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Abstract

Tenorio Martins de Oliveira, Daniel; Fabricio Garcia, Alessandro.
Towards customizing smell detection and refactorings. Rio
de Janeiro, 2020. 128p. Dissertação de mestrado – Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Code smells are poor structures that harm software maintenance. Therefore,
code smells should be detected and removed, through refactoring, early in
the software lifecycle. Refactoring consists of a sequence of code modifica-
tions that aim to improve software maintenance by removing or mitigating
poor code structures. However, the strategies for detecting and refactoring
smells are subjective. Even developers working on the same software may
diverge on their opinions about the existence of a smell. In fact, this di-
vergence is mostly influenced by the developer’s knowledge, including the
system’s design and the analyzed source code. As a consequence, the same
divergence affects the application of the corresponding refactorings. There-
fore, there is a need to support the customization of smell detection and
refactoring based on the developer’s knowledge. The developer is who, after
all, becomes the decision maker on confirming the harmfulness of a smelly
structure and how to refactor it out. In order to address this issue, we split
our research in 3 steps: (i) how to customize smell detection strategies? (ii)
whether and how often developers customize their refactorings? and (iii)
how to support refactoring customization? In the first step, we evaluated
the use of machine learning techniques for properly customizing smell detec-
tion for each developer. Second, we investigated how developers customize
refactorings by analyzing their code modifications while applying certain
refactoring types. Besides, we also discussed how these customizations are
related to the introduction, removal or mitigation of smells, and whether
they are currently supported by Eclipse, a popular IDE. Third, we pro-
posed an approach that allows the application of custom refactoring. Our
results indicated that machine learning techniques are able to efficiently cap-
ture the developer’s knowledge and achieve high smell detection accuracy.
Also, even though developers frequently customize refactorings, their cus-
tomizations are often not supported by Eclipse. To make it worse, complex
customizations, which are manually performed, tend to reduce the positive
effect of the refactoring. Therefore, our contributions serve as a basis for
improving tool support for: (i) customized detection of smells considering
the developer’s knowledge, and (ii) application of customized refactoring.
Keywords

Refactoring; Maintainability; Refactoring Customization.
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Resumo

Tenorio Martins de Oliveira, Daniel; Fabricio Garcia, Alessandro.
Rumo a customização na detecção de smell e na refatoração.
Rio de Janeiro, 2020. 128p. Dissertação de Mestrado – Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Code smells são estruturas pobres que prejudicam a manutenção do sis-
tema. Sendo assim, code smells devem ser detectados e removidos, através
de refatoração, no começo do ciclo de vida do software. Refatoração con-
siste em modificações no código que visam melhorar a manutenção do soft-
ware, removendo ou mitigando estruturas pobres. Contudo, as estratégias
de detecção e refatoração de smells são subjetivas. Isto é, desenvolvedores
trabalhando no mesmo sistema podem divergir acerca da existência de um
smell. Essa divergência é influenciada pelo conhecimento do desenvolvedor,
incluindo o design do sistema e o código analisado. Como consequência,
essa divergência afeta também a aplicação das refatorações. Assim, é pre-
ciso customizar a detecção de smell e refatoração a partir do conhecimento
dos desenvolvedores. Afinal, o desenvolvedor é quem confirma a nocividade
de um smell e define como refatorá-lo. Para isso, decompomos nossa pes-
quisa em 3 passos: (i) como customizar estratégias de detecção de smells?,
(ii) se e com que frequência os desenvolvedores customizam suas refatora-
ções? e (iii) como dar suporte a customização de refatoração?. No primeiro
passo avaliamos as técnicas de aprendizagem de máquina quanto a capaci-
dade de customizar sua detecção para cada desenvolvedor. Segundo, nós in-
vestigamos como desenvolvedores customizam refatorações, analisando suas
modificações de código enquanto aplicam certos tipos de refatoração. Além
disso, nós também discutimos como essas customizações estão relaciona-
das com a inserção, remoção ou mitigação de smells e se são apoiados pelo
Eclipse. Terceiro, nós propusemos uma abordagem que permite a aplicação
de refatorações customizadas. Nossos resultados indicaram que as técnicas
de aprendizagem de máquina são capazes de capturar o conhecimento do
desenvolvedor e obter alta acurácia detectando smells. Além disso, desen-
volvedores frequentemente customizam refatorações que não são totalmente
suportadas pelo Eclipse. Para piorar, customizações complexas, geralmente
manuais, tendem a reduzir o efeito positivo da refatoração. Portanto, nossos
resultados servem como base para melhorar o suporte de ferramentas: a (i)
detecção customizada de smells, levando em consideração o conhecimento
do desenvolvedor e (ii) a aplicação de refatoração customizada.
Palavras-chave

Refatoração; Manutenibilidade; Customização de refatoração;
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1
Overall Introduction

Software developers need to properly read and understand the code
structures for proper maintenance (1). Therefore, developers often try to keep
the code clear and easy to understand. However, developers make decisions
that (un)intentionally introduce poor structures making the code maintenance
harder (2). These poor structures, usually called code smells, are harmful to
software quality. A code smell is a surface indication that usually corresponds
to a deeper problem in the system (1)). Some code smells are catalogued in
previous work(e.g Fowler’s catalog (1)) and their detection is supported by
industrial and academic tools. Due to their harmfulness, code smells should
ideally be removed as soon as they are detected (3, 4, 5).

Although code smell removal is necessary, the strategies to detect and re-
move code smells are quite subjective. This subjectivity makes these strategies
hard to be defined. Indeed, different developers working on the same software
may have different knowledge about code smells (6). This knowledge varies
according to the developer’s experience, individual skills and awareness re-
garding the source code being analyzed. Developers believe that the decision
on removing code smells should be thoroughly made, avoiding side effects for
the maintenance of the source code (7). In fact, developers are who has the
knowledge to make those decisions and often this knowledge prevails on con-
firming the harmfulness of a smelly structure. Code smells are often detected
as soon as developers conclude the program needs refactoring. A refactoring
consists of a set of code modifications often aimed at removing poor structure
and improving software maintainability (1, 8, 9). Before applying refactoring
to remove a code smell, developers need to make subjective decisions such as
the ones described below.

(i) Decisions on the existence of code smells. Consider the code smell
Long Method, i.e., a method that is too long and tries to do too much.
Even though it is easy to understand the concept of this smell, it is hard
to define how long the method needs to be or how many responsibilities the
method needs to fulfill to be considered a Long Method. Developers are in
charge of inspecting a possible Long Method and, based on their knowledge,
to judge whether the method is indeed a Long Method or not. Only the
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Chapter 1. Overall Introduction 13

developers know what factors should be considered when detecting smells in
their program. Indeed, developers has always the final word when confirming
and removing code smells. The literature proposes automated metric-based
strategies aiming to distinguish code more likely to have smells (10, 11).
However, these strategies do not take into account the knowledge of each
developer even though developers usually disagree regarding the existence of
a smell (6).

Due to the importance of developers on code smell detection, it is nec-
essary to customize the detection considering their knowledge. Customization
of smell detection consists of adapting an existing strategy used in such detec-
tion. Rigid (i.e., not customized) strategies may suggest code smells that are
not interesting to a specific developer through frequent irrelevant warnings.
These warnings can hinder his concentration or camouflage smells that are
considered more harmful according to this developer. However, there is little
understanding in the literature concerning customization of smell detection.
Even worse, existing strategies to support code smell detection provide limited
support for its customization. Thus, the detection of code smells in specific
contexts, inevitably, require the participation of a developer to confirm the
existence of a smell (12, 13, 14).

(ii) Decisions on the application of program refactoring. Once a relevant
code smell is detected, developers usually apply refactorings to remove it (1).
Each type of smell needs different strategies to be removed depending on how
it manifests in a program and the code elements affected. For instance, let
us consider an Extract Method (EM) refactoring, which is the most common
refactoring according to previous studies (2, 15). Fowler states an EM consists
on creating a new method based on statements extracted from an existing
method (16). Developers can apply an EM to remove Long Methods, once
this refactoring extracts statements from a method. This extraction reduces
the method’s size and possibly the number of responsibilities fulfilled by the
method.

Also, EM should be customized to be applicable in different contexts. A
refactoring customization consists of adapting an existing refactoring to tailor
it to the context where it will be applied. For instance, an EM can be cus-
tomized to extract statements from different methods once: (i) these methods
may have a Duplicated Code smell or (ii) a responsibility is scattered in two
methods and, as a consequence, this responsibility should be modularized in
a single method. In this context, more than one method will have the code
extracted, but only one method needs to be created. Thus, the developer’s
knowledge about the software context is fundamental to decide how to best
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Chapter 1. Overall Introduction 14

customize a particular refactoring to remove a specific smell.
Once the empirical evidence of how developers customize refactoring in

practice is scarce, these tools may not be adequate to proper support these
refactorings (17, 18, 19, 20, 21). Indeed, they do not allow developers to
properly create their own refactoring customization. In this way, developers are
instead restricted to tailor modifications only through very basic configurations
provided by these tools, which often do not satisfy their needs (17, 20). Due to
this limitation, developers frequently apply these refactorings manually (17, 20)
based on their knowledge. For instance, using refactoring tools, developers are
not enable to always choose when to extract code from more than one method
when applying Extract Method. In some tools, such as the provided by Eclipse1,
developers can choose to remove statements from more than one method only
if Eclipse recognize that these methods have the same code statements.

1.1
Problem Statement and Related Work

This section discusses related work and provides statements of our three
research problems.

Limited understanding about smell detection customization
taking into account developer knowledge. As mentioned earlier, the
previous work proposes strategies to detect code smells, e.g. (2, 10, 11, 22).
The use of software metrics in strategies to detect code smells is quite
common (23, 24). A detection strategy consists in firstly compute some
measures from the source code. Each smell requires the computation of
different measures. If a predefined set of measures exceed their established
thresholds (10), then there is possibly a code smell. Using this strategy is
possible to customize the smell detection by changing the set of metrics and
the threshold values. The developer is usually responsible for adjusting such
metrics and thresholds. The adjustment is based on the previous developer’s
knowledge on detecting the same smells and the affected code. This manual
adjustment is time-consuming (25) and makes the customization of these
strategies difficult and error-prone, especially for less experienced developers.

The use of machine learning techniques (ML techniques) (26) is a strategy
to address this issue and automate the customization of code smell detection.
Due to their ability to learn by examples, some machine learning techniques
can be considered as a promising way to detect smells. These techniques can
use a set of examples to customize the definition of such detection strategies.
In other words, these techniques define the set of metrics and thresholds to

1https://www.eclipse.org/
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Chapter 1. Overall Introduction 15

classify whether a piece of code has smell or not. Recent studies (27, 28, 29, 30)
have analyzed the use of ML techniques aiming to detect code smells.

However, these studies usually assess a single ML technique. Certain ML
techniques may outperform others in the detection of each smell type. More
importantly, there is still little understanding about how the machine learning
techniques can customize the detection of code smells based on developers’
knowledge. This customization is of paramount importance; otherwise, devel-
opers are likely to reject the smell candidates. The ability to customize smell
detection also allows the adaptation of strategies to different quality standards
required by companies and their developers. Besides, customizable detection
can identify and report to developers only smells they are interested in.

Problem 1: There is still little understanding about whether ML
techniques can properly customize code smell detection taking into account
the developer’s knowledge.

Empirical evidence of how developers customize refactoring is
quite scarce. The refactoring practice is often studied, especially its impact
on the software structure (31). There is also a few studies investigating the
refactorings required in certain software projects (32, 33, 34). However, there is
little understanding about how developers customize refactorings. That is, the
literature usually treats each refactoring as a fixed set of code modifications
that is already cataloged, such as those modifications described for certain
refactoring types presented by Fowler (1).

In order to understand customized refactorings, we need to study the
refactoring as a mutable set of code modifications. This set of modifications
likely varies across the context where a refactoring type is applied. A recent
study (35) observed the code modifications performed in the project when
applying certain refactoring types. However, the study does not investigate
how developers customize the modifications of a refactoring type. The lack
understanding about typical patterns of modifications for certain refactoring
types impairs the advancement of refactoring tooling support. This limitation
is also observed in other studies that relate refactorings with code modifica-
tions (36, 37).

It is important to understand how the refactorings are customized by
developers. Otherwise, refactoring tools will be misaligned with developers
practices and will not provide adequate support to custom refactorings. In
particular, existing tools could provide developers with previously-defined
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Chapter 1. Overall Introduction 16

custom refactorings to be selected, further adapted or extended and applied
by developers in their contexts.

Problem 2: There is limited empirical understanding regarding
refactoring customization in the literature.

Current refactoring tools do not provide suitable support for
refactoring customization. As mentioned above, there is a lack of empirical
understanding about refactoring customization. This lack of understanding
turns the creation of suitable tools to support refactoring customization a hard
task. Despite some IDEs, such as Eclipse2, allowing developers to create custom
refactorings, the customization process requires developers to know a specific
description language. Alternatively, these IDEs also provide automated tools
for applying refactorings. However, these automated tools only apply a limited
number of simple refactorings. Besides, these automated tools restrict to tailor
these refactorings only through very basic configurations. As consequence,
developers are not allowed to properly create their own custom refactoring.

Indeed, developers prefer to apply refactorings manually instead of
using automated refactoring tools despite all the advantages that automated
refactoring has over manual refactoring (17, 19). One of the possible reasons is
that the use of automated refactoring tools overly constrain the possibilities for
customization. In addition, developers are not in the control of all modifications
made by these tools (9, 17). Also, developers do not consider these tools flexible
enough to use in specific contexts. (17).

Problem 3: Automated refactoring tools do not allow developers to
properly customize refactorings.

1.2
Main Contributions

In order to address the research problems (Section 1.1), this research
focused on performing retrospective studies using data from several open-
source software projects. Such studies aimed at improving the empirical
understanding of how developers perform smell detection and refactoring. Our
investigation was divided into the three following steps. For each step, we
presented the corresponding contribution emerging at that research stage.

2https://www.eclipse.org/

DBD
PUC-Rio - Certificação Digital Nº 1812770/CA



Chapter 1. Overall Introduction 17

Step 1: Customization of smell detection. We performed two com-
plementary studies to evaluate machine learning techniques for customizing
smell detection. Our studies relied on hundred of smells manifesting in pop-
ular open-source software projects. In particular, we compared several ma-
chine learning techniques considering their ability to customize the detection
of smells taking into account the developer’s knowledge. Developers are often
responsible for performing the detection of code smells in their projects. In
this way, customization is of paramount importance; otherwise, developers are
likely to reject the smell candidates detected by the machine learning tech-
niques. We analyzed which ML technique correctly detected well-know smell
types (effectiveness) and with the fewest examples needed for training (effi-
ciency). Then, we observed which ML technique is more effective and efficient
to detect each smell type. This observation took into account different devel-
oper’s opinions about the existence of a smell in the affected program.

We observed that all the analyzed techniques are sensitive to the de-
velopers’ knowledge and the number of training examples. Besides, Random
Forest was the technique with the highest effectiveness and efficiency. This
technique needed fewer examples than any other ML technique for most types
of smell types. Due to the importance of the developer’s knowledge on the
detection of code smells, our results shed light on the design of future studies
aimed at revealing further knowledge involving developers’ expertise and smell
detection.

Contribution 1: Evaluation of the use of machine learning tech-
niques to customize smell detection based on the developer’s knowledge.

Step 2: Customization of refactoring. We investigated how devel-
opers customize refactorings in practice. We focused the investigation on four
of the most frequent refactoring types, namely Extract Method, Inline Method,
Pull Up Method, and Move Method. We identified refactoring occurrences of
these refactoring types in open-source software projects using the Refactoring
Miner tool (15, 38). For each identified refactoring, we compared the source
code before and after the occurrence of such refactoring. We observed the code
modifications performed along with such refactoring. Then, we catalogued the
most frequently observed code modifications for each refactoring type. In this
way, we investigated whether developers often have to customize such refac-
torings by including or discarding modifications that are tailored to their pro-
gram’s needs
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Contribution 2: A Catalog of modifications applied by developers
when applying specific refactoring types.

Then, we identified the most frequent modification patterns in cus-
tomized refactorings. We also analyzed the impact of these patterns on remov-
ing code smells. For this analysis, we investigated whether there are interesting
customized modification patterns that tend to (i) reduce the occurrence of a
particular type of smell, (ii) reduce the intensity of the smell, that is, improve
the code metrics making the smell less harmful, and adversely (iii) increase
the occurrence of a particular type of smell. Our methodology to detect cus-
tomized refactoring is more rigorous than the methodology used elsewhere (39).
For instance, we also analyzed all fine-grained modifications affecting both the
refactored elements and their clients.

Contribution 3: A catalog of customized refactorings applied by
developers in practice and the impact of these customizations on code
smells.

Our results revealed that developers often apply recurring modifications
in their customized refactorings that are not covered by Fowler’s catalog.
Finally, our study also provides recurring patterns of customized refactorings
that can help one: (i) to better understand the refactoring customization needs,
and (ii) to further improve tooling support for customized refactoring

Step 3: Refactoring tool support. Finally, we investigated whether
the tool for applying refactoring provided by Eclipse properly supports the
application of customized refactorings. We chose Eclipse because it is a very
popular environment for Java development. Besides, Eclipse is frequently used
in literature on automated software refactoring e.g. (40, 41). For that, we
observed the source code associated with the most frequent patterns of each
refactoring type. We minimally adapted the code to be reproducible in our
Eclipse environment. Then, we manually invoked the automated tool in order
to reproduce the refactoring applied by the developer in the software project.
Finally, we listed which code modifications could not be reproduced using the
Eclipse’s refactoring tool. Our results revealed that developers often apply
recurring modifications in their customized refactorings that are not fully
supported by the existing refactoring tool provided by Eclipse. Based on this
investigation, we listed which customizations applied by developers in practice
do not have adequate support provided by Eclipse’s refactoring tool. Due
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to this limitation, developers would have to apply part of the customization
manually, which is a time-consuming and error-prone activity.

Contribution 4: A catalog of recurring modifications present in cus-
tomized refactorings that are not supported by the automated refactoring
tool provided by Eclipse.

Finally, based on empirical evidence derived from our studies, we pre-
sented the prototype of a more flexible tool, which aims to satisfy the cus-
tomizations applied by developers in practice. The approach allows a developer
to: (i) compose an individual refactoring according to his context’s needs, and
(ii) reuse the custom refactorings in similar contexts. For that, we split each
refactoring into a set of code modifications. Then, the developer can add or
remove other code modifications that compose each refactoring. In this way,
developers will able to change the formerly defined behavior of a refactoring,

Contribution 5: A prototype of an automated refactoring tool that
provides support for refactoring customization.

1.3
Dissertation Outline

The remainder of this dissertation, which is a compilation of technical
papers (accepted or under submission), is organized as follows.

Chapter 2 presents a study to evaluate machine learning techniques for
customizing smell detection. In this study, we analyzed which ML technique
correctly detected well-know smell types and with the fewest examples needed
for training when taking into account developers’ knowledge. This study con-
sists of the paper "On the Sensitivity of Machine Learning Techniques to Detect
Developer-sensitive Smells" (42), under submission to a top international jour-
nal in Software Engineering.

Chapter 3 presents a complementary study to evaluate machine learning
techniques for customizing smell detection. Similar to the study in Chapter
1, in this study we also evaluated the use of ML techniques to detect code
smells taking into account developers’ knowledge. However, we used a different
dataset. In this dataset, we considered only smells that was refactored by
developers associated with the analyzed projects. This study consists of the
paper "Assessing Machine Learning techniques on Code Smell Detection" (43)
being submitted to Brazilian Symposium on Software Engineering (SBES) in
May 2020.
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Chapter 4 presents a retrospective study to understand how developers
customize refactorings in practice. In this study, we investigated 13 projects,
from which we identified and analyzed 1,162 refactoring instances. We focused
our analysis on four of the most frequent refactoring types, namely Extract
Method, Inline Method,Pull Up Method, and Move Method. This study consists
of the paper "How Do Developers Customize Refactoring in Practice?" (44)
being submitted to the 35th International Conference on Automated Software
Engineering (ASE) in May 2020.

Chapter 5 presents a flexible approach for refactorings tools. This
approach allows a developer to: (i) compose a custom refactoring according
to his context’s needs, and (ii) reuse the custom refactorings in similar
contexts. This approach consists of the paper "On the Customization of Batch
Refactoring" (45) published in the 3th International Workshop on Refactoring
in 2019, co-located with the International Conference on Software Engineering
(ICSE 2019), which brings together the experts on software refactoring around
the world.

Chapter 6 summarizes the conclusions of our work, presenting the main
contributions to the state-of-art and the state-of-practice as well as future work.
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2
Customization of Code Smell Detection

Code smells are considered symptoms of poor design and implementation
choices, which make the software system hard to maintain and evolve (46).
Developers are often responsible to detect smells in their software projects.
However, due to the abstract nature of the code smell definitions, their
detection becomes a challenging task. To make worse, different developers may
have different opinions about the existence of a smell in a code fragment.
The developer’s opinion about the existence of a smell is influenced by
the experience in software development and the knowledge of the analyzed
project. Thus, code smell detection techniques should be customized taking
into account developers’ knowledge, otherwise, developers may not agree with
the detected code smell existence by the techniques. Besides, the code smell
detection can be customized to adhere to projects specific quality standards.

The use of ML techniques to customize smell detection is considered a
promising way to achieve accurate results (27, 47). However, even there are
many studies used machine learning techniques to perform their detection (27,
28, 29, 30, 47, 48, 49), there is little knowledge of how these ML techniques are
sensitive to developers’ knowledge. This sensitivity comes from the fact that
the smells used to train the ML techniques are usually detected by developers.
Thus, the training set can be influenced based on the knowledge of code smells
that these developers have. Based on this influence, we decided to study how
sensitive the ML techniques are to the developer’s code smell knowledge. In this
way, we can also observe how these ML techniques customize their detection
strategy as they analyze smells detected by different developers.

This chapter presents the papers "On the Sensitivity of Machine Learning
Techniques to Detect Developer-sensitive Smells" (42), under submission to a
top international journal in Software Engineering. In this paper, we evaluated
the use of ML techniques to detect code smells taking into account developers’
knowledge. For that, we performed a broader study aimed at investigating the
ability of ML techniques on detecting developer-sensitive smells. That is, we
observed how the ML techniques customize their detection strategies based on
different developers’ knowledge about code smells.
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2.1
Introduction

Code smells are considered symptoms of poor design and implementation
choices, which make the software system hard to evolve and maintain (46).
Due to their harmfulness to software quality (3, 4, 5), code smell should
be detected as early as possible to enable its removal. Unfortunately, several
reasons make the code smell detection a challenging task. For instance, code
smells are subjective in nature and, inevitably, require the participation of
developers to detect them (12, 13, 14). However, a recent study (50) indicates
a high divergence among developers about the existence of a same code smell
into a code snippet. Hence, detecting code smells in practice is much harder
than related studies usually discuss (51, 52, 53, 54, 55).

To make matters worse, definitions for some code smells are informal,
ambiguous or insufficient to describe them precisely. For instance, let us
consider the definition of Long Method (LM) code smell, which it is a method
that is too long and tries to do too much (46). Although such definition states
what a Long Method is, it does not describe what should be considered as “too
long” neither what “to do too much” is. As a consequence, when a developer
is focused on detecting Long Methods, he may face subjective questions, such
as:

• How to define whether a method is long?

• How to define whether a method is doing too much?

• Is it possible to identify a Long Method solely based on the lines of code
of a method?

• How many lines of code are required to characterize a method as Long
Method?

Different developers working on the same code base may have different
answers to these questions. As a consequence, while a developer may confirm a

DBD
PUC-Rio - Certificação Digital Nº 1812770/CA



Chapter 2. Customization of Code Smell Detection 23

code snippet as the host of a Long Method, other developers may not necessarily
agree.Indeed, the literature discusses this divergence among developers (47).
Thus, detecting smells taking into account the individual perception of each
developer remains as a prevailing challenge.

