called here as "change out-
comes", given that they directly represent the outcome of changes made by
developers [11, 12, 13].

Another important aspect to consider is that repair actions may be
performed during development, attempting to reduce the effects of design
problems (or remove them altogether) present in the software system [14, 15,
16]. This strategy discourages an approach that considers factors in isolation,
given the influence that these repair actions have on design decay might not be
considered. In this work, we chose refactorings (e.g., actions aiming to improve
the design of existing code through structural changes [8], further discussed in
Section 2.2.1.2) to represent these repair actions. Thus, they will be considered
a process-related factor.

The characteristics of each change may also be affected by the developer
working on it. Thus, a second type of factor, the developer-related factors, will
also be considered. This group can contain many types of different factors, e.g.,
the discussion activity factors and the contribution factors. The former relates
to how developers communicate during the development of a change [7, 17],
while the latter focuses on the developer’s ownership of the source code affected
by a change made by him/her [18, 19].

Given that scenario where multiple factors can simultaneously affect
design quality, it becomes essential to study the process of design decay
considering various factors altogether. Otherwise, we have only a very partial
knowledge of how design decay occurs. Unfortunately, previous works have not
studied design decay with this multi-dimensional perspective.

The current section motivates and contextualizes this work. The remain-
ing sections of this chapter are organized as follows: Section 1.1 addresses the
problem statement; Section 1.2 introduces the research questions addressed in
this work; Section 1.3 discusses the limitations of related works; Section 1.4
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Chapter 1. Introduction 16

provides a brief overview of the methodology of this work and presents its main
contributions; and 1.5 provides an outline for how the remaining chapters of
this dissertation are structured.

1.1
Problem Statement

There is a large number of non-trivial ways that different types of
factors may influence software development, and more specifically, design
decay. Previous research and, consequently, existing support resources tend
to only consider factors individually. This simplistic explanation may indicate
that those existing resources 1 are often not adequate as they do not consider
potentially relevant influences that can arise from interactions between factors.
For instance, in our results, when investigating changes that were performed by
first-time contributors and large changes individually, we could not associate
these factors with negative effects in terms of decay. However, when we
investigated changes where those two factors interacted, we observed that those
changes tended to have a negative effect on the code, leading to design decay.
The fact that previous studies do not consider those interactions makes it so
that information about how they affect design decay are scarce.

These problems create a situation where the elaboration of helpful
resources to avoid or mitigate design decay is challenging, consequently making
the job of practitioners trying to maintain design quality harder. This difficulty
in creating new resources, inadequacy of existing resources, and lack of
awareness on how developers perceive this process contribute to an ineffective
combat and monitoring of decay. In summary, our general problem is described
as follows.

General Problem. There is a lack of resources to support software
developers on avoiding or mitigating design decay.

We derived 2 specific problems from our general problem, which will be
tackled in the research presented in this Master’s Dissertation. First, while
some of the above-named factors have been previously studied, those studies
tend to focus on each factor individually (further discussed on Section 1.3). In
software development, multiple factors can be influential at a given point in
time. This might lead to different results than when those factors are studies
individually, which are not addressed by those previous studies. In this work,

1In the scope of this work, we consider resources as information that be used to help
developers, tool builds, and researchers to be more aware of the influences that different
interactions between factors can have on design quality. Other types of resources, such as
automated techniques and tools, are discussed in Section 4.2.

DBD
PUC-Rio - Certificação Digital Nº 1921366/CA



Chapter 1. Introduction 17

we call these cases where two (or more) factors co-occur in a code change that
was performed to a module of an interaction between factors or a co-occurrence
of factors. Second, some factors such as those regarding social aspects have only
recently started being studied in this context. They were not previously linked
to design decay, and when they were, this link was predominantly studied only
in the context of code review.

Both these observations reinforce that there is a lack of understanding
about how those factors actually affect design decay. In summary, our first
problem is defined as follows.

Problem 1: There is a lack of understanding of how the co-occurrence of
different factors can affect design decay.

Another important aspect often overlooked is that design decay is not a
static process. Its progression may change significantly over the course of the
software development. It is also an asymmetrical process, affecting distinct
modules differently, since not all changes affect all classes and neither do
they degrade design quality equally. This asymmetry com also be affected by
variables such as the fact that when modules are first added to a system, they
can already have varying amounts of preexisting design problems. Another
factor that can cause this asymmetry are the repair actions, especially since
developers usually need multiple changes to fully remove a design problem [20].

Given that scenario, we do not currently have a concrete understanding
of how design decay structurally evolves in a software system. This also,
consequently, limits our understanding on the interacting factors that affect
the design structure’s decay process, and whether different strategies to avoid
or mitigate decay are necessary depending on how decayed a module already
currently is. Those different strategies may be relevant as, at any given time,
a developer may be introducing a module to the system that has varying
amounts of preexisting design problems or performing changes to a module
that may have already suffered different degrees of decay. In summary, our
second problem is defined as follows.

Problem 2: There is a lack of understanding about how the evolution of
the IQAs on modules differs depending on their levels of decay.
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1.2
Research Questions

Given the scenario presented in the previous section, we can introduce
our research questions, as follows. Each of the following questions is aligned
with the problems stated in Section 1.1.

RQ1: Which factors, be they process-related or developer-related, may be
indicators of changes that affect design decay?

This research question aims at investigating if it is possible to use the
factors that were analyzed in this work, individually, to identify design decay.
Only a minor part of our analysis focus on issues addressed in previous
studies. Out first goal is to make sure our list of analyzed factors have (or
not) a relationship with evolving design decay. Thus, we can investigate which
associations of such factors can be relevant to understand design decay. This
is addressed by our second research question as follows.

RQ2: What associations involving co-occurrences of certain factors may
be inferred from code changes?

These associations allow us to better understand the design decay pro-
cess, and identify if there are factors that stand out as being closely related to
the introduction or avoidance of design decay. It also allow us to differentiate
the behaviour of certain factors when comparing modules that did not decay
much with classes that were considerably decayed.

RQ3: Do the associations between the co-occurrence of factors behave
differently depending on the level of decay of a class?

As aforementioned, design decay is an asymmetrical process. Therefore,
throughout the evolution of a system, those associations may interact with
modules that suffered different levels of decay, which may affect the decay
process. By investigating these differences, we may be able to infer whether
and how different strategies can be employed when performing changes to
modules with varying levels of decay. In turn, these strategies can be used to
more effectively avoid or mitigate design decay.

DBD
PUC-Rio - Certificação Digital Nº 1921366/CA



Chapter 1. Introduction 19

1.3
Limitations of Related Work

There is a plethora of previous studies that investigate whether specific
factors can affect design decay [18, 21, 22, 9, 23, 24, 25]. Those studies often
focus on investigating those factors, be they process-related [23, 6, 24] or
developer-related [7, 18, 25], in isolation. Therefore, they do not tackle the
fact that modules can be affected, simultaneously, by different combinations
of factors throughout their lifetime, which can affect the progression of how
these modules are affected by design decay. As previously mentioned in Section
1.1, while we were investigating changes that were performed by first-time
contributors and large changes individually, we could not associate them with
negative effects of design quality. However, when we investigated interactions
between those factors, we observed that those changes often had a negative
effect on design quality.

Some factors, especially more socially-oriented ones, such as the
developer-related factors (e.g., discussion activity, previous contributions), also
only started being investigated in the context of design decay recently [7]. Pre-
viously, studies were limited to the context of code review, e.g. Uchôa et al. [6].
The presence of repair actions, such as refactorings, is also often not investi-
gated as something that could interfere in how other factors affect design decay.
Even though repair actions aim at improving code structure, they may often
exert a negative effect.

Some factors (and/or their interactions) may influence design decay at
different stages along software maintenance and evolution. The intensity of
this influence along the the software lifetime is asymmetric between modules,
and therefore, modules should be differentiated by the degree in which they
have decayed, be it temporally or in intensity. Most studies do not make this
distinction. For example, studies that only use code smells as indicators of
design decay, instead of changes to the internal quality attributes, often use
smells’ density and smells’ diversity to measure decay (e.g., Barbosa et al. [7],
Uchôa et al. [6]). However, they do not consider when each smell was introduced
or how much the software quality measures exceeded the thresholds used for
the detection of a given code smell. As a consequence, this strategy can only
reveal the influence of (interacting) factors only when a more advanced stage
of decay (i.e., a smell is detected) manifests. The other disadvantage is that
the selection of thresholds for smell detection is always subjective [26].

Due to the lack of evidence on how multiple relevant factors interact to
influence design decay over time, researchers and developers cannot pinpoint
which factors (or combinations of them) should be monitored in order to avoid
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changes that increase design decay. On the opposite, they tend to focus in
addressing one or another factor only. This restrict knowledge may misguide
developer actions to combat design decay.

1.4
Main Research Contributions

Overview: In this work, we aimed to find associations (i.e., factor in-
teractions) determining whether and how a subset of process-related and
developer-related factors interact and affect design decay. To find these as-
sociations, we employed association rule mining, a data mining technique that
aims to discover associations among a large set of items [27]. This technique
does that by detecting patterns of values that frequently occur together in a
given dataset [28]. In our case, the patterns to be discovered are the interac-
tions between factors described earlier in this chapter.

To utilize the rule mining technique, we considered the presence of each
of those aforementioned factors and the occurrence of changes to each of
the internal quality attributes as events that can occur simultaneously in a
code change. This technique allows us to identify not only whether factors
interacted. It also reveals how this interaction occurred. To this end, we also
considered, when necessary, different ways in which a factor could manifest, and
also whether a change to an IQA was positive or negative. This will be further
discussed in Step 8 of Section 3.3.2. This research was executed utilizing data
that was mined from the version control repositories of seven different software
systems, spanning approximately 45K commits. We also mined data about
twelve sub-factors (Section 2.2), from which ten were found to be relevant to
the decay process. Chapter 3 presents an extended version of a paper that was
submitted to SANER’2022 at the time this dissertation was submitted. The
paper provides a detailed description of the methodology and results derived
from this work. A summary of our main findings can be observed by reading
the statements surrounded by a rectangle in Section 3.4. A submission for this
extended version is also planned, to be executed quite soon.

Main Contributions: In this work, we present two main contributions:
(i) the design of a methodology that allows researchers to associate patterns
of co-occurrence of factors affecting design decay; and (ii) a set of findings
and insights obtained from the execution of this methodology. Our findings
and insights inform researchers and developers on how design decay struc-
turally evolves. By leveraging them, developers can progressively monitor the
interactions between factors that accelerate decay. After a more in-depth in-
vestigation, those findings and insights can also lead to practical guidelines.
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Those can guide developers and researchers understand how design decay is
preserved, reduced or increased and how to avoid or mitigate the worrisome
status of a design structure. For example, we recommended that developers
should avoid or closely monitor extraction refactorings that are complex or ex-
ecuted alongside other changes. This is due to our observation that, unlike for
other types of refactorings, negative effects were more frequent in extraction
refactorings when large or complex changes were detected.

We also consider relevant three secondary contributions, described as
follows: (i) the development of several scripts to extract historic data from
version control repositories (specifically git); (ii) the detailed design and
implementation of several metrics, quantifying various decay-related factors,
which were produced by and used throughout the Master’s research (described
in Table 3.4); and (iii) a dataset containing not only the raw data that was
used in our methodology, but also the processed data generated by each step
of our studies.

Publications: As aforementioned, the contributions of this Master’s Dis-
sertation are reported in the publication presented in Chapter 3. Nevertheless,
this research also contributed to the Master’s research of other students (e.g.,
Soares et al.[29]) and to three Doctorate studies (e.g., Barbosa et al.[7], Bib-
iano et al. [30, 31], and Uchôa et al.[9]). Table 1.1 lists the related publications
worked on during the execution of this research. Each of its columns present,
respectively, the title, the venue it was submitted to, its status and whether
it was directly derived from the author’s dissertation or just involved his par-
tial contributions. Regarding the first five papers presented, all of them are
already published or were accepted in top international and national events.
These are leading conferences in Software Engineering subareas and all of them
have QUALIS scores varying from A1 to A3.

Table 1.1: Publications worked on during this research

Title Conference Status
Relation to
Master’s
Research

How Does Incomplete Composite Refactoring
Affect Internal Quality Attributes

ICPC 2020
(QUALIS A3) Published Related

On the Relation between Complexity, Explicitness,
Effectiveness of Refactorings and Non-Functional Concerns

SBES 2020
(QUALIS A3) Published Related

Revealing the Social Aspects of Design Decay SBES 2020
(QUALIS A3) Published Related

Predicting Design Impactful Changes in Modern Code Review:
A Large-Scale Empirical Study

MSR 2021
(QUALIS A1) Published Related

Look Ahead! Revealing Complete Composite Refactorings
and their Smelliness Effects.

ICSME 2021
(QUALIS A2) Accepted Related

On the Influential Interactive Factors on Degrees
of Design Decay: A Multi-Project Study

SANER 2022
(QUALIS A2) Submitted Directly

Derived
On the Influential Interactive Factors on Degrees
of Design Decay: A Multi-Project Study (Extended Version)

IST Journal
(QUALIS A1) To Be Submitted Directly

Derived
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1.5
Dissertation Outline

The remaining chapters of this dissertation are organized as follows.
Chapter 2 presents background information and introduces: (1) design decay
and how it can be observed via the internal quality attributes; (2) influential
factors, their sub-factors, and how they relate to software development; and
(3) association rule mining and the algorithm used in this work.

Chapter 3 presents a paper which presents a detailed description of the
methodology and results derived from this work. A shortened version of this
work was submitted to the 29th IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER’2022). Finally, Chapter 4
summarizes the work, its contributions, and also describes the future work
that is planned to further refine and strengthen this research.

DBD
PUC-Rio - Certificação Digital Nº 1921366/CA



2
Background

This chapter introduces three concepts widely used in this work. Section
2.1 introduces design decay, its symptoms, and how they are related to the
internal quality attributes. Section 2.2 discusses process- and developer-related
factors that can influence software development, and how they can be divided
into sub-factors. Finally, Section 3.2.3 discusses association rule mining, a
technique utilized in this work to detect co-occurrences of the aforementioned
factors.

