
 

 

Ralph Engel Piazza 

 

 

 

 

 

 

 

Performance Assessment of Linear Solvers 
 for Fully Implicit Reservoir Simulation 

 

 

 

 

 

 

 

 

 

Dissertação de Mestrado 
 

 

Dissertation presented to the Programa de Pós-
Graduação em Engenharia Mecânica of PUC-Rio 
in partial fulfillment of the requirements for the 
degree of Mestre em Engenharia Mecânica. 

 
  

Advisor: Prof. Ivan Fábio Mota de Menezes 
Co-advisor: Dr. Daniel Nunes de Miranda Filho 

 

 

 

 

 
 
 

Rio de Janeiro 
May 2019 

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



 

Ralph Engel Piazza 

Performance Assessment of Linear Solvers 
 for Fully Implicit Reservoir Simulation 

 

 

Dissertation presented to the Programa de Pós-
Graduação em Engenharia Mecânica of PUC-Rio 
in partial fulfillment of the requirements for the 
degree of Mestre em Engenharia Mecânica. 
Approved by the Examination Committee.  

 
 

Prof. Ivan Fábio Mota de Menezes 
Advisor 

Departamento de Engenharia Mecânica – PUC-Rio 

Daniel Nunes de Miranda Filho 
Co-advisor 

Petróleo Brasileiro S.A. 

Prof. Márcio da Silveira Carvalho 
Departamento de Engenharia Mecânica – PUC-Rio 

Luiz Otávio Schmall dos Santos 
Petróleo Brasileiro S.A. 

 

 

 

 

Rio de Janeiro, May 14th, 2019 

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



All rights reserved. 

 

 

Ralph Engel Piazza 

 

The author graduated from Pontifical Catholic University of Rio de 

Janeiro (PUC-Rio) in 2009 with a major in Electrical Engineering, with 

specializations in the areas of Electronics and Decision-Supporting 

Methods, as well as a minor in Risk Analysis. Concluded a lato sensu 

graduate degree in Petroleum Engineering in 2010, also from PUC-Rio. 

Joined Petrobras in 2010, as an Electrical Engineer, and in 2011 

concluded a lato sensu graduate degree in Electric Engineering from 

Petrobras University. Exchanged positions within Petrobras in 2011, to 

act as a Petroleum Engineer, and has been dedicated to the area of 

Reservoir Evaluation since 2012. 

 

 

 

Bibliographic data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CDD: 621  

Piazza, Ralph Engel 

 

Performance assessment of linear solvers for fully implicit 

reservoir simulation / Ralph Engel Piazza ; advisor: Ivan Fábio Mota 

de Menezes ; co-advisor: Daniel Nunes de Miranda Filho. – 2019. 

162 f. : il. color. ; 30 cm 

       

Dissertação (mestrado)–Pontifícia Universidade Católica do 

Rio de Janeiro, Departamento de Engenharia Mecânica, 2019. 

Inclui bibliografia 

        

1. Engenharia Mecânica – Teses. 2. Solvers numéricos para 

sistemas lineares. 3. Métodos iterativos. 4. Precondicionadores. 5. 

Simuladores de reservatórios. 6. Métodos no subespaço de Krylov. 

I. Menezes, Ivan Fábio Mota de. II. Miranda Filho, Daniel Nunes de. 

III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento 

de Engenharia Mecânica. IV. Título. 

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents, Idelso and Elizabeth, 

 and to my girlfriend Sarah.  

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



Acknowledgements 

I would like to thank everyone that, in different ways, helped me successfully 

conclude my master’s degree in Mechanical Engineering, and that supported me 

along this strenuous journey. 

 

A special thanks to my parents, for their incredible motivation and assistance 

during this period, and to my girlfriend Sarah, for being so supportive and 

understanding of the long hours dedicated to this project.  

 

I am very grateful to my advisors Ivan Menezes and Daniel Miranda, for all 

their guidance, solicitude and time dedicated to assist my research. Your enthusiasm 

towards this project and your professionalism have served as inspiration. 

 

My sincere gratitude to Leonardo Duarte, who developed the reservoir 

simulator with which I worked. This research would not have been possible without 

your dedication and expertise. All the support with programming matters (and there 

were many!) and the counsels given throughout the work were truly invaluable. 

 

I am thankful to Pontifical Catholic University of Rio de Janeiro – PUC-Rio, 

for granting me a scholarship opportunity and making it possible for me to enroll 

in this master’s program. In addition, this study was financed in part by the 

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) 

– Finance Code 001, to whom I also thank.   

 

I would also like to recognize my professors at Pontifical Catholic University 

of Rio de Janeiro – PUC-Rio, who shared their knowledge and experience so 

dedicatedly, as well as my classmates, who through various discussions helped 

enrich this journey. It has been a pleasure from the very first day to undertake this 

course. 

 

I would like to thank the company for which I work, Petrobras, for allowing 

me to pursue this opportunity, conceding time for me to be dedicated to it. My 

earnest gratitude to my manager, Ana Paula Martins, for her unwavering confidence 

and incentive during these years. I would further like to acknowledge the support 

offered by my colleagues at my department, who not only encouraged me, but also 

assisted in several work-related matters so that I could dedicate time to this project. 

  

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



Abstract 

Piazza, Ralph Engel; Menezes, Ivan Fábio Mota de (Advisor); Miranda Filho, 

Daniel Nunes de (Co-advisor). Performance assessment of linear solvers 

for fully implicit reservoir simulation. Rio de Janeiro, 2019. 162p. 

Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia 

Universidade Católica do Rio de Janeiro. 

Petroleum companies investing in the development of hydrocarbon fields rely 

upon a variety of reservoir studies to perform production forecasts and quantify the 

risks associated with the economics of their projects. Integral to these studies is the 

discipline of reservoir modeling, responsible for predicting future reservoir 

performance under various operational conditions. Considering that the most time-

demanding aspect of reservoir simulations is the solution of the systems of 

equations that arise within the linearization cycles at each time-step, this research 

focuses on analyzing different numerical solver techniques to be applied to a 

simulator, in order to assess their performance. The numerical solvers most suited 

for the solution of very large systems of equations, such as those encountered in 

reservoir simulations, are the so-called iterative solvers, which gradually approach 

the solution to a problem by combining an iterative strategy with a preconditioning 

method. The iterative methods examined in this research were the Stabilized 

Biconjugate Gradient (BiCGSTAB), the Generalized Minimum Residual 

(GMRES), and the Orthogonal Minimization (ORTHOMIN) methods. 

Furthermore, three preconditioning techniques were implemented to aid the 

iterative methods, namely the Incomplete LU Factorization (ILU), the Nested 

Factorization (NF), and the Constrained Pressure Residual (CPR) methods. The 

combination of these different iterative methods and preconditioners enables the 

appraisal of several distinct solver configurations, in terms of their performance in 

a simulator. The numerical tests conducted in this work made use of a new reservoir 

simulator currently under development at Pontifical Catholic University of Rio de 

Janeiro (PUC-Rio), as part of a joint project with Petrobras. The objective of these 

tests was to assess the robustness and efficiency of each solver in the solution of the 

multiphase flow equations in porous media, and support the selection of the solver 

most suited for the simulator. 
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Resumo 

Piazza, Ralph Engel; Menezes, Ivan Fábio Mota de (Orientador); Miranda 

Filho, Daniel Nunes de (Coorientador). Avaliação de desempenho de 

solvers lineares para simuladores de reservatório com formulação 

totalmente implícita. Rio de Janeiro, 2019. 162p. Dissertação de Mestrado – 

Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do 

Rio de Janeiro. 

Companhias de petróleo investindo no desenvolvimento de campos de 

hidrocarboneto dependem de estudos de reservatórios para realizarem previsões de 

produção e quantificarem os riscos associados à economicidade dos projetos. Neste 

sentido, a área de modelagem de reservatórios é de suma importância, sendo 

responsável por prever o desempenho futuro do reservatório sob diversas condições 

operacionais. Considerando que a solução dos sistemas de equações construídos a 

cada passo de tempo de uma simulação, durante o ciclo de linearização, é a parte 

que apresenta a maior demanda computacional, esta dissertação foca na análise de 

diferentes técnicas de solvers numéricos que podem ser aplicadas a simuladores, 

para mensurar seus desempenhos. Os solvers numéricos mais adequados para a 

solução de grandes sistemas de equações, tais como os encontrados em simulações 

de reservatórios, são os denominados solvers iterativos, que gradativamente 

aproximam a solução de um dado problema por meio da combinação de um método 

iterativo e um precondicionador. Os métodos iterativos avaliados nesta pesquisa 

foram o Gradiente Biconjugado Estabilizado (BiCGSTAB), Mínimos Resíduos 

Generalizado (GMRES) e Minimização Ortogonal (ORTHOMIN). Além disso, três 

técnicas de precondicionamento foram implementadas para auxiliar os métodos 

iterativos, sendo estas a Decomposição LU Incompleta (ILU), Fatoração Aninhada 

(NF) e Pressão Residual Restrita (CPR). A combinação destes diferentes métodos 

iterativos e precondicionadores permite a avaliação de diversas configurações 

distintas de solvers, em termos de seus desempenhos em um simulador. Os testes 

numéricos conduzidos neste trabalho utilizaram um novo simulador de 

reservatórios que está sendo desenvolvido pela Pontifícia Universidade Católica 

(PUC-Rio) em conjunto com a Petrobras. O objetivo dos testes foi analisar a 

robustez e eficiência de cada um dos solvers quanto à sua capacidade de resolver as 
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equações de escoamento multifásico no meio poroso, visando assim auxiliar na 

seleção do solver mais adequado para o simulador. 
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Nomenclature 

Iterative Method – A component of the numerical solver responsible for finding 

approximate intermediate solutions at each iteration level, measuring the error 

associated with those solutions, and improving them with the aid of a search vector. 

Also referred to as an accelerator in the literature. 

 

Model Formulation – The reservoir model used in a simulator is a mathematical 

model comprised of several equations which attempt to describe the physical 

processes occurring within the reservoir. These equations are formulated – that is, 

the model components are put together through appropriate relationships – 

according to a set of assumptions that involve different aspects of the modeling 

process. As such, the term formulation may refer to the degree of detail attributed 

to its fluid components (i.e. black-oil, compositional or thermal formulations), to 

the degree of detail attributed to its rock components (i.e. dual-porosity, dual-

permeability formulations), to the manner with which the differential equations are 

discretized in time (i.e. fully implicit, IMPES, AIM), as well as others 

characteristics and combinations thereof (SPE – Reservoir Simulation).  

 

Numerical Solver – Relates to the part of the simulator responsible for solving 

linear or nonlinear systems of equations. May be comprised of one or several 

algorithms, as well as subroutines within those algorithms. The solver receives the 

coefficients of the system of equations and then returns the appropriate solution 

after the necessary computations have been performed. 

 

Preconditioner – A component of the numerical solver responsible for aiding the 

iterative method in its search for improved solutions to the problem. It strives to 

reduce the condition number of the coefficient matrix and, consequently, lead to a 

more easily obtainable solution. These algorithms may be of such complexity that 

often in the literature the solver is named after this component. 

  

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



1  
Introduction 

The discipline of reservoir engineering is an integral part in the study of 

petroleum accumulations. Investigating the capability of a reservoir to deliver 

hydrocarbon production is of the utmost importance for the petroleum companies1 

investing in a field’s development. It will serve as one of the foundations for the 

economic analysis forecast of the asset and be used to determine whether its 

explotation is profitable, as well as to assess the risks associated with the necessary 

investments.  

The fundamental objectives of reservoir engineering involve estimating the 

amount of hydrocarbon volume originally present within the reservoir rocks 

(OOIP), and the production curve that may be expected to be delivered by the 

reservoir (Dake, 1978). The investments required to develop and operate a 

petroleum field are quite high, reaching the order of billions of dollars in certain 

offshore scenarios. Being capable of accurately predicting future production is vital 

for defining the optimal number of wells to be constructed, for commissioning 

production units2 and flow lines of adequate capacity, and to decide on an 

acceptable risk premium. Failure to do so may have a significant negative impact 

on the financial wellbeing of a company. 

To maximize the value of the reservoir, it is essential to be capable of 

optimizing its production, recovering the greatest fraction possible of the 

hydrocarbon in place. This entails placing wells in advantageous positions, 

controlling their operating condition intelligently and applying effective enhanced 

recovery techniques to the field. These activities are related to the proper 

                                                 

1 Petroleum Companies – These companies may either be Operators, responsible for leading the 

exploration and explotation of the field or, eventually, its Partners, who may have a partial stake in 

the asset. 

2 Production Units – Facilities where the produced hydrocarbon undergoes a primary set of 

treatments and is prepared for midstream transport into a refinery or gas treatment plant. In some 

instances, it may also involve the temporary storage of hydrocarbons for future collection by tanker 

ships or vehicles. 
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development and management of the field, and are the concern of the multi-

disciplinary team responsible for its study. 

 

  
Motivation 

There are many tools available for studying a reservoir and attempting to 

forecast its future production (Ertekin et al., 2001), such as (i) Decline-Curve 

analysis; (ii) Material-Balance analysis; (iii) Statistical analysis based on analog 

reservoirs; and (iv) Reservoir simulation. However, of these, only reservoir 

simulation is truly capable of understanding the fluid movements occurring within 

the porous media, and of capturing the effects that variations in wells and field 

operating conditions will have on the production forecast. For instance, it can 

measure the impact of constructing a new well, of shutting off a producing zone in 

an existing well, or of starting a water or gas injection campaign. These variations 

would otherwise not be captured in a realistic fashion by any other method available 

(Mattax and Dalton, 1990). Furthermore, understanding the paths that the fluids are 

undertaking in the reservoir permits drilling infill wells in prime positions, in 

locations where there is still sufficient mobile hydrocarbon left in place to justify 

the investment of constructing the well.  

Albeit being a powerful tool, a simulator is not assured to provide accurate, 

reliable information in every situation. As per any modeling process, the quality of 

the output, in this case the simulation results (i.e. fluid production over time), 

depends strongly on the quality of the model formulated. For a reservoir, this 

pertains to how closely the flow model simulation mimics the performance of the 

actual reservoir in question. To be able to adequately represent the reservoir, the 

model must be able to capture its architecture and the properties of the reservoir 

rock, including the variations occurring within its domain, as well as the properties 

of the fluids therein. This is achieved by discretizing the reservoir into small grid 

blocks and assigning rock and fluid properties to each block, relative to its position 

in space. It should be apparent that the greater the number of blocks into which the 

reservoir is partitioned, the more representative the model ought to be. Ultimately, 

to properly approximate the continuum, the reservoir must be discretized into 
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reasonably fine grids (Stüben, 2007). This has led to flow models with millions, and 

even tens of millions of grid blocks in modern reservoir studies.  

However, as model size expands, the simulation becomes more dispendious, 

consuming ever more processing time and computer memory. In practice, such 

computational constraints are what limit model sizes from becoming even larger. 

The evolution in the number of maximum practicable flow model sizes is depicted 

in Figure 1.1. It shows that, historically, the tendency is for the model size to double 

every three years. 

 

 

Figure 1.1 – Model size evolution through time (Extracted from Romeu et al., 2005). 

 

To overcome these obstacles, either more powerful computers must be used 

or, alternatively, the simulator must be improved so as to reduce the memory 

consumption and processing time required for a simulation run. This second 

approach is the focus of this research, which will essentially involve the quest for 

algorithms capable of delivering faster simulation results. 

 

  
Objectives 

The objective of this thesis is to analyze possible solutions to reduce the 

simulation time in a fully implicit multiphase reservoir simulator that is being 

developed at Pontifical Catholic University of Rio de Janeiro (PUC-Rio) for a joint 

project with Petrobras. More specifically, it aims at implementing different iterative 
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numerical methods and preconditioning algorithms, which together function as a 

numerical linear solver, and examining their performances, with respect to their 

robustness and efficiency. 

The simulator in question is being developed based on a plug-in approach, 

where each part of the code functions as a black-box and may be called upon or 

substituted through a control script. The advantages of such configuration have 

been described by Duarte et al. (2015). Moreover, it uses a state-of-the-art data 

structure to handle and store the reservoir information, which has the potential to 

make it very fast. As such, the solvers developed were structured as plug-ins, to be 

incorporated into the simulator architecture. 

 

  
Thesis Organization 

This thesis is partitioned into six chapters, the first one being this introduction. 

The second one aims at detailing the fundamental concepts behind a reservoir 

simulator. Simulators are complex computer programs that utilize mathematical 

equations to model the physical processes governing the flow of fluids in porous 

reservoir rocks, and strive to predict the reservoir response under different 

operational conditions. The equations upon which they are constructed are partial 

differential equations with second order spatial derivatives and first order time 

derivatives. To be adequately handled, these equations must first be discretized, for 

example via finite difference approximations, and then linearized via a nonlinear 

solver. Finally, the resulting equations must be solved via a linear system solver 

(Ertekin et al., 2001). This final part is normally the most time-consuming one, and 

where significant gains in simulation time are possible, if optimized.  

The third chapter describes the main ideas concerning linear systems solvers 

and presents an overview of the methods historically used in reservoir simulation 

applications. Furthermore, three particular methods are explained in greater detail, 

ORTHOMIN, GMRES and BiCGSTAB, because they were the algorithms 

implemented for this research. Besides their partial derivations, the pseudocode of 

the versions implemented in C++ programming language are also presented 

(Schildt, 1998; Celes et al., 2004; Goldberg, 1991). 
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The fourth chapter delves into the preconditioners applied in conjunction with 

the iterative methods of the previous chapter. Those methods are generally unable 

to solve the large linear systems of equations that arise in the simulator 

independently, without the aid of preconditioning strategies. The most common 

options of preconditioners are listed in this chapter. Moreover, three 

preconditioners that were implemented for this research, ILU, Nested Factorization 

(NF) and Constrained Pressure Residuals (CPR), are also described in greater detail, 

with their main concepts explained. Once again, the pseudocodes for some of the 

implemented versions are provided. 

The fifth chapter presents the results obtained with the different simulations 

that were run during this work. It compares the performance of the various 

combinations of iterative methods and preconditioners, to examine which solvers 

are the most consistent at delivering faster results, for the synthetic test cases 

involved.  

The final chapter lists the conclusions of the thesis and some final remarks. It 

also offers suggestions of future works that could be undertaken to further 

developed this line of research into linear system solvers intended for multiphase 

flow in porous media.  

 

  
Contribution 

The primary contribution of this work is its presentation of a wide range of 

possible numerical solvers applicable to fully implicit multiphase reservoir 

simulation. It will analyze the most relevant characteristics of the different methods, 

based on numerical tests, and assess which solver configurations seem most suited 

for a reservoir simulator.  
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2  
Fundamentals of Reservoir Simulation 

The intention of this chapter is to provide an overview of the mathematical 

modeling behind a reservoir simulator and contextualize the motivation for 

studying numerical methods directed towards solving linear system of equations, 

such as the ones encountered in the simulator. The approach taken to analyze the 

problem, the organization of the topics and the deduction of the equations presented 

here are all based upon the content of Ertekin et al.’s Basic Applied Reservoir 

Simulation (2001). Complementary references are also listed where appropriate. 

The primary objective of a reservoir simulator is to be capable of accurately 

predicting reservoir response under various field development scenarios, such as 

different well placement configurations, well operating conditions and hydrocarbon 

recovery techniques. For this purpose, it should be designed to be as efficient as 

possible in delivering results that are sufficiently precise to be of practical use to 

the reservoir engineer. This accuracy is pursued by emulating as realistically as 

possible the underlying physics behind the flow of fluids through porous media, 

while maintaining the computational effort required to perform the reservoir study 

at a reasonable level in terms of processing power, computer memory and 

simulation time duration.  

The fundamental physical principles applied to reservoir simulation are (i) 

generalized mass conservation; (ii) a governing law of fluid flow through porous 

media – Darcy’s Law; and (iii) reservoir fluid and rock properties. These principles 

are then combined to form multiphase flow equations, which are a set of partial 

differential equations (PDEs). In addition to the multiphase flow equations, 

complementary equations, such as those expressing relationships between multiple 

phases, may also need to be considered, so as to constitute a comprehensive 

multiphase flow model.  

The resulting mathematical formulation has the potential to describe fluid 

pressure and saturation, as well as production and injection rates, the main variables 

of a reservoir study, everywhere in the reservoir, at any time period. However, such 
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exact, analytical results are not feasibly achieved in practice, due to the nonlinear 

nature of the equations and to the inherent heterogeneities of the rock and fluid 

properties. Therefore, to solve the equations while still preserving a representative 

description of the reservoir, it becomes necessary to apply a numerical method to 

the problem at hand through the discretization of the multiphase flow equations, so 

as to transform the PDEs into algebraic form. These algebraic equations are, 

nevertheless, still nonlinear equations, whose solutions remain very challenging to 

obtain. To overcome this issue, a linearization technique must be applied to the 

equations, resulting in a set of linearized discretized multiphase flow equations. 

These linear algebraic equations are now able to provide values of pressure and 

saturation only at discrete moments of time and locations in the reservoir, delivering 

only an approximate overview of the reservoir behavior. However, depending on 

how well the reservoir parameters are known and on the degree of discretization 

applied to the reservoir, their results will have honored the physics of the problem 

to a degree not attainable by traditional analytical solutions. 

 

  
Physical Principles 

General Mass Conservation Equation 

 

The principle of conservation of mass states that the total mass of fluid 

entering a control volume must equal the sum of the mass leaving the control 

volume and the mass accumulated within the volume. The partial differential 

equation that describes the conservation of mass over a control volume element 

through which fluid flows is named the continuity equation. It can be expressed 

individually for each fluid phase or fluid component as 

 

 

−
𝜕

𝜕𝑥
(𝑚𝑥̇ 𝐴𝑥) ∙ ∆𝑥 −

𝜕

𝜕𝑦
(𝑚𝑦̇ 𝐴𝑦) ∙ ∆𝑦 −

𝜕

𝜕𝑧
(𝑚𝑧̇ 𝐴𝑧) ∙ ∆𝑧

=  ∀𝐵 ∙
𝜕

𝜕𝑡
(𝑚∀)− 𝑞𝑚 − 𝑞𝑚𝑡 

(2.1) 

 

where 𝑚̇ is the mass flux in each direction; A is the surface area perpendicular to 

the flux; 𝑚∀ is the mass per unit volume of porous medium; ∀𝐵 is the bulk volume 
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of the control element; 𝑞𝑚 is the net rate of mass accumulation through a source 

term; and 𝑞𝑚𝑡
 is the net rate of mass transfer between phases. Here and in every 

other equation presented, a consistent set of units is assumed; otherwise, unit 

conversion constants would have to be incorporated into the equations. 

For the oil, water and free gas phases we may define the following additional 

equations 

 

 𝑚𝑐̇ =  𝜌𝑐𝑢𝑐  (2.2) 

 

 𝑚∀𝑐
= 𝜙𝜌𝑐𝑆𝑐 (2.3) 

 

 𝑞𝑚𝑐 = 𝜌𝑐𝑞𝑐 (2.4) 

 

where 𝑐 represents the fluid phase under analysis (or fluid component); 𝑢𝑐 is the 

phase velocity; 𝜌𝑐 is the phase density; 𝑆𝑐 is the phase saturation in the porous 

medium; and 𝜙 is the total porosity of the control volume. 

For the dissolved gas present in the oil phase, the following definitions are 

applicable 

 

 𝑚̇ =  (𝜌𝑠𝑐
𝑅𝑠
𝐵𝑜
) ∙ 𝑢𝑜 (2.5) 

 

 𝑚∀ = (𝜌𝑠𝑐
𝑅𝑠
𝐵𝑜
) ∙ 𝑆𝑜 (2.6) 

 

 𝑞𝑚 = (𝜌𝑠𝑐
𝑅𝑠
𝐵𝑜
) ∙ 𝑞𝑜  (2.7) 

 

where 𝜌𝑠𝑐 is the density of the oil at standard conditions (𝑆𝐶), referring to the 

standard pressure (1 atm) and temperature (20℃) levels; 𝑅𝑠 is the solution gas-oil 

ratio; and 𝐵𝑜 is the formation volume factor (FVF) of the oil, which shall be detailed 

further ahead. It is assumed here that mass transfer occurs only between the oil and 

gas phases, but not between the hydrocarbon and water phases. 
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Darcy’s Law 

 

The constitutive equation that describes fluid flow through the control 

element is denoted as Darcy’s law. This equation was developed empirically from 

experimental results and relates the areal velocity of a fluid flowing in a porous 

medium to a set of fluid and rock parameters. The energy available to a fluid for 

generating movement may be represented by its potential gradient, defined as 

 

 ∇̅𝛷 =  ∇̅𝑃 − 𝛾∇̅𝑍 (2.8) 

 

where 𝛷 represents the fluid potential; 𝑃 is the fluid pressure; 𝛾 is the specific 

weight of the fluid; and 𝑍 is the vertical distance to a reference datum. 

The flow stemming from a potential gradient within a fluid can then be 

expressed, for any given direction 𝑥, as 

 

 𝑢𝑥 = −
𝑘𝑥
𝜇
∙
𝜕𝛷

𝜕𝑥
 (2.9) 

 

where 𝑘𝑥 is the effective permeability in that direction; and 𝜇 is the fluid viscosity. 

 

Reservoir Fluid and Rock Properties 

 

The relationship between fluid density and other thermodynamic state 

variables, such as temperature, pressure and internal energy, may be expressed by 

certain mathematical formulations, commonly called the equation of state (EOS) of 

the fluid (Ertekin et al., 2001; Dake, 1978). For example, the density of water may 

be given by 

 

 𝜌𝑤 = 𝜌𝑤𝑠𝑐[1 + 𝑐𝑤(𝑃𝑤 − 𝑃𝑠𝑐) − 𝑐𝑇𝑤(𝑇𝑤 − 𝑇𝑠𝑐)] (2.10) 

 

where 𝑐𝑤 is the water compressibility; 𝑃𝑠𝑐 and 𝑇𝑠𝑐 are the standard pressure and 

temperature values, respectively; 𝑐𝑇𝑤 is the coefficient of thermal expansion of 

water; and 𝑇𝑤 is the water temperature. The compressibility of a fluid is defined as 
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 𝑐𝑐 = −
1

∀𝑐

𝜕∀𝑐
𝜕𝑃

=
1

𝜌𝑐

𝜕𝜌𝑐
𝜕𝑃

 (2.11) 

 

where ∀𝑐 is the volume of an arbitrary quantity of the component’s mass, measured 

at the same pressure level in which the (𝜕∀𝑐 𝜕𝑃⁄ ) derivative is calculated. 

Likewise, the oil density may be expressed as  

 

 𝜌𝑜 =
(𝜌𝑜𝑠𝑐 + 𝜌𝑔𝑠𝑐𝑅𝑠)

𝐵𝑜
 (2.12) 

 

for saturated oil, whenever 𝑃𝑜 < 𝑃𝑏; and as 

 

 𝜌𝑜 = 𝜌𝑜𝑏[1 + 𝑐𝑜(𝑃𝑜 − 𝑃𝑏)] (2.13) 

 

for undersaturated oil, whenever 𝑃𝑜 > 𝑃𝑏. Here, 𝑃𝑏 is called the saturation or 

bubble-point pressure and 𝜌𝑜𝑏 is the density of the oil phase measured at that 

specific pressure level. 

The free gas density can be derived from the real-gas law as being equal to 

 

 𝜌𝑔 =
𝑃𝑔𝑀

𝑍𝑅𝑇
 (2.14) 

 

where 𝑀 is the molar mass of the gas; 𝑍 is the real-gas compressibility factor, 

calculated from the pseudoreduced pressure and pseudoreduced temperature of the 

gas; and 𝑅 is the universal gas constant. 

Another important relationship describing a fluid is the ratio of volume it 

occupies at different pressure levels, defined as its formation volume factor  

 

 𝐵𝑐 = 
∀𝑐

∀𝑐𝑠𝑐
 (2.15) 
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where ∀𝑐 is the volume occupied by an arbitrary quantity of mass of the component 

at in-situ conditions; and ∀𝑐𝑠𝑐 is the volume occupied by this same amount of mass 

at standard conditions. 

For water and free gas phases, this may be expressed more conveniently as 

 

 𝐵𝑐 = 
𝜌𝑠𝑐
𝜌𝑐

 (2.16) 

 

while for an undersaturated oil phase as 

 

 𝐵𝑜 = 𝐵𝑜𝑏[1 − 𝑐𝑜(𝑃𝑜 − 𝑃𝑏)] (2.17) 

 

where 𝐵𝑜𝑏 is the FVF at the bubble-point pressure. 

Concerning the gas phase, an additional relationship is necessary to determine 

the amount of gas dissolved within the oil phase. This quantity is defined as the 

solution gas-oil ratio 

 

 𝑅𝑠 = 
∀𝑆𝐺

∀𝑜
 (2.18) 

 

where ∀𝑆𝐺 represents the volume of dissolved gas at standard conditions, per unit 

volume of oil at in-situ conditions; and ∀𝑜 is the volume of oil at standard 

conditions, per unit volume of oil at in-situ conditions. Since at pressures above the 

saturation point all of the solution gas is already contained within the oil phase, for 

pressures in this range the value of 𝑅𝑠 remains constant and equal to its value at 

bubble-point pressure. 

Moreover, the viscosities of the phases are also required for describing the 

flow processes in the reservoir. For an undersaturated oil, the equation to be used is 

 

 𝜇𝑜 = 𝜇𝑜𝑏 [1 − 𝑐𝜇(𝑃𝑜 − 𝑃𝑏)]⁄  (2.19) 

 

where 𝜇𝑜𝑏 is the oil viscosity at bubble-point pressure; and 𝑐𝜇 represents the 

fractional change of viscosity per unit change of pressure. 
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Finally, during the simulation, some of the necessary fluid properties are not 

calculated directly from mathematical formulas, but instead have its values at a 

given pressure interpolated from measurements taken at some other pre-established 

pressure levels, in what constitutes a PVT (Pressure-Volume-Temperature) table. 

These tabled values are determined via laboratory testing of fluid samples collected 

from the reservoir, or occasionally via correlation models, if representative samples 

are not available. This is the case of 𝜇𝑤 and 𝜇𝑔, which are usually established from 

correlations, and of 𝐵𝑜, 𝑅𝑠 and 𝜇𝑜 at pressures below the saturation point, which are 

usually established from experimental results. 

It is also worth noting that the saturation pressure may not be constant for the 

entire reservoir, nor stay constant for the entire simulation period. This will depend 

on whether fluid compositions are equivalent in different regions and at different 

depths of the reservoir, as well as on whether there is gas injection into the reservoir 

(Ertekin et al., 2001; and Ponting et al., 1983). 

In addition, in a black-oil model, such as the one considered for this work, 

only the three aforementioned fluid components will potentially be present inside 

the reservoir: oil, water and gas. However, in compositional models, several fluid 

components might be contemplated, and thus EOS PVT characterizations would be 

required to describe their behavior.     

With respect to the rock properties, porosity may also be considered to be a 

function of pressure, according to the following relationship 

  

 𝜙 = 𝜙𝑅𝐸𝐹[1 + 𝑐𝜙(𝑃 − 𝑃𝑅𝐸𝐹)] (2.20) 

 

where 𝜙𝑅𝐸𝐹 is the porosity at a reference pressure level; 𝑃𝑅𝐸𝐹 is the reference 

pressure; and 𝑐𝜙is the compressibility of the rock, whose definition is equivalent to 

the one given for fluids. Also, the rock is considered here to be only a slightly 

compressible media, and thus its compressibility value is assumed constant. 

Permeability, on the other hand, is usually assumed to be independent of any 

of the simulation variables. In theory, its value might depend on porosity, but for 

most practical applications this relation is neglected. 

Porosity and permeability can be considered to be either homogeneous or 

heterogeneous in a reservoir, that is, to have constant or varying values, 
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respectively, throughout its domain. Additionally, permeability may also exhibit 

directional variations in a given point in space. This characteristic, called 

anisotropy, means that its value may differ for the 𝑥, 𝑦 and 𝑧 spatial directions. For 

simplicity, in the following derivations the coordinate system is assumed to be 

aligned with the principal axes of the permeability tensor, resulting in a diagonal 

tensor, without cross terms. 