Several studies (27, 28, 29, 30, 47, 48, 49, 56, 57) have analyzed the
use of machine learning techniques (ML techniques) to identify smells. In a
nutshell, the ML techniques require a training set containing code examples
annotated by developers as smell or non-smell. From these training examples,
the ML techniques generate smell detection models. Even though such studies
indicate that ML techniques are a promising way to detect smells, there is little
knowledge of how sensitive these ML techniques are on detecting smells. The
sensitivity represents how the ML techniques’ behavior varies to slight changes
regarding the different perceptions of developers about the existence of code
smells. The ML techniques’ behavior change is assessed through two factors:
(I) effectiveness: the capability that ML techniques have when detecting
code smells for different developers, i.e., high effectiveness indicates the ML
techniques are able to detect correctly code smells from different perspectives;
and (II) efficiency: the effectiveness variation as new code snippets validated by
different developers are progressively considered by the ML techniques. High
efficiency indicates the ML techniques need a low number of training example
to reach high efficiency.

In this context, this paper reports a broader study aiming at investigating
the sensitivity of seven ML techniques on detecting developer-sensitive smells.
We assess these techniques based on their capability of detecting 10 different
smell types in accordance with the individual perception of 63 developers.
We performed our study through four main steps: (Dataset) for each smell
type, developers evaluated the presence (or not) of code smells into 15 code
snippets from industry-scale projects. Altogether, we collected and stored in
a dataset 1,800 evaluations, which were used to evaluate the sensitivity of the
ML techniques; (Overall Effectiveness) we evaluated the overall effectiveness of
the ML techniques on detecting each one of the 10 smell types. We performed
such evaluation without taking into account the developers’ perceptions; (ML
techniques Dispersion) we investigated the variation of the ML techniques
effectiveness when they should identify developer-sensitive smells, i.e., when
they have to detect smells taking into account the individual perception of
each developer. In addition, we analyzed the most disperse and effective ML
techniques on detecting developer-sensitive smells; and, finally, (ML techniques
Efficiency) we assessed the efficiency of the ML techniques by evaluating the
effectiveness of each technique on detecting developer-sensitive smells whereas
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we gradually increase the number of examples used to perform its training.
Our study led to five main findings:

• The Random Forest (RF) (58) and Naive Bayes (NB) (58) reached the
highest overall effectiveness on detecting smells (seven out of 10). On
the other hand, the Support-vector Machine (SVM) (58) presented the
lowest overall effectiveness in six smell types (Section 2.3.1);

• The effectiveness of all the analyzed ML techniques were influenced by
the developers’ perceptions. As a consequence, the techniques could not
reach an overall effectiveness above 0.8 in the vast majority of the cases
analyzed (Section 2.3.2);

• While the SVM (58) is the most disperse technique, the Random Forest
is less disperse one (Section 2.3.2);

• The Random Forest was the most effective on detecting developer-
sensitive smells and the JRip (58) was the less effective one (Section
2.3.2);

• The Random Forest was able to detect developer-sensitive smells more
effectively and with lower number of examples than any other analyzed
technique in the cases of the Data Class, Inappropriate Intimacy, Refused
Bequest and God Class (Section 2.3.3).

These findings suggest the increasing need for improving smell detection
techniques by taking into account the individual perception of each developer.
The remaining of this document is structured as follows. Section 2.2 describes
the design of our study and the research questions. In Section 2.3 we present
the results of the study and we answer the research questions. Section 2.4
details the threats of the study. Next, Section 2.5 presents the related work.
Finally, Section 2.6 presents the conclusions observed in our study.

2.2
Study Design

Previous studies (e.g, (27, 47)) suggest that ML techniques are a promis-
ing way to identify code smells. However, the code smell detection involves
the participation of developers who present a high divergence on defining if
a code snippet is a smell or not (12, 13, 50, 59, 60). As a consequence, di-
vergence among developers may considerably influence the set of code smells
detected. In particular, such divergence may impact the effectiveness of code
smell detection techniques based on machine learning, which depend of code
smell examples previously annotated by developers to perform their training.
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In this context, our study aims at investigating the sensitivity of ML tech-
niques to detect code smells, i.e., to investigate the effectiveness variation of
each technique in terms of two factors: (i) the individual perceptions of devel-
opers about the presence of code smells; and (ii) the number of examples used
to perform the training of the ML techniques.

Initially, we defined the research question RQ1 aiming at investigating
the overall effectiveness of ML techniques in detecting 10 smell types without
considering none of these factors. Even though several studies (e.g, (27, 30, 47))
have investigated the overall effectiveness of ML techniques to detect code
smells, each study evaluated a reduced number of smell types on a training set
containing a large number of code smell examples annotated by few developers.
In our study, for each one of the ten smell types analyzed, we performed the
training of the ML techniques on a dataset containing only 15 smell examples
annotated by 12 developers with different perceptions about the smell type
analyzed.

RQ1. How effective are the ML techniques on detecting smells?

Next, we defined theRQ2 that investigates the effectiveness variation of a
ML technique on detecting smells in accordance with the individual perceptions
of each developer. The main motivation to this research question is the fact
that developers have different backgrounds, experience and skills. These and
other factors naturally lead developers to have different perceptions about
the occurrence of a same code. As a consequence of this divergence among
developers, ML techniques may present a variation in their effectiveness on
detecting developer-sensitive smells (12, 13, 50, 59, 60).

RQ2: How disperse is the ML technique effectiveness on detecting
developer-sensitive smells?

Finally, we investigated the RQ3 aiming at analyzing the efficiency of
the ML techniques on detecting developer-sensitive smells, i.e., how effective a
ML technique detects developer-sensitive smells whereas we gradually increase
the number of examples used to perform its training. Although ML techniques
have been considered a promising way to detect code smells (e.g, (27, 30, 47)),
these techniques require code smell examples annotated by developers to
perform their training. However, the annotation of a large amount of examples
may introduce an unfeasible additional effort to the developers. Hence, it
is important to analyze the effectiveness variation of the ML techniques
whereas we vary the number of examples used to perform the training of these
techniques.
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RQ3: How efficient are the ML techniques on detecting developer-sensitive
smells?

2.2.1
Subjects and Projects

To perform our study, we recruited 63 developers from different compa-
nies and universities. These developers have different levels of experience in
software development in Java. Besides, these developers also have previous ex-
perience on code smell detection in software projects, which had an emphasis
on structural software quality.

After recruiting the developers, our next step was to select the types of
smell to be analyzed. Table 2.1 describes all the selected smell types. We have
chosen these smell types for two main reasons. First, they affect different scopes
of a program, i.e., classes, methods or parameters. Second, they have been
investigated in previous studies about code smell detection (28, 29, 30, 48, 49).

Table 2.1: Types of Code Smells Investigated in this Study

Name Description
God Class (GC) Classes that tend to centralize the intelligence of the

system.
Data Class (DCL) Classes that have fields, getting and setting methods

for the fields, and nothing else.
Long Method (LM) Methods that are too long and try to do too much.
Feature Envy (FE) Methods that use more attributes from other classes

than from its own class, and use many attributes
from few classes.

Message Chains (MC) A object that calls another object, that requests yet
another one, and so on.

Inappropriate Intimacy (II) Classes that use internal fields and methods that
don’t belong to them.

Middle Main (MM) Classes that delegate too much work to another
classes and do nothing by herself.

Primitive Obsession (PO) Using a lot of primitives as substitute for small
objects.

Refused Bequest (RB) Classes inherit from a superclass and don’t use any
of inherited functionality.

Speculative Generality (SG) Unused classes, methods, fields or parameters cre-
ated to future features that never get implemented.

Finally, we analyzed the source code of five open source Java projects:
GanttProject1 (2.0.10), Apache Xerces2 (2.11.0), ArgoUML3 (0.34), jEdit4

(4.5.1) and Eclipse5 (3.6.1). We selected such projects because they have been
evaluated by existing smell detection techniques (23, 24, 48, 51, 54, 61, 62)
and their source code contains a variety of suspicious code smells (47, 50) that
enable the execution of our study.

1http://www.ganttproject.biz
2http://xerces.apache.org
3http://argouml.tigris.org
4http://www.jedit.org
5http://eclipse.org

DBD
PUC-Rio - Certificação Digital Nº 1812770/CA



Chapter 2. Customization of Code Smell Detection 27

2.2.2
Machine Learning Techniques

The seven chosen ML techniques to be evaluated are described below:
NaiveBayes: Probabilistic classifier based on the application of Bayes’

theorem (63). This technique is highly scalable and is completely disregards
the correlation between the variables in the training set. Its main idea describes
the probability of an event based on prior knowledge of conditions that might
be related to this event.

Support Vector Machine (SVM): Implementation of integrated
software for the classification of support vectors (64) that analyzes the data
used for classification and regression analysis. SVM assigns new examples to
one of the two categories introduced in the training set, making it a non-
probabilistic binary linear classifier. In order to make this classification, SVM
creates classification models that are a representation of examples as points
in space.These points are mapped in such a way that the examples in each
category are divided by a clear space that is as broad as possible. Each new
instance is mapped in the same space and predicted as belonging to a category
based on which side of space they are placed.

Sequential Minimal Optimization (SMO): An implementation of
John Platt’s minimal sequential optimization algorithm to train a support
vector classifier (65). In other words, SMO is a technique for optimizing the
SVM training turning it faster and less complex than the previous methods.
For that, SMO breaks the problem to be solved into a series of smallest possible
sub-problems, which are solved analytically.

OneRule (OneR):Classification technique that generates a rule for each
predictor in the data, then selects the rule with the lowest total error as its
"single rule" (66). In order to create this rule, this technical analysis the training
set associating a single data to a specific category based on its frequency. For
instance, if a specific data is usually classified as category A, then a rule is
created linking them. After the rules creation, the technique choose the one
with the lowest total error.

Random Forest: A classifier responsible for building numerous classi-
fication trees representing a forest with random decision trees (67). The RF
technique adds extra randomness to the model when during the tree’s creation.
Instead of looking for the best feature when partitioning nodes, it looks for the
best feature in a random subset of features. This process creates a great di-
versity, which generally leads to the generation of better models, besides that
this diversity also reduces the overfitting effect.

JRip: An implementation of an apprentice of propositional rules (68). It
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is based in association rules with reduced error pruning, a very common and
effective technique found in decision tree algorithms. Different from the other
algorithms, JRip splits its training stage into two steps, a growing phase, and
a pruning phase. The first phase grows a rule by greedily adding antecedents
(or conditions) to the rule until the rule is perfect, i.e., 100% effectiveness; The
second phase incrementally prune each rule and allow the pruning of any final
sequences of the antecedents.

J48: A Java implementation of the C4.5 decision tree technique (69).
J48 builds decision trees from a training data set, at each node of the tree, this
technique chooses the data attribute that most effectively partitions its set of
samples into subsets tending to one category or another. The partitioning
criterion is the information gain. The attribute with the highest gain of
information is chosen to make the decision. This process is repeated on the
smaller partitions.

We chose these techniques because of their comprehensiveness, they
involve different data analysis approach, i.e., decisions trees, regression analysis
and based-rule analysis that are responsible to create the classifier models. This
divergence of the approach allows us to compare the effectiveness and efficiency
of them on detecting each studied smell, this comparison lead us to understand
the scenarios that each approach can be better applied. Another reason is
regarding that they also are widely evaluated in previous studies related to
code smell detection (e.g., (27, 47)). We used the Weka package (70) of the R
plataform6 in order to implement these techniques.

2.2.3
Data Collection

To support our study, we extracted 15 potentially-smelly code snippets
from the projects analyzed for each type of code smell studied. A potentially-
smelly code snippet is a set of statements where its behavior indicates a possible
existence of a code smell. We used approached and heuristics provide by
previous studies to identify a potentially-smelly code snippet (11, 23, 24, 55).
Once the extraction was finished, the 63 developers involved in our study
validated the extracted snippets by classifying them either as a smelly or
smell-free. Finally, to turn this classification feasible and to avoid developers’
fatigue during classification, we grouped the 63 developers into 10 groups. Each
group, composed of 12 developers, was responsible to classify the same 15 code
snippets concerning the existence (or not) of only a specific smell type. This
repetitive classification for the same code snippet lets us ensure that the same

6https://www.r-project.org
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code snippet was classified by different developers with different perspectives.
As a result of this process, developers classified a total of 1, 800 code snippets.

The classification process concerns on the analysis of a potentially-smelly
code snippet by looking for the specific smell type reported. The code snippets
comprehend the scope of the smell type analyzed, i.e., method, class, package
or project. Developers must conclude if a code snippet contains a smell type
or not by providing the following answers: YES, if the developer agrees that
a given code snippet presents the reported smell type; or NO, otherwise.

Following the classification of code snippets, we used the Understand7

to extract software metrics that are used to characterize each code snippet
in terms of features to be used during the training process of the ML
techniques. Figure 2.1 presents the schema of the dataset containing the
features, i.e., metrics (M1...Mn), and classifications (True or False) associated
with the code snippets. Aiming to improve the ML techniques’ training, we
filtered the extracted metrics before the creation of our dataset. We used
only metrics already discussed in previous works and related with each smell
scope (11, 23, 24, 55). In other words, whether a smell affects an entire class,
we preferred to use metrics at the same level. In this way, each code smell has
a different set of metrics used for training the ML techniques to its detection.
Finally, we created one dataset for each code smell type analyzed in our study.

Figure 2.1: Schema of the Dataset.

2.2.4
Effectiveness Metrics

To assess the performance of the ML techniques, we used the F-measure
that considers both the recall and precision to compute a score. For our study,
the true positive (TP) elements represent the code snippet classified by the
ML techniques as a code smell that are, actually, a real code smell, as well as
the false positive (FP) elements refer to the code snippets wrongly classified

7https://scitools.com/features/

DBD
PUC-Rio - Certificação Digital Nº 1812770/CA



Chapter 2. Customization of Code Smell Detection 30

as code smell. Similarly, the true negative (TN) represents the code snippets
correctly classified as not-smell and the false negative (FN) represents the
wrong ones. In this context, we can define the recall and precision as:

• Recall (R) : Number of code snippets correctly classified as code smells
among the total of code smell instances in the data collection.

R = TP

TP + FN
(2-1)

• Precision (P) : Number of code snippets correctly classified as code
smell among the total of code snippet classified as code smell by the ML
technique.

P = TP

TP + FP
(2-2)

• F-Measure: Harmonic mean of precision and recall.

F1 = 2 · P · R

P + R
(2-3)

2.2.5
Operation

Using the datasets containing the developers’ evaluations and the soft-
ware metrics for each analyzed code snippet, we performed three different
experiments. Each experiment aims at answering a research question.

(Overall Effectiveness) To answer RQ1, we used the datasets to
analyze the effectiveness (in terms of f-measure) of the ML techniques on
detecting a specific smell type, without considering the individual perceptions
of each developer. For each smell type, we calculated the overall effectiveness
of each technique by applying a 10-fold cross validation procedure on the 180
classifications performed by the 12 developers.

(ML techniques Dispersion) To answer RQ2, we used the datasets
to evaluate the effectiveness variation of each technique on detecting code
smells according to the individual perceptions of the developers. For each
developer, we evaluated the effectiveness of each technique by applying a
five-fold cross validation on the 15 code snippets analyzed by him. After
obtaining the effectiveness of the techniques for each developer, we analyzed
the effectiveness variation obtained by each technique on detecting smells to
the different developers. Finally, we also analyzed the most effective techniques
by counting the number of developers in which each technique obtained the
highest effectiveness.
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(ML techniques Efficiency) Aiming to answer RQ3, we evaluate the
efficiency of the ML techniques, i.e., the effectiveness of each ML technique
whereas we vary the number of code smells examples used to perform the
training of these techniques. We evaluated the effectiveness by considering
the 15 classifications performed by each developer. However, we ranged the
number of examples from three (i.e., 20% of the examples) to 12 (i.e., 80% of
the examples), aiming to guarantee that both, the training and test sets, were
composed of snippets classified as smelly and smell-free by the developer.

2.3
Results and Discussion

This section presents and discusses the main results of the study. The
results are organized in terms of the three research questions presented in
Section 2.2.

2.3.1
Overall Effectiveness

To answer RQ1, for each smell type studied, we analyze the effectiveness
of the ML technique to detect smells for the developers responsible to evaluate
the smell type in analysis. Figures 2.2 to 2.11 present the overall effectiveness of
the ML techniques on detecting the 10 smell types analyzed. In each figure, the
x-axis presents the ML technique used to detect a type of code smell, while
the y-axis describes the values of the effectiveness (in terms of f-measure)
obtained by the ML technique on detecting the smell types analyzed. To
improve readability, we attach the median value of the f-measure to the top of
the bars associated with each ML technique.

(Highest Overall Effectiveness) The Random Forest reached the
highest effectiveness in four smell types: Data Class, Middle Man, Refused
Bequest and Speculative Generality. Note that only in the Data Class, the
Random Forest obtained an effectiveness above 0.8. Regarding the Naive
Bayes, it reached the highest effectiveness in three smell types (Feature
Envy, Long Method and Primtive Obsession), obtaining values above 0.8
only in the Long Method and Primitive Obsession. Finally, the J48, OneR
and SMO obtained the highest effectiveness only one smell type. While the
OneR and SMO reached the highest effectiveness in the Message Chains and
Inappropriate Intimacy, respectively, the J48 presented the highest one in the
God Class. Only the J48 was able to reach an effectiveness above 0.8. The
SVM and JRip could not obtain the highest effectiveness in none of the smell
types.
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Figure 2.2: Effectiveness on DCL Figure 2.3: Effectiveness on FE

Figure 2.4: Effectiveness on GC Figure 2.5: Effectiveness on II

Figure 2.6: Effectiveness on LM Figure 2.7: Effectiveness on MC

(Lowest Overall Effectiveness) The SVM and JRip obtained the
lowest overall effectiveness in most of the smell types analyzed. While the SVM
presented the lowest effectiveness in 6 smell types (Data Class, God Class,
Inappropriate Intimacy, Primitive Obsession, Middle Man and Speculative
Generality), the JRip obtained the lowest one in the Feature Envy and Refused
Bequest. The SMO and OneR presented the lowest effectiveness in the Message
Chains and Long Method, respectively.

The results indicate that the Random Forest and Naive Bayes
were able to reach the highest overall effectiveness on detecting
7 of the 10 smell types analyzed. On the other hand, the SVM
obtained the lowest effectiveness in 6 of the 10 smell types. Such
results reinforce a previous study (30) that indicates a high effectiveness of the
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Figure 2.8: Effectiveness on MM Figure 2.9: Effectiveness on PO

Figure 2.10: Effectiveness on RB Figure 2.11: Effectiveness on SG

Random Forest and low effectiveness of the SVM on detecting four smell types:
Data Class, God Class, Feature Envy and Long Method. Besides analyzing these
smell types, our study also evaluated the Inappropriate Intimacy, Primitive
Obsession, Message Chains, Middle Main, Refused Bequest and Speculative
Generality. Such analysis enables us to identify four minor findings. First, the
Random Forest is able to obtain the highest effectiveness on detecting Middle
Man, Refused Bequest and Speculative Generality. Second, the Naive Bayes
is an effective ML technique to detect smells since it obtained the highest
effectiveness in 3 of the 10 smell types (Feature Envy, Long Method and
Primitive Obsession). Third, we observe a low effectiveness of the SVM on
detecting smell types, such as: Inappropriate Intimacy, Primitive Obsession,
Middle Man and Speculative Generality. Finally, note that even though the
Random Forest and Naive Bayes have reached the highest effectiveness in the
most smell types analyzed, they were able to obtain values above 0.8 only in
few cases.

2.3.2
ML Techniques Dispersion

As discussed in the previous section, the techniques could not reach an
overall effectiveness above 0.8 in the vast majority of the cases analyzed. Our
intuition is that the effectiveness of the techniques present a dispersion on
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detecting code smells for each developer. As a consequence, the techniques
obtained a low overall effectiveness. Hence, we investigate the RQ2 aiming at
analyzing the effectiveness variation of each technique on detecting developer-
sensitive smells. Figures 2.12 to 2.11 present beanplot graphics (71) that
support the discussions about this research question. In each figure, the x-
axis describes the ML technique evaluated. Associated to each technique, we
present a beanplot graphic representing the density of the effectiveness values
obtained by the technique on detecting smells for each developer. In our study,
we use the standard deviation SD to quantify the variation or dispersion of the
effectiveness values obtained by each technique on detecting smells for the
developers. We attach the SD to the top of the bars associated with each ML
technique.

(Highly Disperse ML techniques) We observe that all the ML
techniques present a variation in their effectiveness on detecting smells for
different developers. By analyzing the SD obtained by each technique, we
observe that the SVM technique presented the highest dispersion in seven
out of 10 smell types analyzed. In the previous section, we observed that the
SVM presented the lowest overall effectiveness. Such results suggest that a
high dispersion may lead ML techniques to reach a low overall effectiveness.

(Lowly Disperse ML techniques) Both the Random Forest and
Naive Bayes obtained the lowest dispersion in the highest number of cases
analyzed. While the Random Forest presented the lowest SD in the Speculative
Generality, Refused Bequest andMessage Chain, theNaive Bayes presented the
lowest one in the Feature Envy, Long Method and Middle Man. Note that both
techniques obtained the highest overall effectiveness, as described in Section
2.3.1. Such results suggest that a low dispersion may lead ML techniques to
reach a high overall effectiveness.

Although the ML techniques have presented a variation of their effective-
ness on detecting code smells for different developers, these techniques were
able to reach high effectiveness for specific developers. Hence, we analyze the
most effective techniques to detect smells for each developer. Figures 2.22 to
2.31 present the main results that support the discussions about this analysis.
In each figure, the x-axis describes the id of a developer that evaluated code
snippets related to a smell type, and, the ML techniques that reached the high-
est effectiveness (in terms of f-measure) on detecting smells for the developer.
The y-axis presents the highest effectiveness reached by the ML techniques for
a specific developer. We attach the highest f-measure value to the top of the
bars associated with each developer.

(Effectiveness Above 0.8) As discussed in Section 2.3.1, the ML
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Figure 2.12: DCL Density Figure 2.13: FE Density

Figure 2.14: GC Density Figure 2.15: II Density

Figure 2.16: LM Density Figure 2.17: MC Density
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Figure 2.18: MM Density Figure 2.19: PO Density

Figure 2.20: RB Density Figure 2.21: SG Density

techniques could not reach an effectiveness above 0.8 in the vast majority
of the cases analyzed. Hence, we investigate how many techniques reached
an effectiveness above 0.8 when we consider the developer’s perception. For
each smell type, we observe that the techniques reached an effectiveness above
0.8 for at least 8 of the 12 developers. In the case of the Data Class (see
Figure 2.22), God Class (see Figure 2.24), Long Method (see Figure 2.26) and
Primitive Obsession (see Figure 2.29), the results were even better since the
techniques obtained such effectiveness for 11 of the 12 developers. Even in the
cases in which the techniques could not obtain an effectiveness above 0.8, they
obtained values that varied from 0.67 to 0.79.

(Effectiveness of 1.00) We also observe that the techniques reached an
effectiveness equal to 1.00 for 8 of the 12 developers that evaluated God Class.
For the remaining smell types, the techniques obtained such effectiveness for 2
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Figure 2.22: Effectiveness on DCL Figure 2.23: Effectiveness on FE

Figure 2.24: Effectiveness on GC Figure 2.25: Effectiveness on II

Figure 2.26: Effectiveness on LM Figure 2.27: Effectiveness on MC

(Feature Envy, Inappropriate Intimacy, Refused Bequest and Message Chains)
up to 7 (Middle Man) developers responsible for evaluating each smell type.
The only exception was the Long Method in which none of the techniques could
obtain an effectiveness of 1.00. Such results indicate that ML techniques are
able to reach the highest effectiveness from a reduced number of code smells
examples, i.e., ML techniques were able to reach high effectiveness from only
the 15 code snippets annotated by each developer as smell or not (see Section
2.2.3). This finding is important since the annotation of a large amount of
examples may introduce an unfeasible additional effort to the developers.

(Highly Effective Techniques) After analyzing the effectiveness of the
techniques on detecting smells for each developer, we investigated the highly
effective techniques by counting the number of cases in which a technique
reached highest effectiveness. For each smell type, we observe that different
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Figure 2.28: Effectiveness on MM Figure 2.29: Effectiveness on PO

Figure 2.30: Effectiveness on RB Figure 2.31: Effectiveness on SG

techniques could obtain highest effectiveness on detecting developer-sensitive
smells. For instance, each technique could reach the highest effectiveness for
at least one developer in the Data Class. Note also that a technique may reach
the highest effectiveness in different smell types. For instance, the Random
Forest obtained the highest effectiveness in the greatest number of smell types.
Indeed, it reached the highest effectiveness in 6 of the 10 smell types analyzed.
The OneR reached the highest effectiveness for the Feature Envy and Refused
Bequest. The remaining techniques obtained the highest effectiveness in only
one smell type.

