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Construction of conformal radial perturbations

Choose any point p ∈M and consider the totally geodesic ball Bp(a+ δ)

centered at p with radius a + δ. It follows that the exponential map expp

restricted to B(a+ δ) ⊂ R
2 is a diffeomorphism over Bp(a+ δ).

Given v ∈ T 1
pM consider the unitary geodesic αv(t) = expp(tv), where

t ∈ [−a, a]. For each of these geodesics define

Kv(t) = K(αv(t), α
′

v(t)),

where K(αv(t), α
′

v(t)) is the flag curvature of (M,F ) at αv(t) with flagpole

α′v(t).

In order to define the perturbation consider

K0 := inf{Kv(t)|v ∈ T 1

pM, t ∈ [−a, a]}

and, since we are inside a geodesic ball, all geodesic of αv type has no conjugate

points in the interval [−a, a] we have that, by proposition 4.0.11, there exists

ρ(ǫ) > 0 such that for every β ∈ (0, 1) there is an α(ρ) > 0 and a function

K
ρ
ǫ,α,β such that the equation

x′′(t) +K
ρ
ǫ,α,βx(t) = 0

has conjugate points on [−ρ, ρ].

We will stretch out the Finsler metric F to obtain a new metric F̄ and

prove the result for the metric. The metric F̄ is given by

F̄ =
ρ

a
F.

6.1

Building the σ function

For every geodesic αv consider the parallel vector field V along αv such

that F (αv, V ) = 1 and {α′v, V } is a positive basis. If V̄ (t) = d(exp−1v )αv
V (t)

then, by the Gauss lemma, there is a function λv(t) such that V̄ (t) = λv(t)V̄0
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where V̄0 ∈ TpM is a unitary vector perpendicular to v. Set the constant Λ0 as

Λ0 = inf
v∈T 1

pM
{|λv(t)| ; t ∈ [−ρ, ρ]}. (6.1.1)

It follows that this constant is positive.

Here, we will also define a singular perturbation σ0 in the spirit of lemma

2.1.1 in chapter 2. The definition of both functions is very similar. So, we will

do them together.

First, for i = 0, 1, define the functions σ̃i : B(ρ+ δ)→ R by

σ̃i = −
1

2Λ2
0

fi

(√
(x1)2 + (x2)2

)
,

where

f0(t) =

∫ t

0

ǫλ(s) ds− ǫ
(ρ+ δ

2
)1+β

(β + 1)
,

λ0(t) =

{
tβ, t > 0;

−(−t)β, t < 0,

and
f1(t) =

∫ t

0

λ(s) ds− ǫ
(ρ+ δ

2
)1+β

(β + 1)
, (6.1.2)

λ(t) = ǫ αβ−1δα(t)t+ (1− δα(t))λ0(t),

where α = α(ǫ) is given in lemma 4.1.6 and δα in (4.1.8).

Now, define the function σ̃i : B(ρ+ δ)→ R by

σ̃i(x
1, x2) = −

1

2Λ2
0

fi

(√
(x1)2 + (x2)2

)
. (6.1.3)

We are ready to define the functions σ and σ0 necessary to the main

theorem.

Let σ1
i : Bp(ρ+ δ)→ R defined by

σ1

i (q) = σ̃i

(
(expp)

−1(q)
)
.

Define σi : M → R by

σi(q) =

{
β δ

2

(q)σ1
i (q) if q ∈ Bp(ρ+ δ);

0 if q ∈M \ Bp(ρ+ δ),
(6.1.4)

where β δ
2

is a bump function which is 1 for q ∈ Bp(ρ) and zero for q ∈

Bp(ρ+ δ) \ Bp(ρ+
δ
2
).

To set notations, let

σ1 = σ.

This is the smoothed version of the singular σ0.
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Remark 6.1.1. Recall that the exponential function is only C1 around the

origin. In order to avoid this kind of problems here and keep the generality,

the function κ is zero in a neighbourhood of zero and consequentially the

function σ is also zero in a neighbourhood of the origin. So, the problems with

differentiability of σ at p won’t bother us.

Lemma 6.1.2. ||σ0||1,β → 0 when ǫ→ 0.

Proof. Outside the ball Bp(ρ+ δ), σ0 is zero. Then the C0 of σ0 is at most

ǫ(ρ+ δ)1+β

2(1 + β)Λ2
0

.

The norm of ∇σ0 satisfies

||∇σ0|| ≤
ǫ ρβ h

2(1 + β)Λ2
0

,

where h is constant, uniform on M, that relates the Riemannian metric g that

our manifold is equipped and some Finsler F that we will use to make our

construction. And finally, we have to analyse the β−Hölder norm of ∇σ0. The

function l(t) = |t|β is the prototype of β−Hölder function and has ||l||β ≤ 21−β

on the interval [−ρ− δ, ρ+ δ]. Thefore,

||∇σ0||β ≤ 21−β
ǫβhβ

2β(1 + β)βΛ2β
0

.

Since ρ is of order ǫ−
1

2+β we have that ǫρ1+β → 0 and ǫρβ → 0.
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