Furthermore, the absolute permeability of a rock represents the easiness with 

which single-phase fluid is capable of flowing through its pore network. In the case 

of multiphase flow, the effective permeability of the rock to the flow of each phase 

will be a fraction of the single-phase one, and is expressed, for a given direction, as 

being 

 

 𝑘𝑐𝑥 = 𝑘𝑟𝑐𝑘𝑥 (2.21) 

 

where 𝑘𝑥 is the absolute permeability in that direction; 𝑘𝑟𝑐 is the relative 

permeability to the fluid component 𝑐; and 𝑘𝑐𝑥 is the effective permeability in the 

given direction. 

Similar to the fluid properties, the relative permeability of a phase may be 

determined via laboratory testing using core or side-well core samples, or 

alternatively via correlation models, if such samples are not available. However, 

unlike the other properties discussed thus far, relative permeabilities are usually 

dependent on the fluid’s saturation level, instead of its pressure and temperature. 

For three-phase flow, the most comprehensive models available are either those 

developed by Stone, or the one developed by Naar, Henderson and Wygal (Ertekin 

et al., 2001; and Chen et al., 2006).  

 

  
Multiphase Flow Equations 

Combining the various mathematical equations modeling these physical 

principles, and defining the total gas production rate as 

 

 
𝑞𝐺𝑆𝐶 = 𝑞𝐹𝐺𝑆𝐶 + 𝑅𝑠𝑞𝑂𝑆𝐶 (2.22) 
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where is 𝑞𝐺𝑆𝐶  the total gas production rate; and 𝑞𝐹𝐺𝑆𝐶  is the gas production rate 

pertaining just to the free gas inside the reservoir; it is possible to arrive in 

simultaneous phase equations that govern the flow of each individual component 

through a control element. For a black-oil model, the respective oil, water and gas 

equations are 

 

 

𝜕

𝜕𝑥
[𝑘𝑥𝐴𝑥 ∙

𝑘𝑟𝑜
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑥

− 𝛾𝑜
𝜕𝑍

𝜕𝑥
)] ∙ ∆𝑥

+
𝜕

𝜕𝑦
[𝑘𝑦𝐴𝑦 ∙

𝑘𝑟𝑜
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑦

− 𝛾𝑜
𝜕𝑍

𝜕𝑦
)] ∙ ∆𝑦

+
𝜕

𝜕𝑧
[𝑘𝑧𝐴𝑧 ∙

𝑘𝑟𝑜
𝜇𝑜𝐵𝑜 ∙

(
𝜕𝑃𝑜
𝜕𝑧

− 𝛾𝑜
𝜕𝑍

𝜕𝑧
)] ∙ ∆𝑧

= ∀𝐵 ∙
𝜕

𝜕𝑡
(
𝜙𝑆𝑜
𝐵𝑜

) − 𝑞𝑂𝑆𝐶 

(2.23) 

 

 

𝜕

𝜕𝑥
[𝑘𝑥𝐴𝑥 ∙

𝑘𝑟𝑤
𝜇𝑤𝐵𝑤

∙ (
𝜕𝑃𝑤
𝜕𝑥

− 𝛾𝑤
𝜕𝑍

𝜕𝑥
)] ∙ ∆𝑥

+
𝜕

𝜕𝑦
[𝑘𝑦𝐴𝑦 ∙

𝑘𝑟𝑤
𝜇𝑤𝐵𝑤

∙ (
𝜕𝑃𝑤
𝜕𝑦

− 𝛾𝑤
𝜕𝑍

𝜕𝑦
)] ∙ ∆𝑦

+
𝜕

𝜕𝑧
[𝑘𝑧𝐴𝑧 ∙

𝑘𝑟𝑤
𝜇𝑤𝐵𝑤

∙ (
𝜕𝑃𝑤
𝜕𝑧

− 𝛾𝑤
𝜕𝑍

𝜕𝑧
)] ∙ ∆𝑧

= ∀𝐵 ∙
𝜕

𝜕𝑡
(
𝜙𝑆𝑤
𝐵𝑤

) − 𝑞𝑊𝑆𝐶 

(2.24) 
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𝜕

𝜕𝑥
[𝑘𝑥𝐴𝑥 ∙

𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
∙ (
𝜕𝑃𝑔

𝜕𝑥
− 𝛾𝑔

𝜕𝑍

𝜕𝑥
) + 𝑘𝑥𝐴𝑥 ∙

𝑘𝑟𝑜𝑅𝑠
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑥

− 𝛾𝑜
𝜕𝑍

𝜕𝑥
)] ∙ ∆𝑥

+
𝜕

𝜕𝑦
[𝑘𝑦𝐴𝑦 ∙

𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
∙ (
𝜕𝑃𝑔

𝜕𝑦
− 𝛾𝑔

𝜕𝑍

𝜕𝑦
) + 𝑘𝑦𝐴𝑦

∙
𝑘𝑟𝑜𝑅𝑠
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑦

− 𝛾𝑜
𝜕𝑍

𝜕𝑦
)] ∙ ∆𝑦

+
𝜕

𝜕𝑧
[𝑘𝑧𝐴𝑧 ∙

𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
∙ (
𝜕𝑃𝑔

𝜕𝑧
− 𝛾𝑔

𝜕𝑍

𝜕𝑧
) + 𝑘𝑧𝐴𝑧

∙
𝑘𝑟𝑜𝑅𝑠
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑧

− 𝛾𝑜
𝜕𝑍

𝜕𝑧
)] ∙ ∆𝑧

= ∀𝐵 ∙
𝜕

𝜕𝑡
(
𝜙𝑆𝑔

𝐵𝑔
+
𝜙𝑅𝑠𝑆𝑜
𝐵𝑜

) − 𝑞𝐺𝑆𝐶  

(2.25) 

 

where ∆𝑥,  ∆𝑦, and ∆𝑧 are the geometric dimensions of the control volume, 

considering a three-dimensional (3D) problem in the cartesian coordinate system. 

The multiphase flow equations, as presented, attempt to encompass all of the 

noteworthy forces acting on the fluid; namely, viscous, capillary and gravitational 

forces. They also allow for the treatment of irregular reservoir boundaries and 

boundary conditions, as well as reservoir heterogeneities. 

Furthermore, since the flow equations are based upon the mass conservation 

of each component separately and since they are referenced to surface conditions, 

part of the mass accounted for in the gas rate term was originally dissolved within 

other phases, while part was already in a free state inside the reservoir. Assuming 

that the water and gas phases are practically immiscible, the solution gas may be 

considered to originate exclusively from the oil phase. Therefore, in the case of gas 

mass conservation it is necessary to include the flow of this dissolved gas through 

the control element; this is the reason for introducing the terms related to oil flow 

into the gas equation. 

Finally, the formulation presented in Equations (2.23) – (2.25) assumes that 

no chemical reactions are occurring between the rock and the reservoir fluids; nor 

between the different fluid components. It also considers that no physical dispersion 
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is occurring in the case of miscible recovery schemes, and presumes instantaneous 

local equilibrium. 

 

  
Multiphase Flow Model 

The mathematical formulation to be derived in the end will depend not only 

on the previous multiphase flow equations, but also on some additional 

relationships that correlate the variables of the problem, as well as on the initial and 

boundary conditions. This supplementary information is necessary for the complete 

description of the fluid flow inside the reservoir.  

 

Additional Relationships 

 

The first such relationship to be established is the relation between phases. 

For a black-oil model, the oil and water phases are deemed to be immiscible, as are 

the water and gas phases. Gas is considered to be miscible with oil, and can thus 

exist as free gas or as solution gas. Moreover, it is assumed that oil, water and gas 

are the only fluids present in the pore space, and that consequently they must fully 

occupy it 

 

 𝑆𝑜 + 𝑆𝑤 + 𝑆𝑔 = 1 (2.26) 

 

An alternative treatment may be applied to regions of the reservoir in which 

there is no free gas (Chen et al., 2006). In this case, the volume balance relationship 

could equate to 

 

 𝑆𝑜 + 𝑆𝑤 = 1 (2.27) 

 

and the gas phase flow equation could be altered to a bubble-point equation, where 

𝑃𝑏 would be the primary variable. The transition from an undersaturated condition 

to a saturated condition inside any given control element would then occur 

whenever 
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 𝑃𝑏 > 𝑃𝑜 (2.28) 

 

while the transition in the opposite direction, from a saturated condition to an 

undersaturated one, would be given by the occurrence of 

 

 𝑆𝑔 < 0 (2.29) 

 

during the simulation. Nonetheless, this formulation with 𝑃𝑏 as one of the problem 

variables will not be detailed further, with the derivation of the equations being 

restrained to the oil pressure and water and gas saturation format. 

Moreover, in a compositional model, the sum of the saturation of the various 

components present would also be qual to unity, and the behavior of each 

component would be described by their own flow equation.  

Also, in the black-oil model the fluid temperature is assumed to be constant 

throughout the reservoir, at all times. Conversely, in thermal models the 

temperature must also be considered and, therefore, an additional energy-balance 

equation will arise.  

Yet additional models are available to the reservoir engineer, such as dual-

porosity and dual-permeability models, that attempt to enrich the quality of the 

simulation, but hereafter only the standard three-phase black-oil model will be 

considered. 

Finally, a relationship that must still be established is the one between the 

different phase pressures (Ertekin et al., 2001; and Aziz and Settari, 1979). These 

pressures are related through the capillary forces present in the small pore spaces, 

as follows 

 

 𝑃𝑐𝑜𝑤 = 𝑃𝑜 − 𝑃𝑤 = 𝑓(𝑆𝑤) (2.30) 

 

 𝑃𝑐𝑔𝑜 = 𝑃𝑔 − 𝑃𝑜 = 𝑓(𝑆𝑔) (2.31) 
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where 𝑃𝑐𝑜𝑤 is the oil-water capillary pressure, whose value is a function of the water 

saturation; and 𝑃𝑐𝑔𝑜 is the gas-oil capillary pressure, whose value is a function of 

the gas saturation.  

Equations (2.26) and (2.30) – (2.31) can then be used so as to eliminate the 

terms 𝑆𝑜, 𝑃𝑤 and 𝑃𝑔 from the multiphase flow equations (2.23) – (2.25), leaving 

only 𝑃𝑜, 𝑆𝑤 and 𝑆𝑔 as the variables of the simulation. Consequently, the problem 

may now be described by three equations with three unknowns. 

 

Initial Conditions 

 

The initial conditions required for the black-oil model vary for each zone in 

the reservoir. In an original gas-cap zone only gas is present as a free fluid, and 

connate water saturation is at its initial value 𝑆𝑤𝑖. The two other variables can then 

be expressed as 

  

 𝑆𝑔 = 1 − 𝑆𝑜𝑟 + 𝑆𝑤𝑖 (2.32) 

 

where 𝑆𝑜𝑟 represents a residual oil saturation that may eventually be present; and 

 

 𝑃𝑜 = 𝑃𝑔 − 𝑃𝑐𝑔𝑜(𝑆𝑔) (2.33) 

 

where gas pressure 𝑃𝑔 at each point may be calculated from its hydrostatic gradient 

 

 
𝜕𝑃𝑔

𝜕𝑧
= 𝛾𝑔  (2.34) 

 

In the oil-gas transition zone it is first necessary to calculate the oil and gas 

pressures separately, using their respective gradients; gas as presented in Equation 

(2.34) and oil as in Equation (2.35) 

 

 
𝜕𝑃𝑜
𝜕𝑧

= 𝛾𝑜 (2.35) 
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From the pressures levels it is possible to obtain the gas saturation from the 

capillary pressure relationship 

 

 𝑃𝑐𝑔𝑜(𝑆𝑔) =  𝑃𝑔 − 𝑃𝑜 (2.36) 

 

while the water saturation will be at its initial value 𝑆𝑤𝑖. 

In the oil zone, there is no free gas present and so the gas saturation 𝑆𝑔 is null, 

while water saturation will be at its initial value 𝑆𝑤𝑖. Since oil is a continuous phase, 

its pressure 𝑃𝑜 may be calculated directly from the gradient, as was done previously. 

In the oil-water transition zone the procedure is analogous to the oil-gas zone. 

Oil and water pressures are calculated through their respective gradients, which for 

water is 

 

 
𝜕𝑃𝑤
𝜕𝑧

= 𝛾𝑤 (2.37) 

 

Water saturation is then obtained from the capillary pressure relationship 

 

 𝑃𝑐𝑜𝑤(𝑆𝑤) = 𝑃𝑜 − 𝑃𝑤 (2.38) 

 

while gas saturation 𝑆𝑔 is assumed to be null. 

In the water zone, water is the only phase present. Consequently, oil and gas 

saturations are null and water saturation equals unity. Water pressure will again be 

given by the hydrostatic gradient, while oil pressure may be found using the 

capillary pressure equation 

 

 𝑃𝑜 = 𝑃𝑤 − 𝑃𝑐𝑜𝑤(𝑆𝑤) (2.39) 

 

Finally, in addition to the specific gravity of each fluid, the capillary pressure 

curves, and the initial water saturation distribution above the water zone, it is also 

necessary to establish a reference oil pressure at a reference datum. This will be 

used for calculating the different phase pressures throughout the reservoir interval, 

via the fluid gradients. In an undersaturated reservoir the reference datum may be 
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any arbitrary depth within the reservoir, but in the saturated case it should be taken 

to be the depth of the oil-gas contact 𝑍𝑜𝑔𝑐. 

 

Boundary Conditions 

 

For the external boundary conditions three situations may arise, either a no-

flow condition, a constant-pressure condition, or a specified-flux condition (Ertekin 

et al., 2001; Chen et al., 2006). 

A no-flow condition, representing a sealed boundary, is modeled by simply 

defining the transmissibilities across the outer surface of the reservoir as having 

zero value. Transmissibility refers to the term that relates the fluid potential gradient 

to a corresponding fluid flow in a given direction, and is defined as 

 

 𝑇𝑐𝑥  =  (
𝑘𝑥𝐴𝑥
∆𝑥

) ∙ (
𝑘𝑟𝑐
𝜇𝑐𝐵𝑐

) (2.40) 

 

The constant-pressure condition, with pressure 𝑃𝐸, represents a scenario in 

which the rate of fluids withdrawn from one side of the boundary equals the rate of 

fluids supplied to the opposite side. It can be modeled by an extra influx term 

present at that outer control element, as if it were a well 

 

 𝑞𝐶𝑆𝐶−𝐵  = [(
𝑘𝑥𝐴𝑥
∆𝑥 2⁄

) (
𝑘𝑟𝑜
𝜇𝑜𝐵𝑜

)] ∙ (𝑃𝐸 − 𝑃𝑐𝑛)   (2.41) 

 

where 𝑃𝑐𝑛 is the pressure at the center of a control element 𝑛 with a no-flow 

boundary in the 𝑥 direction; and 𝑞𝐶𝑆𝐶−𝐵 is the pseudo-rate of component 𝑐 across 

the external boundary, given in surface conditions. 

The specified-flux condition occurs whenever there exists communication 

between the reservoir and an adjacent permeable rock body, such as an aquifer or 

another separate reservoir. The flux may occur inwards towards the reservoir, or 

outwards to the external body, depending on the potential gradient at the boundary. 

Moreover, the magnitude of the influx or efflux may be defined either by a specified 

flux rate or by a specified pressure gradient. In both cases this is represented 
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mathematically by setting the outer transmissibilities to zero and including an extra 

rate term inside the boundary control element. 

For the specified rate 𝑞𝑠𝑝 situation, the term to be added to the equation of 

each component 𝑐 is 

 

 𝑞𝐶𝑆𝐶−𝐵 = 
𝑇𝑐𝑥

∑ 𝑇𝑐𝑥𝑁
𝑐

∙  𝑞𝑠𝑝 (2.42) 

 

where the transmissibility 𝑇𝑐𝑥 of each component refers to the one on the boundary 

side in the 𝑥 direction. 

Alternatively, for the specified pressure gradient 𝑑𝑃 𝑑𝑥⁄  situation, the term 

to be added to the equation of each component 𝑐 becomes 

 

 𝑞𝐶𝑆𝐶−𝐵 = (−𝑇𝑐𝑥 ∆𝑥) ∙
𝑑𝑃

𝑑𝑥
 (2.43) 

 

The internal boundary conditions of the problem depend on the specifications 

defined for the various wells. There are several manners of specifying the operating 

condition of each well, especially in a multiphase reservoir with fluid production or 

injection occurring in multiple control elements, that is, with a well completed and 

perforated in multiple layers. The possible specifications may be wellbore bottom-

hole pressure; oil, water, liquid, gas or total bottom-hole rate; oil, water, liquid, gas 

or total surface rate. 

The relationship between the fluid pressure in a control element, the wellbore 

bottom-hole pressure and a component’s surface rate 𝑞𝐶𝑆𝐶𝑛 is designated as the 

inflow performance relationship (IPR). For a control element 𝑛 in a multilayered 

vertical well, this relationship is defined as 

 

 𝑞𝐶𝑆𝐶𝑛 = −𝐽𝑛 ∙ (𝑃𝑛 − 𝑃𝑤𝑓𝑛) (2.44) 

 

where 𝑃𝑤𝑓𝑛 is the flowing wellbore bottom-hole pressure, which here may be 

considered equal for all components; and 𝐽𝑛 is the component productivity or 

injectivity index, given by 
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 𝐽𝑛 = 
2𝜋𝑘𝐻𝑛𝑘𝑟𝑐ℎ𝑛

𝜇𝑐𝑛𝐵𝑐𝑛 ∙ [ln(𝑟𝑒𝑞𝑛 𝑟𝑤⁄ ) + 𝑠𝑛]
=  (

𝑘𝑟𝑐
𝜇𝑐𝐵𝑐

)
𝑛

∙ 𝐺𝑤𝑛  (2.45) 

 

where 𝐺𝑤𝑛  represents the constant terms of the equation; 𝑘𝐻𝑛  is the equivalent 

permeability in the radial direction; 𝑘𝑟𝑐 is the relative permeability for the 

component 𝑐; ℎ𝑛 is the height of the control element; 𝑠𝑛 is the formation damage, 

or wellbore skin; 𝑟𝑤 is the well radius; and 𝑟𝑒𝑞𝑛 is the equivalent radius, defined by 

Peaceman (1978) as  

 

 𝑟𝑒𝑞 = 0.28 ∙

{[(
𝑘𝑦
𝑘𝑥
)

1
2⁄

∙ (∆𝑥)2] + [(
𝑘𝑥
𝑘𝑦
)

1
2⁄

∙ (∆𝑦)2]}

1
2⁄

(
𝑘𝑦
𝑘𝑥
)

1
4⁄

+ (
𝑘𝑥
𝑘𝑦
)

1
4⁄

 (2.46) 

 

which represents the position within the control element where the calculated 

pressure of the element will be equal to the actual flowing pressure. 

As a note, in a black-oil model with gas production, the gas inflow 

performance relationship is altered slightly, to include the solution gas into the 

equation 

 

 

𝑞𝐺𝑆𝐶𝑛 = − 𝐺𝑤𝑛 [(
𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
) ∙ (𝑃𝑔𝑛 − 𝑃𝑤𝑓𝑛) + (

𝑘𝑟𝑜𝑅𝑠
𝜇𝑜𝐵𝑜

)

∙ (𝑃𝑜𝑛 − 𝑃𝑤𝑓𝑛)] 

(2.47) 

 

The flowing bottom-hole pressure at the depth of each control element 

situated within the completed zone may be approximated by a reference pressure 

and the average hydrostatic pressure gradient, meanwhile ignoring the frictional 

pressure drop that occurs within the well, between the multiple completion layers. 

 

 𝑃𝑤𝑓𝑛 = 𝑃𝑤𝑓𝑅𝐸𝐹 + 𝛾̅𝑤 ∙ (𝑍𝑛 − 𝑍0) (2.48) 
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where 𝑃𝑤𝑓𝑅𝐸𝐹 is the pressure at a reference depth 𝑍0; 𝑍𝑛 is the depth of the control 

element; and 𝛾̅𝑤 is the average pressure gradient in the well, estimated as 

 

 𝛾̅𝑤 = 
𝐵𝑜𝛾𝑜𝑞𝑂𝑆𝐶 + 𝐵𝑤𝛾𝑤𝑞𝑊𝑆𝐶 + 𝐵𝑔𝛾𝑔𝑞𝐹𝐺𝑆𝐶

𝐵𝑜𝑞𝑂𝑆𝐶 + 𝐵𝑤𝑞𝑊𝑆𝐶 + 𝐵𝑔𝑞𝐹𝐺𝑆𝐶
 (2.49) 

 

  
Discretization of the Flow Equations 

There exist several methods available for discretizing a partial differential 

equation, such as finite differences, finite elements and finite volumes. 

Traditionally, the finite difference technique is the one most employed in the field 

of reservoir simulation. Albeit one of the oldest methods developed, it is still the 

most dominant choice of numerical treatment for partial differential equations 

(Grossmann et al., 2007). Each one of the multiphase equations of the reservoir 

model contain two types of derivatives that need to be discretized: second-order 

spatial derivatives and first-order time derivatives. The spatial derivatives on the 

left-hand side of the equations are of the form 

 

 
𝜕

𝜕𝑥
(𝜉𝑥

𝜕𝜂

𝜕𝑥
)
𝑖,𝑗,𝑘

∆𝑥𝑖,𝑗,𝑘  =  (
𝜕𝑓

𝜕𝑥
)
𝑖,𝑗,𝑘

∆𝑥𝑖,𝑗,𝑘 (2.50) 

 

where 𝜉𝑥 represents the transmissibility in the 𝑥 direction, times ∆𝑥; 𝜂 represents 

the potential gradient of the phase; and the indices 𝑖, 𝑗, 𝑘 represent the numerical 

ordering of the control element in a given coordinate system. 

This ordering of the elements, henceforth called grid blocks or cell blocks, 

may be done in different fashions. Some common choices are (i) Natural ordering, 

in which cells are numbered sequentially by rows or columns; (ii) D-4 ordering, in 

which cells are numbered sequentially by diagonals; and (iii) Red-Black or A-3 

ordering, in which cells are numbered sequentially by rows or columns but skipping 

every other grid block; among others. The manner chosen to order the grid will 

impact directly on the matrix structure that will arise in the linear system solver part 

of the simulator, as shall be discussed subsequently (Ertekin et al., 2001; Behie et 

al., 1984; and Price and Coats, 1974). 
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For grids constructed using a block-centered system, as opposed to those 

employing a point-distributed system, the problem unknowns represent the value 

of the different variables (𝑃𝑜, 𝑆𝑤 and 𝑆𝑔) at the center of each cell. Also, in this 

system, the transmissibility coefficients represent the connections between cells, as 

illustrated in Figure 2.1 (Ertekin et al., 2001; and Peaceman, 1977). 

 

 

Figure 2.1 – Schematic of a block-centered grid (Adapted from Ertekin et al., 2001). 

 

Returning to the spatial derivative form presented previously, the terms may 

be approximated by applying central-difference discretization to the derivatives 

(Ertekin et al., 2001; Chen et al., 2006), resulting in  

 

 

(
𝜉𝑥
∆𝑥
)
𝑖−
1
2
,𝑗,𝑘
∙ (𝜂𝑖−1,𝑗,𝑘 − 𝜂𝑖,𝑗,𝑘)  + (

𝜉𝑥
∆𝑥
)
𝑖+
1
2
,𝑗,𝑘
∙ (𝜂𝑖+1,𝑗,𝑘 − 𝜂𝑖,𝑗,𝑘)

=  (𝑇𝑐𝑥)𝑖−1
2
,𝑗,𝑘
∙ (𝜂𝑖+1,𝑗,𝑘 − 𝜂𝑖,𝑗,𝑘) − (𝑇𝑐𝑥)𝑖+1

2
,𝑗,𝑘

∙ (𝜂𝑖,𝑗,𝑘 − 𝜂𝑖−1,𝑗,𝑘) 

(2.51) 

 

Due to the size of the equations appearing in the formulation process, it is 

worthwhile to introduce here the following simplifying notation  

 

  

∆𝑥(𝑇𝑐𝑥∆𝑥𝜂)𝑖,𝑗,𝑘  

=  (𝑇𝑐𝑥)𝑖−1
2
,𝑗,𝑘
∙ (𝜂𝑖+1,𝑗,𝑘 − 𝜂𝑖,𝑗,𝑘) − (𝑇𝑐𝑥)𝑖+1

2
,𝑗,𝑘

∙ (𝜂𝑖,𝑗,𝑘 − 𝜂𝑖−1,𝑗,𝑘) 

(2.52) 

 

where is ∆𝑥 is a finite-difference operator on the space domain. 
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Analyzing the three 3D multiphase equations in the black-oil model, we observe 

that there will be three second derivative approximation, as exemplified in Equation 

(2.52), in each one of them – one for each direction. This allows the left-hand side 

of the equations to be further simplified by the following notation  

 

 

∆(𝑇𝑐∆𝜂)𝑖,𝑗,𝑘  = ∆𝑥(𝑇𝑐𝑥∆𝑥𝜂)𝑖,𝑗,𝑘 + ∆𝑦(𝑇𝑐𝑦∆𝑦𝜂)𝑖,𝑗,𝑘

+ ∆𝑧(𝑇𝑐𝑧∆𝑧𝜂)𝑖,𝑗,𝑘 
(2.53) 

 

Considering now the time derivatives on the right-hand side, if the space 

domain is fixed, the partial derivative becomes an ordinary derivative to be 

evaluated at the grid points where the unknowns are defined. Then, discretizing the 

time derivatives with backwards finite-difference, the terms representing the mass 

accumulation within a cell may be expressed as 

 

 
𝜕

𝜕𝑡
(𝑓)𝑖,𝑗,𝑘 =

1

∆𝑡
∙ (𝑓𝑖,𝑗,𝑘

𝑛+1 − 𝑓𝑖,𝑗,𝑘
𝑛) =

1

∆𝑡
∙ ∆𝑡𝑓 (2.54) 

 

where 𝑛 is the time-step at which the function 𝑓 will be evaluated, representing a 

moment in time;  ∆𝑡 is the time difference between two consecutive time-steps; and 

∆𝑡 is a finite-difference operator on the time domain. The option for a simpler, first-

order approximation of the time derivative stems from instability issues that arise 

with forward or central-difference techniques. 

In addition, to preserve mass conservation and avoid instabilities throughout 

the simulation, the finite-difference time operator ∆𝑡 must be expanded using a 

conservative scheme. For the two different functions that arise inside the partial 

time derivatives in the multiphase equations, this equates to 

 

 

∆𝑡 (
𝜙𝑆𝑐
𝐵𝑐
) = [

𝜙′

𝐵𝑐
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑐
)
′

] ∙ 𝑆𝑐
𝑛 ∙ (𝑃𝑜

𝑛+1 − 𝑃𝑜
𝑛)

+ (
𝜙

𝐵𝑐
)
𝑛+1

∙ (𝑆𝑐
𝑛+1 − 𝑆𝑐

𝑛) 

(2.55) 

 

and 
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∆𝑡 (
𝜙𝑅𝑠𝑆𝑜
𝐵𝑜

) = {[
𝜙′

𝐵𝑜
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑜
)
′

] ∙ 𝑅𝑠
𝑛 + (

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
′}

∙ 𝑆𝑜
𝑛 ∙ (𝑃𝑜

𝑛+1 − 𝑃𝑜
𝑛) + (

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1

∙ (𝑆𝑜
𝑛+1 − 𝑆𝑜

𝑛) 

  

(2.56) 

in which the following definitions apply 

 

 𝜙′ =
𝜙𝑛+1 − 𝜙𝑛

𝑃𝑜
𝑛+1 − 𝑃𝑜

𝑛 (2.57) 

 

 𝑅𝑠
′ =

𝑅𝑠
𝑛+1 − 𝑅𝑠

𝑛

𝑃𝑜
𝑛+1 − 𝑃𝑜

𝑛  (2.58) 

 

 
(
1

𝐵𝑐
)
′

=

(
1

𝐵𝑐
𝑛+1) − (

1
𝐵𝑐

𝑛)

𝑃𝑜
𝑛+1 − 𝑃𝑜

𝑛  
(2.59) 

 

Thus far, only the variable and coefficient terms on the right-hand side of the 

equations have had specified the time-step in which they should be evaluated. The 

selection of the backwards-difference operator to discretize the time-derivative 

terms now implies that the base time of the equations is 𝑛 + 1. This leads to the 

evaluation of the left-hand side terms on the same 𝑛 + 1 time-step. Hence, the 

variable 𝑃𝑜
𝑛+1 will now appear on both sides of the equations, and the 

transmissibility coefficients, which contain terms that are dependent on pressure – 

such as 𝐵𝑐, 𝜇𝑐  and 𝑅𝑠 – must also be evaluated at this same time-step. Furthermore, 

other terms – such as 𝑘𝑟𝑐 – depend on the values of the saturation unknowns, also 

to be calculated at time-step 𝑛 + 1. Consequently, the problem becomes highly 

coupled and nonlinear. This specific construction of the problem equations is 

denoted the Fully Implicit formulation (FIM). 

The decision to apply a backwards-difference operator to the time derivatives 

was not the sole one available. The reason for discretizing via backwards-difference 

is related to the consequent stability of the problem. This option leads to a 
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simulation that is unconditionally stable, regardless of the size of the time-steps, 

which allows for large time-steps to be taken even in difficult scenarios (strong 

heterogeneities, gravitational effects, high flow rates, etc.) (Ertekin et al., 2001; and 

Cheshire et al., 1980). The price to be paid for this stability is that the simulation 

now requires the simultaneous solution of large, difficult-to-solve systems of 

equations. Conversely, a forward-difference discretization would lead to a system 

that is much less demanding to solve, but that is only conditionally stable, usually 

demanding relatively small time-steps to be capable of achieving convergence. 

Additionally, it may have greater difficulty representing the physics of the problem; 

since, for example, in the resulting explicit formulation a pressure transient front 

can only advance the distance of a single grid block per simulation step.   

Finally, the finite difference multiphase flow equations derived in the fully 

implicit formulation may be written concisely as 

 

 
∆[𝑇𝑜 ∙ (∆𝑃𝑜 − 𝛾𝑜∆𝑍)]

𝑛+1  

=  𝐶𝑜𝑝∆𝑡𝑃𝑜 + 𝐶𝑜𝑤∆𝑡𝑆𝑤 + 𝐶𝑜𝑔∆𝑡𝑆𝑔 − 𝑞𝑂𝑆𝐶
𝑛+1 

(2.60) 

 

 
∆[𝑇𝑤 ∙ (∆𝑃𝑜 − ∆𝑃𝑐𝑜𝑤 − 𝛾𝑤∆𝑍)]

𝑛+1  

=  𝐶𝑤𝑝∆𝑡𝑃𝑜 + 𝐶𝑤𝑤∆𝑡𝑆𝑤 + 𝐶𝑤𝑔∆𝑡𝑆𝑔 − 𝑞𝑊𝑆𝐶
𝑛+1 

(2.61) 

 

 
∆[𝑇𝑔 ∙ (∆𝑃𝑜 − ∆𝑃𝑐𝑔𝑜 − 𝛾𝑔∆𝑍)]

𝑛+1
+ ∆[𝑇𝑜𝑅𝑠 ∙ (∆𝑃𝑜 − 𝛾𝑜∆𝑍)]

𝑛+1

= 𝐶𝑔𝑝∆𝑡𝑃𝑜 + 𝐶𝑔𝑤∆𝑡𝑆𝑤 + 𝐶𝑔𝑔∆𝑡𝑆𝑔 − 𝑞𝐺𝑆𝐶
𝑛+1 

(2.62) 

 

where the following definitions were employed 

 

 𝐶𝑜𝑝 =
∀𝐵

∆𝑡
∙ [
𝜙′

𝐵𝑜
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑜
)
′

] ∙ (1 − 𝑆𝑤
𝑛 − 𝑆𝑔

𝑛) (2.63) 

 

 𝐶𝑜𝑤 = −
∀𝐵

∆𝑡
∙ (
𝜙

𝐵𝑜
)
𝑛+1

 (2.64) 

 

 𝐶𝑜𝑔 = −
∀𝐵

∆𝑡
∙ (
𝜙

𝐵𝑜
)
𝑛+1

 (2.65) 
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 𝐶𝑤𝑝 =
∀𝐵

∆𝑡
∙ [
𝜙′

𝐵𝑤
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑤
)
′

] ∙ 𝑆𝑤
𝑛

 (2.66) 

 

 𝐶𝑤𝑤 =
∀𝐵

∆𝑡
∙ (
𝜙

𝐵𝑤
)
𝑛+1

 (2.67) 

 

 𝐶𝑤𝑔 = 0 (2.68) 

 

 

𝐶𝑔𝑝 =
∀𝐵

∆𝑡
∙ ({[

𝜙′

𝐵𝑜
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑜
)
′

] ∙ 𝑅𝑠
𝑛 + (

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
′}

× (1 − 𝑆𝑤
𝑛 − 𝑆𝑔

𝑛) + [
𝜙′

𝐵𝑔
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑔
)

′

] ∙ 𝑆𝑔
𝑛) 

(2.69) 

 

 𝐶𝑔𝑤 = −
∀𝐵

∆𝑡
∙ [(

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1] (2.70) 

 

 𝐶𝑔𝑔 =
∀𝐵

∆𝑡
∙ [(

𝜙

𝐵𝑔
)

𝑛+1

− (
𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1] (2.71) 

 

The expanded version of these equations is presented separately in Appendix 

A, for reference. 