(Lowly Effective Techniques) Even though the OneR has obtained
the highest effectiveness in two cases (Feature Envy and Refused Bequest), it
reached the lowest effectiveness in the Data Class, Long Method and Speculative
Generality. The JRip presented the worst performance by obtaining the lowest
effectiveness in seven of the 10 cases analyzed. The remaining techniques were
lowly effective in only one smell type.

A previous study (50) indicates a statistically significant divergence
among the developers’ perceptions about the existence of a same code smell
and, hence, smells detection techniques must consider the individual perception
of each developer. Our results reinforce such finding since we observe
that ML techniques can be highly effective on detecting smells for
each developer. Note that the techniques reached an effectiveness
above 0.8 in the vast majority of the cases analyzed. Indeed, the
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techniques obtained an effectiveness of 1.00 in a high number of
the cases analyzed. Finally, we also observe that while the Random
Forest was the most effective technique, the JRip was the less
effective one.

2.3.3
Efficiency

According to the results for RQ2, ML techniques were able to reach
high effectiveness on detecting developer-sensitive smells. However, we do not
know the efficiency of these techniques (see RQ3), i.e., the percentage of
examples required by each technique to reach high effectiveness. Figures 2.32
to 2.41 present the results that support the discussions regarding this research
question. These figures represent the efficiency reached by the ML techniques
on detecting the smell types analyzed. The x-axis describes the percentage
of the examples used in the training phase of the techniques, while the y-
axis represents the median of the effectiveness values obtained by each ML
technique on detecting smells for different developers.

For each smell type, we observe that different techniques are able to
reach the highest effectiveness whereas we increase the percentage of training
examples. Let’s consider the Refused Bequest smell, while the Random Forest
reached the highest effectiveness from 20% up to 60%, the J48 obtained
the highest one from 70%. Even though different techniques can reach the
highest effectiveness whereas we increase the number of examples, we observe
that some techniques are more effective in a greater number of percentages
analyzed. For instance, the Random Forest reached the highest effectiveness
in the majority of the percentages related to the Refused Bequest. Regarding
the Inappropriate Intimacy, the Random Forest obtained results even better
by reaching the highest effectiveness in all the percentages analyzed. We also
observe that the Random Forest obtained the highest effectiveness in almost
all percentages related to the Data Class, except when we consider 70% of
the training examples. In such case, the Naive Bayes reached the highest
effectiveness.

Similarly to the Random Forest, the SMO was the most effective in
a greater number of percentages analyzed in three smell types: Primitive
Obsession, God Class and Speculative Generality. Regarding the Primitive
Obsession, we observe that the SMO reached the highest effectiveness in the
vast majority of the percentages analyzed, except in 80% in which the Naive
Bayes obtained the highest effectiveness. Note also that the SMO obtained the
highest effectiveness from 50% up to 80% of the percentage analyzed in the
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Figure 2.32: Efficiency on DCL Figure 2.33: Efficiency on FE

Figure 2.34: Efficiency on GC Figure 2.35: Efficiency on II

Figure 2.36: Efficiency on LM Figure 2.37: Efficiency on MC

God Class. Concerning the Speculative Generality, four techniques were able to
reach the highest effectiveness: SMO (20%; 40%; 50%; 80%), Random Forest
(30%), JRip (60%) and Naive Bayes (70%). But, we observe that the SMO
reached the highest effectiveness in 4 of the 7 percentages analyzed.

Both the SVM and NB were most effective in a greater number of
percentages analyzed in two smell types. While the SVM reached a greater
number of highest effectiveness in the Long Method and Message Chain,
the Naive Bayes was most effective in the Middle Man and Feature Envy.
Regarding the Long Method and Message Chain, the SVM reached the highest
effectiveness in four of the 7 percentages analyzed in both these smell types.
The Naive Bayes reached the highest effectiveness at least four of the 7
percentages analyzed in both the Middle Man and Feature Envy.

Such results indicate that Random Forest, SMO, SVM and NB were most
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Figure 2.38: Efficiency on MM Figure 2.39: Efficiency on PO

Figure 2.40: Efficiency on RB Figure 2.41: Efficiency on SG

effective in the majority of the percentages analyzed. However, we observe
that the Random Forest presented an effectiveness higher than the other
techniques when we consider between 20% and 60% of the examples related
to Refused Bequest, Inappropriate Chain and Data Class. Actually, even in
the God Class, in which the SMO was most effective, the Random Forest
could obtain the highest effectiveness when we consider up to 40% of the
training examples. This finding suggest that the Random Forest is able to
detect developer-sensitive smells more effectively with lower number
of examples than the other analyzed techniques on detecting Data
Class, Inappropriate Intimacy, Refused Bequest, God Class and
Speculative Generality.

2.4
Threats to Validity

In this section we discuss the threats to validity in accordance with the
criteria defined in (72).

Construct Validity. The datasets that supported our study were
built from code snippets manually evaluated by developers. In this case, the
developers evaluated each snippet by reporting the option “YES” or “NO”,
referring the presence or absence of a given code smell into the snippet.
Providing only these two options may be a threat, since the developers could
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not inform the degree of confidence in their answers. However, we adopted such
procedure aiming at ensuring that the developers were able to decide about the
existence of a code smell and we could obtain a set of examples that enables
to perform our study.

The used code snippets may contain more than one code smell. However,
the presence of more than one code smell in a snippet does not unfeasible the
assessment, once we ask explicitly to the developers about the existence of a
specific smell. Besides, the existence of several smells types does not change
the fact that the type we want to observe still exists. Finally, the chosen set of
metrics used for training the ML techniques are specific for the studied smell,
which improves its detection.

The developers used to classify the code smells are not the same as the
project’s developers. However, it is normal that new developers work on legacy
projects. Because of this, the ML techniques need to be able to evaluate in that
context. Besides, it is impracticable for the project developers to classify all the
code snippets since the projects have existed for years. Finally, often developers
work in group in a certain code snippet, so we would not know which developer
did each code snippet to have that correct evaluation.

Internal Validity. The use of the Weka package of the R platform
to implement the techniques analyzed in our study enabled to experiment a
variety of configurations, which affect the training process of the techniques.
In such context, the configurations considered in our experiments may impact
in the effectiveness and efficiency of the techniques. In order to mitigate this
threat, we configured all ML techniques according to the better settings defined
in (30). Indeed, (30) performed a variety of experiments in order to find the
best adjust for each technique.

External Validity. The code snippets evaluated by the developers were
extracted from five Java projects. Such projects have been widely used in
other works related to code smell (28, 29, 48, 54). However, although the
implementation of these projects present classes and methods with different
characteristics (i.e. size and complexity), our results might not hold to other
projects. In the same way, even though we have performed our experiments
with 63 different developers, our results might not also hold for other developers
since they may have different perceptions about the code smells analyzed in
our study (12, 13, 59, 60).
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2.5
Related Work

Several machine learning techniques have been adapted to enable an
automatic detection of code smells (e.g., (27, 47)). Although these studies
report interesting results concerning the effectiveness and efficiency of ML
techniques to detect code smells, there is still little knowledge about the
sensitivity of ML techniques to recognize developer-sensitive smells.

In (28), the authors proposed the Bayesian Belief Network (BBN) to
detect instances of God Class. They used four graduate students to validate a
set of classes, reporting if each class contains a God Class instance or not.
From such procedure, they built a dataset containing 15 consensual smell
instances and then they applied a 3-fold cross-validation on this dataset in
order to evaluate the performance of the BBN. They obtained an accuracy of
0.68 on detecting God Class. In (48), the authors extended the study (28) by
applying the BBN to detect instances ofBlob,Spaghetti Code and Functional
Decomposition. They involved seven students to create datasets and then they
evaluated the effectiveness of BBN to detect these smell types.

The study described in (29) assessed the effectiveness of Support Vector
Machine in the detection of four types of code smell: Blob, Functional De-
composition, Spaghetti Code and Swiss Army Knife. The SVM obtained an
accuracy up to 0.74. In (49) the authors proposed the use of Decision Tree
technique to detect code smells. The authors used a single dataset containing
a huge number of examples validated by few developers. The results indicate
that the Decision Tree is able to reach an accuracy up to 0.78.

Fontana et al. (30) presented a large study that compares and experi-
ments different configurations of machine learning techniques to detect four
types of smell. To perform the training of these techniques, the authors used a
dataset containing several examples of code smells manually validated by few
developers. The J48 and Random Forest obtained the highest accuracy, reach-
ing a values up to 0.95. However, a recent study (73) indicate that the dataset
used by Fontana et al. (30) had a high influence in the accuracy obtained by
the techniques.

Several studies (27, 47) analyzed the accuracy and efficiency of ML
techniques in the detection of only 4 distinct smell types. The results of both
studies indicated that the Random Forest is able to reach a high effectiveness
and efficiency. Such results reinforce the findings identified in our study, which
suggest that the Random Forest is an promising way to identify developer-
sensitive smells.
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2.6
Conclusion

This paper presented a study that analyzed the sensitivity of ML
techniques on the detection of developer-sensitive smells. Firstly, we evaluated
the overall effectiveness of the ML techniques to recognize smells. Then, we
investigated the effectiveness variation of ML techniques on detecting smells for
different developers. Finally, we analyzed the efficiency of the ML techniques
by evaluating their effectiveness according to the number of examples used to
perform the training process.

The results indicated that while the Random Forest and Naive Bayes
reached the highest overall effectiveness on detecting smells, the SVM obtained
the lowest one. We also observed that all the analyzed techniques are sensitive
to the developers’ perceptions and the SVM is the most sensitive one. The
Random Forest is the most effective to detect developer-sensitive smells.

As future work, we intend to investigate the sensitivity of ML techniques
on detecting other smell types. In addition, we also intend to replicate this
study in controlled scenarios, considering developers and projects of a same
organization. In this way, we expect to identify if developers, who work
together, have the same influence on the detection of code smells.

2.7
Summary of Chapter 2

In this chapter, we performed a broader study aimed at investigating
the ability of ML techniques to customize the detection of developer-sensitive
smells, i.e., when smell detection has to take into account the individual knowl-
edge of each developer. We investigated the variation of the ML techniques’
effectiveness to identify developer-sensitive smells. We also analyzed the varia-
tion of each technique’s effectiveness as we gradually increased the number of
examples used for training.

We evaluated the sensitivity of ML techniques based on their effectiveness
of identifying 10 smell types according to the individual knowledge of 63
developers. The results showed that all the analyzed techniques are sensitive
to the developers’ knowledge, for all analyzed smell types and with a very
low number of required training examples. Also, our results suggest that ML
techniques can be highly effective in customizing their detection strategy for
each developer. In fact, the techniques reached high effectiveness in the vast
majority of the cases analyzed.
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3
Customization of Code Smell Detection: A Second Study

The employed dataset used for the training stage of the ML techniques
is likely to have a direct influence on the obtained effectiveness. This influence
may compromise the assessment of those techniques as well as the validity of
our findings in Chapter 2. In this context, we carried out a complementary
second study aimed at investigating the ability of ML techniques on detecting
developer-sensitive smells. In this study, we built a new dataset the behavior of
the ML techniques for such new training data. Different from the first study,
we focused here on assessing ML techniques only for detecting smells that
actually ended up being refactored out by a developer.

The refactoring of smelly code indicates THAT the developer, either con-
sciously or not, confirmed the relevance of a smell. Those smells can be consid-
ered relevant to the program as their removal helped the developer to achieve
his maintenance goal, which may vary from pure structural improvement to
bug fixing or feature addition. Moreover this second study involved developers
who were working on their own projects. The strict assessment of the refactored
smells ensures they were somehow harmful to a software developer’s mainte-
nance task. The previous study was focused instead on developers who are not
the owners of the source code (e.g., they represent situations of newcomers in
the project), but they have the role of understanding and reviewing the source
code.

Our second study is reported in the paper "Assessing Machine Learning
Techniques on Code Smell Detection" (43), which is presented in this chapter
and being submitted to Brazilian Symposium on Software Engineering (SBES)
in May 2020. In the case the reader has already read Section 2.5, you may
consider skipping the Section 3.2.2 in this chapter as it repeats similar content
from that previous section. The same strategy can be considered for Section 2.4
and Section 3.5.1.
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3.1
Introduction

Code smells are considered symptoms of poor design and implementation
choices, which make the software system hard to evolve and maintain (46). Due
to their harmfulness to software quality (3, 4, 5), code smell should be detected
as early as possible to enable its removal. Unfortunately, several reasons make
the code smell detection a challenging task.

Some studies (74, 75, 76) suggest different approaches to detect code
smells. The vast majority of these approaches are based on detection strategies,
which are rules composed by metrics and their respective thresholds. These
approaches tend to analyze each code fragment and employ some previously
defined rules to classify the fragment as the host of a specific smell (or not).
Each smell type has its own rules, what turns the detection exhaustive and
not generalized. This difficulty stems from the fact that the operationalization
(i.e., the rule definition) of the strategy for detecting each smell type requires
proper reasoning. Such an operationalization can not be solely based on finding
metrics and thresholds in accordance with the conceptual definition of a smelly
type. The operationalization also needs to be customized by considering various
contextual information of the program (and the organization), which only the
developer has access to.

Given these challenges on smell detection, several studies (27, 30, 47, 49,
57, 77) have analyzed the use of machine learning techniques (ML techniques)
to identify smells. In a nutshell, the ML techniques require a training set con-
taining code examples annotated as smell or non-smell. From these training
examples, the ML techniques generate smell detection models that are cus-
tomized for each smell type, this customization has improved the techniques
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effectiveness, as seen in (27, 77). Even though such studies indicate that ML
techniques are a promising way to detect smells, there is a strong link between
the employed dataset and the effectiveness obtained by the techniques. This
link is explored by a recent study (73), which observed a possible threat related
with the direct influence of the employed dataset on the obtained results.

In this context, this paper reports a study aiming at investigating the
effectiveness of seven ML techniques on detecting smells for a new dataset that
includes ten different projects. This new dataset is composed by active projects
with different sizes and belonging to distinct domains. The dataset also enable
us to understand how the ML techniques behave within a wider scope. We
assess these techniques based on their ability of detecting six different smell
types. We chose smell types that cover different system scopes, i.e., classes,
methods, fields and parameters. We performed our study through two main
steps:

• Overall Effectiveness: We evaluated the overall effectiveness of the ML
techniques on detecting each one of the six smell types.

• ML techniques Efficiency: We assessed the efficiency of the ML
techniques by evaluating the effectiveness of each technique on detecting
smells whereas we gradually increase the number of examples used to
perform its training.

Finally, our study led to the following findings:

• Previous studies (27, 30, 77) found that Random Forest (RF) (58) has
been reaching the highest overall effectiveness on detecting smells. In this
study, JRip was able to detect smells with higher effectiveness. However,
Random Forest also reached outstanding results, specially for four (out of
six) smell types under analysis. On the other hand, differently from (30)
the Naive Bayes (NB) (58) yielded the lowest overall effectiveness in two
smell types (Section 3.4.1);

• The effectiveness of all the analyzed ML techniques were influenced
by the smell type. As a consequence, each of the techniques obtained
diverging performance results for each smell type. (Section 3.4.1);

• The ML techniques achieve similar effectiveness results for the same smell
type. This finding leads us to believe that does not appear to have a
better approach. In this way, the choice of the most convenient technique
is being at the discretion of the developer.

• The ML techniques do not need a high number of examples to reach high
results. In fact, the increase in the number of instances in the training
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set did not appear to have a direct relationship with the increase in
effectiveness for all ML techniques. (Section 3.4.2).

These findings indicate that, although RF and JRip obtained the best
results between the analyzed techniques, all the studied ML techniques have
similar behavior when working with different smells types. Besides that, they
also have good support for detecting code smells in projects with different sizes,
once they do not need a high number of examples to reach high results.

The remaining of this document is structured as follows. Section 3.2
describes the background of the study and the related work, followed by 3.3
that describes the design of our study including the research questions. Section
3.4 presents the results of the study and the answers to our research questions.
Section 3.5 details the threats and limitations of the study. Finally, Section 3.6
presents the conclusions observed in our study and discusses future work.

3.2
Background and Related Work

3.2.1
Background

Code smell detection techniques have been widely investigated. Previous
studies (74, 75, 76) suggest different approaches to detect code smells. These
approaches are responsible for generating some rules which when they are
fulfilled, classifies the code fragment as a certain code smell or not. However,
each smell has its own rules what turn this detection process exhaustive and not
generalized, once it is necessary a good understanding of each smell definition
to composes its unique rules.

To avoid these limitations, several studies (e.g., (27, 47)) have analyzed
the use of ML techniques to identify code smells. ML Techniques generate a
classifier model for each analyzed smell type based on the knowledge during
the training stage. This model is responsible for classifying code fragments as
a smell or not.

Our study aims at analyzing instances of six different code smell types.
Table 3.1 describes all the selected smell types. We have chosen these smell
types due to the different scopes of a program affected by them, i.e., classes,
methods or parameters.

These instances were detected from the source code of ten open source
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Table 3.1: Types of Code Smells Investigated in this Study

Name Description
Complex Class (CC) Classes that involve a lot of different but related

parts.
Class Data Should be Private
(CDSBP)

Classes that expos its attributes unnecessarily.

God Class (GC) Classes that tend to centralize the intelligence of
the system.

Lazy Class (LC) Classes that do not do enough.
Spaghetti Code (SC) Code that has a complex and tangled structure.
Speculative Generality (SG) Unused classes, methods, fields or parameters cre-

ated to future features that never get imple-
mented.

Java projects: Apache Ant1, Apache Derby2, Apache Tomcat3, Elastic Search4,
Argouml5, Apache Xerces6, Google j2objc7, Presto db8, SpringFramework9

and Achilles10. We selected such projects because they have been evaluated
by existing smell detection techniques (78) and their source code contains a
variety of suspicious code smells (78) that enable the execution of our study.

The seven chosen ML techniques to be evaluated are described below:
NaiveBayes: A probabilistic classifier based on the application of Bayes’

theorem (63). This technique is highly scalable and completely disregards the
correlation between the variables in the training set. This classifier describes
the probability of an event, based on prior knowledge of conditions that might
be related to the event.

Support Vector Machine (SVM): An implementation of integrated
software for the classification of support vectors (64) that analyzes the data
used for classification and regression analysis. SVM assigns new examples to
one of the two categories introduced in the training set, making it a non-
probabilistic binary linear classifier. In order to make this classification, SVM
creates classification models that are a representation of examples as points
in space. These points are mapped in such a way that the examples in each
category are divided by a clear space that is as broad as possible. Each new
instance is mapped in the same space and predicted as belonging to a category
based on which side of space they are placed.

Sequential Minimal Optimization (SMO): An implementation of
John Platt’s minimal sequential optimization algorithm to train a support

1https://ant.apache.org/
2https://db.apache.org/derby/
3http://tomcat.apache.org/
4https://www.elastic.co/
5https://argouml.tigris.org/
6http://xerces.apache.org/
7https://github.com/google/j2objc
8https://prestodb.io/
9https://spring.io/

10http://www.ganttproject.biz
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vector classifier (65). In other words, SMO is a technique for optimizing the
SVM training turning it faster and less complex than the previous methods.
For that, SMO breaks the problem to be solved into a series of smallest possible
sub-problems, which are solved analytically.

OneRule (OneR): A classification technique that generates a rule for
each predictor in the data. Then, it selects the rule with the lowest total error
as its "single rule" (66). In order to create this rule, this technical analysis of
the training set associating a single data to a specific category based on its
frequency, in other words, if a specific data is usually classified as category
A, then a rule is created linking them. After the rules creation, the technique
choose the one with the lowest total error.

Random Forest (RF): A classifier responsible for building numerous
classification trees representing a forest with random decision trees (67). The
RF technique adds extra randomness to the model when during the tree’s
creation. Instead of looking for the best feature when partitioning nodes, it
looks for the best feature in a random subset of features. This process creates
a great diversity, which generally leads to the generation of better models,
besides that this diversity also reduces the overfitting effect.

JRip: An implementation of an apprentice of propositional rules (68). It
is based in association rules with reduced error pruning, a very common and
effective technique found in decision tree algorithms. Different from the other
algorithms, JRip splits its training stage into two steps, a growing phase, and
a pruning phase. The first phase grows a rule by greedily adding antecedents
(or conditions) to the rule until the rule is perfect, (i.e., 100% of effectiveness).
The second phase incrementally prune each rule and allow the pruning of any
final sequences of the antecedents.

J48: A Java implementation of the C4.5 decision tree technique (69). J48
builds decision trees from a training data set. At each node of the tree, this
technique chooses the data attribute that most effectively partitions its set of
samples into subsets tending to one category or another. The partitioning
criterion is the information gain. The attribute with the highest gain of
information is chosen to make the decision. This process is repeated on the
smaller partitions.

We chose these techniques because of their comprehensiveness. They in-
volve different data analysis approaches, i.e., decision trees, regression analy-
sis and based-rule analysis that are responsible to create the classifier models.
This divergence of the approach allows us to compare the effectiveness and
efficiency of them on detecting each studied smell type. This comparison leads
us to understand the scenarios that each approach can be better applied. An-
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other reason is that they also are widely evaluated in previous studies related
to code smell detection (e.g., (27, 47)). We used the Weka package (70) of the
R plataform11 in order to implement these techniques.

3.2.2
Related Work

Several machine learning techniques have been adapted to enable auto-
matic detection of code smells (e.g., (27, 47)). Although these studies report
interesting results concerning the effectiveness and efficiency of ML techniques
to detect code smells, there is still little knowledge about the relation between
the chosen dataset and the obtained result.

In (28), the authors proposed the Bayesian Belief Network (BBN) to
detect instances of God Class. They used four graduate students to validate a
set of classes, reporting if each class contains a God Class instance or not.
From such procedure, they built a dataset containing 15 consensual smell
instances. Finally, they applied a 3-fold cross-validation on this dataset in
order to evaluate the performance of the BBN. They obtained an accuracy of
0.68 on detecting God Class. In (48), the authors extended the study (28) by
applying the BBN to detect instances ofBlob,Spaghetti Code and Functional
Decomposition. In this new study, they involved seven students to detect the
instances. Then, they evaluated the effectiveness of BBN to detect these smell
types.

The study described in (29) assessed the effectiveness of Support Vector
Machine in the detection of four types of code smell: Blob, Functional De-
composition, Spaghetti Code and Swiss Army Knife. The SVM obtained an
accuracy of up to 0.74. In (49), the authors proposed the use of Decision Tree
technique to detect code smells. The authors used a single dataset containing
a huge number of examples validated by a few developers. The results indicate
that the Decision Tree is able to reach an accuracy up to 0.78.

Fontana et.al. (30) presented a large study that compares and exper-
iments different configurations of machine learning techniques to detect four
code smell types. To perform the training of these techniques, the authors used
a dataset containing several examples of code smells manually validated by a
few developers. The J48 and Random Forest obtained the highest accuracy,
reaching values up to 0.95. However, a recent study (73) indicates that the
dataset used by Fontana (30) had a high influence on the accuracy obtained
by the techniques.

11https://www.r-project.org
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The studies described in (27, 47) analyzed the accuracy and efficiency of
ML techniques in the detection of 4 distinct code smell types. The results
of both studies indicated that the Random Forest is able to reach high
effectiveness and efficiency when detecting these smell types.

3.3
Study Design

Previous studies (27, 47) suggest that ML techniques are a promising way
to identify code smells and have been reaching higher effectiveness. However,
as discussed by a recent study (73), the employed dataset used for the training
stage of the ML techniques has a direct influence on the obtained effectiveness,
compromising the assess external validity. In this context, we built a new
dataset to observe the techniques behavior for a new training set, more details
about this dataset can be seen in 3.3.1. To evaluate this behavior, our study
aims at investigating the capability of ML techniques to detect code smells,
i.e., to investigate the effectiveness of each technique in terms of two factors:
(i) the type of smell analyzed; and (ii) the number of examples used to perform
the training of the ML techniques.

Initially, we defined the research question RQ1 aiming at investigating
the overall effectiveness of ML techniques in detecting six smell types using
code fragments from ten different projects. In our study, for each one of the
six smell types analyzed, we performed the training of the ML techniques on
a dataset containing 200 (non-)smell examples.

RQ1. How effective are the ML techniques on detecting smells?

