
3

Preliminaries

Let M be a smooth manifold and π : TM → M the canonical

projection. The slit tangent bundle T̃M := TM \ 0, where 0 is a notation

for the zero section. Similarly, consider the dual tangent bundle T ∗M and the

corresponding objects π̄ : T ∗M →M, T̃ ∗M.

The pulled-back vector bundle π∗TM over T̃M is given by

π∗TM :=
⋃

(x,v)∈T̃M

TxM.

In the same way we define π∗T ∗M.

Remark 3.0.1. In what follows, (x1, ..., xn) = (xi) : U ⊂ M → Rn is a local

coordinate chart on a open set U. As usual, { ∂
∂xi} and {dxi} are, respectively,

the induced coordinate basis of TM and T ∗M. The coordinate chart (xi) give

rise to a coordinate chart (x, y) on π−1(U) ⊂ TM, where y = yi ∂
∂xi .

Throughout this text we will use the notation Gxi = ∂G
∂xi and Gyj =

∂G
∂yj

for the partial derivatives of a function G : V ⊂ TM → R.

Definition 3.0.2. A Finsler manifold (M,F ) is a smooth manifold M equipped

with a Finsler metric F. A Ck (k ≥ 2) Finsler metric is continuous map,

F : TM → [0,∞), Ck on T̃M such that

i) F is positively homogeneous, that is, F (x, λ v) = λF (x, v) for all λ > 0

and (x, v) ∈ TM.

ii) If F (x, v) = 0 then v = 0.

iii) Legendre condition. The coefficients

gij(x, v) =
1

2
(F 2)yiyj(x, v)

form a positive definite matrix for all (x, v) ∈ T̃M.

In addition to the items above, if the metric F satisfies F (x, v) =

F (x,−v) then it is called reversible.
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The coefficients gij define a natural Riemannian metric on the pulled-

back vector bundle π∗TM by

g = gij dx
i ⊗ dxj.

There is another important quantity associated with the Finsler structure

called the Cartan tensor. Define it by

C := Cijk dx
i ⊗ dxj ⊗ dxk,

where

Cijk =
1

4
(F 2)yiyjyk .

It is a symmetric section of ⊗3π∗TM and if it vanishes then the Finsler metric

is Riemannian, that is, F =
√
α with α a Riemannian metric on M.

Given a Lipschitz continous curve c : [a, b] → M we define the length of

c by

ℓF (c) =

∫ b

a

F (c(t),
dc

dt
(t)) dt.

This give rise to a pseudo-metric by

dF (p, q) = inf
c

ℓF (c)

where the infimum is taken over all the Lipschitz continuous curves c such that

c(a) = p and c(b) = q. If F is reversible then dF is a metric.

Definition 3.0.3. A curve σ : [a, b]→M is said to be minimizing if

ℓF (σ) = dF (σ(a), σ(b)).

3.1

Lagrangian viewpoint

The main source for this section is [10] (see also [1] and [12]). Along this

section, we will call L = 1
2
F 2 and, unless explicitly said, every curve will be

piecewise C2.

We are interested in necessary conditions on c : [a, b] → M such that it

realize the Finslerian distance between its extremals, that is,

ℓF (c) = dF (c(a), c(b)).
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Define the energy of the curve c by

E(c) =
∫ b

a

L(c(t),
dc

dt
(t)) dt.

The next lemma shows that we can study minimizers of the energy in order to

find curves that realizes the Finslerian distance between two points.

Lemma 3.1.1. Suppose that σ : [a, b] → M a curve joining two points of M

such that for every c : [a, b] → M, c(a) = σ(a) and c(b) = σ(b), E(σ) ≤ E(c).
In this case,

ℓF (σ) = dF (σ(a), σ(b)).

A piecewise C2 variation of a smooth curve σ : [a, b] 7→M is a continuous

map

σ̄ : [a, b]× (−ε, ε)→M

which is C2 on each [ti−1, ti]× (−ε, ε) and σ̄(t, 0) = σ(t).

