

Ralph Engel Piazza

Performance Assessment of Linear Solvers
 for Fully Implicit Reservoir Simulation

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-
Graduação em Engenharia Mecânica of PUC-Rio
in partial fulfillment of the requirements for the
degree of Mestre em Engenharia Mecânica.

Advisor: Prof. Ivan Fábio Mota de Menezes
Co-advisor: Dr. Daniel Nunes de Miranda Filho

Rio de Janeiro
May 2019

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Ralph Engel Piazza

Performance Assessment of Linear Solvers
 for Fully Implicit Reservoir Simulation

Dissertation presented to the Programa de Pós-
Graduação em Engenharia Mecânica of PUC-Rio
in partial fulfillment of the requirements for the
degree of Mestre em Engenharia Mecânica.
Approved by the Examination Committee.

Prof. Ivan Fábio Mota de Menezes
Advisor

Departamento de Engenharia Mecânica – PUC-Rio

Daniel Nunes de Miranda Filho
Co-advisor

Petróleo Brasileiro S.A.

Prof. Márcio da Silveira Carvalho
Departamento de Engenharia Mecânica – PUC-Rio

Luiz Otávio Schmall dos Santos
Petróleo Brasileiro S.A.

Rio de Janeiro, May 14th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

All rights reserved.

Ralph Engel Piazza

The author graduated from Pontifical Catholic University of Rio de

Janeiro (PUC-Rio) in 2009 with a major in Electrical Engineering, with

specializations in the areas of Electronics and Decision-Supporting

Methods, as well as a minor in Risk Analysis. Concluded a lato sensu

graduate degree in Petroleum Engineering in 2010, also from PUC-Rio.

Joined Petrobras in 2010, as an Electrical Engineer, and in 2011

concluded a lato sensu graduate degree in Electric Engineering from

Petrobras University. Exchanged positions within Petrobras in 2011, to

act as a Petroleum Engineer, and has been dedicated to the area of

Reservoir Evaluation since 2012.

Bibliographic data

CDD: 621

Piazza, Ralph Engel

Performance assessment of linear solvers for fully implicit

reservoir simulation / Ralph Engel Piazza ; advisor: Ivan Fábio Mota

de Menezes ; co-advisor: Daniel Nunes de Miranda Filho. – 2019.

162 f. : il. color. ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do

Rio de Janeiro, Departamento de Engenharia Mecânica, 2019.

Inclui bibliografia

1. Engenharia Mecânica – Teses. 2. Solvers numéricos para

sistemas lineares. 3. Métodos iterativos. 4. Precondicionadores. 5.

Simuladores de reservatórios. 6. Métodos no subespaço de Krylov.

I. Menezes, Ivan Fábio Mota de. II. Miranda Filho, Daniel Nunes de.

III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento

de Engenharia Mecânica. IV. Título.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

To my parents, Idelso and Elizabeth,

 and to my girlfriend Sarah.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Acknowledgements

I would like to thank everyone that, in different ways, helped me successfully

conclude my master’s degree in Mechanical Engineering, and that supported me

along this strenuous journey.

A special thanks to my parents, for their incredible motivation and assistance

during this period, and to my girlfriend Sarah, for being so supportive and

understanding of the long hours dedicated to this project.

I am very grateful to my advisors Ivan Menezes and Daniel Miranda, for all

their guidance, solicitude and time dedicated to assist my research. Your enthusiasm

towards this project and your professionalism have served as inspiration.

My sincere gratitude to Leonardo Duarte, who developed the reservoir

simulator with which I worked. This research would not have been possible without

your dedication and expertise. All the support with programming matters (and there

were many!) and the counsels given throughout the work were truly invaluable.

I am thankful to Pontifical Catholic University of Rio de Janeiro – PUC-Rio,

for granting me a scholarship opportunity and making it possible for me to enroll

in this master’s program. In addition, this study was financed in part by the

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)

– Finance Code 001, to whom I also thank.

I would also like to recognize my professors at Pontifical Catholic University

of Rio de Janeiro – PUC-Rio, who shared their knowledge and experience so

dedicatedly, as well as my classmates, who through various discussions helped

enrich this journey. It has been a pleasure from the very first day to undertake this

course.

I would like to thank the company for which I work, Petrobras, for allowing

me to pursue this opportunity, conceding time for me to be dedicated to it. My

earnest gratitude to my manager, Ana Paula Martins, for her unwavering confidence

and incentive during these years. I would further like to acknowledge the support

offered by my colleagues at my department, who not only encouraged me, but also

assisted in several work-related matters so that I could dedicate time to this project.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Abstract

Piazza, Ralph Engel; Menezes, Ivan Fábio Mota de (Advisor); Miranda Filho,

Daniel Nunes de (Co-advisor). Performance assessment of linear solvers

for fully implicit reservoir simulation. Rio de Janeiro, 2019. 162p.

Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia

Universidade Católica do Rio de Janeiro.

Petroleum companies investing in the development of hydrocarbon fields rely

upon a variety of reservoir studies to perform production forecasts and quantify the

risks associated with the economics of their projects. Integral to these studies is the

discipline of reservoir modeling, responsible for predicting future reservoir

performance under various operational conditions. Considering that the most time-

demanding aspect of reservoir simulations is the solution of the systems of

equations that arise within the linearization cycles at each time-step, this research

focuses on analyzing different numerical solver techniques to be applied to a

simulator, in order to assess their performance. The numerical solvers most suited

for the solution of very large systems of equations, such as those encountered in

reservoir simulations, are the so-called iterative solvers, which gradually approach

the solution to a problem by combining an iterative strategy with a preconditioning

method. The iterative methods examined in this research were the Stabilized

Biconjugate Gradient (BiCGSTAB), the Generalized Minimum Residual

(GMRES), and the Orthogonal Minimization (ORTHOMIN) methods.

Furthermore, three preconditioning techniques were implemented to aid the

iterative methods, namely the Incomplete LU Factorization (ILU), the Nested

Factorization (NF), and the Constrained Pressure Residual (CPR) methods. The

combination of these different iterative methods and preconditioners enables the

appraisal of several distinct solver configurations, in terms of their performance in

a simulator. The numerical tests conducted in this work made use of a new reservoir

simulator currently under development at Pontifical Catholic University of Rio de

Janeiro (PUC-Rio), as part of a joint project with Petrobras. The objective of these

tests was to assess the robustness and efficiency of each solver in the solution of the

multiphase flow equations in porous media, and support the selection of the solver

most suited for the simulator.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Keywords

Linear system solvers; iterative methods; preconditioners; reservoir

simulators; Krylov subspace methods.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Resumo

Piazza, Ralph Engel; Menezes, Ivan Fábio Mota de (Orientador); Miranda

Filho, Daniel Nunes de (Coorientador). Avaliação de desempenho de

solvers lineares para simuladores de reservatório com formulação

totalmente implícita. Rio de Janeiro, 2019. 162p. Dissertação de Mestrado –

Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do

Rio de Janeiro.

