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Conformal Jacobi equation

On a compact smooth M let F : TM → R be a smooth symmetric

Finsler metric and σ : M → R a smooth function. In this section we will be

concerned with how the Jacobi equation changes when we consider the Finsler

metric

Fσ := eσF.

We will actually deal with F 2
σ since in this way we will have constant speed

geodesics. Conformal changes of the Finsler metric are equivalent to the Mañé’s

perturbations, or perturbations by adding a potential to the original metric.

We will not adopt this viewpoint because we intend to use the geometrical

relations between the Finsler metric and its conformal counterpart.

Lemma 5.0.10. Let γ : [a, b] = I → U be a unity speed geodesic of the Finsler

metric F and suppose that

σxi(γ(t)) = f(t) gik(γ(t), γ̇(t))γ̇
k(t),

where f : I → R is a smooth function. In this case, γ is also, up to

reparametrization, a unity speed geodesic of the metric Fσ.

Proof. Define the change of coordinates α : I → [0, b0] by

α(t) =

∫ t

a

exp (σ(γ(u))) du. (5.0.1)

Let β = α−1 and define the curve γ̄(s) = γ(β(s)). If γ̄ satisfy the Euler-

Lagrange equation for F 2
σ then the lemma is proved.

First of all, since F is 1−homogeneous on the fiber coordinates,

(F 2
σ )yi (γ̄(s), γ̄

′(s)) = β′(s)e2σ(γ̄(s))(F 2)yi(γ(β(s)), γ̇(β(s))) (5.0.2)

and

(F 2
σ )xi(γ̄(s),γ̄′(s)) = (β′(s))2e2σ(γ̄(s))(F 2)xi(γ(β(s)), γ̇(β(s))) (5.0.3)

+ 2σxi(γ̄(s))(β′(s))2e2σ(γ̄(s))(F 2)(γ(β(s)), γ̇(β(s)))
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where ′ = d
ds
and ˙= d

dβ
. The Euler-Lagrange equation for F 2

σ is

d

ds

(
(F 2

σ )yi
)
− (F 2

σ )xi =e2σ(β′′(F 2)yi + 2σ′β′(F 2)yi + (β′)2
d(F 2)yi

dβ

− (β′)2(F 2)xi − 2σxi(β′)2F 2);

=
(
β′′e2σ(F 2)yi + 2σ′β′e2σ(F 2)yi

)
− 2σxiF 2;

=
d(eσ)

ds
(F 2)yi − 2σxi ;

=σ′eσ(F 2)yi − 2σxi , (5.0.4)

where we used that γ is a geodesic of F. Since F 2(γ, γ̇) = gkj γ̇
kγ̇j we have that

(F 2)yi =
∂gkj

∂yi
γ̇iγ̇j + 2gikγ̇

k;

= 2gikγ̇
k,

because
∂gkj
∂yi

γ̇ι = 0 where ι = i, j or k. From

σ′ = σxi γ̇iβ′ = f(t)β′gij γ̇
j γ̇i = f(t)β′

and the hypothesis of the lemma, we conclude that

σ′eσ(F 2)yi − 2σxi = 2f(t)β′eσgikγ̇
k
− 2f(t)gikγ̇

k

= 0. (5.0.5)

Equations (5.0.4) and (5.0.5) proves the first part of the lemma. The fact that

γ̄ is unitary follows from (gσ)ij = e2σgij.

Remark 5.0.11. Choose a unitary geodesic γ : [a, b] → U. We can regard

every vector field ξ : [a, b] → π∗T̃M along γ as a curve in R
n given by

t 7→ (ξ1(t), ..., ξn(t)) where ξ(t) = ξi(t) ∂
∂xi

∣∣
(γ(t),γ′(t))

. From now on, if it is

not explicitly mentioned, the vector field ξ will be identified with its curve.