2.1
Design Decay and Internal Quality Attributes

Software design results from a series of decisions made during software
development [32, 33]. However, throughout the development of a software
project, a software’s design may decay due to the progressive introduction of
poor structures into the system, often called decay symptoms [8, 5]. Therefore,
design decay is a phenomenon in which developers progressively introduce
design problems in a system [3]. For example, a class being overloaded with
multiple unrelated concerns – making its usage difficult and potentially causing
ripple effects on other classes. Given the potential harmfulness of design decay,
developers often need to perform repair actions such as refactoring to impacted
source code locations [8]. These problems negatively impact quality attributes
such as maintainability and extensibility [4, 5].

A previous study [5] has proposed a grounded theory that explains
that developers tend to rely on five categories of symptoms to identify
design decay. Examples of those categories are the code smells [8], principle
violations [34], and internal quality attributes [8]. While previous studies
frequently use code smells to identify instances of design decay [6, 7], in this
work we selected metrics1 that quantify proprieties of five different internal
quality attributes (i.e., cohesion, coupling, complexity, inheritance, and size)
to indicate symptoms of design decay. By using this approach, we can observe
the decay directly, without facing the fragility of setting specific thresholds.
This is the typical problem of strategies to detect smells. The simpler the
model, the more widely it can be apllied.

1The metrics used in this work were chosen due to their presence on well-known catalogs
and usage in previous works to quantify software quality [35, 21].
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Additionally, AlOmar et al. [35] states that developers usually present
intentions that can be mapped to internal quality attributes – some even being
able to be mapped to specific metrics. Those five internal quality attributes
and the metrics associated with them are described as follows.

Coupling represents the degree of interdependency between classes [36].
Thus, high coupling negatively affects the maintainability of a set of classes,
by making even a small change in a method in one highly coupled class have a
large, and possibly unpredictable, effect the change of many other interdepen-
dent classes. In this work, we utilize three different metrics to represent this
internal quality attribute: Coupling Between Objects (CBO) [36], FANIN [37],
and FANOUT [37]. We selected this set of metrics since they represent different
dimensions of this attribute, i.e., CBO represents type-level undirected depen-
dencies, while FANIN and FANOUT represent directed incoming and outgoing
dependencies, i.e., inputs and outputs of call-level couplings. Table 2.1 provides
a description for each of these metrics and how to interpret changes to their
values, i.e., whether a change is value is considered an improvement when it
increases or decreases.

Table 2.1: List of coupling metrics used in this work

Metric Description Improves When
Coupling Between Object
(CBO) [36]

The number of classes coupled
to the analyzed class. Decreases

FANIN [37] The number of external objects that
invoke methods from the analyzed class. Decreases

FANOUT [37]
The number of external method
invocations made by the analyzed class
to objects of other classes.

Decreases

Cohesion represents the degree to which the internal elements of a
module are related to each other. A low cohesion within a class might lead
to developers having difficulty on understanding the responsibilities of that
class, thus potentially leading that class to become complex and bug-prone. In
this work, we utilize three different metrics to represent this internal quality
attribute: Lack of Cohesion in Methods 2 (LCOM2) [36], Lack of Cohesion
in Methods 3 (LCOM3) [38], and Tight Class Cohesion (TCC) [39]. Again,
we selected this set of metrics since they represent different dimensions of
this attribute, i.e., LCOM2 and LCOM32 use different approaches to represent
cohesion by considering methods that are unconnected in a class, while TCC
considers connections between public methods. Table 2.2 provides a description
for each of these metrics and how to interpret changes to their values.

2Two versions of the LCOM metric are considered as their different computation methods
can result in different values.
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Table 2.2: List of cohesion metrics used in this work

Metric Description Improves When
Lack of Cohesion in Methods 2
(LCOM2) [36]

Number of method pairs that do not share attributes,
minus the number of method pairs that share attributes. Decreases

Lack of Cohesion in Methods 3
(LCOM3) [38]

Treats each method pair as an individual entity,
and determines the difference between the
amount of similar and different pairs.

Decreases

Tight Class Cohesion
(TCC) [39]

The number of directly connected visible methods
in a class divided by the number of maximal possible
connections between the visible methods of a class.

Increases

Complexity represents the level of overload of responsibilities in a single
module or class. Such a complexity causes difficulties on the reading and
understanding of classes by maintainers, who end up making mistakes and
possibly introducing design problems or even bugs. In this work, we utilize
five different metrics to represent this internal quality attribute: Cyclomatic
Complexity (CC) [40], Essential Complexity (ev(G)) [40], Maximum Nesting
(MAxNEST) [41], Weighted Methods per Class (WMC) [36], and Number
of Methods (NM) [42]. Those metrics are used to represent different facets
of complexity, i.e., NM considers the number of functionalities provided by
a class as a measure of complexity, while the remaining metrics consider the
structure of how these functionalities are implemented. Three of the remaining
metrics also differ, i.e., CC considers the control flow of a method. In this
work, we represent the CC of a class by the mean of the CC of its methods.
Ev(G) connects complexity to whether that control flow can be simplified,
while MAxNEST connects it to block nesting. WMC represents an alternative
way of considering CC, as it represents a class by the sum of its methods.
Table 2.3 provides a description for each of these metrics and how to interpret
changes to their values.

Table 2.3: List of complexity metrics used in this work

Metric Description Improves When
Cyclomatic Complexity
(CC) [40]

Measure of the complexity of a
module’s decision structure. Decreases

Essential Complexity
(ev(G)) [40]

Measure of the degree to which a
module contains unstructured constructs. Decreases

Maximum Nesting
(MAxNEST) [41]

Maximum nesting level of control
constructs. Decreases

Weighted Methods per Class
(WMC) [36]

The sum of the cyclomatic complexity
of the methods of a class. Decreases

Number of Methods
(NM) [42]

The number of non-inherited methods
declared in the analyzed class. Decreases

Inheritance represents the complexity of a class’s inheritance tree due
to the number of superclasses and subclasses in the hierarchy. A class with
a complex inheritance tree may cause additional difficulty during the mainte-
nance process. For instance, it can cause developers to lose track of which class
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in the inheritance tree has the implementation of which method, and which
method is used by a specific class. In this work, we utilize three different met-
rics to represent this internal quality attribute: Base Classes (IFANIN) [43],
Number of Children (NOC) [36], and Depth of Inheritance Tree (DIT) [36].
These metrics were selected as they represent different aspects of inheritance,
i.e., IFANIN from whom a class has inherited, while conversely, NOC and DIT
consider those who inherit from that class, directly (NOC) or indirectly (DIT).
Table 2.2 provides a description for each of these metrics and how to interpret
its value.

Table 2.4: List of inheritance metrics used in this work

Metric Description Improves When
Base Classes
(IFANIN) [43]

The number of immediate base
classes and interfaces. Decreases

Number of Children
(NOC) [36]

The number of immediate
subclasses to the analyzed class. Decreases

Depth of Inheritance Tree
(DIT) [36]

The number of nodes between the
root of the inheritance tree and the
analyzed class.

Decreases

Finally, size represents the physical size of a code structure (e.g., a
method or a class), often measured by the number of lines of code or by
the number of statements. Even though many previous studies [44, 30, 45]
associate the size attribute with code quality, due to its connection to bad
code structures, such as long methods and long classes, the values of the
metrics related to size vary wildly throughout a project’s evolution – thus,
care should be taken when considering size changes as being a positive or
negative influence to the code’s quality. Previous studies have also concluded
that, in isolation, size metrics may not reflect what developers consider as
quality in practice [35]. In this work, we utilize 24 different metrics to represent
this internal quality attribute. This large number of metrics was chosen as an
attempt to mitigate some of the aforementioned risks of using size metrics
to quantify design quality, in order to increase the probability of observing
meaningful findings. Table 2.5 provides a description for each of these metrics
and how to interpret changes to their values. Given the aforementioned caveats
when considering size as a measure of code quality, in this work, these
interpretations for the values of the metrics representing this attribute were
only used as complimentary information and were not used to directly measure
code quality or to identify design decay.
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Table 2.5: List of size metrics used in this work

Metric Description Improves
When

Physical Lines (NL) [42] The number of physical lines in the
class. Decreases

Blank Lines of Code (BLOC) [42] The number of blank lines of code in
the class. Decreases

Source Lines of Code (LOC) [42] The number of lines containing source
code in the class. Decreases

Declarative Lines of Code [42] The number of lines containing
declarative source code in the class. Decreases

Executable Lines of Code [42] The number of lines containing
executable source code in the class. Decreases

Lines with Comments (CLOC) [42] The number of lines containing
omments in a class. Increases

Semicolons [42] The number of semicolons in a class. Decreases
Statements [42] The number of statements in a class. Decreases

Declarative Statements [42] The number of declarative statements
in a class. Decreases

Executable Statements [42] The number of executable statements
in a class. Decreases

Comment to Code Ratio [42] The ratio of comment lines to code lines
in a class. Increases

Instance Variables (NIV) [42] The number of instance variables in a class. Decreases
Instance Methods (NIM) [42] The number of instance methods in a class. Decreases

Response For Class (RFC) [42] The total number of methods, including
inherited ones, in a class. Decreases

Local Default Visibility Methods [42] The number of local methods with default
visibility in a class. Decreases

Average Number of Lines [42] The average number of physical lines
between methods of a class. Decreases

Average Number of Blank Lines [42] The average number of blank lines of
code between methods of a class. Decreases

Average Number of Lines of Code [42] The average number of lines of source
code between methods of a class. Decreases

Average Number of Lines
with Comments [42]

The average number of lines containing
comments between methods of a class. Increases

Class Methods [42] The number of class methods in a class. Decreases
Class Variables [42] The number of class variables in a class. Decreases

Private Methods (NPM) [42] The number of local private methods
in a class. Decreases

Protected Methods [42] The number of local protected methods
in a class. Decreases

Public Methods (NPRM) [42] The number of local public methods
in a class. Decreases
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2.2
Influential Factors Along Software Development

Software development is constantly affected by a myriad of different
factors. For convenience, these factors can be grouped into a number of key
categories, which can be exemplified as follows.

– Technical factors relate to characteristics of the code or the software
project itself, e.g., the internal quality attributes or non-functional
characteristics such as performance.

– Process-related factors reflect the changes themselves and their outcomes,
e.g. characteristics of the change such as size, churn, number of segments,
number of files modified, as so forth. Other examples are actions per-
formed in that change, such as refactorings.

– Developer-related factors comprise aspects pertaining to characteristics
of the developers and their collaboration among developers, and discus-
sions [46, 47, 48].

– Collaboration network factors emerge from the social networks formed
by collaborations between developers [49].

– Organization-related factors from the practices of a community or or-
ganization, changing the developer’s behaviour, e.g. community smells,
which are organizational practices which might lead to problems in de-
velopment [50].

As shown above, each of these larger groups of factors can include
factors ranging from change actions, e.g., refactorings (i.e., actions aiming to
improve the design of existing code), to more qualitative concepts such as how
developers contribute and discuss the changes.

Previous studies [6, 9, 7, 10] consistently reported that different influen-
tial factors may contribute to avoiding, reducing, or accelerating design decay.
Thus, understanding the influential factors on design decay is greatly impor-
tant. In this work, we focus specifically on two of the aforementioned categories
of factors: Process-related factors and Developer-related factors. These factors
were chosen because there are known ways to observe and measure them dur-
ing the evolution history of a project. Some of the previously mentioned factors
were also not considered due to them requiring observations that are external
to the version control repository (e.g., contribution factors and organization-
related factors) or that can only be observed after the changes are integrated
in the software system (e.g., technical factors). These aforementioned observa-
tions and measurements allow us to relate those factors with changes made by
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the developers, which also enables the development of preventive approaches
to avoid design decay. These two factors and their respective sub-factors are
explained as follows.

2.2.1
Process-related Factors

In this work, we considered that process-related factors represent the
universe of files, code segments, and repairing actions including refactorings
(e.g., the number of move refactoring actions). We also considered that process-
related factors are grouped into two factors: change outcomes, and refactoring
actions.

2.2.1.1
Change Outcomes

Change outcomes represent the result of changes performed by developers
during development [11, 12, 13]. We further divided this factor into three sub-
factors that can be directly mapped to widely used process metrics that are
known to represent different properties of changes [51] : Change Set, Hunks
Count, and Code Churn. Previous studies that investigated those metrics have
concluded that they are very effective at indicating changes that cause design
decay [9].

Change Set relates to the number of classes that are modified in a code
change alongside the file that is currently being observed. The rationale for
using this sub-factor is that previous studies have shown that large changes
are more likely to go through a process of code review, since developers perceive
that large changes tend to introduce design decay [11].

Hunks Count refers to the number of distinct code segments (i.e.,
contiguous blocks of code) of a class that are modified in a code change. The
rationale for looking at this sub-factor is that a high number of code segments
modified is an indicator that a change might be complex [12].

Code Churn describes the sum of the number of lines added and deleted
from a file in a code change. The rationale for investigating this sub-factor is
that previous studies have observed that classes that are more change-prone
are more likely to contain design problems [13].

2.2.1.2
Refactoring Actions

Refactoring actions represent code transformations made by developers
to avoid or mitigate design decay [15, 16]. The presence of these actions in a
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change might indicate that developers have identified a design problem on the
target file that needs to be removed or minimized. For this factor, we chose to
separate refactoring actions into four groups that represent different natures
of that action: Extraction, Move (or Movement), Hierarchical, and Rename.
These groups of refactorings were chosen as they are able to represent the
most frequent types of refactorings observed by previous studies [52, 30, 31, 53]
(some of which analyze software projects in common with this work). These
refactoring types are also the canonical types used to improve non-functional
requirements associated with design decay: maintainability, comprehensibility,
and reusability [8]. Less frequent refactoring types were not considered as
they could result in findings that are not meaningful in the software projects
analyzed (one case of this can be seen at the end of Section 3.4.3.3).