Companhias de petróleo investindo no desenvolvimento de campos de

hidrocarboneto dependem de estudos de reservatórios para realizarem previsões de

produção e quantificarem os riscos associados à economicidade dos projetos. Neste

sentido, a área de modelagem de reservatórios é de suma importância, sendo

responsável por prever o desempenho futuro do reservatório sob diversas condições

operacionais. Considerando que a solução dos sistemas de equações construídos a

cada passo de tempo de uma simulação, durante o ciclo de linearização, é a parte

que apresenta a maior demanda computacional, esta dissertação foca na análise de

diferentes técnicas de solvers numéricos que podem ser aplicadas a simuladores,

para mensurar seus desempenhos. Os solvers numéricos mais adequados para a

solução de grandes sistemas de equações, tais como os encontrados em simulações

de reservatórios, são os denominados solvers iterativos, que gradativamente

aproximam a solução de um dado problema por meio da combinação de um método

iterativo e um precondicionador. Os métodos iterativos avaliados nesta pesquisa

foram o Gradiente Biconjugado Estabilizado (BiCGSTAB), Mínimos Resíduos

Generalizado (GMRES) e Minimização Ortogonal (ORTHOMIN). Além disso, três

técnicas de precondicionamento foram implementadas para auxiliar os métodos

iterativos, sendo estas a Decomposição LU Incompleta (ILU), Fatoração Aninhada

(NF) e Pressão Residual Restrita (CPR). A combinação destes diferentes métodos

iterativos e precondicionadores permite a avaliação de diversas configurações

distintas de solvers, em termos de seus desempenhos em um simulador. Os testes

numéricos conduzidos neste trabalho utilizaram um novo simulador de

reservatórios que está sendo desenvolvido pela Pontifícia Universidade Católica

(PUC-Rio) em conjunto com a Petrobras. O objetivo dos testes foi analisar a

robustez e eficiência de cada um dos solvers quanto à sua capacidade de resolver as

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

equações de escoamento multifásico no meio poroso, visando assim auxiliar na

seleção do solver mais adequado para o simulador.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Palavras-chave

Solvers numéricos para sistemas lineares; métodos iterativos;

precondicionadores; simuladores de reservatórios; métodos no subespaço de

Krylov.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Contents

1 Introduction .. 19

 Motivation .. 20

 Objectives .. 21

 Thesis Organization ... 22

 Contribution ... 23

2 Fundamentals of Reservoir Simulation 24

 Physical Principles ... 25

 Multiphase Flow Equations .. 31

 Multiphase Flow Model .. 34

 Discretization of the Flow Equations .. 41

 Linearization of the Multiphase Flow Equations 46

 Solution of the Linear Finite-Difference Flow Equations 50

3 Numerical Methods .. 59

 Direct Methods .. 59

 Iterative Methods ... 61

3.2.1 ORTHOMIN Method .. 69

3.2.2 GMRES Method .. 73

3.2.3 BiCGSTAB Method .. 81

4 Preconditioners .. 87

 Incorporation of the Preconditioner into the Iterative Method 87

 Survey of Preconditioners.. 90

 Implemented Preconditioners .. 92

4.3.1 ILU Preconditioner ... 92

4.3.2 Nested Factorization Preconditioner .. 99

4.3.3 Constrained Pressure Residual Preconditioner 104

5 Performance of Reservoir Simulator Solvers 123

 Problem Description .. 125

 Numerical Results ... 129

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

6 Final Considerations .. 144

 Conclusions ... 144

 Suggestions for Future Research .. 145

7 Bibliographical References .. 146

A Complete Multiphase Flow Equations and Jacobian Terms 154

A.1 Multiphase Flow Equations .. 155

A.2 Jacobian Matrix Entries ... 158

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

List of Figures

1.1 Model size evolution through time (Extracted from Romeu
et al., 2005). 21

2.1 Schematic of a block-centered grid (Adapted from Ertekin
et al., 2001). 42

4.1 Matrix structure for a (2×2×2) grid with natural ordering
and with 3 phase components grouped together per cell.
Darker colors represent the lower diagonal bands while
lighter colors represent the upper ones. 104

4.2 Examples of AMG Cycles (Adapted from Trottenberg et
al., 2001). 115

4.3 Flow diagram representing the CPR preconditioning
algorithm. 121

5.1 Diagram depicting the most relevant parts of a reservoir
simulator. 124

5.2 Reservoir and well configuration viewed from the top. 126

5.3 Results for a one-year simulation using both IMEX (red
curves) and GSim simulators (blue curves). The top graph
represents water injection rate in well I1, while the bottom
graph represents oil production rate in well P1. 129

5.4 Total simulation runtime per time-step with each iterative
solver as function of grid size. 130

5.5 Ratio of clock-times between the iterative solvers
analyzed in relation to the direct solver Pardiso. 132

5.6 Total clock-time required per time-step by each iterative
solver as function of grid size. 133

5.7 Ratio of the different solver runtimes with respect to the
runtime of ORTHOMIN_CPR. 134

5.8 Iteration count per Newton step for the different solvers as
a function of grid size. 135

5.9 Residual reduction behavior of the various preconditioned
iterative methods. 136

5.10 Iteration count ratio of methods preconditioned with ILU
over CPR. 136

5.11 Comparison of the potential impact of the preconditioner
operations in the total runtime of the iterative method
(solution stage of the solver). 139

5.12 Construction time of CPR and ILU preconditioners as a
function of grid size. 140

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

5.13 Decomposition of the solvers’ total runtime, in terms of the
setup (i.e. preconditioner construction – dark colors) and
solution (i.e. iterative method – light colors) stages. 141

5.14 Total solver runtime required by ORTHOMIN_CPR as a
function of grid size, and relative rate of increase in
required time in relation to the increment in problem size. 143

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

List of Tables

3.1 Computational cost and memory requirement of the
iterative methods studied. 67

3.2 Computational cost of applying a preconditioner to the
iterative methods. 69

4.1 Summary of reservoir simulation problems from the
SHERMAN set. 98

4.2 Iteration count comparison between the reservoir code
and MATLAB. 99

5.1 Memory requirement for the various implemented
preconditioning methods. 125

5.2 List of the problem sizes selected and the corresponding
grid dimensions adopted. 127

5.3 Comparison of the solvers’ relative performance in the
early and late time-steps. 128

5.4 Ratio of the runtimes to perform each iteration of the
different methods, when preconditioned with CPR. 137

5.5 Ratio of the runtimes to perform each iteration of the
different methods, when preconditioned with ILU. 137

5.6 Operation count per degree of freedom for each iterative
method. 138

5.7 Average time consumption of the preconditioning solution
routines for each iterative method, as a percentage of the
total solver solution stage. 139

5.8 Ratio of the time required by the preconditioner
construction relative to the total solver runtime. 141

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

List of Algorithms

3.1 Preconditioned ORTHOMIN Iterative Method. 73

3.2 Preconditioned GMRES Iterative Method. 80

3.3 Preconditioned BiCGSTAB Iterative Method. 86

4.1 ILU Preconditioner. 95

4.2 ILUT Preconditioner. 97

4.3 AMG Solver. 122

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Acronyms

3D – Three Dimensional

ABF – Alternate-Block Factorization

ADIP – Alternating-Direction Implicit Procedure

AIM – Adaptative Implicit Method

AMG – Algebraic Multigrid

BCG – Bi-conjugate Gradient

BICGSTAB – Bi-conjugate Gradient Stabilized

CG – Conjugate Gradient

CGS – Conjugate Gradient Squared

CPR – Constrained Pressure Residual

CS – Correction Scheme

CSC – Compressed Sparse Column

CSR – Compressed Sparse Row

DRS – Dynamic Row Sum

EOS – Equation of State

FGMRES – Flexible Generalized Minimum Residual

FIM – Fully Implicit Method

FMG – Full Multigrid

FVF – Formation Volume Factor

GE – Gaussian Elimination

GM – Geometric Multigrid

GMRES – Generalized Minimum Residual

GS – Gauss-Seidel

IC – Incomplete Cholesky Factorization

ILU – Incomplete LU Factorization

ILUT – Incomplete LU Factorization with Threshold

IMPES – Implicit Pressure Explicit Saturation

IOC – International Oil Company

IPR – Inflow Performance Relationship

MILU – Modified Incomplete LU Factorization

MINRES – Minimum Residual

NF – Nested Factorization

NOC – National Oil Company

OOIP – Original Oil in Place

ORTHOMIN – Orthogonal Minimization

PDE – Partial Differential Equation

PETROBRAS – Petróleo Brasileiro S.A.