Definition 5.0.12. Let γ : [a, b] → U be a unitary geodesic. The Jacobi

operator with respect to the Finsler metric F 2 is a differential operator J :

C2([a, b],Rn)→ C0([a, b],Rn) defined by

Jij ξ
i =

d

dt

(
(F 2)yiyj ξ̇

i + (F 2)xiyjξ
i
)
−

(
(F 2)yixj ξ̇i + (F 2)xixjξi

)
, (5.0.6)

where ˙= d
dt
. We say that ξ is a Jacobi field if Jξ = 0.

Definition 5.0.13. Given two distinct points p = γ(t0) and q = γ(t1) along

the geodeisc γ : [a, b] → U we say that p is conjugated to q if there exists
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a non-trivial Jacobi field ξ over γ such that ξ(t0) = ξ(t1) = 0 (cf. definition

4.0.7).

A standard result from the calculus of variations (cf. [10] and [12]) asserts

that if a geodesic has conjugate points then it can no longer be a minimizer

between this points.

From now on, suppose that we are under the hypothesis of lemma 5.0.10

and we will follow the notation given in its proof.

We would like to know how the Jacobi operator Jσ, of the Finsler metric

F 2
σ , along γ̄ looks like when we take the derivative with respect to the parameter

of γ.

Proposition 5.0.14. Given a vector field η along γ̄, the Jacobi operator Jσ

when looked over γ is

Jσ
ijη

i =Jijη
i +

(
2σxi(F 2)yj + f (F 2)yiyj − 2σxj(F 2)yi

)
η̇i

+

(
2
d

dβ

(
σxi(F 2)yj

)
+ 2fσxi(F 2)yj + f(F 2)xiyj (5.0.7)

− 4σxiσxj − 2σxixj − 2σxj(F 2)xi − 2σxi(F 2)xj

)
ηi.

Proof. The Jacobi operator for the Finsler metric F 2
σ is given by

Jσ
ijη

i =
d

ds

(
(F 2

σ )yiyj
dηi

ds
+ (F 2

σ )xiyjη
i

)
−

(
(F 2

σ )yixj

dηi

ds
+ (F 2

σ )xixjηi
)
. (5.0.8)

We will expand the terms above and then conclude the result.

Observe that the vector field η changes as dηi

ds
= β′η̇i. The first two terms

on the left-hand side of equation (5.0.8) are given by

(F 2
σ )yiyj

dηi

ds
= eσ(F 2)yiyj η̇

i

and

(F 2
σ )xiyjη

i = eσ
(
2σxi(F 2)yjη

i + (F 2)xiyjη
i
)
.

The third and the fourth terms are

(F 2
σ )yixj

dηi

ds
= 2σxj(F 2)yi η̇

i + (F 2)yixj η̇i

and

(F 2
σ )xixjηi = 2σxixjηi + 4σxiσxjηi + 2σxj(F 2)xiηi + 2σxi(F 2)xjηi + (F 2)xixjηi.
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Substituting this results in (5.0.8) we have that

d

ds

(
(F 2

σ )yiyj
dηi

ds
+ (F 2

σ )xiyjη
i

)
=
dσ

dβ
Mij +

d

dβ

(
(F 2)yiyj η̇

i + (F 2)xiyjη
i
)

+ 2σxi(F 2)yj η̇
i + 2

d

dβ

(
σxi(F 2)yj

)
ηi,

where Mij = (F 2)yiyj η̇
i + 2σxi(F 2)yjη

i + (F 2)xiyjη
i, and

(F 2
σ )yixj

dηi

ds
+ (F 2

σ )xixjηi =
(
(F 2)yixj η̇i + (F 2)xixjηi

)
+ 2σxj(F 2)yi η̇

i

+ 2σxixjηi + 4σxiσxjηi

+
(
2σxj(F 2)xi + 2σxi(F 2)xj

)
ηi.

The result follows from the fact that dσ
dβ
= f.

