2

A geometric approach

In this section, we will make some further developments of Bangert's idea in [3]. This is new in the literature and shall motivate the analytic construction for Finsler metrics.

Our aim is to prove the following.

Theorem 2.0.2. Let g be a C^{∞} , non flat Riemannian metric in the two torus T^2 . Given $\epsilon > 0$ there is a C^{∞} metric \bar{g} with the properties:

- i) $||g \bar{g}||_1 < \epsilon \text{ and } ||g \bar{g}||_{1,\frac{1}{2}} < C, \text{ where } C > 0 \text{ does not depend on } \bar{g};$
- ii) \bar{g} admits no continuous field of minimizers.

As an immediate corollary we obtain:

Corollary 2.0.3. Let g be any C^{∞} metric in the two torus T^2 . Arbitrarily close to g in the C^1 topology there exists a metric \bar{g} without continuous field of minimizers and with finite $C^{1,\frac{1}{3}}$ norm.

We shall begin by showing the above theorem for a metric g with a neighbourhood where the sectional curvature is positive and constant. To be more specific, there exists $p \in T^2$, r > 0, $\rho > 0$, and $\delta > 0$ with $\rho \gg \delta$ such that the sectional curvature K satisfies

$$K(q) = \frac{1}{r^2},$$

for all q in the geodesic ball $\mathcal{B}_p(\rho + \delta)$.

If $\gamma: (-\rho - \delta, \rho + \delta) \to \mathcal{B}_p(\rho + \delta)$ is a unit speed geodesic, then introduce the polar coordinates $P: [0, \rho + \delta) \times (-\pi, \pi) \to \mathcal{B}_p(\rho + \delta)$ by

$$P(R,\tau) = \exp_p(R\cos\tau\gamma'(0) + R\sin\tau(\gamma'(0))^{\perp}).$$

Define the set

$$S_{(\tau,\theta)} = P([0, \rho + \delta) \times (\tau, \theta)),$$

where $\tau, \theta \in (-\pi, \pi)$ and $\tau < \theta$. Consider the set

$$B_{\theta} = \mathcal{B}_p(\rho + \delta) \setminus P([0, \rho + \delta) \times \{0\}).$$

Using Cartan's theorem ([6], p.174) the set $S_{(-\theta,0)}$ is isometric to $S_{(0,\theta)}$. Let C^0_{θ} be the spherical cone obtained by identifying B_{θ} with this isometry. It is clear that C^0_{θ} is a smooth Riemannian manifold with the metric inherited from B_{θ} . Define $C_{\theta} = \overline{C^0_{\theta}}$. The process is illustrated in the Figure 2.1. The Riemannian distance in $C^0_{\theta} \subset C_{\theta}$ can be extended to make C_{θ} a complete metric space.

Figure 2.1: In the right, the curve connecting x_1 and x_2 is a minimizing geodesic of length 2ρ that not intersect V_p .

Lemma 2.0.4. Suppose that $\theta \in (0, \pi)$. If $x_1, x_2 \in C_\theta$ satisfy

$$d(p, x_1), d(p, x_2) \ge \rho$$

then

$$d(x_1, x_2) < 2\rho.$$

Proof. Let γ_1 and γ_2 be geodesics in C_θ joining x_1 to p and p to x_2 , respectively. At p the angle between them is

$$\angle (-\gamma_1'(\rho), \gamma_2'(0)) = \pi - \theta.$$

If we consider a comparison triangle in \mathbb{R}^2 determined by the line segments $(\sigma_1, \sigma_2, \sigma_2)$ such that σ_1 and σ_2 have length ρ and $\angle (-\sigma_1'(\rho), \sigma_2'(0)) = \pi - \theta$ then the length of σ_3 is

$$\ell(\sigma_3) = 2\rho\cos(\frac{\theta}{2}) < 2\rho.$$

By Toponogov's theorem ([7], p. 35),

$$d(x_1, x_2) \le \ell(\sigma_3).$$

Therefore, $d(x_1, x_2) < 2\rho$.