Extraction refactorings dataches pieces of code from an expression,
segment or construct into a new code element. The motivation for this type of
refactoring can be due to a myriad of reasons, such as to improve readability,
generalization, encapsulation, to avoid code duplication, among other reasons.
This category includes the following refactoring types: Extract Method, Extract
Superclass, Extract Interface, Extract Attribute, Extract Class, Extract Subclass,
and Extract Variable.

Move refactorings move pieces of code between code elements that can
contain it (e.g., a method can be moved between classes), without creating
new code elements. Developers might execute this type of refactoring to
improve encapsulation, cohesion, reduce coupling, and so forth. The following
refactorings were included in this category: Move Method, Move Class, and
Move Attribute.

Hierarchical refactorings are actions that move a code element or con-
struct up or down in the class hierarchy. This type of refactoring often occurs
when developers identify a generalization problem, where code constructs or
elements on the same level of hierarchy perform similar work or have similar
purposes, and can be generalized. We have included the following refactoring
types in this category: Pull Up Method, Pull Up Attribute, Push Down Method,
and Push Down Attribute.

Rename refactorings are actions that change the names given to code
elements. This type of refactoring is mostly done to improve readability when
developer has identified that the name of that element does not represent its
current purpose. For this category, we have included the following refactoring
types: Rename Method, and Rename Class.
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2.2.2
Developer-related Factors

Developer-related factors were considered to represent the human-
centered actions of code contributions, e.g., the number of words in a dis-
cussion. Developer-related factors were grouped into discussion activity and
contribution. These groups and their sub-factors were selected as they repre-
sent a meaningful sample of social aspects that have been analyzed in previous
studies [7, 9], and can also be measured without needing observations external
to the version control repository or its hosting platform (in the case of this
work, GitHub).

2.2.2.1
Discussion activity

Discussion activity represents the developers interaction during the ex-
change of messages and the contents of messages [7, 17]. We further divided
this factor into three sub-factors: Associated Pull Requests, Discussion Length
and Comment Length.

Associated Pull Requests refer to GitHub pull requests that refer to or
introduce the changes to the file that is currently being analyzed. Measuring
this allows us to track whether a change was introduced via a pull request
or not (changes introduced via pull request often go through a code review
process) and whether multiple pull requests refer to the same change, which
might indicate that a change is complex or important, and therefore more
discussed by developers.

Discussion Length and Comment Length represent two different
facets (in terms of granularity) of the size of a discussion. The former refers to
the entirety of a discussion, and is measured by summing the number of words
inside all comments in a pull request. The latter refers to only pieces of it
(i.e., each individual comment), and is measured as the mean of the number of
words per comment. Previous studies have observed that changes introduced
via pull requests with large discussions are more likely to include complex
changes [17, 7], which consequently might be more likely to introduce design
decay [11].

2.2.2.2
Contribution

Contribution focuses on the developers which have contributed to a file,
based on who are the developers that have contributed to a certain software
project, how many times each of these developers modified each file in the
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system and their level of contribution to each class [18, 19]. We further divided
this factor into two sub-factors, which were chosen since they can be observed
at change time: Contributors and Code Ownership.

Contributors refers to the list of developers that have made changes to
a certain class. Tracking this sub-factor can allow us to discern whether the
author of a specific change is a newcomer (i.e., it is his first change) or not.
Previous studies have observed that classes modified by new developers are
more prone to decay [19, 18].

Code Ownership represent how responsible a developer is for the
authorship of a specific file. It is measured as the percentage of lines of
code in a file that is authored by a specific developer. We consider this
sub-factor since previous studies have showed that files that were changed
by minor contributors tend to be decayed than files only modified by major
contributors [19, 18].

2.3
Association Rule Mining

In this work, we used Apriori, a widely used association rule algo-
rithm [54], to investigate whether and how process- and developer-related fac-
tors interact to influence varying levels of design decay. Those interactions can
be observed through the associations resulting from this technique, which is
explained as follows.

Association rule mining is a data mining technique that aims to discover
associations among a large set of data items [27]. This technique is used
to detect patterns of values that occur together in a given dataset [28,
27]. This technique has been widely applied to support decision-making in
various fields, such as business [55], intrusion detection [56], and even software
engineering [57, 58, 59].

To illustrate the concept of association rule mining, consider a set of
data items I = {i1, i2, ..., in}. Let D be a set of transactions (i.e., dataset), in
which each transaction T is a subset of I, i.e., T ⊆ I. An association rule is
an implication expressed as:

A⇒ B where A ⊂ I, B ⊂ I, and A ∩B = ∅ (2-1)

In other words, when A occurs, B tends to occur (the opposite is not
necessarily true). More specifically, A and B are disjointed sets of data items,
in which A is called the antecedent and B is called the consequent. There
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are three key measures commonly used to filter the relevant association rules:
support, confidence and lift [28, 60].

Support determines how frequent the rule is applicable in the transaction
set D. It is expressed as Support(A ⇒ B), and represents the percentage of
transactions that contain both A and B. It can be represented as follows.

Support(A⇒ B) := Frequency(A AND B) (2-2)

Confidence, on the other hand, measures the strength of the rules. It is
expressed as Confidence(A⇒ B), and represents how frequent B appears in
transactions that contain A. It can be represented as follows.

Support(A⇒ B) := Support(A⇒ B)
Frequency(A) (2-3)

Finally, Lift is expressed as Lift(A ⇒ B), and represents how strongly
a rule influences a potentially random occurrence – if a rule’s lift is equal to 1,
it means that the consequent of the rule is independent from the antecedent,
thus being a random result. Having a lift value higher than 1 means that the
antecedent being fulfilled likely causes the consequent to appear, while lift
values below 1 mean that the condition being fulfilled likely causes the inverse,
i.e., the consequent to not appear. It can be represented in two different ways,
as follows.

Lift(A⇒ B) := Support(A⇒ B)
Frequency(A)× Frequency(B) (2-4)

Lift(A⇒ B) := P (A ∩B)
P (A)× P (B) (2-5)

The algorithm used in this work, apriori, is one of the widely used
algorithms in association rule discovery [54]. The algorithm uses Apriori
principle, which states that if an itemset is not frequent, all its subsets
are not frequent as well. In this sense, it first scans the transactions and
generates frequent item sets based on filtering criteria set by users. Then,
a list of association rules is generated from frequent item sets. We used this
algorithm to quantify the degree of association between different factors that
can influence design decay. Since those associations happen inside each of the
transactions, which in the case of this work are the commits, those associations
can be seen as representing the interactions between the different factors
analyzed.
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2.4
Summary

This chapter introduced three key concepts to support the understanding
of this dissertation. First, it introduced design decay and discussed how its
symptoms can be identified using internal quality attributes. Second, described
how different influential factors can affect software development, which of these
factors were the focus of this work and why they were chosen, and also how we
divided them into sub-factors. Third, it also introduced association rule mining
and the apriori algorithm, which were used in this work to mine influential
interactions between the aforementioned factors. The next chapter presents
the study we conducted to address the problems listed in Section 1.1.
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3
On the Influential Interactive Factors on Degrees of Design
Decay: A Multi-Project Study

As we discussed in Chapter 1, developers regularly make design changes
throughout the lifetime of a software project. These changes may introduce
design problems, consequently causing decay. Design decay may be influenced
interacting factors that underlie each change. These factors may vary from
specific change actions – e.g., refactorings – to actions from developers, e.g., a
comment in a code review process. Without being aware of interacting factors
influencing design decay, developers cannot be warned of harmful changes to
design.

However, while existing studies consider each factor in isolation, they
lack of evidence about how these factors interact and influence design decay.
In this chapter, we present the paper "On the Influential Interactive Factors
on Degrees of Design Decay: A Multi-Project Study". A shortened version
of this paper was submitted to the 29th IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER 2022). As described
in Section 1.5, this paper reports a study where we aimed to find associations
between how a subset of process-related and developer-related factors (Section
2.2) interact and affect design decay (Section 2.1).

To find these associations, we employed association rule mining (Section
2.3), a data mining technique that aims to discover associations among a
large set of items [27]. The associations are found by detecting patterns of
values that frequently occur together in a given dataset [28]. To utilize this
technique, we considered the presence of each of those aforementioned factors
and the occurrence of changes to each of the internal quality attributes as items
that can occur simultaneously in a code change. For example, an association
rule mined using this technique could identify that, frequently, changes that
modify a large number of files and contain move refactorings tend to improve
cohesion and reduce coupling. This research was executed utilizing data that
was mined from the version control repositories of seven different software
systems, spanning approximately 45K commits.

In this study, we first observed that the factors that were considered
can indeed be good indicators of changes that affect design decay, addressing
the first research question of this Master’s Dissertation, which is analogous to
the first research question of the paper. After that, tackling the two remaining
research questions of the dissertation, which also addresses the second research
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question of the paper, we observed several patterns in how these factors
interacted and affected design decay. We also compared how the design decay
process differed between classes that had a few internal quality attributes
affected by decay and classes where most of the internal quality attributes
had suffered decay. As an additional viewpoint, we also compared these results
with the patterns found when looking at all classes in the data set. In case the
reader has read Chapters 1 and 2, you may consider skipping Section 3.1, which
briefly describes the context and motivation of this work, and also provides a
list of the main contributions and Section 3.2, which contains a shortened
description of concepts such as design decay, developer- and process- related
factors, and association rule mining. Some of the information in Section 3.3.2
is also redundant, specifically Tables 3.2, 3.3, and 3.4, which briefly introduce
the metrics and sub-factors already described in detail in Chapter 2.

On the Influential Interactive Factors on Degrees of
Design Decay: A Multi-Project Study
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Alessandro Garcia∗, Marcelo Schots†, Juliana Pereira∗, Wesley K. G. Assunção∗

∗Informatics Department – Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
† Informatics and Computer Science Department – Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil

3.1
Introduction

Developers constantly change software systems, submitting their con-
tributions to version control repositories, and allowing other developers to
review [61] and discuss [62] their contents. Often, these changes may induce
design decay over time [2, 3], whose symptoms manifest when the software
modules become increasingly complex, large, coupled, and incohesive [63]. De-
cay levels can also vary among different modules of a system, since they evolve
asymmetrically. Developers might also apply certain repair actions (e.g., refac-
torings) in an attempt to potentially revert design decay [14], which can further
contribute to this asymmetry.

Design decay is often studied as a cut-and-dried issue [5]. Still, a myriad
of factors can influence – either alone or simultaneously – how decay occurs,
and to which extent it can be slowed down or accelerated. These influence
factors can vary in nature and can also affect, to a greater or lesser extent,
the effectiveness of repair actions. As such, the quality of a change might
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be influenced by the developer(s) working on it and the change process
itself. Process-related factors include actions and outcomes associated with the
resulting software changes [11, 12, 13]. Conversely, developer-related factors
include ways in which they discuss and contribute to a system [7].

Previous studies investigate whether these factors, in isolation, affect
design decay [23]. Some focus on analyzing either developer- [7, 18] or process-
related [23, 6] factors. They often disregard that modules are subjected to
varying levels of decay and to evolving combinations of influential factors. They
do not differentiate preliminary or advanced stages of design decay [64]. Thus,
investigations on potential associations between those factors, as well as to
which levels they can affect design decay, are currently missing in the literature.
No study investigates if and how these complementary factors simultaneously
and progressively influence decay. Thus, one cannot effectively explore which
factors (or associations between them) should be monitored to avoid decay.

In this paper, we address these gaps through a multi-project study that
reveals influential factors in varying levels of design decay. For this reason, we
divided modules1 in terms of how many of their internal quality attributes
(IQAs) were affected by decay. We consider a module is slightly-decayed
whenever only a few of its IQAs were affected; largely-decayed modules are
those in which various IQAs were affected (further clarified in Section 3.3.2). To
analyze how developer- and process-related factors can relate to these groups,
we use association rule mining [65] to infer how factors may have differently
influenced the decay of modules in these groups. We mined associations from
nearly 45k commits made to seven systems. We analyzed 38 software metrics
to characterize the design decay of modules with respect to five IQAs. To
support our observations, we also analyzed 12 (sub-)factors, quantified by
metrics, regarding process- and developer-related factors.

Our main contributions include an investigation about whether specific
process- and developer-related factors differ between classes with varying levels
of decay, and how certain factor associations can influence decay. We also
provide a novel data set, allowing researchers to further investigate how these
factors influence the IQAs over time. Our main findings are summarized as
follows:

i) Process- and developer-related factors can be used to distinguish
between slightly- and largely-decayed classes. Specifically, change actions (e.g.,
refactorings) and their outcomes consistently indicate alterations in decay
level. Some developer-related factors – e.g., contribution volume and discussion
density – also stood out.

1In this study, we considered each individual class as a module.
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ii) Surprisingly, extraction-type refactorings often do not have a positive
effect on IQAs. Even when interacting with factors that represent developers’
experience and the class’ level of decay, the result continues to be non-positive.
By contrast, move-type refactorings have the opposite effect, consistently
improving the IQAs.

iii) Specifically in slightly-decayed classes, when the factors that repre-
sented first-time contributors and significant changes in a class’s code inter-
acted, they tended to cause negative effects on the IQAs. Even when interact-
ing with factors that show that the change was introduced via a pull request
process (which could imply code review), they continued to maintain their
negative effects.

3.2
Background

This section describes several concepts widely used throughout this work.
Section 3.2.1 presents a overview of design decay, its symptoms and how
they relate to the internal quality attributes. Section 3.2.2 discusses process-
and developer-related factors that can influence software development. Finally,
Section 3.2.3 discusses association rule mining.

3.2.1
Design Decay and Internal Quality Attributes

Design decay is a phenomenon in which developers progressively intro-
duce design problems in a system [3]. It is caused by design decisions that
negatively impact quality attributes such as maintainability and extensibil-
ity [4, 5]. An example is a class being overloaded with multiple unrelated re-
sponsibilities – making its usage difficult and potentially causing ripple effects
on other classes. Given the potential harmfulness of design decay, developers
often need to identify and refactor impacted source code locations [8].