PUC – Pontifical Catholic University

PVT – Pressure-Volume-Temperature

QI – Quasi-IMPES

QMR – Quasi-Minimal Residual

SC – Standard Conditions

SCE – Saturation Column Elimination

SIP – Strongly Implicit Procedure

SOR – Successive Overrelaxation

SVD – Single Value Decomposition

TPR – Tubing Performance Relationship

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

Nomenclature

Iterative Method – A component of the numerical solver responsible for finding

approximate intermediate solutions at each iteration level, measuring the error

associated with those solutions, and improving them with the aid of a search vector.

Also referred to as an accelerator in the literature.

Model Formulation – The reservoir model used in a simulator is a mathematical

model comprised of several equations which attempt to describe the physical

processes occurring within the reservoir. These equations are formulated – that is,

the model components are put together through appropriate relationships –

according to a set of assumptions that involve different aspects of the modeling

process. As such, the term formulation may refer to the degree of detail attributed

to its fluid components (i.e. black-oil, compositional or thermal formulations), to

the degree of detail attributed to its rock components (i.e. dual-porosity, dual-

permeability formulations), to the manner with which the differential equations are

discretized in time (i.e. fully implicit, IMPES, AIM), as well as others

characteristics and combinations thereof (SPE – Reservoir Simulation).

Numerical Solver – Relates to the part of the simulator responsible for solving

linear or nonlinear systems of equations. May be comprised of one or several

algorithms, as well as subroutines within those algorithms. The solver receives the

coefficients of the system of equations and then returns the appropriate solution

after the necessary computations have been performed.

Preconditioner – A component of the numerical solver responsible for aiding the

iterative method in its search for improved solutions to the problem. It strives to

reduce the condition number of the coefficient matrix and, consequently, lead to a

more easily obtainable solution. These algorithms may be of such complexity that

often in the literature the solver is named after this component.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

1
Introduction

The discipline of reservoir engineering is an integral part in the study of

petroleum accumulations. Investigating the capability of a reservoir to deliver

hydrocarbon production is of the utmost importance for the petroleum companies1

investing in a field’s development. It will serve as one of the foundations for the

economic analysis forecast of the asset and be used to determine whether its

explotation is profitable, as well as to assess the risks associated with the necessary

investments.

The fundamental objectives of reservoir engineering involve estimating the

amount of hydrocarbon volume originally present within the reservoir rocks

(OOIP), and the production curve that may be expected to be delivered by the

reservoir (Dake, 1978). The investments required to develop and operate a

petroleum field are quite high, reaching the order of billions of dollars in certain

offshore scenarios. Being capable of accurately predicting future production is vital

for defining the optimal number of wells to be constructed, for commissioning

production units2 and flow lines of adequate capacity, and to decide on an

acceptable risk premium. Failure to do so may have a significant negative impact

on the financial wellbeing of a company.

To maximize the value of the reservoir, it is essential to be capable of

optimizing its production, recovering the greatest fraction possible of the

hydrocarbon in place. This entails placing wells in advantageous positions,

controlling their operating condition intelligently and applying effective enhanced

recovery techniques to the field. These activities are related to the proper

1 Petroleum Companies – These companies may either be Operators, responsible for leading the

exploration and explotation of the field or, eventually, its Partners, who may have a partial stake in

the asset.

2 Production Units – Facilities where the produced hydrocarbon undergoes a primary set of

treatments and is prepared for midstream transport into a refinery or gas treatment plant. In some

instances, it may also involve the temporary storage of hydrocarbons for future collection by tanker

ships or vehicles.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

20

development and management of the field, and are the concern of the multi-

disciplinary team responsible for its study.

Motivation

There are many tools available for studying a reservoir and attempting to

forecast its future production (Ertekin et al., 2001), such as (i) Decline-Curve

analysis; (ii) Material-Balance analysis; (iii) Statistical analysis based on analog

reservoirs; and (iv) Reservoir simulation. However, of these, only reservoir

simulation is truly capable of understanding the fluid movements occurring within

the porous media, and of capturing the effects that variations in wells and field

operating conditions will have on the production forecast. For instance, it can

measure the impact of constructing a new well, of shutting off a producing zone in

an existing well, or of starting a water or gas injection campaign. These variations

would otherwise not be captured in a realistic fashion by any other method available

(Mattax and Dalton, 1990). Furthermore, understanding the paths that the fluids are

undertaking in the reservoir permits drilling infill wells in prime positions, in

locations where there is still sufficient mobile hydrocarbon left in place to justify

the investment of constructing the well.

Albeit being a powerful tool, a simulator is not assured to provide accurate,

reliable information in every situation. As per any modeling process, the quality of

the output, in this case the simulation results (i.e. fluid production over time),

depends strongly on the quality of the model formulated. For a reservoir, this

pertains to how closely the flow model simulation mimics the performance of the

actual reservoir in question. To be able to adequately represent the reservoir, the

model must be able to capture its architecture and the properties of the reservoir

rock, including the variations occurring within its domain, as well as the properties

of the fluids therein. This is achieved by discretizing the reservoir into small grid

blocks and assigning rock and fluid properties to each block, relative to its position

in space. It should be apparent that the greater the number of blocks into which the

reservoir is partitioned, the more representative the model ought to be. Ultimately,

to properly approximate the continuum, the reservoir must be discretized into

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

21

reasonably fine grids (Stüben, 2007). This has led to flow models with millions, and

even tens of millions of grid blocks in modern reservoir studies.

However, as model size expands, the simulation becomes more dispendious,

consuming ever more processing time and computer memory. In practice, such

computational constraints are what limit model sizes from becoming even larger.

The evolution in the number of maximum practicable flow model sizes is depicted

in Figure 1.1. It shows that, historically, the tendency is for the model size to double

every three years.

Figure 1.1 – Model size evolution through time (Extracted from Romeu et al., 2005).

To overcome these obstacles, either more powerful computers must be used

or, alternatively, the simulator must be improved so as to reduce the memory

consumption and processing time required for a simulation run. This second

approach is the focus of this research, which will essentially involve the quest for

algorithms capable of delivering faster simulation results.

Objectives

The objective of this thesis is to analyze possible solutions to reduce the

simulation time in a fully implicit multiphase reservoir simulator that is being

developed at Pontifical Catholic University of Rio de Janeiro (PUC-Rio) for a joint

project with Petrobras. More specifically, it aims at implementing different iterative

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

22

numerical methods and preconditioning algorithms, which together function as a

numerical linear solver, and examining their performances, with respect to their

robustness and efficiency.

