
4
C1-Generic setting

In this section we gather some generic properties of diffeomorphisms in

Diff1(M). We say that a property P is C1-generic if there is a residual (Gδ

and dense) subset R of Diff1(M) such that the property P holds for every

diffeomorphisms in R.

This section is divided in 4 subsections. In the first one we introduce the

concept of homoclinic classes and state some generic properties of them. The

second one stablish the relationship between homoclinic classes and transitive

sets. In Subsection 3.3 we give an extension of the partial hyperbolicity to a

neighborhood of a transitive attractor. Finally, in Subsection 3.4 we study the

Lebesgue measure of these sets in the generic context.

4.1
C1-Generic homoclinic classes

Definition 4.1 (Homoclinic class) Let p be a hyperbolic periodic point of

a diffeomorphism f . A homoclinic point x of p is a point whose forward and

backward iterates converge to the orbit Of (p) of p (i.e., x ∈ W s(Of (p)) ∩
W u(Of (p))). If the stable and unstable manifolds of the orbit of p meet

transversely at x, we say that x is a transverse homoclinic point. Otherwise,

we say that x is a homoclinic tangency.

The homoclinic class of p, denoted by H(p, f), is the closure of the set of

all transverse homoclinic points of p, that is,

H(p, f) = W s(Of (p)) � W u(Of (p)).

Remark 4.2 A homoclinic class is a transitive set and the subset of its

periodic points is a dense subset. By the persistence of transverse intersections

one easily deduce that homoclinic class vary lower semicontinuously. We refer

to Chapter 10.4 of (13) for a more detailed discussion about homoclinic classes.

We now summarize the results in (18, 28) about C1-generic diffeomor-

phisms.
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Theorem 4.3 (C1-generic properties) There is a residual subset R0 of

Diff1(M) such that, for every f ∈ R0, the following holds:

1. The diffeomorphism f is Kupka-Smale: every periodic point of f is

hyperbolic and their invariant manifolds met transversely.

2. The set Per(f) of periodic points of f is dense in the non-wandering set

Ω(f) of f . In particular, any isolated transitive compact set has a dense

subset of periodic points.

3. For every p ∈ Per(f), the homoclinic class of p satisfies

H(p, f) = W s(Of (p)) ∩W u(Of (p)).

4. For every p ∈ Per(f), the closure of the stable and unstable manifold

and the homoclinic class of pg depend continuously on g ∈ R0 in a

neighborhood of f .

5. Any transitive set intersecting a homoclinic class is contained in it (i.e.,

homoclinic classes are maximal transitive sets). In particular, any pair

of homoclinic class are either disjoint or coincide.

Items (1) and (2) is the main theorem in (28). Items (3), (5), and the

continuity of H(p, f) in item (4) are, respectively, Lemma 3.5, item 1 , and

item 3 of Theorem A in (18). The continuity of W u(Of (p)) and W s(Of (p)) in

R0 follows from the continuity of W u
ε (Of (p)) and W s

ε (Of (p)) in Diff1(M) for

any fixed ε > 0. This gives a semicontinuous dependence of W u(Of (p)) and

W s(Of (p)) in Diff1(M), and consequently a continuous dependence of these

sets on a residual subset of Diff1(M).

4.2
C1-Generic transitive sets

Next we establish in Propositions 4.4 and 4.9 the connection between

homoclinic classes and transitive sets.

Proposition 4.4 There is a residual subset R1 of Diff1(M) such that, if

f ∈ R1 and Λf (U) is an isolated subset of M , then the following properties

hold:

1. If Λf (U) is a transitive attractor, then there is a neighborhood U of f

such that, for every g ∈ R1 ∩ U , the set Λg(U) is a transitive attractor.

In other words, the set Λf (U) is a generically transitive attractor.
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2. If Λf (U) is non-hyperbolic then it contains a pair of (hyperbolic) saddles

of different indices.

Item (1) is Theorem B of (1). To prove item (2), given any non-

hyperbolic diffeomorphism, one can perform a small perturbation to create

a non-hyperbolic periodic point whose orbit is contained in U (see Theorem

B in (24)). The bifurcation of this point yields two hyperbolic periodic points

with different indices. By construction the orbit of these two points are in U .