5.1

Fermi coordinates

From now on we will restrict ourselves to the case of surfaces. Recall that

the covariant derivative along the geodesic c is locally given by

DT ξ =

(
dξi

dt
+ T jξkΓi

jk(c, T )

)
∂

∂xi

∣∣∣∣
γ̄

, (5.1.1)

where T = c′ and Γi
jk are the Chern-Rund connection coefficients [4].

Proposition 5.1.1 (Finslerian Fermi coordinates). Let c : [a, b] → (M,F )

be a unitary Finslerian geodesic. There is a ǫ−tubular neighborhood Nǫ and a

coordinate chart ψ : Nǫ → (a− δ, b+ δ)× (−ǫ, ǫ), with 0 < δ < ǫ, such that in

these new coordinates we have

i) ψ(c(t)) = (t, 0) and ∂
∂t

∣∣
c(t)

= c′(t);

ii) g(c,c′)(
∂
∂t
, ∂
∂s
) = 0;

iii) Γi
jk(c(t), c

′(t)) = 0 for all i, j, k;

iv) ∀ t ∈ (a− δ, b+ δ) the curve s 7→ ψ−1(t, s) is a unitary geodesic.

Proof. To avoid clutter, (c(t), c′(t)) will be written c′(t). Let v ∈ Tc(0)M such

that gc′(0)(v, v) = 1 and gc′(0)(c
′(0), v) = 0. If V (t) is the parallel transport of

v along c, then t 7→ (c(t), V (t)) is a curve in the unitary tangent bundle T 1M.

Define ϕ by
ϕ(t, s) = π ◦ φs(c(t), V (t)), (5.1.2)
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where φs : T
1M → T 1M is the geodesic flow of F. Immediately we have that

∂ϕ

∂t

∣∣
(t,0)

= c′(t) and that

∂ϕ

∂s

∣∣∣∣
(t,0)

= dπ

(
∂

∂s

∣∣∣∣
(t,0)

φs(c(t), V (t))

)
= V (t)

because s 7→ φs(c(t), V (t)) is the unitary geodesic that when s = 0 is at

c(t) with velocity V (t). From the Inverse Function Theorem and from the

compacity of [a, b] that ∃δ, ǫ > 0 with ǫ > δ such that ϕ is a diffeomorphism

from (a− δ, b+ δ)× (−ǫ, ǫ) to Nǫ := ϕ((a− δ, b+ δ)× (−ǫ, ǫ)). Let ψ = ϕ−1.

From the definition of ψ we immediately conclude a and d. Letter b

follows from gc′(t)(c
′(t), V (t)) and ∂

∂s

∣∣
c(t)

= V (t).

The Chern-Rund connection coefficients along the geodesic c are given

by

Γi
jk(c

′(t)) = gc′(t)(D ∂

∂xj

∂

∂xi
,
∂

∂xk
),

where ∂
∂x1 = ∂

∂t
and ∂

∂x2 = ∂
∂s
. But Dc′c

′ = 0 and Dc′V = DV c
′ = 0, so the

remaining cases are those involving DV V :

gc′(t)(DV V, c
′) =

∂

∂t
gc′(t)(V, c

′)− gc′(t)(V,DV c
′) = 0

and

gc′(t)(DV V, V ) =
1

2

∂

∂s
gc′(t)(V, V ) = 0.

This proves letter c.

Lift the coordinates ψ to the coordinates ψ̄ on the tangent space in the

same way we have done on remark 3.0.1.

Corollary 5.1.2. In the coordinates ψ̄ we have that

(F 2)x1(c(t), c′(t)) = 0; (F 2)x2(c(t), c′(t)) = 0; (5.1.3)

and

(F 2)y1(c(t), c
′(t)) = 2; (F 2)y2(c(t), c

′(t)) = C112(c(t), c
′(t)). (5.1.4)

The second order derivatives are given by

(F 2)x1y1(c(t), c
′(t)) = 0; (F 2)x2y1(c(t), c

′(t)) = 0; (5.1.5)

and

(F 2)y2x1(c(t), c′(t)) = (C112)x1(c(t), c′(t));

(F 2)y2x2(c(t), c′(t)) = (C112)x2(c(t), c′(t)).
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Proof. Since there’s no loss, we will carry out the calculations considering the

pulled-back metric ψ∗F
2 and call it F 2 along this proof.