The simulator in question is being developed based on a plug-in approach,

where each part of the code functions as a black-box and may be called upon or

substituted through a control script. The advantages of such configuration have

been described by Duarte et al. (2015). Moreover, it uses a state-of-the-art data

structure to handle and store the reservoir information, which has the potential to

make it very fast. As such, the solvers developed were structured as plug-ins, to be

incorporated into the simulator architecture.

Thesis Organization

This thesis is partitioned into six chapters, the first one being this introduction.

The second one aims at detailing the fundamental concepts behind a reservoir

simulator. Simulators are complex computer programs that utilize mathematical

equations to model the physical processes governing the flow of fluids in porous

reservoir rocks, and strive to predict the reservoir response under different

operational conditions. The equations upon which they are constructed are partial

differential equations with second order spatial derivatives and first order time

derivatives. To be adequately handled, these equations must first be discretized, for

example via finite difference approximations, and then linearized via a nonlinear

solver. Finally, the resulting equations must be solved via a linear system solver

(Ertekin et al., 2001). This final part is normally the most time-consuming one, and

where significant gains in simulation time are possible, if optimized.

The third chapter describes the main ideas concerning linear systems solvers

and presents an overview of the methods historically used in reservoir simulation

applications. Furthermore, three particular methods are explained in greater detail,

ORTHOMIN, GMRES and BiCGSTAB, because they were the algorithms

implemented for this research. Besides their partial derivations, the pseudocode of

the versions implemented in C++ programming language are also presented

(Schildt, 1998; Celes et al., 2004; Goldberg, 1991).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

23

The fourth chapter delves into the preconditioners applied in conjunction with

the iterative methods of the previous chapter. Those methods are generally unable

to solve the large linear systems of equations that arise in the simulator

independently, without the aid of preconditioning strategies. The most common

options of preconditioners are listed in this chapter. Moreover, three

preconditioners that were implemented for this research, ILU, Nested Factorization

(NF) and Constrained Pressure Residuals (CPR), are also described in greater detail,

with their main concepts explained. Once again, the pseudocodes for some of the

implemented versions are provided.

The fifth chapter presents the results obtained with the different simulations

that were run during this work. It compares the performance of the various

combinations of iterative methods and preconditioners, to examine which solvers

are the most consistent at delivering faster results, for the synthetic test cases

involved.

The final chapter lists the conclusions of the thesis and some final remarks. It

also offers suggestions of future works that could be undertaken to further

developed this line of research into linear system solvers intended for multiphase

flow in porous media.

Contribution

The primary contribution of this work is its presentation of a wide range of

possible numerical solvers applicable to fully implicit multiphase reservoir

simulation. It will analyze the most relevant characteristics of the different methods,

based on numerical tests, and assess which solver configurations seem most suited

for a reservoir simulator.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

2
Fundamentals of Reservoir Simulation

The intention of this chapter is to provide an overview of the mathematical

modeling behind a reservoir simulator and contextualize the motivation for

studying numerical methods directed towards solving linear system of equations,

such as the ones encountered in the simulator. The approach taken to analyze the

problem, the organization of the topics and the deduction of the equations presented

here are all based upon the content of Ertekin et al.’s Basic Applied Reservoir

Simulation (2001). Complementary references are also listed where appropriate.

The primary objective of a reservoir simulator is to be capable of accurately

predicting reservoir response under various field development scenarios, such as

different well placement configurations, well operating conditions and hydrocarbon

recovery techniques. For this purpose, it should be designed to be as efficient as

possible in delivering results that are sufficiently precise to be of practical use to

the reservoir engineer. This accuracy is pursued by emulating as realistically as

possible the underlying physics behind the flow of fluids through porous media,

while maintaining the computational effort required to perform the reservoir study

at a reasonable level in terms of processing power, computer memory and

simulation time duration.

The fundamental physical principles applied to reservoir simulation are (i)

generalized mass conservation; (ii) a governing law of fluid flow through porous

media – Darcy’s Law; and (iii) reservoir fluid and rock properties. These principles

are then combined to form multiphase flow equations, which are a set of partial

differential equations (PDEs). In addition to the multiphase flow equations,

complementary equations, such as those expressing relationships between multiple

phases, may also need to be considered, so as to constitute a comprehensive

multiphase flow model.

The resulting mathematical formulation has the potential to describe fluid

pressure and saturation, as well as production and injection rates, the main variables

of a reservoir study, everywhere in the reservoir, at any time period. However, such

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

25

exact, analytical results are not feasibly achieved in practice, due to the nonlinear

nature of the equations and to the inherent heterogeneities of the rock and fluid

properties. Therefore, to solve the equations while still preserving a representative

description of the reservoir, it becomes necessary to apply a numerical method to

the problem at hand through the discretization of the multiphase flow equations, so

as to transform the PDEs into algebraic form. These algebraic equations are,

nevertheless, still nonlinear equations, whose solutions remain very challenging to

obtain. To overcome this issue, a linearization technique must be applied to the

equations, resulting in a set of linearized discretized multiphase flow equations.

These linear algebraic equations are now able to provide values of pressure and

saturation only at discrete moments of time and locations in the reservoir, delivering

only an approximate overview of the reservoir behavior. However, depending on

how well the reservoir parameters are known and on the degree of discretization

applied to the reservoir, their results will have honored the physics of the problem

to a degree not attainable by traditional analytical solutions.

Physical Principles

General Mass Conservation Equation

The principle of conservation of mass states that the total mass of fluid

entering a control volume must equal the sum of the mass leaving the control

volume and the mass accumulated within the volume. The partial differential

equation that describes the conservation of mass over a control volume element

through which fluid flows is named the continuity equation. It can be expressed

individually for each fluid phase or fluid component as

−
𝜕

𝜕𝑥
(𝑚𝑥̇ 𝐴𝑥) ∙ ∆𝑥 −

𝜕

𝜕𝑦
(𝑚𝑦̇ 𝐴𝑦) ∙ ∆𝑦 −

𝜕

𝜕𝑧
(𝑚𝑧̇ 𝐴𝑧) ∙ ∆𝑧

= ∀𝐵 ∙
𝜕

𝜕𝑡
(𝑚∀)− 𝑞𝑚 − 𝑞𝑚𝑡

(2.1)

where 𝑚̇ is the mass flux in each direction; A is the surface area perpendicular to

the flux; 𝑚∀ is the mass per unit volume of porous medium; ∀𝐵 is the bulk volume

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

26

of the control element; 𝑞𝑚 is the net rate of mass accumulation through a source

term; and 𝑞𝑚𝑡
 is the net rate of mass transfer between phases. Here and in every

other equation presented, a consistent set of units is assumed; otherwise, unit

conversion constants would have to be incorporated into the equations.

For the oil, water and free gas phases we may define the following additional

equations

 𝑚𝑐̇ = 𝜌𝑐𝑢𝑐 (2.2)

 𝑚∀𝑐
= 𝜙𝜌𝑐𝑆𝑐 (2.3)

 𝑞𝑚𝑐 = 𝜌𝑐𝑞𝑐 (2.4)

where 𝑐 represents the fluid phase under analysis (or fluid component); 𝑢𝑐 is the

phase velocity; 𝜌𝑐 is the phase density; 𝑆𝑐 is the phase saturation in the porous

medium; and 𝜙 is the total porosity of the control volume.

