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Introduction

The theory developed by Kolmogorov, Arnold and Moser to show the

persistence, under Ck perturbations, of integrable Hamiltonians on the torus

and, under Ck perturbations, of integrable exact twist maps of the annulus, for

k large enough, is one of the landmarks of classical mechanics and mathematical

physics. Hermann ([14]) showed that actually C3 perturbations of exact twist

maps preserve the existence of invariant curves with prescribed diophantine

rotation number. Moreover, Hermann shows that the C3 class is sharp: given

any rotation number, there exist C2+β perturbations with β ∈ (0, 1) of exact

twist maps which destroy invariant curves with this rotation number. The

diophantine condition proves to be necessary for the persistence problem since

J. Mather ([18]) showed that Lioville invariant curves of exact twist maps

can be eliminated by C∞ perturbations. The question that arises naturally

from these results is the following: what is the lowest α > 0 such that C2,α

perturbations of an integrable Hamiltonian destroys any Lagrangian invariant

graph?

Many interesting answers to these questions appeared in the literature in

the last 40 years. Takens ([24]) showed that C1 close to any exact twist map

there exists one with no invariant curves in the interior of the annulus. Hermann

([15]) considered the nonexistence of C1 invariant Lagrangian graphs of Tonelli

Hamiltonians, and showed that for any β ∈ (0, 1) and Cd+1−β close to any

Hamiltonian in the d-torus there exists one without C1 Lagrangian invariant

graphs. Notice however that Lagrangian graphs are just Lipschitz in general,

so Hermann’s result does not imply the destruction of Lagrangian invariant

graphs by Cd+1−β perturbations. Regarding specific families of Hamiltonians

like geodesic flows, Bangert ([3]) came out with a simple and beautiful idea

to show that there exists C1 perturbations of a flat metric in T 2 without

Lagrangian invariant graphs. Since C1 perturbations of the metric are just C0

perturbations of the geodesic flow the result might seem unsatisfactory from

the point of view of twist maps. It is true that the geodesic flow of a flat torus

admits local cross sections where the Poincaré return map is a twist map, but

this is not possible globally. Moreover, a perturbation of such Poincaré return
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map as a twist map might not be the Poincaré return map of another geodesic

flow, this is very hard to determine in general. The previous two remarks

show the relevance of Bangert’s result in the context of integrable geodesic

flows. MacKay ([17]) and Ruggiero ([22]) showed that C2 perturbations of

a Riemannian metric create regions in the phase space of the geodesic flow

without Lagrangian invariant graphs. The technique is linked to the creation

of conjugate points, and it works only locally.

So the best idea so far to obtain perturbations of geodesic flows in T n

without Lagrangian invariant graphs is Bangert’s idea, which is based on

smoothing singular metrics having cones and proving by direct calculus of

variations that no geodesic through the vertex of the cone is a minimizer. This

idea was extended and applied by Ruggiero ([21]) to show the C1-density in

the family of mechanical Lagrangians in T 2 of the nonexistence of Lagrangian

invariant graphs in all supercritical energy levels. The goal of this paper to

consider the gap between C1 and C2 perturbations of Finsler metrics. The

main result is the following:

Theorem 1.0.1 (Main theorem). Let F be a C∞ reversible Finsler metric on

the the 2−torus T 2. Given ǫ > 0, there exist β ∈ (0, 1) and a C∞ function

σβ : T 2 → R satisfying the following properties:

i) ||F − Fβ||1 < ǫ, where Fβ = eσβF ;

ii) ||σβ||1,β < ǫ;

iii) The geodesic flow of Fβ admits no invariant continuous graphs.

In the theorem above, the C1,β norm is defined as follows: equip M with

a Riemannian metric g and let G be the Sasaki metric on TM associated with

g. Denote by || · ||G the norm given the Sasaki metric G. For L : TM → R,

let ||L||0 = supθ∈TM |L(θ)| and ||L||1 = max{||L||0, supθ∈T 1M ||∇L(θ)||}, where

∇L is the gradient of L. Finally, define

||L||1,β = max

{

||L||1, sup
θ,η∈TM,θ 6=η

||∇L(θ)−∇L(η)||G

dTM(θ, η)β

}

,

where dTM is the distance in TM given by G.