As evidenced by an existing grounded theory [5], a key indicator used
by developers to reduce design decay is the improvement of internal quality
attributes (IQAs), such as coupling, cohesion, and complexity [66]. For instance,
coupling represents the degree of interdependency between classes [36]. In this
sense, a high coupling negatively affects the maintainability of a set of classes,
by making even a small change in a method in one highly coupled class have
a large, and possibly hard to predict, effect on many other classes.

In the case of cohesion, it represents the degree to which the internal
elements of a module are related to each other. A low cohesion within a class
might lead to developers having difficulty understanding the responsibilities of
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that class, thus potentially leading that class to become hard to change and
bug-prone. Finally, complexity represents the level of overload of responsibili-
ties and decisions of a module or class. It causes difficulties in the reading and
understanding of classes by developers, who end up making mistakes.

Other two IQAs are also adopted by the literature and considered by
developers are: size and inheritance [36, 35, 5]. In the case of inheritance, it
represents the complexity of a class’s inheritance tree – due to the number of
superclasses and subclasses in the hierarchy. A class with a complex inheritance
tree may cause additional difficulty during the maintenance process. It can
cause developers to lose track of which class in the inheritance tree has the
implementation of which method, and which method is used by a specific class.
As for the size attribute, it represents the physical size of a code structure
(e.g. method, class), often measured by the number of lines of code. It is often
considered as a measure of code quality, due to its connection to bad code
structures, such as long methods and classes. However, the semantics of high
and low values of the metrics related to this size vary widely throughout a
software project’s evolution and across different projects. Thus, care should be
taken when considering size changes as being a positive or negative influence to
the code’s quality. Their meanings are hard to interpret in each context. Due
to the importance of IQAs for detecting design decay, in this work, we selected
a set of 38 metrics from the literature. They quantify a variety of properties
of each IQA. These metrics are explained in more detail in Section 3.3.2.

3.2.2
Influential Factors along Software Development

Software development is constantly affected by a myriad of different fac-
tors. For convenience, these factors can be grouped into a number of key cat-
egories. In this work, we focus on two of these categories of factors, namely,
process-related factors, that reflect the changes themselves and their outcome,
and developer-related factors, which emerge from collaboration among devel-
opers [48]. These factors may vary from change actions, e.g., refactorings, to
how developers contribute and discuss the changes, e.g., comments.

More specifically, process-related factors can be seen as representing the
universe of files, code segments, code changes and repair actions (e.g. refac-
torings). On the other hand, developer-related factors represent the human-
centered actions in code contributions, e.g., code review discussions. Previous
studies [6, 9, 7, 10], consistently report that those groups of influential factors
may contribute to avoiding, reducing, or accelerating design decay. Thus, un-
derstanding the influential factors on design decay is greatly important. We

DBD
PUC-Rio - Certificação Digital Nº 1921366/CA



Chapter 3. On the Influential Interactive Factors on Degrees of Design Decay:
A Multi-Project Study 40

specifically chose these factors since there are known ways to observe and
measure them. The observation of such factors can be made before a change
is introduced in a system, allowing developers to use a preventive approach to
avoid design decay. Other types of factors, e.g. runtime information – do not
enable this type of approach. In other words, there are many factors that can
be only computed after the change has already made into the system.

Such factors are usually further grouped into more specific groups of fac-
tors that can be captured by the computation of metrics. In this work, process-
related factors are grouped into two factors: Change outcomes and Refactoring
actions. Change outcomes represent the properties of each change performed
by developers during development [11, 12, 13]. Refactoring actions represent
code transformations usually made by developers to avoid or mitigate design
decay [15]. Developer-related factors are grouped into Discussion activity and
Contribution. Discussion activity represents the developers interaction during
the exchange of messages and the contents of messages [7, 17]. Contribution
focuses on the developer’s code ownership, based on the number of their pre-
vious commits to each file the software project and their level of contribution
to a specific class [18, 19].

We also defined a set of 12 (sub-)factors, which can be found in Sec-
tion 3.3.2. In this work, we rely on meaningful interactions between these sub-
factors to understand how changes relate to decay. These interactions can hap-
pen between sub-factors grouped in the same factor. For example, a change
where a new developer (i.e., it is his first change to the software project.)
changes a large portion of a single class. This change would be identified as a
interaction between contribution sub-factors, as that new developer would gain
ownership of that code. However, they can also happen between sub-factors
grouped in different factors. For example, that same aforementioned change
could also, at the same time, interact with a change outcomes factor, since it
could be a fairly large change. Another example in which this could happen
would be a change that contained an extraction refactoring, was extensively
discussed by developers, and was done by a new developer. This change would
be identified as an interaction between sub-factors grouped in three different
factors: refactoring actions, discussion activity, and contribution. By observing
how there interactions are related to changes to the internal quality attributes,
we are able to discern the influence these interactions exert over design decay.
In order to identify these interactions and their influence, we utilize a technique
called Associated Rule Mining, which is introduced in the following section.
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3.2.3
Association Rule Mining

In this work, we used Apriori, a widely used association rule algo-
rithm [54], to investigate whether and how process- and developer- related
factors interact to influence varying levels of design decay. Those interactions
can be observed through the associations resulting from this technique, which
is explained as follows.

Association rule mining is a data mining technique that aims to discover
associations among a large set of data items [27]. This technique is used to
detect patterns of values that occur together in a given dataset [28, 27]. To
illustrate the concept of association rule mining, consider a set of data items
I = {i1, i2, ..., in}. Let D be a set of transactions (i.e., dataset), in which each
transaction T is a subset of I, i.e., T ⊆ I. An association rule is an implication
expressed by A ⇒ B where A ⊂ I, B ⊂ I and A ∩ B = ∅. In other words,
when A occurs, B tends to occur (the opposite is not necessarily true). More
specifically, A and B are disjointed sets of data items, in which A is called the
antecedent and B is called the consequent.

There are three key measures commonly used to filter the relevant
association rules: support, confidence and lift [28]. Support determines how
frequent the rule is applicable in the transaction set D. It is expressed
as Support(A ⇒ B), and represents the percentage of transactions that
contain both A and B. Confidence, on the other hand, measures the strength
of the rules. It is expressed as Confidence(A ⇒ B), and represents how
frequent B appears in transactions that contain A. Finally, lift is expressed
as Lift(A ⇒ B), and represents how strongly a rule influences a potentially
random occurrence – if a rule’s lift is equal to 1, it means that the consequent
of the rule is independent from the antecedent, thus being a random result.
Having a lift value higher than 1 means that the antecedent being fulfilled
likely causes the consequent to appear, while lift values below 1 mean that the
condition being fulfilled likely causes the inverse, i.e., the consequent to not
appear.

We used this technique to quantify the degree of association between
different factors that can influence design decay. Since those associations
happen inside each of the transactions, which in the case of this work are
the commits, those associations can be seen as representing the interactions
between the different factors analyzed.
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3.3
Study Settings

Section 3.3.1 presents both the goal and the associated research questions.
Finally, Section 3.3.2 describes the study steps and procedures.

3.3.1
Goal and Research Questions

Our study can be described using the GQM approach [67], as follows:
Characterize interactions between process- and developer-related factors for
the purpose of identifying whether and how they simultaneously influence
design decay,with respect to four IQAs, from the viewpoint of developers,
tool builders, and researchers, in the context of software evolution.

To this end, we analyze the change history of seven software projects in
terms of a number of different metrics (which are listed in Sections 3.3.2.2 and
3.3.2.4, to tackle the following research questions (RQs).

RQ1: How intensively, if at all, are process- and developer-related metrics
good indicators of decay levels? – RQ1 aims to infer if it is possible to
distinguish between classes with varying levels of decay by looking at process-
and developer-related metrics, and how strongly they indicate those differences.
We analyze decay at the class-level as classes represent the main abstractions of
project’s object-oriented designs. Those results will be compared with previous
studies that have investigated some of these factors.

RQ2: What associations between factors can be inferred from classes that
suffered distinct levels of design decay? – RQ2 aims to identify associations be-
tween either process- and developer-related factors, and changes to the IQAs.
Those associations will provide us with information on how the decay process
occurred. We also aim to identify if there are significant differences in the asso-
ciations found for the analyzed levels of decay, and how often those associations
can be found. Thus, by answering RQ2, we can better understand how design
decay happens by establishing how responses to different interactions between
factors can affect decay.

3.3.2
Study Steps and Procedures

Figure 3.1 shows the study procedures, described as follows.
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3.3.2.1
Step 1: Project Selection

Selecting systems for analysis: To select the open-source systems, we
used the following criteria based on related studies [68]:

(i) the system must be mostly written in the Java programming language,
due to the availability of available robust tools for software measurement
and the fact that previous studies focusing on factors in isolation are
conducted in Java projects (see Step 2);

(ii) the system must be at least approximately 5 years old, have at least 1k
commits, and 250 pull requests 2, in order to provide us with enough data
to effectively observe and measure our selected sub-factors (see Step 4);
and

(iii) the system must be active as we would like to capture current develop-
ment practices in our findings.

Table 3.1 provides details about each of the seven selected systems,
including the name3, the domain, number of commits, number of pull-requests,
and time span we analyzed. We selected seven Java systems: Fresco, Netty,
OkHttp, RxJava, Presto, Dubbo, and S1. The last system is a closed-source
system developed by our industrial partners. We chose to include it as it may
hint at possible differences between how to design decay happens in open and
closed-source projects.

Table 3.1: General data of the target software systems

System Domain # Commits # Pull Requests Time span
Fresco Library 2291 361 4.8 years
Netty Framework 9322 5086 10 years
OkHttp HTTP Client 3655 2709 7.8 years
RxJava Library 5723 3407 7.7 years
Presto Query Engine 16895 10039 7.5 years
Dubbo Framework 4105 2462 8 years
S1 Web Application 2548 - 1,5 years

3.3.2.2
Step 2: Software metrics collection

Collecting software metrics of internal quality attributes: We
used a non-commercial license of the Understand4 tool and the freely available

2These thresholds were selected subjectively, and were based in criteria used in a previous
work [7].

3We omitted the name of S1 due to intellectual property constraints.
4<https://www.scitools.com/>

https://www.scitools.com/
DBD
PUC-Rio - Certificação Digital Nº 1921366/CA



Chapter 3. On the Influential Interactive Factors on Degrees of Design Decay:
A Multi-Project Study 45

Organic5 [69] tool to collect a total of 38 metrics representing different
properties of each IQA. For example, LCOM2 and TCC measure the lack
of cohesion from different viewpoints and are each only computed by one
of these tools. Moreover the selection of these tools was driven by the fact
that they implement already validated metrics for design decay in previous
studies [21, 30, 45, 53, 52].

Table 3.2 overviews the 14 used to measure cohesion, coupling, com-
plexity, and inheritance. Each column lists: the IQAs, the metrics related to
each IQA and descriptions for each metric, respectively. Table 3.3 display the
remaining metrics 24 metrics used in this work, which are related to size at-
tribute. It utilizes the sable column structure as Table 3.2. Additionally, we
emphasize that the five IQAs used in this work have been chosen based in a
variety of studies that use these metrics to characterize and quantify software
quality [35, 21].

Table 3.2: Subset of software quality metrics used in this study

Attribute Software Metric Description

Cohesion

Lack of Cohesion in Methods 2
(LCOM2) [36]

Number of method pairs that do not share at-
tributes, minus the number of method pairs that
share attributes.

Lack of Cohesion in Methods 3
(LCOM3) [38]

Treats each method pair as an individual en-
tity, and determines the difference between the
amount of similar and different pairs.

Tight Class Cohesion
(TCC) [39]

The number of directly connected visible methods
in a class divided by the number of maximal
possible connections between the visible methods
of a class.

Coupling

Coupling Between Objects
(CBO) [36]

The number of classes coupled to the analyzed
class.

FANIN [37] The number of external classes that invoke meth-
ods from the analyzed class.

FANOUT [37] The number of external method invocations made
by the analyzed class.

Inheritance

Base Classes (IFANIN) [43] The number of immediate base classes and inter-
faces.

Number of Children
(NOC) [36]

The number of immediate subclasses to the
analyzed class.

Depth of Inheritance Tree
(DIT) [36]

The number of nodes between the root of the
inheritance tree and the analyzed class.

Complexity

Cyclomatic Complexity
(CC) [40]

Measure of the complexity of a module’s decision
structure.

Essential Complexity
(ev(G)) [40]

Measure of the degree to which a module contains
unstructured constructs.

Maximum Nesting
(MAxNEST) [41] Maximum nesting level of control constructs.

Weighted Methods per Class
(WMC) [36]

The sum of the cyclomatic complexity of the
methods of a class.

Local Methods The number of non-inherited methods declared in
the analyzed class.

5While this tool is typically used as a code smell detection tool, it can also be used to
collect software metrics. It is available at <https://github.com/opus-research/organic>.

https://github.com/opus-research/organic
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Table 3.3: List of size metrics used in this work

Software Metric Description
Physical Lines (NL) [42] The number of physical lines in the class.
Blank Lines of Code (BLOC) [42] The number of blank lines of code in the

class.
Source Lines of Code (LOC) [42] The number of lines containing source code

in the class.
Declarative Lines of Code [42] The number of lines containing declarative

source code in the class.
Executable Lines of Code [42] The number of lines containing executable

source code in the class.
Lines with Comments
(CLOC) [42]

The number of lines containing comments in
a class.

Semicolons [42] The number of semicolons in a class.
Statements [42] The number of statements in a class.
Declarative Statements [42] The number of declarative statements in a

class.
Executable Statements [42] The number of executable statements in a

class.
Comment to Code Ratio [42] The ratio of comment lines to code lines in a

class.
Instance Variables (NIV) [42] The number of instance variables in a class.
Instance Methods (NIM) [42] The number of instance methods in a class.
Methods [42] The total number of methods, including in-

herited ones, in a class.
Local Default Visibility Meth-
ods [42]

The number of local methods with default
visibility in a class.