Finally, we investigated theRQ2 aiming at analyzing the efficiency of the
ML techniques on detecting smells, i.e., how effective a ML technique detects
smells whereas we gradually increase the number of examples used to perform
its training. Although ML techniques have been considered a promising way to
detect code smells, these techniques require code smell examples annotated to
perform their training. However, the annotation of a large number of examples
may introduce an unfeasible additional time and effort. Hence, it is important
to analyze the effectiveness variation of the ML techniques whereas we vary
the number of examples used to perform the training of these techniques.

RQ2: How efficient are the ML techniques on detecting smells?
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3.3.1
Data Collection

To answer RQ1, we extracted 200 potentially-smelly code fragments from
the analyzed projects for each type of code smell studied. This high amount
of code fragments allows us to observe the behavior of the techniques in a
diversity of code smell instances, besides avoiding overfitting. The detection
process was made using a detection tool (78). The tools are performed using
rule-based strategies, where each strategy is defined based on a set of metrics
and thresholds.

For this study, we selected only code fragments that were directly
refactored by the respective software’s developer. To collect the data about
the refactored elements, we used the RefDetector12. This tool is a library/API
written in Java that can detect refactorings analyzing the project history. From
this information, it was possible to filter among the analyzed smells those that
directly underwent a refactoring, in this way, we can ensure that these detected
instances are a harmful smell, once the developers insist on refactoring this
element affected by the smell. Another advantage of this filter is that it avoids
being biased by a single set of detection rules.

Therefore, the application of rule-based strategies requires the collection
of metrics for all source files in a project. For that, we used the Understand13 to
extract software metrics. Altogether, 43 metrics were analyzed. These metrics
were used during the training process of ML techniques. Also, these features
cover different information about classes, methods, and fields, indicating, e.g.,
the number of lines of the code fragments, relations of complexity within and
between elements and several other counters. Figure 3.1 presents the schema
of the dataset containing the metrics (M1...Mn), and classifications (True or
False) associated to the code fragment indicating the existence or not of the
smell in that code. We created one dataset for each code smell type analyzed
in our study.

To answer RQ2, we need a small training set and increase it gradually
as we analyze the change in effectiveness for each ML technique. In order to
obtain this increase, we break each dataset into six subdatasets of different
sizes: 20, 40, 80, 120, 160 and 200 instances respectively. This division was
made such that each higher subdataset has all the instances of the preceding
dataset and some additional. This division property ensures that each code
fragment used during the training process using a small subdataset, also will
be used when analyzing a bigger subdataset.

12https://github.com/xai/RefDetector
13https://scitools.com/features/
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Figure 3.1: Schema of the Dataset.

3.3.2
Effectiveness Metrics

To assess the effectiveness of the ML techniques, we used the F-measure
that considers both the recall and precision to compute a score. For our study,
the true positive (TP) elements represent the code fragment classified by the
ML techniques as a code smell that are, actually, a real code smell. The
false positive (FP) elements refer to the code fragments wrongly classified
as code smell. Similarly, the true negative (TN) represents the code fragments
correctly classified as not-smell. Finally, the false negative (FN) represents the
wrong ones. In this context, we can define the recall and precision as:

• Recall (R) : The Number of code fragments correctly classified as code
smells among the total of code smell instances in the data collection.

R = TP

TP + FN
(3-1)

• Precision (P) : The Number of code fragments correctly classified as
code smell among the total of code fragments classified as code smell by
the ML technique.

P = TP

TP + FP
(3-2)

• F-Measure: Harmonic mean of precision and recall.

F1 = 2 · P · R

P + R
(3-3)

This mean is widely used in previous studies (27, 77, 30) that assess the
ML techniques on detecting code smells.
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3.3.3
Operation

Using the datasets containing the classified (non-)smelly instances and
the software metrics for each analyzed code fragment, we performed two
different experiments. Each experiment aims at answering a research question.

(Overall Effectiveness) To answer RQ1, we used the datasets to
analyze the effectiveness (in terms of f-measure) of the ML techniques on
detecting a specific smell type. For each smell type, we calculated the overall
effectiveness of each technique by applying a 5-fold cross validation procedure
on the 200 classified instances.

(ML techniques Efficiency) To answer RQ2, we evaluated the ef-
ficiency of the ML techniques, i.e., the effectiveness of each ML technique
whereas we increment the number of code smells examples used to perform
the training of these techniques. In other words, we repeat the effectiveness
experiment six times, one for each subdataset of the respective smell. The rep-
etition aimed to guarantee that both, the training and test sets, were composed
of equals number of fragments classified as smell or not.

3.4
Results and Discussion

This section presents and discusses the main results of the study. The
results are organized in terms of the two research questions presented in
Section 3.3.

3.4.1
Overall Effectiveness

To answer RQ1, for each smell type studied, we analyze the effectiveness
of the ML technique to detect the smells of the respective type. Figure 3.2
presents the overall effectiveness of the ML techniques on detecting each
smell type. The x-axis is divided per smell and presents sequentially the ML
technique used to detect the respective code smell. Meanwhile, the y-axis
describes the values of the effectiveness (in terms of f-measure) obtained by the
ML technique on detecting the respective smell type. To improve readability,
we attach the median value of the f-measure in the table below the bars
associated with each smell and highlighted the higher results.

Complex Class. Regarding Complex Class smell, RF reached the
highest effectiveness of 0,715, while J48 and SMO obtained the lowest values
with a slight difference between them. Note that none of the ML techniques
reached effectiveness above 0.8. If we look closer to this smell definition, we
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Figure 3.2: Effectiveness Reached by the ML Techniques on Detecting Smells.

observe that there is not a clear threshold about how complex the class needs to
be. In general, developers do not agree with some smell classifications because
they can associate complexity with different metrics (27, 47). Similarly, this
disagreement can also occur with the ML techniques during the training stage,
once we are working with more than 40 distinct metrics, which can explain
these low results.

Spaghetti Code. Although a bit better, the ML techniques’ effective-
ness observed in the detection of Spaghetti Code is similar to Complex class.
None of the techniques was able to reach effectiveness above 0.8. J48 reached
the lowest effectiveness (0,675) for this smell type. The highest effectiveness
(0,765) was obtained by JRip.

Class Data Should Be Private. Except for J48, JRip, and RF, ML, the
remaining techniques did not obtain high effectiveness for Class Data Should
Be Private. J48, JRip, and RF have reached effectiveness over 0.8. NB obtained
only 0,662. SVM, OR, and SMO obtained values between 0,7 and 0,8.

God Class. Different from the previously discussed smells, the result
for God Class reached higher values. All ML techniques obtained effectiveness
higher than 0,8. JRip reached the highest effectiveness (0,877). Similarly to
Class Data Should Be Private, the lowest one was obtained by NB. Note that
the coverage of metrics also could implicate the effectiveness obtained by the
techniques as seen in Complex Class, however some metrics, as Lines of Code,
have higher influence when detecting God Class (74, 79). Besides that, God
Classes are usually associated with high values of the metrics.

Lazy Class. The detection of Lazy Class is by far the better results
observed in this study. All techniques reached values above 0,9. Another dif-
ference between the smells previously observed is regarding the NB technique,
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which reached the highest result in contrast with its previous results. It is also
possible to observe that RF obtained effectiveness slightly close to NB, this
proximity also occurs between SVM and SMO, besides J48 and JRip.

Speculative Generality. The ML techniques were able to reach values
higher than 0,9 for Speculative Generality. JRip, once again, reached the
highest effectiveness (0,913), followed closely by OR that also exceeded 0,9.
The lowest obtained effectiveness is in charge of the SMO technique, which
reached 0,749. An important fact to note is that Speculative Generality should
be difficult to detect whether we look at a single instance at a time as the
ML techniques do because this smell occurs when a developer implements an
element (i.e., methods, classes, and fields) that never is used. In other words,
it should be necessary to look at this element along different element’s versions
to decide of the existence or not of this smell, which contradicts the good result
obtained by some of the algorithms.

In general, the ML techniques obtained similar results for the same smell,
the highest divergence (0,164) is observed in the detection of SG smell between
JRip and SMO. Note that JRip reached the highest effectiveness in three out
of six types of smell (GC, SC, and SG) at the same time that NB obtained two
lowest results (CDSBP and GC). Despite these lowest results, NB reached the
highest result for LC, this behavior can be also observed to J48 that obtained
the highest result for CDSBP and the lowest one for CC. Although RF had
obtained only one highest result, it also has obtained closer results whether
compared with the betters one in others four types of smell (CDSBP, GC, LC,
and SC), in particular, RF has had good results in previous studies (27, 30, 77)
and this behavior was also maintained in this study.

These findings indicate that JRip and RF had better effectiveness in
detecting all of the six analyzed smells. Both reached at least good results for
five out of six smells, only for CC they obtained a reasonable result, even being
their lowest results, were still the best for detection of this smell.

Another implication observed is related to the variation between the
minimum and maximum effectiveness of the same smell. It is possible to note
that, although JRip and RF obtained the best results, the other techniques
did not obtain very different results, which makes possible the use of them at
the discretion of the developer.

We can conclude for RQ1 that, in average, the ML techniques were
not able to detect all the six analyzed types of smells with high effec-
tiveness. On the other hand, they reached high effectiveness on the
detection of God Class, Speculative Generality and specially Large
Class. These results suggest the effectiveness of these techniques are
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sensitive to the type of smell analyzed.

3.4.2
Efficiency

According to the results for RQ1, ML techniques were able to reach
high effectiveness on detecting smells for specifics smells. However, we do
not know the efficiency of these techniques (see RQ2), i.e., the number of
instances required by each technique to reach high effectiveness. Figures 3.3
to 3.9 present the results that support the discussions regarding this research
question. These figures represent the efficiency reached by the ML techniques
on detecting each smell type. The x-axis describes the number of the examples
used in the training phase of the techniques divided per smell, while the y-
axis represents the median of the effectiveness values obtained by each ML
technique on detecting smells.

Is possible to observe that the ML techniques do not follow a unique
behavior when the number of analyzed example grows. Some techniques as
RF and SVM had a significant increase in SG detection during the addition
of new (non-)smelly instances in the training set. In contrast to J48 where a
lower training set resulted in higher effectiveness, this same behavior can be
seen in JRip when detecting CC smell and NB when detecting CDSBP and
GC.

In general, the ML techniques reached results near to their best results
in this study on detecting the respective smell with a low number of examples.
Some cases, such as the detection of CC using NB, are exceptions, in these
cases, using a dataset containing a low number of instances did not reach
high results. We can also note that all algorithms did not need more than 20
instances to reach effectiveness above 0.8 for LC and GC smells.

The analysis of these results provides us with the answer to the RQ2.
The results show that, in most cases, the techniques did not need a higher
number of examples to reach their best detection results. In fact, the
increase in the number of instances in the training set did not appear
to have a direct relationship with the increase in effectiveness for
all ML techniques. These results contradict those results found in previous
studies (27, 30, 77), which stated that the techniques needed a large number
of examples to get good results.
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Figure 3.3: J48 Efficiency Figure 3.4: NB Efficiency

Figure 3.5: SVM Efficiency Figure 3.6: OR Efficiency

Figure 3.7: JRip Efficiency Figure 3.8: RF Efficiency

Figure 3.9: SMO Efficiency

3.5
Limitations and Threats to Validity

3.5.1
Threats to Validity

This section discusses the threats to validity in accordance with the
criteria defined by Wohlin et al. (72).
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Construct Validity. The datasets that supported our study were built
from code fragments collected using rule-based strategies that have a set of
metrics and thresholds. These thresholds are threats, once they can bias the
techniques learning because of the analyzed smelly fragments were filtered by
these thresholds. To lessen this bias, we filter the smells by selecting only those
that caught the developer’s attention to refactor them.

Another important factor to observe is that these datasets were built
including the same metrics for all smell types. However, we can note that each
smell affects a specific domain of the software and not all metrics are directly
related to that domain. Therefore, ignoring this relation between the chosen
metrics and the software scope can affect the results. Although the chosen
smell types affect different scopes of the analyzed project, their importance
was not taken into account during the choice. It is also possible to observe
that specific smells were not studied for a specific scope, e.g., such as smelly
structures affecting only the internal body of a method.

Internal Validity. The use of the Weka package of the R platform to
implement the techniques analyzed in our study enabled us to experiment a
variety of configurations, which affect the training process of the techniques. In
such context, the configurations considered in our experiments may impact the
effectiveness and efficiency of the techniques. In order to mitigate this threat,
we configured all ML techniques according to the better settings defined in (30).
Indeed, (30) performed a variety of experiments in order to find the best adjust
for each technique.

External Validity. The code fragments were extracted from ten Java
projects. However, although the implementation of these projects presents
classes and methods with different characteristics (i.e., size and complexity),
our results might not hold to other projects.

3.5.2
Limitations

This section discusses the limitations found during the study, which will
be considered in future studies.

Number of Smells. The catalog of smell types presented in (46)
categorizes the smells based on their area of action in the code, besides defining
a high number of smell types than those addressed in our empirical study.
These additional smells can also harm the quality of the software, making
their detection important. However, their detection through machine learning
requires the evaluation of code fragments that are suspicions of containing
these smells, which leads us to the second limitation.
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Evaluated Projects. Ten different projects are currently covered in our
dataset. However, all of these projects are open source projects written with the
Java programming language. These common characteristics among the chosen
projects tend may reduce the variety of particular manifestations of a smell
type. A larger dataset, including both closed source and additional open source
projects, can expose a wider variety of smell structures.

Classifier Model Customization. We observed that each ML tech-
nique did not support general, highly-accurate detection of all smell types.
However, the achieved an improvement in their overall effectiveness when are
analyzing a subset of specific smell types. This improvement could be related
to the classifier model built by the techniques. It is important to note that
this model can be improved manually changing the parameters during the
technique implementation, or automatically through trial and error. Previous
studies (27, 77) suggest that this improvement by customization could also be
explored to better detect smells for specifics developers.

Project Sensitive Customization. Better behavior of a ML technique
perhaps could also be observed if the training and the detection involves a
single software project. Given this narrower scope, we would reduce the number
of developers involved in the dataset. Thus, the ML techniques may be able
to better adapt themselves during the training process. If we further narrow
the scope to the system’s modules, we will have code fragments with similar
responsibilities and a subset of developers in charge. This change may allow
the techniques to customize their detection for the specific concerns being
addressed by each module, hopefully further improving their effectiveness but
in detriment of possibly not having a reasonable number of smell instances to
properly train the model.

3.6
Conclusion and Future Work

This study presented a study that analyzed the effectiveness and effi-
ciency of ML techniques for detecting code smells. Firstly, we evaluated the
overall effectiveness of the ML techniques to detect smells. Then, we analyzed
the efficiency of the ML techniques by evaluating their effectiveness according
to the number of examples used to perform the training process.

The results indicated that while the JRip and RF reached the highest
overall effectiveness on detecting smells, the NB obtained the lowest perfor-
mance. We also observed that all the analyzed techniques are sensitive to the
smell type analyzed, as observed in previous studies.

Regarding the techniques’ efficiency, we observed a different result from
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previous studies, where the increase in the number of instances in the training
set did not appear to have a direct relationship with the increase of effective-
ness. Once the ML techniques do not need a high number of examples to reach
their best results, the effort to train the techniques is reduced, enabling the use
of this technique in projects with different sizes. We can also conclude that the
dataset is possibly linked to the result obtained by the techniques, in addition
to the interference in the number of examples needed in the training to obtain
them.

As future work, we intend to investigate the effectiveness of ML tech-
niques on detecting other smell types. In addition, we also intend to replicate
this study in controlled scenarios, reducing the analyzed scope per project
and, after that, per system’s modules. In this way, we expect to identify the
behavior of the techniques in more specific contexts.

3.7
Summary of Chapter 3

In this chapter, we performed a complementary study aimed at investi-
gating the ability of ML techniques on detecting developer-sensitive smells. We
built a new dataset to observe the techniques’ behavior for a new training set.
Also, we focused on assessing ML techniques for detecting smells that ended
up being refactored by a developer of the respective software project.

Similar to Chapter 2, the results also showed that all the analyzed tech-
niques are sensitive to the developers’ knowledge. Besides, the results indicated
that the ML techniques still reached high effectiveness when detecting harm-
ful smells. This finding was observed for the vast majority of the smell types.
The results also provided us evidence that some ML techniques can better
customize their detection model for specific smells types. For instance, the en-
hancement of JRip results shown when detecting harmful smells that reached
the highest effectiveness in three out six types of smells for this new dataset.
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4
Customization of Refactorings

Chapters 2 and 3 present the influence that developers’ knowledge has
in the effectiveness obtained by ML techniques. This influence reinforces the
need for supporting the automatic customization of smell detection. In a similar
vein, the smell removal process is also often performed by a developer, who has
the knowledge to properly perform the code refactoring. Therefore, developers
are responsible to evaluate the context of the source code affected by the smell.
They also have to decide which refactoring is appropriate for each context.
Indeed, a previous study (15) listed various reasons that motivate developers
to apply refactorings, which depend on the contextual aspects of the task and
the source code being changed. Many of these reported reasons are directly or
indirectly related to the removal of code smells.

Thus, the application of refactoring may need to be customized as it
occurs with smell detection. The application of specific customized refactorings
can be decisive to either remove, partially mitigating or introduce a code smell.
However, customization of refactoring is rarely investigated, as much as the
impact of customized refactorings and code smells. Thus, this chapter presents
the paper "How Do Developers Customize Refactoring in Practice?" (44),
which is being submitted to the 35th International Conference on Automated
Software Engineering (ASE) in May 2020.

In this paper, we performed a retrospective study involving 13 projects,
from which we identified and analyzed 1,162 refactoring instances. We focused
the analysis on four of the most frequent refactoring types, namely Extract
Method, Inline Method,Pull Up Method, and Move Method. These refactoring
types were also selected due to the fact their application is needed to remove
various smell types analyzed in the previous studies. We analyzed what
code modifications developers performed along with such refactorings. This
analysis enable us to reveal whether developers often have to customize such
refactorings. Such modifications include adding or discarding modifications
that are tailored to their program’s needs. We also investigated how these
refactoring customizations interact with code smells.

The analysis can help one to understand how customized refactorings: (i)
reduce or increase the occurrence of a particular type of smell, (ii) reduce or
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increase the intensity of the smell, that is, affect the code measures associated
with a smell, making it less or more harmful than before the refactoring.
Finally, we also discussed the refactoring support provided by Eclipse for
the application of customizations commonly made by developers. We focused
on the analysis of the Eclipse IDE at it is a very popular environment for
Java development. Eclipse is frequently used in the literature on automated
refactoring support (e.g., (40, 41)).
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4.1
Introduction

Code refactoring is a key technique to promote program comprehensibil-
ity, maintainability and other quality attributes. Each code refactoring type
is composed of one or more primitive modifications that aim at improving
program structure, thereby facilitating program comprehension and further
program changes. For instance, let us consider the Extract Method refactor-
ing, which is the most common refactoring type according to recent stud-
ies (2, 15, 80). Fowler (1) states all instances of an Extract Method consists
of ‘default’ (i.e., core) set of modifications in the program, including the cre-
ation of a new method based on the extraction of statements from an existing
method (16). Extract Method refactoring reduces the method’s size and the
separation of the responsibility now fulfilled by the extracted method. These
modifications possibly enhance the comprehensibility (1) of both the existing
and the extracted method. They also facilitate the maintenance and the reuse
of that segregated responsibility in further changes of the program.

However, even apparently simple refactorings, such as Extract Method,
are often hard to be realized in a software project (9, 17). Developers may need
to customize the set of core modifications associated with a refactoring type.
They might need to perform additional modifications or even discard the core
ones prescribed in Fowler’s catalogue (1), and/or those modifications induced
by IDEs or tools for automated refactoring. In other words, there might be
some variations of each refactoring type, including ones not documented in
Fowler’s catalogue (1) and not supported by popular IDEs and tools. We call
each possible variation of a refactoring type as a customized refactoring.

Such customizations may be required to satisfy recurring developers’
needs. These needs may range from the refactoring adjustment to: (i) some
typical structures within and across projects to (ii) the removal of certain
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smells, or (iii) even the application of complementary modifications in the
clients of the refactored code. Recent empirical studies (17, 18) suggest that
developers seem to not strictly follow the modifications prescribed by IDEs
to realize their refactorings (41). On the other hand, there is a limited
understanding of how customized refactorings occur in practice. No study
has analyzed in depth the typical variations of well-known refactoring types
across multiple software projects. Key questions have not been addressed
by the literature, including: are the most frequent modifications of each
refactoring type in line with the core modifications recommended in Fowler’s
catalogue? are there recurring non-default, additional modifications performed
for the same refactoring type across multiple projects? Are there typical
patterns of customized refactorings? Are they fully or partially supported
by automated refactoring tools and detected by state-of-the-art refactoring
detection techniques?

The refactoring practice is often studied, especially in terms of its impact
on the program quality (e.g., (1, 9, 31, 38, 78)). There are also a few studies
investigating the refactorings required in certain software projects (32, 33, 34).
However, there is little understanding about how developers customize refac-
torings. A recent study (35) also observed certain relationships between refac-
torings and other code changes. This study concludes that more refactorings
occur in classes in which developers applied changes realizing additions of new
features. However, the study does not investigate how customized refactorings
are applied across projects. None of the aforementioned questions are explicitly
addressed by the literature.

In order to address this gap, we have performed a retrospective study in-
volving 13 open software projects, from which we identified and analyzed 1,162
refactoring instances. We focused our analysis on four of the most frequent
refactoring types, namely Extract Method, Inline Method, Pull Up Method,
and Move Method. We observed that the core modifications of each analyzed
refactoring occurred frequently during the application of the respective refac-
toring. However, most of the refactoring instances also encompassed recur-
ring additional modifications. These additional modifications are responsible
to adjusting the refactoring to specific surrounding structures in developers’
programs.

We also observed that these recurring additional modifications are not
limited to core classes affected by the refactoring. In fact, we observed that
refactoring often affects larger program scopes, than the ones described by
Fowler’s catalogue (1) and those ones covered by popular IDEs (81). We also
reported several patterns of customized refactorings that are not covered by
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existing refactoring tool provided by Eclipse IDE. Finally, we also analyzed
the impact of these patterns on code smells. We inferred the impact of each
pattern on code smells by extracting the following information for each instance
of these patterns: (i) which code smell types were introduced; (ii) which code
smell types were removed; and (iii) which code smell types had their intensity
reduced albeit not fully removed.

This paper is structured as follows: Section 4.2 provides background
information regarding key concepts about customized refactorings. It also
presents a motivating concrete example of customized refactoring. Section 4.3
describes our study settings, including the study goal and experimental steps.
Section 4.4 presents our findings about the frequency and how developers
customized refactorings in practice. Section 4.5 discusses the threats to validity
of our study. Finally, Section 4.6 concludes this paper and suggests future work.

4.2
Background

This section presents the main concepts about refactoring types and their
customization.

Table 4.1: Refactoring Scope
Type Description source target

Extract Method Create a method based on statements
extracted from an existing method

Method where the
extraction was performed Extracted method

Inline Method Incorporate the body of a method
into an existing method Method to be inlined Method that inlined

the source

Pull Up Method Move a method from a child class
to its parent class Method in the subclass Pulled up method in the superclass

Move Method Move a method from one
class to another class Method to be moved Method after being

moved

4.2.1
Refactoring in Practice

Code refactoring consists of applying modifications on code structures
for enhancing program comprehensibility, maintainability and other quality
attributes (1, 8, 9). This practice is often adopted by large companies, such as
Microsoft (9), and the several other companies that adhere the agile methods.
The literature cataloged different types of refactorings in order to guide the
developers to enhance their code structure (1). For this study we focused on
four of the most popular refactoring types. They are listed and described
in Table 4.1. The last two columns describe the source element and the
target element of each refactoring type. These refactoring types were chosen
because they: (i) have different scopes, i.e., they cover both class-level and
method-level refactorings, and (ii) are among the most frequently applied
refactorings in practice (2, 8, 80). For each refactoring, we defined the source
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and target methods. These methods represent the main methods of each
refactoring indicating the main changed method (i.e., the source) and the
method produced after the refactoring (i.e., the target). Table 4.1 presents the
source and target method of each refactoring.

