6

Construction of conformal radial perturbations

Choose any point $p \in M$ and consider the totally geodesic ball $\mathcal{B}_{p}(a+\delta)$ centered at p with radius $a+\delta$. It follows that the exponential map $\exp _{p}$ restricted to $B(a+\delta) \subset \mathbb{R}^{2}$ is a diffeomorphism over $\mathcal{B}_{p}(a+\delta)$.

Given $v \in T_{p}^{1} M$ consider the unitary geodesic $\alpha_{v}(t)=\exp _{p}(t v)$, where $t \in[-a, a]$. For each of these geodesics define

$$
K_{v}(t)=K\left(\alpha_{v}(t), \alpha_{v}^{\prime}(t)\right),
$$

where $K\left(\alpha_{v}(t), \alpha_{v}^{\prime}(t)\right)$ is the flag curvature of (M, F) at $\alpha_{v}(t)$ with flagpole $\alpha_{v}^{\prime}(t)$.

In order to define the perturbation consider

$$
K_{0}:=\inf \left\{K_{v}(t) \mid v \in T_{p}^{1} M, t \in[-a, a]\right\}
$$

and, since we are inside a geodesic ball, all geodesic of α_{v} type has no conjugate points in the interval $[-a, a]$ we have that, by proposition 4.0.11, there exists $\rho(\epsilon)>0$ such that for every $\beta \in(0,1)$ there is an $\alpha(\rho)>0$ and a function $K_{\epsilon, \alpha, \beta}^{\rho}$ such that the equation

$$
x^{\prime \prime}(t)+K_{\epsilon, \alpha, \beta}^{\rho} x(t)=0
$$

has conjugate points on $[-\rho, \rho]$.
We will stretch out the Finsler metric F to obtain a new metric \bar{F} and prove the result for the metric. The metric \bar{F} is given by

$$
\bar{F}=\frac{\rho}{a} F .
$$

6.1
 Building the σ function

For every geodesic α_{v} consider the parallel vector field V along α_{v} such that $F\left(\alpha_{v}, V\right)=1$ and $\left\{\alpha_{v}^{\prime}, V\right\}$ is a positive basis. If $\bar{V}(t)=d\left(\exp _{v}^{-1}\right)_{\alpha_{v}} V(t)$ then, by the Gauss lemma, there is a function $\lambda_{v}(t)$ such that $\bar{V}(t)=\lambda_{v}(t) \bar{V}_{0}$
where $\bar{V}_{0} \in T_{p} M$ is a unitary vector perpendicular to v. Set the constant Λ_{0} as

$$
\begin{equation*}
\Lambda_{0}=\inf _{v \in T_{p}^{1} M}\left\{\left|\lambda_{v}(t)\right| ; t \in[-\rho, \rho]\right\} \tag{6.1.1}
\end{equation*}
$$

It follows that this constant is positive.
Here, we will also define a singular perturbation σ_{0} in the spirit of lemma 2.1.1 in chapter 2 . The definition of both functions is very similar. So, we will do them together.

First, for $i=0,1$, define the functions $\widetilde{\sigma}_{i}: B(\rho+\delta) \rightarrow \mathbb{R}$ by

$$
\widetilde{\sigma}_{i}=-\frac{1}{2 \Lambda_{0}^{2}} f_{i}\left(\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}}\right)
$$

where

$$
\begin{gathered}
f_{0}(t)=\int_{0}^{t} \epsilon \lambda(s) d s-\epsilon \frac{\left(\rho+\frac{\delta}{2}\right)^{1+\beta}}{(\beta+1)} \\
\lambda_{0}(t)=\left\{\begin{array}{cc}
t^{\beta}, & t>0 \\
-(-t)^{\beta}, & t<0
\end{array}\right.
\end{gathered}
$$