Average Number of Lines [42] The average number of physical lines be-
tween methods of a class.

Average Number of Blank
Lines [42]

The average number of blank lines of code
between methods of a class.

Average Number of Lines of
Code [42]

The average number of lines of source code
between methods of a class.

Average Number of Lines with
Comments [42]

The average number of lines containing com-
ments between methods of a class.

Class Methods [42] The number of class methods in a class.
Class Variables [42] The number of class variables in a class.
Private Methods (NPM) [42] The number of local private methods in a

class.
Protected Methods [42] The number of local protected methods in a

class.
Public Methods (NPRM) [42] The number of local public methods in a

class.
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3.3.2.3
Step 3: File history collection

Tracking system file evolution: As we aim to analyze factors related
to decay at a class-level, we collected the evolution history for each file present
in a specific version of the system. We considered the most current versions at
the time of data collection, which is listed for each project in the replication
package [70]. To mine the git history, we used the Pydriller library [71] and
built a list of modifications for each file, from its introduction in the system
to the most recent commit analyzed.

3.3.2.4
Step 4: Sub-factor metric collection

Collecting process- and developer-related metrics for tracked
files: In this step, we implemented and collected the metrics representing the
process- and developer-related sub-factors, introduced in Section 3.2.2, for each
of the file changes previously collected.

Table 3.4 presents the 12 metrics collected in order to represent our sub-
factors. The table columns present, respectively, the type of factor that contains
each metric, each of the metrics collected (divided by the aforementioned
factors), a description, and the rationale behind choosing each metric. These
metrics were chosen as they represent different dimensions of each factor,
and therefore complement each other. Specifically for refactorings, i.e. the
implementation of metrics in the Refactoring action factor, we have utilized
Refactoring Miner 2.06 [72] tool, due of its high precision and recall levels (98%
and 87%, respectively).

3.3.2.5
Step 5: Design Decay Score

Differentiating classes based on how they were affected by
design decay: In order to differentiate the files based on how to design decay
affected their IQAs, we combined the metrics collected in Step 2 with the
file history built in Step 3. First, we observed the variation of the metrics
pertaining to four IQAs – cohesion, coupling, complexity, and inheritance –
taking into account the difference between the creation of the file and its most
recent version.

For instance, an increase in the cyclomatic complexity represents a
deterioration (i.e., an observable event of decay), whereas a decrease represents
an improvement. As seen, this interpretation can vary depending on the

6<https://github.com/tsantalis/RefactoringMiner>

https://github.com/tsantalis/RefactoringMiner
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Table 3.4: Process and Developer Metrics used in this study

Factor Type Metric Description Rationale
Change outcome

Change Set Number of files modified alongside a file in a commit. Large change sets are more likely to be reviewed by devel-
opers, due to having high chances of causing decay [11].

Hunks Count Number of distinct code segments modified in a file. A higher number of code segments being modified in a class
might indicate complex changes [12].

Code Churn Sum of the number of lines added and deleted in a
file.

Classes having design problems are more change-prone.[13]

Refactoring action

Move Refatoring Count
Sum of the number of refactoring operations related
to motions, i.e, Move Method, Move Class and Move
Attribute.

Extraction Refactoring Count

Sum of the number of refactoring operations related
to extractions, i.e, Extract Method, Extract Super-
class, Extract Interface, Extract Attribute, Extract
Class, Extract Subclass, and Extract Variable.

Hierarchical Refactoring Count

Sum of the number of refactoring operations related
to hierarchies, i.e, Pull Up Method, Pull Up At-
tribute, Push Down Method, and Push Down At-
tribute.

Process-related

Rename Refactoring Count Sum of the number of refactoring operations related
to renames, i.e, Rename Method, and Rename Class.

The amount of refactoring actions made on classes
may indicate that developers are combating or minimizing
design decay [15].

Discussion activity

Number of Associated Pull Requests Number of pull requests associated with a code
change.

Changes with more pull requests associated are more com-
plex, that may lead to design decay.

Number of Words in discussion

Sum of the all words of each comment inside a Pull
Request. Here we applied the preprocessing in the
text removing contractions, stop words, punctuation,
and replacing numbers.

Discussions with a high number of words are related to
more complex changes, that may lead to design decay
[17, 7].

.

Number of Words per comment

Sum of the all words of each comment inside a Pull
Request weighted by the number of comments. Here
we applied the preprocessing in the text removing
contractions, stop words, punctuation, and replacing
numbers.

Discussions with a high weighted number of words are
related to more complex changes, that may lead to
design decay [17, 7]

.

Contribution

Contributor Count Number of distinct developers that have modified a
file.

Classes touched by multiple developers are more prone to
being degraded [19, 18].

Developer-related

File Contribution Percentage Percentage of the lines of a file that is by the same
author as the current commit.

Minor contributors tend to degrade more the source code
than code changed only by major contributors [19, 18].
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semantics of each metric. Where needed, we used normalized variations of
some metrics (e.g. LCOM2). We also did not consider size-related metrics in
this step, since they, in isolation, may not reflect what developers consider as
quality [35].

Thus, we ranked the classes in terms of how many7 metrics indicated a
deterioration in an IQA. To this end, we calculated the percentage of metrics
from an IQA that have deteriorated, as shown on Equation 3-1, and computed
the mean of this value for those four attributes, resulting in a score with range
between 0 and 1 (shown on Equation 3-2).

Attribute% =
Number of deteriorated metrics

Total number of metrics in this attribute
(3-1)

Score =
Cohesion% + Coupling% + Complexity% + Inheritance%

4 (3-2)

In general, code smells’ detection strategies also consider multiple at-
tributes, albeit not necessarily all at the same time or in the same smell [73].
Due to that, we’ve considered changes to all four attributes equally. It has
recently been found that smells often co-occur in the same class, thus affecting
somehow the four IQAs [74]. In cases where it did not affect all four attributes,
it would at least impact three of them, with inheritance being the excep-
tion. We’ve also executed an additional analysis to ascertain the frequency
of changes in a subset of changes in our dataset. This additional analysis is
described in Section 3.4.2.

For each target system, this score was used to determine quartiles that
classify the classes based on how their IQAs were affected by decay. Thus, if a
class was below the 25th percentile, it was considered a slightly-decayed class.
Conversely, if it was above the 75th percentile, it was considered a largely-
decayed class. This can be seen in Equations 3-3 and 3-4. The output of this
step, for each system, is two sets of classes (namely, slightly- and largely-
decayed classes).

Bottom 25% = Slightly-Decayed Classes (3-3)

Top 25% = Largely-Decayed Classes (3-4)

7Previous studies have associated this diversity in the deterioration of IQAs with design
decay [21].
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3.3.2.6
Step 6: Individual Sub-factors and Decay

Assessing the relationship between individual process and
developer-related sub-factors and design decay: To determine if (and
which) process- and developer-related metrics are able to distinguish between
slightly- and largely decayed classes, we used theWilcoxon Rank Sum Test [75],
since our metrics were not normally distributed [76].

Our test used the customary .05 significance level. We needed to adjust
the p-values of the Wilcoxon Tests, since we performed multiple comparisons,
to take into account the increased chance of rejecting the null hypothesis
simply due to random chance. For this adjustment, we used the Bonferroni
correction [76], which controls the familywise error rate. The group we use to
represent the family is the project, i.e., the correction in the p-values apply to
project-level metrics.

We also used the Cliff’s Delta (d) measure [77] to investigate the
magnitude of the difference between the two groups of classes. To interpret
the Cliff’s Delta (d) effect size, we employed a well-known classification [78]
that defines four categories of magnitude: negligible, small, medium, and large.
This classification can be seen as representing the probability that a random
sample from each group will have different values [79]. Since, in this work, we
expect to be mostly dealing with influences that happen infrequently, all effect
sizes besides negligible can be impactful.

3.3.2.7
Step 7: Tagging commits

Tagging commits to track influential factors on design decay:
To identify which factors interacted in each single commit and how this
affected the IQAs, we applied a set of tags to each individual change based
on related process- and developer-related metrics and on how the IQAs (and
their respective metrics) were affected by the change.

Table 3.5 lists these tags and the conditions under which they are applied.
The different states (i.e., +/- or High/Low) of certain tags are mutually
exclusive. These tags allow us to identify interacting developer activities that
happen prior or along the commit process, as well as how the change affected
the IQAs. Thus, an antecedent-consequent relationship spanning the history
of the project can be established through association rules.
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Table 3.5: Commit Tags used in this study

Tag Condition
(+/-) Coupling
(+/-) Cohesion
(+/-) Complexity
(+/-) Size
(+/-) Inheritance

Generated based on the variation of the related metrics. Positive changes
lead to a positive score, and negative changes to a negative score.
The resulting tag is based on whether or not the score sum is above
or below zero.

+NumPullRequests
+WordsInDiscussion
(+/-) WordsPerComment

The tag is applied if there was a variation in the metric’s value between
two commits. Since the NunPullRequests and WordsInDiscussion metrics
are cumulative, however, they cannot have negative values.

(High/Low) ChangeSet
(High/Low) HunksCount
(High/Low) CodeChurn

These tags were applied using a quartile-based strategy, calculated per
project. If a change is in the top 25% (considering all classes) in a metric,
it is tagged as High. If it is at the bottom 25%, it is tagged as Low.

+Contributor This tag indicates the presence of a brand-new contributor in the class.

MajorContributor This tag indicates that the contributor is responsible for over 5% of the
class’s code.

MinorContributor This tag indicates that the contributor is responsible for less than 5% of the
class’s code.

MoveRefactoring
ExtractionRefactoring
HierarchicalRefactoring
RenameRefactoring

This tag indicates that a refactoring from the specified category was
detected in the class’s code. This detection is done by RMiner.

3.3.2.8
Step 8: Mining association rules

Mining association rules from code changes: Using the changes
collected per project in Step 3, plus their associated tags (collected in Step 7)
as input, we executed the Apriori algorithm. For this step, we used an open-
source library called Apyori 8, that implements this algorithm. As we were only
interested in identifying meaningful association rules, we chose three criteria
as the thresholds for rule creation:

(i) only the tags related to the process and developer sub-factors should
appear as antecedents, since we intend to look specifically at interactions
between their sub-factors as influential. Otherwise, the model would try
to associate tags relating to the IQAs to themselves, creating a situation
where they would be dependent and independent variables at the same
time;

(ii) the consequent must only contain one or more tags related to IQA
changes; thus, the rules inferred in this step do not consider cases in
which there are no modifications to the IQAs; and

(iii) minimum support = 1% and minimum confidence = 30%.

Those thresholds were iteratively defined, initially starting from the
default values of the used implementation. We arrived at these final values

8https://github.com/ymoch/apyori
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from the subjective representativeness of the observations made on the results.9

These observations made sure that those thresholds were adequate to create
rules that, while maybe infrequent, are present in multiple of our software
projects.

Using this procedure, we mined three sets of rules: rules found in slightly-
decayed classes, rules found in largely-decayed classes and rules found in all
classes. The former 2 groups of classes were defined in Step 5. In order to
verify if there are associations common to all projects, we also repeated the
same aforementioned steps considering changes in classes from all software
projects. We refer to this set of association rules as the All projects dataset.

3.4
Results and Discussion

This section presents and discusses the results obtained in this study.
Section 3.4.1 provides general observations about the raw data. Section 3.4.2
describes the results from the study steps that aim to answer our first research
question. Section 3.4.3 describes the association rules mined in this work and
discussed how they can be used to answer our second research question.

3.4.1
Slight vs. Large Levels of Design Decay

Assessing the decay score distribution. After executing the steps
described in Section 3.3.2 we were able to observe how the decay score proposed
by this work behaved in the seven software systems of our study. Figure 3.2
provides a violin plot that illustrates the distribution of decay scores per
system. The violin plot used in the Figure displays data using a simplified
box plot, with the thin lines in the edges of the plot representing the lower and
upper quartiles, and the thick line representing the middle quartiles, separated
by a white dot which is the median. They also visually display the distribution
(or density) of elements by relying on the thickness of the colored shape that
surrounds the box plot.

As we can observe, there is a significant difference between how slightly-
and largely-decayed classes behave in terms of score. The group of slightly-
decayed classes (i.e., classes in the lower quartile of decay score, presented in
the graph) was densely grouped, which means they share some similarities in
the amount of IQAs that have deteriorated. On the other hand, largely-decayed

9The possibility that some relationships were not detected due to the thresholds used is
an inherent threat to the validity of studies of this nature.
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classes (i.e., classes in the the upper quartile) were more sparse, showing that
the degree as to which their IQAs decayed was more more varied.

We can also observe by looking at the distribution of the classes in
each of the projects, that all projects behave quite differently, and only a few
subsets of projects that behave similarly can be inferred, such as dubbo vs.
RxJava, netty vs. okhttp, and fresco vs. presto. This observation implies that
our project selection was able to successfully capture projects with different
types of behaviour.

Figure 3.2: Violin plot showing the distribution of the decay score per system

Decay score adequation in a maintainability context. As as addi-
tional analysis, we observed whether the method used to calculate the decay
score was adequate for our context, which is to improve maintainability. As
such, we investigate instances of refactoring that might represent an attempt
by the developer to remove or mitigate design problems, thus improving de-
sign quality, and consequently, maintainability. We computed the frequency in
which each type of refactoring considered in this work (see Table 3.4) modified
the four IQAs (see Table 3.2) considered when calculating decay score.

Table 3.6 shows the results. Each row represents a refactoring type. The
columns presents, respectively, the total number of refactorings considered and
the number of refactorings that modified each of the four IQAs: cohesion, cou-
pling, complexity, and inheritance. The table displays the results aggregated
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from all projects, as most of the projects showed similar characteristics. The
results from each individual system are available in the replication package [70].

Table 3.6: Frequency of changes to IQAs in refactoring instances.