The first order term of the Taylor expansion of E(s) = E(σ̄s) around

s = 0 is called the first variation of the energy. It is given by

δE(c)[η] = dE(s)

ds

∣∣∣∣
s=0

where η = ∂σ
∂s

∣∣
s=0

is a piecewise C1 vector field. If we suppose that each part

of c is contained in a given coordinate chart, then

δE(c)[η] = −
∑

k

∫ tk

tk−1

(
d

dt
(Lyi)− Lxi

)
ηi dt.

The system of equations
(

d

dt
(Lyi)− Lxi

)
= 0 (3.1.1)

is called Euler-Lagrange equations associated with the Lagrangian L. In fact,

this system of equations does not depend on the coordinate chart chosen, that

is, the system behaves well under a change of normal coordinates1.

1Actually, these equations define a spray on T̃M, that is, a vector field locally defined by
yi ∂

∂xi − 2Gi(x, y) ∂
∂yi , where the functions G

i are 2-homogeneous on the second coordinate

and behave under change of coordinates as 2G̃i = ∂x̃i

∂xj 2G
j − ∂ỹi

∂yj y
j . The orbits of this vector

field are the lifts to T̃M of the solutions of the Euler-Lagrange equation. In the case of a

Finsler metric, 2Gi(x, y) = 1

2
gij [ ∂2F 2

∂xk∂yj (x, y)y
k − ∂F 2

∂xj ]. For details about sprays in Finsler

geometry see [5].
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Lemma 3.1.2. Given x ∈ M and v ∈ TxM there exists ε > 0 and a unique

solution

σ : [0, ε)→M

of the system (3.1.1) such that σ(0) = x and σ′(0) = v.

Given a curve σ, if it satisfies the Euler-Lagrange equations then the curve

is called a constant speed geodesic or simply a geodesic. By constant speed we

mean that F (σ(t), σ′(t)) = k for all t, where k > 0.

Remark 3.1.3. We should mention that if, instead of the energy, we had

considered the length function then the solutions of the Euler-Lagrange equa-

tions would not, necessarily, had constant speed. All in all, they would be

reparametrization of the constant speed ones.

Definition 3.1.4. The flow φt of the vector field over T̃M given by (3.1.1) is

called geodesic flow. For a point (x, v) ∈ T̃M, φt(x, v) = (σ(t), σ′(t)) where σ

is a geodesic such that σ(0) = x and σ′(0) = v.

Lemma 3.1.5. Let σ : [a, b] → M be a curve connecting p and q. We have

the following equivalence: for all piecewise C1 vector field η along σ such that

η(a) = η(b) = 0

δE(σ)[η] = 0

if and only if σ is a geodesic.

Suppose that σ is geodesic. In this case, the first order term of the

Taylor expansion relative to the variation σ̄ vanishes and it is the second order

term of the Taylor expansion of E(s) that gives information about minimizing

properties of σ.

The second order term is given by

δ2Ep,q(σ)[η] :=
d2E(s)

ds2

∣∣∣∣
s=0

and, supposing that each part of σ is contained in a coordinate chart, we have

δ2Ep,q(c)[η] =−
∑

k

∫ tk

tk−1

(
d

dt

(
Lyiyj

dηi

dt
+ Lxiyjη

i

)

+

(
Lyixj

dηi

dt
+ Lxixjηi

))
ηj dt.

Under a coordinate change, the equation

d

dt

(
Lyiyj

dηi

dt
+ Lxiyjη

i

)
+

(
Lyixj

dηi

dt
+ Lxixjηi

)
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does not change. This leads to the following definition.

Definition 3.1.6. Let Xk
p(σ) be the space of piecewise Ck vector fields along

the geodesic σ. Define the differential operator J : X2
p(σ) → X

0
p(σ), called the

Jacobi operator, in terms of its local expression by

Jijη
i =

d

dt

(
Lyiyj

dηi

dt
+ Lxiyjη

i

)
+

(
Lyixj

dηi

dt
+ Lxixjηi

)
. (3.1.2)

A vector field η ∈ X
2
p(σ) is called a Jacobi field if it satisfies the Jacobi equation

Jη = 0.