The main contribution of this work is a study of the second variation of

certain smoothed singular perturbations of metrics which generalize Bangert’s

idea of cone-type singular metrics. We construct explicitly C1,β metrics in T 2

with just one singular point p and small C1,β norm. This singular point plays

the role of the vertex of a cone in Bangert’s construction. Then we look at

the Jacobi equation of the geodesics passing through p. The Jacobi equation
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will have smooth solutions which extend continuously to the singularity and

we show that there exist conjugate points along every singular geodesic. Then

we smoothen the metric and show that the smoothed Jacobi equation still has

conjugate points along each geodesic passing through a point in a neighborhood

of p. This implies in the case of the torus that the smoothed metric has no

Lagrangian invariant graphs since the canonical projection of such a graph in

the torus would give a continuous flow of minimizers.

The proof of Theorem 1.0.1 combines calculus of variations techniques

and Riemann-Finsler geometry, which gives a Riemannian flavor to the ar-

guments. Although we can apply variational theory in the general context of

Lagrangian or Hamiltonian systems, the Riemman-Finsler point of view allows

us to get a better insight of Bangert’s idea of cone-type Riemannian metrics

in the Finsler category. The second variation study of geodesics in a Finsler

metric and its perturbations involves the Jacobi equation, and the application

of Riemann-Finsler theory will simplify in many steps of the argument the

expression relating these Jacobi equations.

We begin the exposition with an extension of an idea of Ruggiero

([21]): we push forward Bangert’s argument for Riemannian surfaces using a

geometrical cone-type perturbation. We show that by gluing spherical cones to

a regular Riemannian surface, we can approach the surface in the C1 topology

by another one without continuous invariant graphs whose C1, 1
3 norm is finite.

This result is the main motivation to study our problem.

The preliminaries about Finsler geometry contain a brief introduction to

Riemann-Finsler geometry and Lagrangian dynamics of Finsler geodesic flows.

This includes an account of some variational and geometrical basic results of

the theory of minimizers. We define the Chern-Rund connection and the Flag

curvature, concepts that are the Finslerian counterparts of the Levi-Civita

connection and the sectional curvature of Riemannian geometry. The chapter

ends with a brief introduction to Lagrangian graphs, in a way that is well

suited for our study.

In Chapter 5 we study perturbations of the Finsler Jacobi equation by

conformal changes of the metric, which are equivalent to the so-called Mañé’s

perturbations or pertubations of a Lagrangian by adding potentials. Since

there is not a conformal theory for the Chern-Rund connection and, hence, we

cannot appeal to what is done by Ruggiero ([23], [21]), we use the Lagrangian

formalism. There are advantages in the use of conformal changes in the metric.

For instance, the fundamental tensor of the conformal metric also changes

by a scalar function so, some geometrical aspects, such as perpendicularity,

are preserved. Another advantage is that it is possible to simplify the Jacobi
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equation by making use of the Fermi-Finsler coordinates. These coordinates

are similar to those of Riemannian geometry but, since they are not easily

found in the literature, we give a description here. We finish the chapter with

one of the main technical results of our study, a simple system of equations for

the conformal Jacobi equation.

Chapter 6 is devoted to construct the conformal perturbation. Here it

becomes clear why our methods do not extend to the C2 case: we create conju-

gate points in every geodesic through a given point in a small neighborhood of

it, while by C2 perturbations we just create conjugate points in long subsets of

geodesics. The conformal perturbations are based on the perturbations consid-

ered in the previous Chapter, and to show the existence of conjugate points we

combine the results in Chapter 5 with the Sturm comparison theorem applied

on the Jacobi equation. The construction of the new Finsler metric grants that

its C1,β norm is small and that it is C1 close to the initial Finsler metric.

In the appendix, we present the Hamiltonian version of the theorem and

its proof. We suppose that the Hamiltonian is 2−homogeneous and reversible.

In this case, the perturbation is made by a radial potential that must preserve

the radial orbits of the Hamiltonian flow. We simplify the Hamiltonian Jacobi

equations using special coordinates found in [11]. No knowledge of Finsler

geometry is needed.
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