Denote by \mathcal{A}_{δ} the set of points in $x \in C_{\theta}$ such that $\rho + \delta > d(x, p) \geq \rho$. The previous lemma implies that the minimizing geodesics connecting points in \mathcal{A}_{δ} avoid a neighborhood around the vertex p. In the following, we shall estimated the size of this neighborhood in order to smooth the cone.

2.1 Perturbations by cones

Let a > 0 such that $a \ll \rho$. The cone C_{θ} we defined previously has constant sectional curvature $\frac{1}{r^2}$. Let $S_{\rho+\delta} = C_{\theta} \setminus C_{\theta}^0 \cup \{p\}$.

The singular surface C_{θ} could be obtained as a surface of revolution but we prefer to work with the surface that is the revolution of

$$\alpha(x) = (x, 0, f_a(x)),$$

where

$$f_a(x) = (r^2 - (x+a)^2)^{\frac{1}{2}}$$
 (2.1.1)

and $x \in [0, r_{\rho+\delta}]$, around the z axis. The constant $r_{\rho+\delta} < r$ is given implicitly by $\rho + \delta = \int_0^{r_{\rho+\delta}} ||\alpha'(s)|| ds$. Since ρ is close to zero, both singular manifolds are close in the C^1 topology. So, from now on we will consider C_{θ} to be the spherical cone generated by the revolution of the curve α around z axis.

Let V_p be the geodesic ball around p with radius $\delta_a > 0$. We wish to estimate δ_a in terms of the constant a in the function f such that every minimizing geodesic with end points in \mathcal{A}_{δ} avoid V_p .

First, we will relate δ_a with θ . Consider an Euclidean geodesic triangle $(\sigma_1, \sigma_2, \sigma_3)$ such that $\ell(\sigma_1) = \ell(\sigma_2) = \rho$ and the angle at the vertex $\bar{p} = \sigma_1(\rho) = \sigma_2(0)$ given by $\angle (-\sigma'_1(\rho), \sigma'_2(0)) = \pi - \theta$. If d_0 is the Euclidean distance, then

$$d_0(\bar{p}, \sigma_3) = \rho \sin(\frac{\theta}{2}).$$

By the Toponogov's theorem, the distance from p to any minimizing geodesic of C_{θ} connecting points in \mathcal{A}_{δ} is greater than $d_0(\bar{p}, \sigma_3) = \rho \sin(\frac{\theta}{2})$. Set

$$\delta_a = \rho \sin(\frac{\theta}{2}).$$

If θ is small then

$$\delta_a \simeq \frac{\rho \, \theta}{2}.\tag{2.1.2}$$

Now we will relate δ_a and a. Since $\rho = \ell(\alpha|_{[0,r_{\rho}]})$ then

$$\rho = r \arcsin\left(\frac{r_{\rho} + a}{r}\right) - r \arcsin\left(\frac{a}{r}\right). \tag{2.1.3}$$

Expand arcsin up to order 4 at x = -a to obtain

$$\rho = r \left(\frac{r_{\rho} + a}{r} - \frac{a}{r} + \frac{1}{3!r^{6}} (r_{\rho}^{3} + 3r_{\rho}^{2} a + 3r_{\rho} a) + O(5) \right)$$

$$\geq r_{\rho} + \frac{7a^{3}}{6r^{5}} + O(5) \simeq r_{\rho} + \frac{7a^{3}}{6r^{5}}, \tag{2.1.4}$$

because $a \ll r_{\rho}$. On the other hand, it is possible to calculate the perimeter $2\pi r_{\rho}$ by means of Jacobi fields. Given a unit speed geodesic $\gamma:[0,\rho]\to C_{\theta}$, $\gamma(0)=p$, let $\gamma_s:[0,\rho]\to C_{\theta}$, $s\in[0,2\pi-\theta)$ be a polar parametrization of all radial geodesics of length ρ such that $\gamma_s(0)=0$ and $\gamma_0=\gamma$. If $E_s(t)$ is a perpendicular parallel vector field of norm 1 and the sectional curvature K of C_{θ} is $\frac{1}{r^2}$ then