Jacobi fields appears when we vary geodesics by geodesics. In other words,

consider a piecewise C2 variation σ̄ of the geodesics σ such that σ̄s(t) = σ̄(t, s)

is a geodesic for every s. The vector field obtained by η = ∂σ̄
∂s

∣∣
s=0

, called the

variational field, is a Jacobi field.

Definition 3.1.7. Given p, q ∈ M. We say that p is conjugated to q if there

exists a geodesic σ : [a, b] → M, with σ(a) = p and σ(b) = q, and a non-

vanishing Jacobi field η along σ such that η(a) = η(b) = 0.

Conjugate points plays an important role in the study of minimizing

geodesics.

Proposition 3.1.8. Let σ : [a, b] → M be a geodesic and suppose that there

is b̄ ∈ (a, b) such that σ(a) is conjugated to σ(b̄). Then there exists a curve

c : [a, b]→M, with c(a) = σ(a) and c(b) = σ(b), such that

ℓF (c) < ℓF (σ).

Therefore, to prove that a geodesic do not realize the distance between

two points we can study its Jacobi equation and try to find a non-trivial Jacobi

field over the geodesic that has two zeros.

3.2

Geometrical viewpoint

Now we will introduce some concepts of Finsler geometry. The main

sources for this section are [13], [20] and [4]. For a open neighborhood U ⊂M

let Γ(TU) and Γ(T̃U) be the space of smooth sections of these vector bundles.

By a affine connection ∇V we mean a bi-linear map

∇V : Γ(TU)× Γ(TU)→ Γ(TU),
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(X, Y ) 7→ ∇V
XY, satisfying

∇V
X(fY ) = X(f)Y + f∇V

XY

for all f ∈ C∞(U) and X, Y ∈ Γ(TU).

Theorem 3.2.1 (Chern). Let (M,F ) be a Finsler manifold. There is a map

∇ : Γ(T̃U)× Γ(TU)× Γ(TU)→ Γ(TU) (3.2.1)

(V,X, Y ) 7→ ∇V
XY with the following properties

i) For every V ∈ Γ(T̃U), the map ∇V is an affine connection;

ii) ∇V is torsion free, that is,

∇V
XY −∇V

YX = [X, Y ];

iii) ∇V is almost metric, that is,

X (gV (Y, Z)) = gV (∇V
XY, Z) + gV (Y,∇V

XZ) + 2CV (∇V
XV, Y, Z).

Moreover we have

2gV (∇V
XY, Z) =X (gV (Y, Z)) + Y (gV (Z,X))− Z (gV (X, Y ))

+ gv([X, Y ], Z)− gv([Y, Z], X) + gv([Z,X], Y )

− 2CV (∇V
XV, Y, Z)− 2CV (∇V

Y V, Z,X) + 2CV (∇V
ZV,X, Y )

for all vector fields X, Y, Z ∈ Γ(TU). This equation, called the generalized

Koszul formula, uniquely determines V.

The Chern connection the neighborhood U define a family of functions2

Γk
ij : T̃U → R by

∇V
∂

∂xi

∂

∂xj
(p) = Γk

ij(p, Vp)
∂

∂xk
.

Using the functions Γk
ij we introduce the covariant derivative along a curve

σ : [a, b]→M. For a vector field X(t) along σ, define locally

2These are almost the Christofell symbols γk
ij = gks

2
(∂gsi
∂xj − ∂gij

∂xs +
∂gjs
∂xi ) from the

Riemannian geometry but calculated with respect to the fundamental tensor gij . In fact
we have the following identity

Γk
ij(x, y)y

iyj = γk
ij(x, y)y

iyj .

See [4] for details.
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Dσ̇X :=

(
dXk

dt
+ Γk

ij(σ(t), σ̇(t)) σ̇
iXj

)
∂

∂xk

∣∣∣∣
σ(t)

. (3.2.2)

In fact, since the Chern connection is globally defined, the definition of the

covariant derivative extends over the whole curve. Observe that Dσ′X = ∇σ′

σ′X,

where on the right-hand side one has to take extensions of σ′ and X.