Besides, each refactoring type specifies a set of core modifications that
should be applied, as shown in Table 4.2. Core modifications are those de-
scribed in the Fowler’s catalogue and employed by state-of-the-art refactoring
detection tools

Table 4.2: Refactoring Core Modifications

Type Core Modifications

Extract Method
• Create the target method with code extracted from the source method
• Update variables’ references
• Add in the source method’s body a call to the target method

Inline Method • Replace each call to the source method with its method body
• Remove the source’s method declaration

Pull Up Method
• Create target method in the superclass and copy the source’s method body
• Remove from all subclasses the source’s method declaration
• If possible, change source methods calls, with call to the target method

Move Method
• Create target method with a copy of the source’s body method
• If removed source’s method: replace calls to target method
• If did not remove source’s method: add target call in source’s body

In order to illustrate the core modifications of a refactoring type, lets
consider the Extract Method, which is the most frequent refactoring type
popularly adopted by developers (15, 16) after renaming. According to Fowler’s
catalog (1), the realization of the Extract Method requires to creation of a new
method (target method) based on the extraction of statements from the body
of the source method. Check if any variables from the extracted code need to be
redeclared or passed as an argument to the extracted target method. Finally,
replace all the calls to the source method with calls to the target method. To
perform the Inline Method, all method calls should be replaced with its body
and the source method declaration should be removed. To execute the Pull
Up Method, a new method (target method) in the superclass should be firstly
created with a copy of the source method’s body. Then, all source method
definitions should be removed from all subclasses or replaced with a call to
the new superclass method. To perform a Move Method, a new method (target
method) should be created with a copy of the method source’s body. Then,
removal of the source method’s declaration is optional. If not removed it can
be kept as a delegating method. If the source method was removed, all source
method calls should be removed.

The application of a refactoring is a complex activity, which requires
specialized effort (9, 82). It is because developers need to know when and
where the refactoring can be applied, what refactoring type can be applied,
and how to apply this refactoring type (1). Previous studies have investigated
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refactoring opportunities to facilitate the application of refactorings (20,
82, 83). Another study investigated the benefits and challenges to apply
refactorings (9). Studies also have proposed automated refactoring tools to
support the application of refactorings (20, 84). Besides, existing IDEs such as
Eclipse also provide the automated application of some refactoring types such
as Extract Method and Move Method.

These studies and tools are limited to respectively analyze and support
how developers apply refactorings even considering only the core modifications
involved in each refactoring type. However, a recent study conducted by
Oliveira et al. (18) indicates that developers customize refactorings according
to their development context and existing automated refactoring tools do not
support this customization. By customized refactoring, we mean a refactoring
(i) involving core modifications and at least an additional modification, i.e,
modifications not considered in the Fowler’s catalogue and state-of-the-art
refactoring detection tools; or (ii) removing a core modification.

4.2.2
Understanding Refactoring Customization

Although a recent study (18) indicates that developers have applied
customized refactorings manually according to their development context, the
knowledge about customized refactoring in practice is limited. The literature
does not systematically investigate (i) what are the code modifications in
customized refactorings, and (ii) how developers apply customized refactorings
for each refactoring type. This lack of knowledge also applies to the most
common types of refactoring such as Extract Method and Move Method (15).
Figure 4.1 presents a real example of customized refactoring, which occurred
in a open source project.

The example presents a customized Move Method that was applied on
the Apache Tomcat software project in the commit ci = f69c17895.1 In that
case, the developer manually moved a method called setAllowCasualMP2

from the Connector class to the StandardContext class. This example
is composed of the following modifications: (i) a method was moved from a
class to another class, and (ii) a method signature of this method was created
on the interface (Context) of the target class. The first modification is a core
modifications of the Move Method defined in Table 4.2.

However, the second modification is an additional one that customize the
Move Method. This additional modification moved the setAllowCasualMP

1https://github.com/apache/tomcat/commit/f69c17895. Access Date: 03/03/2020
2The method name was adapted due to paper short space. The real name is setAllowCa-

sualMultipartParsing.

https://github.com/apache/tomcat/commit/f69c17895
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method to the target class and made it and abstract method of the interface
implemented by the target class. This additioned modification is really impor-
tant, because there is a test class (TestStandardContext) that calls the
setAllowCasualMP method directly from the Context interface. There-
fore, the additional modification is essential for the correct functioning of the
project. Otherwise, the project would have a compilation error.

Figure 4.1: Real Example of Customized Refactoring

This customization of Move Method is not supported by the IDEs,
such as Eclipse and IntelliJ, and any other tools for supporting refactoring.
These existing solutions only allow moving a method to other class with
a very limited flexibility. For instance, Eclipse’s refactoring automated tool
only allows developers to change both the method’s name and parameters’
name, and the target class. This limited flexibility may force developers to
manually apply the full or partial set of modifications of a refactoring, which
is cumbersome and error-prone (9). Thus, existing tools would better cover
developers’ needs if they are designed to support a comprehensive catalog
of mutable set of code modifications for enabling customized refactorings.
However, in order to better understand the developers’ need, we need to
properly investigate whether, to what extent and how developers perform
alternative modifications along their customized refactorings. In case there is
a wide range of recurring customized refactorings, a catalog can help to better
characterize the typical core and additional modifications of each customized
refactoring patterns. This catalog can also better inform tool designers to
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support developers with proper customization features.

4.3
Study Settings

Developers are responsible to analyze various contextual aspects of the
code, which a possible target for applying a refactoring. This analysis is
required to enabling the developer to decide which refactoring – including its
type and code modifications – is appropriate for a given context. However,
developers may feel uncertain about the appropriate refactoring decisions
within specific contexts. In addition, the tools may not provide adequate
support for the specific customization that the developers need. To make it
worse, the erroneous choice of refactoring modifications can induce developers
to not reach the results in principle expected, or even somehow induce the
(possibly unconscious) introduction of code smells.

Given the contextual particularities of where a certain refactoring type
is applied, which may be frequent across projects, certain customized refactor-
ings may also occur with a non-negligible frequency. However, the empirical
knowledge about customized refactorings is quite limited. In this sense, we
investigated how developers have applied customized refactorings in practice.
To reach this goal, we detected and analyzed the possible customizations for
each of four common types of refactoring. This study was performed along a
retrospective study that identified the frequent code modifications made in the
context of the analyzed refactoring types.

We also distinguished what are the core and additional modifications
that tend to be applied together in instances of a refactoring type. Whenever
a certain grouping of the same modifications occur together with a certain fre-
quency, we call it a customization pattern (or simply pattern). These patterns
may reveal insights about how developers apply and customize refactorings on
their projects. We also discuss occurrences of interesting common patterns and
to what extent they are supported by existing IDEs and other tools. Finally,
we can also discuss the impact on the code structure quality after instances of a
customization pattern were applied in a code change. The analysis of the code
structural quality was based on the observation of smells either introduced or
removed within the scope of the customized refactoring.

Our study findings can reinforce potential requirements on the design
and improvement of refactoring tools. They can also provide insights on the
design of recommenders for assisting developers in properly selecting custom
code modifications along a refactoring. In this way, we split our study in three
research questions:
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RQ1: What code modifications developers perform when refactoring?

This RQ focuses on identifying the most frequent code modifications
related to each analyzed refactoring type. We then investigated the code mod-
ifications that compose the refactorings across projects and the frequency of
the each of such modifications. Finally, we also observed where the modifica-
tions occur within the refactored code, in particular, if the modifications are
within the source and target methods (or, alternatively, in the surrounding
code) of each analyzed refactoring type (Table 4.1).

RQ2: How often developers apply customized refactorings?

The second RQ aims at investigating the most common customization
patterns for each refactoring type and the frequency that these patterns occur.
The results of this RQ provided a catalogue of the most frequent patterns
for each refactoring. Finally, we also investigated if the existing IDE-based
automated tools support the application of frequent patterns. Therefore, our
results can suggest how those existing IDE tools can improve the support for
developers performing customized refactorings.

RQ3: Does customized refactoring reduce the intensity of code smells?

Finally, in our last research question aims at investigating the impact of
each pattern on code smells. We wanted to observe whether each customiza-
tion pattern consistently reduce or increase the intensity of code smells; and
additionally if they remove or introduce particular instances of a specific smell
type. This analysis is important to better guide developers on performing not-
harmful customized refactorings. Developers may wish to be warned on the
potential negative impact on the code structure when they are making certain
refactoring customization decisions. Developers may also receive recommenda-
tions of alternative customized refactorings, which are beneficial to the code
structure and still helping them to achieve their non-structural goals in the
task at hands.

4.3.1
Study Design

This section details the five steps performed in the preparation of our
study dataset. These steps are illustrated in Figure 4.2. We indicated each
step by using a number from 1 to 5.
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Figure 4.2: Study Design Steps

Step 1: Project Selection. We selected 13 projects based on the following
criteria. First, the projects must be open source, being available in some
GitHub repository. This decision is intended at facilitating the replication of
our study by other researchers. We then ordered all open software projects
by the stars count. The number of starts is given by developers who have
access to the project in GitHub. This filter is useful to indicate active and
popular projects (86). We filtered the top-100 projects based on this criterion.
Then, we selected the software projects that have at least 90% of source code
written in Java, due to the characteristics of the robust, highly-accurate tools
used to build our dataset. Besides that, we performed a manual evaluation
of these projects to satisfy the following criteria: our set of projects should
be of different sizes, domains, and often used in previous studies about
refactoring (2, 15, 80, 87, 88). The latter is important to ensure other desirable
complementary criteria, used in those previous studies, also affected our
selection of projects. Moreover we could eventually position our findings under
the perspective of previous findings about software refactoring.

Step 2: Refactoring Detection. We used the Refactoring Miner (15, 38)
tool to detect refactorings that occurred in the selected projects. Refactoring
Miner is widely used in the literature (2, 15, 80, 38). This tool has a satisfactory
accuracy: 87.2% of recall and 98% of precision (15, 81). In order to enable an
in-depth analysis, we focused only on 4 refactoring types (Table 4.1), which
are frequent in practice (2, 15). It is possible to observe that we did not include
refactorings with wider scope; for example, those refactorings affecting a high
proportion of classes located in a package or multiple packages). We decided
to focus on refactorings with narrower scope because otherwise there would be
a increasing likelihood of noise related to other modifications, which are not
related at all to the refactoring, across the affected packages. This noise would
undesirably interfere our study outcome in a significant manner. In any case,
those refactoring types are not frequently used in practice (2, 8, 80) and, in
fact, they were quite rare in our dataset.
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Step 3: Code Smell Detection. We used a smell detection tool that was
already used by previous studies about refactoring (2, 80). This tool imple-
ments smell detection strategies based on software metrics. These strategies
were validated by previous work (89) with a resulting precision and recall (90)
of 72% and 81%, respectively. Altogether, we collected 17 types of code smells
in this study. We collected the smells before and after the application of each
refactoring detected in Step 2. Finally, we classified a smell as introduced if
the smell occurred in an element affected by a refactoring. Similarly, a code
smell is considered as removed if the smell was cleared after the refactoring.
Finally, a smell can be considered as mitigated if at least one of the metrics
used to detect the smell had its corresponding value been improved, without
worsening any of the other measures used in its detection. In other words, a
mitigated smell is one in which its intensity is somehow reduced (regardless
the degree of reduction). We use the term mitigation as the anomalous nature
of a certain smell was just reduced to make the developers’ task possible. The
complete list of detected smells is described in Table 4.3.

Table 4.3: Smell Types Analyzed

Smell Type Definition
Brain Method Method overloaded with software features
Dispersed Coupling Method that calls too many methods
Feature Envy Method “envying” other classes’ features
Intensive Coupling Method that depends too much from a few others
Long Method Too long and complex method
Long Parameter List Too many parameters in a method
Message Chain Too long chain of method calls
Shotgun Surgery Method whose changes affect many methods
Brain Class Class overloaded with software features
Class Data should be Private Class that overexposes its attributes
Complex Class Too complex software features into a class
Data Class Only data management features into a class
God Class Too many software features into a class
Lazy Class Too short and simple class
Refused Bequest Child class rarely uses parent class features
Spaghetti Code Too much code deviation and nesting
Speculative Generality Useless abstract class

Step 4: Modification Detection. We detected modifications made by devel-
opers while applying refactorings. We used a library from Eclipse’s JDT 3.10.0.
to collect these modifications 3. This library allows us to turn Java source code
into an Abstract Syntax Tree (AST) through a parser. ASTs are widely used in
the literature to detect refactorings (81, 91, 92). The Eclipse AST parser is the
base library used by Eclipse for many powerful tools, including their current
automated refactoring tool. This library can capture the semantic structure of
a Java program, allowing to identify and perform code modifications. For in-
stance, we have the METHOD_INVOCATION node from Eclipse AST. As the

3https://help.eclipse.org/mars/index.jsp. Access Date: 03/03/2020

https://help.eclipse.org/mars/index.jsp
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name suggests, the code fragments that are classified in this node are method
calls. Another example is the node METHOD_DECLARATION. This node
appears in the AST when occurs a declaration of a method.

Then, for each detected refactoring in step 2, we collected the information
from the two relevant versions, i.e., before (v) and after (v+1) the refactoring
occurrence. We collected information related to the classes affected by this
refactoring and their clients. We classified a class as affected by a refactoring
when the refactoring modifications occurred within that class. For instance,
an Extract Method will have only one affected class. On the other hand, a
refactoring of the type Pull Up Method or Move Method will have at least two
affected classes, once a method will be moved from a class to another one.
Finally, we classified as a client of a class every class that interacts with (e.g.,
importing it and/or calling a method of) the affected class.

Once we have two subsequent versions of a class, we can define the code
modifications as follow:

ASTv = {modificationi, modificationi+1, ..., modificationn} (4-1)

Let ASTv be the set of modifications obtained by the AST in version v. The set
of modifications added to the source code between two subsequent versions is
given by the resulting set of the difference between ASTv+1−ASTv. Similarly,
the set of modifications removed from the source code is given by the difference
of ASTv − ASTv+1.

Figure 4.3 illustrates the diff between two subsequent versions of a class
from Facebook Fresco project.4 The lines with green highlight indicate the
added statements. Similarly, the lines with red highlight indicate the removed
statements. Table 4.4 presents a partial list of modifications obtained when
analyzing the code presented in Figure 4.3. The list includes high granularity
modifications. The first column presents the modification type. The second one
describes the statement that characterizes this modification. The third column
indicates the code element where the modification occurred. Finally, the last
column indicates if the modification was an addition or removal.

Table 4.4: Modification List
Modification Type Statement Element Status
METHOD_DECLARATION Animated...BackendWrapper.clear() Class Addition
IF_STATEMENT mAnimated...Backend != null clear() Addition
IF_STATEMENT mAnimated...Backend != null onInactive() Removal

METHOD_INVOCATION CloseableReference.closeSafely(m...Frame)
mAnimated...Backend.dropCaches() onInactive() Removal

METHOD_INVOCATION CloseableReference.closeSafely(m...Frame)
mAnimated...Backend.dropCaches() clear() Addition

METHOD_INVOCATION clear(); onInactive(); Addition

4https://github.com/facebook/fresco/commit/2d82c6c185. Access Date:
03/03/2020

https://github.com/facebook/fresco/commit/2d82c6c185
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Figure 4.3: Modifications between Two Subsequent Versions

First, we have a METHOD_DECLARATION indicating the cre-
ation of the method clear(). Then, we can observe that some state-
ments belonging to onInactive(), characterized as IF_STATEMENT and
METHOD_INVOCATION modifications, were removed. These same modifi-
cations were added in the method clear(). In addition, a new method call to
the method clear() was added in the method onInactive(). This new call
is also characterized as METHOD_INVOCATION.

The complete list of possible modifications that can be detected us-
ing AST can be found in Eclipse’s JDT documentation.5 However, to avoid
duplicated data, we disregard modification types that contain statements al-
ready presented at a higher level granularity modification. Thus, for our study,
we will use only the modification types listed in Table 4.5. In this table, we
also grouped the modification types based on their similarities. For instance,
the modification types CONDITIONAL_EXPRESSION, IF_STATEMENT,
SWITCH_CASE and SWITCH_STATEMENT were grouped. These modifi-
cations types are all related to conditional control, thus we grouped them into
a category named Conditional.

Step 5: Dataset Construction. In the previous step, we obtained the col-
lected modifications associated with affected classes and their clients. However,
some refactorings do not affect all elements of a class. For instance, Fowler (1)

5https://help.eclipse.org/mars/index.jsp. Access Date: 03/03/2020

https://help.eclipse.org/mars/index.jsp
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Table 4.5: Grouped Modifications

Modification Category Modification Types

Annotation

ANNOTATION_TYPE_DECLARATION,
ANNOTATION_TYPE_MEMBER_DECLARATION,
MEMBER_VALUE_PAIR, QUALIFIED_TYPE,
NAME_QUALIFIED_TYPE, MARKER_ANNOTATION,
NORMAL_ANNOTATION, SINGLE_MEMBER_ANNOTATION

Enum ENUM_DECLARATION, ENUM_CONSTANT_DECLARATION

Method Declaration FIELD_DECLARATION, METHOD_DECLARATION, INITIALIZER,
LAMBDA_EXPRESSION, MODIFIER

Exception Handler TRY_STATEMENT, CATCH_CLAUSE, THROW_STATEMENT,
UNION_TYPE

Comments
JAVADOC, BLOCK_COMMENT, LINE_COMMENT, METHOD_REF,
METHOD_REF_PARAMETER, MEMBER_REF,
TAG_ELEMENT, TEXT_ELEMENT

Array Modifier ARRAY_CREATION, ARRAY_INITIALIZER,
ARRAY_ACCESS, ARRAY_TYPE, DIMENSION

Literal Modifier BOOLEAN_LITERAL, CHARACTER_LITERAL, NULL_LITERAL,
NUMBER_LITERAL, STRING_LITERAL, TYPE_LITERAL

Class Creation
CLASS_INSTANCE_CREATION,
ANONYMOUS_CLASS_DECLARATION, TYPE_PARAMETER,
CREATION_REFERENCE, TYPE_METHOD_REFERENCE

Conditional CONDITIONAL_EXPRESSION, IF_STATEMENT, SWITCH_CASE,
SWITCH_STATEMENT

Method Access

FIELD_ACCESS, METHOD_INVOCATION,
SUPER_FIELD_ACCESS, SUPER_METHOD_INVOCATION,
THIS_EXPRESSION, CONSTRUCTOR_INVOCATION,
SUPER_CONSTRUCTOR_INVOCATION,
EXPRESSION_METHOD_REFERENCE,
SUPER_METHOD_REFERENCE

Operator Expression INFIX_EXPRESSION, POSTFIX_EXPRESSION,
PREFIX_EXPRESSION, ASSIGNMENT

Cast INSTANCEOF_EXPRESSION, CAST_EXPRESSION,
INTERSECTION_TYPE

Variable Declaration

VARIABLE_DECLARATION_EXPRESSION,
VARIABLE_DECLARATION_FRAGMENT,
VARIABLE_DECLARATION_STATEMENT,
SINGLE_VARIABLE_DECLARATION

Class Control IMPORT_DECLARATION, PACKAGE_DECLARATION

Loop Flow Control
DO_STATEMENT, FOR_STATEMENT, BREAK_STATEMENT,
CONTINUE_STATEMENT,
ENHANCED_FOR_STATEMENT, WHILE_STATEMENT

Type Modifier
SIMPLE_TYPE, TYPE_DECLARATION,
TYPE_DECLARATION_STATEMENT,
PRIMITIVE_TYPE, PARAMETERIZED_TYPE, WILDCARD_TYPE

Return Modifier RETURN_STATEMENT

suggests that the modifications related to the refactoring Extract Method occur
mainly in both the source method (the method that suffered the extraction)
and the target method (the method built from the extracted code).

Then, we disregard modifications that are not related to the refactoring’s
source and target method. For instance, if we are detecting modifications
related to an Extract Method refactoring, we consider as acceptable: (i)
modifications that happened within the source and target methods, and (ii)
modifications that somehow interact with the source method or the target
method. An example of interaction is when a method, not the source one,
contains a METHOD_INVOCATION calling the extracted method.

Finally, we divided the modifications into 5 groups according to the
modification’s location. First, the INSOURCE group corresponds to the set
of modifications made in the source method. Second, the INTARGET group
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is formed by the set of modifications made in the target method. Third, the
SUR group consists of surrounding modifications, i.e., those that satisfy all the
following conditions: (i) they are made in other methods beyond the source and
target methods, (ii) they are located in methods belong to the same classes in
which the source and target methods are declared, and (iii) the modifications
interact directly with the source method (in this case they are also part of the
SUR_S subgroup) or the extracted method (in this case they are also part of
the SUR_T subgroup).

For instance, in the Extract Method refactoring, let us consider that a
method A.a() had some of its statements extracted into a method A.b().
Then, if a method A.c(), belonging to the same class, has a modification
that interacts with method A.a(), this modification will belong to the sub-
group SUR_S. We also have the CLASS group and the EXT group. The
CLASS group is composed of modifications that occurred in the same class(es)
that contains the source and target methods and interact with the source
(CLASS_S) or target method (CLASS_T). However, different from the SUR
group, the CLASS group is composed of modifications at the class level. Fi-
nally, the EXT group is composed of modifications outside the the target and
source classes and interact directly with the source method or the extracted
method. The EXT group is also divided into EXT_S and EXT_T.

Altogether, we found hundreds of refactoring instances and nearly 100K
modifications related to those refactorings. We found the following amount of
instances and modifications for each refactoring type: (i) 856 instances and
77,306 modifications related to Extract Method, (ii) 174 instances and 14,126
modifications related to Inline Method, (iii) 78 instances and 5,856 modifica-
tions related to Move Method, and (iv) 54 instances and 3,734 modifications
related Pull Up Method.

4.4
Results and Discussion

The following subsections present the results in terms of each of our
research questions (Section 4.3).

4.4.1
RQ1: What code modifications developers perform when refactoring?

For RQ1, we gathered the most frequent modification categories for
each evaluated refactoring type. We collected both additions and removals
of program elements. Moreover, we specified the location (see Section 4.3.1,
step 5) and percentage of occurrence of each modification. Tables 4.6 and 4.9
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list the five most frequent modifications, either additions or removals. The
first column describes the change type, the second and third columns present
the location and occurrence of the modification, respectively. We present the
modification occurrences in terms of the percentage of instances that have at
least one modification of the respective type.

Table 4.6: Extract Method Common Modifications

Addition Removal
Modification Local Occurrence Modification Local Occurrence
Type Modifier INTARGET 99.77% Method Access INSOURCE 94.74%
Method Access INSOURCE 99.18% Operator Expression INSOURCE 72.31%

Method Declaration CLASS_T 98.48% Variable Declaration INSOURCE 67.99%
Method Declaration INTARGET 96.26% Conditional INSOURCE 63.90%

Method Access INTARGET 94.74% Type Modifier INSOURCE 62.38%

When applying an Extract Method, one would expect the developer would
perform the three steps as part of the core modifications, described in Table 4.2.
One of the steps is the creation of a new method throughout the code extraction
in the source method. In fact, we observed that the developers added this call
in 98.48% of the instances, which corresponds to the addition of a Method
Declaration located in CLASS_T (i.e., the third row of Table 4.2). After
performing a manual validation in the remaining instances (i.e., 1.52%), we
observed that the extracted code statements were added to methods already
present in the affected class.

This result reveals that even though the Method Declaration can
be considered a core modification for the Extract Method, this
modification does not occur in 1.52% of the cases in which this
refactoring type was applied. In particular, the developers responsible for
this customized refactoring added code statements, which were extracted from
a larger method, to a method with fewer lines of code. In such cases, the
body of the target method is the result of the merge the existing code with the
extracted one. As a next step, the source method was modified to call the target
one. As a consequence of this invocation, the source method is now performing
all the statements of the target method, even those that were located in the
target method before the refactoring.

The invocation of the target method from the source one (represented by
a Method Access located in the source method, i.e., INSOURCE modification –
represented in the second row of the table) is also one of the core modifications
for Extract Method. However, this modification did not occur in 100% (instead,
99.18%) of the Extract Method instances. We manually analyzed the remaining
instances, revealing that they were either: (i) false positives from Refactoring
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Miner (15, 38) tool; or (ii) the source method already called the target method
before refactoring. These cases were the same ones identified in the validations
involving the lack of Method Declaration of the target method.