Refactoring
Type Total Cohesion Coupling Complexity Inheritance

Extraction 30125 24% 41% 32% 3%
Move 37424 25% 41% 30% 3%
Rename 11582 23% 40% 33% 3%
Hierarchical 960 23% 40% 33% 4%

Overall, all refactoring types consistently changed the four IQAs, albeit at
different frequencies. While changes to cohesion, coupling, and complexity were
more common (23% to 41% of instances), inheritance stood out as it was only
changes in 3% to 4% of instances. Since each attribute contributes to 25% of the
decay score computation, this result might be a possible explanation for why
classes with decay score bigger than 0.8 are very infrequent (this distribution
is shown on Figure 3.2). This result is in line with the rationale behind the
decay score (see Section 3.3.2.5) and with previous results that investigated the
relationship between IQAs and co-occurrences of code smells [74]. This result
implies that, albeit not necessarily in the same change, developers trying to
remove design problems tend to consistently modify the four internal quality
attributes.

3.4.2
The Relationship Between Sub-Factors and Decay

To answer RQ1, we needed to first assess the relationship between each
individual process- and developer-related sub-factor and decay, according to
Step 6 of our methodology (see Section 3.3.2.6). Table 3.7 shows the results.
Each column lists, respectively: the type of factors, the sub-factors (named
via the metrics that represent them) split by those types, an classification
of the Wilcoxon Test and d results for each system, and a summarization of
the results considering the data from all systems. We employ a well-known
classification [78] for representing the results, as shown in the table’s legend.
Cells containing N/A represent cases without enough data to execute the test
(further discussed in Section 3.6). We discuss the metrics associated with
factors that have been shown to differentiate between classes with different
levels of design decay as follows.

Process-related factors and design decay. From Table 3.7, we
observed that process-related metrics were the most statistically significant,
i.e., able to differentiate between levels of design decay. Moreover, we observed
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Table 3.7: Results of the Statistical Significance (p-value) of the Wilcoxon Rank Sum Test and the Cliff’s Delta (d).

Factor Metric dubbo fresco netty okhttp presto RxJava S1 All

Process-related

Changes outcome
Change Set (−)** (−)** (−)* (−)* (−)* (−)* (−)*** (−)**
Hunks Count (+)** (+)** (+)* (+)* (+)* (+)* (+)*** (+)*
Code Churn (−)** (−)** (−)* (−)* (−)* (−)* (−)** (−)**
Refactoring action
Move Refactoring Count (+) (+) (+)* (+)* (+)* (−) (+)* (+)*
Extraction Refactoring Count (+)* (+)** (+)** (+)** (+)*** (+) (+) (+)**
Hierarchical Refactoring Count (+) (+) (+) (+) (+) (+) (−) (+)
Rename Refactoring Count (+)* (+)* (+)** (+)*** (+)** (+) (+)*** (+)**

Developer-related

Discussion activity
# of Associated Pull Requests (+)** (+) (+) (−) (+)* N/A N/A (+)*
# of Words in Discussion (+)** (+)* (+)** (+)*** (+)*** N/A N/A (+)**
# of Words per Comment (+)* (+)* (+)* (+) (+)* N/A N/A (+)*
Contribution
# of Contributors (+)*** (+)** (+)** (+)*** (+)*** (+)* (+)*** (+)***
File Contribution Percentage (+) (+) (−) (−)* (−) (+) (−)* (−)

a Gray cells represent statistically significant differences, with (p-value < 0.05) between the two levels of design decay.
b The Cliff’s Delta (d) effect size is shown as four categories of magnitude: negligible (no symbol), small (*), medium (**), and
large (***).

c The positive d magnitudes are represented by the (+) symbol, and negative ones are represented by the (−) symbol.
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that metrics related to change outcomes were good indicators, having at
least a small magnitude in all cases and medium magnitude on 11 of 24
cases. These results are in line with the findings of previous studies [80]
that also investigated process metrics as indicators of design decay. Regarding
refactoring actions, while they had worse overall results than change outcome
metrics, two sub-factors stood out: Extract Refactoring Count and Rename
Refactoring Count. Both presented magnitudes higher than medium on 10 out
of 16 cases and reached a large magnitude on presto, okhttp, and S1. Those
results support the first finding of out study, as follows.

Finding 1: Sub-factors that represent change outcomes are strong indi-
cators to distinguish the level of design decay. Moreover, some sub-factors
related to refactoring actions also stand out as good indicators of design-
level change.

Developer-related factors and design decay. Back to Table 3.7,
we observed that in general, the metrics presented statistical significance on
almost all projects. However, the magnitudes were medium and large in only
13 of 34 cases. More specifically, when we are looking at metrics that consider
discussion factors, we observed that the Number of Words in Discussion by
Class metric stood out in comparison to the others, which presented a small
magnitude in only one system (fresco) and large in two systems (okhttp and
presto). This result might indicate that classes that contain large discussions
are related to more complex changes, which are frequent in largely-decayed
classes (as will be discussed on Section 3.4.3.1).

At the same time, the contribution factor is mostly represented by the
Contributor Count sub-factor, which presented a large magnitude on five of
the eight data samples, while the File Contribution Percentage only presented
negligible and small magnitudes. In other words, the volume of contributions
affecting the classes is a decisive factor in the characterization of largely-
decayed classes. Those results lead us to this next finding.

Finding 2: For developer-related factors, the density (i.e., number of
words) of discussions and the number of contributors stood out as decisive
sub-factors to differentiate between decay levels.

By leveraging these results, we are able to better study the influential
associations discussed in the following section. Since there factors showed
that they are individually related to design decay, they could be used as
early indicators that a change should be carefully monitored, before certain
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interactions that depend on factors that can only be identified later can
happen. Further implications of these results will be discussed in Section 3.5.

3.4.3
Influential Associations and Design Decay

As the result of Step 8 of our methodology (described in Section 3.3.2.8)
we collected a large number of association rules regarding three groups of
code changes: changes made to all classes, changes made to slightly-decayed
classes, and changes made to largely-decayed classes. Those groups were them
composed of eight subsets, seven pertaining to each of the projects analyzed in
this work and an eight that contain an aggregate of all projects. In total, those
groups amount to 9131 rules, namely 3245 for all classes, 5096 for slightly-
decayed classes, and 790 for largely-decayed classes. Due to the large number
of rules, those rules are available in the replication package. However, findings
presented in this subsection will provide examples of rules that are related to
them.

To answer RQ2, we organized those association rules and manually
analyzed the results (see Section 3.3.2.8). To find relevant associations between
specific antecedents and consequents, we utilized a variety of visual aids, such
as tables, visualizations provided by the arulesvis [81] R package, and an
internally-developed interactive visualization. Figures 3.3, 3.4, and 3.5 present
three examples of those visualizations generated by arulesviz, which visually
represent the rules that aggregate data from all projects. The first (Figure
3.3) refers to the rules from all classes, the second (Figure 3.4) refers to the
rules from slightly-decayed classes and the third (Figure 3.5) refers to the
rules from largely-decayed classes. In all of these visualizations, the left-hand
side (LHS) refers to the antecedents and the right-hand side (RHS) refers to
the consequents. Moreover, rules in the figures are ordered by lift (for more
information about association rules, see Section 3.2.3). Given the large amount
of variation, especially in the antecedents, this visualization groups rules by
similarity.

Due to the large number of association rules, we performed two different
analyses. First, we obtained an overview of the entire ruleset by looking at the
rules generated with the aggregated data from all projects. Second, we looked
at the rules specific to each project. In cases where a large number of rules
were present (over 100 rules), we analyzed the top 100, ordered by their lift
value (see Section 3.2.3). We used the lift measure since it favors rules that
had a bigger influence on the existence of the consequences. Such strategy also
was used in previous works [29, 81].
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Figure 3.3: Grouped Matrix Chart [1] summarizing rules mined for all classes
from all projects

We then separated the results between general associations – i.e., present
in most, if not all projects – and specific associations – i.e., only appeared in
one or two projects. By this division, we were able to better understand which
associations could be caused by general practices, and which could be caused by
project-specific practices or contexts. Finally, we have also performed a manual
validation on 96 commits with tags related to some of the results presented
in this section, aiming to understand how our findings correlate to the intent
specified by the developers in commit messages and issue discussions.

3.4.3.1
General Associations Across Projects

We analyzed the set of association rules found in the All projects dataset
(see Section 3.3.2.8). We emphasize that the following findings only apply to
changes where at least one IQA was affected.10 We observed that in largely-
decayed classes only a small amount of rules (39) reached our support and
confidence thresholds when compared to slightly-decayed classes. Moreover,
most of those rules only altered the size IQA. The only other attribute modified

1031% of the changes mined did not affect any on the IQAs and another 18% only affected
the size attribute.
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Figure 3.4: Grouped Matrix Chart [1] summarizing rules mined for slightly-
decayed classes from all projects

was coupling. We conjecture that this low amount of rules is due to how varied
the characteristics of code changes made to this group of classes were, making it
harder for rules to reach our support and confidence thresholds. This variance
can be seen in Figure 3.2, where we can observe that largely-decayed classes
varied greatly. Nonetheless, for slightly-decayed classes, a large number of rules
was generated (847 rules), with a great variety of consequents. Regarding the
rules pertaining to all classes, all of them had consequents pointing towards
negative effects.

In the top 100, we observed that most associations skewed towards
negative effects, with 68 of the top 100 rules causing an increase in code
complexity. Additionally, in this subset, the antecedents had little variety,
with major contributors (i.e., contributors responsible for over 5% of the
changed class’s code) being present in 75 of the top 100 rules. While not as
predominantly as in the slightly-decayed classes, the same behavior was also
observed in the group of rules mined from all classes. It was also observed in
the manual validation.
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Figure 3.5: Grouped Matrix Chart [1] summarizing rules mined for largely-
decayed classes from all projects

Finding 3: Slightly-decayed classes were frequently negatively affected by
changes, even if marginally. However, changes to largely-decayed classes
had no specific patterns, with their effects being mostly mixed. In the
group containing all classes, all of the rules mined pointed towards negative
effects.

One possible reasoning for the finding above, is that changes that have
positive effects on the IQAs are affected more variedly by the sub-factors, and
therefore those changes tend to not reach our detection thresholds. Negative
changes, however, tend to occur in more uniform patterns. The same could not
be observed in the case of largely-decayed classes because changes in the group
are so varied that neither positive or negative changes reached our thresholds.

We believe this finding should be considered in the development of
strategies to mitigate design decay. Since largely-decayed classes tend to be
more varied, perhaps more targeted approaches could be more adequate when
trying to perform repair actions in these classes.

Change outcomes and largely-decayed classes. Regarding the
change outcomes, we observed that the presence of complex or large changes,
i.e., high amount of hunks or high code churn, happened often in both largely
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and slightly-decayed classes, and mostly lead only to changes in the size of
the affected code. In fact, in largely-decayed classes, we noticed that around
50% of the rules caused a reduction of code size – which were always preceded
by complex changes. Furthermore, when these large changes underwent a pull
request process, which might imply a code review, they sometimes improved
other IQAs instead of size, mainly coupling.

In terms of factors related to the change outcomes, we could see that the
presence of large changes (with a high change set, a high amount of hunks, and
high code churn) were very present in both slightly and largely-decayed classes,
and almost always reduced the size of the changed code. In fact, in largely-
decayed classes, we saw that around 50% of the rules caused a reduction of
code size – and showed an interaction with the sub-factor representing complex
changes (high number of code hunks). When these large changes underwent a
pull request process, which might imply a code review, they also sometimes
improved other internal quality attributes, such as reducing code coupling.
However, when these large changes (high amount of hunks) are done in a
small amount of classes (low change set), they instead tended to increase the
size of the changed code.

Table 3.8 provides a list with the top 4 rules (ordered by lift) from largely-
decayed classes in the All Projects dataset. Its columns present, respectively,
the group in which the rule is present (all classes, slightly-decayed, or largely-
decayed), its antecedents and consequents, and its support, confidence, and
lift. This finding will be further discussed in Section 3.5. The two middle rules
in this table are the only two rules in this group (largely-decayed classes from
all projects) that modified IQAs other from size.

Table 3.8: Top 4 rules from largely-decayed classes from all systems.

Group Antecedents Consequents Support Confidence Lift
Largely-
Decayed HighHunksCount, LowChangeSet +Size 1.35% 43.99% 2.38

Largely-
Decayed +NumPullRequests, HighHunksCount, +WordsInDiscussion -Coupling 1.33% 31.42% 2.32

Largely-
Decayed +NumPullRequests, HighHunksCount -Coupling 1.77% 30.24% 2.23

Largely-
Decayed MajorContributor, LowChangeSet +Size 3.44% 38.32% 2.07

3.4.3.2
The Most Common Associations Across Projects

We also performed a cross-project analysis to understand which associa-
tions commonly appear in multiple projects. Overall, even when looking at a
project-level scope, the results described in Finding 3 continue to appear. Even
with the larger sample size of rules, the effect of changes to largely-decayed
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classes remained mixed, with changes having either a positive or negative ef-
fect on code quality based on the project and the performed actions. Slightly-
decayed classes also maintain the negative effect observed in Finding 3.

Here, refactoring actions stood out, and we observed that, in general,
refactorings were one of the two main motivators of changes to IQAs (and
rules without refactorings tended to only affect size). Surprisingly, extraction
refactorings tended to have a non-positive effect on the code, either only
changing the code’s size (both positively and negatively), or sometimes even
worsening the other IQAs. These negative effects, while not very common in
general happen more in situations where certain (sub-)factors interact, such as
when these refactorings are performed with complex changes (high amount of
hunks), or in a small number of classes (low change set). On the other hand,
move refactorings usually had a positive effect on the IQAs. Moreover, we also
observed that the interaction between movement and extraction refactorings in
the same change is generally more positive than extraction refactorings alone.
This pattern was observed in the entire dataset, albeit not present in largely-
decayed classes (as previously stated, this could be due to our thresholds). It
also presented itself more strongly in the data set containing rules from all
classes than in the slightly-decayed classes. Regarding the intent, we observed
in our manual validation that a majority of the changes in our data set
had non-refactoring goals, with refactorings only used as a step in a larger
process. However, we noticed that when move refactorings are performed with
an explicit refactoring goal, they are more likely to have positive effects.