The existence of these two hyperbolic points with different indices is an open

property in Diff1(M).

Definition 4.5 Let Λf (U) be an isolated set and p ∈ Λf (U) a hyperbolic

periodic point. The relative homoclinic class of p in U , denoted by HU(p, f),

is the closure of transverse homoclinic points of p whose orbit remains in U ,

that is,

HU(p, f) = closure{z ∈ W s(Of (p)) � W u(Of (p)) | Of (z) ⊂ U}.

Remark 4.6 Note that HU(p, f) is an invariant subset of U . Hence it is

contained in the maximal invariant set Λf (U). In the case that Λf (U) is an

attractor, HU(p, f) = H(p, f), since W u(Of (p)) is an invariant subset of U

(recall Remark 3.7) that contains H(p, f).

Definition 4.7 (heterodimensional cycle) Let p and q be hyperbolic pe-

riodic points with different indices for f ∈ Diff1(M). Suppose that the stable

manifold of each point meets the unstable manifold of the other. Then we say

that there is an heterodimensional cycle associated to the points p and q. This

cycle is far from homoclinic tangencies if for every g in a neighborhood of f

there are no homoclinic tangencies associated to the continuations pg and qg.

That is, for every g close to f , the intersection points of W s(pg) and W u(pg)

are transverse (similarly for the invariant manifolds of qg).

Remark 4.8 Let Λf (U) be a generically transitive set having periodic points p

and q of different indices. In Proposition 1.1 of (8) it is shown how to create, by

an arbitrarily small pertubation g of f , an heterodimensional cycle associated

to the continuations pg and qg. In the case of (s, 1, u)-partially hyperbolic sets,

this cycle is far from homoclinic tangencies. Indeed, in this case one of the

invariant manifolds, say W i(p, f), of a hyperbolic periodic point p in Λf (U)

coincides with the corresponding strong leaf F i(p, f) at p, with i = s or u.

By the continuity of the strong foliations, for ε > 0 sufficiently small, every

intersection point of F i(p, f) with the local invariant manifold W i
ε(p, f) is a
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transverse intersection. This prevents the existence of homoclinic tangencies of

p in the local manifold W i
ε(p, f) and, consequently, globally.

Proposition 4.9 summarizes to our setting some useful results about the

unfolding of heterodimensional cycles in (11, 8).

Proposition 4.9 There is a residual subset R2 of Diff1(M), with R2 ⊂ R1,

consisting of diffeomorphisms f satisfying the following properties:

Let Λf (U) be a transitive isolated set of f that is (s, 1, u)-partially

hyperbolic. Then for every pair of hyperbolic periodic points p, q ∈ Λf (U),

with indices s and s+1 respectively, there is an open set Vp,q ⊂ Diff1(M), with

f ∈ Vp,q, such that for all g ∈ Vp,q:

1. W s(Og(qg), g) ⊂ W s(Og(pg), g) and W u(Og(pg), g) ⊂ W u(Og(qg), g),

2. HU(pg, g) = HU(qg, g), and

3. if Λg(U) is transitive then Λg(U) ⊂ W s(Og(pg), g) ∩W u(Og(pg), g).

Let us indicate how to obtain Proposition 4.9 from (11, 8). By item (2)

of Proposition 4.4 and Remark 3.5, the set Λf (U) is generically transitive and

contains saddles p and q of indices s and s + 1, respectively. Remark 2.1 says

that, for every g close to f , one has pg, qg ∈ Λg(U). By Remark 4.8 we can take

g having an heterodimensional cycle far from homoclinic tangencies associated

to pg and qg.

Now, item (1) is just Proposition 2.6 of (12). This property of the closure

of an invariant manifold containing a bigger dimensional one is obtained by

the unfold of some heterodimensional cycle and is a key argument to construct

some robustly transitive diffeomorphisms (see (9)).

Item (2) follows from Proposition 1.1 of (11) and the comments therein.

Item (3) is a straightforward adaptation of Proposition 2.3 of (12) to the

case of generically transitive sets. We reproduce the proof of item (3) for the

sake of completeness.

ProofProof of item (3): We use the following claim.