 

  
Linearization of the Multiphase Flow Equations 

As previously mentioned, the equations describing the problem in the fully 

implicit formulation are nonlinear in nature. This presents a significant challenge to 

the solution of the system of equations that arises in each time-step of the reservoir 

simulation, since nonlinear systems tend to be much more difficult to solve. The 

linearization of the nonlinear equations is then of paramount importance. 

A further issue that has not yet been handled and which will be addressed 

presently is the evaluation of the transmissibility terms at the boundary positions. 

Theoretically, the value of the pressure or saturation dependent terms that constitute 
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the transmissibility coefficients should be evaluated at the particular pressure or 

saturation level seen at the interface between their two respective grid blocks. 

However, in practice, these unknowns are determined solely at the cell centers, and 

are not available at the coordinates of the block boundaries. This ensues the need 

for a spatial weighing of these coefficients, through information obtained from the 

individual cell blocks. 

Before proceeding with the spatial weighing of the coefficients that arise on 

the left-hand side of the multiphase equations, it is convenient to notice that they 

may be subdivided into different terms, representing weak and strong 

nonlinearities, as well as geometric aspects of the reservoir grid. The weak 

nonlinearities are related to components which are just function of pressure, and 

whose variations tend to be smoother, while the strong nonlinearities correspond to 

the terms which are function either of saturation or capillary pressure, and whose 

variations are generally more abrupt.  

With regards to the capillary pressure terms, it is convenient to represent them 

in a slightly different manner, making their relation to the saturation unknowns 

explicit 

 

 ∆𝑃𝑐𝑜𝑤 = 𝑃𝑐𝑜𝑤
′∆𝑆𝑤 (2.72) 

 

 ∆𝑃𝑐𝑔𝑜 = 𝑃𝑐𝑔𝑜
′∆𝑆𝑔 (2.73) 

 

in which the following definitions apply 

 

 𝑃𝑐𝑜𝑤
′ =

𝑑𝑃𝑐𝑜𝑤
𝑑𝑆𝑤

 (2.74) 

 

 𝑃𝑐𝑔𝑜
′ =

𝑑𝑃𝑐𝑔𝑜

𝑑𝑆𝑔
 (2.75) 

 

and where these derivatives can be obtained from the capillary pressure curves 

available from laboratory experiments or from correlation models. 

The interblock transmissibilities can then be expressed as 
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 𝜉 = 𝐺 ∙ 𝑓𝑝 ∙ 𝑓𝑠 (2.76) 

 

where 𝐺 is a geometric factor; 𝑓𝑝 is a pressure dependent function; and 𝑓𝑠 is a 

saturation dependent function. The functions 𝑓𝑝 and 𝑓𝑠 must be determined at the 

beginning of every time-step, and may assume one of the following forms 

 

 𝑓𝑝  ≡  (
1

𝜇𝑐𝐵𝑐
)  or  (

𝛾𝑐
𝜇𝑐𝐵𝑐

)  or (
𝑅𝑠
𝜇𝑜𝐵𝑜

)  or (
𝑅𝑠𝛾𝑜
𝜇𝑜𝐵𝑜

) (2.77) 

 

 𝑓𝑠  ≡  (𝑘𝑟𝑐) or (𝑘𝑟𝑐𝑃𝑐𝑜𝑤
′) or (𝑘𝑟𝑐𝑃𝑐𝑔𝑜

′) (2.78) 

 

The geometric factors, on the other hand, are constant throughout the 

simulation, and are conditioned only to the grid properties. They may be 

approximated using the harmonic average of the properties of two contiguous grid 

blocks. For a block-centered grid, the geometric factor between two cells aligned in 

the 𝑥 direction assumes the form 

 

 𝐺
𝑖±
1
2
,𝑗,𝑘

=  
2𝐴𝑥𝑖,𝑗,𝑘𝑘𝑥𝑖,𝑗,𝑘𝐴𝑥𝑖±1,𝑗,𝑘𝑘𝑥𝑖±1,𝑗,𝑘

𝐴𝑥𝑖,𝑗,𝑘𝑘𝑥𝑖,𝑗,𝑘∆𝑥𝑖±1,𝑗,𝑘 + 𝐴𝑥𝑖±1,𝑗,𝑘𝑘𝑥𝑖±1,𝑗,𝑘∆𝑥𝑖,𝑗,𝑘
 (2.79) 

 

The weak nonlinearity terms 𝑓𝑝 may be approximated in different ways, the 

most common being upstream weighing and midpoint weighing. For the simulator 

used in the scope of this work, the method of choice was upstream weighing. This 

consists of evaluating the pressure dependent function as if it were in the center of 

the cell which has the greatest flow potential between the two neighbors, that is, the 

cell which is upstream of the other in the fluid flow. This procedure is exemplified 

in Equation (2.80), once again for two cells aligned in the 𝑥 direction 

 

 

(
𝛾𝑐
𝜇𝑐𝐵𝑐

)
𝑖+
1
2
,𝑗,𝑘

= (
𝛾𝑐
𝜇𝑐𝐵𝑐

)
𝑖,𝑗,𝑘

  

when (𝑃𝑐𝑖,𝑗,𝑘 − 𝛾𝑐𝑖+1
2
,𝑗,𝑘
𝑍𝑖,𝑗,𝑘) > (𝑃𝑐𝑖+1,𝑗,𝑘 − 𝛾𝑐𝑖+1

2
,𝑗,𝑘
𝑍𝑖+1,𝑗,𝑘) 

(2.80) 
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Here, the pressure used to calculate the value of the fluid properties is usually 

taken to be the oil phase pressure, even if the fluid in question is water or gas. 

Neglecting the capillary pressures in this particular application causes little or no 

loss of accuracy. 

The strong nonlinearity terms 𝑓𝑠 may also be approximated in different ways, 

the most common being single-point upstream weighing and two-points upstream 

weighing. Once more, the method chosen for the simulator used in this work was 

single-point upstream, as illustrated in Equation (2.80). 

It is now possible to return to the main challenge at hand, which is the 

linearization of the left-hand side in the time domain. There are several different 

techniques available to accomplish this. The most straightforward – and unstable – 

one is the explicit method, briefly mentioned beforehand, in which the interblock 

transmissibilities are simply evaluated at time-step 𝑛. Additional methods are: 

extrapolation, simple iteration, linearized implicit and semi-implicit; all of which 

improve stability, but that may still be unstable depending on the simulation 

parameters. To achieve unconditional stability the linearization must be performed 

with the fully implicit method. Difficult problems, such as those modeled by 

compositional or thermal simulators, or those containing significant heterogeneities 

and fracture networks, might only be solvable using this more rigorous approach.  

In the fully implicit method, an iterative process is applied to the problem, in 

which a term to be evaluated at time 𝑛 + 1 is approximated by its value at iteration 

level 𝜐 + 1. Furthermore, the value at 𝜐 + 1 can be estimated by its value at 

previous iteration 𝜐 plus a linear combination of terms arising from the partial 

differentiation of the term with respect to each of the problem unknowns. This 

aspect will be further detailed at the appropriate moment. 

Next, it is necessary to deal with the nonlinearities present on the right-hand 

side of the multiphase flow equations. The accumulation coefficients 𝐶𝑐𝑝, 𝐶𝑐𝑤 and 

𝐶𝑐𝑔 all involve exclusively weak nonlinearities. Since they all refer to properties 

within the cells, no spatial weighing is required here. Moreover, the time 

linearization in this case cannot be done via the explicit method, by the very nature 

of the conservative expansion used to generate these coefficients in the first place. 

The implicit method is also not appropriate for this application, due to new 
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nonlinear terms that would arise in the process. Therefore, the most commonly used 

method for the accumulation terms is simple iteration, in which the value of the 

coefficient at time 𝑛 + 1  and iteration level 𝜐 + 1 is approximated directly by its 

value at time 𝑛 + 1  and previous iteration 𝜐. 

Finally, the rate terms 𝑞𝐶𝑆𝐶
𝑛+1 should be linearized in the time domain in a 

manner similar to that chosen for the transmissibility coefficients, so as to not 

introduce instabilities. These terms are related to the problem variables through the 

inflow performance relationship equations, whose weak and strong nonlinearities 

are evaluated using the value of the properties in the cell for which the equation is 

written. Thus, no spatial weighing is required once more.  

 

  
Solution of the Linear Finite-Difference Flow Equations 

The application of the discretization procedure and the spatial and time 

domain linearization methods described will transform the multiphase partial 

differential equations into a set of linear finite difference equations. These can now 

be more thoroughly defined for each individual grid block, using the following 

additional terminology: subscripts 𝑛 to represent the cell for which the equations 

are written, positioned at coordinate 〈𝑖, 𝑗, 𝑘〉; 𝑚 to represent a cell adjacent to the 

one in question; 𝜓𝑛 to represent the set of all neighboring cells adjacent to cell 𝑛, 

such that 𝜓𝑛 = 𝜓𝑥 ∪ 𝜓𝑦 ∪ 𝜓𝑧; and where ∆𝑚 represents a finite-difference 

operator in the space domain, defined as 

 

 ∆𝑚𝜁 = 𝜁𝑚 − 𝜁𝑛  (2.81) 

 

With this notation, the multiphase flow equations for an arbitrary grid block 

𝑛 may be written as 

 

 

∑ 𝑇𝑜𝑛,𝑚
𝑛+1(∆𝑚𝑃𝑜

𝑛+1 − 𝛾̅𝑜𝑛,𝑚
𝑛∆𝑚𝑍)

𝑚 𝜖 𝜓𝑛

 

=  𝐶𝑜𝑝𝑛∆𝑡𝑃𝑜𝑛 + 𝐶𝑜𝑤𝑛∆𝑡𝑆𝑤𝑛 + 𝐶𝑜𝑔𝑛∆𝑡𝑆𝑔𝑛

− 𝑞𝑂𝑆𝐶𝑛
𝑛+1 

(2.82) 
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∑ 𝑇𝑤𝑛,𝑚
𝑛+1(∆𝑚𝑃𝑜

𝑛+1 − ∆𝑚𝑃𝑐𝑜𝑤
𝑛+1 − 𝛾̅𝑤𝑛,𝑚

𝑛∆𝑚𝑍)

𝑚 𝜖 𝜓𝑛

 

=  𝐶𝑤𝑝𝑛∆𝑡𝑃𝑜𝑛 + 𝐶𝑤𝑤𝑛∆𝑡𝑆𝑤𝑛 + 𝐶𝑤𝑔𝑛∆𝑡𝑆𝑔𝑛

− 𝑞𝑊𝑆𝐶𝑛
𝑛+1 

(2.83) 

 

 

∑ [𝑇𝑔𝑛,𝑚
𝑛+1(∆𝑚𝑃𝑜

𝑛+1 + ∆𝑚𝑃𝑐𝑔𝑜
𝑛+1 − 𝛾̅𝑔𝑛,𝑚

𝑛∆𝑚𝑍)

𝑚 𝜖 𝜓𝑛

+ (𝑇𝑜𝑅𝑠)𝑛,𝑚
𝑛+1

(∆𝑚𝑃𝑜
𝑛+1 − 𝛾̅𝑜𝑛,𝑚

𝑛∆𝑚𝑍)]  

=  𝐶𝑔𝑝𝑛∆𝑡𝑃𝑜𝑛 + 𝐶𝑔𝑤𝑛∆𝑡𝑆𝑤𝑛 + 𝐶𝑔𝑔𝑛∆𝑡𝑆𝑔𝑛

− 𝑞𝐺𝑆𝐶𝑛
𝑛+1 

(2.84) 

 

where the terms 𝛾̅𝑐𝑛,𝑚
𝑛 represent the mean specific weight of the components 𝑐, 

averaged between the values calculated for grid blocks 𝑛 and 𝑚.   

The solution of these equations when the fully implicit discretization method 

is applied in the time domain will require that Newton’s Iteration be employed 

(Ertekin et al., 2001; and Chen et al., 2006). This numerical solution method 

attempts to find the value of the unknowns that minimize the residuals of the 

multiphase flow equations. Thus, it commences by rearranging the former 

equations to residual form 

 

 

𝑅𝑜𝑛
𝑛+1 = ∑ 𝑇𝑜𝑛,𝑚

𝑛+1(∆𝑚𝑃𝑜
𝑛+1 − 𝛾̅𝑜𝑛,𝑚

𝑛∆𝑚𝑍)

𝑚 𝜖 𝜓𝑛

− 𝐶𝑜𝑝𝑛(𝑃𝑜𝑛
𝑛+1 − 𝑃𝑜𝑛

𝑛) − 𝐶𝑜𝑤𝑛(𝑆𝑤𝑛
𝑛+1 − 𝑆𝑤𝑛

𝑛)

− 𝐶𝑜𝑔𝑛(𝑆𝑔𝑛
𝑛+1 − 𝑆𝑔𝑛

𝑛) + 𝑞𝑂𝑆𝐶𝑛
𝑛+1 

(2.85) 

 

 

𝑅𝑤𝑛
𝑛+1 = ∑ 𝑇𝑤𝑛,𝑚

𝑛+1(∆𝑚𝑃𝑜
𝑛+1 − ∆𝑚𝑃𝑐𝑜𝑤

𝑛+1

𝑚 𝜖 𝜓𝑛

− 𝛾̅𝑤𝑛,𝑚
𝑛∆𝑚𝑍) − 𝐶𝑤𝑝𝑛(𝑃𝑜𝑛

𝑛+1 − 𝑃𝑜𝑛
𝑛)

− 𝐶𝑤𝑤𝑛(𝑆𝑤𝑛
𝑛+1 − 𝑆𝑤𝑛

𝑛) − 𝐶𝑤𝑔𝑛(𝑆𝑔𝑛
𝑛+1 − 𝑆𝑔𝑛

𝑛)

+ 𝑞𝑊𝑆𝐶𝑛
𝑛+1 

(2.86) 
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𝑅𝑔𝑛
𝑛+1 = ∑ [𝑇𝑔𝑛,𝑚

𝑛+1(∆𝑚𝑃𝑜
𝑛+1 + ∆𝑚𝑃𝑐𝑔𝑜

𝑛+1

𝑚 𝜖 𝜓𝑛

− 𝛾̅𝑔𝑛,𝑚
𝑛∆𝑚𝑍)

+ (𝑇𝑜𝑅𝑠)𝑛,𝑚
𝑛+1

(∆𝑚𝑃𝑜
𝑛+1 − 𝛾̅𝑜𝑛,𝑚

𝑛∆𝑚𝑍)]

− 𝐶𝑔𝑝𝑛(𝑃𝑜𝑛
𝑛+1 − 𝑃𝑜𝑛

𝑛) − 𝐶𝑔𝑤𝑛(𝑆𝑤𝑛
𝑛+1 − 𝑆𝑤𝑛

𝑛)

− 𝐶𝑔𝑔𝑛(𝑆𝑔𝑛
𝑛+1 − 𝑆𝑔𝑛

𝑛) + 𝑞𝐺𝑆𝐶𝑛
𝑛+1 

(2.87) 

 

The next step is to approximate the residual at time-step 𝑛 + 1 by its value at 

iteration 𝜈 + 1. This can be expressed as 

 

 𝑅𝑐𝑛
𝑛+1 ≈ 𝑅𝑐𝑛

𝑛+1(𝜈+1) (2.88) 

 

The residual values at iteration level  𝜈 + 1 can in turn be approximated by 

their values at iteration 𝜈, which are already known, plus a linear combination of 

terms derived from the differentiation of the residual equations with respect to all 

of the problem unknowns. This amounts to the following expression 

 

 

𝑅𝑐𝑛
𝑛+1(𝜈+1) = 𝑅𝑐𝑛

𝑛+1(𝜈) + (
𝜕𝑅𝑐𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

𝛿𝑃𝑜𝑛 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

𝛿𝑆𝑤𝑛

+ (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

𝛿𝑆𝑔𝑛

+ ∑ [(
𝜕𝑅𝑐𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

𝛿𝑃𝑜𝑚 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

𝛿𝑆𝑤𝑚
𝑚 𝜖 𝜓𝑛

+ (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

𝛿𝑆𝑔𝑚] 

(2.89) 

 

where the subsequent definitions apply 

 

 𝛿𝑃𝑜𝑚  =  𝑃𝑜𝑚
𝑛+1(𝜈+1) − 𝑃𝑜𝑚

𝑛+1(𝜈)   (2.90) 

 

 𝛿𝑆𝑤𝑚  =  𝑆𝑤𝑚
𝑛+1(𝜈+1) − 𝑆𝑤𝑚

𝑛+1(𝜈)
 (2.91) 

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



53 

  

 

 𝛿𝑆𝑔𝑚  =  𝑆𝑔𝑚
𝑛+1(𝜈+1) − 𝑆𝑔𝑚

𝑛+1(𝜈)
 (2.92) 

 

The definition of the various partial derivatives of the residual equations is 

left for Appendix A. 

Since the objective of the linearization method is to find the value of the 

unknowns that tend to minimize the system residuals, the final step consists of 

setting the residual at iteration level 𝜈 + 1 equal to zero, and solving the resulting 

equations for all the unknowns at iteration level 𝜈 + 1. That is, solve  

 

 

(
𝜕𝑅𝑐𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

𝛿𝑃𝑜𝑛 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

𝛿𝑆𝑤𝑛 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

𝛿𝑆𝑔𝑛

+ ∑ [(
𝜕𝑅𝑐𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

𝛿𝑃𝑜𝑚 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

𝛿𝑆𝑤𝑚
𝑚 𝜖 𝜓𝑛

+ (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

𝛿𝑆𝑔𝑚] = −𝑅𝑐𝑛
𝑛+1(𝜈)  

(2.93) 

 

– which is the final form of the residual equation of each phase, in each grid block 

– simultaneously for all grid blocks. This entails the solution of a linear system of 

3N equations, per iteration level, per simulation time-step, where N is the total 

number of grid blocks. 

The natural manner of treating this system of equations is to transform it into 

matrix form and then solve for the unknowns through an adequate numerical linear 

algebra technique. Therefore, the foremost step is determining how to construct the 

coefficient matrix 𝐴 ̃ and the right-hand side vector 𝑓,̅ so that an equation of the 

form  

 

 𝑨 ̃𝒖̅ = 𝒇̅ (2.94) 

 

can be solved for the vector 𝒖̅. 

Observing the structure of the final form of the residual equation, it is 

apparent that the problem unknowns are contained within terms of the form 𝛿𝜁, 
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where 𝜁 represents either oil pressure, water saturation or gas saturation. So, if the 

vector containing the actual unknowns is given by 

 

 𝒙 =  (𝒙̅1,  𝒙̅2,  𝒙̅3, ⋯ ,  𝒙̅𝑁)
𝑇 (2.95) 

 

in which 

 

 𝒙𝑛 = (𝑃𝑜𝑛 ,  𝑆𝑤𝑛 ,  𝑆𝑔𝑛)
𝑇
 (2.96) 

 

then we can define the following differential solution vector 

 

 𝒖̅ =  𝛿𝒙  =  𝒙̅ 𝑛+1
 (𝜈+1)

− 𝒙̅ 𝑛+1
 (𝜈)

 (2.97) 

 

and the following initial condition 

 

 𝒙̅ 𝑛+1
 (0)
= 𝒙̅ 𝑛 (2.98) 

 

Returning to the final form of the residual equation (2.93), it is clear that the 

right-hand side vector equates to the negative of the residual calculated from the 

solution of the previous iteration 

 

 𝒇̅ =  −𝑹̅ 𝑛+1
 (𝜈)

 (2.99) 

 

where 

 

 𝑹̅ =  (𝑹̅1,  𝑹̅2,  𝑹̅3, ⋯ ,  𝑹̅𝑁)
𝑇 (2.100) 

 

in which 

 

 𝑹̅𝑛 = (𝑅𝑜𝑛 ,  𝑅𝑤𝑛 ,  𝑅𝑔𝑛)
𝑇
 (2.101) 

 

with 𝑅𝑐𝑛 being defined in the initial form of the residual equations (2.85) – (2.87). 
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Lastly, the coefficients multiplying the problem unknowns, in differential 

form, are the partial derivatives of the residuals, with respect to the corresponding 

unknowns. A matrix with coefficients of this kind is denoted a Jacobian matrix. 

Therefore, the general format of the coefficient matrix is the following 

 

 𝑨 ̃ =  𝑱 ̃ =  [
𝑱 ̃1,1 ⋯ 𝑱 ̃𝑛,𝑚
⋮ ⋱ ⋮

𝑱 ̃𝑛,𝑚 ⋯ 𝑱 ̃𝑁,𝑁

] (2.102) 

 

in which 

 

 𝑱 ̃𝑛,𝑚 =

[
 
 
 
 
 
 
𝜕𝑅𝑜𝑛
𝜕𝑃𝑜𝑚

𝜕𝑅𝑜𝑛
𝜕𝑆𝑤𝑚

𝜕𝑅𝑜𝑛
𝜕𝑆𝑔𝑚

𝜕𝑅𝑤𝑛
𝜕𝑃𝑜𝑚

𝜕𝑅𝑤𝑛
𝜕𝑆𝑤𝑚

𝜕𝑅𝑤𝑛
𝜕𝑆𝑔𝑚

𝜕𝑅𝑔𝑛
𝜕𝑃𝑜𝑚

𝜕𝑅𝑔𝑛
𝜕𝑆𝑤𝑚

𝜕𝑅𝑔𝑛
𝜕𝑆𝑔𝑚 ]

 
 
 
 
 
 

 (2.103) 

 

Analogously to the procedure employed with the solution vector, at the first 

iteration level (when 𝜈 = 0), the residual vector and Jacobian matrix are evaluated 

using the pressure and saturation values determined at the end of the previous time-

step 𝑛. 

The submatrices 𝑱 ̃𝑛,𝑚 defined in Equation (2.103) represent the partial 

derivatives of the three residual equations related to each grid block 𝑛, taken with 

respect to the pressure and saturation unknowns of grid block 𝑚. However, 

observing the initial residual equations, it becomes clear that these derivatives will 

equate to zero for every grid block 𝑚 that is not adjacent to 𝑛, or that is not grid 

block 𝑛 itself. Consequently, the coefficient matrix will be a sparse matrix3, 

composed mostly of zeros, with non-zero block elements occurring only on the 

main block diagonal and some off-diagonal blocks. The degree of sparsity may vary 

                                                 

3 Sparse Matrix – Term referring to a matrix in which most of the elements are zero (Peaceman, 

1977). Its sparsity may be defined as the percentage of zero elements in the total element count. An 

alternative description is presented by Wilkinson, to whom a matrix may be considered sparse if it 

is advantageous to exploit the presence of the zeros, to save time and memory usage (Davis and Hu, 

2010). 
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significantly throughout the simulation process, usually being on the order of 

𝑂(𝑁)(Stüben, 2007), but eventually reaching levels as high as 95%, depending on 

the problem (Sheth and Younis, 2017). These off-diagonals with non-zeros 

correspond to the coupling that exists between neighboring cells, that is, the relation 

between the oil, water and gas residuals of one cell to the pressure and saturation 

unknowns of the adjacent cells. The actual shape of the sparse Jacobian matrix will 

then be intrinsically associated to the ordering scheme chosen for the reservoir grid, 

as has been briefly explained, and to the manner with which the residual equations 

are chosen to be numbered. For example, in the formulation presented in Equations 

(2.96), (2.100) and (2.103) the residual variables were grouped together per grid 

block, forming a repeating sequence of oil, water and gas equations. An alternative 

scheme might be to group together all the oil equations, then all the water equations 

and finally all the gas equations; this would significantly change the shape of  𝑱 ̃. 

These different options for constructing the coefficient matrix can have direct 

implications in the numerical methods to be utilized for solving the linear system 

of equations, as will be shown further ahead.  

The reservoir simulator used in this research provides both possibilities of 

equation numbering, either grouped per grid block or per equation type. The grid 

ordering scheme available thus far is natural ordering.  

With these given definitions, the matrix equation of the system may now be 

expressed as 

 

  𝑱 ̃(𝜈) ∙ 𝛿𝒙̅ =  −𝑹̅(𝜈) (2.104) 

 

The solution procedure using Newton’s Iteration starts with the evaluation of 

the residuals and their partial derivatives at the first iteration level, leading to the 

construction of the Jacobian matrix  𝑱 ̃(𝜈=0) and the residual vector 𝑹̅(𝜈=0). Next, 

the matrix equation is solved via an appropriate numerical method and the 

differential solution vector 𝛿𝒙̅ is determined. From this, the next solution vector is 

obtained 

 

 𝒙 𝑛+1
 (𝜈=1)

 =  𝛿𝒙̅ + 𝒙̅ 𝑛+1
 (𝜈=0)

= 𝛿𝒙̅ + 𝒙̅ 𝑛 (2.105) 
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Continuing the process, a new Jacobian matrix  𝑱 ̃(1) and residual vector 𝑹̅(1) 

can be constructed, evaluated at 𝒙̅ (1), and the new matrix equation can be solved 

so as to obtain a new 𝛿𝒙̅ vector, from which 𝒙̅ (2) is calculated subsequently. 

The method then proceeds in identical fashion for iterations 𝜈 = 2, 3, … until 

convergence is achieved or, alternatively, if a pre-established maximum number of 

iterations are attempted. Once convergence is reached, the value of 𝒙̅ (𝜈) at the final 

iteration level is considered to be the solution to the current time-step 𝒙̅ 𝑛+1. Finally, 

the simulation advances to the next time-step and this same iterative process starts 

anew.  

As a last remark, there are two notable alternative solution methods available 

for solving the simulation unknows. The first is named Implicit Pressure Explicit 

Saturations (IMPES), because, as the name suggests, the pressure unknowns are 

solved implicitly, while the saturations are determined explicitly. To accomplish 

this, the equations in each grid block are initially combined so as to eliminate the 

saturation variables, and then the pressure system is solved for simultaneously as a 

first step. Afterwards, the pressure values obtained are used directly in the 

saturation equations written for each grid block. The rationale behind this method 

is the fact that pressure is considered to fluctuate more intensely and that its 

variation travels farther into the reservoir. Saturations, on the other hand, tend to 

alter less overall, and these variations move more slowly throughout the reservoir. 

The second method is named Adaptative Implicit Method (AIM) and it combines 

aspects of the Fully Implicit Method and of IMPES. The concept here is that some 

grid blocks are treated in a fully implicit manner, while in others the pressures are 

treated implicitly and the saturations explicitly. This is done because of eventual 

convergence difficulties that might arise with the IMPES method, due to the fact 

that in some regions of the reservoir the saturations could actually be undergoing 

significant variations. This is especially true in water or gas fronts emanating from 

injection wells.  

Nevertheless, the linear system solvers implemented in the scope of this work 

focused uniquely on the solution of systems arising from the fully implicit method, 

with no treatment given to any other solution method. IMPES simulations are 

commonly capable of being executed in shorter runtimes than AIM or FIM, but 

with a price to be paid in terms of accuracy. Therefore, best overall efficiency is 
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probably achieved by applying IMPES to easy problems, and AIM or FIM to more 

difficult ones (Aziz and Settari, 1979). 
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3  
Numerical Methods 

The field of numerical linear algebra strives to solve large systems of 

equations, written in matrix form, often originating from the mathematical 

modeling of physical problems. One of the principal sources of matrix equations to 

be solved are those resulting from the discretization of partial differential equations, 

such as those describing the multiphase flow of fluid in porous media. This 

discretization process generally leads to very large sparse linear systems, which 

requires an efficient numerical method to be solved within a reasonable timeframe 

(Trefethen and Bau III, 1997; Behie et al., 1984). 

There are a variety of methods available for this purpose, with each presenting 

advantages and disadvantages that must be carefully weighed so as to choose the 

one most suited for the desired application. The selection of an appropriate method 

is of particular importance in reservoir simulations due to the fact that the solution 

of the linear system of equations being built at each iteration level is one of the most 

processing-intensive, time-consuming steps of the simulation (Brown et al., 2015; 

Sheth and Younis, 2017; and SPE – Reservoir Simulation). 

 

  
Direct Methods 

The solution methods originally developed to tackle linear systems of 

equations belong to the category of Direct Methods, as described by Price and Coats 

(1974). Among these methods, the most traditional one is known as Gaussian 

Elimination (GE); which involves the factorization of the coefficient matrix 𝑨 into 

lower and upper triangular matrices, respectively 𝑳 and 𝑼, and the subsequent 

solution of two simpler systems via forward and then backward substitution (Lay, 

2003). This is exemplified in Equations (3.1) – (3.5): 

 

 𝑨𝒙 = 𝒃 (3.1) 
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where  

 

 𝑨 = 𝑳𝑼 (3.2) 

 

is transformed into 

 

 𝑳𝑼𝒙 = 𝒃 (3.3) 

 

which can be easily solved in the following two steps 

 

 𝑳𝒚 = 𝒃 (3.4) 

 

 𝑼𝒙 = 𝒚 (3.5) 

 

In the equations hereafter, boldface capital letters shall be used to represent 

matrices, while boldface lower-cased letters shall be used to represent vectors. 

Constants and scalar values will be represented by non-bold lower-cased letters. To 

simplify notation, matrices and vectors will not be identified with any symbols 

above their names (i.e. tilde or bar), unless otherwise specified. 

A setback of the process described in Equations (3.1) – (3.5) involves the fact 

that, in constructing 𝑳 and 𝑼, often it is not sufficient to apply straightforward 

factorization to 𝑨, since it may be prone to instability due to round-off errors, and 

so pivoting techniques must also be introduced to the procedure. This entails 

additional calculations and the storage of at least one extra matrix. Moreover, when 

dealing with sparse matrices, Gaussian Elimination or other factorization schemes 

such as 𝑄𝑅, SVD4 or Cholesky (the latter being applicable only to Hermitian5 

positive definite6 matrices) tend to introduce vast quantities of non-zero terms into 

their respective factor matrices – which greatly increases the cost of solving the 

                                                 

4 SVD – Singular Value Decomposition. 

5 Hermitian Matrix – A complex square matrix that is equal to its conjugate transpose. Represents 

the generalization of a real symmetrical matrix in the complex domain (𝐴 = 𝐴𝑇 → 𝐴 = 𝐴∗). 

6 Positive Definite Matrix – A matrix whose eigenvalues are all positive. Alternatively, a matrix 

for which 𝑥𝑇𝐴𝑥 > 0, given any nonzero 𝑥 ∈ ℛ𝑚. 
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system, since there will be many more numbers on which to operate (Trefethen and 

Bau III, 1997). Furthermore, for similar reasons, these techniques also significantly 

augment the storage requirement of the solution process, so as to keep all the new 

non-zero terms that arise.  

Due to these considerations, the cost of solving a linear system through direct 

methods can be quite elevated, reaching the order of 𝑂(𝑚3) operations for a dense 

coefficient matrix, where 𝑚 represents the matrix dimension (Trefethen and Bau 

III, 1997). Since a solver’s runtime is strongly correlated to the number of 

operations that must be performed, this means that the time required for a direct 

solver to reach the solution increases very rapidly as the problem dimensions grow 

in size. Even though for sparse matrices it is possible to exploit the sparsity pattern 

to reduce the number of operations required by a reasonable factor, the resulting 

count would still represent a major restriction in the ability of the reservoir engineer 

to increase the number of grid blocks used to model the reservoir. As the reservoir 

is further and further discretized, the time (and memory) required to solve the 

resulting system of equations via direct methods simply becomes prohibitive 

(Mattax and Dalton, 1990). Consequently, alternative solution techniques must be 

adopted to overcome this limitation – leading to the application of a class of 

algorithms called Iterative Methods.  

Even though there exist other direct methods that do not explicitly factor the 

coefficient matrix, such as Gauss-Jordan Reduction or Thomas’ Algorithm, 

normally they either naturally require a greater number of operations or are 

restricted to specific matrix structures – for example, tridiagonal matrices (Ertekin 

et al., 2001). These limitations often make them unsuited to solve modern reservoir 

simulation problems, with more complex matrix structures. 

 

  
Iterative Methods 

The overall concept behind Iterative Methods is to start with an initial guess 

to the solution vector 𝑥 and successively improve this solution estimation in each 

step of an iterative process, gradually progressing towards the actual solution. The 

objective at each iteration step is to find a search-direction vector that most 

efficiently points from the current intermediate solution to the true solution, as well 
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as to find the length of the path that should be pursued in that particular direction. 

This true solution, however, is seldom actually reached in practice, because the 

method is normally halted beforehand, whenever an intermediate solution comes 

sufficiently close to it. 

This particular characteristic of iterative methods, of delivering only 

approximate solutions to the problems to which they are applied, might cause them 

to seem less powerful than direct ones at first glance. However, oftentimes this is a 

misconception. First, because the iterative method may well be capable of reaching 

a solution as precise as one obtained by a direct method, given sufficient iteration 

steps. More importantly though, they possess a very powerful trait not found in 

direct methods, which is the fact that they may be able to provide a precise enough 

answer with an appreciably smaller operation count; whereas direct methods will 

only provide any answer at all after every operation has been concluded. 

Consequently, the typical performance delivered by iterative methods in terms of 

operation count is in the order of 𝑂(𝑚2), which represents a very significant 

improvement from the work needed by general direct methods (Trefethen and Bau 

III, 1997).  

Furthermore, either kind of method may be considered inexact in the sense 

that, when carried out on a computer, their results will be accurate, at best, to 

machine precision 𝜀𝑀; even in the absence of rounding errors. In practice, for most 

methods, the normal machine error will be on the order of 100 to 1000 times 𝜀𝑀. 

Evidently, for iterative methods, the actual error of the final solution will also 

depend on the convergence criteria adopted to end the iterative process, and the 

rigor of this criteria will be contingent upon the accuracy of the answer desired by 

the user. Hence, achieving rapid convergence for a given error tolerance is the main 

objective of any iterative method (Trefethen and Bau III, 1997). 

The customary choice of convergence criteria employed in iterative methods 

designed to solve linear system of equations is presented in Equation (3.6) 

 

 ‖𝒓𝑛‖ < 𝜂 ∙ ‖𝒃‖ (3.6) 

 

where 𝒓𝑛 is the residual vector found during iteration level 𝑛 of the linear iterative 

method; and 𝜂 is an arbitrarily specified parameter, denoted residual tolerance. For 
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all of the simulations performed throughout this research, the chosen residual 

tolerance equaled 𝜂 = 10−10. It should be apparent that the smallest the value 

chosen, the more precise the final result of the numerical method will be; however, 

the more expensive it will be to reach that result. 

The convergence criteria detailed in Equation (3.6) should not be confused 

with the one applied to Newton’s Iteration in the linearization process performed at 

each simulation time-step, which is based upon material balance considerations. 

Likewise, the term mentioned Equation (3.6) as being the residual vector is not the 

same as the one referred to in Chapter 2, associated with the mass-balance equations 

(which is actually the right-hand side vector 𝒃 here), but instead it relates to the 

error between the projection of the current intermediate solution, found at iteration 

𝑛, and the right-hand side vector; as such 

 

 𝒓𝑛 = 𝒃 − 𝑨𝒙𝑛 (3.7) 

 

Finally, independent of the precision desired, a method cannot be allowed to 

run freely until obtaining convergence, since it may eventually stagnate or even 

become unstable along the process. Therefore, it is also necessary to define an upper 

limit to the number of permissible iterations. The iteration limit defined for all the 

simulations performed throughout this research was iter_lim = 15000. 

 

Stationary Methods 

 

Historically, the first group of iterative methods to be developed were based 

upon the relaxation of the problem coordinates, eliminating components of the 

residual vector through sequential relaxation steps (Saad, 2003; Peaceman, 1977). 

These classical methods, known as stationary methods (Barrett et al., 1994), involve 

the splitting of the coefficient matrix 𝑨 into two components 

 

 𝑨 = 𝑨1 + 𝑨2 (3.8) 

 

and then converting matrix equation (3.1) into a fixed-point problem 
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 𝒙𝑛+1 = 𝑨1
−1(𝒃 − 𝑨2𝒙𝑛) = 𝑩𝒙𝑛 + 𝒄 (3.9) 

 

where 𝑩 and 𝒄 are independent of the iteration step.  

Examples of this class of algorithms include Jacobi Iteration, Gauss-Seidel 

(GS), as well as different kinds of Successive Overrelaxation Methods (SOR). 

However, none of these methods are powerful enough to efficiently solve very large 

systems of equations, such as the ones arising in modern reservoir simulations 

(Chen et al., 2006; Kelly, 1995). 

 

Dimensional Splitting Methods 

 

One of the oldest class of iterative methods developed was based upon the 

concept of splitting the dimensions of the problem and solving them independently, 

as one-dimensional problems, with the aid of some parameters that varied with each 

iteration. Of particular relevance was the Alternating-Direction Implicit Procedure 

(ADIP), which was popular in reservoir simulation applications in the 1960’s and 

1970’s, before other, more powerful methods were established (Ertekin et al., 2001; 

Peaceman, 1977).  

 

Approximate Factorization Methods 

 

Another group of methods developed early on was based upon approximate-

factorization techniques. This involves the factorization of the coefficient matrix 

into factors that do not decompose it in an exact manner, but which are easier to 

compute and whose storage is less expensive. The most important of these to be 

applied to reservoir simulation is Stone’s Strongly Implicit Procedure (SIP) from 

1968, later improved by Weinstein et al. in 1969 and 1970, in which the problem is 

transformed into 

 

 𝑳′𝑼′ ∙ (𝒙𝑛+1 − 𝒙𝑛) = 𝒃 − 𝑨𝒙𝑛 (3.10) 

 

where 𝑳′ and 𝑼′ are approximate factors of 𝐴 (Mattax and Dalton, 1990; Peaceman, 

1977).  
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As shall be shown further ahead, there are other approximate factorization 

techniques available, but they were usually introduced to act as a preconditioner to 

some other iterative method and, unlike SIP, were not developed to be stand-alone 

procedures. 

 

Projection Methods 

 

More recently, a new class of non-stationary algorithms has been introduced 

into the reservoir simulation field, based on the projection of 𝑚-dimensional 

problems into a lower-dimensional Krylov subspace 𝒦𝑛. This means that, for a 

given matrix equation, the search for the solution vector 𝑥 is performed on the 

subspace spanned by the set of vectors composing a Krylov sequence. This 

subspace during iteration level 𝑛 is defined as 

 

 𝓚𝑛 = 𝑆𝑝𝑎𝑛{𝒃, 𝑨𝒃, 𝑨
2𝒃, 𝑨3𝒃,⋯ , 𝑨𝑛−1𝒃 } (3.11) 

 

or, alternatively, if 𝒙0 = 0 (which is a common choice) 

 

 𝓚𝑛 = 𝑆𝑝𝑎𝑛{𝒓0, 𝑨𝒓0, 𝑨
2𝒓0, 𝑨

3𝒓0, ⋯ , 𝑨𝑛−1𝒓0 } (3.12) 

 

where this sequence keeps growing larger as the iterative process advances. 

Therefore, the intermediate solutions will be contained within the following 

subspace 

 

 𝒙𝑛 ∈ 𝒙0 +𝓚𝑛 (3.13) 

 

Moreover, the intermediate solutions may be calculated from 

 

 𝒙𝑛 = 𝒙0 +∑𝜉𝑗𝑨
𝑗𝒃

𝑛

𝑗=0

 (3.14) 

 

where 𝜉 represents the linear coefficients multiplying each basis vector (Saad, 

2003). 
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Methods belonging to this class are quite proficient at solving large systems 

of equations and will be the focus of this thesis. The original Krylov projection 

method is named Conjugate7 Gradient (CG) and was developed by Hestenes and 

Stiefel in 1952 (Trefethen and Bau III, 1997). Although it is very efficient and 

remains popular, its application is restricted to symmetric positive definite (SPD) 

matrices, a prerequisite that makes it unsuited for solving the matrix equations 

encountered in fully implicit multiphase flow, whose coefficient matrix is highly 

asymmetrical and indefinite (Stüben et al., 2007). For this reason, modern reservoir 

simulators must employ newer, more versatile methods, that combine speed with 

the ability to tackle complex problems. The focus of this research will be the study 

of three particular methods that tend to best encompass these characteristics, of 

efficiency and robustness, and which are most commonly applied to current 

reservoir simulators (Jackson et al., 2014; SPE – Reservoir Simulation Linear 

Equation Solver). Specifically, it shall compare the performance of the following 

algorithms: (i) ORTHOMIN, (ii) GMRES and (iii) BiCGSTAB. 

The necessity of comparing different methods such as these stems from the 

fact that there is not a fundamental rule determining an overall best method. The 

performance of the methods is strongly related to the application in which they are 

used, with each method possibly being the one most suited for a specific class of 

problems, while being the worst one for a separate class (Berrett et al., 1994).  

Furthermore, as computer processing power improves, the difference in 

performance between methods of different quality tends to be accentuated; thus, as 

the computer becomes faster, the more important it becomes to optimize the 

numerical solver (Trefethen and Bau III, 1997). 

One straightforward manner of comparing the different methods would be 

through the cost required for them to perform each iteration step. Table 3.1 

summarizes both the computational cost, in terms of the various operations 

involved in the algorithms, and the memory necessary for each method to be 

executed. 

 

 

                                                 

7 Conjugate Vectors – Two non-zero vectors 𝑝 ∈ ℛ𝑚 and 𝑞 ∈ ℛ𝑚 are defined as being conjugate 

with respect to matrix 𝐴 if the following property holds true: 𝑝𝑇𝐴𝑞 = 0. 
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Table 3.1 – Computational cost and memory requirement of the iterative methods studied. 

  Computational Cost   

Iterative 

Method 
MV AXPY DOT 

Memory 

Requirement 

ORTHOMIN(k) 2  ~ 2 + k/2 ~ 3 + k/2 1 + 2k 

GMRES(k) 1 ~ k/2 ~ 1½ + k/2 2 + k  

BiCGSTAB 2 6 6 7 

 

Here, Memory Requirement represents the number of additional vectors that 

must be stored (excluding 𝒙 and 𝒃); MV represents the number of matrix-vector 

multiplications; AXPY represents the number of vector additions and subtractions, 

combined with a scalar multiplication; and DOT represents the total number of 

inner products and vector norm calculations performed. 

Although this table may serve as a reference for the cost of using any 

particular method, the number of necessary iteration steps to solve a given reservoir 

problem will vary between algorithms. Hence, to accurately assess their 

performances, it is essential to compare the total runtime demanded by each one of 

them. This entails running them on an actual simulator, using sample reservoir 

models, and analyzing the times required for their convergence. These tests and 

their results will be detailed in Chapter 5. 

With regards to the convergence capability of the methods examined, in 

contrast to the CG method, whose result is assured to converge after at most 𝑚 

iterations, these do not have a well-established general convergence theory; in fact, 

they may even diverge altogether. This behavior is often related to the conditioning 

of the coefficient matrix, which may be expressed by the matrix’s condition number 

𝜅(𝑨), an attribute related to the perturbation behavior of the problem.  

To visualize this, matrix equation (3.1) may be seen as a function mapping an 

independent vector 𝒙 onto a resulting vector 𝒃 

 

 𝒙 → 𝑓(𝒙) = 𝒃 (3.15) 

 

For a well-conditioned problem, small perturbations in 𝒙 lead to only small 

perturbations in 𝑓(𝒙), while in ill-conditioned problems they may lead to large 
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perturbations (Trefethen and Bau III, 1997). The condition number of a matrix is 

defined as 

 

 𝜅(𝑨) = ‖𝑨‖ ∙ ‖𝑨−1‖ =
𝜎𝑚𝑎𝑥
𝜎𝑚𝑖𝑛

 (3.16) 

 

where 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 represent the maximum and minimum singular values, 

respectively. Alternatively, if matrix 𝑨 is normal (that is, 𝑨𝑨𝑇 = 𝑨𝑇𝑨), then it may 

also be written as 

 

 𝜅(𝑨) =
‖𝜆𝑚𝑎𝑥‖

‖𝜆𝑚𝑖𝑛‖
 (3.17) 

 

where 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 represent the maximum and minimum eigenvalues, 

respectively. 

The smaller the condition number, the more concentrated the spectrum of the 

matrix (the smaller the spectral radius8), and thus the better conditioned it is. 

Unfortunately, the Jacobian matrices built during each step of Newton’s Iteration 

are generally very ill-conditioned. This implies that if one attempts to solve the 

corresponding system of linear equations straightaway with one of the algorithms 

mentioned here, there is a high probability that the iterative method will stagnate. 

Indeed, in practical applications, these methods are rarely functional without the aid 

of a preconditioner. The aim of the preconditioner is, just as the name suggests, to 

better condition the problem before attempting to solve it or, in other words, to 

reduce its condition number. This theme will be further explored in 87 and different 

preconditioning strategies shall be evaluated. Preconditioning is of such importance 

to the solution methods that oftentimes they are tailored to the specific application 

at hand and, frequently, constructing the preconditioning matrix and performing 

calculations with it essentially consumes more time than the underlying iterative 

method itself (Stüben et al., 2007). For this reason, the iterative algorithms are 

                                                 

8 Spectrum of a Matrix – Refers to its complex set of eigenvalues, with the Spectral Radius 

representing the magnitude of the largest eigenvalue. 
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sometimes called accelerators and the numerical solvers for a specific problem are 

actually named after the preconditioning strategy. 

Nonetheless, for now this feature will be simply integrated directly into the 

original versions of the aforementioned methods, to form their respective 

preconditioned versions. This entails that one or more steps of the algorithm will 

consist of pre-multiplying some vector 𝒓 by 𝑴−1, where 𝑴 is the preconditioning 

matrix, to obtain a resulting vector 𝒒. The cost of preconditioning, in terms of the 

number of times it is applied per iteration, is presented in Table 3.2 for each method. 

 

Table 3.2 – Computational cost of applying a 

preconditioner to the iterative methods. 

 Computational Cost 

Iterative Method Preconditioning 

ORTHOMIN(k) 1 

GMRES(k) 1 

BiCGSTAB 2 

 

The memory requirement associated with the preconditioners may vary 

widely. It may be as inexpensive as storing a single extra vector, or as costly as 

storing an additional matrix the size of 𝑨; and eventually even larger. More will be 

said of this in Chapter 5. 

 

3.2.1  
ORTHOMIN Method 

Prior to the development of the ORTHOMIN method by Vinsome (1976), 

SIP was the most commonly used method in reservoir simulators. This new method, 

based on the minimization of the residual vector computed at each iteration level, 

proved not only to be very competitive for solving reservoir problems, but also 

introduced a set of advantages to previous methods in use, such as (i) not depending 

on arbitrary iteration parameters, whose optimal value needed to be estimated; (ii) 

its convergence is insensitive to transmissibility ratios and asymmetry of the 

coefficient matrix; (iii) and being applicable to matrices with any number of 

diagonal bands (Vinsome, 1976).  
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Ultimately, the aim of the method is to minimize the following objective 

function 

 

 ‖𝒓𝑛+1‖ = ‖𝒓𝑛 − 𝛼𝑨𝒒𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.18) 

 

Therefore, the step-length 𝛼 used to advance from one intermediate solution 

𝒙𝑛 to the next 𝒙𝑛+1 

 

 𝒙𝑛+1 = 𝒙𝑛 +  𝛼𝒒𝑛 (3.19) 

 

may be determined directly from 

 

 (𝑨𝒒𝑛)
𝑇 ∙ (𝒓𝑛) = (𝑨𝒒𝑛)

𝑇 ∙ (𝛼𝑨𝒒𝑛) (3.20) 

 

which, in turn, also implies that the new residual vector 𝒓𝑛+1 computed at each step  

 

 𝒓𝑛+1 = 𝒓𝑛 −  𝛼𝑨𝒒𝑛 (3.21) 

 

will be orthogonal to the previous projection vector 𝑨𝒒𝑛. 

Furthermore, at every iteration step the new search vector 𝒒𝑛 is constructed 

in a manner so that its 𝑨-projection is orthogonal to all of the previously generated 

projections ((𝑨𝒒𝑛) ⊥ (𝑨𝒒𝑖) , ∀ 𝑖 < 𝑛). This attempts to optimize the search for the 

true solution by covering an ample search region. 

On the other hand, this manner of selecting the search vectors leads to a 

marked disadvantage of the method, which is the fact that, as the iterative process 

progresses, the additional storage requirement to keep all of the previous vectors 

may become significant, potentially growing to the size of the original coefficient 

matrix. Moreover, this feature also means that an increasing number of 

orthogonality coefficients 𝛽 must be calculated each time, which causes the 

orthogonalization process to become increasingly more costly and susceptible to 

rounding errors (Vinsome, 1976). 

However, in practice, these orthogonalized projection vectors do not need to 

all be stored, and the method may be constrained so as to maintain only the previous 
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𝑘 vectors, without losing its ability to converge. This leads to the ORTHOMIN(k) 

variation of the method. There is no theory as of yet on an optimal number for the 

parameter 𝑘, though traditionally it is set at some pre-established level and kept 

constant throughout the process. For this research a novel approach was taken, as 

introduced by Baker et al. (2009), in which the reset parameter is permitted to vary 

between cycles. Although it was originally proposed for the GMRES(k) method, 

this same concept is also applicable for ORTHOMIN(k), and was found to 

accelerate the convergence rate when compared to a fixed reset strategy. 

The idea behind the procedure is that the drop in the residual norm between 

iterations is correlated to the angle between their residual vectors 

 

 cos ∠(𝒓𝑛+1, 𝒓𝑛) =
‖𝒓𝑛+1‖

‖𝒓𝑛‖
= 𝛾 (3.22) 

 

where 𝛾 is the convergence rate, and where smaller values represent faster 

convergence. 

If the reduction in the residual norm is significative, then the angle between 

the residual vectors should be large. To the limit, if consecutive residual vectors are 

determined to be orthogonal, then an exact solution has been found.  

The strategy consists of varying the reset parameter 𝑘 between a maximum 

value 𝑘𝑚𝑎𝑥 and a minimum value 𝑘𝑚𝑖𝑛, through steps of size 𝛿, depending on the 

quality of the rate of convergence. It starts by adopting 𝑘 = 𝑘𝑚𝑎𝑥 and then 

gradually decreasing it every time that the convergence rate between cycles is worse 

than 𝛾𝑚𝑖𝑛, but better than 𝛾𝑚𝑎𝑥, until the limit of 𝑘 = 𝑘𝑚𝑖𝑛 is reached. Alternatively, 

if convergence is better than 𝛾𝑚𝑖𝑛 then 𝑘 is left unaltered, while if convergence is 

worse than 𝛾𝑚𝑎𝑥 then 𝑘 is reset back directly to its maximum value 𝑘𝑚𝑎𝑥. Similarly, 

once 𝑘 reaches its minimum value 𝑘𝑚𝑖𝑛, if a further attempt is made to reduce it, 

instead of doing so the procedure resets it directly back to 𝑘𝑚𝑎𝑥. 

The values of these parameters were originally chosen from the authors’ 

recommendations, with 𝑘𝑚𝑎𝑥 = 30, which is a typical value for the reset parameter 

in any case; 𝑘𝑚𝑖𝑛 = 3; 𝛿 = 3; 𝛾𝑚𝑖𝑛 = cos(80°) ≈ 0.175; and 𝛾𝑚𝑎𝑥 = cos(8°) ≈

0.99. They were further tested for optimization in this work, but since they were 
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found to provide the best results in several cases, they were maintained as 

suggested.  

The pseudocode of the preconditioned ORTHOMIN method implemented is 

presented in Algorithm 3.1 (Ertekin et al., 2001). Besides the different resetting 

strategy, a second alteration was made to the original version of the algorithm 

presented in literature. In particular, whenever starting a new reset cycle, the first 

search vector is taken directly as the final search vector of the previous cycle, 

instead of being computed anew from the final residual vector of the previous cycle. 

This adaptation was found to consistently aid convergence in the test cases 

performed. 

As a note, the matrix storage format adopted for the work done in this research 

was the traditional Compressed Sparse Row (CSR) format. In it, matrices are not 

stored in their full forms, with all zero and non-zero entries arranged according to 

their coordinate positions. Instead, it represents the matrices in an abstract manner, 

through the use of three auxiliary vectors: (i) row_ptr, which stores the address of 

where the first non-zero in each row is located; (ii) col_ind, which stores the column 

index of the non-zero terms sequentially, row by row; and (iii) nz_values, which 

keeps the actual values of the non-zero entries, also grouped row wise. 

Consequently, all mathematical operations done on the matrices, as well as the 

construction of the different preconditioning matrices, had to be tailored to conform 

to this format. 
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Algorithm 3.1 – Preconditioned ORTHOMIN Iterative Method. 

𝒙0 = 0 

𝒓0 = 𝒃 − 𝑨𝒙0 

𝒒0 = 𝑴−1𝒓0 

𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (‖𝒓0‖ < 𝜂 ∙ ‖𝒃‖) 

𝜌 = ‖𝒓0‖, 𝛾 = 1 

𝐰𝐡𝐢𝐥𝐞 𝑗 < 𝑖𝑡𝑒𝑟_𝑙𝑖𝑚 

𝑇𝑒𝑠𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝛾) 𝑎𝑛𝑑 𝑎𝑑𝑗𝑢𝑠𝑡 𝑐𝑦𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑘) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑙𝑦 

𝐟𝐨𝐫 𝑗 = 0 𝐭𝐨 𝑘          

          𝛼 =
〈𝒓𝑗 ∙ 𝑨𝒒𝑗〉

〈𝑨𝒒𝑗 ∙ 𝑨𝒒𝑗〉
 

          𝒙𝑗+1 = 𝒙𝑗 +  𝛼𝒒𝑗 

          𝒓𝑗+1 = 𝒓𝑗 −  𝛼𝑨𝒒𝑗 

          𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (‖𝒓𝑗‖ < 𝜂 ∙ ‖𝒃‖) 

          𝐟𝐨𝐫 𝑖 = 0 𝐭𝐨 𝑗                                                     

                    𝛽𝑖 =
〈𝑨𝑴−1𝒓𝑗+1 ∙ 𝑨𝒒𝑖〉

〈𝑨𝒒𝑖 ∙ 𝑨𝒒𝑖〉
 

          𝐞𝐧𝐝 

          𝒒𝑗+1 = 𝑴
−1𝒓𝑗+1 + ∑ (𝛽𝑖𝒒𝑗)

𝑗
𝑖=𝑗−𝑘+1  

𝐞𝐧𝐝 

𝛾 =
‖𝒓𝑘‖

𝜌
 

𝜌 = ‖𝒓𝑘‖ 

𝒒0 = 𝒒𝑘 

𝐞𝐧𝐝                                                        

 

3.2.2  
GMRES Method 

The Generalized Minimum Residual method is an extension of the Minimum 

Residual (MINRES) method, which had been developed for symmetric matrices, to 

encompass asymmetric ones. It was first introduced by Saad and Schultz (1986) 

and it is also based upon the successive minimization of the residual vector over 

each iteration step. This means that the magnitude of the residual vector decreases 
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monotonically as the iterations progress, and that after 𝑚 steps the method is 

assured to converge: 

 

 ‖𝒓𝑛+1‖ ≤ ‖𝒓𝑛‖ (3.23) 

 

The problem of minimizing the residual vector is analogous to a least square 

problem. The algorithm commences with the following objective function 

 

 ‖𝒃 − 𝑨𝒙𝑛‖ = ‖𝒃 − 𝑨(𝒙0 +𝒦𝑛)‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.24) 

 

Then, the vector belonging to the Krylov subspace that takes the solution 

vector from 𝒙0 to 𝒙𝑛 is substituted for the product of an orthonormal9 matrix 𝑽𝑛 of 

dimension (𝑚 × 𝑛), whose columns span the Krylov subspace 𝒦𝑛, and an unknown 

vector 𝒚𝑛 

 

 ‖𝒃 − 𝑨(𝒙0 + 𝑽𝑛𝒚𝑛)‖ = ‖𝒓0 − 𝑨𝑽𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.25) 

 

Note that the term inside the parenthesis is equivalent to 

 

 
𝒙𝑛 = 𝒙0 + 𝑆𝑝𝑎𝑛{𝒗1, 𝒗2, … , 𝒗𝑛}

= 𝒙0 + 𝜓1𝒗1 + 𝜓2𝒗2 +⋯+ 𝜓𝑛𝒗𝑛 
(3.26) 

 

where 𝜓𝑛 represents the 𝑛-th entry of the vector 𝒚𝑛. 

The columns of the orthogonal matrix 𝑽𝑛 can be constructed one at a time by 

applying a procedure known as the Arnoldi Iteration, which consists of sequentially 

reducing matrix 𝑨 to Hessenberg10 form 𝑯̃𝑛 

 

 𝑨𝑽𝑛 = 𝑽𝑛+1𝑯̃𝑛 (3.27) 

 

                                                 

9 Orthonormal Matrix – A matrix whose columns consist of orthogonal unit vectors; that is, vectors 

whose norm equals one. 

10 Hessenberg Matrix – A nearly triangular matrix that also has the first opposite sub-diagonal filled 

with nonzero values. A matrix may possess either upper or lower Hessenberg form. 
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where 𝑯̃𝑛 has the following format 

 

 𝑯̃𝑛 =

[
 
 
 
 
ℎ11 ⋯ 0 ℎ1𝑛
ℎ21 ℎ22 0 ⋮
0 ⋱ ⋱ 0
0 0 ℎ𝑛,𝑛−1 ℎ𝑛𝑛
0 0 0 ℎ𝑛+1,𝑛]

 
 
 
 

 (3.28) 

 

This recursive process generates a new column 𝒗𝑛+1 at each step, which can 

be computed by the following relationship involving the columns calculated at the 

previous steps 

 

 𝑨𝒗𝑛 = ℎ1𝑛𝒗1 +⋯+ ℎ𝑛𝑛𝒗𝑛 + ℎ𝑛+1,𝑛𝒗𝑛+1 (3.29) 

 

The Arnoldi Iteration that generates 𝒗𝑛+1 is ultimately a modified Gram-

Schmidt orthogonalization procedure that implements the relationship described in 

Equation (3.29). As an alternative, orthogonalization could be performed using 

Householder Triangularization, but this option was not investigated further in this 

research. 

Because even a modified Gram-Schmidt procedure may still suffer from loss 

of orthogonality due to round-off errors, a test for loss of orthogonality was 

implemented into the Arnoldi Iteration, as suggested by Kelly (1995). If ever such 

a loss was detected, the vectors would then be submitted to a re-orthogonalization 

process. The verification criteria for this correction is presented in Equation (3.30) 

 

 ‖𝑨𝒗𝑛‖ + 𝜀‖𝒗𝑛+1‖ = ‖𝑨𝒗𝑛‖ (3.30) 

 

where 𝜀 represents the numerical tolerance for orthogonalization breakdown. Here 

this parameter was adopted to be 𝜀 = 10−32.  

Once the Arnoldi Iteration is complete, the problem is transformed into 

 

 ‖𝒓0 − 𝑽𝑛+1𝑯̃𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.31) 

 

The first unitary vector 𝒗1 may be defined conveniently as 
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 𝒗1 =
𝒓0
‖𝒓0‖

=
𝒓0
𝛽

 (3.32) 

 

and the problem thus rewritten to 

 

 ‖𝛽𝒗1 − 𝑽𝑛+1𝑯̃𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.33) 

 

Since both vectors inside the norm are contained within the column space of 

𝑽𝑛+1, multiplying on the left by its transpose does not alter the magnitude of the 

norm (Trefethen and Bau III, 1997). Given that 𝑽𝑛+1 is orthonormal, this equates 

to 

 

 ‖𝑽𝑛+1
𝑇𝛽𝒗1 − 𝑯̃𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.34) 

 

which, by construction of 𝑽𝑛+1 (since 𝒗1 is orthogonal to all other 𝒗𝑖), is also 

equivalent to 

 

 ‖𝛽𝒆1 − 𝑯̃𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.35) 

 

where 𝒆1 is the canonical vector pointing towards the first direction (1, 0,0, … )𝑇. 

Therefore, the challenge is to now find a minimizer 𝒚𝑛 that suits Equation 

(3.35). This is a much less costly task than solving the original problem, because 

the problem dimensions have now been reduced from 𝑚×𝑚 to (𝑛 + 1) × 𝑛, where 

𝑛 ≪ 𝑚. 

A simple manner of obtaining this minimizer is applying 𝑄𝑅 factorization to 

the Hessenberg matrix, by way of plane rotations (Saad and Schultz, 1986). The 

idea here is to pre-multiply 𝑯̃𝑛 by the following rotational matrix 𝑭𝑛 at each step 

of the iteration 

 

 𝑭𝑛 = [

1 0 0 0
0 ⋱ 0 0
0 0 𝑐𝑛 −𝑠𝑛
0 0 𝑠𝑛 𝑐𝑛

] (3.36) 
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where 𝑐𝑛 = cos(𝜃𝑛) and 𝑠𝑛 = sin(𝜃𝑛); and where the angle of rotation 𝜃𝑛 is chosen 

so as to eliminate the new element created in the last row of 𝑯̃𝑛. 

Now, if the sequence of rotations applied throughout the iterative process is 

defined as  

 

 𝑸𝑛 = 𝑭1 ∙ 𝑭2… ∙ 𝑭𝑛 (3.37) 

 

then one has that 

 

 𝑸𝑛𝑯̃𝑛 = 𝑹𝑛 (3.38) 

 

where 𝑹𝑛 has the following structure 

 

 𝑹𝑛 =

[
 
 
 
 
 
𝑟11 𝑟12 ⋯ 𝑟1,𝑛−1 𝑟1,𝑛
0 𝑟22 ⋯ 𝑟2,𝑛−1 𝑟2,𝑛
0 0 ⋱ ⋮ ⋮
0 0 0 𝑟𝑛−1,𝑛−1 𝑟𝑛−1,𝑛
0 0 0 0 𝑟𝑛,𝑛
0 0 ⋯ 0 0 ]

 
 
 
 
 

 (3.39) 

 

Finally, the problem may be converted into 

 

 ‖𝑸𝑛𝛽𝒆1 − 𝑸𝑛𝑯̃𝑛𝒚𝑛‖ = ‖𝒈𝑛 − 𝑹𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.40) 

 

where  

 

 𝒈𝑛 = 𝑸𝑛𝛽𝒆1 (3.41) 

 

represents a transformed right-hand side. 

It is important to note that it is not necessary to explicitly recalculate 𝒈𝑛 and 

𝑹𝑛 in their entireties at every iteration, since the latest rotation to be applied, 

corresponding to the current iteration, will solely affect the final two elements of 

𝒈𝑛 and the final column of 𝑹𝑛. On the other hand, the final column of 𝑹𝑛 added at 
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each iteration will also need to be updated with respect to all of the previous 

rotations (Saad and Schultz, 1986). 