Finding 4: Extraction refactorings often had a non-positive effect on the
IQAs. Conversely, move refactorings had a mostly positive effect. Specific
interactions between (sub-)factors enables one to better understand those
effects. For instance, extraction refactorings being more likely to be nega-
tive when applied in complex changes, and being less likely when applied
alongside a move refactoring.

Table 3.9 provides examples of rules that were used to formulate this
finding. Its columns present, respectively, the group in which the rule is
present (all classes, slightly-decayed, or largely-decayed), its antecedents and
consequents, and its support, confidence, and lift. This finding will be further
discussed in Section 3.5.

Previous contribution did not reduce the likelihood of extrac-
tion refactorings being negative. Another interesting interaction observed,
was that even when the developers were experienced and major contributors
to that class, their extraction refactorings (often in combination with complex
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Table 3.9: Examples of rules used to formulate Finding 4

Group Antecedents Consequents Support Confidence Lift
Slightly-
Decayed HighHunksCount, ExtractionRefactoring -Cohesion, +Coupling 1.04% 32.24% 2.80

Slightly-
Decayed

HighHunksCount, MajorContributor,
ExtractionRefactoring -Cohesion, +Complexity 1.08% 37.43% 2.73

All
Classes

ExtractionRefactoring, HighHunksCount,
MajorContributor -Cohesion 1.10% 48.80% 3.42

All
Classes ExtractionRefactoring, MajorContributor -Cohesion, +Complexity 1.01% 31.32% 3.30

changes, a third interacting factor) also frequently caused negative effects on
the code. It is important to note that these negative effects may be mostly mi-
nor in slightly-decayed classes, given that they are in the group that decayed
the least. However, these effects might still mean a gradual decay of the affected
classes, and are still potential causes for future concern. In the manual vali-
dation, changes with both refactoring and non-refactoring goals, respectively,
were common with major contributors. The latter mostly had negative effects,
while the former was usually positive, yet coupled with a side-effect that could
be seen as negative (i.e., an increase of inheritance tree depth through the
usage of Extract Superclass refactorings).

Level of contribution and slightly-decayed classes. We observed
that, for developer-related factors, interactions between certain (sub-)factors
frequently appeared. There were often cases in slightly-decayed classes in
which new contributors changed over 5% of the code. Those changes usually
interacted with additional factors as well, and modified only a small number
of classes.11 While less frequent, this pattern also presented itself in the
rules mined from all classes. Those interactions showed a variety of negative
effects, and specifically in slightly-decayed classes, they continued to occur
regardless of whether the changes interacted with the associated pull requests
(sub-)factor, which may imply that a code review process did not influence this.
In the manual validation, the most common changes by new contributors were
small functional changes, followed by refactorings. Rarely were large functional
changes performed. Functional changes usually had negative effects on code
quality, while refactorings had a more mixed effect.

Table 3.10 provides a list of examples of rules that were used to formulate
the following finding. Its columns present, respectively, the group in which the
rule is present (all classes, slightly-decayed, or largely-decayed), its antecedents
and consequents, and its support, confidence, and lift. This finding will also
be further discussed in Section 3.5.

11Cases where those changes affected a large number of classes were also observed, but
were less frequent.
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Table 3.10: Examples of rules used to formulate Finding 5

Group Antecedents Consequents Support Confidence Lift
Slightly-
Decayed

+Contributor, MajorContributor,
LowChangeSet

-Cohesion, +Size,
+Complexity 1.01% 38.28% 2.86

Slightly-
Decayed

+Contributor, HighHunksCount,
MajorContributor

-Cohesion, +Size,
+Coupling 1.39% 30.94% 2.83

All
Classes

LowChangeSet, MajorContributor,
+Contributor

+Size, +Complexity,
+Coupling 1.29% 47.40% 3.08

All
Classes

LowCodeChurn, LowChangeSet,
MajorContributor, +Contributor +Size, +Complexity 1.06% 61.12% 2.85

Finding 5: In slightly-decayed classes, an specific interaction, first time
contributors that changed a significant (over 5%) portion of a class’ code,
tended to cause decay – even if these changes might have gone through a
pull request process.

3.4.3.3
Specific Associations per Project

For this set of associations, we analyzed each project individually to
investigate more context-specific associations. Thus, we found that certain
associations behaved differently than the general associations, or even those
that were found in other projects. One such case of this was in Fresco’s slightly-
decayed classes, where changes showed frequent improvements to code quality
– when other projects, in general, had mostly negative effects. Another example
is related to OkHttp’s slightly-decayed classes, which, differently from other
projects, showed large changes mostly having negative effects, increasing the
code’s complexity.

There were also interesting observations due to project-specific contexts,
providing potential insight into how certain development practices can lead to
certain results. For instance, in Dubbo’s low decay classes, new contributors
often brought negative consequents – if the number of changes was low, the
complexity increased; if it was high, the cohesion and coupling worsened.
Project S1’s largely-decayed classes were the only case in which inheritance
metrics were changed by rules with a considerable lift, with these changes
being negative, and caused alongside extraction refactorings.

For Netty’s largely-decayed classes, we observed that when there was
an increase in the number of pull requests related to a specific class, the size
of that class tended to increase. In Presto’s largely-decayed classes, changes
associated with short comments, with a small number of words (i.e., comments
that reduced the mean number of words per comment), always had positive
effects, reducing both coupling and size. Finally, in Presto’s slightly-decayed
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classes, even though major contributors to such classes were very present,
changes made by them had mostly negative effects on the code.

Closed Source vs. Open Source: As we observed in Figure 3.2,
software project S1’s decay score class distribution was the only that was not
similar to any other software project, as it was the only one who did not have
any classes approaching zero decay score. These differences also manifest when
looking at the association rules mined for S1.

First, they did not follow the previously reported findings about extrac-
tion refactorings and new developers. In fact, for the slightly-decayed classes
group and the all classes group, the only meaningful interactions between fac-
tors were regarding large and complex changes that modify few files. Those
interactions had mostly negative effects.

Second, all of the top interactions for its largely-decayed classes that had
effects on an attribute other than size, involved extraction refactoring interact-
ing with different sub-factors from the change outcomes factor. But, contrary
to the previous findings, all of these interactions had negative effects on only
one attribute, which was inheritance. Since the confidence of some of these
rules was abnormally high, with some of them reaching 100%, a manual inves-
tigation revealed that these results were due to the low amount of extraction
refactorings mined for this project. This implies that new studies, with ac-
cess to additional and larger projects, are needed to effectively investigate the
differences between closed- and open-source projects.

3.4.3.4
Manual Validation

For the manual validation, we selected a set of 96 commits, split by the
seven different projects we analyzed, and then further split into five groups:
two groups of changes that contain tags that match with the rules used to
formulate our findings 4 and 5, one group exploring other interactions between
refactorings and other factors, one for a random sample of slightly-decayed
classes, plus one with a random sample of largely-decayed classes. This led to
an average of 15 commits per project (as some projects did not have commits
that fit in a specific subcategory/finding). To execute the validation the three
participants (one PhD and two graduate students) were each given a single
code change per project per subcategory and had access to the following
information: the hash of the commit containing the change, its contents, the
specific file in which the rules were found, and the tags for that change.
From that information, they had to describe, where possible, the intent of
the developer when performing those changes, as well as if (and how) they
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relate to one of the findings in the paper.
In summary, from the results, we were able to see that – for Finding

4 – 12 out of 21 commits were directly in line with the finding, while most
of the other nine commits were “tangentially” related (a refactoring occurred
together with another non-refactoring change that caused decay). For finding
5, 12 out of 15 commits were directly in line with the finding, with the other
three commits being unrelated to the finding (but not contradicting it). Finally,
from the refactoring group, two non-related commits were found due to false
positives in the refactoring detection. Some additional results have also been
observed, and were previously mentioned in earlier parts of this section. The
full data for the validation is available in the replication package [70].

3.5
Study Implications

Our study provides findings that lead to implications for researchers, tool
builders and practitioners. They are discussed as follows.

3.5.1
Sub-factors as Indicators of Design Decay

Researchers can use a variety of interacting (sub-)factors for
differentiating design decay: Findings 1 and 2 shows that process-related
factors and some types of developer-related factors are strong indicators for
distinguishing design decay. First, these observations confirm the findings of
previous studies [9, 11, 80] on the use of process-related metrics as indicators
of complex changes leading to design decay. Second, they confirm findings of
recent studies [7, 9] reporting that the number of words in developer discussions
could be used to distinguish different levels of design decay.

Our study also advances the state of knowledge by revealing that the
number of associated pull requests, either high or low, is unable to distinguish
different levels of decay. Initially, one could suspect that as the number of pull
requests grows – with more features, bug fixes, and refactorings being requested
– design would progressively decay, which would be in line with Lehman’s
software evolution law [2]. However, that was not what was observed. This is
an important finding, given that the introduction of a change via a pull requests
could imply a code review process occurred. Moreover, our study indicates that
the high number of refactoring actions grouped by transformation nature – i.e.,
extraction and move – performed on a class can be used as indicators of design
decay. Finally, we showed how several key interactions between factors could
affect design decay. These aforementioned results could be used by developer
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to build preventive approaches to avoid design decay. For example, they could
be monitored as early indicators that a change or class should be carefully
watched.

Researchers might also be able to explore other types of factors (and
their interactions) that may help to further differentiate design decay. It is
also important to investigate the actual main root-causes for design decay to
occur – these causes certainly go beyond the characteristics of both the changes
themselves, as well as the developers that perform them. Our study hints at
some of these causes, confirming that certain kinds of changes require more
attention from developers as they are highly related to design decay.

3.5.2
Refactorings’ Side Effects

Developers should be more conscious about refactorings’ side
effects: Finding 4 (see Section 3.4) shows that, while developers are performing
a variety of refactoring actions, some of them (in most cases, extraction
refactorings) are often having a non-positive effect on the code. This happens
even when this refactoring interacts with other factors such as it applied by
developers with high ownership of the original code.

Our observations contradict previous studies on refactorings. However,
recent works have started to link extraction refactorings to negative effects [30].
A previous study states extraction refactorings are related to positive changes
to size as well as not usually worsening other IQAs [21]. One interesting
example found in our manual validation shows an extraction refactorings
worsening a class’s IQAs.12 In this change, the developers performed a variety
of complex extraction refactorings, which did slightly improve a few of the
affected classes, but caused bloat on another class, by adding quite a lot of
new (extracted) methods to its method list.

Conversely, move refactorings had a positive effect on the code quality;
almost all the cases change IQAs positively. We have also observed that
whenever there is spatial interaction (i.e., same class and same commit)
or temporal interaction (i.e., same class and different commits) between
extraction refactorings and move refactorings (two process-related sub-factors),
that change is less likely to cause decay. Extraction-only refactorings often
impacts the target class’s interface and how it communicates with its clients
[82]. However, this sub-factor alone may not be a consistent indicator of design
decay (as we observed here), as previous studies have reported [30].

12Located in commit 957537774b319bb0109819258a11af78a98bcb97 from the
OkHttp project. Available in <https://github.com/square/okhttp/commit/
957537774b319bb0109819258a11af78a98bcb97>.

https://github.com/square/okhttp/commit/957537774b319bb0109819258a11af78a98bcb97
https://github.com/square/okhttp/commit/957537774b319bb0109819258a11af78a98bcb97
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Thus, developers might need to consider the implications of an extraction
refactoring’s application, to prevent it from potentially bloating the target class
or method – especially in cases of specific interactions, such as the changes
being applying alongside other, already complex, changes. More attention
should also be given by researchers and tool builders to better support this
type of situation. For instance, tools should be adapted to track problems in
larger, more complex changes, which are the refactorings that tend to have
the most negative effects. Refactoring recommendation systems should also
consider there side effects when suggesting changes.

3.5.3
Changes by Major or First-time Contributors

Special attention should be taken when reviewing code by
first-time contributors: In Finding 5, we also highlighted another frequent
interaction between factors, that when first-time contributors make large
changes to a class’s code, that change tends to lead to decay, regardless of
code review. This might mean that developers should be more cautious while
reviewing changes performed by contributors who have not performed previous
changes to the target class, especially if this new change affects a large section
of the class or a large variety of classes. Where possible, the task distribution
to first-time contributors should also be carefully considered. For instance,
granting them smaller tasks first, while providing constructive feedback in
reviews, so they gain a better understanding of the code in question, to then
later grant them tasks that require larger changes to the code.

Reviewers should pay attention even when reviewing code by
experienced contributors: We’ve also observed that one of the biggest mo-
tivators for changes to the IQAs are changes made by major contributors (are
authors of at least 5% of a class’ code). We conjecture this could happen due to
the developer already knowing the class and being more confident to perform
changes to the design of a class. The most frequent interactions we encoun-
tered involving major contributors were negative. This happened especially
if this sub-factor interacted with the sub-factor representing extraction refac-
torings, which was the strongest interaction observed in terms of lift. Thus,
we believe that reviewers should have the same care they would have when
reviewing code by a newcomer, even if the author of the changes is already
knowledgeable about a class.
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3.5.4
The effects of large changes

Large changes are not necessarily detrimental: While previous
work associate large changes with design problems [11, 13], our results show
that large changes are very present in all of our analyzed projects and do not
necessarily cause negative effects – most of them having a neutral, and, when
undergoing a pull request process, sometimes even positive effect. Thus, this
might imply that large changes might not have such a majoritarian negative
effect on the quality of the changed code. In fact, we have found that, overall,
they have neutral or mixed effects. This finding also reinforces the importance
of code review in the development process, as the large changes tended to be
more positive when introduced through a pull request.

3.6
Threats to Validity

We discuss threats to the study validity [67] as follows.