For the dissolved gas present in the oil phase, the following definitions are

applicable

 𝑚̇ = (𝜌𝑠𝑐
𝑅𝑠
𝐵𝑜
) ∙ 𝑢𝑜 (2.5)

 𝑚∀ = (𝜌𝑠𝑐
𝑅𝑠
𝐵𝑜
) ∙ 𝑆𝑜 (2.6)

 𝑞𝑚 = (𝜌𝑠𝑐
𝑅𝑠
𝐵𝑜
) ∙ 𝑞𝑜 (2.7)

where 𝜌𝑠𝑐 is the density of the oil at standard conditions (𝑆𝐶), referring to the

standard pressure (1 atm) and temperature (20℃) levels; 𝑅𝑠 is the solution gas-oil

ratio; and 𝐵𝑜 is the formation volume factor (FVF) of the oil, which shall be detailed

further ahead. It is assumed here that mass transfer occurs only between the oil and

gas phases, but not between the hydrocarbon and water phases.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

27

Darcy’s Law

The constitutive equation that describes fluid flow through the control

element is denoted as Darcy’s law. This equation was developed empirically from

experimental results and relates the areal velocity of a fluid flowing in a porous

medium to a set of fluid and rock parameters. The energy available to a fluid for

generating movement may be represented by its potential gradient, defined as

 ∇̅𝛷 = ∇̅𝑃 − 𝛾∇̅𝑍 (2.8)

where 𝛷 represents the fluid potential; 𝑃 is the fluid pressure; 𝛾 is the specific

weight of the fluid; and 𝑍 is the vertical distance to a reference datum.

The flow stemming from a potential gradient within a fluid can then be

expressed, for any given direction 𝑥, as

 𝑢𝑥 = −
𝑘𝑥
𝜇
∙
𝜕𝛷

𝜕𝑥
 (2.9)

where 𝑘𝑥 is the effective permeability in that direction; and 𝜇 is the fluid viscosity.

Reservoir Fluid and Rock Properties

The relationship between fluid density and other thermodynamic state

variables, such as temperature, pressure and internal energy, may be expressed by

certain mathematical formulations, commonly called the equation of state (EOS) of

the fluid (Ertekin et al., 2001; Dake, 1978). For example, the density of water may

be given by

 𝜌𝑤 = 𝜌𝑤𝑠𝑐[1 + 𝑐𝑤(𝑃𝑤 − 𝑃𝑠𝑐) − 𝑐𝑇𝑤(𝑇𝑤 − 𝑇𝑠𝑐)] (2.10)

where 𝑐𝑤 is the water compressibility; 𝑃𝑠𝑐 and 𝑇𝑠𝑐 are the standard pressure and

temperature values, respectively; 𝑐𝑇𝑤 is the coefficient of thermal expansion of

water; and 𝑇𝑤 is the water temperature. The compressibility of a fluid is defined as

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

28

 𝑐𝑐 = −
1

∀𝑐

𝜕∀𝑐
𝜕𝑃

=
1

𝜌𝑐

𝜕𝜌𝑐
𝜕𝑃

 (2.11)

where ∀𝑐 is the volume of an arbitrary quantity of the component’s mass, measured

at the same pressure level in which the (𝜕∀𝑐 𝜕𝑃⁄) derivative is calculated.

Likewise, the oil density may be expressed as

 𝜌𝑜 =
(𝜌𝑜𝑠𝑐 + 𝜌𝑔𝑠𝑐𝑅𝑠)

𝐵𝑜
 (2.12)

for saturated oil, whenever 𝑃𝑜 < 𝑃𝑏; and as

 𝜌𝑜 = 𝜌𝑜𝑏[1 + 𝑐𝑜(𝑃𝑜 − 𝑃𝑏)] (2.13)

for undersaturated oil, whenever 𝑃𝑜 > 𝑃𝑏. Here, 𝑃𝑏 is called the saturation or

bubble-point pressure and 𝜌𝑜𝑏 is the density of the oil phase measured at that

specific pressure level.

The free gas density can be derived from the real-gas law as being equal to

 𝜌𝑔 =
𝑃𝑔𝑀

𝑍𝑅𝑇
 (2.14)

where 𝑀 is the molar mass of the gas; 𝑍 is the real-gas compressibility factor,

calculated from the pseudoreduced pressure and pseudoreduced temperature of the

gas; and 𝑅 is the universal gas constant.

Another important relationship describing a fluid is the ratio of volume it

occupies at different pressure levels, defined as its formation volume factor

 𝐵𝑐 =
∀𝑐

∀𝑐𝑠𝑐
 (2.15)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

29

where ∀𝑐 is the volume occupied by an arbitrary quantity of mass of the component

at in-situ conditions; and ∀𝑐𝑠𝑐 is the volume occupied by this same amount of mass

at standard conditions.

For water and free gas phases, this may be expressed more conveniently as

 𝐵𝑐 =
𝜌𝑠𝑐
𝜌𝑐

 (2.16)

while for an undersaturated oil phase as

 𝐵𝑜 = 𝐵𝑜𝑏[1 − 𝑐𝑜(𝑃𝑜 − 𝑃𝑏)] (2.17)

where 𝐵𝑜𝑏 is the FVF at the bubble-point pressure.

Concerning the gas phase, an additional relationship is necessary to determine

the amount of gas dissolved within the oil phase. This quantity is defined as the

solution gas-oil ratio

 𝑅𝑠 =
∀𝑆𝐺

∀𝑜
 (2.18)

where ∀𝑆𝐺 represents the volume of dissolved gas at standard conditions, per unit

volume of oil at in-situ conditions; and ∀𝑜 is the volume of oil at standard

conditions, per unit volume of oil at in-situ conditions. Since at pressures above the

saturation point all of the solution gas is already contained within the oil phase, for

pressures in this range the value of 𝑅𝑠 remains constant and equal to its value at

bubble-point pressure.

Moreover, the viscosities of the phases are also required for describing the

flow processes in the reservoir. For an undersaturated oil, the equation to be used is

 𝜇𝑜 = 𝜇𝑜𝑏 [1 − 𝑐𝜇(𝑃𝑜 − 𝑃𝑏)]⁄ (2.19)

where 𝜇𝑜𝑏 is the oil viscosity at bubble-point pressure; and 𝑐𝜇 represents the

fractional change of viscosity per unit change of pressure.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

30

Finally, during the simulation, some of the necessary fluid properties are not

calculated directly from mathematical formulas, but instead have its values at a

given pressure interpolated from measurements taken at some other pre-established

pressure levels, in what constitutes a PVT (Pressure-Volume-Temperature) table.

These tabled values are determined via laboratory testing of fluid samples collected

from the reservoir, or occasionally via correlation models, if representative samples

are not available. This is the case of 𝜇𝑤 and 𝜇𝑔, which are usually established from

correlations, and of 𝐵𝑜, 𝑅𝑠 and 𝜇𝑜 at pressures below the saturation point, which are

usually established from experimental results.

It is also worth noting that the saturation pressure may not be constant for the

entire reservoir, nor stay constant for the entire simulation period. This will depend

on whether fluid compositions are equivalent in different regions and at different

depths of the reservoir, as well as on whether there is gas injection into the reservoir

(Ertekin et al., 2001; and Ponting et al., 1983).

In addition, in a black-oil model, such as the one considered for this work,

only the three aforementioned fluid components will potentially be present inside

the reservoir: oil, water and gas. However, in compositional models, several fluid

components might be contemplated, and thus EOS PVT characterizations would be

required to describe their behavior.