An observation of Table 4.6 also reveals that the most frequent addition
modification type affects primitive types (Type Modifier modification), which
has been added to the target method in 99.79% of Extract Method instances.
On the other hand, the Type Modifier modification was removed from the
source method only in 62.38% of the cases. The significant difference between
the number of additions and removals of Type Modifier indicates that this
kind of modification is often an additional modification that occurred during
the Extract Method. Finally, we observed that there is a frequent removal of
method calls in the source method. These method calls are also added in the
target method, which means that this statement is frequently extracted from
the source and moved to the target method as part of the Extract Method
refactoring.

Finding 1: In 1.52% instances of the Extract Method, the extracted
methods already existed before the refactoring. This observation was not
expected as one usually expect the a new method is always created.

Table 4.7: Inline Method Common Modifications

Addition Removal
Change Local Occurrence Change Local Occurrence

Method Access INTARGET 90.23% Type Modifier INSOURCE 98.85%
Operator Expression INTARGET 77.59% Method Access INTARGET 95.40%

Conditional INTARGET 67.24% Method Declaration CLASS_S 94.25%
Variable Declaration INTARGET 64.94% Method Declaration INSOURCE 93.68%

Type Modifier INTARGET 58.62% Method Access INSOURCE 92.53%

Table 4.7 shows us the most frequent code modifications performed by
developers when applying an Inline Method refactoring. Table 4.2 reveals
that one of the core modifications for Inline Method is the removal of the
source method, represented by the removal of the source method declaration
(represented by the modification Method Declaration located in CLASS_S).
However, this modification occurred in 94.25% of instances. In other words,
5.75% of the instances of Inline Method did not remove the source
method. Indeed, a recent study (41) presented that some IDEs, by default,
do not remove the source method when applying Inline Method by their
automated refactoring tool. To make matters worse, this study also indicates
that developers prefer the complete removal of the source method.
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Finding 2: A rate of 5.75% did not remove the inlined method.

Figure 4.4: Inline Method that did not Remove Source Method

Regarding the finding 2, Figure 4.4 presents a real case of the Inline
Method application6 in which the source method has not been removed after
the refactoring. The developer’s intent clearly concerns the appliction of the
refactoring, as mentioned in the commit message: “Refactor to avoid a deadlock
caused by different sections of code obtaining the same locks in a different
order.”. In this case, only part of the source method was used at the target
method, and the call to the source method was not removed. Besides, the
source method’s body has been modified. However, it remained with 71.00%
(lines of code) of the source method’s as compared to previous version of this
method before the refactoring.

The analysis of Table 4.7 also shows that method calls are frequently
added to the target method, i.e., 90.23% of all occurrences. Indeed, in 92.53%
of the instances, the method calls are removed from the source method as
well. Nevertheless, we did not observe this behavior for the remaining addition
modifications, i.e., the additions to the target method do not correspond to
the removals from the source one.

Table 4.8: Move Method Common Modifications

Addition Removal
Change Local Occurrence Change Local Occurrence

Type Modifier INTARGET 98.72% Method Declaration CLASS_S 98.72%
Method Declaration CLASS_T 93.59% Type Modifier INSOURCE 97.44%
Method Declaration INTARGET 93.59% Method Declaration INSOURCE 94.87%

Method Access INTARGET 85.90% Method Access INSOURCE 85.90%
Variable Declaration INTARGET 84.62% Variable Declaration INSOURCE 80.77%

6https://github.com/apache/tomcat/commit/2561dfccb. Access Date: 03/03/2020

https://github.com/apache/tomcat/commit/2561dfccb
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Table 4.8 presents the 5 most frequent modifications applied by develop-
ers when performing a Move Method refactoring. When applying this refactor-
ing, one expects the developer would remove the source method and add the
target method, where the latter has a similar or equal content to the former
(i.e., the same method now located in a different class). However, we noticed
that the removal of the source method declaration, a core modification in Ta-
ble 4.2, occurred in 98.72% of the cases. The only case in which it was not pos-
sible to detect this modification occurred in the Netty7 project. In this specific
case, the developers moved the validateHeaderName(String) method.
This method was implemented in the inner-class HttpHeaders. This inner-
class was instantiated in the DefaultHttpChunkTrailer class. This pe-
culiar case is a false negative in the detection of Refactoring Miner (15, 38).

Another core modification is the declaration of the target method (rep-
resented by the modification Method Declaration located in CLASS_T – the
second line of addition side). However, this modification did not occur in 6.41%
of Move Method instances. For these cases, two situations occurred: (i) the
method was moved to a class where there was already an abstract method
of the same declaration, and; (ii) the method was moved to a class that al-
ready had an implemented method of the same name and parameters. This
observation reinforces that, differently from what is mentioned in Table 4.2, it
is not necessary to create a method when making a move. To be considered
a Move Method, only the content of the method being transferred to the new
location is necessary. The existence of an abstract method with the same name
and parameter as presented in situation (i) is, in fact, common, as seen in our
finding 3.

Finding 3: In 17% of the instances, when the method is moved to a
class that belongs to a hierarchy, this modification requires the creation
of a method with the same name and parameters. These alternative
and recurring modifications of various Move Method instances are not
supported in existing tools and IDEs.

This potentially happened because the method has been moved to a
hierarchy and was overridden by some subclass. We illustrated a real case
for this scenario in Section 4.2. Similarly, in 23% of the instances, when the
method was moved out from the class hierarchy, it leads to the removal of
methods with the same name and parameters. For example, a method has
been moved to the outside its original hierarchy. This method was abstract

7https://github.com/netty/netty/commit/4ede085edcd. Access Date: 03/03/2020

https://github.com/netty/netty/commit/4ede085edcd
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(at the superclass) and implemented at the subclass. In this situation, the
Move Method has been considered for the superclass, but the method has been
removed from the subclass.

In Table 4.8, we also noticed that different from the previous refactorings
the most frequent removal of INSOURCE modifications correspond to the ad-
dition of INTARGET modifications. Nevertheless, we can still observe a higher
frequency of additions when compared to removals. This reinforces one more
time the application of refactorings together with other code modifications.

Finally, in 13 cases (16.7%), the target method has a different name or
parameters. In these cases, the target method usually has a body similar to
the source method’s. However, there are modifications added in target method
that may justify the changes in the name and parameters.

Finding 4: For Move Methods, 16.70% of the instances had modifi-
cations in their target method’s names or parameters.

Table 4.9: Pull Up Method Common Modifications

Addition Removal
Change Local Occurrence Change Local Occurrence

Method Access INTARGET 90.74% Method Declaration CLASS_S 100.00%
Type Modifier INTARGET 90.74% Type Modifier INSOURCE 100.00%

Method Declaration INTARGET 85.19% Method Declaration INSOURCE 98.15%
Method Declaration CLASS_T 79.63% Method Access INSOURCE 87.04%
Literal Modifier INTARGET 70.37% Literal Modifier INSOURCE 72.00%

Table 4.9 shows the most frequent modifications when applying Pull
Up Method refactorings. We observe that, similarly to Move Method, the
addition modification performed in the target method corresponds to a removal
modification performed in the source method, although their occurrences are
slightly different. We also observed that, differently from the Move Method, the
source method removal (represented by the modification Method Declaration
located in CLASS_S) happened in 100.00% of the analyzed instances. This
reinforces the core modifications for this refactoring. However, the target
method creation did not happen in 20.37% of the instances.

Similarly to the Move Method refactoring, the method was not created,
since it already existed, but is now at the parent’s class as an abstract method.
This way, we observe that, to apply the Pull Up Method refactoring, there
might be no need to create a new method, once it might exist as an abstract
method at a superclass.
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Table 4.10: Modification Spread per Location and per Type (Source, Target)

SUR EXT CLASS
S T S T S T INSOURCE INTARGET

+ - + - + - + - + - + - + - + -
Extract Method 5.84% 12.73% 42.06% 0.93% 11.92% 14.84% 25.93% 1.99% 1.52% 0.47% 98.48% 0.93% 100.00% 100.00% 100.00% 1.40%
Inline Method 3.45% 28.16% 13.22% 6.32% 5.17% 14.37% 14.94% 9.77% 3.45% 94.25% 0.57% 2.30% 5.17% 100.00% 98.85% 99.43%
Move Method 0.00% 35.90% 26.92% 0.00% 0.00% 58.97% 75.64% 0.00% 0,00% 97.44% 93.59% 3.85% 1.28% 98.72% 98.72% 5.13%

Pull Up Method 0.00% 0.00% 5.56% 0.00% 0.00% 68.52% 42.59% 0.00% 0.00% 100.00% 79.63% 0.00% 0.00% 100.00% 100.00% 20.37%

Finding 5: The creation of the method in the parent’s class did not
occur in 20.37% of the Pull Up instances.

In addition, we observed that in three (5.50%) instances of the Pull Up
Method refactoring, some class has implemented the pulled up method. The
method has been removed from some classes in 25 (46.20%) instances. The
removal happened because the method is duplicated in distinct classes of the
same hierarchy. This removal is a core modification presented in Table 4.2.
Once the method has been pulled up, there was no need to have such method
in both subclasses. This way, the method has been removed.

Modification Spread. Until now, we have discussed the five most
frequent modifications for each refactoring analyzed in this paper. We then
focused on where the modifications frequently occur. Table 4.10 illustrates, for
each refactoring, the percentage of instances that had at least one change in
the respective type (addition and removal) and location (SUR, EXT, CLASS,
INSOURCE, INTARGET). Besides, this table also describes whether the
location is related to the source (S) or target (T). We observed that there is a
considerable percentage of SUR and EXT modifications in some of the types.
This shows that the modification goes beyond the source and target methods,
affecting a larger scope of the project, especially for Move Method and Pull
Up Method refactorings. For these, the amount of changes that occurred in the
EXT group is much greater than the ones in SUR group. This difference in
quantity informs us that these changes have a greater impact on other classes of
the project. Therefore, we can see that the developers applied changes around
the source and target in (i) 68.81% for Extract Method, (ii) 48.85% for Inline
Method, 85.06% for Move Method and 26.44% for Pull Up Method, of the
analyzed refactoring instances.

Table 4.11: Method Invocation on Refactoring Clients

Refactoring source call deletions target call additions source to target swap

Extract Method 9.35% 49.65% 11.45%
Inline Method 30.46% 12.64% 6.32%
Move Method 41.02% 57.69% 44.87%
Pull Up Method 22.22% 27.77% 9.25%
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The modifications that are not located in the INSOURCE or INTAR-
GET, occurred in clients of the refactoring. The most frequent modification
that occurred in the clients of all refactorings was Method Invocation. Since
the source and target methods are modified by refactorings, their respective
clients need to be adjusted accordingly. For example, consider a client of the
Extract Method source method. This client may choose to (i) stop calling the
source method, (ii) switch to the target method as well, (iii) exchange the call
to the source method with the call to the target method. Table 4.11 shows,
for each refactoring, the number of clients that performed each of these three
options.

For Extract Method, we can notice that the addition to the target method
occurred in 49.65% of the time. This suggests that the method extraction is
useful to avoid duplicate the code by adding a new call to the target in the
client. For Inline Method, we can already see that the highest concentration of
method invocations is related to the deletion of the call to the source method.
Once the source method ceases to exist, it is necessary to remove its call in
the client methods. Nevertheless, the low inclusion of the call to the target
or the exchange of calls from the source to the target, implies that (i) the
client methods no longer perform the functionality of the source method, (ii)
added functionality in their own body, it can even be duplicated. For Move
Method, we have a large number of the three situations, but in particular, for
the addition of the so-called target. Finally, for Pull Up Method, we have a
similar occurrence between removing calls to the source method and adding
calls to the target.

Summary: The core modifications of each analyzed refactoring occurred
frequently during the application of the respective refactoring. However, most
of the refactoring instances involved additional modifications. Pull Up Method
presented the expected core modifications in 79.63% of the instances. We also
observed a high number of additional recurring modifications to either support
floss refactoring or adjusting the refactoring to specific structures (e.g., move
a method across hierarchies). Finally, we also observed that the modifications
are not limited to occur in the source and target methods, indicating that the
refactoring affects the code in a larger scope than the one described by Fowler’s
catalogue (1) and supported by existing refactoring tools (81).

4.4.2
RQ2: How often developers apply customized refactorings?

On RQ1, we focused on revealing what are the refactoring modifications
in isolation. We discussed the types of modifications that occurred in each
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refactoring type, in addition to the locations where each modification occurred.
In particular, we highlighted to what extent core modifications are indeed
frequent and the intriguing cases of modifications that are not part of such a
core. However, in order to understand which modifications developers perform
together to compose a single refactoring, we decided to investigate common
modification patterns. A pattern is a set of modifications that occurred
together in multiple instances of the same refactoring. Thus, the most frequent
patterns are possible candidates to be considered as a customized refactoring.

Figure 4.5: Different Patterns for Extract Method

Understanding Patterns. Figure 4.5 shows three possible ways to
perform an Extract Method for the same code snippet. These possible ways,
enumerated as I, II, and III, represent the frequent modification patterns
found at the analyzed instances of Extract Method. In all three patterns,
we can observe all the core modifications for Extract Method. The method
extractedFromM was extracted from method M. Moreover, it was added
a call for the method extractedFromM within method M. Thus, these
patterns should have at least the modifications of (i) addition of Method
Declaration located in CLASS_T, indicating the creation of the extracted
method (target); (ii) addition of Method Access located in INSOURCE,
indicating a call to the target method within the source method. However,
for each pattern, other modifications were made in conjunction with those
mentioned so that the extracted method could better suit the applied scenario.
In the pattern I, we can also observe the modification of removal Method
Access. In this context, this modification indicates the removal of the call to
the source method within method A. Removing this call changes the behavior
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of method A and may indicate a possible incomplete refactoring. As seen in
Table 4.11, this removal occurred in 9.35% of the Extract Method instances.

Regarding Pattern II, in addition to removing the source method M, the
target method call, extractedFromM(), was added. So, in this case, the
new method was not just called within the source method. This case presents
a situation in which the client was not interested in the entire source method
M and therefore is using only the extracted part. In addition, this case may
indicate an unexpected behavior change in method A.

Pattern III is a simpler case of applying the Extract Method, where a
method is extracted from method M and that method is called in the method
where it was extracted, that is, the source method of that refactoring. In this
pattern, it is possible to observe that we do not represent in the examples
a modification that explicitly characterizes the transfer of the code from one
method to another. This type of modification is already implicit in the creation
of a new method through Method Declaration.

Figures 4.6 to 4.9 present the most frequent patterns for each refactoring
type. The percentage above each modification represents the percentage of
instances that have the pattern composed of all modifications from the
extreme left until the modification indicated with the percentage. For instance,
the pattern composed of the modifications Method Declaration (target) and
Method Access (target) in Figure 4.6 occurred in 60.86% of Extract Method
instances. The text source/target below each modification indicates whether
the modification interacts with the source method (S) or the target method
(T). In this analysis, we considered only modifications that occurred in client
methods, i.e., we disregarded the modifications that occurred inside the source
and target methods. Finally, the green and red colors indicate whether the
modification is an addition modification (+) or removal modification (-),
respectively. For instance, let us consider the same pattern composed of the
modifications Method Declaration (target) and Method Access (target) in
Figure 4.6. This pattern will be expressed as {Method Declaration.T+, Method
Access.T+}.

4.4.2.1
Frequent Customization Patterns

Figure 4.6 presents the most frequent patterns for Extract Method. We
observed that the modification Method Declaration occurred in almost all Ex-
tract Method instances (98.48%). The pattern with the two most frequent
modifications is {Method Declaration.T+, Method Access.T+}. This pattern
indicates that the client methods usually (60.86%) add a call to the target
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Figure 4.6: Most Common Patterns for Extract Method

method after the extraction. Meanwhile, only in 11.45% of the instances, the
clients added a call to the source method after the extraction ({Method Dec-
laration.T+, Method Access.S+}). This percentage is less than the percentage
of clients that removed the call to the source method after the extraction
(20.68%). Furthermore, we observed in the pattern {Method Declaration.T+,
Method Access.T+, Method Access.S-} that almost all instances that have
client methods removing a call to source method also have client methods
adding a call to the target Method. However, only in 11.45% of these cases,
the swap of call occurred in the same client method, as observed in Table 4.11.
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Figure 4.7: Most Common Patterns for Inline Method

Figure 4.7 presents the most frequent patterns for Inline Method. We
observed that the deletion of the source method occurred in 94.83% of
the Inline Method instances. Indeed, a previous study (41) showed that
developers sometimes prefer to keep the source method when applying the
refactoring Inline Method. Keeping the source method after the refactoring
differs from what is proposed as core modifications in Table 4.2. We also
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observed in Figure 4.7 that most of the modifications are of the removal
type and interact with the source method. This indicates that the clients
of the source method needed to be adjusted to remove the interactions that
they have with the source method. Besides, in 37.36% of the Inline Method
instances, the pattern {Method Declaration.S-, Method Access.S-} occurred.
This pattern indicates that the client methods removed a call to the source
method. However, according to Table 4.11, only in 6.32% of the instances, the
client methods also added a call to the target method along with the removal
of the call to the source method. In this way, client methods that removed
the call to the source method and did not replace the removed call to a call
to the target method had their functionality reduced. Finally, we can also
observe that in 19.54% of the instances the {Method Declaration.S-, Method
Access.T+} pattern occurred, that is, client methods added a call to the target
method after the refactoring.
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97.44% 93.59% Method Access 
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Method Access 
(Source)
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Method Access 
(Target)
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Variable Declaration 
(Target)

Figure 4.8: Most Common Patterns for Move Method

Figure 4.8 presents the most frequent patterns for Move Method. We
observed that in 93.59% of the instances the method was removed from
one class and added in another class, according to the pattern {Method
Declaration.S-, Method Declaration.T+}. In addition to this pattern, we
observed that more complex patterns tend to add calls to the target method
(80.77%) and remove calls to the source method (70.51%), according to
the patterns ({Method Declaration.S -, Method Declaration.T+, Method
Access.T+}) and ({Method Declaration.S-, Method Declaration.T+, Method
Access.S-}), respectively. However, according to the Table 4.11, only in 44.87%
of the instances of Move Method, there are clients who switched the call from
the source method to the target method. This indicates that developers more
frequently add new clients to the moved method when performing the Move
Method.

Figure 4.9 presents the most frequent patterns for Pull Up Method.
We observed that in all Pull Up Method instances the source method was
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Figure 4.9: Most Common Patterns for Pull Up Method

removed. However, the removal of the source method together with the addition
of the target method occurred in 79.63% of the Pull Up Method instances,
represented by the pattern {Method Declaration.S-, Method Declaration.T+}.
As discussed earlier, the mother class in the hierarchy may already have a
method with the same signature, or an abstraction, than the method pulled
up, before the refactoring. Besides, similar to the Move Method, we observed
that there are a considerable number of clients that added a call to the target
method (38.89%) or that removed a call to the source method (27.78%), in
addition to the pattern {Method Declaration.S-, Method Declaration.T+}.
However, different from Move Method, the percentage of instances that have
clients that made both modifications is only 9.25%, according to the table 4.11.

Finding 6: The current Fowler’s catalog of modifications are not
directly in line with the Figures 4.6 to Figures 4.9. One might reconsider
to extend Fowler’s catalogue to properly document customized refactorings.

4.4.2.2
Automated refactoring tools

Until now, we identified the most frequent modification patterns applied
in practice by developers when performing each of the refactoring types. Taking
these patterns into account, we investigated if the automated refactoring tool
provided by Eclipse properly supports the application of these patterns. We
chose Eclipse because is a very popular development tool for Java. Besides,
Eclipse is frequently used in literature, e.g. (40, 41). We observed the source
code associated with each pattern described in Figures 4.6 to 4.9. We minimally
adapted the code to be reproducible in our Eclipse’s environment. Then, we
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manually invoked the Eclipse’s refactoring tool in order to reproduce the
refactoring applied by the developer in its software project. Finally, we listed
which patterns could not be reproduced using the Eclipse’s refactoring tool.
In this reproduction, we used Eclipse Version: 2019-12 (4.14.0).

Table 4.12: List of Eclipse’s Refactoring Automated Tool Limitations.

Id Limitation

1 Modification only supported if occurred in source/target methods
2 It is not possible to remove source method invocation in client methods
3 It is not possible to remove target method invocation in client methods
4 It is not possible to add source method invocation in client methods
5 It is not possible to add target method invocation in client methods
6 There is no exception support for methods different than source and target ones
7 No exception handler is added if there is an exception error before the refactoring application
8 It is not possible to manage who should handle the exception

9 It is necessary that the extracted code is duplicated and the duplication recognized
by the Eclipse -Exclusive for Extract Method

10 It is not possible to remove the modification without replacing it with the inlined
method body -Exclusive for Inline Method

11 The swap of the call from source to target must occur in the same client
-Exclusive for Pull Up Method and Move Method

12 It is mandatory to create the moved method, even if there is already a method with
the same name in the destination class -Exclusive for Move Method

Tables 4.13 to 4.16 present the results of our reproduction. The first
column indicates the reproduced pattern. The second column indicates the
support provided by Eclipse’s refactoring tool to the application of the respec-
tive pattern. We classified the support into three categories. The first category
is named Full support. This category means that the refactoring tool is able to
reproduce the pattern completely for all reproduced scenarios. The second cat-
egory is named Partial support. This category means that the refactoring tool
is able to reproduce the pattern completely only in specific scenarios. Finally,
the last category is named No support. As the name says, the refactoring tool
is not able to reproduce the complete pattern. The last column indicates the
id of the limitation. This id is associated with the Table 4.12. Where each row
of Table 4.12 describes the limitation id followed by its description.

We observed that most of the limitations, identified by id 1 to 8 in
Table 4.12, are limitations common to more than on refactoring type. We also
observed that the refactoring tool focuses on providing support to the developer
when they are performing modifications in the target and source methods.
Thus, the support provided by the refactoring tool for modifications made in
client methods is very limited or null, though the occurrence of modifications
in these methods are frequent, as shown and discussed in the Table 4.10.
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Table 4.13: Limitations in Eclipse’s Automated Extract Method Tool.

Patterns Eclipse Limitation Id

Method Declaration.T+ Full support
Method Declaration.T+,Method Access.S+ No support 4
Method Declaration.T+,Method Access.T+ Partial support 9
Exception Handler.T+,Method Declaration.T+ Partial support 6,7,8
Method Declaration.T+,Method Access.S- No support 2
Exception Handler.T+,Method Declaration.T+,
Method Access.T+

No support 6,7,8,9

Method Declaration.T+,Method Access.S-,
Method Access.T+

No support 2,9

Method Declaration.T+,Method Access.T+,
Operator expression.T+

Partial support 1(Operator expression),9

Method Declaration.T+,Method Access.T+,
Variable Declaration.T+

No support 1(Variable Declaration),9

Method Declaration.T+,Method Access.S-,
Method Access.T+,Operator Expression.S-

No support 1(Operator expression),2,9

Exception Handler.T+,Method Declaration.T+,
Method Access.S-,Method Access.T+

No support 2,6,7,8,9

Exception Handler.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+

No support 2,6,7,8,9

Exception Handler.S-,Exception Handler.T+,
Method Declaration.T+,Method Access.S-,
Method Access.T+

No support 2,6,7,8,9

Table 4.14: Limitations in Eclipse’s Automated Inline Method Tool.

Patterns Eclipse Limitation Id

Method Declaration.S- Full support
Method Declaration.S-,Method Access.S- Partial support 10(Method Access)
Method Declaration.S-,Method Access.T+ No support 5
Method Declaration.S-,Method Access.S-,
Method Access.T+

No support 5,10

Method Declaration.S-,Method Access.T- No support 3
Method Declaration.S-,Method Access.S-,
Operator expression.S-

Partial support 10(Operator expression),
10(Method Access)

Method Declaration.S-,Method Access.T+,
Method Access.T-

No support 3,5

Method Declaration.S-,Operator expression.S- Partial support 10(Operator expression)
Exception Handler.S-,Method Declaration.S- Partial support 6,7,8
Method Declaration.S-,Return modifier.S- Partial support 10(Return modifier)

Table 4.13 presents the found tool limitations when applying Extract
Method refactoring. Except for the pattern Method Declaration.T+, all the
other patterns have no or partial support. Limitation 2 is the most frequent
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among the patterns, once most of the patterns include the removal of a Method
Access in a client method. Limitations 6, 7, and 8 affect the modification
Exception Handler. For instance, if the selected statements for Extract Method
throws an exception, the target method will throw this exception, even if
the exception thrower is completely extracted. Thus, Eclipse does not allow
developers to define who (source/target/clients method) must handle that
exception. This inflexibility force all the methods that invoke the target one
to handle themselves the exception.