At each iteration, if the column being added to 𝑯̃𝑛+1, and consequently to 

𝑹𝑛+1, is represented by 

 

 𝒉𝑛+1 =

[
 
 
 
 
 
𝑟1,𝑛+1
𝑟2,𝑛+1
⋮

𝑟𝑛,𝑛+1
𝑟𝑛+1,𝑛+1
ℎ𝑛+2,𝑛+1]

 
 
 
 
 

 (3.42) 

 

then the rotation necessary to eliminate its last element may be determined by the 

following definitions of the terms comprising the rotational matrix 𝑭𝑛+1: 

 

 
𝑐𝑛+1 =

𝑟𝑛+1,𝑛+1

√(𝑟𝑛+1,𝑛+1)
2
+ (ℎ𝑛+2,𝑛+1)

2
 

(3.43) 

 

and 

 

 
𝑠𝑛+1 =

−ℎ𝑛+2,𝑛+1

√(𝑟𝑛+1,𝑛+1)
2
+ (ℎ𝑛+2,𝑛+1)

2
 

(3.44) 

 

Once the rotations have been performed, the least square problem takes the 

format of an upper triangular system, which can consequently be solved without 

much effort via backwards substitution, by simply disregarding the last row of  𝑹𝑛 

and the last element of 𝒈𝑛. The resulting vector is the minimizer 𝒚𝑛, with whom it 

is possible to subsequently determine the solution vector at the current step 

 

 𝒙𝑛 = 𝒙0 + 𝑽𝑛𝒚𝑛 (3.45) 

 

Afterwards, the residual 𝒓𝑛 at that same step could theoretically be computed, 

to verify if convergence has been reached satisfactorily. However, due to the 

manner with which 𝒚𝑛 is constructed, the norm of the residual is actually available 
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at every iteration at no additional cost. It can be obtained directly as the final 

element of the vector 𝒈𝑛. Therefore, the repetitive calculation of 𝒚𝑛, 𝒙𝑛 and 𝒓𝑛 per 

iteration step are not required, except once convergence has been successfully 

achieved, which can be easily established by the value of the (𝑛 + 1) component 

of 𝒈𝑛.  

Furthermore, the only situation where the algorithm may breakdown, which 

would occur if element ℎ𝑛+1,𝑛 equals zero during the Arnoldi process (because then 

𝒗𝑛 can no longer be built recursively), can be demonstrated to mean that the 

algorithm has in fact converged. Thus, in this instance 𝒙𝑛 may be considered to be 

the exact solution to the problem (Trefethen and Bau III, 1997).  

The final issue to be tackled with the algorithm presented is the fact that, as 

the process advances, the number of vectors 𝒗𝑛 that must be stored increases 

continuously. Since these vectors have dimension 𝑚, the storage cost may become 

prohibitive if too many iterations are required for convergence, similar to the 

ORTHOMIN(k) case. To remedy this, the key is to reset the method after a pre-

determined 𝑘 number of steps and use the latest solution prior to reset 𝒙𝑘 as the new 

initial guess in the next cycle.  This leads to the GMRES(k) version of the method. 

The reset strategy adopted for the GMRES(k) method is identical as the one 

described for ORTHOMIN(k), with the exception of two parameters. Here the 

maximum reset value was altered to 𝑘𝑚𝑎𝑥 = 50 and the minimum to 𝑘𝑚𝑖𝑛 = 5. 

This was due to the results of some test cases performed, that found these higher 

values to improve the convergence rate of the problems.  

The pseudocode of the preconditioned GMRES method implemented is 

presented in Algorithm 3.2 (Saad and Schultz, 1986; Barrett et al., 1994). 
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Algorithm 3.2 – Preconditioned GMRES Iterative Method. 

𝒙0 = 0, 𝑗 = 0, 𝛾 = 1 

𝒓0 = 𝒃 − 𝑨𝒙0, 𝛽 = ‖𝑴−1𝒓0‖, 𝛼 = 𝛽 

𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝛽 < 𝜂 ∙ ‖𝑴−1𝒃‖) 

𝐰𝐡𝐢𝐥𝐞 𝑗 < 𝑖𝑡𝑒𝑟_𝑙𝑖𝑚 

          𝒗0 =
𝒓0

𝛽
, 𝒈 = 0, 𝒈[0] = 𝛽, 𝑗 = 𝑗 + 1 

            𝑇𝑒𝑠𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝛾) 𝑎𝑛𝑑 𝑎𝑑𝑗𝑢𝑠𝑡 𝑐𝑦𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑘) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑙𝑦 

          𝐟𝐨𝐫 𝑖 = 0 𝐭𝐨 𝑘 

                    𝒗𝑖+1 = 𝑴
−1(𝑨𝒗𝑖) 

                    𝐟𝐨𝐫 𝑤 = 0 𝐭𝐨 𝑖 

                              𝑯̃[𝑤, 𝑖] = 〈𝒗𝑖+1 ∙ 𝒗𝑤〉 

                              𝒗𝑖+1 = 𝒗𝑖+1 − 𝑯̃[𝑤, 𝑖]𝒗𝑤 

                    𝐞𝐧𝐝 

                    𝑇𝑒𝑠𝑡 𝑓𝑜𝑟 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑓 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 

                    𝑯̃[𝑖 + 1, 𝑖] = ‖𝒗𝑖+1‖ 

                    𝒗𝑖+1 =
𝒗𝑖+1

‖𝒗𝑖+1‖
 

                    𝐟𝐨𝐫 𝑤 = 0 𝐭𝐨 𝑖 

                              𝐺𝑖𝑣𝑒𝑛𝑠_𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑯̃[𝑤, 𝑖], 𝑯̃[𝑤 + 1, 𝑖], 𝑐[𝑖], 𝑠[𝑖]) 

                    𝐞𝐧𝐝 

                   𝐺𝑖𝑣𝑒𝑛𝑠_𝐵𝑢𝑖𝑙𝑑(𝑯̃[𝑖, 𝑖], 𝑯̃[𝑖 + 1, 𝑖], 𝑐[𝑖], 𝑠[𝑖]) 

                    𝐺𝑖𝑣𝑒𝑛𝑠_𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑯̃[𝑖, 𝑖], 𝑯̃[𝑖 + 1, 𝑖], 𝑐[𝑖], 𝑠[𝑖]) 

                    𝐺𝑖𝑣𝑒𝑛𝑠_𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝒈[𝑖], 𝒈[𝑖 + 1], 𝑐[𝑖], 𝑠[𝑖]) 

                    𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (|𝒈[𝑖 + 1]| < 𝜂 ∙ ‖𝑴−1𝑏‖) 

          𝐞𝐧𝐝 

          𝛾 =
|𝒈[𝑖+1]|

𝛼
 

          𝛼 = |𝒈[𝑖 + 1]| 

          𝐿𝑒𝑎𝑠𝑡_𝑆𝑞𝑢𝑎𝑟𝑒_𝑈𝑝𝑑𝑎𝑡𝑒(𝑯̃, 𝒈, 𝑽, 𝑖 − 1) → 𝒚 → 𝒙𝑗 

          𝒓0 = 𝒃 − 𝑨𝒙𝑗 

          𝛽 = ‖𝑴−1𝒓0‖ 

          𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝛽 < 𝜂 ∙ ‖𝑴−1𝒃‖) 

𝐞𝐧𝐝 
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3.2.3  
BiCGSTAB Method 

The most modern of the iterative methods implemented was the Biconjugate 

Gradient Stabilized algorithm. It was devised by Henk Van der Vorst (1992) as an 

improvement over the previously known Biconjugate Gradient (BCG) method by 

Lanczos, dating from 1952, the Conjugate Gradient Squared (CGS) method by 

Sonneveld, dating from 1989, the and Quasi-Minimal Residual (QMR) method by 

Freund and Nachtigal, dating from 1991. It was devised to smooth the oftentimes 

erratic convergence rate of some of the other methods, and to avoid matrix 

operations on the transpose of 𝑨 (Barrett et al., 1994; Sleijpen and Fokkema, 1993).  

All of these methods listed are efforts to generalize the CG method for 

nonsymmetrical matrices and are based on three-term recurrences, which may be 

considered to be the most powerful nonsymmetrical approach currently available 

(Trefethen and Bau III, 1997). Further variations of the BiCGSTAB method that 

were later developed, such as BiCGSTAB2 by Gutknecht (1993) and 

BiCGSTAB(L) by Sleijpen and Fokkema (1993), were not incorporated to the 

algorithm in this research. The main reason for this was due to greater focus being 

devoted to the different preconditioning strategies, rather than to the underlying 

iterative method. 

Biorthogonalization11 processes are generally based on the Lanczos Iteration, 

which attempts to reduce a Hermitian matrix to unitary, tridiagonal form. However, 

when dealing with matrices that are not Hermitian in nature, this reduction is 

normally not achievable to full extent; requiring a compromise between either 

keeping the unitary transformations or the tridiagonal form. The Hessenberg 

orthogonalization of GMRES does the former (resulting in the Arnoldi Iteration), 

whereas biorthogonalization procedures rely on the latter, leading to a non-unitary 

tridiagonal biorthogonalization (Trefethen and Bau III, 1997): 

 

 𝑨 = 𝑽𝑻𝑽−1 (3.46) 

 

                                                 

11 Biorthogonal Matrix – A matrix 𝑉 whose columns are not orthogonal to each other, but are 

instead orthogonal to the columns of  (𝑉−1)𝑇 . 
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or, when 𝑛 < 𝑚, 

 

 𝑨𝑽𝑛 = 𝑽𝑛+1𝑻̃𝑛 (3.47) 

 

where the columns of 𝑽 are orthogonal to the columns of (𝑽−1)𝑇 – even though 

they are not unitary; and 𝑻̃𝑛 is a tridiagonal matrix.  

Similarly, we have 

 

 𝑨𝑇𝑾𝑛 = 𝑾𝑛+1𝑺̃𝑛 (3.48) 

 

where 𝑺̃𝑛 is tridiagonal; and 

 

 𝑾 = (𝑽−1)𝑇 (3.49) 

 

Analogously to GMRES, the new vectors 𝒗𝑛+1 and 𝒘𝑛+1 that comprise the 

matrices in Equation (3.47) and Equation (3.48) may be obtained recursively, but 

now limited to just three-terms (as opposed to the entire sequence of terms that 

came before it) 

 

 𝑨𝒗𝑛 = 𝛾𝑛−1𝒗𝑛−1 + 𝛼𝑛𝒗𝑛 + 𝛽𝑛𝒗𝑛+1 (3.50) 

 

and  

 

 𝑨𝒘𝑛 = 𝛽𝑛−1𝒘𝑛−1 + 𝛼𝑛𝒘𝑛 + 𝛾𝑛𝒘𝑛+1 (3.51) 

 

where 𝛼𝑛 are the coefficients in the main diagonal of 𝑻̃𝑛 and 𝑺̃𝑛; 𝛽𝑛 are the 

coefficients in the first lower diagonal of 𝑻̃𝑛 and first upper diagonal of 𝑺̃𝑛;  and 𝛾𝑛 

are the coefficients in the first upper diagonal of 𝑻̃𝑛 and first lower diagonal of 𝑺̃𝑛. 

Thus, the vectors formed in the process will belong to the two Krylov 

subspaces specified in Equations (3.52) – (3.53) 

 

 𝒗𝑛 ∈ 𝑆𝑝𝑎𝑛{𝒗1, 𝑨𝒗1, … , 𝑨
𝑛−1𝒗1} (3.52) 
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and 

 

 𝒘𝑛 ∈ 𝑆𝑝𝑎𝑛{𝒘1, 𝑨
𝑇𝒘1, … , (𝑨

𝑇)𝑛−1𝒘1} (3.53) 

 

Contrary to the procedure applied in GMRES, in which the basis vectors were 

forcibly made to be orthogonal via Gram-Schmidt orthogonalization, the process 

described by Equations (3.50) – (3.51) depends on the orthogonality of the basis 

vectors arising automatically. In practice, this may not occur due to the 

accumulation of rounding errors over time and the method may be prone to 

stagnation and numerical breakdown. This occurs, for example, if 𝒗𝑛 = 0 or 𝒘𝑛 =

0 at some step (Trefethen and Bau III, 1997). 

The process that was just introduced describes the concept behind the BCG 

method. The stabilized version of this biorthogonalization adjusts the recursive 

procedure presented, so as not to involve calculations with the transpose of matrix 

𝑨.  

The complete derivation of BiCGSTAB is not as straightforward as those of 

the previous algorithms and shall not be performed in full. Nevertheless, perhaps 

just as valuable is its comparison to the more easily comprehended CG algorithm. 

Considering the CG method, in which the solution is updated via 

 

 𝒙𝑛+1 = 𝒙𝑛 + 𝛼𝑛𝒑𝑛 (3.54) 

 

and the residual vector via 

 

 𝒓𝑛+1 = 𝒓𝑛 − 𝛼𝑛𝑨𝒑𝑛 (3.55) 

 

where 𝒑𝑛 represents a search vector belonging to the Krylov subspace; and 𝛼𝑛 

represents the step-length (calculated in a manner so that the residual vectors 𝒓𝑛+1 

and 𝒓𝑛 are orthogonal to each other), in BiCGSTAB these relations can be rewritten 

as 

 

 𝒙𝑛+1 = 𝒙𝑛 + 𝛼𝑛𝒑𝑛 + 𝜔𝑛𝒔𝑛 (3.56) 
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and 

 

 𝒓𝑛+1 = 𝒓𝑛 − 𝛼𝑛𝑨𝒑𝑛 − 𝜔𝑛𝑨𝒔𝑛 (3.57) 

 

where there are now two search vectors 𝒑𝑛 and 𝒔𝑛; and where 𝛼𝑛 and 𝜔𝑛 are their 

respective step-length coefficients. However, here 𝒔𝑛 can also be considered to 

represent an intermediate version of the residual vector. It is easy to see this if one 

compares its definition 

 

 𝒔𝑛+1 = 𝒓𝑛 − 𝛼𝑛𝑨𝒑𝑛 (3.58) 

 

with the definition of the residual 𝒓𝑛+1 given in Equation (3.55), for the CG 

algorithm. This definition of 𝒔𝑛 also leads to the following relationship 

 

 𝒓𝑛+1 = 𝒔𝑛+1 − 𝜔𝑛𝑨𝒔𝑛 (3.59) 

 

Therefore, the coefficient 𝜔𝑛 can be seen, additionally, as a parameter to 

smooth the convergence rate by minimizing the residual norm. It is calculated so as 

to take the steepest descent step in the direction of the intermediate residual 𝒔𝑛 

(Saad, 2003).  

Finally, the search direction vector in CG is updated via 

 

 𝒑𝑛+1 = 𝒓𝑛+1 + 𝛽𝑛𝒑𝑛 (3.60) 

 

where 𝛽𝑛 may be calculated based on the fact (also valid for BiCGSTAB) that 𝒑𝑛+1 

is constructed orthogonal to the current projection vector 𝑨𝒑𝑛 – meaning that they 

are 𝑨-conjugate by definition: 

 

 𝒑𝑛+1
𝑇𝑨𝒑𝑛 = 0 (3.61) 

 

Thus, its definition in CG becomes 

 

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



85 

  

 𝛽𝑛 =
𝒓𝑛+1

𝑇 ∙ 𝒓𝑛+1
𝒓𝑛𝑇 ∙ 𝒓𝑛

 (3.62) 

 

where 𝛽𝑛 may be seen to represent the improvement in the residual reduction 

obtained in the current step (since it is the ratio of the current and previous norms). 

Comparatively, BiCGSTAB updates the search direction vectors via 

 

 𝒑𝑛+1 = 𝒓𝑛+1 + 𝛽𝑛𝒑𝑛 − 𝛽𝑛𝜔𝑛𝑨𝒑𝑛 (3.63) 

 

and, as stated in Equation (3.58), via 

 

 𝒔𝑛+1 = 𝒓𝑛 − 𝛼𝑛𝑨𝒑𝑛 (3.64) 

 

Consequently, the definition of 𝛽𝑛 is somewhat altered to 

 

 𝛽𝑛 =
𝜌̃𝑛+1
𝜌̃𝑛

∙
𝛼𝑛
𝜔𝑛

 (3.65) 

 

which includes the previously identified parameters 𝛼𝑛 and 𝜔𝑛, as well as the term 

𝜌̃𝑛+1

𝜌̃𝑛
, which from the definition of 𝜌̃𝑛  

 

 𝜌̃𝑛 = 𝒓𝑛
𝑇 ∙ 𝒓0 = 〈𝒓𝑛 ∙ 𝒓0〉 (3.66) 

 

may also be seen to represent an improvement in residual reduction, similarly to 

CG (Saad, 2003; and Yuvashankar et al., 2016). 

The pseudocode of the preconditioned BiCGSTAB method implemented is 

presented in Algorithm 3.3 (Barrett et al., 1994).  
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Algorithm 3.3 – Preconditioned BiCGSTAB Iterative Method. 

𝒙0 = 0, 𝜌0 = 1,  

𝒓0 = 𝒃 − 𝑨𝒙0 

𝒓̂0 = 𝒓0, 𝒑1 = 𝒓0 

𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 

          𝜌𝑖 = 〈𝒓̂0 ∙ 𝒓𝑖−1〉 

          𝑇𝑒𝑠𝑡 |𝜌𝑖| 𝑓𝑜𝑟 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 

          𝐢𝐟 𝑖 > 1 

                    𝛽𝑖 =
𝜌𝑖

𝜌𝑖−1
∙
𝛼𝑖−1

𝜔𝑖−1
 

                    𝒑𝑖 = 𝒓𝑖−1 + 𝛽(𝒑𝑖−1 − 𝜔𝑖−1𝒖𝑖−1) 

          𝐞𝐧𝐝 

          𝒖𝑖 = 𝑨(𝑴
−1𝒑𝑖) 

          𝛼𝑖 =
𝜌𝑖

〈𝒓̂0 ∙ 𝒖𝑖〉
 

          𝒙𝑖 = 𝒙𝑖−1 + 𝛼𝑖(𝑴
−1𝒑𝑖) 

          𝒔𝑖 = 𝒓𝑖−1 − 𝛼𝑖𝒖𝑖 

          𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (‖𝒔𝑖‖ < 𝜂 ∙ ‖𝒃‖) 

          𝒕𝑖 = 𝑨(𝑴−1𝒔𝑖) 

          𝜔𝑖 =
〈𝒕𝑖 ∙ 𝒔𝑖〉

〈𝒕𝑖 ∙ 𝒕𝑖〉
 

          𝑇𝑒𝑠𝑡 |𝜔𝑖| 𝑓𝑜𝑟 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 

          𝒙𝑖 = 𝒙𝑖 + 𝜔𝑖(𝑴
−1𝒔𝑖) 

          𝒓𝑖 = 𝒔𝑖 − 𝜔𝑖𝒕𝑖 

          𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (‖𝒓𝑖‖ < 𝜂 ∙ ‖𝒃‖) 

𝐞𝐧𝐝 
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4  
Preconditioners 

Preconditioners form an integral part of any efficient numerical solver 

designed to handle linear systems of equations of considerable size. State-of-the-art 

preconditioners may be of such complexity that their processing time may even 

surpass that of the iterative method with which they are coupled (Trefethen and Bau 

III, 1997). However, if well designed, they are capable of significantly reducing the 

total time required to solve some of the most challenging problems encountered. In 

many instances, their use may be the only manner available to reach a precise 

enough solution to a specific problem. Hence, the robustness of the solution method 

may actually be much more dependent on the quality of the preconditioner than on 

the Krylov projection method employed (Saad, 2003). 

As previously explained, the convergence rate of an iterative method depends 

on some intrinsic properties of the coefficient matrix, such as the spectrum of its 

singular values or its eigenvalues. The concept behind preconditioning is that of 

transforming the original linear system into an equivalent one that has a more 

favorable spectrum. Consequently, the solution of this equivalent system will be 

identical to that of the original system, but should be more easily attained (Barrett 

et al., 1994).  

 

  
Incorporation of the Preconditioner into the Iterative Method 

There are several forms of applying a preconditioner to a matrix equation. 

The most straightforward one, named left preconditioning, involves the pre-

multiplication of both sides of the original equation by the inverse of the 

preconditioning matrix  

 

 𝑴−1𝑨𝒙 = 𝑴−1𝒃 (4.1) 

 

where 𝑴 represents the preconditioning matrix.  
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Analyzing the transformed Equation (4.1), it should be clear that the 

convergence behavior of any iterative method used to solve it will now depend on 

the properties of 𝑴−1𝑨, instead of just 𝑨. The ideal situation, in terms of improving 

the matrix conditioning, would be the case where 𝑴 = 𝑨, because then 𝑴−1𝑨 = 𝑰, 

and the condition number would equal to 𝜅 = 1. Unfortunately, in this case 

calculating 𝑴−1𝑨 would be as hard as solving the original problem. Alternatively, 

if 𝑴 = 𝑰, then calculating  𝑴−1𝑨 would prove to be trivial, but the condition 

number would remain unchanged. Therefore, determining a suitable 𝑴 involves 

finding a matrix between these extremes – that is, one that offers a favorable 

compromise between being a reasonable approximation of 𝑨 and having an inverse 

that is not too costly to obtain. Overall, it is common for 𝑴 to be derived in some 

way from the original coefficient matrix 𝑨 (Trefethen and Bau III, 1997).  

An alternative form of preconditioning, denoted as right preconditioning, 

takes the form 

 

 𝑨𝑴−1𝑴𝒙 = 𝒃 (4.2) 

 

which may be rewritten as 

 

 𝑨𝑴−1𝒚 = 𝒃 (4.3) 

 

with 

  

 𝒙 = 𝑴−1𝒚 (4.4) 

 

This option is usually the preferred one, due to the fact that it does not alter 

the residual vector to be minimized in the iterative method and, consequently, does 

not require the convergence criteria to be modified (Saad, 2003; and Al-Shaalan et 

al., 2009). This can be seen in Equation (4.5) for the right preconditioned case 

 

 𝒓𝑛 = 𝒃 − 𝑨𝑴
−1𝑴𝒙 = 𝒃 − 𝑨𝒙 (4.5) 

 

which in the left preconditioned case would otherwise become 
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 𝒓𝑛 = 𝑴−1(𝒃 − 𝑨𝒙) (4.6) 

 

Finally, even further preconditioning options are available, such as a 

combination of the previous ones into a two-stage approach. If we now consider 

 

 𝑴 = 𝑴𝐿𝑴𝑅 (4.7) 

 

the equation would then be transformed into 

 

 𝑴𝐿
−1𝑨𝑴𝑅

−1𝑴𝑅𝒙 = 𝑴𝐿
−1𝒃 (4.8) 

 

The direct application of the preconditioner in any of these forms – for 

example, by converting the matrix equation into 

 

 𝑨̃ ∙ 𝒙̃ = 𝒃̃ (4.9) 

 

where 𝑨̃ = 𝑴𝐿
−1𝑨𝑴𝑅

−1; 𝒙 = 𝑴𝑅𝒙; and 𝒃̃ = 𝑴𝐿
−1𝒃, and then solving for 𝒙̃ (and 

subsequently for 𝒙), is usually not necessary, nor is it practicable. It is preferable 

instead to transform the original versions of the iterative algorithms into alternate, 

preconditioned versions, where the preconditioner is introduced in the fashion 

previously mentioned 

 

 𝑴−1𝒓 = 𝒒 (4.10) 

 

as recurring steps throughout the iterative process. An example demonstrating a 

complete derivation of this type of transformation can be found in Golub and Van 

Loan’s Matrix Computations (1996). The algorithms exhibited in Chapter 3 already 

had the preconditioning step from Equation (4.10) embedded into them, as 

explained by Barrett et al. (1994). 

This form of preconditioning is of particular importance because often neither 

matrix 𝑴 nor its inverse 𝑴−1 are ever actually built. In fact, Equation (4.10) should 

not be interpreted as involving the actual multiplication of the inverse of 𝑴 by a 
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vector 𝒓, but understood as the solution of a new system of equations  

(𝑴𝒒 = 𝒓), whose result will be obtained by exploiting special characteristics of 𝑴. 

Furthermore, this latter strategy completely avoids matrix-matrix operations, such 

as the ones that would occur if right or left preconditioning were performed directly, 

and which are very costly to compute. 

Ideally, solving a system of the form of Equation (4.10) several times in the 

course of an iterative method should be as inexpensive as possible. Ultimately, it 

will be a compromise that involves both the costs of constructing the preconditioner 

during an initialization phase as well as applying it at every iteration, versus a 

reduction in the number of total iteration steps required for the convergence of the 

iterative method. The construction cost varies widely depending on the 

preconditioning method (as does the impact it might have on the number of 

iterations), while its application normally leads to an increase in the work count by 

a constant multiplicative factor per iteration (Barrett et al., 1994). 

 

  
Survey of Preconditioners 

The variety of preconditioners available is very diverse, ranging from 

incredibly simple to extremely complex configurations. Their strength, in terms of 

being able to solve difficult problems, will normally vary in a corresponding 

fashion. This section shall present some of the most commonly used methods 

(Trefethen and Bau III, 1997). 

The most basic preconditioner is named Jacobi, and consists of building 𝑴 

from the main diagonal of the coefficient matrix 

 

 𝑴 = 𝑑𝑖𝑎𝑔(𝑨) (4.11) 

 

This has the significant convenience of requiring the storage of just 𝑚 

additional numbers, the equivalent of a single vector in ℛ𝑚. Moreover, the 

construction of  𝑴−1 is quite straightforward – its structure is also that of a diagonal 

matrix, whose entries are the reciprocals of their corresponding entries in 𝑴.  

Furthermore, a variant version exists for matrices that contain blocks of non-

zeros (Barrett et al., 1994). This is the case of the coefficient matrix arising in the 
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simulation of multiphase flow, where there are several variables per grid block, 

which may be grouped together. In this case, matrix 𝑴 becomes a block diagonal 

matrix, where each block may be seen as a submatrix within 𝑴. The entries of 𝑴−1 

are then equal to the inverse of their corresponding submatrices in 𝑴. For two or 

three-phase problems these are still relatively cheap calculations. 

This preconditioner was implemented during the course of this research. 

However, as was expected, its results were very poor, due to the strong ill-

conditioned nature of the matrix equations in fully implicit multiphase simulations. 

Therefore, it will not feature in the comparisons displayed in the following chapter 

nor will it be further examined. The next techniques discussed, on the other hand, 

were not implemented and are listed here for historical purpose. 

A second option of preconditioner involves performing one or more steps of 

one of the stationary methods, such as Jacobi, Gauss-Seidel or SSOR. For example, 

the preconditioning matrix based on SSOR may be written as 

 

 𝑴 = (𝑫 + 𝜔𝑬) ∙ 𝑫−1 ∙ (𝑫 + 𝜔𝑭) (4.12) 

 

where 𝑬 represents the lower triangular part of 𝑨, without the main diagonal; 𝑭 

represents the upper triangular part of 𝑨, without the main diagonal; 𝑫 represents 

the main diagonal; and 𝜔 is the relaxation parameter. The preconditioning steps of 

the algorithms can then be implemented in two stages 

 

 (𝑰 + 𝜔𝑬𝑫−1) ∙ 𝒛 = 𝒓 (4.13) 

 

 (𝑫 + 𝜔𝑭) ∙ 𝒒 = 𝒛 (4.14) 

 

where the matrix structure in Equations (4.13) – (4.14) renders them easy to solve 

(Saad, 2003). 

Another class of preconditioners that is likewise related to one of the iterative 

methods mentioned in Chapter 3 is called Dimensional Splitting.  

In addition, direct methods may also be applied as preconditioners, for 

example, via Gaussian Elimination without pivoting. The idea here would be to 

solve the system relatively fast, but without much concern for precision, that is, in 

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



92 

  

an unstable manner; then use the result as input for the iterative method (Trefethen 

and Bau III, 1997). 

Other available options that will not be described in detail, but that are listed 

here for the sake of completeness, include: Lower-Order Discretization; Domain 

Decomposition; Coarse-Grid Approximation; Local Approximation; Symmetric 

Approximation; Splitting a Multi-Term Operator; Periodic Approximation; and 

Polynomial Preconditioners (Trefethen and Bau III, 1997). 

 

  
Implemented Preconditioners 

In the next sections will be presented the algorithms that were implemented 

in this research, namely: (i) ILU; (ii) Nested Factorization; and (iii) Constrained 

Pressure Residual. The first two belong to a class of methods called Approximate 

Factorization. One algorithm of this kind, SIP, was also discussed in the previous 

chapter. The third and final method is also the more complex one, and combines 

the techniques of Splitting the Problem Variables and Coarse-Grid Approximation, 

as shall be detailed further ahead. These three methods are the ones that have been 

most commonly implemented in recent reservoir simulators (Hammersley and 

Ponting, 2008; Gries et al., 2013; SPE – Reservoir Simulation Linear Equation 

Solver). 

 

4.3.1  
ILU Preconditioner 

Approximate factorizations schemes consist of determining factors of a 

matrix that do not perfectly decompose it. These factors should be easier to build 

than the exact ones and should keep some of the advantageous characteristics of the 

original matrix, such as sparsity, while also serving as a reasonable approximation 

to it. To maintain sparsity, some or all of the new non-zero elements that would 

have been created during the factorization process, denoted fill, are discarded from 

the factor matrices. The degree of fill-in permitted to occur during the factorization 

is subject to user choice and will impact both the cost of the process, as well as how 

closely the factors represent the original matrix. To be worthwhile, carrying 

additional non-zeros must be compensated by faster convergence of the iterative 
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method. In general terms, constructing the approximate factors is a costly procedure 

and often will equal that of one or more iterations of the method (Barrett et al., 

1994). 

Perhaps the most famous preconditioning method, and the one that made the 

preconditioning technique popular, is the Incomplete LU Factorization (ILU) 

(Trefethen and Bau III, 1997). It is the equivalent of the Incomplete Cholesky 

Factorization (IC) for nonsymmetric systems of equations, and was first introduced 

by Meijerink and Van der Vorst (1977), who also proved that the factors are 

guaranteed to exist for M-Matrices12. It entails performing Gaussian Elimination on 

the coefficient matrix to create both an upper triangular factor and a lower triangular 

one, meanwhile limiting the amount of fill-in that would normally be generated by 

this process. 

Once the factors have been built, they can be used to solve the preconditioning 

steps in the iterative method. This is exemplified next: 

 

 𝑨 ≈ 𝑳̃𝑼̃ = 𝑴 (4.15) 

 

where 𝑨 ≠ 𝑴. Consequently, Equation (4.10) equals 

 

 𝑳̃𝑼̃𝒒 = 𝒓 (4.16) 

 

which may be solved easily in the following two steps  

 

 𝑳̃𝒚 = 𝒓 (4.17) 

 

 𝑼̃𝒒 = 𝒚 (4.18) 

 

due to the triangular structure of the 𝑳̃ and 𝑼̃ matrices. 

An alternative form of factoring the coefficient matrix would be via the use 

of three matrices (Barrett et al., 1994), an upper triangular one, a diagonal one and 

finally a lower triangular one, such that 

                                                 

12 M-Matrix – A Z-Matrix (one containing positive diagonal and negative off-diagonal entries) 

whose eigenvalues have nonnegative real parts. 

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



94 

  

 

 𝑴 = (𝑫 + 𝑳)𝑫−1(𝑫 + 𝑼) = (𝑫 + 𝑳) ∙ (𝑰 + 𝑫−1𝑼) (4.19) 

 

In this case, the preconditioner could be applied as follows 

 

 (𝑫 + 𝑳) ∙ 𝒚 = 𝒓 (4.20) 

 

 (𝑰 + 𝑫−1𝑼) ∙ 𝒒 = 𝒚 (4.21) 

 

Meijerink (1983) and Behie et al. (1984) also proposed a block procedure for 

the ILU algorithm using this alternative form, in which the matrix operations would 

be performed on entire blocks, instead of the individual entries. Nevertheless, 

neither this three-term factorization nor the block treatment were implemented in 

this research. 

The simplest form of ILU, denoted ILU(0), involves not allowing for any fill-

in to be introduced; which means that the non-zero pattern of 𝑳̃ and 𝑼̃ correspond 

exactly to that of 𝑨, here represented as 𝑁𝑍(𝑨). This factorization can be performed 

in different manners, depending on the way upon which the matrix is swept during 

the execution of the algorithm. The pseudocode presented in Algorithm 4.1 for 

constructing the incomplete factors considers the version known as IKJ (Saad, 

2003). In practice, only one matrix is actually built, with all the non-zero elements. 