3.6.1
Construct and Internal Validity

We analyze design decay in terms of five IQAs. Thus, our findings
might be biased by them, even though they are commonly investigated
in other works [21, 30, 22]. The metrics chosen to capture properties of
the IQAs may not be appropriate. In fact, metrics alone might not be
enough to capture external factors that might influence decay – e.g., developer
intentions and design decisions. However, we were particularly interested in
the quantified version of decay, represented by these metrics. To mitigate this,
we chose a non-random set of metrics that assess different properties of each
IQA based on well-known catalogs [40, 37, 36, 41]. Regarding process- and
developer-related metrics, some of them are based on heuristics, e.g., we have
assumed that the number of major contributors to a class is the number of
developers that contributed at least 5% LOC to this class. Although this is a
limitation of measuring such factors, we rely on known heuristics to recover
this information [19, 6, 9].

As mentioned in Section 3.3, while we have meticulously chosen our
thresholds, it is possible they might cause some relationships to not be found by
the Apriori algorithm. We also evaluated the Pearson correlation coefficient to
measure the correlation between metrics for each factor, and found that some
metrics were correlated. However, we tested our models without their presence
and found that their absence weakens the models, and thus, maintained these
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metrics. Concerning the lack of discussion activity metrics on RxJava and S1
projects: (i) the RxJava classes where design decay was found were not inserted
on the main branch by pull requests; (ii) since S1 is closed-source, we only had
access to the source code on a git environment. Thus, we did not have any
pull requests data for these two projects. Moreover, because this lack of data,
we were not able to apply the analysis of the RQ1, on the Discussion activity
factor, for the RxJava and S1. Finally, we will improve our project selection
on future work to avoid this type of threat.

3.6.2
Conclusion and External Validity

We carefully performed our descriptive and statistical analyses. All
analysis results were double-checked by two paper authors aimed to mitigate
biases and the misapplication of analysis procedures. Our study focuses on
investigating the design decay of Java projects only. Nevertheless, we highlight
that Java is one of the most popular programming languages in both industry
and academia. Additionally, although we have assessed both open and closed
source projects, the number of closed source projects is quite low (only
one project) when compared to the number of open projects (the other
six projects). Hence, collecting data from more (in particular closed source)
projects and conducting such additional analyses is part of future work.

3.7
Related Work

We discuss previous works related to the current study, as follows.

3.7.1
Empirical Studies on Factors that Affect Design Decay

There are multiple recent studies about factors related to design decay [6,
7, 18, 21, 22, 9]. Many of them only use code smells [6, 7, 9] and software
metrics [18, 21, 22] as symptoms for the identification of design decay. Uchôa
et al. [6] observed that the majority of code changes performed by developers in
code reviews have an invariant impact on the evolution of design decay. They
also analyzed the relationship between design decay and the influence of factors
related to developer’s participation, code review intensity, and reviewing time.
They concluded that certain code review practices, such as long discussions
and a high rate of reviewers’ disagreement, might increase design decay risk.
Despite such results, the author does not consider factors related to refactoring
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actions and contribution. In addition, they do not measure the decay in terms
of IQAs.

Barbosa et al. [7] investigated the impact of 11 social metrics related to
two social factors on design decay: communication dynamics among developers
– who play specific roles; and the discussion content itself. The authors
observed that many social metrics could be used to discriminate whether code
changes had an impact on design decay. Finally, the authors noticed certain
metrics tend to be indicators of design decay only when analyzing both aspects
together. Similar to the previous study, the authors do not consider refactoring
actions and contribution factors, and neither IQAs.

Capiluppi et al. [18] investigated whether the work of multiple developers
and their experiences has an effect on the structural quality metrics. The
authors observed that the experience of developers plays a key role: the more
inexperienced developers tend to degrade more the source code than the code
changed only by experienced developers. They also observed that the decay
in structural quality metrics is linked to an increase in further maintenance:
when more developers work on the same code, its structure degrades and the
number of further commits needed increases. This is even more visible when
less experienced developers have worked (or still work) on the code itself.
However, the authors do not track how the influential factors are associated
with the progression of the decay, and how other developer-related factors,
e.g., discussion activities, might distinguish the levels of design decay.

3.7.2
Empirical Studies on the Use of Association Rules

Different studies have used association rules for finding patterns and
to extracting knowledge about the different aspects of influencing software
development and evolution [29, 83, 84]. For instance, Soares et al. [29] have
used association rules to identify characteristics that influence the rejection of
pull requests by team members in projects with high acceptance rates. The
authors observed that some key factors increase the chances of having internal
contributions rejected: (i) physical characteristics and complexity of changes,
as well as the location of the modified artifacts; (ii) previous experience with
pull requests; and (iii) the project’s contribution policy.

Mondal et al. [83] identified co-change patterns to detect hidden depen-
dencies among different parts of the system. More specifically, the author de-
tected a co-change pattern to support the identification of methods logically
coupled with other methods. Despite using association rules, their work is
centered at the method-level while we focus on the class-level. We also con-
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sidered changes to coupling as a consequent on the association rules. Finally,
Zimmermann et al. [84] proposed an approach that relies on association rule
mining to suggest possible future changes (e.g., if class A usually co-changes
with B, and a commit only changes A, a warning is given suggesting to check
whether B should be modified too). Conversely, own study aims to identify
recurrent patterns that affect design decay on classes, rather than recommend
co-changes.

In summary, our work differs from existing ones as follows: (i) we inves-
tigate how process- and developer-related factors can be used to distinguish
between varying levels of class-level design decay; (ii) we track how the in-
fluence of multiple factors simultaneously can affect decay; and (iii) we use
association rules to infer and assess relationships between factors and decay.

3.8
Conclusion and Future Work

In this work, we investigated the relationship between two groups of
influential factors: process- and developer-related, and design decay itself. Our
results indicate that: (i) both types of factors can be used to distinguish
between different decay levels in classes; (ii) changes to largely-decayed classes
had a mostly mixed effect on quality, while slightly-decayed classes suffered
more negative changes; (iii) extraction-type refactorings had a non-positive
effect, in contrast with other types of refactorings, even when interacting with
factors that represent developer experience; and (iv) the interaction of factors
that represent inexperienced contributors and large changes, or refactorings,
tend to harm the design quality, even when they interact with factors that may
represent a code review process. We expect our findings to aid developers and
researchers in improving their guidelines on how to avoid and monitor decay.

As future work, we intend to explore whether and how our observations
differ in terms of closed and open source systems. Moreover, we intend to
explore whether classes that are added to a system with preexisting design
problems behave differently from our findings. Finally, we aim to investigate
additional factors.

3.9
Summary

In the paper presented in this chapter, we address the problems addressed
in this paper as follows. Before tacking each of our specific problems, we
individually investigated each of our sub-factors (described in Section 2.2) to
make sure that they have a relationship with design decay. This investigation
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refers to the first research question of both this dissertation and the paper. In
this investigation, we concluded that 7 out of our 12 sub-factors can indeed
be used individually to differentiate between classes that suffered different
degrees of design decay. This finding relates to our general problem – i.e., a
lack of resources13 about how to avoid or mitigate design decay – as it provides
an initial view about which sub-factors should be monitored in order to avoid
or prevent design decay. These results also refer to the first research questions
of both this dissertation and the paper.

After establishing this relationship, we then tackled both of our specific
problems, i.e., which associations (or interactions) between different factors
can be inferred and how they affect design decay, and whether the behaviour
of these interactions changes depending on the level of decay of the affected
class. To do this, we used association rule mining to collect a number of
influential interactions between factors, separated in three groups: interactions
that happened in all levels of decay, those that happen in low levels of decay,
and those that happen in high levels of decay. Using this technique, we
reported several different findings that exemplify how some key interactions
between factors can influence design decay (discussed in Sections 3.4.3 and 3.5).
The next chapter summarizes the main contributions of this work, including
aforementioned results and their implications. It also presents opportunities
for future work aimed to refine, strengthen, and expand this research.

13As discussed on 1.1, we consider resources as information that can improve awareness
of influences that different interactions between factors can have on design quality.
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4
Final Remarks

Changes to design happen regularly through the maintenance and evolu-
tion of a software project. These changes can introduce design problems causing
a phenomenon called design decay. In this work, we investigate this decay pro-
cess via symptoms that manifest themselves as changes to four internal quality
attributes: cohesion, coupling, complexity, and inheritance.

A plethora of factors can also affect this process, often simultaneously.
Existing studies do not focus on these interactions between factors, mostly
studying them individually. Since this process is assymetrical (i.e., classes are
not affect equally), developers might need different strategies to mitigate or
remove design problems depending on the level of decay of the target class.

This dissertation aims to reveal whether and how are two groups of
factors, developer- and process-related factors, relate to decay. First, we
analyzed, through statistical tests, whether their sub-factors are indeed related
to design decay. Second, we used association rule mining to discover a number
of meaningful interactions between factors and how their behaviour differed
depending on the level of decay of the classes affected.

4.1
Contributions

In summary, the main contributions and their implications are described
as follows.

Contribution 1: Methodology Design that Avoids Common Problems
from Code Smell-based Studies. In this work, we designed a methodology
which is able to observe symptoms of design decay by using the internal
quality attributes. It avoids one of the main problems typically associated
with code smell based approaches, which is the choice of thresholds for code
smell detection. Since thresholds are subjective and require additional decision
making, it can be advantageous to avoid using them them. Nevertheless, using
an approach that differs from conventional ones can be valuable as it can
possibly detect previously unnoticed symptoms.

Contribution 2: A Set of Insights Relating Interactions Between
Process- and Developer-Related Factors to Design Decay. As stated in our
problem statement (Section 1.1), prior to this dissertation, there was little in-
formation about how interactions between factors can affect design decay. By
following the methodology described in Section 3.3.2, we were able to obtain
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several insights and implications which could improve the awareness practi-
tioners, tool builders, and researchers about how these interactions can affect
decay. After a more in-depth investigation, these insights could also be used
formulate practical guidelines for design decay avoidance. In summary, our
main insights include:

– first, we reported on the viability of using the 12 sub-factors (Section
2.2) analyzed in this work as early indicators of design decay. We found
that 7 out of the 12 sub-factors are good individual indicators of design
decay. This information could be used by practitioners for early detection,
as those sub-factors could be indicators that a class or change should be
closely monitored, even if a meaningful interaction has not yet happened.

– second, we observed several side effects present in changes containing
extraction refactorings. Interactions involving this type of refactoring
often had negative effects on design quality. This contradicts previous
works on refactoring. On the other hand, another type, move refactorings,
had mostly a positive influence on design quality. In Section 3.5, we
provide a real example of how an extraction refactoring introduced such
negative effects. This finding could be used by developers as a warning to
be careful when performing or reviewing code containing an extraction
refactoring. Tool builders that develop tools that recommend refactorings
could also take these side effects into consideration.

– third, we also reported on the negative effects of changes performed by
newcomers. Interestingly, here we observed an interaction involving a
sub-factor that was considered influential when in isolation: the contrib-
utors sub-factor. This interaction happened when a newcomer performed
a large change, causing negative effects on design quality, which remained
even when that change was reviewed by other developers. This finding
could be used by code reviewers to identify riskier changes that need to
be more carefully reviewed. It should also be possible to automatic this
process, e.g., a bot could warn the reviewer when it identifies this (or
other related) interaction.

Contribution 3: Slightly-Decayed Classes vs. Largely-Decayed Classes.
This dissertation also provides several insights about how classes with different
levels of decay behave differently. Some of these insights are described as
follows.

– we observed the distribution of decay scores throughout the classes of the
seven different systems, in order to find differences in their behaviour.
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While we were able to group some software projects in terms of similarity,
none of these groups had more than two projects. We also found that
classes with low levels of decay tend to be more similar, while classes
with high levels of decay vary widely. This should be considered in the
development of strategies to mitigate design decay. Since classes that
decayed more tend to be more varied, targeted approaches could be more
adequate when trying to perform repair actions in these classes.

– in terms of association rules, we observed several behaviours which were
exclusive to the group with a specific level of decay. For example, we were
able to identify an interaction where large changes to classes with high
decay had positive results on design quality when its code was reviewed
prior to introduction in the system.

Contribution 4: A Number of Secondary Contributions.We also provide
a number of secondary contributions, such as:

– the development of several scripts, used to collect and analyze data
through this dissertation, e.g., scripts to collect historical data from git
repositories, to use software or developer/process-related metrics to tag
changes in order to establish co-occurrences, among others;

– the detailed design and implementation of metrics quantifying the 12
sub-factors (Section 2.2) studied in this work.

– a data set containing the raw and processed data collected and used in
each Step of our methodology (Section 3.3.2). It is available as part of
our replication package [70].

4.2
Future Work

For future work, we plan to consider new types of factors, such as the
ones mentioned in Section 2.2 (e.g. technical factors, collaboration factors, or-
ganizational factors, etc.) and utilize novel data analysis techniques in order
to understand how they affect software development, while also expanding the
scope of the analysis done to previously studied types of factors (e.g. apply-
ing natural language processing to investigation whether discussion content
influences decay.).

Besides that, we also plan to increase the scope of our data set, e.g. both
in terms of the number of projects and, as aforementioned, of the number of
factors, and consequently, sub-factors that are considered. For example, in the
refactoring actions factor, we plan to consider additional types of refactorings,
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which may not necessarily be related to maintainability, comprehensibility,
and reusability. We also plan to consider self-affirmed refactorings, which are
refactorings which are explicitly documented by developers when performing a
change. Some of the additional types of factors mentioned in Chapter 2.2 are
also planned to be included. We also plan to perform a qualitative analysis
that would enable us to obtain a more holistic view of how design decay
affects software and its developers in practice, by looking at how the developers
perceive each factor and how it affects decay.

Finally, we intend to elicit which requirements automated techniques that
aim to avoid or mitigate design decay have to conform with to be effective,
based on our findings. After this, we plan to investigate if existing techniques
or tools actually meet those requirements, and if needed, design and evaluate
an automated technique or tool of our own.
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