Claim 4.10 For every g close to f such that Λg(U) is transitive it holds that

Λg(U) ⊂ W u(Og(pg), g) ∩W s(Og(qg), g).

Proof : Let us prove that Λg(U) ⊂ W u(Og(pg), g). The inclusion Λg(U) ⊂
W s(Og(qg), g) follows identically considering g−1.

Consider x ∈ Λg(U) whose forward orbit is dense. Then there is some

positive iterate gn(x) of x that is sufficiently close to pg so that its strong stable

DBD
PUC-Rio - Certificação Digital Nº 0812262/CC



Chapter 4. C1-Generic setting 27

leaf meets transversally the local unstable manifold of pg, say at a point z (recall

Remark 3.8 and that index(p) = s). Hence, by Remark 3.9, the closure of the

forward orbit of z contains Λg(U). As z ∈ W u(pg, g), the conclusion follows. �
By the claim and item (1) we have

Λg(U) ⊂ W s(Og(qg), g) ∩W u(Og(pg), g) ⊂ W s(Og(pg), g) ∩W u(Og(pg), g),

proving item (3). �

4.3
An extention of the partially hyperbolic splitting.

A partially hyperbolic splitting Es ⊕ Ec ⊕ Eu defined over a compact

invariant set Λ can always be extended to a continuous splitting in a neigh-

borhood of Λ, but its not always possible to make this extension invariant.

Next remark is a consequence of Corollary 1.13 of (15) and the results in

(14) (Chapter 3).

Remark 4.11 There is a residual subset R3 ⊂ Diff1(M) with the following

property. Let f ∈ R3 and Λ = H(p, f) be an isolated partially hyperbolic

homoclinic class. Then we can extend (not uniquely) the splitting on Λ to

a partially hyperbolic splitting on a compact neighborhood U of Λ that is

invariant in the following sense: for every x ∈ U such that f(x) ∈ U , we

have that Dfx(E
i(x)) = Ei(f(x)), for i ∈ {s, c, u}. Moreover, there is a

neighborhood of f in Diff1(M) for which such invariant splitting is defined.

Remark 4.12 In the case that the homoclinic class is also an attractor, the

previous remark holds more generally (that is, for every f ∈ Diff1(M)).

The reason is that attractors that contain a periodic point is always a chain

recurrent class, while for homoclinic classes it holds only generically.

In Lemma 3.6 of (14), they prove the following invariant property about

the tangent space of the stable manifolds of the periodic points inside U .

Lemma 4.13 ((14)) Let p ∈ U be a periodic point of index s (resp. s + 1).

Then, for any x ∈ W s(p) ∩ U , the stable manifold W s(p) is tangent at x to

Es(x) (resp. Es(x)⊕ Ec(x)).

The next proposition is an adaptation of this lemma to ensure the same

property for the strong stable leaf of any point in U .
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Proposition 4.14 Let f ∈ R3 and Λ = H(p, f) be an isolated partially

hyperbolic homoclinic class admitting an extension of the splitting to a compact

neighborhood U . For every x ∈ Λ it holds that F s(x) is tangent to Es at every

point in U .

Proof : Since x ∈ H(p, f), there exist a sequence {xn}n∈N of homoclinic points

of p that accumulates at x. By the continuity of the strong stable foliation in

Λ, for every r > 0, the disk sequence F s
r (xn) accumulates (with the Hausdorff

distance) at the disk F s
r (x). By Lemma 3.6 of (14), the proposition holds for

periodic points, so the disks F s
r (xn) ∩ U are tangent to the bundle Es. Hence,

the accumulation of these disks to F s
r (x) implies that it is also tangent to Es.

By the arbitrary choice of r, we conclude the statement of this proposition. �

Remark 4.15 Observe that proposition 4.14 implies that, if F s(x) accumu-

lates on a hyperbolic periodic point q ∈ Λ of index s, then it must intersect the

local unstable manifold of q.

Proposition 4.16 If F s(x) accumulates at y ∈ Λ, then F s(y) ⊂ F s(x).

Proof :

Consider a sequence {xk}k∈N of points in F s(x) converging to the point

y, and fix r > 0 sufficiently small so that any disk of radius r lies inside U .