Lemma 3.2.2. The Euler-Lagrange equations are equivalent to

Dσ′σ
′ = 0.

So, a curve that satisfies the equation above is a constant speed geodesic.

If we had use the length functional to obtain the Euler-Lagrange equa-

tions, see 3.1.3, then the geodesics would be described by

Dσ′

(
σ′

F (σ′)

)
.

Definition 3.2.3. A Finsler manifold (M,F ) is said to be forward geodesically

complete if every geodesic σ(t), t ∈ [a, b), can be extended to a geodesic defined

on [a,∞). If the metric is reversible then the manifold is forward geodesically

complete if and only if it is geodesically complete, that is, every geodesic can

be extended to a geodesic defined on whole line.

As a consequence of the Hopf-Rinow theorem, which is also valid in

the Finsler case (cf. [4], p. 168), every compact Finsler manifold is forward

geodesically complete, as well as its universal covering endowed with the

pullback metric Finsler metric. Another consequence of Hopf-Rinow is that

every pair of points in M, or in M̃, can be joined by a minimizing geodesic

σ : [a, b]→M.

We will end these section with a concept that will be important ahead. For

this, consider the universal covering M̃ of the manifold M and let p : M̃ →M

be the covering map. Given a curve c and a point x in the manifold M let x̃ be

contained in the fiber over x and let c̃ be the lift of c through x̃. Consider F̃

the lifted Finsler metric and dF̃ its corresponding distance function. It is easy

to see that p : (M̃, dF̃ )→ (M, dF ) is a local isometry.

Definition 3.2.4. A geodesic σ ⊂M of the Finsler metric F is called forward

globally minimizing if for some lift σ̃ ⊂ M̃ of σ we have that

ℓF̃ (σ̃) = dF̃ (σ̃(s), σ̃(t))

for every s, t ∈ R and s ≤ t.
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It is important to notice that σ̃ in the definition above is also a geodesic

of F̃ and that if F is reversible then we can drop the term forward.

Lemma 3.2.5. A geodesic σ is forward globally minimizing if and only if σ

has no conjugate points along it.

Given a nonzero vector field V and its associated connection ∇V , one can

consider the curvature tensor RV defined by

RV (X, Y )Z = ∇V
X∇V

Y Z −∇V
Y∇V

XZ −∇V
[X,Y ]Z.

If the vector field V is geodesic, that is, every orbit of its flow is a geodesic of

the Finsler metric, then it follows that

RV (Y ) = RV (Y, V )V = −∇V
V∇V

Y V −∇V
[Y,V ]V.

Definition 3.2.6. For a Finsler manifold (M,F ) and a flag (V, π) consisting

of a nonzero tangent vector V ∈ TxM and a plane π ∈ TxM spanned by V and

some other tangent vector U, the flag curvature is defined by

K(V ; π) :=
gV

(
RV (U), U

)

||V ||2V ||U ||2V − gV (V, U)
.

This definition depends neither on the flag or the plane chosen. When M is a

surface, the flag curvature depends only on the point of T̃M taken.

If dimM = 2 then, if u, v ∈ T̃xM, the curvature tensor has the following

simple expression

Rv(u) = K(v) (||v||v u− gv(v, u) v) , (3.2.3)

where K(v) is the flag curvature on the point (x, v) with flagpole v.

Recall that in definition 3.1.6 we introduced the concept of Jacobi fields

along a geodesic. In the geometrical setting they appear as a solution of a

second order linear equation which the first order term depends on the flag

curvature along the geodesic. Both definitions coincide but we will enunciate

again for the sake of completeness.

Definition 3.2.7. On a Finsler manifold (M,F ), a vector field η = η(t) along

a geodesic σ : [a, b]→M which satisfies the equation

Dσ′Dσ′η +Rσ′η = 0 (3.2.4)

is called a Jacobi field (we shal denote as usual η′ = Dσ′η and η′′ = Dσ′Dσ′η).
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Remark 3.2.8. This equation appears when we use the covariant derivative to

calculate the second variation of energy. Using this formalism, the geometrical

character of the second variation become more clear.