With respect to the rock properties, porosity may also be considered to be a

function of pressure, according to the following relationship

 𝜙 = 𝜙𝑅𝐸𝐹[1 + 𝑐𝜙(𝑃 − 𝑃𝑅𝐸𝐹)] (2.20)

where 𝜙𝑅𝐸𝐹 is the porosity at a reference pressure level; 𝑃𝑅𝐸𝐹 is the reference

pressure; and 𝑐𝜙is the compressibility of the rock, whose definition is equivalent to

the one given for fluids. Also, the rock is considered here to be only a slightly

compressible media, and thus its compressibility value is assumed constant.

Permeability, on the other hand, is usually assumed to be independent of any

of the simulation variables. In theory, its value might depend on porosity, but for

most practical applications this relation is neglected.

Porosity and permeability can be considered to be either homogeneous or

heterogeneous in a reservoir, that is, to have constant or varying values,

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

31

respectively, throughout its domain. Additionally, permeability may also exhibit

directional variations in a given point in space. This characteristic, called

anisotropy, means that its value may differ for the 𝑥, 𝑦 and 𝑧 spatial directions. For

simplicity, in the following derivations the coordinate system is assumed to be

aligned with the principal axes of the permeability tensor, resulting in a diagonal

tensor, without cross terms.

Furthermore, the absolute permeability of a rock represents the easiness with

which single-phase fluid is capable of flowing through its pore network. In the case

of multiphase flow, the effective permeability of the rock to the flow of each phase

will be a fraction of the single-phase one, and is expressed, for a given direction, as

being

 𝑘𝑐𝑥 = 𝑘𝑟𝑐𝑘𝑥 (2.21)

where 𝑘𝑥 is the absolute permeability in that direction; 𝑘𝑟𝑐 is the relative

permeability to the fluid component 𝑐; and 𝑘𝑐𝑥 is the effective permeability in the

given direction.

Similar to the fluid properties, the relative permeability of a phase may be

determined via laboratory testing using core or side-well core samples, or

alternatively via correlation models, if such samples are not available. However,

unlike the other properties discussed thus far, relative permeabilities are usually

dependent on the fluid’s saturation level, instead of its pressure and temperature.

For three-phase flow, the most comprehensive models available are either those

developed by Stone, or the one developed by Naar, Henderson and Wygal (Ertekin

et al., 2001; and Chen et al., 2006).

Multiphase Flow Equations

Combining the various mathematical equations modeling these physical

principles, and defining the total gas production rate as

𝑞𝐺𝑆𝐶 = 𝑞𝐹𝐺𝑆𝐶 + 𝑅𝑠𝑞𝑂𝑆𝐶 (2.22)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

32

where is 𝑞𝐺𝑆𝐶 the total gas production rate; and 𝑞𝐹𝐺𝑆𝐶 is the gas production rate

pertaining just to the free gas inside the reservoir; it is possible to arrive in

simultaneous phase equations that govern the flow of each individual component

through a control element. For a black-oil model, the respective oil, water and gas

equations are

𝜕

𝜕𝑥
[𝑘𝑥𝐴𝑥 ∙

𝑘𝑟𝑜
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑥

− 𝛾𝑜
𝜕𝑍

𝜕𝑥
)] ∙ ∆𝑥

+
𝜕

𝜕𝑦
[𝑘𝑦𝐴𝑦 ∙

𝑘𝑟𝑜
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑦

− 𝛾𝑜
𝜕𝑍

𝜕𝑦
)] ∙ ∆𝑦

+
𝜕

𝜕𝑧
[𝑘𝑧𝐴𝑧 ∙

𝑘𝑟𝑜
𝜇𝑜𝐵𝑜 ∙

(
𝜕𝑃𝑜
𝜕𝑧

− 𝛾𝑜
𝜕𝑍

𝜕𝑧
)] ∙ ∆𝑧

= ∀𝐵 ∙
𝜕

𝜕𝑡
(
𝜙𝑆𝑜
𝐵𝑜

) − 𝑞𝑂𝑆𝐶

(2.23)

𝜕

𝜕𝑥
[𝑘𝑥𝐴𝑥 ∙

𝑘𝑟𝑤
𝜇𝑤𝐵𝑤

∙ (
𝜕𝑃𝑤
𝜕𝑥

− 𝛾𝑤
𝜕𝑍

𝜕𝑥
)] ∙ ∆𝑥

+
𝜕

𝜕𝑦
[𝑘𝑦𝐴𝑦 ∙

𝑘𝑟𝑤
𝜇𝑤𝐵𝑤

∙ (
𝜕𝑃𝑤
𝜕𝑦

− 𝛾𝑤
𝜕𝑍

𝜕𝑦
)] ∙ ∆𝑦

+
𝜕

𝜕𝑧
[𝑘𝑧𝐴𝑧 ∙

𝑘𝑟𝑤
𝜇𝑤𝐵𝑤

∙ (
𝜕𝑃𝑤
𝜕𝑧

− 𝛾𝑤
𝜕𝑍

𝜕𝑧
)] ∙ ∆𝑧

= ∀𝐵 ∙
𝜕

𝜕𝑡
(
𝜙𝑆𝑤
𝐵𝑤

) − 𝑞𝑊𝑆𝐶

(2.24)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

33

𝜕

𝜕𝑥
[𝑘𝑥𝐴𝑥 ∙

𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
∙ (
𝜕𝑃𝑔

𝜕𝑥
− 𝛾𝑔

𝜕𝑍

𝜕𝑥
) + 𝑘𝑥𝐴𝑥 ∙

𝑘𝑟𝑜𝑅𝑠
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑥

− 𝛾𝑜
𝜕𝑍

𝜕𝑥
)] ∙ ∆𝑥

+
𝜕

𝜕𝑦
[𝑘𝑦𝐴𝑦 ∙

𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
∙ (
𝜕𝑃𝑔

𝜕𝑦
− 𝛾𝑔

𝜕𝑍

𝜕𝑦
) + 𝑘𝑦𝐴𝑦

∙
𝑘𝑟𝑜𝑅𝑠
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑦

− 𝛾𝑜
𝜕𝑍

𝜕𝑦
)] ∙ ∆𝑦

+
𝜕

𝜕𝑧
[𝑘𝑧𝐴𝑧 ∙

𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
∙ (
𝜕𝑃𝑔

𝜕𝑧
− 𝛾𝑔

𝜕𝑍

𝜕𝑧
) + 𝑘𝑧𝐴𝑧

∙
𝑘𝑟𝑜𝑅𝑠
𝜇𝑜𝐵𝑜

∙ (
𝜕𝑃𝑜
𝜕𝑧

− 𝛾𝑜
𝜕𝑍

𝜕𝑧
)] ∙ ∆𝑧

= ∀𝐵 ∙
𝜕

𝜕𝑡
(
𝜙𝑆𝑔

𝐵𝑔
+
𝜙𝑅𝑠𝑆𝑜
𝐵𝑜

) − 𝑞𝐺𝑆𝐶

(2.25)

where ∆𝑥, ∆𝑦, and ∆𝑧 are the geometric dimensions of the control volume,

considering a three-dimensional (3D) problem in the cartesian coordinate system.