Consider the sequence of disks F s
r (xk). By Proposition 4.14, the disks F s

r (xk)

are tangent to Es at every point.

Let D be the limit of a subsequence of {F s
r (xk)}k∈N and observe that

y ∈ D.

Claim 4.17 D = F s
r (y).

ProofProof of the claim: By C1-continuity, the set D inherits the strong

contraction of Es and fn(D) converges exponentially fast to q. From the Hirsh-

Pugh-Shub theory (see (23), Theorem 5.4) the set F s
r (y) characterises the

points near y with this sharp asymptotic behaviour. Hence, D ⊂ F s
r (y). On

the other hand, the fact that D is a topological manifold of dimension s and

radius r inside F s
r (y) implies that we actually have D = F s

r (y). �
By this claim, F s

r (y) ⊂ F s(x). Consider n ∈ N, fn(x), and fn(y).

Note that F s(fn(x)) must accumulate at fn(y), so Claim 4.3 also gives that

F s
r (f

n(y)) ⊂ F s(fn(x)). Taking the n-th pre-image of this inequality, and using

the invariance of the foliation, we obtain that

f−nF s
r (f

n(y)) ⊂ F s(x).
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As this holds for every n ∈ N, Lemma 4.14 implies that F s(y) ⊂ F s(x). �
In what follows, we fix the notation R = R0 ∩R1 ∩R2 ∩R3 and assume

that the isolating block U of an attractor Λf (U) is always endowed with an

extended partially hyperbolic splitting.

4.4
Lebesgue measure and genericity

In what follows we consider the manifold M endowed with a Lebesgue

measure Leb.

Proposition 4.18 Let f be a diffeomorphism in Diff1(M), Λf (U) be an

isolated set of f , and U be a compatible neighborhood of f . Consider the map

ϕ defined by

ϕ : U → R, g ∈ U �→ ϕ(g) = Leb(Λg(U)).

The map ϕ is upper semicontinuous. As a consequence, the continuity points

of the map ϕ form a residual subset of U .

Proof : Fix g ∈ U and consider the nested sequence of open sets

Λ(g, k) =
k�

n=−k

gn(U),

satisfying Λ(g, k) � Λg(U) as k → ∞. Since the Lebesgue measure is regular,

one has that Leb(Λ(g, k)) → Leb(Λg(U)).

given ε > 0, there is N = N(g, ε) ∈ N such that

Leb(Λ(g, k)) < Leb(Λg(U)) + ε, for all k ≥ N .

Note that there is some N0 ∈ N such that the closure of Λ(g,N + N0) is

contained in the open set Λ(g,N). Then, for every h sufficiently close to g, it

holds that Λ(h,N +N0) ⊂ Λ(g,N). Hence,

Leb(Λh(U)) ≤ Leb(Λ(h,N +N0)) ≤ Leb(Λ(g,N)) ≤ Leb(Λg(U)) + ε.

This means that ϕ(h) ≤ ϕ(g) + ε, implying the proposition. �

Scholium 4.19 Isolated sets vary upper semicontinuously.

Proof : In the scope of the proof of Proposition 4.18 we get that every h

sufficiently close to g satisfies that Λ(h,N + N0) ⊂ Λ(g,N). Since Λh(U) ⊂
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Λ(h,N + N0), we get that Λh(U) ⊂ Λ(g,N). Letting ε goes to zero, and

consequently N = N(g, ε) goes to infinity, we obtain Λh(U) ⊂ Λg(U) for every

h sufficiently close to g, which proves the upper semicontinuity of the isolated

sets. �

Corollary 4.20 Under the hypotheses and the notation of Proposition 4.18,

if there is a dense subset W of U such that ϕ(g) = 0 for all g ∈ W, then there

is a residual subset G of U consisting of diffeomorphisms g such that ϕ(g) = 0.

Proof : By the semicontinuity in Proposition 4.18, for each n ∈ N the set Zn

of diffeomorphisms g with ϕ(g) < 1/n is open and dense in U . Now it is enough

to let G =
�

n∈N Zn. �

Remark 4.21 Proposition 4.18 and Corollary 4.20 hold for attractors, as any

attractor is an isolated set.
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