Lemma 3.2.9. Let σ : [a, b]→M be a unit speed geodesic and η a Jacobi field

along σ. Then, we have that η satisfy: for a t0 ∈ [a, b] we have that

gσ′(σ
′(t), η(t)) = (t− t0)gσ′(σ

′(t0), η
′(t0)) + gσ′(σ

′(t0), η(t0).

In the case of surfaces, the lemma above together with (3.2.3) implies

that, if σ is a unit speed geodesic and gσ′(σ
′(t0), η(t0))gσ′(σ

′(t0), η
′(t0)) = 0 for

some t0 ∈ [a, b] then the Jacobi equation (3.2.4) has the form

η′′ +K(σ′)η = 0. (3.2.5)

The Finslerian exponential map will play a important role in the sub-

sequent sections, so we will define it. Denote by σ(x,v) the geodesic such that

σ(x,v)(0) = x and σ′(x,v)(0) = v. Given a positive constant λ, by uniqueness we

have that σ(x,λv)(t) = σ(x,v)(λt).

Definition 3.2.10. Define the exponential map expx : U ⊂ TxM →M, where

U is a neighborhood of the origin, by

expx(v) = σ(x,v)(1)

and expx(0) = x. When the Finsler manifold is forward geodesically complete

the map expx is defined at all points of TxM.

The map expx is C
1 and if we denote the origin in TxM by 0x we have

d(expx)0x = Id.

Remark 3.2.11. Actually, the exponential function expx in Finsler geometry

is C∞ outside the origin but, in general, only C1 at it. This phenomenon shows

some rigidy in Finsler geometry. In fact, if the exponential map is C2 over the

zero section of TM then a result from Akbar-Zadeh says that the metric is of

Berwald type (cf. [4], p. 128).

3.3

On Lagrangian graphs

The Legendre condition on the definition of Finsler metrics induces a

diffeomorphism

LF : T̃M → T̃ ∗M
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given by LF (x, v) = (x, gvx(vx, ·)). This map is called the Legendre transform

of associated with the Finsler metric F.

Briefly, lets shift our view to the slit cotangent bundle T̃ ∗M. A symplectic

structure on a manifold N is a closed, non-degenerated 2-form. The T̃ ∗M

admits a natural symplectic strure

ω0 = −dλ0

such that (λ0)(x,p) = p ◦ (dπ̄)(x,p). The form λ0 has a special name, it is called

canonical 1-form. Pull back ω0 by LF to obtain a symplectic form

ωF = L∗Fω0

on T̃M. The definition of ωF implies that (T̃M, ωF ) and (T̃ ∗M,ω0) are

symplectomorphic, and so, symplectic objects, such as Lagrangian spaces, are

carry out by LF .

Lemma 3.3.1. The geodesic flow φt of the Finsler metric F preserves ωF . In

other words,

φ∗tω
F = ωF .

Recall that T̃ ∗M admits a natural symplectic structure, that is, a closed,

non-degenerated 2-form ω0 given by

ω0 = −dλ0

where (λ0)(x,p) = p ◦ (dπ̄)(x,p). The form λ0 is called canonical 1-form.

For θ ∈ T̃M, a n dimensional subspace Lθ of the 2n dimensional space

TθT̃M is called the lagrangian subspace if ωF
θ

∣∣
Lθ
= 0.

Similarly, a C1 smooth submanifold N ⊂ T̃M is said to be Lagrangian

if, for every θ ∈ N, TθN is a lagrangian subspace of TθT̃M.

Definition 3.3.2. A subset Σ ⊂ T̃M is called a Ck graph if π̄|Σ is a

Ck diffeomorfism. Similarly, it is called a continuous, or C0, graph, if the

restriction is an homeomorphism. When Σ is Ck graph then there is a Ck

vector field X such that, considering X : M → T̃M as a section of the slit

tangent bundle, X(M) = Σ. The graph Σ is invariant by the geodesic flow φt,

or simply invariant, if φt(Σ) = Σ for all t.

The proof of the following result can be found in [9], p. 82.

Lemma 3.3.3. Every C0 invariant Lagrangian graph Σ is Lipschitz, that is,

there exists K > 0 such that, for every x, y ∈ Σ, d(x, y) ≤ K d(π̄(x), π̄(y)).
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Since every graph is Lipschitz, it is differentiable almost everywhere. So, it

is possible to study properties, such as being Lagrangian, even for a continuous

graph.

Lemma 3.3.4. Let Σ ⊂ T̃M be a Lagrangian graphs. The following holds:

i) If Σ is invariant then Σ is contained in a level set of the Finsler metric

F, that is, F (Σ) = k, for some k > 0;

ii) If is contained in some level set of F then Σ is invariant and the geodesics

which are lifted to orbits in Σ are globally minimizing.

Proof. Let θ ∈ Σ. Since ωF is invariant by the geodesic flow, we have that

dθF
2 = ωF

θ (XF , ·),

where XF = d
dt
φt(θ)

∣∣
t=0

. But Σ is also invariant, therefore XF (θ) ∈ TθΣ. From

the fact that Σ is Lagrangian,

ωF
θ (XF , v) = 0,

for every v ∈ TθΣ, so dθF
2(v) = 0. In this way, F is constant in a

neighbourhood of θ. Connectedness finishes the argument.

In order to prove the second part, we will work on the universal covering

M̃. If we endow the universal covering with the pull back metric

F̃ = p∗F,

p : M̃ →M the covering map, we have that the symplectic form ωF̃ associated

to F̃ induces a local symplectomorphism between the slit tangent bundle of

M̃ and the slit tangent bundle of M. So, the lifted graph Σ̃ is Lagrangian

with respect to ωF̃ . Now, lets treat Σ̃ as a vector field X̃. Using the legendre

transform we obtain a 1-form µ on M̃ by υ = LF̃ (X̃). Since the lifted graph

Σ̃ is Lagrangian then the graph Υ = υ(M) in the slit cotangent bundle of M̃

is also Lagrangian. It follows from a standard fact of symplectic linear algebra

(cf. [19], p. 99) that the form υ must be closed and therefore exact because M̃

is simply connected. Then there is a function f : M̃ → R such that υ = df

and, using the lifted fundamental tensor g̃, we conclude that X̃ is the gradient

vector field of f.

Assume that our graph Σ is contained in Fk.Given an orbit γ : [a, b]→ M̃

of X̃, let c : [a, b]→ M̃ be a curve such that γ(a) = c(a) and γ(b) = c(b). Since
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F (γ, γ′) = k,

ℓF̃ (c) =

∫ b

a

F (c, c′) dt =
1

k

∫ b

a

F (γ, γ′)F (c, c′) dt.

From the Cauchy-Schwartz theorem for Finsler metrics (cf. [4]),

F (γ, γ′)F (c, c′) ≥ |gγ′(γ′, c′)| = |df(c′)|

and so

ℓF̃ (c) ≥
1

k

∣∣∣∣
∫ b

a

(f ◦ c)′ dt
∣∣∣∣ =

1

k
|f(c(b))− f(c(a))| .

On the other hand, if c = γ, then the Cauchy-Schwartz inequality becomes an

equality and we have that

ℓF̃ (γ) =
1

k
|f(γ(b))− f(γ(a))| = 1

k
|f(c(b))− f(c(a))| .

And then

ℓF̃ (c) ≥ ℓF̃ (γ)

for all curves c joining γ(a) and γ(b). From the previous sections, γ has to be

minimizing geodesic and, since the extreme points were taken by chance, it

realizes the distance between any consecutive point chosen in its orbit. And

so, p ◦ γ is globally minimizing.

As a direct corollary of the lemma 3.3.4 and lemma 3.2.5 we have:

Corollary 3.3.5. Consider the Finsler manifold (M,F ). If a geodesic σ has

conjugate points then its lift to T̃M is not contained in any Lagrangian graph.

This leads us to the following conclusion.

If there is a point p ∈M such that every geodesic passing through p has

conjugate points then there are no Lagrangian graphs.
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