Eclipse’s refactoring tool maintains the same limitations, as discussed
for Extract Method, for the remaining refactoring types. In this way, this tool
only provides full support for patters composed of core modifications. However,
there are some particularities for each refactoring type. For Inline Method, we
have the limitation 10. In this limitation, developers can choose to exchange
the call to the source method to the source’s body. However, the refactoring
tool does not let the developer only remove the call to the source method or
swap the call to the source method to a call to the target method, as occurred
in 6.32% of Inline Method instances (Table 4.11). For Move Method and Pull
Up, we have the limitation 11. This limitation indicated that the refactoring
tool allows the exchange of the call to the source method for the call to the
target, but not allows only the addition of the call to the target Method or only
removal of the call to the source method. This limitation affects especially the
Move Method, because the only addition of a call to the target method occurred
in 57.69% of Move Method instances (Table 4.11). Finally, the limitation 12
is exclusive for Move Method. This limitation indicates that is not possible
to move only the method content to a method with the same signature in
the destination class. In this way, developers are forced to: (i) apply the Move
Method manually, or (ii) force the method to be moved, leaving the destination
class with two methods with the same signature.

Finding 7: Eclipse’s automated refactoring tool is not able to
properly support customized refactoring.

Summary: We observed that exist different ways to apply the same
refactoring depending on particular program characteristics. Besides, we ob-
served in Figures 4.6 to Figure 4.9 that the most frequent patterns usually
include the core modifications and invocations of both the target and source
methods in different classes and methods. We also observed that handle excep-
tions are a common task during the refactoring application. Finally, we could
observe that Eclipse’s refactoring tool is not able to provide proper support for
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Table 4.15: Limitations in Eclipse’s Automated Move Method Tool.

Patterns Eclipse Limitation Id

Method Declaration.S- No support 12
Method Declaration.T+ Full support
Method Declaration.S-,Method Declaration.T+ Full support
Method Declaration.S-,Method Declaration.T+,
Method Access.T+

No support 5

Method Declaration.S-,Method Declaration.T+,
Method Access.S-

No support 2

Method Declaration.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+

Partial support 11

Method Declaration.S-,Method Declaration.T+,
Method Access.T+,Variable declaration.T+

No support Variable Declaration(1),5

Exception Handler.T+,Method Declaration.S-,
Method Declaration.T+,Method Access.T+

No support 5,6,7,8

Method Declaration.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+,
Variable declaration.S-

No support Variable Declaration(1),11

Method Declaration.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+,
Variable declaration.T+

No support Variable Declaration(1),11

Table 4.16: Limitations in Eclipse’s Automated Pull Up Method Tool.

Patterns Eclipse Limitation Id

Method Declaration.S- Full support
Method Declaration.S-,Method Declaration.T+ Full support
Method Declaration.S-,Method Declaration.T+,
Method Access.T+

No support 5

Method Declaration.S-,Method Declaration.T+,
Method Access.S-

No support 2

Method Declaration.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+

Partial support 11

Method Declaration.S-,Method Access.T+ No support 5
Method Declaration.S-,Method Access.S- No support 2
Method Declaration.S-,Method Access.S-,
Method Access.T+

Partial support 11

Exception Handler.S-,Method Declaration.S- Partial support 6,7,8
Exception Handler.T+,Method Declaration.S-,
Method Declaration.T+

Partial support 6,7,8

the frequent patterns of each of the refactoring types presented in Tables 4.16
to 4.13. In this way, we listed in Table 4.12 the limitations found when we
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reproduced the refactorings applied by developers in practice.

4.4.3
RQ3: Does customized refactoring reduce the intensity of code smells?

On RQ3, we focused on understanding the impact that different cus-
tomizations have on code smells. For this purpose, we analyzed all the most
common patterns identified in Section 4.4.2. We analyzed the impact that each
pattern has on code smells by extracting the following information about the
instances of these patterns: (i) which code smell types were introduced; (ii)
which code smell types were removed, and; (iii) which code smell types were
mitigated, but not outright removed. This last criteria determines a code smell
type as mitigated if at least one of its metrics has improved, without wors-
ening any of its other metrics. We chose metrics popularly used in literature
(e.g., (2, 80, 89, 93)) for each smell type. Altogether, we are able to detect and
evaluate 17 different types of code smell as mentioned in Section 4.3.

Tables 4.17 to 4.20 present the impact of the patterns on smells for
each refactoring. The first column presents the pattern. The followed columns
present the smells introduced, removed and mitigated, respectively. We focused
on present only the three smells with the highest percentages for each column
that occurred at least in two instances of the pattern.

We can observe in Table 4.17 that the most frequently introduced
smells are Feature Envy, Complex Class, Long Method, and Long Parameter
List. Complex patterns, i.e, with a higher number of modifications, tend to
introduce Long Parameter List more frequently, overcoming the introduction
of the Feature Envy. Thus, in these patterns, the target method tends to
have more parameters, though it is expected that it would have a simpler
signature due to the reduced size. We can also observe that the pattern
{Method Declaration.T+, Method Access.S-, Method Access.T+, Operator
Expression.S-} was the only pattern that introduced Class Data Should be
Private (CSDP) and Speculative Generality. In addition, this same pattern
does not tend to introduce complex smells, such as Feature Envy or Complex
Class. On the other hand, this same pattern does not tend to remove any smell
type.

We also observed that simpler patterns tend to frequently remove a higher
number of smells than more complex patterns. Although the Complex Class
smell is not removed, it is often mitigated. Besides the Complex Class, other
smell types that are inserted, such as Feature Envy and Long Method, are also
mitigated. Manual analysis indicated that this happens because the extracted
code tends to be a complex code fragment. In this way, the source method
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Table 4.17: Impact of the Extract Method Patterns on Smells.

Pattern Smell Introduced Smell Removed Smell Mitigated

Method Declaration.T+
FeatureEnvy: 18.0%
ComplexClass: 17.0%
LongMethod: 12.5%

FeatureEnvy: 6.3%
LongMethod: 5.5%
IntensiveCoupling: 3.7%

LongMethod: 6.3%
ComplexClass: 6.3%
FeatureEnvy: 4.3%,

Method Declaration.T+,Method Access.S+
FeatureEnvy: 19.4%
LongMethod: 15.3%
ComplexClass: 13.3%

IntensiveCoupling: 5.1%
LongMethod: 5.1%
FeatureEnvy: 4.1%

ComplexClass: 4.1%

Method Declaration.T+,Method Access.T+
FeatureEnvy: 18.8%
ComplexClass: 15.0%
LongParameterList: 12.1%

FeatureEnvy: 7.1%
LongMethod: 4.4%
IntensiveCoupling: 3.3%

ComplexClass: 6.5%
LongMethod: 4.0%
FeatureEnvy: 3.8%

Exception Handler.T+,Method Declaration.T+
ComplexClass: 20.4%
FeatureEnvy: 19.5%
LongMethod: 15.0%

LongMethod: 6.2%
IntensiveCoupling: 3.5%
FeatureEnvy: 3.5%

ComplexClass: 10.6%
FeatureEnvy: 8.0%
LongMethod: 7.1%

Method Declaration.T+,Method Access.S-
FeatureEnvy: 18.6%
LongParameterList: 18.1%
ComplexClass: 14.1%

FeatureEnvy: 7.9%
LongMethod: 4.0%
IntensiveCoupling: 3.4%

ComplexClass: 4.0%

Exception Handler.T+,Method Declaration.T+,
Method Access.T+

ComplexClass: 21.1%
FeatureEnvy: 19.3%
LongMethod: 13.8%

LongMethod: 5.5%
IntensiveCoupling: 3.7%
FeatureEnvy: 3.7%

ComplexClass: 11.0%
FeatureEnvy: 7.3%
LongMethod: 6.4%

Method Declaration.T+,Method Access.S-,
Method Access.T+

FeatureEnvy: 18.2%
LongParameterList: 17.6%
ComplexClass: 13.2%

FeatureEnvy: 8.8%
LongMethod: 4.4%
IntensiveCoupling: 3.8%

ComplexClass: 3.8%

Method Declaration.T+,Method Access.T+,
Operator expression.T+

LongParameterList: 13.3%
ComplexClass: 12.0%

FeatureEnvy: 3.6%

ComplexClass: 9.6%
FeatureEnvy: 8.4%
IntensiveCoupling: 3.6%
LongMethod: 3.6%

Method Declaration.T+,Method Access.T+,
Variable declaration.T+

LongParameterList: 16.9%
FeatureEnvy: 15.6%
ComplexClass: 13.0%

FeatureEnvy: 10.4%
LongMethod: 5.2%

ComplexClass: 3.9%
FeatureEnvy: 3.9%

Method Declaration.T+,Method Access.S-,
Method Access.T+,Operator expression.S-

LongParameterList: 22.2%
CDSP: 11.1%
SpeculativeGenerality: 5.6%

ComplexClass: 5.6%

Exception Handler.T+,Method Declaration.T+,
Method Access.S-,Method Access.T+

ComplexClass: 20.0%
LongParameterList: 20.0%
FeatureEnvy: 17.1%

LongMethod: 8.6%
IntensiveCoupling: 5.7%

Exception Handler.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+

LongParameterList: 22.2%
FeatureEnvy: 22.2%
ComplexClass: 19.4%

LongMethod: 8.3%
DispersedCoupling: 5.6%

Exception Handler.S-,Exception Handler.T+,
Method Declaration.T+,Method Access.S-,
Method Access.T+

ComplexClass: 25.9%
LongParameterList: 25.9%
FeatureEnvy: 18.5%

LongMethod: 7.4%

that previously had a smell, e.g. Complex Class, had the metrics improved, so
the smell is mitigated. However, the extracted method can be complex enough
to be considered a new smell. Finally, similar to smell removal, the simplest
patterns tend to mitigate a greater number of smells frequently if compared
with more complex patterns.

Table 4.18 presents the relation between the most frequent patterns for
Inline Method refactoring and code smells. We observed that patterns with
only the deletion of the source method (Method Declaration.S-) and some
modification of method invocation (Method Access) tend to remove more
types of smells. In particular, these patterns tend to remove Feature Envy,
reaching up to 19.2% of instances, for the pattern {Method Declaration.S-
, Method Access.S-, Method Access.T+}. On the other hand, patterns with
the modification Operator Expression did not remove smells. To make worse,
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these patterns frequently inserted 5 different types of smells. This is a high
amount compared to an average of 3 smells types introduced for the other
patterns. Regarding the pattern {Method Declaration.S-, Return Modifier.S-
}, we observed a frequent removal of the smell Long Parameter List. This
removal is not common for the other patterns, once they had Feature Envy as
the most frequently removed smell.

Finding 8: There are patterns that frequently introduced or removed
more a certain type of smell.

Finally, we can observe that the smell Complex Class is the more
frequently introduced smell. Besides, Feature Envy and Long Method are also
commonly introduced. Although Inline Method is the opposite of the Extract
Method, both had similar results to the types of smells introduced. Another
important observation is the recurrent mitigation of complex smells that affects
classes, such as Complex Class, Spaghetti Code, and God Class. Regarding the
smell Spaghetti Code, we observed that this smell was frequently introduced
(25%) only for the pattern {Exception Handler.S-, Method Declaration.S-},
being this pattern the only one with the modification Exception Handler.

Table 4.19 presents the code smells introduced, removed and mitigated
when performing different patterns for Move Method. Similar to the refactor-
ing Inline Method, the most common smells mitigated when applying a Move
Method were Complex Class, God Class, and Spaghetti Code. Another im-
portant observation is that more complex patterns removed and mitigated a
less variety of smell types. Besides, unlike the Inline Method, we also have
the frequent introduction of the smell Speculative Generality. It is important
to note that this smell is repeatedly introduced by patterns with at least 3
modifications, where there are modifications of the type Method Access. This
modification type indicates a call to the source (Method Access.S) or target
(Method Access.T) method. Another difference is the constant insertion of the
smell CDSP, present in almost all the frequent patterns of the Move Method.
Finally, we observed that the insertion of the smell Speculative Generality
appeared in customizations, becoming even more frequent for more complex
patterns. This same smell did not appear for patterns that have only core
modifications.

Finding 9: More complex patterns tend to remove and mitigate
fewer different smell types.
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Table 4.18: Impact of the Inline Method Patterns on Smells.

Pattern Smell Introduced Smell Removed Smell Mitigated

Method Declaration.S-
ComplexClass: 20.6%
LongMethod: 12.7%
FeatureEnvy: 12.1%,

FeatureEnvy: 9.7%
DispersedCoupling: 5.5%
LongMethod: 5.5%

ComplexClass: 21.8%
SpaghettiCode: 13.3%
GodClass: 12.7%

Method Declaration.S-,Method Access.S-
ComplexClass: 24.6%
FeatureEnvy: 13.8%
LongMethod: 13.8%

FeatureEnvy: 9.2%
LongParameterList: 4.6%
LongMethod: 4.6%

ComplexClass: 20.0%
SpaghettiCode: 12.3%
GodClass: 10.8%

Method Declaration.S-,Method Access.T+
ComplexClass: 20.6%
FeatureEnvy: 11.8%
LongMethod: 11.8%

FeatureEnvy: 14.7%
IntensiveCoupling: 5.9%
LongMethod: 5.9%

ComplexClass: 23.5%
GodClass: 8.8%
CDSP: 8.8%
SpaghettiCode: 8.8%

Method Declaration.S-,Method Access.S-,
Method Access.T+

ComplexClass: 15.4%
FeatureEnvy: 15.4%
CDSP: 11.5%
LongMethod: 11.5%

FeatureEnvy: 19.2%
IntensiveCoupling: 7.7%
LongMethod: 7.7%

ComplexClass: 26.9%
GodClass: 11.5%
CDSP: 11.5%
SpaghettiCode: 11.5%

Method Declaration.S-,Method Access.T- ComplexClass: 26.7%
LongMethod: 13.3%

FeatureEnvy: 13.3% ComplexClass: 13.3%

Method Declaration.S-,Method Access.S-,
Operator expression.S-

ComplexClass: 21.4%
FeatureEnvy: 21.4%
CDSP: 14.3%
LongMethod: 14.3%
ShotgunSurgery: 14.3%

ComplexClass: 35.7%
SpaghettiCode: 28.6%

Method Declaration.S-,Method Access.T+,
Method Access.T-

ComplexClass: 28.6%
LongMethod: 14.3%

FeatureEnvy: 14.3% ComplexClass: 14.3%

Method Declaration.S-,Operator expression.S-

ComplexClass: 21.4%
FeatureEnvy: 21.4%
LongMethod: 14.3%
CDSP: 14.3%
ShotgunSurgery: 14.3%

ComplexClass: 35.7%
SpaghettiCode: 28.6%

Exception Handler.S-,Method Declaration.S-

ComplexClass: 33.3%
SpaghettiCode: 25.0%
FeatureEnvy: 16.7%
LongMethod: 16.7%

FeatureEnvy: 16.7% ComplexClass: 25.0%

Method Declaration.S-,Return modifier.S- ComplexClass: 33.3%
CDSP: 16.7%

LongParameterList: 16.7%
ComplexClass: 33.3%
SpaghettiCode: 33.3%
GodClass: 25.0%

Finally, Table 4.20 presents the smells related with the most common
modification patterns for Pull Up Method. We observed that simpler patterns
with only core modifications introduced and removed 3 different types of smell,
in contrast with more complex patterns that only introduced Complex Class.
Also, customizations of the refactoring Pull Up Method did not remove smells.
Only two customizations removed at least one smell, Feature Envy. We also
observed that Complex Class, Spaghetti Code, and Data Class are frequently
mitigated by almost all patterns for Pull Up Method.

Summary: We can see that, in general, patterns tend to lean towards
having a negative effect on the code structure, introducing more smells than
removing or mitigating them. Besides, similar smell types were introduced
for different patterns of the same refactoring. This observation is also valid
for the removal and mitigation of smells. However, for Pull Up Method we
observed a significant difference in the types of smells introduced between: (i)
simpler patterns, mostly having only core modifications, and (ii) more complex

DBD
PUC-Rio - Certificação Digital Nº 1812770/CA



Chapter 4. Customization of Refactorings 99

Table 4.19: Impact of the Move Method Patterns on Smells.

Pattern Smell Introduced Smell Removed Smell Mitigated

Method Declaration.S-
ComplexClass: 19.7%
FeatureEnvy: 10.5%
CDSP: 10.5%

ComplexClass: 3.9%
DataClass: 3.9%

ComplexClass: 30.3%
GodClass: 15.8%
SpaghettiCode: 10.5%

Method Declaration.T+
ComplexClass: 21.3%
CDSP: 10.7%
FeatureEnvy: 10.7%

ComplexClass: 4.0%
DataClass: 4.0%

ComplexClass: 29.3%
GodClass: 14.7%
SpaghettiCode: 10.7%

Method Declaration.S-,Method Declaration.T+
ComplexClass: 20.5%
CDSP: 11.0%
FeatureEnvy: 11.0%

ComplexClass: 4.1%
DataClass: 4.1%

ComplexClass: 28.8%
GodClass: 13.7%
SpaghettiCode: 9.6%

Method Declaration.S-,Method Declaration.T+,
Method Access.T+

ComplexClass: 20.6%
CDSP: 12.7%
SpeculativeGenerality: 11.1%
GodClass: 11.1%
FeatureEnvy: 11.1%

ComplexClass: 4.8%
DataClass: 4.8%
FeatureEnvy: 3.2%

ComplexClass: 30.2%
GodClass: 14.3%
SpaghettiCode: 9.5%

Method Declaration.S-,Method Declaration.T+,
Method Access.S-

ComplexClass: 20.0%
CDSP: 14.5%
SpeculativeGenerality: 10.9%
FeatureEnvy: 10.9%

ComplexClass: 5.5%
DataClass: 5.5%
FeatureEnvy: 3.6%

ComplexClass: 30.9%
GodClass: 14.5%
SpaghettiCode: 10.9%

Method Declaration.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+

ComplexClass: 20.4%
CDSP: 14.8%
SpeculativeGenerality: 11.1%
FeatureEnvy: 11.1%

ComplexClass: 5.6%
DataClass: 5.6%
FeatureEnvy: 3.7%

ComplexClass: 31.5%
GodClass: 14.8%
SpaghettiCode: 11.1%

Method Declaration.S-,Method Declaration.T+,
Method Access.T+,Variable declaration.T+

SpeculativeGenerality: 26.3%
ComplexClass: 26.3%
CDSP: 26.3%

ComplexClass: 21.1%

Exception Handler.T+,Method Declaration.S-,
Method Declaration.T+,Method Access.T+

ComplexClass: 42.1%
SpaghettiCode: 26.3%
SpeculativeGenerality: 21.1%
CDSP: 21.1%
GodClass: 21.1%

ComplexClass: 10.5%
ComplexClass: 31.6%
GodClass: 21.1%
SpaghettiCode: 15.8%

Method Declaration.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+,
Variable declaration.S-

SpeculativeGenerality: 17.6%
FeatureEnvy: 11.8%

ComplexClass: 35.3%

Method Declaration.S-,Method Declaration.T+,
Method Access.S-,Method Access.T+,
Variable declaration.T+

SpeculativeGenerality: 29.4%
ComplexClass: 29.4%
CDSP: 29.4%

ComplexClass: 23.5%

patterns, in which there is more customization. Besides, we observed that
there are specific customized patterns that frequently introduced or removed
more than a certain type of smell. For instance, a representative example of
this situation is the smell Spaghetti Code, which is frequently introduced by
the pattern {Exception Handler.S-, Method Declaration.S-} of Inline Method
refactoring. Besides, we also observed that, while more complex customized
refactoring patterns specialized the refactoring to affect certain smell types,
they also reduced some of the refactoring positive effects. It is not clear whether
the developer is achieving good trade-off decisions in these cases. Moreover,
more complex patterns tend to remove a fewer number of smell types. However,
as discussed in RQ2, this could be caused by a lack of support from tools that
aim to support the refactoring process (e.g., those embedded in IDEs), for the
additional modifications present in these customized refactorings.
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Table 4.20: Impact of the Pull Up Method Patterns on Smells.

Pattern Smell Introduced Smell Removed Smell Mitigated

Method Declaration.S-
ComplexClass: 14.8%
SpeculativeGenerality: 13.0%
FeatureEnvy: 7.4%

FeatureEnvy: 16.7%
DispersedCoupling: 5.6%
LongMethod: 5.6%

ComplexClass: 35.2%
SpaghettiCode: 16.7%
DataClass: 11.1%

Method Declaration.S-,Method Declaration.T+
ComplexClass: 16.3%
SpeculativeGenerality: 11.6%
FeatureEnvy: 7.0%

FeatureEnvy: 16.3%
MessageChain: 4.7%
LongMethod: 4.7%

ComplexClass: 27.9%
SpaghettiCode: 18.6%
DataClass: 14.0%

Method Declaration.S-,Method Declaration.T+
Method Access.T+

ComplexClass: 28.6%
SpeculativeGenerality: 9.5%

ComplexClass: 19.0%
SpaghettiCode: 14.3%
DataClass: 9.5%

Method Declaration.S-,Method Declaration.T+
Method Access.S-

ComplexClass: 20.0% FeatureEnvy: 20.0%
ComplexClass: 33.3%
SpaghettiCode: 26.7%
DataClass: 13.3%

Method Declaration.S-,Method Declaration.T+
Method Access.S-,Method Access.T+

ComplexClass: 27.3% ComplexClass: 27.3%
SpaghettiCode: 18.2%

Method Access.S-,Method Access.T+ ComplexClass: 27.3% ComplexClass: 27.3%
SpaghettiCode: 18.2%

Method Declaration.S-,Method Access.S- ComplexClass: 18.8% FeatureEnvy: 18.8%
ComplexClass: 43.8%
SpaghettiCode: 31.2%
DataClass: 12.5%

Method Declaration.S-,Method Access.S-
Method Access.T+

ComplexClass: 27.3% ComplexClass: 27.3%
SpaghettiCode: 18.2%

Exception Handler.S-,Method Declaration.S-
Exception Handler.T+,Method Declaration.S-
Method Declaration.T+

ComplexClass: 60.0%

4.5
Threats to Validity

Internal Validity. Refactoring Miner (15, 38) may yield false positives
and false negatives. It has an effectiveness of 87.2% for recall and 98% (81)
for precision, which is the best effectiveness among refactoring detection tools.
In addition, we manually inspected some instances identified by it during our
analysis. We relied on code smell detection tool used by recent studies (2, 80).
However,these strategies were validated by previous work (89) with a resulting
precision and recall (90) of 72% and 81%, respectively.

Construct Validity. The Refactoring Miner detects 15 types of refac-
torings, but we are considering only four types of refactorings. Although these
four refactorings may not fully embrace all forms of refactoring customizations,
these four refactorings are amongst the most frequently used by developers in
practice. Finally, these refactorings affect the program structure differently. For
instance, Extract Method is an inter-class refactoring, affecting directly only
one class. Different from Extract Method, Move Method and Pull Up Method
affect more than one class, including changes affecting a class hierarchy.

The collected modification types may not consider all possible modifi-
cation types. We used Eclipse’s JDT library, once this library has a very low
level of granularity. In this way, we can detect a large number of modifications.
Besides, this library is commonly used to build automated refactoring tools for
Eclipse.
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External Validity. Regarding the generality of our findings, we per-
formed an in-depth analysis of refactoring instances from 13 Java projects,
which satisfy the criteria defined in Section 4.3.1. Our results might not neces-
sarily hold to other projects involving other primary programming languages
and/or from domains not covered by our dataset. Moreover, we focused our
analysis on open-source software projects. The nature of rafactoring in closed-
source software projects is not necessarily the same as refactoring in open-
source software projetcts. However, popular open-source projects have a major
concern with software modularity; their teams tend to continuously refactor
the source code to promote better code comprehensibility and maintainability
by experienced and novice developers.

4.6
Conclusion

In this paper, we presented a study to understand how developers
customize refactorings in practice. In particular, we investigated which are the
core and additional modifications that developers performed when refactoring
and how often they applied customized refactorings. We performed our study in
1,162 refactoring instances of four refactoring types, namely (Extract Method,
Inline Method, Move Method and Pull Up Method) from 13 software projects.