The multiphase flow equations, as presented, attempt to encompass all of the

noteworthy forces acting on the fluid; namely, viscous, capillary and gravitational

forces. They also allow for the treatment of irregular reservoir boundaries and

boundary conditions, as well as reservoir heterogeneities.

Furthermore, since the flow equations are based upon the mass conservation

of each component separately and since they are referenced to surface conditions,

part of the mass accounted for in the gas rate term was originally dissolved within

other phases, while part was already in a free state inside the reservoir. Assuming

that the water and gas phases are practically immiscible, the solution gas may be

considered to originate exclusively from the oil phase. Therefore, in the case of gas

mass conservation it is necessary to include the flow of this dissolved gas through

the control element; this is the reason for introducing the terms related to oil flow

into the gas equation.

Finally, the formulation presented in Equations (2.23) – (2.25) assumes that

no chemical reactions are occurring between the rock and the reservoir fluids; nor

between the different fluid components. It also considers that no physical dispersion

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

34

is occurring in the case of miscible recovery schemes, and presumes instantaneous

local equilibrium.

Multiphase Flow Model

The mathematical formulation to be derived in the end will depend not only

on the previous multiphase flow equations, but also on some additional

relationships that correlate the variables of the problem, as well as on the initial and

boundary conditions. This supplementary information is necessary for the complete

description of the fluid flow inside the reservoir.

Additional Relationships

The first such relationship to be established is the relation between phases.

For a black-oil model, the oil and water phases are deemed to be immiscible, as are

the water and gas phases. Gas is considered to be miscible with oil, and can thus

exist as free gas or as solution gas. Moreover, it is assumed that oil, water and gas

are the only fluids present in the pore space, and that consequently they must fully

occupy it

 𝑆𝑜 + 𝑆𝑤 + 𝑆𝑔 = 1 (2.26)

An alternative treatment may be applied to regions of the reservoir in which

there is no free gas (Chen et al., 2006). In this case, the volume balance relationship

could equate to

 𝑆𝑜 + 𝑆𝑤 = 1 (2.27)

and the gas phase flow equation could be altered to a bubble-point equation, where

𝑃𝑏 would be the primary variable. The transition from an undersaturated condition

to a saturated condition inside any given control element would then occur

whenever

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

35

 𝑃𝑏 > 𝑃𝑜 (2.28)

while the transition in the opposite direction, from a saturated condition to an

undersaturated one, would be given by the occurrence of

 𝑆𝑔 < 0 (2.29)

during the simulation. Nonetheless, this formulation with 𝑃𝑏 as one of the problem

variables will not be detailed further, with the derivation of the equations being

restrained to the oil pressure and water and gas saturation format.

Moreover, in a compositional model, the sum of the saturation of the various

components present would also be qual to unity, and the behavior of each

component would be described by their own flow equation.

Also, in the black-oil model the fluid temperature is assumed to be constant

throughout the reservoir, at all times. Conversely, in thermal models the

temperature must also be considered and, therefore, an additional energy-balance

equation will arise.

Yet additional models are available to the reservoir engineer, such as dual-

porosity and dual-permeability models, that attempt to enrich the quality of the

simulation, but hereafter only the standard three-phase black-oil model will be

considered.

Finally, a relationship that must still be established is the one between the

different phase pressures (Ertekin et al., 2001; and Aziz and Settari, 1979). These

pressures are related through the capillary forces present in the small pore spaces,

as follows

 𝑃𝑐𝑜𝑤 = 𝑃𝑜 − 𝑃𝑤 = 𝑓(𝑆𝑤) (2.30)

 𝑃𝑐𝑔𝑜 = 𝑃𝑔 − 𝑃𝑜 = 𝑓(𝑆𝑔) (2.31)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

36

where 𝑃𝑐𝑜𝑤 is the oil-water capillary pressure, whose value is a function of the water

saturation; and 𝑃𝑐𝑔𝑜 is the gas-oil capillary pressure, whose value is a function of

the gas saturation.

Equations (2.26) and (2.30) – (2.31) can then be used so as to eliminate the

terms 𝑆𝑜, 𝑃𝑤 and 𝑃𝑔 from the multiphase flow equations (2.23) – (2.25), leaving

only 𝑃𝑜, 𝑆𝑤 and 𝑆𝑔 as the variables of the simulation. Consequently, the problem

may now be described by three equations with three unknowns.

Initial Conditions

The initial conditions required for the black-oil model vary for each zone in

the reservoir. In an original gas-cap zone only gas is present as a free fluid, and

connate water saturation is at its initial value 𝑆𝑤𝑖. The two other variables can then

be expressed as

 𝑆𝑔 = 1 − 𝑆𝑜𝑟 + 𝑆𝑤𝑖 (2.32)

where 𝑆𝑜𝑟 represents a residual oil saturation that may eventually be present; and

 𝑃𝑜 = 𝑃𝑔 − 𝑃𝑐𝑔𝑜(𝑆𝑔) (2.33)

where gas pressure 𝑃𝑔 at each point may be calculated from its hydrostatic gradient

𝜕𝑃𝑔

𝜕𝑧
= 𝛾𝑔 (2.34)

In the oil-gas transition zone it is first necessary to calculate the oil and gas

pressures separately, using their respective gradients; gas as presented in Equation

(2.34) and oil as in Equation (2.35)

𝜕𝑃𝑜
𝜕𝑧

= 𝛾𝑜 (2.35)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

37

From the pressures levels it is possible to obtain the gas saturation from the

capillary pressure relationship

 𝑃𝑐𝑔𝑜(𝑆𝑔) = 𝑃𝑔 − 𝑃𝑜 (2.36)

while the water saturation will be at its initial value 𝑆𝑤𝑖.

In the oil zone, there is no free gas present and so the gas saturation 𝑆𝑔 is null,

while water saturation will be at its initial value 𝑆𝑤𝑖. Since oil is a continuous phase,

its pressure 𝑃𝑜 may be calculated directly from the gradient, as was done previously.

In the oil-water transition zone the procedure is analogous to the oil-gas zone.

Oil and water pressures are calculated through their respective gradients, which for

water is

𝜕𝑃𝑤
𝜕𝑧

= 𝛾𝑤 (2.37)

Water saturation is then obtained from the capillary pressure relationship

 𝑃𝑐𝑜𝑤(𝑆𝑤) = 𝑃𝑜 − 𝑃𝑤 (2.38)

while gas saturation 𝑆𝑔 is assumed to be null.

In the water zone, water is the only phase present. Consequently, oil and gas

saturations are null and water saturation equals unity. Water pressure will again be

given by the hydrostatic gradient, while oil pressure may be found using the

capillary pressure equation

 𝑃𝑜 = 𝑃𝑤 − 𝑃𝑐𝑜𝑤(𝑆𝑤) (2.39)

Finally, in addition to the specific gravity of each fluid, the capillary pressure

curves, and the initial water saturation distribution above the water zone, it is also

necessary to establish a reference oil pressure at a reference datum. This will be

used for calculating the different phase pressures throughout the reservoir interval,

via the fluid gradients. In an undersaturated reservoir the reference datum may be

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

38

any arbitrary depth within the reservoir, but in the saturated case it should be taken

to be the depth of the oil-gas contact 𝑍𝑜𝑔𝑐.

Boundary Conditions

For the external boundary conditions three situations may arise, either a no-

flow condition, a constant-pressure condition, or a specified-flux condition (Ertekin

et al., 2001; Chen et al., 2006).

