

Tathiana Caram Souza de Paula Figueiredo

Estudo experimental do reforço à torção de vigas de concreto armado com compósitos de fibras de carbono

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio.

Orientadores: Prof. Marta de Souza Lima Velasco Prof. Emil de Souza Sánchez Filho

> Rio de Janeiro Janeiro de 2014

Tathiana Caram Souza de Paula Figueiredo

Estudo experimental do reforço à torção de vigas de concreto armado com compósitos de fibras de carbono

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marta de Souza Lima Velasco Orientadora Departamento de Engenharia Civil – PUC-Rio

> Prof. Emil de Souza Sánchez Filho Co-orientador Universidade Federal Fluminense

Prof. Júlio Jerônimo Holtz Silva Filho Departamento de Engenharia Civil – PUC-Rio

Prof. Osvaldo Luiz de Carvalho Souza Universidade Federal Rural do Rio de Janeiro

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 28 de janeiro de 2014.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e dos orientadores.

Tathiana Caram Souza de Paula Figueiredo

Graduou-se em Engenharia Civil na PUC-Rio (Pontifícia Universidade Católica do Rio de Janeiro) em 2010. Na PUC-Rio, desenvolveu projeto de Iniciação Científica na área de estabilização de taludes naturais e estagiou no Laboratório de Geotecnia e Meio Ambiente do Departamento de Engenharia Civil. Em 2005 concluiu o curso técnico de Edificações pelo CEFET-RJ (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca).

Ficha Catalográfica

Figueiredo, Tathiana Caram Souza de Paula

Estudo experimental do reforço à torção de vigas de concreto com compósito de fibras de carbono / Tathiana Caram Souza de Paula Figueiredo ; orientadores: Marta de Souza Lima Velasco, Emil de Soura Sánchez Filho – 2014.

165 f. il.; 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2014.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Reforço estrutural. 3. Estruturas. 4. CFC. 5. Compósito de fibras de carbono. 6. Viga. 7. Torção. I. Velasco, Marta de Souza Lima. II. Sánchez Filho, Emil de Souza. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

Ao meu marido Jefferson pelo amor, compreensão e atenção de sempre, os quais foram indispensáveis na execução deste trabalho.

À minha mãe Cristina, pelo esmero e dedicação durante toda minha vida, principalmente durante minha formação.

Ao meu pai pelo apoio e carinho de sempre, mas principalmente pelos ensinamentos que me proporcionou.

Aos meus familiares e amigos, pela amizade e compreensão. Sobretudo à minha irmã Sylvia, pelo incentivo constante e eficaz.

À professora Marta pelo apoio durante momentos difíceis e incentivo durante toda execução deste trabalho.

Ao professor Emil pelos conhecimentos, paciência e dedicação indispensáveis para o desenvolvimento da pesquisa.

Ao professor Julio e aos funcionários da PUC-Rio: Euclides, Zé, Rogério, Evandro, Haroldo, Lenilson, Rita, Rafael, dentre outros, os quais contribuíram ativamente para concretização dessa pesquisa, seja com força física, ensinamentos ou palavras amigas.

A todos os amigos da pós, em especial ao Alexandre, Ricardo, Nicolas e Fabio, pela amizade, auxílio e inesquecíveis risadas.

Ao Engenheiro João Marcos Coutinho e à MC-Bauchemie pelo fornecimento de parte do sistema de reforço necessário para execução dos ensaios realizados.

À PUC-Rio, ao CNPq e à FAPERJ pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Figueiredo, Tathiana Caram Souza de Paula; Velasco, Marta de Souza Lima; Sánchez Filho, Emil de Souza. **Estudo Experimental do Reforço à Torção de Vigas de Concreto Armado com Compósitos de Fibras de Carbono.** Rio de Janeiro, 2014. 165p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho de natureza experimental tem como objetivo estudar o comportamento de vigas de concreto submetidas à torção e reforçadas externamente com compósitos de fibras de carbono (CFC). Treze vigas concreto com 2,0 m de comprimento e seção transversal de 30 cm x 60 cm foram testadas no Laboratório de Estruturas e Materiais do Departamento de Engenharia Civil (LEM/DEC) da Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio). As vigas foram divididas em quatro séries, sendo uma de referência, composta por quatro vigas sem reforço externo, e outras três séries constituídas por três vigas que foram reforçadas externamente com taxas crescentes de estribos de CFC. Com o propósito de estudar a contribuição do concreto e do reforço de CFC na resistência à torção de vigas, a armadura interna só foi colocada na região de aplicação de cargas e nos apoios para evitar a ruptura local e possibilitar o estudo da região central sem a parcela resistente devida à armadura interna de aço. Os resultados dos ensaios mostraram que as vigas reforçadas apresentaram aumento de carga de fissuração entre 16% e 56% e um acréscimo de resistência à ruptura entre 19% e 47% quando comparadas às vigas de referência. A rigidez das vigas na ruptura aumentou proporcionalmente ao crescimento da taxa de reforço como observado em outros ensaios encontrados na literatura.

Palavras-chave

Torção; concreto; reforço estrutural; compósito de fibras de carbono.

Abstract

Figueiredo, Tathiana Caram Souza de Paula; Velasco, Marta de Souza Lima (Advisor); Sánchez Filho, Emil de Souza (Co-Advisor). **Experimental study of torsional strengthening of concrete beams with carbon fibers composites**. Rio de Janeiro, 2014. 165p. MSc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This research is an experimental study of torsion strengthening of concrete beams with carbon fibers composites. Thirteen concrete beams with 2.0 long and 30 x 60 cm cross section were tested in the Structures and Materials Laboratory of the Civil Engineering Department (LEM/DEC) of Pontifical Catholic University of Rio de Janeiro (PUC-Rio). The beams were divided in four series, the first one was called the reference series and consisted of four beams without external strengthening and each of the other three series was composed of three beams strengthened with increasing rates of external carbon fibers composites stirrups. In oder to allow the study of the central region without the contribution of the steel reinforcement, the internal steel reinforcement was placed only at points of loads application and supports to prevent the local rupture. The tests results showed that the strengthened beams had an increase of the cracking load between 16% and 56%, and an increase of the rupture load between 19% and 47% when compared to the reference beams. The ultimate resistance of the beams increased proportionally to the rate of external carbon fibers composites strengthening, as was observed by other researchers.

Keywords

Torsion; concrete; structural strengthening; carbon fiber composites.

Sumário

1 INTRODUÇÃO 1.1. Generalidades	24 24
1.2. Objetivos	25
1.3 Organização do trabalho	25
2 TORÇÃO EM VIGAS	27
2.1. Notas Iniciais	27
2.2. Torção em Elementos de Seção Circular	27
2.3. Torção em Elementos de Concreto de Seção Retangular	32
2.3.1. Análise Elástica	33
2.3.2. Análise Plástica	38
2.3.3. Flexão-Esconsa	39
2.4. Torção em Vigas de Concreto Armado de Seção Retangular	42
2.4.1. Comportamento de Vigas sem Armaduras	42
2.4.2. Comportamento de Vigas com Armaduras	43
3 VIGAS DE CONCRETO REFORÇADAS COM CFC	45
3.1. Introdução	45
3.2. Compósitos de Fibra de Carbono	46
3.3. Modos de Ruptura	50
3.3.1. Ruptura por Tração do Concreto	50
3.3.2. Ruptura por Esmagamento do Concreto	51
3.3.3. Ruptura dos Cantos	51
3.3.4. Ruptura Devido ao Escoamento das Armaduras	52
3.3.5. Ruptura Devido a Problemas de Ancoragem	52
3.3.6. Ruptura do Reforço	53
3.4. Revisão Bibliográfica	53
3.4.1. AMELI et al. (2007)	54
3.4.2. CHIU et al. (2007)	57
3.4.3. HII E AL-MAHAIDI (2007)	61
3.4.4. HOLTZ (2007)	63
3.4.5. BERNARDO E LOPEZ (2008)	67
3.4.6. CHALIORIS (2008)	68
3.4.7. DEIFALLA E GHOBARAH (2010)	71
3.5. Modelo de Hsu Modificado	72

4 PROGRAMA EXPERIMENTAL	74
4.1. NOTAS INICIAIS	74
4.2. MATERIAIS	74
4.2.1. CONCRETO	74
4.2.2. CFC	81
4.3. DESCRIÇÃO DO ENSAIO	87
4.3.1. ESQUEMA DE APLICAÇÃO DA CARGA	87
4.3.2. GEOMETRIA E ARMADURA DAS VIGAS	89
4.3.3. REFORÇO COM CFC	90
4.3.4. INSTRUMENTAÇÃO	96
~ ~	
5 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	102
5.1. Introdução	102
5.2. Deformações Específicas	102
5.2.1. Deformações Específicas nas Vigas de Referência	102 105
5.2.2. Deformações Específicas nas Vigas Reforçadas5.3. Comportamento das Curvas <i>T</i> x <i>θ</i>	118
5.4. Análise da Rigidez das Vigas	146
J.4. Arialise da Mgidez das Vigas	140
6 CONCLUSÕES	150
6.1. Sugestões para trabalhos futuros	151
Referências Bibliográficas	153
Anexo – Fotografias	158

Lista de Figuras

Figura 2.1 – Deformação de um eixo circular sólido submetido à torção
pura28
Figura 2.2 – Torção de um eixo circular engastado em uma extremidade.
28
Figura 2.3 – Elemento longitudinal de uma barra de seção circular
submetida à torção29
Figura 2.4 – Distribuição de tensão cisalhante em uma seção circular30
Figura 2.5 – Empenamento das seções retangulares33
Figura 2.6 – Distribuição de tensões cisalhantes devido à torção numa
seção retangular35
Figura 2.7 – Distribuição de tensões de St. Venant ao longo das faces de
uma seção retangular (escala horizontal expandida). Adaptado de
Hsu (1984)36
Figura 2.8 — Curva típica momento de torção versus ângulo de torção por
unidade de comprimento. Adaptado de Hsu (1984)37
Figura 2.9 – Círculo de Mohr para torção pura37
Figura 2.10 – Diagrama tensão versus deformação específica do concreto
submetido a tração e compressão uniaxiais39
Figura 2.11 – Componentes de flexão e de torção em uma viga de
concreto: (a) componentes do momento de torção; (b) tensões em um
elemento na face da viga. Adaptado de Hsu (1984)40
Figura 2.12 – Tensões devido à torção em uma viga de concreto de seção
retangular: a) tensões de cisalhamento; b) tensões principais de Tt e
Tb; c) trajetória helicoidal das fissuras. Fonte: MacGregor apud
Bastos (2005)42
Figura 2.13 – Típica curva T x 0 para vigas de concreto sem reforço.
Fonte: Hsu (1984)43
Figura 2.14 – Curvas T x θ para vigas de concreto armadas com
diferentes taxas de armadura de aço. Adaptado de Hsu (1984)44

cortante (Holtz, 2007)45
Figura 3.2 – Confinamento de pilares com CFC (Holtz, 2007)46
Figura 3.3 – Reforço de vigas à flexão e à força cortante com CFC
(Spangnolo, 2008)46
Figura 3.4 – Sistemas de reforço com fibras de carbono: (a) fios de fibra
de carbono; (b) chapas pultrudadas de fibra de carbono; (c) tecidos
de fibra de carbono. (Holtz, 2007)47
Figura 3.5 – Fibras de carbono envolvidas com resina epóxi (Basche <i>et al</i>
apud Holtz, 2007)49
Figura 3.6 – Empenamento da viga gerado pela componente de flexão
(Leonhardt e Mönnig, 1977)51
Figura 3.7 – Força resultante da mudança de direção das diagonais
comprimidas (Leonhardt e Mönnig, 1977)52
Figura 3.8 – Ruptura do reforço em viga solicitada à torção (Holtz, 2007)
53
Figura 3.9 – Configurações de reforço adotadas por Ameli et al. (2007). 54
Figura 3.10 – Esquema de ensaio das vigas de Ameli et al. (2007)55
Figura 3.11 – Momento de torção versus ângulo de torção obtidos
experimentalmente por Ameli et al. (2007): (a) vigas reforçadas com
CFRP; (b) vigas reforçadas com GFRP56
Figura 3.12 – Padrão das fissuras em uma das vigas de referência Amel
et al. (2007)56
Figura 3.13 – Relação entre o momento de torção e ângulo de torção para
as curvas obtidas numericamente e experimentalmente. Adaptado de
Ameli <i>et al.</i> (2007)57
Figura 3.14 – Seções transversais. Adaptado de Chiu et al. (2007)58
Figura 3.15 – Esquema de armadura e instrumentação interna. Adaptado
de Chiu <i>et al.</i> (2007)58
Figura 3.16 – Esquema de ensaio. Adaptado de Chiu et al. (2007)59
Figura 3.17 – Localização dos pontos de cobre para avaliação das
deformações do concreto. Adaptado de Chiu et al. (2007)60

Figura 3.18 - Padrão das fissuras para viga HBS-74-17: concreto de alta
resistência, seção B e baixa taxa de armadura. (a) tração; (b)
compressão. Adaptado de Chiu et al. (2007)60
Figura 3.19 – Padrão das fissuras para viga HBS-60-61: concreto de alta
resistência, seção B e alta taxa de armadura. Adaptado de Chiu et al.
(2007)61
Figura 3.20 - Geometria e detalhes da armadura. (a) vigas seção sólida;
(b) vigas seção vazada. Adaptado de Hii e Al-Mahaidi (2007)62
Figura 3.21 – Esquema de ensaio. Hii e Al-Mahaidi (2007)62
Figura 3.22 – Geometria e armadura interna. Adaptado de Holtz (2007). 64
Figura 3.23 – Configuração do reforço das vigas da série VT. Adaptado de
Holtz (2007)64
Figura 3.24 - Configuração do reforço das vigas da série VTL. Adaptado
de Holtz (2007)65
Figura 3.25 – Esquema de ensaio. Adaptado de Holtz (2007)65
Figura 3.26 – Momento de torção <i>versus</i> ângulo de torção por unidade de
comprimento da série VT. Adaptado de Holtz (2007)66
Figura 3.27 – Momento de torção <i>versu</i> s ângulo de torção por unidade de
comprimento da série VTL. Adaptado de Holtz (2007)67
Figura 3.28 – Características das vigas da série \boldsymbol{a} . Dimensões em mm .
Adaptado de Chalioris (2008)69
Figura 3.29 - Características das vigas da série $\emph{\textbf{b}}$. Dimensões em \emph{mm} .
Adaptado de Chalioris (2007)70
Figura 3.30 – Esquema de ensaio. Adaptado de Chalioris (2008)70
Figura 3.31 - Esquema de ensaio. Adaptado de Deifalla e Ghobarah
(2010)71
Figura 3.32 - Configuração do reforço. Adaptado de Deifalla e Ghobarah
(2010)71
Figura 3.33 - Comportamento da viga C1. Adaptado de Deifalla e
Ghobarah (2010)72
Figura 4.1 – Resistência à compressão simples do concreto76
Figura 4.2 - Ensaio de compressão diametral dos corpos de prova de
concreto77
Figura 4.3 – Resistência à compressão diametral do concreto 78

Figura 4.4 – Ensaio para determinação do modulo de elasticidade sec	ante
e a curva tensão-deformação específica dos corpos de prova	a de
concreto.	79
Figura 4.5 – Gráficos tensão versus deformação específica dos corpo	s de
prova de concreto.	81
Figura 4.6 - Geometria dos corpos-de-prova de CFC recomendada	pela
ASTM D3019/3039M	84
Figura 4.7 – Ensaio CFC.	85
Figura 4.8 - Diagramas tensão versus deformação específica dos co	rpos
de prova de CFC	86
Figura 4.9 – Fluxograma de descrição do programa experimental	87
Figura 4.10 – Pórtico de ensaio	88
Figura 4.11 – Armadura das Vigas	89
Figura 4.12 – Regularização dos cantos vivos	90
Figura 4.13 - Sequência de execução do reforço com CFC da	MC-
Bauchemie.	91
Figura 4.14 – Execução da segunda camada de reforço de uma das v	/igas
da série RA	91
Figura 4.15 – Configuração do reforço das vigas da série RA	92
Figura 4.16 – Configuração do reforço das vigas da série RB	93
Figura 4.17 – Configuração do reforço da viga VRC-1	94
Figura 4.18 – Face inferior da viga VRC-1.	94
Figura 4.19 – Configuração do reforço da viga VRC-2	94
Figura 4.20 – Configuração do reforço da viga VRC-3	95
Figura 4.21 – Viga VRC-3 junto à face A, após interrupção do ensaio.	95
Figura 4.22 – Locação dos transdutores lineares	96
Figura 4.23 – Vista da face superior das vigas de referência	97
Figura 4.24 – Seção S _C das vigas de referência	97
Figura 4.25 – Vista da face superior das vigas da série RA	97
Figura 4.26 – Seção S c das vigas da série RA	98
Figura 4.27 – Seção S _{F1} das vigas da série RA	98
Figura 4.28 – Seção S _{F2} das vigas da série RA	98
Figura 4.29 – Vista da face superior das vigas da série RB	99
Figura 4 30 – Seção S o das vigas da série RB	aa

Figura 4.31 – Seção S _{F1} das vigas da série RB9	9
Figura 4.32 – Seção S _{F2} das vigas da série RB9	9
Figura 4.33 – Vista da face superior da viga VRC-110)()
Figura 4.34 – Vista da face superior da viga VRC-210)0
Figura 4.35 – Vista da face superior da viga VRC-310)0
Figura 4.36 – Seção S c das vigas da série RC10)1
Figura 4.37 – Seção S _{F1} das vigas da série RC10)1
Figura 4.38 – Seção S _{F2} das vigas da série RC10)1
Figura 5.1 – Posições dos EER nas faces principais da viga VR110)3
Figura 5.2 – Posições dos EER nas faces principais da viga VR210)3
Figura 5.3 – Posições dos EER nas faces principais da viga VR310)4
Figura 5.4 – Posições dos EER nas faces principais da viga VR410)4
Figura 5.5 – Posições dos EER na seção Sc da viga VRA-110)6
Figura 5.6 – Posições dos EER na seção Sc da viga VRA-210)6
Figura 5.7 – Posições dos EER na seção Sc da viga VRA-310)7
Figura 5.8 – Posições dos EER na seção Sc da viga VRB-110)7
Figura 5.9 – Posições dos EER na seção Sc da viga VRB-210)8
Figura 5.10 – Posições dos EER na seção Sc da viga VRB-310)8
Figura 5.11 – Posições dos EER na seção Sc da viga VRC-110)9
Figura 5.12 – Posições dos EER na seção Sc da viga VRC-210)9
Figura 5.13 – Posições dos EER na seção Sc da viga VRC-311	10
Figura 5.14 – Posições dos EER na seção SR1 da viga VRA-111	1
Figura 5.15 – Posições dos EER na seção SR2 da viga VRA-111	1
Figura 5.16 – Posições dos EER na seção SR1 da viga VRA-211	12
Figura 5.17 – Posições dos EER na seção SR2 da viga VRA-211	12
Figura 5.18 – Posições dos EER na seção SR1 da viga VRA-311	12
Figura 5.19 – Posições dos EER na seção SR2 da viga VRA-311	13
Figura 5.20 – Posições dos EER na seção SR1 da viga VRB-111	13
Figura 5.21 – Posições dos EER na seção SR2 da viga VRB-111	13
Figura 5.22 – Posições dos EER na seção SR1 da viga VRB-211	14
Figura 5.23 – Posições dos EER na seção SR2 da viga VRB-211	14
Figura 5.24 – Posições dos EER na seção SR1 da viga VRB-311	14
Figura 5.25 – Posições dos EER na seção SR2 da viga VRB-311	15
Figura 5.26 – Posições dos EER na seção SR1 da viga VRC-111	15

Figura 5.27 – Posições dos EER na seção SR2 da viga VRC-1115
Figura 5.28 – Posições dos EER na seção SR1 da viga VRC-2116
Figura 5.29 – Posições dos EER na seção SR2 da viga VRC-2116
Figura 5.30 – Posições dos EER na seção SR1 da viga VRC-3116
Figura 5.31 – Posições dos EER na seção SR2 da viga VRC-3117
Figura 5.32 - Desenho esquemático da medição do transdutor linear
durante a rotação (Holtz, 2007)118
Figura 5.33 - Curva $T \times \theta$ da Viga VR1 obtida com os transdutores
lineares TL1 e TL4120
Figura 5.34 - Curva T x θ da Viga VR1 obtida com os transdutores
lineares TL2 e TL3120
Figura 5.35 - Curva T x θ da Viga VR1 obtida com os transdutores
lineares TL2 e TL4121
Figura 5.36 - Curva T x θ da Viga VR2 obtida com os transdutores
lineares TL1 e TL3121
Figura 5.37 - Curva T x θ da Viga VR2 obtida com os transdutores
lineares TL1 e TL4121
Figura 5.38 - Curva T x θ da Viga VR2 obtida com os transdutores
lineares TL2 e TL3122
Figura 5.39 - Curva T x θ da Viga VR2 obtida com os transdutores
lineares TL2 e TL4122
Figura 5.40 - Curva T x θ da Viga VR3 obtida com os transdutores
lineares TL1 e TL3122
Figura 5.41 - Curva $T \times \theta$ da Viga VR3 obtida com os transdutores
lineares TL1 e TL4123
Figura 5.42 - Curva T x θ da Viga VR3 obtida com os transdutores
lineares TL2 e TL3123
Figura 5.43 - Curva $T \times \theta$ da Viga VR3 obtida com os transdutores
lineares TL2 e TL4123
Figura 5.44 - Curva $T \times \theta$ da Viga VR4 obtida com os transdutores
lineares TL1 e TL3124
Figura 5.45 - Curva $T \times \theta$ da Viga VR4 obtida com os transdutores
lineares TL1 e TL4124

Figura 5.46 – Curva I x 8 da viga VR4 obtida com os transdutores
lineares TL2 e TL3124
Figura 5.47 - Curva T x θ da Viga VR4 obtida com os transdutores
lineares TL2 e TL4125
Figura 5.48 - Curva T x θ da Viga VRA-1 obtida com os transdutores
lineares TL1 e TL3127
Figura 5.49 - Curva T x θ da Viga VRA-1 obtida com os transdutores
lineares TL1 e TL4127
Figura 5.50 - Curva T x θ da Viga VRA-1 obtida com os transdutores
lineares TL2 e TL3128
Figura 5.51 – Curva T x θ da Viga VRA-1 obtida com os transdutores
lineares TL2 e TL4128
Figura 5.52 - Curva T x θ da Viga VRA-2 obtida com os transdutores
lineares TL1 e TL3128
Figura 5.53 - Curva T x θ da Viga VRA-2 obtida com os transdutores
lineares TL1 e TL4129
Figura 5.54 - Curva T x θ da Viga VRA-2 obtida com os transdutores
lineares TL2 e TL3129
Figura 5.55 - Curva T x θ da Viga VRA-2 obtida com os transdutores
lineares TL2 e TL4129
Figura 5.56 - Curva T x θ da Viga VRA-3 obtida com os transdutores
lineares TL1 e TL3130
Figura 5.57 - Curva T x θ da Viga VRA-3 obtida com os transdutores
lineares TL1 e TL4130
Figura 5.58 - Curva T x θ da Viga VRA-3 obtida com os transdutores
lineares TL2 e TL3130
Figura 5.59 - Curva T x θ da Viga VRA-3 obtida com os transdutores
lineares TL2 e TL413
Figura 5.60 - Curva T x θ da Viga VRB-1 obtida com os transdutores
lineares TL1 e TL3132
Figura 5.61 - Curva T x θ da Viga VRB-1 obtida com os transdutores
lineares TL1 e TL4132
Figura 5.62 - Curva T x θ da Viga VRB-1 obtida com os transdutores
lineares TI 2 e TI 3

Figura 5.80 - Curva T x \theta da Viga VRC-3 obtida com os transdutores
lineares TL1 e TL3139
Figura 5.81 – Curva T x θ da Viga VRC-3 obtida com os transdutores
lineares TL1 e TL4139
Figura 5.82 - Curva T x θ da Viga VRC-3 obtida com os transdutores
lineares TL2 e TL3140
Figura 5.83 - Curva T x θ da Viga VRC-3 obtida com os transdutores
lineares TL2 e TL4140
Figura 5.84 - Momentos de torção na fissuração - valores teóricos e
experimentais144
Figura 5.85 - Momento de torção na fissuração versus taxa de reforço.
144
Figura 5.86 – Momento de torção na ruptura versus taxa de reforço145
Figura 5.87 – Rigidez na fissuração <i>versu</i> s taxa de reforço148
Figura 5.88 – Rigidez na ruptura <i>versus</i> taxa de reforço148

Lista de Tabelas

Tabela 2.1 – Coeficientes adimensionais de Saint-Venant para seções retangulares34
Tabela 3.1 – Caracterísiticas e dados de instalação dos sistemas de reforço com PRFC48
Tabela 4.1 - Consumo de materiais do concreto75
Tabela 4.2 - Resultados dos ensaios de módulo de elasticidade do
concreto80
Tabela 4.3 – Geometria dos corpos-de-prova de CFC recomendada pela
ASTM D3019/3039M84
Tabela 4.4 – Resultados dos ensaios do CFC86
Tabela 5.1 – Deformações específicas nas faces das vigas de referência.
Tabela 5.2 – Deformações específicas nas faces das vigas reforçadas.117
Tabela 5.3 – Resumo dos valores de momento de torção para as vigas de
referência na fissuração125
Tabela 5.4 – Resumo dos valores ângulo de torção por unidade de
comprimento para as vigas de referência na fissuração126
Tabela 5.5 – Resumo dos valores de momento de torção para as vigas de
referência na ruptura129
Tabela 5.6 - Resumo dos valores de ângulo de torção por unidade de
comprimento para as vigas de referência na ruptura129
Tabela 5.7 - Resumo dos valores de momento de torção para as vigas
reforçadas na fissuração144
Tabela 5.8 - Resumo dos valores ângulo de torção por unidade de
comprimento para as vigas reforçadas na fissuração145
Tabela 5.9 - Resumo dos valores de momento de torção para as vigas
reforçadas na ruptura145

Tabela 5.10 – Resumo dos valores de ângulo de torção por	unidade de
comprimento para as vigas reforçadas na ruptura	146
Tabela 5.11 – Tabela de verificação da expressão 3.1	146
Tabela 5.12 – Rigidez das vigas de referência	149
Tabela 5.13 – Rigidez das vigas reforçadas	150

Lista de Abreviaturas

CFC Compósitos de Fibras de Carbono

ABNT Associação Brasileira de Normas Técnicas

ACI American Concrete Institute

ASTM American Society for Testing and Materials

LEM-DEC Laboratório de Estruturas e Materiais do Departamento de

Engenharia Civil

PUC-Rio Pontifícia Universidade Católica do Rio de Janeiro

EER Extensômetros Elétricos de Resistência

Lista de Siglas

L – altura do corpo de prova

 A_c – área da seção transversal da viga de concreto

 ϕ – ângulo formado entre a fissura principal e o eixo longitudinal da viga

 β — coeficiente adimensional obtido pela razão entre as dimensões de uma seção transversal retangular

l – comprimento do cabo

C_{cr} – constante de Bredt após a fissuração

 μ – constante do material

 $\epsilon_{m\acute{a}x}$ – deformação específica máxima do corpo de prova

d – diâmetro do corpo de prova

r – distância radial

 $d\phi$ – elemento diferencial angular.

h – espessura da parede do tubo de Bredt

F – força máxima aplicada, equivalente à carga de ruptura

 α_p – função dos lados de uma seção transversal retangular

y – maior lado da seção retangular

x – menor lado da seção retangular

 $\varepsilon_{0,3}$ – média dos valores de deformação específica fornecidas pelas leituras dos dois extensômetros, associada à tensão $\sigma_{0,3}$

 ε_{inf} – média dos valores de deformação específica fornecidas pelas leituras dos dois extensômetros, associada à tensão σ_{inf}

 $E_{ci,m}$ – média corrigida dos valores obtidos para o módulo de deformação tangente inicial

G – módulo de deformação transversal do material da barra

G_{cr} – módulo de deformação transversal após a fissuração

 $E_{ci.i}$ – módulo de deformação tangente inicial para o corpo de prova

 E_f – módulo de elasticidade do compósito de fibra de carbono

E_i – módulo de elasticidade do CP "i" de CFC

 E_{cs} – módulo de elasticidade secante do concreto

T – momento de torção

 T_{cr} – momento de torção de fissuração da viga sem reforço

 T_{cr}^{*} – momento de torção de fissuração da viga reforçada com estribos

- $T_n \,$ momento de torção último da viga sem reforço
- u perímetro da viga de concreto
- n razão entre o módulo de elasticidade do aço e do concreto
- $f_{\text{tD,i}}$ resistência à tração do corpo de prova de concreto quando comprimido diametralmente
- $f_{c,m}$ resistência média a compressão do concreto obtida experimentalmente
- f_t resistência média à tração do concreto, obtida experimentalmente
- $\tau(r)$ tensão cisalhante na coordenada radial r
- f_r tensão de fissuração do concreto
- T_{cr}^* momento de torção de fissuração da viga reforçada com estribos
- ρ taxa de armadura total (somatório da taxa longitudinal e transversal);
- ρ_f taxa transversal de reforço de CFC
- $\sigma_{0,3}$ tensão correspondente à 30% da carga de ruptura
- σ_{inf} tensão mais próxima de 0,5 *MPa* que conseguiu-se aplicar no corpo de prova de concreto
- σ_{rup} tensão de ruptura do corpo de prova de concreto

"Há um tempo em que é preciso abandonar as roupas usadas, que já têm a forma do nosso corpo, e esquecer os nossos caminhos que nos levam sempre aos mesmos lugares.

É o tempo da travessia e, se não ousarmos fazê-la, teremos ficado, pra sempre, à margem de nós mesmos."

Fernando Pessoa