Our results revealed that the core modifications of each refactoring type
occurred frequently accompanied by additional modifications. These additional
modifications customize the refactorings for the specific developer scenario
where the refactoring will be applied. Besides, these additional modifications
may be located in different code locations, not necessarily close to the source
and target methods. We also observed that the most frequent patterns included
the addition and removal of both target and source method invocations in
different methods.

Unfortunately, the Eclipse’s automated refactoring tool is not able to
provide adequate support for automating these invocations. To make it worse,
further analyses of the modification patterns revealed that the occurrence of
those patterns tend to introduce some specific types of code smells. We also
found an interesting relationship between the complexity of the pattern (i.e.,
the number of additional modifications) and the variety of code smells intro-
duced, as more complex patterns were shown to introduce fewer types of code
smells, especially for Pull Up Method. Moreover, more complex customized
refactoring patterns reduced the positive effects of the refactoring.

Finally, it is important to highlight that the current Fowler’s catalog of
modifications for each refactoring type should be revisited. The core modifi-
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cations presented in Table 4.2 are not directly in line with the patterns found
in Figures 4.6 to 4.9. It is also important to consider the fact that the lack
of support for refactoring customization in existing tools might be one of the
root causes for customized refactorings to be performed poorly.

Thus, as future work, we plan to design and implement tool support for
better assisting developers on performing customized refactorings. The support
should be enable flexible definition of customized refactoring patterns, while
helping developers to avoid reusing patterns that might worsen their code
structure quality. Our tool support is going to be integrated in the Eclipse IDE.
We also plan to perform further studies, either quantitative or qualitative, that
consider other refactoring types and other software projects, including close-
sourced software projects.

4.7
Summary of Chapter 4

In this chapter, we investigated how developers apply four of the most fre-
quent refactoring types in practice. These refactoring types are namely Extract
Method, Inline Method,Pull Up Method, and Move Method. We observed that
developers often customize refactorings. We also observed that the most fre-
quent modification patterns include the addition and removal of both target
and source method invocations across different methods. However, Eclipse’s
refactoring tool is not able to provide adequate support for automating these
invocation-related modifications.

We also found a relationship between the complexity of the pattern
(i.e., the number of additional modifications) and the variety of code smells
introduced. The more complex the modification pattern is, the fewer types
of code smells are introduced. However, more complex customized refactoring
patterns also reduced the positive effects of the refactoring. This observation
indicates the need to come up with tools that assist developers in avoiding
choices related to harmful customized refactorings. In fact, the problem could
be indeed caused by a lack of support from tools that aim to support the
refactoring application (e.g., those embedded in IDEs), which does not guide
developers in performing additional modifications present in typical customized
refactorings.
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5
Support for Refactoring Customization

As seen in Chapter 4, developers often needed to customize refactorings to
be able to achieve their goals. We also observed that developers tend to use the
same core and additional modifications to customized their refactorings. We
were able to come up with a catalog of typical modification patterns used for
creating customized refactorings. However, almost all frequent customizations
are not completely supported by the refactoring tool provided by Eclipse. This
tool’s features do not allow developers to properly create their own custom
refactoring. Developers are instead restricted to tailor refactorings only through
basic configurations, which often do not satisfy their needs. For instance, let
us consider the refactoring Extract Method. Eclipse’s automated refactoring
tool allows developers only to change the method signature, such as the access
modifier and exception throws as possible customization. To make it worse,
these configurations are specified by each refactoring type.

In order to address this problem, we proposed a flexible approach
for enhancing refactoring automated support with customization features.
The approach allows a developer to: (i) compose a customized refactoring
according to his context’s needs, and (ii) reuse the custom refactorings in
similar contexts. We also discuss potential benefits of our proposal and
elaborate on some implementation issues. This approach is described in a
paper previously published. Thus, this chapter presents this paper, which is
entitled "On the Customization of Batch Refactoring" (45) and published in
the Proceeding of the 3th International Workshop on Refactoring, co-located
with the International Conference on Software Engineering, held in Montreal,
Canada, in May 2019.
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5.1
Introduction

Refactorings are program transformations that aim to improve the code
structure, thereby making programs easier to understand and maintain (1).
However, refactoring is a complex software maintenance practice which requires
specialized effort for its application. In fact, developers often apply refactoring’s
program transformations in a batch, i.e., various transformations in a sequence
on a certain program location in order to achieve a specific goal (8, 94). Given
the complexity of software refactoring, development companies may change
their routine to adopt this practice (9).

Aiming to support developers’ and companies’ needs, IDEs, such as
Eclipse1 and IntelliJ2, include tools for supporting automated refactoring.
These tools have been widely explored in previous empirical studies, where
they presented some advantage over the manual refactoring (17, 19). They
make the refactoring process easier as well as reduce costs and failure prone-
ness (40). Despite of these claimed benefits, developers are still reluctant to
use automated refactoring along software development (8, 17, 40, 95).

The literature explores several limitations to understand the disuse
of automated refactoring tools (9, 17). One of the key limitations is that
existing tools provide limited support for refactoring customization (17, 96).
IDE features do not allow developers to properly create their own custom
refactoring. Developers are instead restricted to tailor transformations only
through very basic configurations, which often do not satisfy their needs.
The lack of customization also impairs the adaptation and reuse of pre-
defined automated refactorings for different contexts. With all these downsides,
developers often feel reluctant to use existing tools, and end up applying their
refactorings manually (8, 94).

Developers consider that automated refactorings are a restrict practice
where they have limited access. This limited access restricts the control of all
modifications that will be applied by the refactoring, especially in the final

1https://www.eclipse.org/
2https://www.jetbrains.com/idea/

DBD
PUC-Rio - Certificação Digital Nº 1812770/CA



Chapter 5. Support for Refactoring Customization 105

result (9, 17). Even worse, the code generated by automated refactoring tools
for the same refactoring varies between IDEs (41). This divergence further
discourages the use of these tools, once it reduces the predictability of the
result. Because of this reduction, the results end up being different from the
expected by the developers (41).

In this paper, we propose an approach for developers to customize
refactoring. Our approach makes the automated refactoring more flexible. The
additional flexibility allows the adaption to the context where the refactoring
will be applied. For that, we split each refactoring into a set of minor program
modifications that compose it. We call these minor modifications as primitive
modifications. The primitive modifications are used to change the formerly
defined behavior of a refactoring, allowing the developer to create custom
refactorings. Custom refactorings can be adapted to the developer’s context,
allowing to apply it to similar contexts. The approach also allows developers
to customize batches through from the composition of two or more custom
refactorings.

The proposed approach focuses on reducing the limitations caused by
the low customization flexibility of automated refactoring tools. The approach
also allows development companies to refine a library of standard and custom
refactorings to adhere to their quality standards. In addition, our approach
motivates that researchers to investigate better practices for customization of
refactoring. Finally, it also motivates studies about the applicability of custom
refactoring and its best practices.

This paper is structured as follows: The Section 5.2 presents the limi-
tations of the current automated refactoring tools. Section 5.3 introduces the
new approach. Section 5.4 discusses the approach‘s advantages and main chal-
lenges. Finally, Section 5.5 discusses the final considerations.

5.2
Motivation

This section presents the limitations when executing automated refactor-
ing using Eclipse. Subsection 5.2.1 details the problems that were observed in
the literature. Finally, subsection 5.2.2 illustrates a real example from Eclipse
project in which a current automated refactoring tool does not provide com-
plete support to realize the needed changes.

DBD
PUC-Rio - Certificação Digital Nº 1812770/CA



Chapter 5. Support for Refactoring Customization 106

5.2.1
Problem Statement

Developers usually do not apply automated refactoring tools, despite
the fact these tools are available for years through IDEs (8, 17, 95). This
happens because developers are not satisfied with automated refactoring tools’
usability (17). This disappointment occurs due to existing limitations that
restrict the applicability of automated refactoring. These limitations make it
difficult or even impossible for developers to adapt refactoring within their
context. Indeed, the automated refactoring tools provided by Eclipse are not
fully customizable, i.e., developers can customize the generated code only
through the settings provided by Eclipse. However, these settings are specified
by each program transformation type.

For instance, let us consider the refactoring transformation Extract
Method. Figure 5.1 presents how the developer can change the method signa-
ture as the access modifier and exception throws through Eclipse IDE. How-
ever, some modifications are not allowed, such as (i) the addition of a call to
the extracted method from other methods different from the source one (ii)
the extraction of statements from different source methods. Indeed, modifica-
tions that go beyond the basic modifications described by Fowler (1) for each
refactoring are not usually allowed.

Figure 5.1: Eclipse’s Extracted Method Tool Configuration

Because of this limitation, the automated refactoring tool provided by
Eclipse does not support the creation of custom refactorings. The lack of
customization can harm the adaptation of automated refactoring for different
contexts. Once it is difficult to adapt, developers usually avoid the use of
these tools, especially in critical program locations. Consequently, developers
prefer to apply manually each refactoring to have higher control of the program
correctness after refactoring (8, 17, 94).

5.2.2
Running Example

Figure 5.2 presents an example of a batch composed by two Extract
Methods and two Rename Methods applied manually. In this example, we
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can observe code modifications along the batch application. Unfortunately,
Eclipse’s automated refactoring tools do not allow their application. These
code modifications are detailed in Phase 1 (before the batch application) and
Phase 2 (along the batch application).

Phase 1 presents the RepositoriesView class. This class has three
methods: getGitDirs, saveDirStrings, and addActionsToToolbar. Phase
2 presents an applying batch on the RepositoriesView class.

Code Modifications along a Batch As starting point, the developer applied
two Extract Methods on getGitDirs and saveDirStrings methods, creating
a new method called getPrefs. Developer applied two Rename Methods on
these methods, resulting on the change of their names to GetDirs and saveDir.
Then, the developer called the extracted method in the getDirs and saveDir
methods. The developer also applied another code modification, calling the
extracted method in the method addActionsToToobal, i.e., a method different
from the source ones.

These two applications of Extract Method illustrate two code modifica-
tions that are not supported by the automated tools provided by Eclipse. These
code modifications are (i) to extract the source code of different methods to
create a new method, and (ii) to call the extracted method from other methods
that are not involved in the Extract Method. A lack of automated support to
apply these code modifications force the developer manually select the source
code of each method to create a new method. Because of these limitations, de-
velopers have to redo the automated Extract Method many times as needed to
satisfy their goal. The repetitive application of automated refactorings requires
additional effort and discourages the use of automated tools.

Rename
Method 

Extract 
Method 

1

2

Call

RepositoriesView 

getGitDirs( )

saveDirStrings( ) 

addActionsToToolbar( ) 

RepositoriesView 

getDirs( )

saveDir( ) 

addActionsToToolbar( ) 

getPrefs( ) 

Figure 5.2: Eclipse’s Batch Refactoring Example

Composing a Batch Developers often perform a refactoring by applying a
program transformation in conjunction with other program transformations (8,
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97). These program transformations are part of a batch. Figure 5.2 shows that
the developer needs to complete the Extract Methods with Rename Methods.
Once the renamed methods became cleaner, the choice of a new name is
required; the new name will better represent the method’s meaning after
the extraction. Indeed, these two program transformation types are frequent
and often used to compose batches (94). However, developers have reported
the difficulty to compose a batch, in particular when choosing what program
transformations may be combined (82).

5.3
Approach

Custom Batch Refactoring


Begin callMethod

Extract Method

Custom Extract method

Begin

Pull Up Method 

End

A B

Figure 5.3: Prototype of the Refactoring Customization Process

We propose an approach to make these tools more flexible and address the
limitations of the existing automated refactoring tools. Our approach allows
that developers compose custom refactorings according to the context where
they will be applied. For that, we split each refactoring into a set of minor
modifications that compose it. We call them as primitive modifications. For
instance, an Extract Method transformation can be fragmented into a set of
primitive modifications. The first one consists of creating a new method.
The second primitive modification is the extraction of a set of statements from
the source method to the new method. The third primitive modification is the
call to the new method from the source one. As well as the Extract Method,
the other refactorings presented by Fowler (1) can also be split into primitive
modifications.

Figure 5.3 presents an interface prototype for a possible plugin for
Eclipse. This figure lets us better understand the refactoring customization
process through the use of primitive modifications. It is possible to observe a
line flow indicating the order of the modifications that will be applied. We call
this flow as modification flow. Besides, we can also see two indicators A and B.
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The box containing the indicator B represents a custom batch refactoring that
includes a previously custom refactoring, the box A. Inside each box, we have
a beginning point indicating where the modification flow will start. Next, we
have a list of primitive modifications that will be applied in order, from left to
right. Note that refactorings are composed by a set of primitive modification
as seen previously for Extract Method. Thus, in order to improve the usability,
the developer is able to directly add refactorings to the modification flow.
In this way, the developer does not have to individually add each primitive
modification that composes a well-known refactoring. From now, we will call
as modification a modification flow’s item.

Every modification has an output and may also need an input. The input
data are the required configurations that are fundamental for the application
of the modifications. For instance, when applying an Extract Method, we must
select a set of statements that will be extracted into a new method. The
selected statements are the input for this modification. Each modification
may have some optional configurations that can be modified by the developer.
For instance, Figure 5.3 has the primitive modification callMethod. For this
modification, a possible optional configuration is to set where the method will
be called: at the beginning or end of the caller method. The input, which is a
fundamental configuration, in this case will be the selection of which method
will be called and by whom.

Finally, the output is the generated code after the application of the
modification. Each output will be used as input for the next modification on
the flow. For instance, the extracted method could be considered the output for
the transformation Extract Method. Therefore, if we look again at the primitive
modification callMethod in Figure 5.3, we can note that it is applied right after
the Extract Method. Thus, the modification callMethod will use the Extract
Method‘s output as its input.

5.3.1
Customizing Single Refactoring

Previous studies show that a single refactoring transformation may not be
enough to fix the target structural problem (94). Hence, developers often edit
the refactored code to reach their initial goal. In other words, the developer is
customizing refactoring by adding or removing modifications to adapt to their
context.

To customize a refactoring using our approach, the developer should se-
lect first which existing refactoring will be customized. After selecting the
refactoring, the modification flow will be displayed similarly to Figure 5.3.
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Then, the developer can change the refactoring by adding or removing mod-
ifications on the modification flow. To add a new modification, the developer
needs to click on the plus button and select which kind of modification he
wants to add. Then, the developer will select where the modification will be
inserted on the flow. Finally, the developer will define the input and the output
based on his context.

5.3.2
Customizing Batch Refactoring

As seen in 5.2.2, developers apply complementary transformations as part
of a batch. Through our approach, developers will be able to create custom
batches. Refactorings can be added to modification flow of other existing
ones in the same way as primitive modifications. Thus, the developer can
compose multiple refactorings in a modification flow as seen in Figure 5.3 in
box B. In this box, the custom batch refactoring will apply first the custom
extract method, then the pull up method. The approach allows the developers to
create any batch refactoring they need, as long as the input data are correctly
provided.

5.4
Discussion

This section discusses the proposed approach regarding limitations raised
by previous works. We indicate how our approach overcomes or mitigates them.
Finally, we discuss the main challenges to implement the approach.

5.4.1
Advantages

Flexibility. The literature discusses the need for a tool that can support
definition of new program transformation types (9, 19). These studies expose
the lack of flexibility to support the automated refactoring for different con-
texts. To address this limitation, we propose an approach to enable refactoring
customizations. Developers can customize an existing refactoring or create a
new one changing the modification flow. These custom refactorings can be
adapted for different contexts. Developers can also produce customized batch
refactorings that meet their needs.

Enhanced Predictability. The literature also discusses the difficulty
in predicting how the code will become after the application of refactoring (9,
17). Using our approach, the developer can more easily understand the
transformations, since the refactorings are customized by himself. Besides,
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the developer can follow these transformations, step by step, throughout the
modification flow. Hence, the final result after the application of the custom
refactoring will be more predictable.

Step-wise Preview. Vakilian et al. (17) interviewed some developers
about the usability of the preview window of automated refactoring tools. The
interviewees mentioned that the preview window is not very useful because
it does not show the complete code or does not highlight important points.
In our approach, developers will be able to preview the code after each
modification, i.e., in a step-wise manner. The modified code will be highlighted
after each modification along the modification flow. Thus, developers can stop
the preview and adjust the modifications to ensure that the final result will be
as planned. Hence, this feature also improves predictability.

Reuse. Each custom refactoring can be saved and reused whenever nec-
essary, including as part of another larger one. This composition of refactorings
allows the creation of more complex refactorings, including batch refactorings.
The reuse reduces the effort when applying custom refactoring continually. Be-
sides, custom refactoring can be edited whenever needed, either for a specific
use or to keep updated.

5.4.2
Challenges

The proposed approach has some limitations. The first one is the difficulty
to define a set of modifications that satisfy all needs of the developers. To
address this challenge, our approach will be based on Eclipse’s AST. The AST
is the base framework used by Eclipse for many powerful tools, including their
current automated refactoring tool. This framework captures the semantic
structure of a Java program allowing to identify and performing modifications.

Another challenge for realizing the approach is the requirement of prior
input for the application of the modification. Developers need to dedicate
more time to define all inputs for a custom refactoring. To reduce the
additional effort, we plan to compose a set of predetermined transformations.
We plan to apply learning techniques (e.g., (98)) in various software projects
in order to: (i) “learn” through real examples of “similar” transformations
observed across these programs, and (ii) (semi-)automatically derive these
predetermined transformations. Each predetermined transformation will have
some simple points of customization. These points are responsible for enabling
the adaptation of the predetermined transformation to the context where it
will be applied.
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5.5
Final Remarks

The proposed approach focuses on reducing the existing limitations
caused by the low flexibility of automated refactoring tools. Developers will
be able to customize refactorings to satisfy their needs. Besides, developers
can reuse refactorings already created in a different context. This is possible
because custom refactorings are easily adaptable. As well as developers, devel-
opment companies can also customize refactorings to refine their transforma-
tions. This refinement can aim to adhere to quality standards. In addition, our
approach motivates researchers to investigate better practices for the creation
of custom refactorings. The approach is also an introduction to think of how
automated refactoring tools can be performed. Our goal is to promote better
trustability and, consequently, improve the usability of automated refactor-
ings. Finally, it also motivates the study about the applicability of custom
refactoring for different contexts.

As future work, we intend to define and classify the primitive modifica-
tions in detail. Then, we will design and implement a plugin for Eclipse. This
plugin will enable the use of the proposed approach.
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5.6
Summary of Chapter 5

In this chapter, we proposed an approach focused on reducing the
existing limitations caused by the low flexibility of automated refactoring tools.
Through this approach, developers will be able to customize refactorings to
satisfy their needs. Besides, developers can reuse refactorings already created
for similar contexts. This is possible because customized refactorings are
easily adaptable. Developers can add or remove a modification among those
that compose well-known refactorings. This additional flexibility also allows
developers to customize the refactoring for different scenarios within their
systems. In this way, developers are not induced by the tool to perform the
same code modifications in different scenarios even when they do not properly
fit their context. As future work, we plan to design, implement and evaluate
our approach. We are currently using a semiotic engineering method (99) to
assist refinements on the design of our proposed solution.
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6
Final Conclusions

Code smells are code structures that are potentially harmful to program
comprehension and maintenance. Thus, code smells should be detected and
considered to be removed from a program. However, the abstract nature of
code smell descriptions makes the their detection a challenging task. To make
it worse, different developers may have different opinions about the existence
of a smell in a code fragment. Thus, code smell detection should be customized
taking into account developers’ knowledge, once they are often responsible to
detect smells on their software projects.

Smell detection and code refactoring are often performed in conjunction.
Similar to smell detection, developers are, in practice, a main source of all
technical knowledge required to decide when and how to refactor their code.
Given a certain smelly structure, there might be a wide range of different ways
to apply the same refactoring type. Moreover, different developers in the same
project may have different strategies to refactor the same smelly structure. It
is up to the developer to analyze the poor structure, evaluate the existence of
the code smell, and decide how to refactor the code to fix the poor structure.

However, automated techniques for code smell detection, as well as for
code refactoring, are inflexible. They are rigid in the sense they do not easily
accommodate customizations to perform the detection of the same smell type
or the application of the same refactoring type. As a consequence, the developer
often feels obliged to perform these customizations manually. Moreover, they
may give up in reviewing and refactoring the code if there is no proper tooling
support.

This dissertation aims to evaluate how the approaches to smell detection
and refactoring applications can be properly customized. First, we analyzed
how the use of machine learning techniques, often stated as a promising
way to detect smells, would have their effectiveness affected when evaluating
developer-sensitive smells. In addition, we also evaluated how ML techniques
would behave when detecting smells considered potentially important to be
refactored out by developers.

After, we studied whether and how refactoring customizations occur
in thirteen software projects. In this dissertation, we summarized the main
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modification patterns adopted by developers when performing four of the
most frequent refactoring types, namely Extract Method, Inline Method,Pull
Up Method, andMove Method. Then, we evaluated the patterns in terms of two
aspects: (i) are they partially or fully supported by Eclipse’s refactoring tool?
and (ii) their relation with the the full removal, introduction and mitigation
of code smells.

The main contributions and their possible impact on the state-of-art and
the state-of-practice are described as follows.

• Evaluation of the use of machine learning techniques to customize smell
detection based on the developer’s knowledge.

Empowering smell detection tools with automated customization can
help developers and companies to consider code smells that indeed harm-
ful according to their quality standards. Otherwise, constant warnings
of rigid, non-customized detection strategies can cause waste of time on
the inspection of irrelevant smells, hinder the developer concentration on
harmful smells according to their perception, or camouflage smells that
are considered more harmful according to the developer’s perception.

We noticed that the use of machine learning is indeed promising to
improve the detection of developer-sensitive smells, i.e., those smells
that are relevant according to the developer’s knowledge. We confirmed
the potential of machine learning in two contexts: detection of smells in
source code not produced by the code reviewers, and detection of smells
that were actually refactored out by the project’s developers.

• A catalog of core and additional modifications applied by developers when
applying specific refactoring types.

It is widely known that developers often neglect automated support for
performing popular refactoring types. Thus, it is important to under-
stand how developers modify the source code during the application of
such refactoring types. In this way, automated tools will be able to pro-
vide adequate support for developers’ refactoring needs, e.g., through
recommendations that assist developers in composing their custom refac-
torings. With adequate support, we hope that developers will be able to
apply refactorings more quickly and produce refactored code that are
less smell-prone or even error-prone.

• A catalog of customized refactorings patterns applied by developers in
practice and the impact of these customizations on code smells.

There is a wide variety of customizations that developers can carry out
in practice. Therefore, recommending the most suitable customization
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for a specific scenario can be an arduous task. However, the availability
of a catalog containing evaluations of the different customizations can
guide these tools to recommend them properly.

Our catalog evaluates the recommendations through two criteria. The
first one is the frequency. Based on this criterion, we cataloged and
discussed the most frequent patterns of each refactoring type. The second
criterion is the impact that these patterns have on code smells. In
this criterion, we cataloged which code smell types are most frequently
introduced, removed, and had their intensity reduced for each of the
most frequent patterns. Understanding which customizations are most
frequent and that less often introduce smells allow the proper design of
tools. For instance, these tools can better support refactoring by properly
recommending customizations to developers during the application of a
refactoring (which are likely to be more beneficial or at least less harmful
to the code).

• A catalog of recurring modifications present in customized refactorings
that are not supported by automated refactoring tool provided by Eclipse.

One of the reasons that force developers to apply their refactorings
manually is the impossibility of performing them automatically (17, 9).
This impossibility occurs because the current tools are inflexible and
do not allow developers to properly customize refactorings for their
scenarios.

Therefore, we cataloged which code modifications that compose the
most frequent customization patterns are not possible to be fulfilled
by the Eclipse’s automated refactoring tool. For this, we reproduced
the developers’ scenarios and tried to replicate the same refactoring
performed by them in these scenarios. In this way, we were able to list the
limitations encountered during the replication. We hope this contribution
serves as a basis for the development of further refactoring tools and
improvements.

• The proposal of an automated refactoring tool that provides support for
refactoring customization.

Once we understand which patterns are more frequent and which limi-
tations prevent the application of these patterns in an automated tool,
we decided to design the prototype of a more flexible tool in order to
overcome these limitations.

In our prototype, we treated refactorings as a mutable set of code
modifications, where developers can add or remove code modifications
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as he sees to fit. Then, developers will be able to organize the order
that the modifications will be applied on his code in a step-wise manner.
Finally, the prototype will save the customized refactoring to be reused
whenever necessary. We hope that this approach will stimulate future
research that involves the development of tools to support refactoring.
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