The equalities on 5.1.3 follow from the fact that t 7→ (t + t0)e1 and

s 7→ (t0e1 + se2) are unitary geodesics with velocity e1. The first equality of

5.1.4 follows from the homogeneity of F 2. The second equality is given by

(F 2)y2(te1, e1) =
d

ds

∣∣∣∣
s=0

(
F 2(te1, e1 + se2)

)

=
d

ds

∣∣∣∣
s=0

(g11(te1, e1 + se2) + 2sg12(te1, e1 + se2)

+s2g22(te1, e1 + se2)
)

=C112(te1, e1).

Let’s proceed with the calculations of the second order derivatives.

(F 2)x1y1(te1, e2) =
d2

ds dw

∣∣∣∣
s=w=0

(
F 2((t+ s)e1, (w + 1)e1)

)

=
d2

ds dw

∣∣∣∣
s=w=0

(
(w + 1)2F 2((t+ s)e1, e1)

)

= 2
d

ds

∣∣∣∣
s=0

(
F 2((t+ s)e1, e1)

)

= 0.

(F 2)x2y1(te1, e2) =
d2

ds dw

∣∣∣∣
s=w=0

(
F 2(te1 + se2, (1 + w)e1)

)
;

= 2
d

ds

∣∣∣∣
s=0

(
F 2(te1 + se2, e1)

)

= 4(g11)x2(te1, e1),

but this coefficient is zero because V is parallel along the geodesic c.
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(F 2)x1y2(te1, e2) =
d2

ds dw

∣∣∣∣
s=w=0

(
F 2((t+ s)e1, e1 + we2)

)
;

=
d2

ds dw

∣∣∣∣
s=w=0

(g11((t+ s)e1, e1 + we2)

+ 2wg12((t+ s)e1, e1 + we2)

= w2g22((t+ s)e1, e1 + we2)
)
;

=(C112)x1(te1, e1) + 2(g12)x2(te1, e1);

=(C112)x1(te1, e1).

The calculations of (F 2)x2y2 proceed in the same way as the above.

Remark 5.1.3. The use of Finslerian Fermi coordinates gives a more geomet-

ric frame, quite close to the Riemannian geometry setting, to study conformal

perturbations of the Jacobi equation that is our main goal. Once we have es-

tablished the Jacobi equation in terms of the unperturbed fundamental tensor

and the unperturbed flag curvature, Fermi coordinates helps us to simplify the

resulting expression as well as the expression of the covariant derivative, which

will be important ahead (see lemma 7.0.3). These simplifications makes clear

the relation between the unperturbed geometric form of the Jacobi equation

with its conformal perturbed one. A Hamiltonian version of the Fermi coordi-

nates for Finsler metrics can be found in [16] and a general version is in the

Appendix, see lemma 8.2.2.

The next corollary is just the Jacobi equation for the conformal metric

in terms of the old metric. It’s proof is a straight forward application of

propositions 5.0.14 and 5.1.1 and of the corollary 5.1.2.

Corollary 5.1.4. The Jacobi equations obtained on proposition 5.0.14 in

Fermi coordinates are given by

Jσ
11η

1 =J11η
1 + 2fη̇1 +

(
4ḟ − 2σx1x1

)
η1;

Jσ
12η

1 =J12η
1 + 2fC112η̇

1 +

(
2ḟC112 + 2f

d

dβ
(C112)

+ 2f 2C112 + f(C112)x1 − 2σx1x2

)
η1;

Jσ
21η

2 =J21η
2
− 2fC112η̇

2
− 2σx1x2η2;

Jσ
22η

2 =J22η
2 + 2fη̇2 + (f(C112)x2 − 2σx2x2) η2.
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