$$J_s(t) = \frac{1}{\sqrt{K}}\sin(\sqrt{K}t) E_s(t)$$

is a perpendicular Jacobi field. The perimeter is given by

$$2\pi r_{\rho} = \int_{0}^{2\pi - \theta} ||J_{s}(\rho)|| ds$$
$$= (2\pi - \theta) \frac{\sin(\sqrt{K}\rho)}{\sqrt{K}}.$$

We have the following estimative for the perimeter

$$2\pi r_{\rho} \simeq (2\pi - \theta) \,\rho. \tag{2.1.5}$$

With the results obtained from (2.1.4) and (2.1.5) we conclude that

$$2\pi(\rho - \frac{7a^3}{6r^5}) \ge 2\pi r_\rho \simeq (2\pi - \theta) \, \rho.$$

Therefore,

$$\theta \, \rho \ge 2\pi \frac{7a^3}{6r^5}.\tag{2.1.6}$$

Substituting this equation on (2.1.2) we have

$$\delta_a \ge \frac{7\pi a^3}{6r^5}.\tag{2.1.7}$$

Consider the spherical cone $\Phi_a: B_0(r_\rho) \subset \mathbb{R}^2 \to \mathbb{R}^3$, where $\Phi_a(x,y) = (x,y,f_a(\sqrt{x^2+y^2}))$. Define the singular metric g_a^s in $B_0(r_\rho)$ by

$$q_a^s = \Phi_a^* q_{euc}$$

where g_{euc} is the standard Euclidean metric in \mathbb{R}^3 . In the same way, the metric of the sphere of radius r is given by $g^r = \Phi_0^* g_{euc}$.

Lemma 2.1.1. There exists a sequence of C^1 metrics g_a in $B_0(r_\rho)$, such that

- i) g_a has no continuous field of minimizers;
- ii) g_a converges to g^r in the C^1 topology;
- iii) for a > 0 sufficiently small,

$$||g_a - g^r|| < \left(\frac{7\pi K}{6}\right)^{-\frac{1}{3}}.$$

Proof. Let r_a be given implicitly by $\delta_a = \int_0^{r_a} ||\alpha'(s)|| ds$. Since $a \ll \rho$, and, therefore, $a \ll r$, we have that $r_a \simeq \delta_a$.

The neighbourhood V_p of radius δ_a which the minimizing geodesics avoid is open but there exist a geodesic that realizes the infimum of

 $\{d(p,\gamma)|\gamma \text{ is a minimizing geodesic with endpoints in } \mathcal{A}_{\delta}\}.$

Then we can extend V_p to a neighbourhood of radius $\delta_a + \omega$.

Let $r_{\omega} > r_a$ be given implicitly in the same way r_a , but with respect to $\delta_a + \omega$. Consider the bump function β such that $\beta(t) = 1$ for $[0, r_a]$ and $\beta(t) = 0$ for $t \in [r_{\omega}, r_{\rho}]$.

Figure 2.2: On the interval $[-r_a, r_a]$ we used a function of order $x^{\frac{1}{3}}$ to smooth f'_a .

Define $\lambda_a:[0,r_{\rho+\delta}]\to\mathbb{R}$ by

$$\lambda_a(x) = -\beta(x) \left(\frac{7\pi K}{6}\right)^{-\frac{1}{3}} x^{1/3} + (1 - \beta(x)) f_a'(x), \qquad (2.1.8)$$

where $K = \frac{1}{r^2}$ is the sectional curvature of the metric g^r . In Figure 2.2, it is shown the graph of λ_a .

Now, define the function $\Lambda_a:[0,r_{\rho+\delta}]\to\mathbb{R}$ by

$$\Lambda_a(x) = \sqrt{r^2 - (r_\rho + a)^2} - \int_0^{r_\rho} \lambda_a(s) \, ds + \int_0^x \lambda_a(l) \, dl. \tag{2.1.9}$$

The metric

$$g_a = \Psi_a^* g_{euc},$$

where $\Psi_a(x,y) = (x,y,\Lambda(\sqrt{x^2+y^2}))$, is C^1 in $B_0(r_\rho)$ and C^∞ in $B_0(r_\rho) \setminus \{0\}$. When $a \to 0^+$, the metric g_a converges in the C^1 topology to the spherical metric g^r because $f_a \stackrel{C^\infty}{\to} f_0$, $r_a \to 0$ and $\lambda_a \to f'_0$. The convergence of the derivatives happens because $|\lambda_a|$ is bounded above by $|f'_a|$. More precisely, on $[0, r_a]$,

$$\lambda_a(t) \ge \lambda_a(r_a) \simeq \lambda_a(\frac{7\pi a^3}{6r}) = -a\sqrt{K} \ge f_a'(0).$$

The Hölder norm of $\lambda_a - f'_a$ is given by

$$||\lambda_a - f_a'||_{\frac{1}{3}} = \sup_{x \neq y; \ x, y \in [0, r_w]} \frac{|\lambda_a(x) - \lambda_a(y)|}{|x - y|^{\frac{1}{3}}}$$
$$= \left(\frac{7\pi K}{6}\right)^{-\frac{1}{3}},$$

where $K = \frac{1}{r^2}$.

Outside the neighbourhood V_p , the manifold $(B_0(r_{\rho+\delta}), g_a)$ is isometric to the cone C_θ . Therefore, every minimizing geodesic on length greater than 2ρ do not intersect V_p , then these geodesics do not contain p. We conclude that g_a cannot have a continuous field of minimizers.

2.2 Proof of theorem 2.0.2

Let g be any Riemannian C^2 metric in the 2-torus. If g is not flat, by the Gauss-Bonnet theorem there exists p such that the sectional curvature K(p) > 0. Then, given $\epsilon > 0$, there exists a metric g_0 , in an ϵ neighbourhood of g such that the sectional curvature of g_0 satisfies

$$K_0(q) = K(p)$$

for every q in a neighbourhood of p of radius $\rho + \delta$. When g is flat, we can perturb g in order to obtain a non-flat metric and apply the same argument. Anyway, given $\epsilon > 0$, there is, ϵ -close to g in the C^2 topology a metric with positive constant curvature in a neighbourhood around a point.

Now we can use the preceding construction. Let $\mathcal{B}_p(\rho + \delta)$ and let $f_0: B_0(r_{\rho+\delta}) \to \mathcal{B}_p(\rho + \delta)$ be given by (2.1.1). Choose $\theta \in (0,\pi)$ such that

 $2\pi r_{\rho} - \theta \rho \in [2\pi r_{\rho}, 2\pi r_{\rho+\delta}]$. So, θ and a > 0 are related by (2.1.2) and $\theta(a) \to 0$ as $a \to 0$.

The metrics g_a in $B_0(r_\rho)$ obtained in lemma 2.1.1 can be smoothed, by means of a bump function, in a small neighbourhood of radius $r_0 \ll r_a$ without changing the convergence in the $C^{1,\frac{1}{3}}$ topology. Let

$$(\Phi_0)_*g_a$$

be a metric in $\mathcal{B}_p(\rho)$.

Finally, if Δ is a bump function in $\mathcal{B}_p(\rho + \delta)$ such that $\Delta(q) = 1$ in $\mathcal{B}_p(\rho)$ and $\Delta(q) = 0$ in $\mathcal{B}_p(\rho + \delta) \setminus \mathcal{B}_p(\rho_{\theta})$, where ρ_{θ} is the radius of $(B_0(r_{\rho+\delta}, g_a)$. Define G_a by

$$G_a = \Delta (\Phi_0)_* g_a + (1 - \Delta)g.$$

The result follows from lemma 2.1.1.