A no-flow condition, representing a sealed boundary, is modeled by simply

defining the transmissibilities across the outer surface of the reservoir as having

zero value. Transmissibility refers to the term that relates the fluid potential gradient

to a corresponding fluid flow in a given direction, and is defined as

 𝑇𝑐𝑥 = (
𝑘𝑥𝐴𝑥
∆𝑥

) ∙ (
𝑘𝑟𝑐
𝜇𝑐𝐵𝑐

) (2.40)

The constant-pressure condition, with pressure 𝑃𝐸, represents a scenario in

which the rate of fluids withdrawn from one side of the boundary equals the rate of

fluids supplied to the opposite side. It can be modeled by an extra influx term

present at that outer control element, as if it were a well

 𝑞𝐶𝑆𝐶−𝐵 = [(
𝑘𝑥𝐴𝑥
∆𝑥 2⁄

) (
𝑘𝑟𝑜
𝜇𝑜𝐵𝑜

)] ∙ (𝑃𝐸 − 𝑃𝑐𝑛) (2.41)

where 𝑃𝑐𝑛 is the pressure at the center of a control element 𝑛 with a no-flow

boundary in the 𝑥 direction; and 𝑞𝐶𝑆𝐶−𝐵 is the pseudo-rate of component 𝑐 across

the external boundary, given in surface conditions.

The specified-flux condition occurs whenever there exists communication

between the reservoir and an adjacent permeable rock body, such as an aquifer or

another separate reservoir. The flux may occur inwards towards the reservoir, or

outwards to the external body, depending on the potential gradient at the boundary.

Moreover, the magnitude of the influx or efflux may be defined either by a specified

flux rate or by a specified pressure gradient. In both cases this is represented

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

39

mathematically by setting the outer transmissibilities to zero and including an extra

rate term inside the boundary control element.

For the specified rate 𝑞𝑠𝑝 situation, the term to be added to the equation of

each component 𝑐 is

 𝑞𝐶𝑆𝐶−𝐵 =
𝑇𝑐𝑥

∑ 𝑇𝑐𝑥𝑁
𝑐

∙ 𝑞𝑠𝑝 (2.42)

where the transmissibility 𝑇𝑐𝑥 of each component refers to the one on the boundary

side in the 𝑥 direction.

Alternatively, for the specified pressure gradient 𝑑𝑃 𝑑𝑥⁄ situation, the term

to be added to the equation of each component 𝑐 becomes

 𝑞𝐶𝑆𝐶−𝐵 = (−𝑇𝑐𝑥 ∆𝑥) ∙
𝑑𝑃

𝑑𝑥
 (2.43)

The internal boundary conditions of the problem depend on the specifications

defined for the various wells. There are several manners of specifying the operating

condition of each well, especially in a multiphase reservoir with fluid production or

injection occurring in multiple control elements, that is, with a well completed and

perforated in multiple layers. The possible specifications may be wellbore bottom-

hole pressure; oil, water, liquid, gas or total bottom-hole rate; oil, water, liquid, gas

or total surface rate.

The relationship between the fluid pressure in a control element, the wellbore

bottom-hole pressure and a component’s surface rate 𝑞𝐶𝑆𝐶𝑛 is designated as the

inflow performance relationship (IPR). For a control element 𝑛 in a multilayered

vertical well, this relationship is defined as

 𝑞𝐶𝑆𝐶𝑛 = −𝐽𝑛 ∙ (𝑃𝑛 − 𝑃𝑤𝑓𝑛) (2.44)

where 𝑃𝑤𝑓𝑛 is the flowing wellbore bottom-hole pressure, which here may be

considered equal for all components; and 𝐽𝑛 is the component productivity or

injectivity index, given by

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

40

 𝐽𝑛 =
2𝜋𝑘𝐻𝑛𝑘𝑟𝑐ℎ𝑛

𝜇𝑐𝑛𝐵𝑐𝑛 ∙ [ln(𝑟𝑒𝑞𝑛 𝑟𝑤⁄) + 𝑠𝑛]
= (

𝑘𝑟𝑐
𝜇𝑐𝐵𝑐

)
𝑛

∙ 𝐺𝑤𝑛 (2.45)

where 𝐺𝑤𝑛 represents the constant terms of the equation; 𝑘𝐻𝑛 is the equivalent

permeability in the radial direction; 𝑘𝑟𝑐 is the relative permeability for the

component 𝑐; ℎ𝑛 is the height of the control element; 𝑠𝑛 is the formation damage,

or wellbore skin; 𝑟𝑤 is the well radius; and 𝑟𝑒𝑞𝑛 is the equivalent radius, defined by

Peaceman (1978) as

 𝑟𝑒𝑞 = 0.28 ∙

{[(
𝑘𝑦
𝑘𝑥
)

1
2⁄

∙ (∆𝑥)2] + [(
𝑘𝑥
𝑘𝑦
)

1
2⁄

∙ (∆𝑦)2]}

1
2⁄

(
𝑘𝑦
𝑘𝑥
)

1
4⁄

+ (
𝑘𝑥
𝑘𝑦
)

1
4⁄

 (2.46)

which represents the position within the control element where the calculated

pressure of the element will be equal to the actual flowing pressure.

As a note, in a black-oil model with gas production, the gas inflow

performance relationship is altered slightly, to include the solution gas into the

equation

𝑞𝐺𝑆𝐶𝑛 = − 𝐺𝑤𝑛 [(
𝑘𝑟𝑔

𝜇𝑔𝐵𝑔
) ∙ (𝑃𝑔𝑛 − 𝑃𝑤𝑓𝑛) + (

𝑘𝑟𝑜𝑅𝑠
𝜇𝑜𝐵𝑜

)

∙ (𝑃𝑜𝑛 − 𝑃𝑤𝑓𝑛)]

(2.47)

The flowing bottom-hole pressure at the depth of each control element

situated within the completed zone may be approximated by a reference pressure

and the average hydrostatic pressure gradient, meanwhile ignoring the frictional

pressure drop that occurs within the well, between the multiple completion layers.

 𝑃𝑤𝑓𝑛 = 𝑃𝑤𝑓𝑅𝐸𝐹 + 𝛾̅𝑤 ∙ (𝑍𝑛 − 𝑍0) (2.48)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

41

where 𝑃𝑤𝑓𝑅𝐸𝐹 is the pressure at a reference depth 𝑍0; 𝑍𝑛 is the depth of the control

element; and 𝛾̅𝑤 is the average pressure gradient in the well, estimated as

 𝛾̅𝑤 =
𝐵𝑜𝛾𝑜𝑞𝑂𝑆𝐶 + 𝐵𝑤𝛾𝑤𝑞𝑊𝑆𝐶 + 𝐵𝑔𝛾𝑔𝑞𝐹𝐺𝑆𝐶

𝐵𝑜𝑞𝑂𝑆𝐶 + 𝐵𝑤𝑞𝑊𝑆𝐶 + 𝐵𝑔𝑞𝐹𝐺𝑆𝐶
 (2.49)

Discretization of the Flow Equations

There exist several methods available for discretizing a partial differential

equation, such as finite differences, finite elements and finite volumes.

Traditionally, the finite difference technique is the one most employed in the field

of reservoir simulation. Albeit one of the oldest methods developed, it is still the

most dominant choice of numerical treatment for partial differential equations

(Grossmann et al., 2007). