

Sarzamin Khan

Photoluminescent semiconductors nanoparticles as optical probes for the determination of captopril, histamine, aminoglycosides and thyroxine.

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em Quimica of the Departamento de Química do Centro Técnico Científico da PUC-Rio, as partial fulfilment of the requirements for the degree of Doutor em Ciências- Química.

Advisor: Prof. Ricardo Queiroz Aucélio

Rio de Janeiro April, 2013

Sarzamin Khan

Photoluminescent semiconductors nanoparticles as optical probes for the determination of captopril, histamine, aminoglycosides and thyroxine.

Thesis presented to the Programa de Pós-Graduação em Quimica of the Departamento de Química do Centro Técnico Científico da PUC-Rio, as partial fulfilment of the requirements for the degree of Doutor em Ciências- Química.

> Prof. Ricardo Queiroz Aucélio Advisor Departamento de Química - PUC-Rio

Porf. Aderval Serveino Luna UERJ Profa. Flávia Ferreiro de Carvalho Marques UFF Porf. Wagner Felippe Pacheco UFF Prof. Omar Pandoli Departamento de Química - PUC-Rio

Profa. Fatima Ventura Pereira Meirelles Departamento de Química – PUC-Rio

Prof. José Eugenio Leal Coordinator of the centro Técnico Científico da PUC-Rio

Rio de janeiro, April 29th, 2013

Sarzamin Khan

Received his Master's degree in analytical chemistry from the Institute of Chemical Sciences, University of Peshawar, Pakistan (2005). Accomplished the M.phil in Physical Chemistry from National Centre of Excellence in Physical Chemistry, University of Peshawar, Pakistan (2008).

Ficha Catalográfica

Khan, Sarzamin

Photoluminescent semiconductors nanoparticles as optical probes for the determination of captopril, histamine, aminoglycosides and thyroxine / Sarzamin Khan; orientador: Ricardo Queiróz Aucélio. – 2013.

180 f.: il. (color.) ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, 2013.

Inclui bibliografia

 Química – Teses. 2. Semiconductor nanocrystals. 3.
 Quantum dots. 4. Stern-Volmer model. 5. Langmuir model for enhanced photoluminescence. 6. Captopril. 7. Histamine. 8.
 Aminoglycosides. 9. Thyroxine. I. Aucélio, Ricardo Queiróz. II.
 Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. III. Título.

CDD:540

Acknowledgments

I feel great delight and happiness in expressing, heart felt gratitude to my research advisor Prof. Dr. Ricardo Queiroz Aucélio, for his motivating and stirring guidance, devotion of time, valuable suggestions and courteous behaviour in completing this work.

I would like to thank everyone in our research group for your cooperation and kindness.

The time I spent with you will be remembered for ever.

I would like to express my gratitude to TWAS-CNPq for scholarship.

In last but not the least I wish to thanks my father and all family members for their love and endless support, none of this thesis would have even existed without the continual encouragement and support my family gives for everything I do.

I also thank FAPERJ, CNPq and FINEP for funding this research.

Abstract

Khan, Sarzamin; Aucélio, Ricardo Queiroz (Advisor). Photoluminescent semiconductors nanoparticles as optical probes for the determination of captopril, histamine, aminoglycosides and thyroxine. Rio de Janeiro, 2013. 180p. Doctoral thesis- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Recently, semiconductor nanocrystals, also known as quantum dots, have become very attractive for photoluminescence based sensing approaches due to their unique optical properties like intense photoluminescence with narrow profile, maximum wavelength adjustable by the control of particle size and higher photostability in comparison of conventional organic dyes. Different synthesized nanoparticles were evaluated as photoluminescent probes (as aqueous dispersions) for the determination of captopril, histamine, kanamycin and thyroxine (nonphotoluminescent analytes at room-temperature) avoiding the use of complex chemical derivatization procedures and enabling simple and sensitive quantifications. Thioglycolic acid (TGA) and 2-mercapoprionic acid (2MPA) modified CdTe nanoparticles and L-cysteine modified ZnS nanoparticles were synthesized via the colloid aqueous phase route. Their characterization was made using proper microscopic and spectroscopic methods.

The emission intensity of 2MPA-CdTe is greatly enhanced in the presence of captopril. Under optimum conditions, the calibration model (Langmuir binding isotherm) was linear up to 4.8 x 10^{-4} mol L⁻¹ with equilibrium binding constant of 3.2×10^4 L mol⁻¹ and limit of detection (LOD) of 6.2×10^{-6} mol L⁻¹ (1.3 µg mL⁻¹). Applications in captopril fortified human serum and in pharmaceutical formulations were demonstrated. The photoluminescence of TGA-CdTe nanoparticles was quenched by histamine in a concentration dependent manner (Stern-Volmer model). The linear response covered the concentration range up to 5.7×10^{-4} mol L⁻¹ with LOD of 9.6 x 10^{-6} mol L⁻¹ (1.1 µg mL⁻¹). The proposed method was used for the analysis of tuna fish. The presence of aminoglycosides enhanced the photoluminescence of the TGA-CdTe nanoparticles (following a Langmuir binding isotherm model). Kanamycin was used as a model aminoglycoside in order to study its effect on the photoluminescence enhancement of TGA-CdTe quantum dots dispersed in aqueous solution. The linear range extended up to 8.2 x 10^{-7} mol L⁻¹ with LOD of 2.5 x 10^{-8} mol L⁻¹ (14.2 ng mL⁻¹). Binding constants were calculated for several aminoglycosides indicating that there is a relationship between the number of available primary amino groups and the increasing in photoluminescence. This approach was successfully applied for determination of kanamycin fortified milk and in stream water samples after solid phase extraction using a molecular imprinted polymer produced using a kanamycin template. The photoluminescence intensity of cysteine-ZnS in solution containing cetyltrimethyl ammonium bromide (CTAB) was quenched by thyroxine. The overall quenching followed a Stern-Volmer model with linear response coveing an analyte concentration range up to 4.0 x 10^{-6} mol L⁻¹. LOD was 6.2 x 10^{-8} mol L⁻¹ (48.3 ng mL⁻¹). The aqueous dispersion of cysteine-ZnS was used as optical probe for the determination of thyroxine in pharmaceutical formulations and in analyte fortified human saliva.

Keywords

Semiconductor nanocrystals; quantum dots; Stern-Volmer model; Langmuir model for enhanced photoluminescence; captopril; histamine; aminoglycosides; thyroxine

Resumo

Khan, Sarzamin; Aucélio, Ricardo Queiroz. Nanopartículas semicondutores fotoluminescentes como sondas ópticas para determinação de captopril, histamina, aminoglicosídeos e tiroxina. Rio de Janeiro, 2013. 180p. Tese de Doutorado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Recentemente, os nanocristais semicondutores, também conhecidos como pontos quânticos, tornaram-se muito atrativos em abordagens de detecção por fotoluminescência devido as suas propriedades ópticas peculiares, tais como fluorescência intensa e com perfil estreito, comprimento de onda máximo ajustável através do controle do tamanho das partículas e maior fotoestabilidade em comparação com os corantes orgânicos convencionais. As nanopartículas sintetizadas foram avaliadas como sondas fotoluminescentes (na forma de dispersão aquosa) para a determinação de captopril, histamina, canamicina e tiroxina (analitos não fotoluminescentes na temperatura ambiente) evitando o uso de procedimentos complexos de derivatização química e permitindo quantificações de forma simples e com sensibilidade. Nanopartículas de CdTe modificadas com o ácido tioglicólico (TGA) e com o ácido 2-mercaptopropiônico (2MPA) e também nanopartículas de ZnS modificadas com L-cisteína foram sintetizadas pela abordagem em fase aquosa coloidal. Estas foram caracterizadas usando métodos microscópicos e espectroscópicos adequados.

A fotoluminescência da nanopartícula 2MPA-CdTe foi consideravelmente mais intensa quando na presença de captropil. Sob condições ótimas, o modelo de calibração (isoterma de ligação de Langmuir) foi linear até 4,8 x 10⁻⁴ mol L⁻¹ com constante de equilíbrio de ligação de 3,2 x 10⁴ L mol⁻¹ e limite de detecção (LOD) de 6,2 x 10⁻⁶ mol L⁻¹ (1,3 μ g mL⁻¹). Aplicações em soro sanguíneo humano fortificado com captropil e em formulações farmacêuticas foram demonstradas. A fotoluminescência das nanopartículas de TGA-CdTe foi reduzida (supressão) após adição de diferentes concentrações de histamina seguindo o modelo de Stern-Volmer. A resposta linear cobriu uma faixa de concentração até 5,7 x 10⁻⁴ mol L⁻¹, com LOD de 9,6 x 10⁻⁶ mol L⁻¹ (1,1 μ g mL⁻¹). A abordagem proposta foi utilizada para determinação de histamina em carne de atum. Já a presença de aminoglicosídeos aumentou a fluorescência das nanopartículas de TGA-CdTe

(seguindo o modelo da isoterma da adsorção de Langmuir). A kanamicina foi o aminoglicosídeo escolhido para estudar o efeito do aumento da intensidade da fotoluminescência das nanopartículas de TGA-CdTe disperso em solução aquosa. A faixa linear estendeu-se até 8.2×10^{-7} mol L⁻¹ com LOD de 2.5×10^{-8} mol L⁻¹ (14,2 ng mL⁻¹). As constantes de ligação entre diversos aminoglicosídeos e TGA-CdTe foram calculadas e indicou que existe uma relação entre o número de grupos amino primários disponíveis e o aumento da luminescência. Essa abordagem foi aplicada com sucesso para a análise de amostras de leite e água de riacho, ambos fortificados com kanamicina, usando procedimento de extração em fase sólida com um polímero impresso molecularmente (MIP). A intensidade da fotoluminescência da nanopartícula cisteína-ZnS em solução contendo brometo de cetiltrimetilamônio (CTAB) foi reduzida (quenched) após adição de tiroxina. A redução total do sinal (quenching) seguiu o modelo de Stern-Volmer com resposta linear até 4,0 x 10^{-6} mol L⁻¹ de concentração do analito, o LOD foi 6,2 x 10^{-8} mol L⁻¹ (48,3 ng mL⁻¹). A dispersão aquosa da cisteína-ZnS foi usada como sonda óptica para a determinação de tiroxina em formulações farmacêuticas e em saliva humana fortificada com analito.

Palavras-chave

Nanocristais semicondutores; quantum dots; modelo de Stern-Volmer; modelo Langmuir para aumento da fotoluminescência; captopril; histamina; aminoglicosídeos; tiroxina.

Índex

1. Introduction	23
1.1. Photoluminescence	23
1.2. Semiconducting nanocrystals or quantum dots	25
1.2.1. Background	25
1.2.2. Synthesis of quantum dots	28
1.2.2.1. The organometallic synthesis	29
1.2.2.2. Aqueous phase synthesis	30
1.2.3. Growth mechanism of quantum dots	31
1.2.3.1. Nucleation	31
1.2.3.2. Growth	33
1.2.4. Surface Passivation and water solublization	34
1.2.5. Photophysical properties	37
1.3. Photoluminescent Chemical Sensing	38
1.4. Sensing approaches based on photoluminescence of quantum dots	39
1.5. The analytes of interest for sensing through optical probe	43
1.5.1. Captopril	43
1.5.2. Histamine	44
1.5.3. Aminoglycosides	47
1.5.4. Thyroxine	52
1.6. Motivation and aims of the work	54
2. Experimental	56
2.1. Reagents and Materials	56
2.2. Instrumentation	57
2.3. Preparation of molecular imprinted polymer for group-selective	
recognition of aminoglycosides	58
2.3.1. Evaluation of molecular imprinted polymer for solid phase extractio	n of
aminoglycosides	59
2.4. Aqueous synthesis of quantum dots	59

2.4.1. Synthesis of CdTe capped with different stabilizers	59
2.4.2. Synthesis of L-cysteine capped ZnS nanoparticles	60
2.4.3. Procedure of quantum yield determination	60
2.5. Photoluminescence measurements and samples preparation for	
determination of captopril, histamine, kanamycin and thyroxine	61
2.5.1. Photoluminescence measurements for sensing histamine	61
2.5.2. Procedure for extraction of histamine from tuna fish	62
2.5.3. Colorimetric method for determination of histamine	62
2.5.4. Photoluminescence measurements for determination of kanamycin	63
2.5.5. SPE for milk and water samples	63
2.5.6. Photoluminescence measurements for determination of captopril	64
2.5.7. Analysis of captopril in human serum and tablets	64
2.5.8. The Ellman's method for determination of captopril	65
2.5.9. Photoluminescence measurements for determination of thyroxine	65
2.5.10. Sample preparation for analysis of thyroxine in pharmaceutical	
formulation and human saliva	66
3. Characterization of the semiconducter nanoparticle	67
3.1. Characterization of TGA-CdTe and 2MPA-CdTe nanoparticles	67
3.1.1. Optical properties of TGA-CdTe nanoparticles	67
3.1.2. Optical properties of 2MPA-CdTe nanoparticles	70
3.1.3. Nanoparticle size determination	72
3.1.3.1. Size determination by UV-vis spectrophotometry	72
3.1.3.2. Size determination by transmission electron microscopy	73
3.1.3.3. Size determination by transmission dynamic light scattering	76
3.1.4. Photoluminescence quantum yield	78
3.2. Optical properties of cysteine-ZnS nanoparticles	79
3.2.1. Size determination by scanning transmission electron microscopy	81
3.2.2. Size determination by dynamic light scattering	82
4 Determination of captopril by photoluminescence, enhancement of 2MPA	
modified CdTe nanocrystals	83
4.1.The photoluminescence changes of the 2MPA-modified CdTe	
nanoparticles caused by captopril	83

4.2. Optimization of the composition of the 2MPA-CdTe nanoparticles	
dispersion in un-buffered media for photoluminescence quenching	83
4.2.1. Influence of pH	83
4.2.2. Photoluminescence stability	85
4.2.3. Interactions of 2MPA-CdTe quantum dots with captopril under	
optimized condition in non-buffered aqueous media.	87
4.3. Optimization of the composition of the 2MPA CdTe nanoparticle	
dispersion in buffered media for photoluminescence enhancement	90
4.3.1. Effect of pH in phosphate buffer solution	90
4.3.2. Concentration of quantum dots dispersion	92
4.3.3. Photoluminescence stability and reaction time	93
4.4. Modeling the interaction of 2MPA-cdTe quantum dots with captopril	
under optimized condition in aqueous buffere media	94
4.4.1. Mechanism of interaction	97
4.5. Analytical characteristics of enhanced photoluminescence approach	99
4.6. Effect of coexisting substances	103
4.7 Application of 2MPA CdTe quantum dots dispersions in the	
4.7. Application of 2101 A-Cure quantum dots dispersions in the	
determination of captopril	104
determination of captopril	104
4.7. Application of 21vi A-Cure quantum dots dispersions in the determination of captopril5. Determination of histamine in fresh and canned tuna fish by	104
 4.7. Application of 2001 A-Cd requalitatil dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT 	104 e
 4.7. Application of 2001 A-Cd requalitatil dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 	104 e 107
 4.7. Application of 21MLA-Cure quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe 	104 e 107
 4.7. Application of 21MLA-Cure quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 	104 e 107 107
 4.7. Application of 21MLA-Cure quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 	104 e 107 107 107
 4.7. Application of 21MLA-Cure quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 5.2.1. Concentration of quantum dots in the dispersion 	104 e 107 107 107 107
 4.7. Application of 2001 A-Cd re quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 5.2.1. Concentration of quantum dots in the dispersion 5.2.2. pH and amount of Buffer 	104 e 107 107 107 107 108
 4.7. Application of 2MI A-Cure quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 5.2.1. Concentration of quantum dots in the dispersion 5.2.2. pH and amount of Buffer 5.2.3. Stability of photoluminescence intensity and reaction time 	104 e 107 107 107 107 108 109
 4.7. Application of 2MI A-corre quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 5.2.1. Concentration of quantum dots in the dispersion 5.2.2. pH and amount of Buffer 5.2.3. Stability of photoluminescence intensity and reaction time 5.2.4. Effect of the size and surface modifies on the quenching of 	104 e 107 107 107 107 108 109
 4.7. Application of 2MLA-CCUTC quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 5.2.1. Concentration of quantum dots in the dispersion 5.2.2. pH and amount of Buffer 5.2.3. Stability of photoluminescence intensity and reaction time 5.2.4. Effect of the size and surface modifies on the quenching of TGA-modified CdTe nanoparticles 	104 e 107 107 107 107 108 109 110
 4.7. Application of 2MI A-Cd re quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 5.2.1. Concentration of quantum dots in the dispersion 5.2.2. pH and amount of Buffer 5.2.3. Stability of photoluminescence intensity and reaction time 5.2.4. Effect of the size and surface modifies on the quenching of TGA-modified CdTe nanoparticles 5.3. Mechanism of interaction between histamine and TGA-CdTe quantum 	104 e 107 107 107 107 108 109 110
 4.7. Application of 2MI A-Cure quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 5.2.1. Concentration of quantum dots in the dispersion 5.2.2. pH and amount of Buffer 5.2.3. Stability of photoluminescence intensity and reaction time 5.2.4. Effect of the size and surface modifies on the quenching of TGA-modified CdTe nanoparticles 5.3. Mechanism of interaction between histamine and TGA-CdTe quantum dots 	104 e 107 107 107 107 108 109 110 113
 4.7. Application of 2MI A-Cure quantum dots dispersions in the determination of captopril 5. Determination of histamine in fresh and canned tuna fish by photoluminescence sensing using thioglycolic acid (TGA) modified CdT nanoparticles and cationic solid phase extraction 5.1. The photoluminescence quenching of the TGA-modified CdTe nanoparticles by histamine 5.2 Adjustment of the composition of TGA-modified CdTe-nanoparticles 5.2.1. Concentration of quantum dots in the dispersion 5.2.2. pH and amount of Buffer 5.2.3. Stability of photoluminescence intensity and reaction time 5.2.4. Effect of the size and surface modifies on the quenching of TGA-modified CdTe nanoparticles 5.3. Mechanism of interaction between histamine and TGA-CdTe quantum dots 5.4. Analytical characteristics of observed photoluminescence quenching 	104 e 107 107 107 107 108 109 110 113 117

5.6. Determination of histamine in fish sample	122
6. TGA-CdTe quantum dots sensing and molecularly imprinted polymerid	
based solid phase extraction for the determination of kanamycin	124
6.1. Enhancement of the photoluminescence from the TGA-CdTe	
nanoparticles caused by aminoglycosides	124
6.2. Factors affecting the CdTe-TGA quantum dots photoluminescence	
enhancement	124
6.2.1. Influence of the pH on the photoluminescence enhancement	
caused by Kanamycin	124
6.2.2. Effect of temperature and reaction time on the photoluminescence	
enhancement	125
6.2.3. Concentration of quantum dots dispersion	126
6.2.4. Size dependence of TGA-CdTe photoluminescence enchancement	127
6.3. Modeling the photoluminescence sensing of kanamycin with	
TGA-CdTe nanoprobe	128
6.4. Effect of other aminoglycosides and macrolide antibiotics on the	
photoluminescence measured from the TGA-CdTe quantum dots	
dispersion	131
6.5. Mechanism of interaction	133
6.6. Analytical characteristics of photoluminescent probe for the	
determination of kanamycin	134
6.7. Optimization of extraction conditions for kanamycin using a	
molecularly imprinted polymer	135
6.8. Application of MIP solid phase extraction and TGA- CdTe probe	138
7. Development of cysteine-ZnS photoluminescent probe for	
determination of thyroxine in Saliva and pharmaceutical formulations	140
7.1. The photoluminescence quenching of the Cysteine -modified ZnS	
nanoparticles by thyroxine	140
7.2. Optimization of the system for analytical measurements	140
7.2.1. Amount of Cysteine-ZnS nanoparticles dispersion	140
7.2.2. Influencen of pH on the photoluminescence quenching of	
quantum dots	141

7.2.3. Effect of surfactants on the photoluminescence quenching	142
7.2.4. Effect of temperature	143
7.2.5. Stability of photoluminescence intensity and reaction time	144
7.3. Mechanism of interaction	146
7.4. Analytical characteristics of photoluminescence quenching	148
7.5. Selectivity studies	151
7.6. Application of the cysteine-ZnS quantum dots dispersion on the	
determination of thyroxine	153
8. Conclusions	155
9. Future work	158
10. References	160

Figure Contents

Figure 1- Modified Jablonski diagram depicting absorption and emission	
electronic processes.	24
Figure 2-Schematic describing Tunable bandgap of quantum dots	
compared to the fixed band gap of the bulk semiconducters.	27
Figure 3 - Schematic of excitation and emission of quantum dots with the	
typical energy band structure of semiconductor. V_B is the valence	
band, C_B is the conduction band, ΔE is the Stokes shift, E_g is the	
band gap energy, E_{ex} is the excitation energy, $E_{em 0-4}$ are the various	
emission energies.	28
Figure 4 - Free energy variation for the nucleation	32
Figure 5- Model for stages of nucleation and growth of monodisperse	
colloidal particles	34
Figure 6 - (a) Representation of an organic ligand coated quantum dots	
(b) and a core shell quantum dots.	36
Figure 7 - Chemical structure of captopril	43
Figure 8- Chemical structure of histamine	46
Figure 9- Structures of some aminoglycoisides and erythromycin	
antibiotics.	49
Figure 10- chemical structure of a. thyroxine (T_4) b. triiodothronine (T_3)	52
Figure 11- Photoluminescence emission spectra of TGA-capped CdTe	
nanoparticles.	68
Figure 12- Photoluminescence excitation spectra of TGA-CdTe	
nanoparticles.	69
Figure 13- TGA-CdTe quantum dots electronic absorption spectra with 1 st	
excitonic at 490, 509 and 539.	69
Figure 14- 2MPA-CdTe quantum dots electronic absorption spectra.	70
Figure 15- 2MPA CdTe quantum dots photoluminescence spectra upon	
excitation at 350 nm.	71
Figure 16- 2MPA-CdTe quantum dots concentrations dependent	
photoluminescence : (a) 7 x 10^{-8} , (b) 1.4 x 10^{-7} , (c) 2.1 x 10^{-7} , (d)	
2.8×10^{7} , (e) 3.5×10^{-7} , (f) $4.2 \times 10^{-7} \text{ mol } \text{L}^{-1}$.	71

Figure 17- TEM images of TGA-CdTe nanoparticles synthesized with	
reaction times of 10 (a), 30 (b) and 60 *c) min. The magnification	
of 20 nm was used for all the measurements.	74
Figure 18- TEM images of 2MPA-CdTe nanoparticles with magnification	
of 20 nm (a) and 50 nm (b).	75
Figure 19- DLS histogram for the TGA-CdTe nanoparticles synthesized	
with 30 min reflux time.	77
Figure 20 - DLS histogram for the 2MPA-CdTe quantum dots.	77
Figure 21- Integrated photoluminescence intensity in function of the	
absorbance of the aqueous TGA-CdTe quantum dots (\blacksquare). Data for	
the standard rhodamine $B(\bullet)$	78
Figure 22 Integrated photoluminescence intensity in function of the	
absorbance of the aqueous 2MPA-CdTe quantum dots (\blacksquare). Data for	
the standard rhodamine $B(\bullet)$	79
Figure 23- Cysteine-ZnS quantum dots electronic absorption spectra.	80
Figure 24- Photoluminescence excitation and emission spectra of	
cysteine-ZnS quantum dots.	80
Figure 25- Photoluminescence emission spectra of the cysteine-ZnS	
nanoparticles synthesized using different reflux times: (a) 10, (b)	
20, (c) 40, (d) 60, (e) 80, (f)100, (g) 130, (h) 120 min	81
Figure 26- STEM image of cysteine-ZnS nanoparticles.	82
Figure 27- DLS histogram for the cysteine-ZnS nanoparticles.	82
Figure 28- Photoluminescence responses of aqueous quantum dots	
dispersions solution (2.8 x 10^{-8} mol L-1) at different pH values	
adjusted by the addition of either 0.01 HCl or NaOH mol L^{-1} .	84
Figure 29- Effect of pH value (adjusted either by 0.01 mol L ⁻¹ of HCL or	
NaOH) the photoluminescence of 2MPA-CdTe quantum dots	
dispersion (2.8 x $10^{\text{-8}}$ mol $\mbox{ per 1 L}$) measured as F_0/F (where F_0	
and F are respectively the photoluminescence of the quantum dots	
dispersion before and after the addition of 1.5 x 10^{-5} mol L ⁻¹	
captopril).	85
Figure 30- Stability studies of the photoluminescence emission intensity	
of the quantum dispersion (control) as function of time.	86

Figure 31- Stability of the photoluminescence of the 2MPA-CdTe

non-linear model in function of the concentration of captopril
Figure 33- 2MPA-CdTe quantum dots photoluminescence quenching
linear model in function of the concentration of captopril.
Figure 34- Photoluminescence emission spectra ($\lambda_{ex} = 350$ nm) of the
quantum dots in absence and in the presence of increasing
quantities of captopril: (a) 0, (b) 8 x 10^{-6} , (c) 1 x 10^{-5} , (d) 2 x 10^{-5} ,
(e) $3 \ge 10^{-5}$, (f) $4 \ge 10^{-5}$, (g) $5 \ge 10^{-5}$, (h) $7 \ge 10^{-5} \mod L^{-1}$
Figure 35- Effect of pH value (adjusted in phosphate buffer 0.01 molL ⁻¹)
on the enhancement of the photoluminescence of 2MPA-CdTe
quantum dots dispersion $(3 \times 10^{-8} \text{ mol} \text{ in } 1 \text{ L of aqueous solution})$
measured as $\Delta F = F - F_0$ (where F_0 and F are respectively the
photoluminescence of the quantum dots dispersion before and after
the addition of 1.4×10^{-4} mol L ⁻¹ captopril).
Figure 36- Effect of different ionic strength of phosphate buffer solution
Figure 37- Effect of concentration of the synthesized quantum dots on
the photoluminescence intensity of the aqueous quantum dots
dispersion measured as $\Delta F = F - F_0$ (where F_0 and F are
respectively the photoluminescence of the quantum dots dispersion
before and after the addition of 1.9×10^{-4} mol L ⁻¹ of captopril
Figure 38- Photoluminescence stability of 2MPA quantum dots after
mixing with 1.4×10^{-4} mol L ⁻¹ of captopril.
Figure 39- Photoluminescence emission spectra of CdTe quantum dots
in the presence of different concentrations of captopril (mol L-1):
pH; 9 (a) 0, (b) 9.2×10^{-6} , (c) 2×10^{-5} , (d) 4.6×10^{-5} , (e)
9.2 x10-5 , (f) $138x10^{-4}$, (g) $1.83 x10^{-4}$, (h) $2.71 x10^{-4}$, (i) 3.15
$x10^{-4}$ (j) 3.59 $x10^{-4}$, (k) 4.02 $x10^{-4}$, (l) 4.44 $x10^{-4}$, (m) 4.87 $x10^{-4}$
Figure 40- Non-linear plot of photoluminescence enhancement of
2MPA-CdTe quantum dots in function of the increased

quantum dots dispersion after mixing captopril (2 x 10^{-5} mol L⁻¹).

Figure 32- 2MPA-CdTe quantum dots photoluminescence quenching

Figure 41- Electronic absorption spectra of the 2MPA-CdTe quantum dots in the presence of increasing concentrations of captopril: (a) 0, (b) $4.6 \ge 10^{-5}$, (c) $1.4 \ge 10^{-4}$, (d) $2.3 \ge 10^{-4}$, (e) $3.6 \ge 10^{-4}$, (f)

concentration of captopril

89

91

91

91

93

95

95

89

88

87

$4.9 \ge 10^{-4} \mod L^{-1}$.	98
Figure 42- Raman spectra of 2MPA-CdTe quantum dots disperion	
before (dashed line) and the addition of captopril (solid line).	99
Figure 43- Langmuir binding isotherm for captopril used to linearize the	
photoluminescence response in function of the increased	
concentration of captopril.	100
Figure 44- Effect of the amount of the synthesized quantum dots on the	
photoluminescence intensity measured from the TGA-CdTe	
nanocrystlas aqueous dispersion. Signal variation expressed as F_0/F	
(where F_0 and F are respectively the photoluminescence of the	
quantum dots dispersion before and after the addition of 1.7×10^{-4}	
mol L^{-1} of histamine).	108
Figura 45- Effect of pH value on the photoluminescence measured from	
the TGA-CdTe quantum dots dispersion: (\blacksquare) The Quantum	
dispersion without addition of histamine. (\bullet) in the presence of 2	
x 10^{-4} mol L ⁻¹ of histamine.	109
Figure 46-Curves for the binding of histamine with aqueous dispersion	
of TGA- Capped CdTe quantum dots with sizes of 2.1 nm (\blacksquare) 2.6	
nm (\blacktriangle) 3.2 nm (\bullet), nanoparticles were excited at 350 nm and	
emission measured at 515, 545 and 580 nm.	112
Figure 47- Photoluminescence measured from quantum dots dispersions	
of: (a) TGA-CdTe, (b) TGA-CdTe in the presence 2.3 $\times 10^{-4}$ mol L ⁻	
¹ of histamine, (c) Cysteamine-CdTe and (d) Cystamine-CdTe in the	
presence of 2.3×10^{-4} mol L ⁻¹ .	113
Figure 48- Electronic absorption spectra: A. histamine $(1 \times 10^{-4} \text{ mol } \text{L}^{-1}) \text{ B}$.	
CdTe quantum dots in the presence of histamine present in the	
concentration range from 1 x 10^{-5} and 1 x 10^{-3} mol L ⁻¹ .	114
Figure 49- Stern–Volmer curves for the aqueous dispersions of TGA-	
CdTe quantum dots at 298 K (\blacktriangle), 303 K (\bullet) and 308 K (\blacksquare)	115
Figure 50- A typical photoluminescence decay profile of CdTe quantum	
dots (2.1 nm average size) in the absence and in the presence of	
histamine at 6.6 $\times 10^{-5}$ and 3.9 $\times 10^{-4}$ mol L ⁻¹ concentration levels.	115
Figure 51- Photoluminescence emission spectra of CdTe quantum dots	
in the presence of different concentrations of captopril (mol L^{-1}):	

pH; 9 (a) 0, (b) 9.2×10^{-6} , (c) 2×10^{-5} , (d) 4.6×10^{-5} , (e) 9.2×10^{-54} , (f), 1.38×10^{-4} , (g) 1.83×10^{-4} , (h) 2.71×10^{-4} , (i) 3.15×10^{-4} (j) 3.59×10^{-4} , (k) 4.02×10^{-4} , (l) 4.44×10^{-4} , (m) 4.87 $x10^{-4}$

Figure 52- Photoluminescence spectra from TGA-CdTe quantum dots dispersions in the presence of different concentrations of histamine (mol L⁻¹): (a) 0, (b) 3.32×10^{-5} , (c) 6.62×10^{-5} , (d) 1.32×10^{-5} 10^{-4} , (e) 1.96×10^{-4} , (f) 2.6×10^{-4} (g) 3.23×10^{-4} , (h) 3.85×10^{-4} (i) 4.46×10^{-4} , (j) 5.06×10^{-4} , (k) $5.66 \times 10^{-4} \text{ mol } \text{L}^{-1}$. 118

Figure 53- Stern-Volmer-type calibration curve for the determination of histamine.

- Figure 54- Effect of pH value of the aqueous dispersion on the enhancement of the photoluminescence of TGA-CdTe quantum dots measured as F/F_0 , where F_0 and F are respectively the photoluminescence of the quantum dots dispersion after and before the addition of kanamycin $(1.3 \times 10^{-7} \text{ mol } \text{L}^{-1} \text{ final concentration}).$
- Figure 55-Effect of the temperature on the photoluminescence enhancement of the aqueous quantum dots dispersion after addition of kanamycin $(1.2 \times 10^{-7} \text{ mol } \text{L}^{-1} \text{ final concentration})$. 126
- Figure 56- Effect of the amount of the synthesized quantum dots on the photoluminescence of the aqueous quantum dots dispersion. Dispersions containing kanamycin at a fixed concentration of 6.7 x $10^{-8} \text{ mol } \text{L}^{-1}$.
- Figure 57 Photoluminescence enhancement curves induced by kanamycin in TGA-CdTe quantum dots aqueous dispersions: Quantum dots average sizes: 2.2 nm (\blacksquare) 2.8 nm (\blacktriangle) and 3.5 nm (•). Signal evaluated as F/F_0 , where F_0 and F are respectively the photoluminescence of the quantum dots dispersion before and after the addition of kanamycin.
- Figure 58- Photoluminescence spectra of TGA-CdTe quantum dots in the presence of different concentrations of kanamycin: (a) 0, (b) 1.66, (c) 3.33, (d) 5 (e) 6.66, (f) 8.33, (g) 11.66, (h) 15, (i) 31.66, (j) 48.33, (k) 65, (l) 81.6, (m) 98.33, (n) 131.6, (o) 165 x 10^{-8} mol L^{-1}

127

1267

119

125

130

128

Figure 59- Photoluminescence enhancement of TGA-CdTe quantum dots	
(expressed as F/F _o in function of the concentration of kanamycin.	130
Figure 60- Effect of erythromycin to (in final solution 1 x 10^{-5} mol L ⁻¹)	
on photoluminescence of TGA-CdTe nanoparticles dispersion.	132
Figure 61- Analytical curve for kanamycin using a Langmuir isotherm	
model.	134
Figure 62- Recoveries of kanamycin obtained in solid phase extraction	
using MIP and NIP after washing with solvent systems containing	
different methanol/water proportions. Analyte elution using	
acidified aqueous solution (pH about 3.5).	136
Figure 63- Recoveries of kanamycin, amikacin, tobramycin, gentamycin,	
neomycin, streptomycin obtained by solid phase extraxtion using	
MIP and NIP: Aliquots of 200 μ L of 1 x 10 ⁻⁵ mol L ⁻¹	
aminoglycosides standard solutions.	137
Figure 64- Effect of the amount of the synthesized nanoparticles on the	
photoluminescence quenching of Cysteine ZnS nanopartilces	
aqueous dispersion . Signal variation expressed as $F_0\!/\ F$ (where F_0	
and F are respectively the photoluminescence of the quantum dots	
dispersion before and after the addition of 9.5 $\times 10^{-7}$ mol L ⁻¹ of	
thyroxine).	141
Figure 65- Influence of pH value of the photoluminescence quenching	
measured as ratio of F_0/F (F_0 is quantum dispersion in the	
absence of thyroxine and F in the presence of thyroxine) versus	
pH of quantum dots dispersion measured at fixed concentration	
3.8 $\times 10^{-7}$ mol L ⁻¹ of thyroxine.	142
Figure 66 - Effect of CTAB on the photoluminescence quenching of	
quantum dots at fixed concentration of thyroxine (final	
concentration in aqueous dispersion, $1.2 \times 10^{-6} \text{ mol } \text{L}^{-1}$).	143
Figure 67- Photoluminescence measured from cysteine-ZnS dispersion	
$(4.5 \text{ x}10^{-4} \text{ mol of nanoparticles in } 1 \text{ L of aqueous solution})$ at	
different tempratures.	144
Figure 68 - Stability study of the photoluminescence intensity of the	
cystein -ZnS nanoparticles dispersion as function of time.	145
Figure 69- Stability of the photoluminescence of the cysteine-ZnS	

nanoparticles probe quantum dots after mixing thyroxine (final	
concentration in solution 4.0 x 10-7 mol L^{-1}).	145
Figure 70 - UV-Visible absorption spectra of thyroxine ; (a) 3.92×10^{-7}	
(b) $9.8 \ge 10^{-7}$, (c) $3.8 \ge 10^{-6}$, (d) $6 \ge 10^{-5} \mod L^{-1}$.	147
Figure 71 - UV-Visible absorption spectra of cysteine capped ZnS	
nanoparticles in the prescence of thyroxine; (a) 0 , (b) 3.92×10^{-7}	
(c) 4 x 10-6 mol L-1	147
Figure 72 -The Stern–Volmer curves for the quenching of cysteine -	
ZnS in the presence of thyroxine at temperatures of $298 \text{ K} (\bullet)$	
and 308 K (▲)	148
Figure 73 - Photoluminescence emission spectra of L-cysteine-ZnS	
nanoparticles in the presence of different concentrations of	
thyroxine: (a) 0, (b) 1.12×10^{-7} , (c) 1.98×10^{-7} , (d) 2.95×10^{-7} ,	
(e) 3.92×10^{-7} , (f) 4.91×10^{-7} , (g) 9.8×10^{-7} , (h) 1.95×10^{-6} , (i)	
2.91 $x10^{-6}$, (j) 3.8 $x10^{-6}$, (k) 4.0 $x10^{-6}$ mol L ⁻¹ .	150
Figure 74 - Stern-Volmer-type calibration curve for the determination of	
thyroxine using cysteine-ZnS nanoparticles as probe.	150
Figure 75- Effect on photoluminescence of cysteine-ZnS probe	
dispersion A. probe with mixture of amino acids B. probe with	
mixture of common pharamaceutical excipients C. Probe with	
thyroxine and mixture of amino acids D. probe with mixture of	
common pharamaceutical excipients and thyroxine	153

Table contents

Table 1- Recently developed quantum dots based photoluminescent	
sensing applications	41
Table 2- Excitation and emission wavelengths according to each analyte	57
Table 3- Average sizes of the TGA-CdTe and 2MPA-CdTe nanoparticles	
caculated from the 1 st exciton peak of the absorption	73
Table 4- Estimated average particle sizes of TGA and 2MPA modified	
CdTe nanoparticles from TEM	75
Table 5- Optimized experimental conditions for the captopril	
determination using the 2MPA-CdTe probe	94
Table 6 - Effect of co-existing substances on the photoluminescence of	
2-MPA-CdTe quantum dots aqueous dispersion .	104
Table 7- Results of analysis of pharmaceutical tablets containing captopril	
using the method based on the proposed photoluminescent probe	
(n=3).	105
Table 8- Recovery results of captopril in human serum with proposed	
method and reference method $(n = 5)$	106
Table 9- Variation in quenching of TGA- CdTe probe with particle size.	111
Table 10- Optimized experimental conditions for the determination of	
histamine using TGA-CdTe quantum dots aqueous dispersion	119
Table 11- Effect of potential interfering substances on the	
photoluminescence emission of CdTe quantum dots.	121
Table 12- Determination of histamine in fresh and canned tuna fish spiked	
with different amount of histamine $(n = 3)$.	122
Table 13- Optimized experimental conditions for the kanamycin	
determination using the TGA-CdTe probe.	129
Table 14- Effect of different amioglycosides and erythromycin on	
photoluminescence enhancement of TGA-CdTe optical probe.	132
Table 15- Recoveries of kanamycin obtained in solid phase	
extraction using MIP and NIP after washing with solvent systems	

containing different methanol/water proportions

136

- Table 16- Application of photoluminescent optical probe for
determination of kanamycin in milk and water samples (n = 3)139
- Table 17- Optimized experimental conditions for the thyroxine determination using the cysteine –ZnS optical probe
- Table 18- Effect of some potential interfering substances on the
photoluminescence of the cysteine-ZnS quantum dots aqueous
dispersion152

149

Table 19- Applications of the cysteine- ZnS probe method for
determination of thyroxine in pharmaceutical formulation and
saliva.154