From this base algorithm several variants are possible. For example, during 

the construction of the factors, all non-zero terms arising in positions that did not 

previously belong to 𝑁𝑍(𝑨) were simply disregarded. Alternatively, it is possible 

to partially compensate the exclusion of these terms by quantifying the total amount 

discarded per row, that is, by adding all its dropped terms, and then subtracting this 

sum from the corresponding diagonal entry of the preconditioner matrix. This 

variation is denoted Modified ILU Factorization (MILU). Here the number of non-

zeros to be stored remains unchanged (Saad, 2003).  
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Algorithm 4.1 – ILU Preconditioner. 

𝐟𝐨𝐫 𝑖 = 2, 3, … ,𝑚 

  𝐟𝐨𝐫 𝑘 = 1,… , 𝑖 − 1 

𝐢𝐟 (𝑖, 𝑘) ∈ 𝑁𝑍(𝑨) 

𝑎𝑖𝑘 = 𝑎𝑖𝑘 𝑎𝑘𝑘⁄  

𝐞𝐧𝐝 

𝐟𝐨𝐫 𝑗 = 𝑘 − 1,… ,𝑚 

𝐢𝐟 (𝑖, 𝑗) ∈ 𝑁𝑍(𝑨) 

𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎𝑘𝑗 

𝐞𝐧𝐝 

𝐞𝐧𝐝 

  𝐞𝐧𝐝 

𝐞𝐧𝐝 

 

Another possibility is related to the concept of fill-in previously mentioned. 

It involves allowing for non-zeros to appear in locations not belonging to 𝑁𝑍(𝑨). 

There exist two types of strategies for accepting fill-in; the first is based on the 

structure of the non-zeros, while the second is based on a numerical tolerance for 

the elements created. The structural option introduces the concept of level of fill, 

defined for each element (𝑖, 𝑗) in matrix 𝑨 as 

 

 𝑙𝑒𝑣𝑒𝑙𝑖𝑗 = {
0

∞
        

if

otherwise
      
𝑎𝑖𝑗 ≠ 0, or 𝑖 = 𝑗

 (4.22) 

 

Each time an element 𝑎𝑖𝑗 is calculated in Algorithm 4.1, its level of fill must 

also be updated by the following rule: 

 

 𝑙𝑒𝑣𝑒𝑙𝑖𝑗 = 𝑚𝑖𝑛{𝑙𝑒𝑣𝑒𝑙𝑖𝑗;  𝑚𝑎𝑥{𝑙𝑒𝑣𝑒𝑙𝑖𝑘;  𝑙𝑒𝑣𝑒𝑙𝑘𝑖} + 1} (4.23) 

 

Subsequently, the elements are updated not based on whether they belong to 

𝑁𝑍(𝑨), as was the case before, but instead on whether their level of fill does not 

exceed a specified parameter 𝑝. Consequently, in ILU(𝑝) all elements with fill level 
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below or equal to 𝑝 are kept, while the remaining ones are dropped. The particular 

case 𝑝 = 0 leads to the same algorithm previously presented. This method poses 

the disadvantage of often demanding high computational effort, due to the 

additional calculations required and to the continuous work of updating the fill 

levels (Saad, 2003).  

The second strategy mentioned determines that all elements whose magnitude 

is smaller than a certain threshold value shall be dropped from the incomplete 

factors. This concept makes greater mathematical sense, in that it tends to keep only 

the most relevant entries (those with most significant physical meaning). However, 

it has the hindrance that it does not limit beforehand the amount of memory to be 

occupied by the preconditioner, since the number of fill-ins to be introduced is 

difficult to predict in advance (Barrett et al., 1994).  

An option to circumvent this drawback is to establish a maximum number of 

fill-ins per row. This approach leads to the ILUT(𝑝, 𝜏) algorithm. It involves 

keeping only the 𝑝 largest elements in each row of 𝑳̃ and the 𝑝 largest elements in 

each row of 𝑼̃ that are above the tolerance threshold 𝜏𝑖, defined as 

 

 𝜏𝑖 = 𝜏 ∙ ‖𝑟𝑜𝑤(𝑖)‖ = 𝜏 ∙ ‖𝑎𝑖∗‖ (4.24) 

 

where 𝜏 represents a relative threshold tolerance. 

Analogous to the ILU(𝑝) algorithm, ILUT(𝑝, 𝜏) will also be equivalent to 

ILU(0) whenever both 𝑝 = 0 and 𝜏 = 0. The pseudocode for building ILUT is 

presented in Algorithm 4.2, in which 𝑤 is a full-length working vector used to 

perform computations on a given row and 𝑤𝑘 is its 𝑘-th entry (Saad, 2003).  

As with any preconditioner, the more closely the 𝑳 and 𝑼 factors approximate 

𝑨 the better they should function in aiding convergence. It is to be expected that, as 

more non-zeros are maintained, fewer iterations would be needed to solve the linear 

system. On the other hand, the cost of setting-up the preconditioner and of executing 

the preconditioning step during each iteration will also increase correspondingly. 

Hence, the possible gains to be had with more accurate factorizations may be offset 

by the cost of determining and operating with the factors themselves (Saad, 2003).  
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Algorithm 4.2 – ILUT Preconditioner. 

𝐟𝐨𝐫 𝑖 = 1,… ,𝑚 

𝑤 = 𝑎𝑖∗ 

𝐟𝐨𝐫 𝑘 = 1, … , 𝑖 − 1 𝐚𝐧𝐝 𝑤𝑘 ≠ 0 

𝑤𝑘 = 𝑤𝑘 𝑎𝑘𝑘⁄  

𝐷𝑟𝑜𝑝 𝑤𝑘 𝑖𝑓 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝜏𝑖 

𝐢𝐟 𝑤𝑘 ≠ 0 

𝑤 = 𝑤 − 𝑤𝑘 ∗ 𝑢𝑘∗ 

𝐞𝐧𝐝 

𝐞𝐧𝐝 

𝐷𝑟𝑜𝑝 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑤 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝜏𝑖 

𝐾𝑒𝑒𝑝 𝑜𝑛𝑙𝑦 𝑝 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑛 𝐿 𝑎𝑛𝑑 𝑈 𝑝𝑎𝑟𝑡𝑠 

𝑙𝑖𝑗 = 𝑤𝑗  𝐟𝐨𝐫 𝑗 = 1,… , 𝑖 − 1 

𝑢𝑖𝑗 = 𝑤𝑗  𝐟𝐨𝐫 𝑗 = 𝑖, … ,𝑚 

𝐞𝐧𝐝 

 

For this thesis, the ILU(0), MILU and ILUT variants were implemented in a 

first moment. To limit the total combinations of preconditioners and iterative 

methods to be eventually tested for performance, a preliminary test was completed 

to compare ILU(0), MILU and ILUT(5, 10-4). The choice of parameters for ILUT 

were based upon values presented by Saad (2003), since no theory exists 

establishing optimal criteria for their selection.  

The preliminary tests performed used a set of five matrix equations available 

from the Matrix Market (https://math.nist.gov/MatrixMarket/). This Market is a 

repository of sparse matrix data originating from a variety of applications and 

presented in triplet format (non-zero entries listed alongside their addresses, by 

column and then row order). Information on the matrices contained in the multiple 

sets and directions on how to obtain them are described in the guide presented by 

Duff et al. (1992). 

Part of this matrix database is named the Harwell-Boeing Collection, which 

contains the SHERMAN set of equations, which are related to oil reservoir 

simulation. The characteristics of the problems are presented in Table 4.1: 
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Table 4.1 – Summary of reservoir simulation problems from the SHERMAN set. 

Problem # 
Grid 

Dimensions 

Number of  

Components 

Matrix  

Dimension 

Number of  

Non-Zeros 

Simulator 

Formulation 

1 10 x 10 x 10 1 1000 x 1000 3750 Black Oil 

2 6 x 6 x 5 5 1080 x 1080 23094 Thermal 

3 35 x 11 x 13 1 5005 x 5005 20033 IMPES 

4 16 x 23 x 3 1 1104 x 1104 3786 IMPES 

5 16 x 23 x 3 3 3312 x 3312 20793 FIM Black Oil 

 

Results from solving these matrix equations indicated that the MILU method 

was not effective for this class of problems, with two of the five problems not 

reaching convergence. This same conclusion had been observed before by Behie 

(1985).  

Both ILU(0) and ILUT(5, 10-4) were successful in solving all five problems. 

Overall, ILUT(5, 10-4) was capable of delivering solutions in fewer iterations, 

sometimes with shorter computational times. However, the time required for its 

construction was also consistently higher, and did not scale well with problem size. 

Therefore, from the class of ILU preconditioners, the ILU(0) version was the one 

chosen for the subsequent tests to be performed, and henceforth it shall be referred 

to simply as ILU.  

Furthermore, these problems were also used to validate the correctness of the 

implemented versions of the BiCGSTAB, GMRES and ILU algorithms. This was 

done by solving the five reservoir scenarios described in Table 4.1 using the codes 

projected for the reservoir simulator, and comparing the results with the ones 

obtained using the software MATLAB (the remaining algorithms implemented do 

not have built-in functions in MATLAB for comparison) (MATLAB, 2019). The 

analysis also involved examining the solution vectors obtained by the reservoir code 

and by MATLAB for each solver configuration (BiCGSTAB with ILU and 

GMRES with ILU) to establish their equivalence, as well as verifying whether the 

number of iterations required for convergence were similar. The results of these 

analyses are presented in Table 4.2. They show that the algorithms implemented for 

the reservoir simulator appear to be compatible with the versions available in 
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MATLAB. The improved performance seen in the GMRES method implemented 

for the simulator can most likely be attributed to the variable reset strategy adopted. 

 

Table 4.2 – Iteration count comparison between the reservoir code and MATLAB. 

 
Reservoir Code: Iteration Count  MATLAB: Iteration Count 

Problem # BiCGSTAB GMRES(k)   BiCGSTAB GMRES(k) 

1 39 57  39 70 

2 8 15  8 15 

3 99 166  122 226 

4 28 38  28 54 

5 27 38  27 54 

 

4.3.2  
Nested Factorization Preconditioner 

The second preconditioner implemented is called Nested Factorization, and it 

also belongs to the class of Approximate Factorization methods. It was first 

proposed by Appleyard and Cheschire (1983) and soon became extremely popular 

in the field of reservoir simulation due to its superior performance in several 

reservoir scenarios. It is considered one of the most robust techniques available 

(Mattax and Dalton, 1990). Contrary to other factorization schemes, such as IC or 

ILU, Nested Factorization does not explicitly build the factor matrices, nor are the 

factors structured strictly as triangular matrices. Instead, it only assembles a single 

diagonal matrix during initialization and afterwards, during the preconditioning 

steps, sequentially builds lower and upper factors by adding one dimension at a time 

to the preconditioner (Appleyard and Cheschire, 1983).  

Because this procedure was created specifically for the purpose of solving 

reservoir problems, the factorization process was developed so as to assure material 

balance for each phase present. This is based on the fact that the sum of the elements 

of vector 𝒃 formed during each nonlinear iteration equals the net rate of mass 

accumulation for that time-step. Consequently, the error in material balance may be 

obtained from the sum of the elements of the residual vector 𝒓 during the linear 

iterations: 
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 𝒓0 = 𝒃 − 𝑨𝒙0 (4.25) 

 

If the initial solution is established from 

 

 𝑴𝒙0 = 𝒃 (4.26) 

 

then, 

 

 𝒓0 = (𝑴− 𝑨)𝒙0 (4.27) 

 

From Equation (4.27) it is possible to deduce that if the sum of each column 

of 𝑴 and 𝑨 are identical, then the sum of the elements of 𝒓0 will equate to zero, 

assuring material balance (Cheshire et al., 1980). Thus, 𝑴 is built so that 

 

 𝑐𝑜𝑙𝑠𝑢𝑚(𝑴) = 𝑐𝑜𝑙𝑠𝑢𝑚(𝑨) (4.28) 

 

where 𝑐𝑜𝑙𝑠𝑢𝑚(𝑨) represents a block diagonal matrix formed by the sum of the 

block column elements of matrix 𝑨. 

It can be further shown that if 𝒓0 is forced to have zero sum, then the 

subsequent residuals 𝒓𝑛 – resulting from the remaining iteration steps – will 

likewise sum to zero. 

In three-dimensional problems the coefficient matrix consists of seven 

diagonal bands, and may be decomposed in the manner shown in Equation (4.29)  

 

 𝑨 = (𝑫+ 𝑳1 + 𝑼1) + (𝑳2 + 𝑼2) + (𝑳3 +𝑼3) (4.29) 

 

Here the outer bands 𝑳3 and 𝑼3 represent the interactions between different 

planes, while the central diagonals contain the interactions within planes. On the 

next level, inside the central diagonals, 𝑳2 and 𝑼2 represent the interactions 

between different lines, while the next central diagonals contain the interactions 

within lines. Finally, inside these central diagonals, 𝑳1 and 𝑼1 represent the 

interactions between cells, while the final central diagonal 𝑫 contains information 
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pertaining to the individual cells. This nested tridiagonal structure is exploited by 

constructing the preconditioner in the following sequence: 

 

 𝑴 = (𝑷 + 𝑳3) ∙ (𝑰 + 𝑷
−1𝑼3) (4.30) 

 

 𝑷 = (𝑻 + 𝑳2) ∙ (𝑰 + 𝑻
−1𝑼2) (4.31) 

 

 𝑻 = (𝑩 + 𝑳1) ∙ (𝑰 + 𝑩
−1𝑼1) (4.32) 

 

where 𝑩 is a block diagonal matrix defined as 

 

 
𝑩 = 𝑫− (𝑳1𝑩

−1𝑼1) − 𝑐𝑜𝑙𝑠𝑢𝑚(𝑳2𝑻
−1𝑼2)

− 𝑐𝑜𝑙𝑠𝑢𝑚(𝑳3𝑷
−1𝑼3) 

(4.33) 

 

It is interesting to note the similarity between the format of the three 

tridiagonal matrices in Equations (4.30) – (4.32) and the 𝑳𝑫𝑼 format presented in 

Equation (4.19). Also similar is the manner with which the equations are solved, 

involving two steps, one with each part of the decomposition, as per Equations 

(4.20) –  (4.21).  

For the matrices defined in Equations (4.30) – (4.32) for Nested Factorization, 

this solution procedure is done in a hierarchical fashion (Appleyard and Cheshire, 

1983). In the outermost level one solves 

 

 (𝑷 + 𝑳3) ∙ (𝑰 + 𝑷
−1𝑼3) ∙ 𝒒 = 𝒓 (4.34) 

 

using 

 

 𝒒′ = 𝑷−1(𝒓 − 𝑳3𝒒
′) (4.35) 

 

which can be solved explicitly one plane at a time, in a forward sweep through the 

reservoir, and then use 

 

 𝒒 = 𝒒′ − 𝑷−1𝑼3𝒒 (4.36) 
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which can also be solved explicitly one plane at a time, but now in a backward 

sweep.   

However, in both Equation (4.35) and Equation (4.36) one must be able to 

solve equations of the form 

 

 𝒛 = 𝑷−1𝒚 (4.37) 

 

where 𝑷−1 is not available directly. Therefore, it becomes necessary to first solve  

 

 (𝑻 + 𝑳2) ∙ (𝑰 + 𝑻
−1𝑼2) ∙ 𝒛 = 𝒚 (4.38) 

 

for each plane, by using 

 

 𝒛′ = 𝑻−1(𝒚 − 𝑳2𝒛
′) (4.39) 

 

which can be solved explicitly one line at a time, in a forward sweep through the 

plane, and then use 

 

 𝒛 = 𝒛′ − 𝑻−1𝑼2𝒛 (4.40) 

 

which can also be solved explicitly one line at a time, but in a backward sweep. 

Again, the steps involving Equation (4.39) and Equation (4.40) require 

solving equations of the form  

 

 𝒘 = 𝑻−1𝒗 (4.41) 

 

where 𝑻−1 is also not available directly. Therefore, it becomes necessary to first 

solve 

 

 (𝑩 + 𝑳1) ∙ (𝑰 + 𝑩
−1𝑼1) ∙ 𝒘 = 𝒗 (4.42) 

 

for each line, by using 
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 𝒘′ = 𝑩−1(𝒗 − 𝑳1𝒘
′) (4.43) 

 

which can be solved explicitly one cell at a time, in a forward sweep through the 

line, and then use 

 

 𝒘 = 𝒘′ − 𝑩−1𝑼1𝒘 (4.44) 

 

which can also be solved explicitly one cell at a time, but in a backward sweep. 

Finally, the steps involving Equation (4.43) and Equation (4.44) require 

knowledge of 𝑩−1 to be solved. Since 𝑩 was constructed to be a block diagonal 

matrix, determining its inverse is a straightforward matter, whose operation count 

depends on whether the problem is one, two or three-dimensional. It is worth noting 

from the procedure just described that the only storage that is actually required is 

that of 𝑩−1, and that 𝑩 itself is not needed (𝑩−1𝑼1 could also be stored to avoid 

some additional calculations, if so desired and if memory is not an impediment).  

Although the previous equations may seem to be implicit at first glance, as 

stated, they are actually explicit when calculated sequentially. That is because, due 

to the edges of the reservoir, the diagonal bands 𝑳𝑛 and 𝑼𝑛 do not span the 

coefficient matrix completely. This can be observed in Figure 4.1, which represents 

the block matrix structure for a simple 𝑁𝑥 = 2, 𝑁𝑦 = 2, 𝑁𝑧 = 2 reservoir grid 

numbered using natural ordering, and containing 3 components, whose equations 

are clustered per cell (instead of per component, for example). In terms of the 

efficiency of the method, it is advantageous to number the smallest dimensions 

innermost, which normally implies numbering in the z-direction first (Appleyard 

and Cheschire, 1983). 
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Figure 4.1 – Matrix structure for a (2×2×2) grid with natural ordering and with 3 phase 

components grouped together per cell. Darker colors represent the lower diagonal bands 

while lighter colors represent the upper ones. 

 

As an example, when performing the calculations in the forward or backward 

directions for the plane equations, the first steps are reduced to 

 

 𝒒′ = 𝑷−1𝒓 (4.45) 

 

and 

 

 𝒒 = 𝒒′ (4.46) 

 

respectively, because 𝑳3 and 𝑼3 will initially be zero. Furthermore, in the 

subsequent planes, the would-be implicit parts of the equations, 𝑷−1𝑳3𝒒
′ and 

𝑷−1𝑼3𝒒, respectively, depend only on the results obtained from the factorization 

of the plane that came just prior to it. The exact same occurs concerning the line 

and cell factorizations. 

 

4.3.3  
Constrained Pressure Residual Preconditioner 

The final preconditioner implemented is called Constrained Pressure 

Residual. It consists of a two-stage approach based on the assumption that pressure 

is the principal variable governing fluid flow (Stüben et al., 2007). The foundation 

of the method resides in first approximately decoupling the pressure and saturation-

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 * * * * * * * * * * * *

2 * * * * * * * * * * * *

3 * * * * * * * * * * * *

4 * * * * * * * * * * * *

5 * * * * * * * * * * * *

6 * * * * * * * * * * * *

7 * * * * * * * * * * * *

8 * * * * * * * * * * * *

9 * * * * * * * * * * * *

10 * * * * * * * * * * * *

11 * * * * * * * * * * * *

12 * * * * * * * * * * * *

13 * * * * * * * * * * * *

14 * * * * * * * * * * * *

15 * * * * * * * * * * * *

16 * * * * * * * * * * * *

17 * * * * * * * * * * * *

18 * * * * * * * * * * * *

19 * * * * * * * * * * * *

20 * * * * * * * * * * * *

21 * * * * * * * * * * * *

22 * * * * * * * * * * * *

23 * * * * * * * * * * * *

24 * * * * * * * * * * * *
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related variables through the use of a decoupler. Next, the pseudo-decoupled 

pressure system is solved, using techniques especially suited to it. Subsequently, its 

solution is used to update the residual vector, and then the full system can be solved 

for all variables simultaneously.  

The idea behind multi-stage methods such as this is longstanding, having first 

been proposed in the field of reservoir simulation by Behie and Vinsome (1982), 

under the name Combinative Method. In their method, the subsystems were 

separated using partial, but exact, Gaussian Elimination onto the pressure equations, 

and the pressure variables were then computed through complete Gaussian 

Elimination. Next the residual was updated and the full system solved via 

incomplete factorization. Afterwards, Wallis (1983) coined the term CPR as he 

proposed an adaptation to the ORTHOMIN procedure that consisted of constraining 

the residual vector so as to establish zero residual sum on one or more subsets of 

coordinates, such as individual planes or, alternatively, on the pressure coefficients. 

This was also performed using a two-stage approach to the preconditioning steps, 

with incomplete factorization as the outer preconditioner (second stage). 

Furthermore, his work proposed a different preconditioning approach to the inner 

stage (first stage) that accounted for the distinct characteristics of individual 

submatrices in the coefficient matrix, performing local incomplete factorizations 

with varying levels of infill. Wallis et al. (1985) further expanded on this theme by 

applying a different tactic to the inner stage, through the use of a constraint matrix 

that sought to dampen the dominant eigenvectors of the problem, forcing the 

residual vectors to be orthogonal to their resulting eigenspace.  

The contemporary approach to CPR is motivated by all of these concepts, and 

usually involves solving the pressure system with a numerical method specifically 

suited to the nearly elliptic13 equations characteristic of that particular subsystem 

(Stüben et al., 2007; Cao et al., 2005). One of the most fitting method for this inner 

stage is Algebraic Multigrid (AMG), which is derived from the powerful concept 

of Geometric Multigrid (GM). Both AMG and GM use the strategy of divide-and-

conquer to search for problems’ solutions with the aid of less discretized grids. 

                                                 

13 Elliptic Equations – Partial differential equations of the form 

𝐴𝑢 = 𝑎11𝑢𝑥𝑥 + 𝑎12𝑢𝑥𝑦 + 𝑎22𝑢𝑦𝑦 + 𝑎1𝑢𝑥 + 𝑎2𝑢𝑦 + 𝑎0𝑢 = 𝑓 

that possess the following property: 4𝑎11𝑎22 > 𝑎12
2. 
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Multigrid methods are generally considered to be the fastest numerical methods 

currently available to solve elliptic PDEs (Trottenberg et al., 2001). On the other 

hand, the second stage of the preconditioner that solves for all of the variables 

simultaneously involves a hyperbolic14 system of equations, which can be handled 

proficiently by ILU techniques (Stüben et al., 2007; Cao et al., 2005). In a way, the 

first stage may be seen as responsible for handling the long-range effects, while the 

second stage deals with the short-range ones (Hammersley and Ponting, 2008). 

To visualize this entire process, following the approach of Stüben et al. 

(2007), we first consider the matrix equation 

 

 𝑨𝒒 = [
𝑨𝑝𝑝 𝑨𝑝𝑠
𝑨𝑠𝑝 𝑨𝑠𝑠

] [
𝒒𝑝
𝒒𝑠
] = [

𝒓𝑝
𝒓𝑠
] = 𝒓 (4.47) 

 

in which the equations are numbered with respect to the variable types (instead of 

with respect to the grid points, for example), and where 𝑨𝑝𝑝 represents the pressure 

block coefficients; 𝑨𝑠𝑠 represents the saturation block coefficients; 𝑨𝑝𝑠 and 𝑨𝑠𝑝 

represent coupling coefficients between the pressure and saturation variables; 𝒒𝑝 

and 𝒒𝑠 represent the pressure and saturation-related variables, respectively; and 𝒓𝑝 

and 𝒓𝑠 represent the pressure and saturation-related residuals. 

Applying a decoupler 𝑫 to the coefficient matrix, it is transformed into 

 

 𝑫𝑨 = 𝑨̃ = [
𝑨̃𝑝𝑝 𝑨̃𝑝𝑠

𝑨̃𝑠𝑝 𝑨̃𝑠𝑠
] (4.48) 

 

Now, the solution of the pressure equations 𝒒𝑝 may be estimated via 

 

 𝑨̃𝑝𝑝 ∙ 𝒒𝑝 = 𝒓𝑝 (4.49) 

 

using an AMG solver to be detailed further forward. 

The residual vector 𝒓 is then updated 

                                                 

14 Hyperbolic Equations – Partial differential equations of the same form as elliptic ones, but that 

possess instead the following property: 4𝑎11𝑎22 < 𝑎12
2. 
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 𝒓̂ = 𝒓 − 𝑨̃ [
𝒒𝑝
𝟎
] (4.50) 

 

so as to partially remove the effects of the pressure variables. 

Next, the full system is solved approximately through an ILU factorization 

(represented here by 𝑴) 

 

 𝒒̂ = 𝑴−1𝒓̂ (4.51) 

 

in a manner similar to the single-stage global preconditioner that was previously 

described.  

In this research, the technique chosen for the second stage was standard 

ILU(0) factorization, also described previously, which was recommended by Cao 

et al. (2005). This option sought to limit the already increased setup time required 

by CPR. 

Finally, the complete solution is obtained by combining the two partial 

solutions of each stage 

 

 𝒒 = 𝒒̂ + [
𝒒𝑝
𝟎
] (4.52) 

 

Moreover, this entire process can be seen as equivalent to applying a single-

stage preconditioner of the form 

 

 𝑴2𝑆
−1 = 𝑴−1 [𝑰 − (𝑨̃ −𝑴) [𝑨̃𝑝𝑝

−1
𝟎

𝟎 𝟎
]] (4.53) 

 

to the preconditioning step of the iterative method being used: 

 

 𝑴2𝑆
−1𝒒 = 𝒓 (4.54) 

 

This means that the same preconditioner is being employed in each 

preconditioning step of the iterative method. This observation is important because 
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the preconditioned versions of the methods presented in Chapter 3 assume this 

particular condition. Otherwise, flexible variants such as FGMRES would have to 

be used (Saad, 2003; and Hammersley and Ponting, 2008).  

Returning to the first part of the algorithm, the decoupling of the problem 

variables, its objective is to comply to four main criteria: (i) weaken the coupling 

between the variables – that is, minimize ‖𝑨̃𝑝𝑠‖ as much as possible; (ii) reduce the 

condition number of the full system (𝜅(𝑨̃) < 𝜅(𝑨)) and of the pressure system 

(𝜅(𝑨̃𝑝𝑝) < 𝜅(𝑨𝑝𝑝)); (iii) be relatively inexpensive to compute; and (iv) maintain 

the nearly elliptic nature of the pressure variables (Stüben et al., 2007; and Gries et 

al., 2013).  

Although the coefficient matrix is usually highly asymmetrical and indefinite, 

frequently the pressure subsystem 𝑨𝑝𝑝 is nearly symmetrical and presents diagonal 

dominance, with a positive diagonal and negative off-diagonal values (Z-Matrix 

properties), and may even possess eigenvalues with positive real parts (resembling 

M-Matrix properties). These are all characteristics which are amenable to AMG 

methods and that may eventually be lost through the decoupling process (𝑨̃𝑝𝑝 could 

become strongly asymmetrical, and even indefinite), degrading the performance of 

the solver considerably (Gries et al., 2013; and Stüben et al., 2007). 

Several techniques have been proposed to act as decouplers. The most 

common ones include Alternate-Block Factorization (ABF) and quasi-IMPES (QI), 

which were used, for example, in the works of Cao et al. (2005), Stüben et al. (2007) 

and Hammersley and Ponting (2008). Lacroix et al. (2001), Scheichl et al. (2003) 

and Al-Shaalan et al. (2009) offered some additional decoupling options, however, 

some of their procedures tend to lead to significant transformations to the pressure 

system, often eliminating the elliptic nature in unpredictable ways.  

In this research, an alternative form of decoupling named Dynamic Row Sum 

(DRS) was selected, according to the work of Gries et al. (2013), who developed it 

based on the work of Scheichl et al. (2003). To be more precise, in this method 𝑫 

is intended to act more as a global preconditioner to the matrix equation than as an 

actual decoupler. Considering a coefficient matrix ordered by grid points, or point-

wise ordered, the decoupler may be defined as the following diagonal matrix 
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 𝑫 = [
[𝑫]1 0 0
0 ⋱ 0
0 0 [𝑫]𝑖

] (4.55) 

 

whose diagonal blocks assume the following structure for a three-phase problem: 

 

 [𝑫]𝑖 = [
𝛿1 𝛿2 𝛿3
0 1 0
0 0 1

] (4.56) 

 

in which the entries of the first row are specified as 

 

 𝛿𝑖 =

{
 
 

 
 0

1

     

if

otherwise

       

|[𝑎𝑥,1]𝑖,𝑖|

∑ |[𝑎𝑥,1]𝑖,𝑗|
𝑛𝑝𝑜𝑖𝑛𝑡𝑠
𝑗=1,𝑗≠𝑖

< 𝜀𝑑𝑑

 (4.57) 

 

where 𝑛𝑝𝑜𝑖𝑛𝑡𝑠 represents the number of neighboring connections for a particular 

grid block. 

This decoupler configuration will result in a pressure submatrix 𝑨̃𝑝𝑝 that 

reflects the sum of all the relevant pressure-aligned parts of the different phases of 

the coefficient matrix. Hence, only the parts of 𝑨 relevant to the pressure system 

and that are expected not to degrade the performance of AMG are included in the 

preconditioned matrix 𝑨̃, which is guaranteed to have only positive diagonal entries 

and which should possess diagonal dominance, unless the value of 𝜀𝑑𝑑 is chosen 

too small. Here, the value of this parameter was set to 𝜀𝑑𝑑 = 0.2, as per Gries et al. 

(2013).  

Furthermore, a second check is performed to avoid the inclusion of saturation 

couplings that have only negligible effect on pressure. The value of 𝛿𝑖 is thus set to 

zero whenever the following condition is met: 

 

 ∑ |[𝑎1,𝑥]𝑖,𝑗|

𝑛𝑝𝑜𝑖𝑛𝑡𝑠

𝑗=1

< 𝜀𝑝𝑠 |[𝑎1,1]𝑖,𝑖| 
(4.58) 
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The magnitude of 𝜀𝑝𝑠 will determine which saturation rows with weak 

coupling shall be excluded. As suggested by Gries et al. (2013), this was taken to 

be 𝜀𝑝𝑠 = 0.02 for the simulations performed. 

Moreover, there is a further adjustment that could be performed on the 𝛿𝑖 

factors so as to scale all of them into the same volume base, in a procedure named 

weighted DRS, or wDRS (Brown et al., 2015). The method as first proposed by 

Scheichl et al. (2003) operated on terms that were all in reservoir volume dimension 

(reservoir pressure and temperature conditions), whereas both the simulators 

encountered commercially and the one used for this research handle all quantities 

in surface volume conditions (standard pressure and temperature). Thus, a proper 

scaling of the decoupler may be accomplished by transforming the diagonal blocks 

of 𝑫 into 

 

 [𝑫]𝑖 = [
𝛿𝑜(𝐵𝑜 − 𝑅𝑠𝐵𝑔) 𝛿𝑤(𝐵𝑤) 𝛿𝑔(𝐵𝑔)

0 1 0
0 0 1

] (4.59) 

 

It should be noted that the procedure presented does not truly decouple the 

problem variables (the submatrix 𝑨𝑠𝑝, for example, is left unaltered by wDRS), 

which could negatively impact the performance of the second stage of CPR. 

However, by facilitating the convergence rate of AMG, it seeks a compromise 

between the efficiency of the first and second stages of the method. 

After preconditioning with wDRS, there are additional options of decouplers 

that could be applied to the matrix equation in an attempt to achieve a stronger 

degree of decoupling. These would act as right preconditioners. Gries et al. (2013) 

tested two such alternatives, namely quasi-ABF and Saturation Column Elimination 

(SCE), but neither method improved at all the performance obtained from pure 

wDRS. Consequently, no additional decouplers were implemented for the CPR 

algorithm. 

The last feature of the algorithm that still requires detailing is the actual AMG 

solver used for the first stage. Some of the key features of AMG that render it so 

attractive as a solver are its robustness, its scalability (particularly when used in 

conjunction with a Krylov method) and the fact that no geometric grid information 

is required for its application. These factors provide the flexibility desired for an 
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efficient plug-in solver and allow for detailed reservoir models, with the added 

option of employing non-structured grids (Stüben et al., 2001; and De Sterck et al., 

2007). In the CPR algorithm AMG constitutes part of the solution procedure, but 

the method is so efficient and versatile that in many scenarios it could also be 

applied as a stand-alone solver (Gries, 2017).  

The overall idea behind multigrid methods involves two basic principles: (i) 

error smoothing; and (ii) coarse grid correction. Error smoothing implies that, after 

the application of some iterative smoothing procedure, the error of the approximate 

solution becomes smooth. This means that the high frequency components of the 

error, if we were to apply a Fourier expansion to it, become small, while the low 

frequency components remain nearly constant. In fact, the error may actually still 

be large, but the purpose of this principle is that it can be made smooth over the 

domain. Subsequently, coarse grid correction states that a quantity that is smooth 

on a fine grid Ωℎ (say, a well discretized grid) may be approximated accurately on 

a coarser grid Ω𝐻, where fewer variables are represented (Trottenberg et al., 2001). 

Hence, in a way, the smoothing process is responsible for reducing the high 

frequency error components, while the coarser grids are responsible for reducing 

the low frequency ones (Stüben, 2007). This is due to the fact that those low 

frequency error components on the fine grid become high frequency ones on a 

coarser grid; thus, each grid is ultimately responsible for reducing the high 

frequency components corresponding to its own scale. 

To perform the conversion of the variables between fine and coarse grids, a 

coarsening strategy must first be defined, to select which fine variables will be 

carried to the coarse grid and which shall remain as fine. Additionally, two 

operators must be introduced: (i) a restriction operator 𝑰ℎ
𝐻, to perform the transfer 

from fine to coarse grid; and (ii) an interpolation operator 𝑰𝐻
ℎ , to perform the transfer 

back from coarse to fine grid (Trottenberg et al., 2001). This is illustrated in 

Equations (4.60) – (4.61): 

 

 𝑰ℎ
𝐻 = ℱ(Ωℎ) → ℱ(Ω𝐻) (4.60) 

 

 𝑰𝐻
ℎ = ℱ(Ω𝐻) → ℱ(Ωℎ) (4.61) 
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Thus, given a problem originally on a fine grid 

 

 𝑨ℎ𝒖ℎ = 𝒇ℎ            (Ωℎ) (4.62) 

 

AMG begins by finding an approximate solution 𝑢̅ℎ via an initial guess 𝒖ℎ
(0) and 

a smoothing procedure, called pre-smoothing. This may normally be accomplished 

with one or more steps of a Gauss-Seidel iteration. Here a single step was chosen, 

as per Stüben et al. (2001). The classical Gauss-Seidel procedure is shown in 

Equation (4.63) (Ertekin et al., 2001): 

 

 𝑢ℎ𝑖
(𝑘+1) =

1

𝑎ℎ𝑖𝑖
[𝑓ℎ𝑖 −∑𝑎ℎ𝑖𝑗

𝑖−1

𝑗=1

𝑢ℎ𝑗
(𝑘+1) − ∑ 𝑎ℎ𝑖𝑗

𝑛

𝑗=𝑖+1

𝑢ℎ𝑗
(𝑘)] (4.63) 

 

where 𝑘 is the Gauss-Seidel step, or iteration level; and 𝑛 is the dimension of square 

matrix 𝑨ℎ.  

Next, the residual (also known as the defect) is computed 

 

 𝒅ℎ = 𝒇ℎ − 𝑨ℎ𝒖̅ℎ (4.64) 

 

and then restricted 

 

 𝒅𝐻 = 𝑰ℎ
𝐻𝒅ℎ (4.65) 

 

to transfer it to the coarse domain Ω𝐻. 

AMG now exploits the fact that solving the defect equation 

 

 𝑨𝒆 = 𝒅 (4.66) 

 

is equivalent to solving the original equation, with 𝑒 representing the error vector, 

such that 

 

 𝒖 = 𝒖̅ + 𝒆 (4.67) 
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as demonstrated next 

 

 𝑨𝒖 = 𝑨𝒖̅ + 𝑨𝒆 → 𝒇 = (𝒇 − 𝒅) + 𝒅 = 𝒇 (4.68) 

 

Unfortunately, the solution of Equation (4.66), in the form just presented, is 

as difficult as the original problem. However, if in this case 𝑨 is approximated by a 

matrix 𝑨̃ whose solution is simpler to obtain, then the following iterative process 

may be established 

 

 
𝒖̅ℎ

(𝜈)  →  𝒅ℎ
(𝜈) = 𝒇ℎ − 𝑨ℎ𝒖̅ℎ

(𝜈)  → 𝑨̃ℎ𝒆ℎ
(𝜈) = 𝒅ℎ

(𝜈)  →  𝒖̅ℎ
(𝜈+1)

= 𝒖̅ℎ
(𝜈) + 𝒆ℎ

(𝜈) 
(4.69) 

 

In the context of AMG, 𝑨̃ is simply the coefficient matrix that operates on the 

coarse grid Ω𝐻. It can be constructed as follows 

 

 𝑨𝐻 = 𝑰ℎ
𝐻𝑨ℎ𝑰𝐻

ℎ  (4.70) 

 

and also receives the name of Galerkin operator. 

Returning to the algorithm and omitting the iteration levels (𝜈) for simplicity, 

the defect equation is now solved on the coarse grid  

 

 𝑨𝐻𝒆𝐻 = 𝒅𝐻 (4.71) 

 

and its result is interpolated back to the fine grid 

 

 

before a new approximate solution can be found 

 

 𝒖ℎ = 𝒖̅ℎ + 𝒆ℎ (4.73) 

 

Likewise, this new solution 𝒖ℎ should also be smoothed out, in a process 

called post-smoothing. This is done, for example, by using one or more steps of 

 𝒆ℎ = 𝑰𝐻
ℎ𝒆𝐻 (4.72) 
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Gauss-Seidel iteration. Once again, here a single step was chosen, following Stüben 

et al. (2001). The order of relaxation in both cases is C-F, which means that it is 

first applied to the coarse variables and then to the fine ones. 

Finally, since this is an iterative process, this solution may serve as the initial 

guess 𝒖ℎ
(1) for a subsequent cycle of the procedure described by Equation (4.69). 

This can be further repeated until a satisfactory solution 𝒖ℎ
(𝜈+1) is reached, given 

a set of stopping criteria. The criteria chosen for this research were of either 

attaining a residual reduction of 𝜀 = 10−6, as suggested by Gries et al. (2013), or 

reaching a maximum number of 𝜈𝑚𝑎𝑥 = 2 AMG cycles. This last parameter was 

defined based on the results of test cases performed with the simulator. Although, 

these are relatively relaxed criteria, they seemed to lead to best overall convergence. 

The process described thus far has been a simplified version of a full AMG 

cycle, having made use of only two grids, one fine and one coarse. In practice, 

additional coarse grids are required for the method to be functional. The reason for 

this is that there is a limit to the degree of how coarse a grid can be made from a 

given fine grid; otherwise, the interpolation of the coarse grid results will not lead 

to an accurate representation of the fine variables. Conversely, if the defect equation 

remains too challenging to be solved on the coarse grid, with too many variables 

present, then not enough coarsening has been accomplished and the solution 

process cannot advance. A compromise between these two issues is reached by 

performing multiple coarsening steps recursively, that is – the coarse grid of one 

level becomes the fine grid of the next, such that no restriction or interpolation is 

too abrupt, and that the dimensions of the coarsest level are sufficiently reduced so 

that it may be solved with minor effort (normally via a direct method). This is the 

reasoning behind the name multigrid (Trottenberg et al., 2001). 

There are several ways to implement a multigrid cycle. Two possibilities are 

depicted in Figure 4.2, representing a four-grid scenario with two options of cycle 

index value: 𝛾 = 1 (on the left) and 𝛾 = 2 (on the right). The filled dots in the figure 

represent grids where only smoothing is performed, while the empty dots represent 

the coarsest grids of the cycles, where an exact solution is calculated. The lines 

symbolize either restriction or interpolation operations. The V-Cycle was the only 

one implemented in this work.  
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Figure 4.2 – Examples of AMG Cycles (Adapted from Trottenberg et al., 2001). 

 

The coarsening strategy that will be used to generate these coarse grids needs 

to assure that the smooth errors can be determined via interpolation, while 

maintaining the size of the coarse grid operator at a reasonable level. These 

constraints are intimately related to the number of coarse variables (C-variables) 

and to the strength of their connectivity to the fine variables (F-variables). They 

implicate limiting the number of C-variables, so as to restrain the amount of work 

per cycle, while still keeping the remaining F-variables sufficiently connected to 

them, which involves surrounding the F-variables with C-variables from which to 

interpolate. At the end of the process every variable will belong to exactly one of 

two subsets 

 

 Ωℎ = Cℎ ∪ Fℎ (4.74) 

 

where Cℎ is the set of coarse variables; and where Fℎ is the set of fine variables 

(Stüben et al., 2001 and Trottenberg et al., 2001). 

The strategy chosen in this research is named Standard Coarsening, as 

presented by Stüben et al. (2001). It requires that the F-variables have a minimum 

number of its neighbors be represented as C-variables, and particularly those most 

closely related to it, guaranteeing strong C-F connectivity. For a given variable 𝑖 

whose coupled variables are represented by 𝑗 ∈ 𝑁𝑖 (where 𝑁𝑖 represents the set 

containing all variables connected to 𝑖), a connection is defined as strong whenever 

 

 −𝑎𝑖𝑗 ≥ 𝜀str ∙ 𝑚𝑎𝑥
𝑎𝑖𝑘 < 0

|𝑎𝑖𝑘| (4.75) 

 

and its complete set of strong couplings is denoted by 
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 𝑆𝑖 = { 𝑗 ∈ 𝑁𝑖  |  𝑖 strongly coupled to 𝑗 } (4.76) 

 

It is assumed here that no strong positive connections exist, even if positive 

off-diagonals occasionally arise in the coefficient matrix. A value of 𝜀str = 0.75 

was adopted for this parameter, after adjustments through some test cases.  

Since the coupling relations might not be symmetric, a second connectivity 

set is also defined which contains all variables 𝑗 which are strongly coupled to 𝑖 

 

 𝑆𝑖
𝑇 = { 𝑗 ∈ Ω  |  𝑖 ∈  𝑆𝑗  } (4.77) 

 

The C/F splitting then consists of selecting a first variable 𝑖 to become a C-

variable and consequently defining all 𝑗 variables which are strongly coupled to it 

as F-variables (𝑗 ∈ 𝑆𝑖
𝑇). The method proceeds by selecting another variable among 

the undecided ones to become the next C-variable, then all the variables strongly 

coupled to it are made to be F-variables, with these steps continuing until every 

variable has been accounted for as either coarse or fine. This procedure assures that 

coarsening is performed towards directions in which the smooth error changes more 

slowly.  

To further ensure that a uniform distribution of C and F-variables occurs, with 

the F-variables surrounded by C-variables, a strategy must also be implemented for 

selecting the next C-variable from the undecided ones (U-variables). This is done 

by introducing a new parameter 𝜆𝑖 which measures the importance of any U-

variable remaining and is defined as 

 

 𝜆𝑖 = |𝑆𝑖
𝑇 ∈ U| + 2|𝑆𝑖

𝑇 ∈ 𝐹| (4.78) 

 

where |𝑆| denotes the number of variables present in a given set 𝑆. 

This strategy initially forces variables with many strong connections to 

themselves to be selected as C-variables; however, as it progresses, it begins 

tending to select as C-variables those U-variables with most connections to F-

variables. This ensures that each F-variable is strongly coupled to at least one C-
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variable, as well as ensuring that none of the C-variables is strongly coupled to any 

previously chosen C-variable (Stüben et al., 2001). 

Once every variable has been selected on a given level, the multigrid 

approach continues by taking the variables defined as coarse (those that will 

compose the coarse grid) and performing a new selection onto them, to create an 

even coarser grid. The systematic construction of ever coarser grids persists until 

some pre-established criterium is met, such as a maximum number of permissible 

grids having been created or a minimum number of variables having been selected 

for a new grid. The CPR version implemented in this work employed both of these 

criteria, adopting a limit of at most 10 coarse grids and at most 1000 variables in 

the coarsest grid, and halting the grid construction process once either of them was 

reached. The values of these parameters were also subject to some fine tuning 

through experimentation. 

Focusing now on the restriction and interpolation operators, it was decided to 

construct them transposed to one another on each grid level. As stated by Stüben et 

al. (2001), it has been shown in practice that even if the coefficient matrix is 

asymmetrical, this choice does not seem to cause increased difficulty for AMG and 

simplifies the setup phase of the algorithm. 

The strategy chosen to interpolate (and, consequently, to restrict) is named 

Standard Interpolation. It attempts to enforce that each F-variable have a fixed 

percentage of its total connectivity accounted for in the C-variables. This is 

represented by the parameter 𝜏 ≥ 1 in Equation (4.79), such that the following 

inequality is satisfied 

 

 ∑|𝑎𝑖𝑘|

𝑘∈𝑃𝑖

≥
1

𝜏
∑|𝑎𝑖𝑗|

𝑗∈𝑁𝑖

 (4.79) 

 

where 𝑃𝑖 represents the set of interpolation variables pertaining to 𝑖 ∈ 𝐹. 

In Standard Interpolation this set is defined so as to include the strong coarse 

connections, as well as to partially account for the strong fine connections. The 

strong coarse and strong fine connection sets are represented as follows, 

respectively 
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 𝐶𝑖
𝑠 = 𝐶 ∩ 𝑆𝑖 (4.80) 

 

 𝐹𝑖
𝑠 = 𝐹 ∩ 𝑆𝑖 (4.81) 

 

The interpolation set can then be defined as 

 

 
𝑃̂𝑖 = 𝐶𝑖

𝑠 ∪ ⋃ 𝐶𝑗
𝑠

𝑗 ∈ 𝐹𝑖
𝑠

 
(4.82) 

 

which includes all of the strong coarse variables directly coupled to 𝑖 ∈ 𝐹, as well 

as those coupled to its strong fine neighbors. In this sense, the neighborhood of 𝑖 ∈

𝐹 may be extended to include the additional connections arising from its fine 

neighbors (De Sterck et al., 2007) 

 

 
𝑁̂𝑖 = 𝑁𝑖 ∪ ⋃ 𝑁𝑗

𝑗 ∈ 𝐹𝑖
𝑠

 
(4.83) 

 

This kind of interpolation strategy, that considers connections beyond the 

direct neighborhood of the fine variable subject to interpolation, is called a Long-

Range strategy. In this case distance-two points were also included into the 

interpolation set. As demonstrated by De Sterck et al. (2007), such interpolation 

methods may significantly improve the convergence capabilities of AMG and 

reduce overall processing time. 

Moreover, as proposed by Stüben et al. (2001), the interpolation set may also 

be divided into two distinct subsets, one containing the negative connections and 

another with the positive ones  

 

 𝑃̂𝑖 = 𝑃̂𝑖
−
∪ 𝑃̂𝑖

+
 (4.84) 

 

Assuming that smooth error has small residuals after relaxation 

 

 𝑨𝒆 ≈ 0 (4.85) 
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then, for each 𝑖 ∈ 𝐹, the error equation can be written in the form 

 

 𝑎𝑖𝑖𝑒𝑖 + ∑ 𝑎𝑖𝑗𝑒𝑗
𝑗∈𝑁𝑖

= 0 (4.86) 

 

Substituting every 𝑒𝑗 ∈ 𝐹𝑖
𝑠 by 

 

 −
1

𝑎𝑗𝑗
∑ 𝑎𝑖𝑘𝑒𝑘
𝑘∈𝑁𝑖

 (4.87) 

 

leads to the following interpolation formula for the error vector: 

 

 𝑒𝑖 = ∑ 𝑤𝑖𝑘𝑒𝑘
𝑘∈𝑃̂𝑖

           with         𝑤𝑖𝑘 = {  

−𝛼𝑖 𝑎̂𝑖𝑘 𝑎̂𝑖𝑖⁄        (𝑘 ∈ 𝑃̂𝑖
−
)

−𝛽𝑖 𝑎̂𝑖𝑘 𝑎̂𝑖𝑖         (𝑘 ∈ 𝑃̂𝑖
+
)⁄
 (4.88) 

 

where 𝑤𝑖𝑘 represents the interpolation weights, used to compute the F-variables 

from the C-variables; and where the weight coefficients, which function as scaling 

factors, are defined as 

 

 𝛼𝑖 =
∑ 𝑎̂𝑖𝑗

−
𝑗∈𝑁̂𝑖

∑ 𝑎̂𝑖𝑘
−

𝑘∈𝑃̂𝑖

 (4.89) 

 

 𝛽𝑖 =
∑ 𝑎̂𝑖𝑗

+
𝑗∈𝑁̂𝑖

∑ 𝑎̂𝑖𝑘
+

𝑘∈𝑃̂𝑖

 (4.90) 

 

in which 

 

 𝑎̂𝑖𝑗
− = {

𝑎̂𝑖𝑗

0
    

if 𝑎̂𝑖𝑗 < 0

if 𝑎̂𝑖𝑗 ≥ 0
         and        𝑎̂𝑖𝑗

+ = {

0

𝑎̂𝑖𝑗
    

if 𝑎̂𝑖𝑗 ≤ 0

if 𝑎̂𝑖𝑗 > 0
 (4.91) 

 

These parameters can be further detailed as follows 
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 𝑎̂𝑖𝑖 = 𝑎𝑖𝑖 + ∑ 𝑎𝑖𝑗
(−𝑎𝑗𝑖)

𝑎𝑗𝑗
𝑗∈𝐹𝑖

𝑠

 (4.92) 

 

 𝑎̂𝑖𝑘 = ∑ 𝑎𝑖𝑗
(−𝑎𝑗𝑘)

𝑎𝑗𝑗
𝑗∈𝐹𝑖

𝑠

         where              𝑘 ∈ 𝐶𝑗
𝑠⋃𝑁𝑗

𝑤 (4.93) 

 

 𝑎̂𝑖𝑗 = 𝑎𝑖𝑗                                where              𝑗 ∈ 𝐶𝑖
𝑠⋃𝑁𝑖

𝑤 (4.94) 

 

and where a connected variable may contribute as 𝑎̂𝑖𝑘, 𝑎̂𝑖𝑗 or even both, depending 

on which subsets it belongs to. Notice that for these formulas 𝑗 represents variables 

with a direct connection to 𝑖, while 𝑘 represents those with an indirect connection. 

In the scenario where there is not any strong positive connection (𝑃̂𝑖
+
= ∅) 

the equations can be modified such that 𝛽𝑖 = 0 and all positive connections are 

added directly to the diagonal.  

Furthermore, to avoid a substantial increase in work and storage requirement 

that would occur due to the Standard Interpolation strategy’s broader neighboring 

sets, the interpolation operators are normally truncated (De Sterck et al., 2007). This 

is done by suppressing, in each row, all interpolation weights which are smaller 

than the largest one by a certain factor. A value of 𝜀𝑡𝑟 = 0.7 was adopted for this 

parameter. Although this may seem an aggressive limit, it proved essential in 

avoiding that the interpolation matrix retain an excessive number of nonzero terms, 

as the size of the problems being solved increased. Lastly, after truncation is 

completed, the remaining weights are rescaled so as to preserve the total row sum. 

With respect to the remaining variables 𝑖 ∈ 𝐶, the transfer between grids is 

performed directly and interpolation is simply given by 

 

 (𝑒𝑖)ℎ = (𝑒𝑖)𝐻 (4.95) 

 

It is worth noting that all of the coarsening process, involving the sequential 

selection of coarse sets of variables, and then the construction of all the restriction, 

interpolation and coarse-grid operators, may be performed in their entireties during 

the setup phase of CPR (Brown et al., 2015). 
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The solution stage of AMG (located within the solution stage of CPR), called 

upon to solve the pressure system, may be executed recursively, as per the 

pseudocode presented in Algorithm 4.3 (Trottenberg et al. 2001). In this code, the 

finest grid level is represented by 𝑘 = 𝜉, while the coarsest level is 𝑘 = 0, and only 

a single V-Cycle is performed at each iteration. This version of multigrid is denoted 

Correction Scheme (CS), due to the fact that, on the coarse grids, the equations 

solved are related to corrections to the fine grid approximation. It is those 

corrections which are transferred between grids. The Full Multigrid (FMG) 

approach, which was not implemented, starts the process with an approximate 

solution on the coarsest level (as opposed to the finest level with CS) and also 

involves the direct transfer of these approximate solutions between grids (in 

addition to the correction transfers). 

Furthermore, in the implemented version of the algorithm the solution on the 

coarsest grid is obtained via Gaussian Elimination, utilizing the software 

UMFPACK. This direct solver is comprised of a series of routines for solving 

sparse linear systems through the Unsymmetric Multifrontal method, as described 

by Davis and Duff (1997).  

Finally, a general overview of the CPR algorithm is depicted in Figure 4.3. 

 

 

Figure 4.3 – Flow diagram representing the CPR preconditioning algorithm. 
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Algorithm 4.3 – AMG Solver. 

𝒖𝜉
(0) = 0 

𝒓𝜉
(0) = 𝒇𝜉 − 𝑨𝜉 𝒖𝜉

(0) 

𝜈 = 0 

𝐰𝐡𝐢𝐥𝐞 ‖𝒓𝜉
(𝜈)‖ > 𝜂 ∙ ‖𝒇𝜉‖    and   𝜈 < 𝜈_𝑙𝑖𝑚  

𝑘 = 𝜉 

𝒖𝑘
(𝜈+1) = 𝐴𝑀𝐺_𝐶𝑦𝑐𝑙𝑒(𝑘, 𝒖𝑘

(𝜈), 𝑨𝑘, 𝒇𝑘  ) 

{ 

𝒖̅𝑘
(𝜈) = 𝑆𝑚𝑜𝑜𝑡ℎ(𝒖𝑘

(𝜈), 𝑨𝑘, 𝒇𝑘) 

𝒅̅𝑘
(𝜈)
= 𝒇𝑘 − 𝑨𝑘 𝒖̅𝑘

(𝜈) 

𝒅̅𝑘−1
(𝜈)
= 𝑰𝑘

𝑘−1 𝒅̅𝑘
(𝜈)

 

𝐢𝐟 𝑘 = 1 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑆𝑜𝑙𝑣𝑒 (𝑨𝑘−1 𝒆𝑘−1
(𝜈) = 𝒅̅𝑘−1

(𝜈)
) 

𝐞𝐥𝐬𝐞 𝑘 > 1 

𝒆𝑘−1
(𝜈) = 𝐴𝑀𝐺_𝐶𝑦𝑐𝑙𝑒 (𝑘 − 1, 0, 𝑨𝑘−1, 𝒅̅𝑘−1

(𝜈)
) 

𝐞𝐧𝐝 

𝒆𝑘
(𝜈) = 𝑰𝑘−1

𝑘  𝒆𝑘−1
(𝜈) 

𝒖𝑘
(𝜈) = 𝒖̅𝑘

(𝜈) + 𝒆𝑘
(𝜈) 

𝒖𝑘
(𝜈+1) = 𝑆𝑚𝑜𝑜𝑡ℎ(𝒖𝑘

(𝜈), 𝑨𝑘, 𝒇𝑘) 

} 

𝒓𝜉
(𝜈+1) = 𝒇𝜉 − 𝑨𝜉 𝒖𝜉

(𝜈+1) 

𝜈 = 𝜈 + 1 

𝐞𝐧𝐝 
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5  
Performance of Reservoir Simulator Solvers 

To assess the efficiency of the various solvers implemented, several reservoir 

simulations were carried out to compare different aspects of the solvers’ 

performance, such as total simulation duration, time required to construct the 

preconditioners, number of linear iterations executed, among others. These 

simulations were performed using a simulator named Geresim Simulator (GSim), 

which is being currently developed at Pontifical Catholic University of Rio de 

Janeiro, as a joint project with Petrobras. The objective of these tests was to evaluate 

the robustness and efficiency of the solvers, in terms of their capacity to handle 

problems of considerable size and the computational effort they required to achieve 

convergence. The aim was thus to find the solver most suited to integrate a 

simulator developed for multiphase reservoir flow problems with fully implicit 

formulation.  

This chapter will first introduce the reservoir model and the computer that 

were used, as well as describe some aspects of the simulations performed. 

Subsequently, the results obtained in these simulations shall be detailed and 

analyzed, with the main conclusions presented. To facilitate comprehension, a 

diagram is presented in Figure 5.1 depicting the main parts of a reservoir simulator 

that are relevant to the ensuing discussions. 
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Figure 5.1 – Diagram depicting the most relevant parts of a reservoir simulator. 

 

It can be seen here that the linear solver, the object of interest of this thesis, 

is an entity which is called upon by a nonlinear solver to find the solution to a linear 

system of equations that it deemed necessary to construct (during a linearization 

process). Whenever the linear solver is requested to return a solution to a set of 

equations, it will proceed by first constructing a preconditioner, in what constitutes 

the bulk of a Setup Stage, and then attempt to solve the system via an iterative 

method, in what represents a Solution Stage. During this solution stage, the iterative 

method will further call (several times) for the solution of some new linear systems 

of equations, through a process denoted here as preconditioner solution (such as 

described in Chapter 4). Once the iterative method identifies that it has obtained a 

suitable enough solution, the linear solver shall return this solution to the nonlinear 

one, which in turn will verify if convergence for a given time-step has been 

satisfactorily reached, or if additional linearization steps are necessary. 

Finally, although the actual memory demanded by the various solution 

processes used in each problem will not be specifically analyzed here (the focus 

being directed to other aspects of their performances), this factor may eventually 
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restrict which techniques can be employed in certain cases, if the memory available 

is not sufficient. In terms of the total memory necessary for the solver, this will 

include the memory consumption of the iterative method, seen previously in Table 

3.1, in addition to that of the preconditioner, whose values are estimated in Table 

5.1. The matrix column in this table represents the number of additional matrices 

that must be built, and that will occupy an amount of memory equivalent to that of 

the original coefficient matrix, while the vector column represents the number of 

vectors to be built, not counting the solution and right-hand side ones. It must be 

stressed, however, that the figures presented here should be considered to be general 

approximations of the actual memory consumptions seen in practice. This is 

especially true in the case of CPR, whose memory requirement depends profoundly 

on the size of the coarse grids built during the AMG process, which is a particularly 

difficult trait to predict beforehand.  

 

Table 5.1 – Memory requirement for the various implemented 

preconditioning methods. 

 Memory Requirement 

Preconditioner Matrices Vectors 

ILU 1 1 

NF 0 ~ 11 

CPR ~ 3 ~ 40 

 

 

  
Problem Description 

Reservoir Model 

 

The reservoir model used for the simulations employed a cartesian grid with 

rectangular dimensions of size 2,500 meters x 2,500 meters x 100 meters in the 𝑥, 

𝑦 and 𝑧 directions, respectively. Its spatial orientation is horizontal. The reservoir 

rock is homogeneous and isotropic, with an absolute permeability of 1000 mD, and 

it possesses a uniform initial porosity of 30%.  
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The reservoir is originally saturated with oil and water, with the contact 

between the free fluids occurring 60 meters from the top of the formation. The 

connate water saturation inside the free oil zone is equal to 8.8%. The original 

reservoir pressure at the top depth is 200 kgf/cm2, while the initial bubble point 

pressure of the oil phase is 100 kgf/cm2. The hydrocarbon phases are treated as 

black-oil fluids and their FVF, viscosity and solubility ratios are characterized 

through PVT tables. For the oil phase, at the initial reservoir pressure, these values 

are defined as 1.31 m3/m3, 1.03 cP and 105.96 m3/m3, respectively. 

The well configuration consists of a five-spot pattern, with a single production 

well on each corner of the reservoir and an injection well at its very center; as seen 

in the topside view depicted in Figure 5.2. Every well is completed and perforated 

exclusively on the top layer of the reservoir. Additionally, all of the wells are 

controlled by their respective bottom-hole pressures (BHP), with the producers set 

to operate at 195 kgf/cm2 and the injector limited to 205 kgf/cm2. No further 

restrictions or boundary conditions were imposed for the simulations. 

 

Figure 5.2 – Reservoir and well configuration viewed from the top. 

 

Computer Configuration 

 

The hardware used for the simulations was an Intel Core i7-6700 CPU 

comprised of 4 cores, each with 8 logical processors running at 3.40 GHz, and using 
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32 GB of RAM. In addition, the simulator software was run in a Windows 10 

operating system with 64-bit architecture (x64 processor), and was compiled using 

Intel’s C++ 19.0 Compiler. 

It is important to note, however, that since neither the simulator code nor the 

solvers have yet been programmed to operate in parallel (employing multiple 

processors), the simulations have basically made use of a single CPU per run. 

Exceptions are some of the mathematical routines, such as vector norms and 

additions, which have been designed to operate using multiple threads. 

 

Description of the Simulations 

 

The simulations performed using the model previously described sought to 

investigate the algorithms’ capacity to solve the linear equations assembled by the 

simulator as the dimensions of the problem grew in size, and to compare the speed 

of the different algorithms with respect to one another. This was accomplished by 

gradually increasing the number of grid blocks in which the reservoir was 

partitioned, thus increasing the total cell count, and consequently the number of 

equations to be solved simultaneously. The problem sizes selected are presented in 

Table 5.2, together with the number of divisions that were adopted in each direction. 

For these simulations every cell was considered to be active. Since the simulator is 

being developed using a fully implicit black-oil formulation, there are three degrees 

of freedom per cell; therefore, the total number of equations and, consequently, of 

degrees of freedom to be solved simultaneously shall be three times the total 

number of elements. 

 

Table 5.2 – List of the problem sizes selected and the corresponding grid dimensions 

adopted. 

Number of  

Elements 
10,000 20,000 50,000 100,000 200,000 

Grid  

Dimensions 
35x30x10 45x45x10 70x70x10 100x100x10 100x100x20 

Number of  

Degrees of Freedom 
30,000 60,000 150,000 300,000 600,000 

 

Furthermore, the simulations were set to run for a fixed number of 10 time-

steps in each case. The results presented have been normalized per time-step, so as 
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to form a basis from which to estimate the duration of longer simulation scenarios. 

To verify that this strategy would not produce inconsistent or biased results, one 

simulation of a coarser problem (with approximately 6000 grid blocks) was run for 

a full year using the different solvers. The results indicated that the performance of 

the solvers relative to one another did not vary significantly as the simulation 

progressed from the early time-steps to the latter ones. This is depicted in Table 5.3, 

which shows the relative runtimes of the various solvers in the initial and final time-

steps (using the runtime of the fastest configuration as the base time), as well as the 

variation observed in their relative performances when comparing these two 

periods.  

Part of the results of this full year simulation with GSim are presented in 

Figure 5.3, alongside the results of an identical simulation performed with the 

commercial software IMEX from CMG (IMEX, 2018). The attributes shown are 

the production curve of the P1 producer well and injection curve of the I1 injector 

well as a function of time. The purpose of this comparison between simulators is 

simply to validate that the one used for this research has results that are compatible 

to those of a field-proven simulator. 

 

Table 5.3 – Comparison of the solvers’ relative performance in the early and late time-

steps. 

 First 5 Time-Steps  Last 5 Time-Steps Relative 

 Runtime 

 Variation Iterative Method 
Relative  

Runtime 

Relative 

Position 
 Relative  

Runtime 

Relative 

Position 

BiCGSTAB_ILU 1.8703 3  1.7179 3 -8.15% 

BiCGSTAB_CPR 2.1293 4  2.2939 4 7.73% 

GMRES_ILU 2.8764 6  2.5287 6 -12.09% 

GMRES_CPR 2.1362 5  2.4386 5 14.16% 

ORTHOMIN_ILU 1.0000 1  1.0000 1 0.00% 

ORTHOMIN_CPR 1.0751 2  1.0746 2 -0.05% 
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Figure 5.3 – Results for a one-year simulation using both IMEX (red curves) and GSim 

simulators (blue curves). The top graph represents water injection rate in well I1, while the 

bottom graph represents oil production rate in well P1. 

 

Finally, because the performance of the solvers was not uniform, with some 

having relatively better or worse results than others, not all of the solvers were 

employed for every problem size. Whenever a solver configuration was deemed as 

being consistently inferior to its counterparts it ceased to be evaluated. 

 

  
Numerical Results 

For each of the problems considered, several attributes of the simulations 

were assessed. These will now be presented in this section.  
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The first aspect to be analyzed is the total simulation runtime (clock-time) 

measured for each solver configuration, in each grid size. This is depicted in Figure 

5.4, normalized per time-step. The time durations reported here encompass all of 

the tasks the simulator must perform throughout the course of a simulation, with 

the main ones being the construction of a linear system of equations at every 

nonlinear (Newton) step of each time-step, and then the solution of these equations 

by means of the iterative solvers. As a benchmark, Intel’s commercial direct solver 

Pardiso is also included in the performance assessment (Schenk and Gärtner, 2018). 

Pardiso is a very efficient solver that is designed to operate proficiently using 

parallel cores. This characteristic makes it distinct from conventional direct 

factorization methods designed for general sparse matrices, which tend to have their 

performances degraded when applied in a parallel manner (Davis and Duff, 1997). 

 

 

Figure 5.4 – Total simulation runtime per time-step with each iterative solver as function 

of grid size. 

 

It can be seen here that from the very start the Nested Factorization 

preconditioner presented results that were an order of magnitude slower than the 

ILU and CPR methods. Because of this, only a few results are shown with this 
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preconditioner, since the solver configurations that included it were not competitive 

with relation to the remaining ones. 

The reason for the markedly inferior results obtained with NF is not evident. 

It could perhaps be attributed to the implementation of the algorithm, and not to the 

technique itself, which has been proven very effective in commercial simulators in 

the past. However, it might also be related to the actual model being tested. Due to 

its isotropic properties and to the fact that the cells’ horizontal dimensions are much 

larger than their vertical ones, the vertical transmissibilities are much greater than 

the horizontal ones. In addition, the ordering scheme adopted by the simulator in 

constructing the linear equations was natural order, with the numbering starting in 

the x-direction and then advancing in the y-direction and, finally, z-direction. 

Because of this, the coefficients representing interactions between planes – that is, 

between layers in the z-direction – have higher values than those representing 

interactions between lines or within lines. The issue with this is the fact that the 

interplane coefficients are positioned in the outer diagonals (𝐿3 and 𝑈3), while NF 

presents much better convergence whenever the smallest coefficient values are 

outermost and the largest ones innermost. Nested Factorization is actually quite 

sensitive to the ordering of the axes, and tests performed by Appleyard and 

Cheschire (1983) and by Behie (1985) show cases where variations in ordering 

represented an increase of as much as 5 times in the number of iterations required, 

and in some scenarios even led to divergence. In any case, this would have to be 

investigated further so as to establish the true cause; unfortunately, though, time 

restrains prevented this from being accomplished in the course of this research.  

Furthermore, the performance of the solver composed of GMRES 

preconditioned with ILU also proved to be consistently worse than the others, and 

was already demanding 4 times as much clock-time as the second worse method 

when the grid size reached 50,000 cells. Therefore, it was also discarded as a 

candidate for optimal configuration, and shall not be included in some of the 

subsequent analyses. In addition, this serves as an indicator that ILU may not be as 

robust as CPR, due to a stronger dependency on the iterative method to which it is 

coupled. 

Figure 5.4 also reveals that, with the exception of the aforementioned 

methods, all the remaining ones were capable of delivering faster results than the 
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Pardiso solver. This result is compatible with the performances observed by Chen 

et al. (2006) with respect to banded Gaussian Elimination and indicates that, for 

reservoir problems of considerable size, iterative solvers are extremely competitive 

when compared to direct ones. The ratio of the clock-time required by the iterative 

solvers with respect to Pardiso is presented in Figure 5.5, corresponding to the 

results seen on the most refined grid, with 200,000 cells. Considering all cases, the 

improvement obtained with the iterative solvers ranged from 2.5 up to 20 times the 

speed of the direct solver. 

 

 

Figure 5.5 – Ratio of clock-times between the iterative solvers analyzed in relation to the 

direct solver Pardiso. 

 

Focusing now on the comparison between the iterative solvers themselves, 

Figure 5.6 presents the total clock-time expended per time-step by each of them in 

completing all of their inner functions, comprised mainly of constructing a 

preconditioner at every Newton step and then of finding the solution to the system 

of equations. As described previously, the solution stage of the solvers includes 

both the operations performed by the iterative methods, as well as one or more calls 
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to the solution routines of the preconditioning methods, for every linear iteration 

performed. 

 

 

Figure 5.6 – Total clock-time required per time-step by each iterative solver as function of 

grid size. 

 

The behavior of the curves in Figure 5.6 demonstrates that the solver 

combining the ORTHOMIN iterative method with the CPR preconditioner 

consistently delivers superior results, when compared to the remaining 

configurations. On the finest grid, the time consumed by the other solvers to reach 

convergence was up to 7 times higher than this combination, as illustrated in Figure 

5.7. Moreover, the coupling of CPR with the two other iterative methods 

(BiCGSTAB and GMRES) produces results similar to one another, and both tend 

to be faster than methods preconditioned with simple ILU. This speedup seen in 

iterative methods preconditioned with CPR over those preconditioned with ILU is 

very similar to the results observed by Stüben et al. (2007) and Gries et al. (2013), 

in tests performed with various models using FGMRES (Saad, 2003).  

Furthermore, for this problem, given a fixed preconditioner (CPR or ILU), 

the ORTHOMIN iterative method tends to be consistently faster than BiCGSTAB 
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(except with ILU on the 200,000 elements grid), which in turn tends to be faster 

than GMRES. 

 

 

Figure 5.7 – Ratio of the different solver runtimes with respect to the runtime of 

ORTHOMIN_CPR. 

 

The runtime required by each solver also has a very strong correlation to the 

number of linear iterations necessary for the iterative methods to converge. Figure 

5.8 shows the average iteration count performed per Newton step before 

convergence was attained. The explanation for this behavior may be visualized in 

Figure 5.9, which presents the residual reduction profile of the various methods 

throughout an iterative process. It shows how the slope of residual reduction 

advances much more aggressively towards convergence in the case of CPR than 

with ILU. 

It becomes evident from these images that the power of CPR arises from its 

capacity to significantly reduce the number of linear iterations required to solve the 

systems of equation, an order of magnitude or more below the number needed by 

ILU. This is further exemplified in Figure 5.10, which depicts the ratio between the 
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respect to their versions preconditioned by CPR. The data was taken from the 

100,000 elements grid and shows that whenever the iterative methods were 

preconditioned with ILU, they demanded anywhere from 5 to 20 times the number 

of iterations when compared to CPR. These results are compatible to those observed 

by Brown et al. (2015), where factors greater than 10 were also detected. 

 

 

Figure 5.8 – Iteration count per Newton step for the different solvers as a function of grid 

size. 
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Figure 5.9 – Residual reduction behavior of the various preconditioned iterative methods. 

 

 

Figure 5.10 – Iteration count ratio of methods preconditioned with ILU over CPR. 
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Another analysis pertaining to Figure 5.6 and Figure 5.8 concerns the fact 

that, for a given preconditioner, the time expended per step by the various iterative 

methods may differ substantially. This observation is summarized in Table 5.4 and 

Table 5.5, which present the ratio of the runtimes consumed per iteration by the 

solution stages of the solvers, when preconditioned via CPR and ILU, respectively. 

 

Table 5.4 – Ratio of the runtimes to perform each iteration of the different methods, when 

preconditioned with CPR. 

  Grid Size  

Ratio 10E3 20E3 50E3 100E3 200E3 Average 

ORTHOMIN/GMRES 1.095 1.078 1.078 1.084 1.018 1.071 

BiCGSTAB/GMRES 1.698 1.753 1.770 1.752 1.693 1.733 

BiCGSTAB/ORTHOMIN 1.551 1.626 1.642 1.616 1.663 1.620 

 

Table 5.5 – Ratio of the runtimes to perform each iteration of the different methods, when 

preconditioned with ILU. 

    Grid Size 
 

Ratio 10E3 20E3 50E3 100E3 200E3 Average 

ORTHOMIN/GMRES 1.121 1.126 1.119 1.074 - 1.110 

BiCGSTAB/GMRES 1.547 1.612 1.617 1.558 - 1.583 

BiCGSTAB/ORTHOMIN 1.380 1.431 1.445 1.450 1.421 1.426 

 

It can be observed from these that GMRES appears to have the fastest 

iterations, with its results being very close to those of ORTHOMIN, and both being 

notably faster (per iteration) than BiCGSTAB.  

The reason for this can be traced to the computational costs introduced in 

Table 3.1 and Table 3.2. If we consider that the coefficient matrices (𝑅𝑚×𝑚) 

constructed for this reservoir are very sizable and block heptadiagonal in form, it is 

simple to deduce that it will have, on average, approximately 20 non-zeros per row. 

A matrix-vector product (MV) in this case will closely equate to 20 vector-vector 

products, such as dot products or norm calculations (DOT), in terms of floating-

point multiplications and additions. If we now bear in mind that vector-vector 

products consist of 𝑚 multiplications and (𝑚 − 1) ≈ 𝑚 additions, and that 

operations of the type AXPY consist of one vector product by a scalar (𝑚 
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multiplications) and one vector sum (𝑚 additions), the operation count for each 

iterative method can be estimated according to Table 5.6. The actual number of 

operations will be equal to the values indicated there, times the number of problem 

unknowns 𝑚. These values were projected assuming the reset parameters of 

GMRES(k) and ORTHOMIN(k) to be constant and equal to their adopted upper 

limits (which is the worst-case scenario) of 50 and 30 iterations, respectively. 

 

Table 5.6 – Operation count per degree of freedom for each iterative method. 

  Operation Count 

Iterative Method Addition Multiplication Preconditioner 

GMRES 72 72 1 

ORTHOMIN 75 75 1 

BiCGSTAB 52 52 2 

 

Referring to this table and to the runtime ratios seen previously, it is apparent 

that the preconditioning operation of solving the system  

 

 𝒒 = 𝑴−1𝒓 (5.1) 

 

comprises a sizable portion of the time required for every step of the iterative 

method. 

Even though the BiCGSTAB algorithm has only 70% of the number of 

floating-point multiplications and additions when compared to ORTHOMIN or 

GMRES (which in turn differ between themselves by only 5%), the fact that it must 

execute one extra time the preconditioning solution routine causes its time 

consumption to rise appreciably. Therefore, for this method to be competitive, 

either the preconditioning solution must not be too costly or, otherwise, the 

preconditioner must result in many less iterations being necessary. This was the 

case when we compare BiCGSTAB to GMRES, but not so when measured against 

ORTHOMIN, not even when considering the less expensive ILU preconditioner. 

This conclusion can be visualized through the schematic in Figure 5.11. It is also 

demonstrated in Table 5.7, which presents the relative weight of the preconditioner 

solution routine with respect to the total iterative method runtime, for each of the 

preconditioners considered. 
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Figure 5.11 – Comparison of the potential impact of the preconditioner operations in the 

total runtime of the iterative method (solution stage of the solver). 

 

Table 5.7 – Average time consumption of the 

preconditioning solution routines for each iterative 

method, as a percentage of the total solver solution 

stage. 

  Preconditioner 

Iterative Method CPR ILU 

GMRES 90.90% 55.10% 

ORTHOMIN 87.70% 55.10% 

BiCGSTAB 91.50% 66.11% 

 

Another aspect of any preconditioner that may also cause a significant impact 

in the total solver runtime is its construction. Ideally, preconditioners should be 

inexpensive to build and its construction time should scale more or less linearly 

with problem size; otherwise, the time consumed assembling them might outweigh 

their benefit to the underlying iterative method.  

The behavior of the construction time of CPR and ILU with respect to 

problem dimension can be seen in Figure 5.12. Although there is a nonlinear 
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increase in runtime early on, with the coarser grids, the tendency of the curves 

seemed to stabilize as the problem grew in size. 

 

 

Figure 5.12 – Construction time of CPR and ILU preconditioners as a function of grid size. 

 

In any case, considering the proportional time demanded by the construction 

stage of the preconditioner with respect to the total solver runtime, as demonstrated 

in Figure 5.13, the values observed can be considered to be very reasonable. 

 

0,0

2,0

4,0

6,0

8,0

10,0

12,0

10E3 20E3 50E3 100E3 200E3

C
lo

ck
-T

im
e 

p
er

 T
im

e-
St

ep
 (

s)

Number of Grid Elements

BiCGSTAB_ILU BiCGSTAB_CPR BiCGSTAB_NF GMRES_ILU

GMRES_CPR ORTHOMIN_ILU ORTHOMIN_CPR

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA



141 

  

 

Figure 5.13 – Decomposition of the solvers’ total runtime, in terms of the setup (i.e. 

preconditioner construction – dark colors) and solution (i.e. iterative method – light colors) 

stages. 

 

The proportion of construction time to total time observed in Figure 5.13, and 

detailed in Table 5.8, remains relatively constant with respect to problem 

dimension, which supports the conclusion that they are scaling well. 

 

Table 5.8 – Ratio of the time required by the preconditioner construction relative to the 

total solver runtime. 

  Grid Size  

Solver  10E3 20E3 50E3 100E3 200E3 Average 

BiCGSTAB_ILU 2.88% 2.50% 1.86% 1.49% 1.20% 1.99% 

BiCGSTAB_CPR 14.89% 15.62% 14.06% 14.28% 13.37% 14.45% 

GMRES_ILU 1.60% 1.08% 0.63% 0.41% - 0.93% 

GMRES_CPR 15.15% 15.36% 14.37% 14.08% 12.72% 14.34% 

ORTHOMIN_ILU 4.63% 3.55% 2.93% 2.62% 0.98% 2.94% 

ORTHOMIN_CPR 33.75% 34.49% 36.11% 39.05% 37.34% 36.15% 
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The final study undertaken involved stressing the ORTHOMIN_CPR solver 

to higher limits. Since this combination of iterative method and preconditioner had 

been observed to be a very promising solver configuration, it was decided to test its 

robustness even more. This was done by further discretizing the reservoir grid. The 

simulator was thus set to run using grid sizes of 500,000 and 1,000,000 elements 

(corresponding to 1,500,00 and 3,000,000 degrees of freedom, respectively), with 

160x160x20 and 225x225x20 divisions in each direction, respectively.  

The result of these simulations is presented in Figure 5.14, which shows that 

the solver continued to be capable of reaching convergence. Although the required 

runtime naturally increased in conjunction with problem dimension, it is interesting 

to notice that this increase seems to be of reasonable magnitude. This conclusion 

stems from the observation that the performance of iterative methods can normally 

be expected to scale in the order of 𝑂(𝑚2) (Trefethen and Bau III, 1997); therefore, 

if we calculate the proportion between runtimes of different problems and also 

calculate the proportion of their dimensions squared, the ratio of these numbers 

would be expected to approach unity (or at least to approach a relatively constant 

scalar value): 

 

 
(
𝑡2
𝑡1
⁄ )

(
𝑚2

𝑚1
⁄ )

2 ≈ 1 (5.2) 

 

Moreover, ratios below this value would be an indication that the solver is 

scaling well with respect to problem dimension. When this parameter is computed 

for the runtimes seen with ORTHOMIN_CPR, the numbers remain below this 

threshold for the entire range of simulations, as seen in Figure 5.14. 
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Figure 5.14 – Total solver runtime required by ORTHOMIN_CPR as a function of grid 

size, and relative rate of increase in required time in relation to the increment in problem 

size. 
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6  
Final Considerations 

Reservoir simulation is an essential activity in the development of 

hydrocarbon fields, because it offers insight into future reservoir performance under 

distinct operational conditions and well placements. However, to be of practical 

use, a simulator must be capable of delivering accurate results in a timely manner 

which, consequently, requires an appropriate numerical solver. 

This thesis investigated various iterative solvers designed for reservoir 

simulation applications. These solvers combine an iterative method with a 

preconditioning technique to gradually approach the solution to linear systems of 

equations constructed by a reservoir simulator. The iterative method is responsible 

for defining a strategy on how the search space for the solution will be created, 

while the preconditioner helps optimize the search directions undertaken in that 

space.  

Identifying robust and efficient solvers suited for a reservoir simulator was 

the primary objective of this work. Robust because it must be able to converge on 

a solution for a wide range of problems, since a developer does not know 

beforehand which models will be studied in his simulator. Efficient because it must 

deliver the results within a reasonable timeframe to be of use in decision-making 

processes during the development and management a field. 

 

  
Conclusions 

The tests completed for this thesis assessed the performance of solvers 

comprised of the BiCGSTAB, GMRES and ORTHOMIN iterative methods and 

ILU, NF and CPR preconditioners, considering the multiple combinations possible. 

This involved employing them to solve a model reservoir problem, using several 

different grid dimensions, and analyzing diverse aspects of the results.  

These experiments indicated that the solver consisting of ORTHOMIN 

preconditioned with CPR provided the best overall results amongst all 
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configurations, for the reservoir model investigated. It proved to be both robust, 

capable of solving problems with over one million grid blocks, and efficient, 

delivering solutions 3 to 7 times faster than the next most competitive iterative 

solvers, and 20 times faster than Intel’s commercial solver Pardiso. 

Furthermore, the tests revealed that the CPR preconditioner serves as an 

excellent option for simulator solvers. It consistently outperformed the remaining 

preconditioners, in terms of reducing the number of iterations necessary for 

achieving convergence, and proved to scale well with problem size, even when 

considering its relatively costly construction stage.  

Moreover, ORTHOMIN seemed to be a very competitive iterative method, 

especially when coupled with CPR. BiCGSTAB also displayed promising results 

due to the fact that it most consistently kept the number of required iterations low. 

However, the runtime cost per iteration of this method can be significantly superior 

to those of the other methods, primarily because of an extra preconditioning 

solution operation that it must carry out. Therefore, it must either be able to 

converge on even fewer iterations than the remaining methods, or be coupled with 

a preconditioner that consumes less clock-time for its solution stage. 

 

  
Suggestions for Future Research 

The field of numerical solvers is so rich and challenging that there are 

uncountable additional aspects that could be further explored by future research. 

Nonetheless, some of the most promising and interesting ones will be mentioned 

here: (i) study of the effect of different ordering schemes in the solvers’ 

performance; (ii) implementation of new versions of the algorithms studied, for 

them to operate in parallel using multiple machines (clusters) and multiple cores 

(Collins et al., 2013); (iii) implementation of new versions of the algorithms to run 

on GPU instead of CPU (Appleyard et al., 2014; Zhou and Tchelepi, 2013). 

Furthermore, any future research initiated based on the algorithm codes 

implemented for this thesis should first further validate the results observed herein 

by testing additional reservoir models with more complex geometries and property 

distributions, as well as test the appearance and disappearance of the gas phase, 

once the reservoir simulator is fully operational.  
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A  
Complete Multiphase Flow Equations and Jacobian Terms 

The complete multiphase flow equations of the black-oil model and the 

entries to the Jacobian matrix are depicted in this appendix as derived for the fully 

implicit formulation, with 𝑃𝑜, 𝑆𝑤 and 𝑆𝑔 as the simulation variables. The definitions 

of all terms are identical to the ones presented in Chapter 2. Analogously, the 

equations in this appendix were also derived or extracted from Ertekin et al.’s Basic 

Applied Reservoir Simulation (2001). 
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A.1  
Multiphase Flow Equations 

(i) Oil 

 

 

𝑇𝑜𝑥
𝑖+
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖+1,𝑗,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖+1,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)                         

− 𝑇𝑜𝑥
𝑖−
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖−1,𝑗,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖−1,𝑗,𝑘)

+ 𝑇𝑜𝑦
𝑖,𝑗+

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗+1,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗+1,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑦
𝑖,𝑗−

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗−1,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗−1,𝑘)

+ 𝑇𝑜𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘+1
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗,𝑘+1 − 𝑃𝑜𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑧
𝑖,𝑗,𝑘−

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘−1
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘−1)

=
∀𝐵

∆𝑡
[
𝜙′

𝐵𝑜
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑜
)
′

]
𝑖,𝑗,𝑘

∙ (1 − 𝑆𝑤𝑖,𝑗,𝑘
𝑛 − 𝑆𝑔𝑖,𝑗,𝑘

𝑛)

∙ (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛) −
∀𝐵

∆𝑡
(
𝜙

𝐵𝑜
)
𝑖,𝑗,𝑘

𝑛+1

∙ (𝑆𝑤𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑤𝑖,𝑗,𝑘

𝑛 + 𝑆𝑔𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑔𝑖,𝑗,𝑘

𝑛)

− 𝑞𝑂𝑆𝐶𝑖,𝑗,𝑘
𝑛+1 

(A.1) 
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(ii) Water 

 

 

𝑇𝑤𝑥
𝑖+
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖+1,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖+1,𝑗,𝑘

𝑛+1 − 𝛾𝑤
𝑛+1𝑍𝑖+1,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1

+ 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘
𝑛+1 + 𝛾𝑤

𝑛+1𝑍𝑖,𝑗,𝑘)  

− 𝑇𝑤𝑥
𝑖−
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘 − 𝛾𝑤

𝑛+1𝑍𝑖,𝑗,𝑘

− 𝑃𝑜𝑖−1,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑜𝑤𝑖−1,𝑗,𝑘

𝑛+1 + 𝛾𝑤
𝑛+1𝑍𝑖−1,𝑗,𝑘)

+ 𝑇𝑤𝑦
𝑖,𝑗+

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗+1,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗+1,𝑘

𝑛+1

− 𝛾𝑤
𝑛+1𝑍𝑖,𝑗+1,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 + 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑤𝑦
𝑖,𝑗−

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘

− 𝑃𝑜𝑖,𝑗−1,𝑘
𝑛+1 + 𝑃𝑐𝑜𝑤𝑖,𝑗−1,𝑘

𝑛+1 + 𝛾𝑤
𝑛+1𝑍𝑖,𝑗−1,𝑘)

+ 𝑇𝑤𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘+1
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘+1

𝑛+1

− 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 + 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑤𝑧
𝑖,𝑗,𝑘−

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘

− 𝑃𝑜𝑖,𝑗,𝑘−1
𝑛+1 + 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘−1

𝑛+1 + 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘−1)

=
∀𝐵

∆𝑡
[
𝜙′

𝐵𝑤
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑤
)
′

]
𝑖,𝑗,𝑘

∙ 𝑆𝑤𝑖,𝑗,𝑘
𝑛

∙ (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛) +
∀𝐵

∆𝑡
(
𝜙

𝐵𝑤
)
𝑖,𝑗,𝑘

𝑛+1

∙ (𝑆𝑤𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑤𝑖,𝑗,𝑘

𝑛) − 𝑞𝑊𝑆𝐶𝑖,𝑗,𝑘
𝑛+1 

(A.2) 
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(iii) Gas 

 

 

  𝑇𝑔𝑥
𝑖+
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖+1,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖+1,𝑗,𝑘

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖+1,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘)   

− 𝑇𝑔𝑥
𝑖−
1
2,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘 − 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖−1,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑔𝑜𝑖−1,𝑗,𝑘

𝑛+1

+ 𝛾𝑔
𝑛+1𝑍𝑖−1,𝑗,𝑘)

+ 𝑇𝑜𝑥
𝑖+
1
2
,𝑗,𝑘

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖+1,𝑗,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖+1,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)                         

− 𝑇𝑜𝑥
𝑖−
1
2
,𝑗,𝑘

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖−1,𝑗,𝑘

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖−1,𝑗,𝑘)

+ 𝑇𝑔𝑦
𝑖,𝑗+

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗+1,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗+1,𝑘

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖,𝑗+1,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1

− 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑔𝑦
𝑖,𝑗−

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗−1,𝑘

𝑛+1

− 𝑃𝑐𝑔𝑜𝑖,𝑗−1,𝑘
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗−1,𝑘)

+ 𝑇𝑜𝑦
𝑖,𝑗+

1
2,𝑘

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗+1,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗+1,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑦
𝑖,𝑗−

1
2,𝑘

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗−1,𝑘

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖,𝑗−1,𝑘)

+ 𝑇𝑔𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘+1
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘+1

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖,𝑗,𝑘+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1

− 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑔𝑧
𝑖,𝑗,𝑘−

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘−1

𝑛+1

− 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘−1
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘−1)

+ 𝑇𝑜𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘+1

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑧
𝑖,𝑗,𝑘−

1
2

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘−1

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘−1)

=
∀𝐵
∆𝑡
({[

𝜙′

𝐵𝑜
𝑛 +𝜙

𝑛+1 (
1

𝐵𝑜
)
′

] ∙ 𝑅𝑠
𝑛 + (

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
′}
𝑖,𝑗,𝑘

× (1 − 𝑆𝑤𝑖,𝑗,𝑘
𝑛 − 𝑆𝑔𝑖,𝑗,𝑘

𝑛) + [
𝜙′

𝐵𝑔
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑔
)

′

]
𝑖,𝑗,𝑘

∙ 𝑆𝑔𝑖,𝑗,𝑘
𝑛)

∙ (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛) −
∀𝐵
∆𝑡
[(
𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1]

𝑖,𝑗,𝑘

∙ (𝑆𝑤𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑤𝑖,𝑗,𝑘

𝑛)

+
∀𝐵
∆𝑡
[(
𝜙

𝐵𝑔
)

𝑛+1

− (
𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1]

𝑖,𝑗,𝑘

∙ (𝑆𝑔𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑔𝑖,𝑗,𝑘

𝑛) − 𝑞𝐺𝑆𝐶𝑖,𝑗,𝑘
𝑛+1 

(A.3) 
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A.2  
Jacobian Matrix Entries 

(i) Oil Derivatives with respect to Neighboring Cells 

 

 (
𝜕𝑅𝑜𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

= [𝑇𝑜𝑛,𝑚
(𝜈) + [∆𝑚𝑃𝑜

(𝜈) − 𝛾̅𝑛
𝑜𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑜𝑛,𝑚
𝜕𝑃𝑜𝑚

)

(𝜈)

] (A.4) 

 

 (
𝜕𝑅𝑜𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑆𝑤𝑚

)

(𝜈)

] (A.5) 

 

 (
𝜕𝑅𝑜𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑆𝑔𝑚

)

(𝜈)

] (A.6) 

 

(ii) Water Derivatives with respect to Neighboring Cells 

 

 

(
𝜕𝑅𝑤𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

= [𝑇𝑤𝑛,𝑚
(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − ∆𝑚𝑃𝑐𝑜𝑤

(𝜈)

− 𝛾̅𝑛
𝑤𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑤𝑛,𝑚
𝜕𝑃𝑜𝑚

)

(𝜈)

] 

(A.7) 

 

 

(
𝜕𝑅𝑤𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) − ∆𝑚𝑃𝑐𝑜𝑤

(𝜈)

− 𝛾̅𝑛
𝑤𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑤𝑛,𝑚
𝜕𝑆𝑤𝑚

)

(𝜈)

− 𝑇𝑤𝑛,𝑚
(𝜈)𝑃′𝑐𝑜𝑤𝑚

(𝜈)
] 

(A.8) 

 

 (
𝜕𝑅𝑤𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

= 0 (A.9) 

 

(iii) Gas Derivatives with respect to Neighboring Cells 
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(
𝜕𝑅𝑔𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

= [𝑇𝑔𝑛,𝑚
(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) + ∆𝑚𝑃𝑐𝑔𝑜

(𝜈)

− 𝛾̅𝑛
𝑔𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑔𝑛,𝑚
𝜕𝑃𝑜𝑚

)

(𝜈)

+ (𝑇𝑜𝑅𝑠)𝑛,𝑚
(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑃𝑜𝑚

)

(𝜈)

] 

(A.10) 

 

 (
𝜕𝑅𝑔𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑆𝑤𝑚

)

(𝜈)

] (A.11) 

 

 

(
𝜕𝑅𝑔𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) + ∆𝑚𝑃𝑐𝑔𝑜

(𝜈) − 𝛾̅𝑛
𝑔𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑔𝑛,𝑚
𝜕𝑆𝑔𝑚

)

(𝜈)

+ 𝑇𝑔𝑛,𝑚
(𝜈)𝑃′𝑐𝑔𝑜𝑚

(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑆𝑔𝑚

)

(𝜈)

] 

(A.12) 

 

(iv) Oil Derivatives with respect to Current Cell 

 

 

(
𝜕𝑅𝑜𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

= [ ∑ (−𝑇𝑜𝑛,𝑚
(𝜈)

𝑚∈𝜓𝑛

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑃𝑜𝑛

)

(𝜈)

)

− 𝐶𝑜𝑝𝑛
(𝜈) + (

𝜕𝑞𝑂𝑆𝐶𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

] 

(A.13) 
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(
𝜕𝑅𝑜𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

= [ ∑ ([∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑆𝑤𝑛

)

(𝜈)

)

𝑚∈𝜓𝑛

− 𝐶𝑜𝑤𝑛
(𝜈) + (

𝜕𝑞𝑂𝑆𝐶𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

] 

(A.14) 

 

 

(
𝜕𝑅𝑜𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

= [ ∑ ([∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑆𝑔𝑛

)

(𝜈)

)

𝑚∈𝜓𝑛

− 𝐶𝑜𝑔𝑛
(𝜈) + (

𝜕𝑞𝑂𝑆𝐶𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

] 

(A.15) 

 

(v) Water Derivatives with respect to Current Cell 

 

 

(
𝜕𝑅𝑤𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

= [ ∑ (−𝑇𝑤𝑛,𝑚
(𝜈)

𝑚∈𝜓𝑛

+ [∆𝑚𝑃𝑜
(𝜈) − ∆𝑚𝑃𝑐𝑜𝑤

(𝜈)

− 𝛾̅𝑛
𝑤𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑤𝑛,𝑚
𝜕𝑃𝑜𝑛

)

(𝜈)

) − 𝐶𝑤𝑝𝑛
(𝜈)

+ (
𝜕𝑞𝑊𝑆𝐶𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

] 

(A.16) 

 

 

(
𝜕𝑅𝑤𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

= [ ∑ ([∆𝑚𝑃𝑜
(𝜈) − ∆𝑚𝑃𝑐𝑜𝑤

(𝜈)

𝑚∈𝜓𝑛

− 𝛾̅𝑛
𝑤𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑤𝑛,𝑚
𝜕𝑆𝑤𝑛

)

(𝜈)

+ 𝑇𝑤𝑛,𝑚
(𝜈)𝑃′𝑐𝑜𝑤𝑛

(𝜈)
)

− 𝐶𝑤𝑤𝑛
(𝜈) + (

𝜕𝑞𝑊𝑆𝐶𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

] 

(A.17) 
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 (
𝜕𝑅𝑤𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

= [−𝐶𝑤𝑔𝑛
(𝜈) + (

𝜕𝑞𝑊𝑆𝐶𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

] (A.18) 

 

(vi) Gas Derivatives with respect to Current Cell 

 

 

(
𝜕𝑅𝑔𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

= [ ∑ (−𝑇𝑔𝑛,𝑚
(𝜈)

𝑚∈𝜓𝑛

+ [∆𝑚𝑃𝑜
(𝜈) + ∆𝑚𝑃𝑐𝑔𝑜

(𝜈)

− 𝛾̅𝑛
𝑔𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑔𝑛,𝑚
𝜕𝑃𝑜𝑛

)

(𝜈)

− (𝑇𝑜𝑅𝑠)𝑛,𝑚
(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑃𝑜𝑛

)

(𝜈)

)

− 𝐶𝑔𝑝𝑛
(𝜈) + (

𝜕𝑞𝐺𝑆𝐶𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

] 

(A.19) 

 

 

(
𝜕𝑅𝑔𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

= [ ∑ ([∆𝑚𝑃𝑜
(𝜈)

𝑚∈𝜓𝑛

− 𝛾̅𝑛
𝑜𝑛,𝑚

∆𝑚𝑍] (
𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑆𝑤𝑛

)

(𝜈)

) − 𝐶𝑔𝑤𝑛
(𝜈)

+ (
𝜕𝑞𝐺𝑆𝐶𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

] 

(A.20) 
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(
𝜕𝑅𝑔𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

= [ ∑ ([∆𝑚𝑃𝑜
(𝜈) + ∆𝑚𝑃𝑐𝑔𝑜

(𝜈)

𝑚∈𝜓𝑛

− 𝛾̅𝑛
𝑔𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑔𝑛,𝑚
𝜕𝑆𝑔𝑛

)

(𝜈)

− 𝑇𝑔𝑛,𝑚
(𝜈)𝑃′𝑐𝑔𝑜𝑛

(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑆𝑔𝑛

)

(𝜈)

)

− 𝐶𝑔𝑔𝑛
(𝜈) + (

𝜕𝑞𝐺𝑆𝐶𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

] 

(A.21) 
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