and

$$
\begin{gather*}
f_{1}(t)=\int_{0}^{t} \lambda(s) d s-\epsilon \frac{\left(\rho+\frac{\delta}{2}\right)^{1+\beta}}{(\beta+1)} \tag{6.1.2}\\
\lambda(t)=\epsilon \alpha^{\beta-1} \delta_{\alpha}(t) t+\left(1-\delta_{\alpha}(t)\right) \lambda_{0}(t)
\end{gather*}
$$

where $\alpha=\alpha(\epsilon)$ is given in lemma 4.1.6 and δ_{α} in (4.1.8).
Now, define the function $\widetilde{\sigma}_{i}: B(\rho+\delta) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\widetilde{\sigma}_{i}\left(x^{1}, x^{2}\right)=-\frac{1}{2 \Lambda_{0}^{2}} f_{i}\left(\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}}\right) \tag{6.1.3}
\end{equation*}
$$

We are ready to define the functions σ and σ_{0} necessary to the main theorem.

Let $\sigma_{i}^{1}: \mathcal{B}_{p}(\rho+\delta) \rightarrow \mathbb{R}$ defined by

$$
\sigma_{i}^{1}(q)=\widetilde{\sigma}_{i}\left(\left(\exp _{p}\right)^{-1}(q)\right)
$$

Define $\sigma_{i}: M \rightarrow \mathbb{R}$ by

$$
\sigma_{i}(q)=\left\{\begin{array}{cc}
\beta_{\frac{\delta}{2}}(q) \sigma_{i}^{1}(q) & \text { if } q \in \mathcal{B}_{p}(\rho+\delta) \tag{6.1.4}\\
0 & \text { if } q \in M \backslash \mathcal{B}_{p}(\rho+\delta)
\end{array}\right.
$$

where $\beta_{\frac{\delta}{2}}$ is a bump function which is 1 for $q \in \mathcal{B}_{p}(\rho)$ and zero for $q \in$ $\mathcal{B}_{p}(\rho+\delta) \backslash \mathcal{B}_{p}\left(\rho+\frac{\delta}{2}\right)$.

To set notations, let

$$
\sigma_{1}=\sigma
$$

This is the smoothed version of the singular σ_{0}.

Remark 6.1.1. Recall that the exponential function is only C^{1} around the origin. In order to avoid this kind of problems here and keep the generality, the function κ is zero in a neighbourhood of zero and consequentially the function σ is also zero in a neighbourhood of the origin. So, the problems with differentiability of σ at p won't bother us.

Lemma 6.1.2. $\left\|\sigma_{0}\right\|_{1, \beta} \rightarrow 0$ when $\epsilon \rightarrow 0$.
Proof. Outside the ball $\mathcal{B}_{p}(\rho+\delta), \sigma_{0}$ is zero. Then the C^{0} of σ_{0} is at most

$$
\frac{\epsilon(\rho+\delta)^{1+\beta}}{2(1+\beta) \Lambda_{0}^{2}}
$$

The norm of $\nabla \sigma_{0}$ satisfies

$$
\left\|\nabla \sigma_{0}\right\| \leq \frac{\epsilon \rho^{\beta} h}{2(1+\beta) \Lambda_{0}^{2}}
$$

where h is constant, uniform on M, that relates the Riemannian metric g that our manifold is equipped and some Finsler F that we will use to make our construction. And finally, we have to analyse the β-Hölder norm of $\nabla \sigma_{0}$. The function $l(t)=|t|^{\beta}$ is the prototype of β-Hölder function and has $\|l\|_{\beta} \leq 2^{1-\beta}$ on the interval $[-\rho-\delta, \rho+\delta]$. Thefore,

$$
\left\|\nabla \sigma_{0}\right\|_{\beta} \leq 2^{1-\beta} \frac{\epsilon^{\beta} h^{\beta}}{2^{\beta}(1+\beta)^{\beta} \Lambda_{0}^{2 \beta}}
$$

Since ρ is of order $\epsilon^{-\frac{1}{2+\beta}}$ we have that $\epsilon \rho^{1+\beta} \rightarrow 0$ and $\epsilon \rho^{\beta} \rightarrow 0$.

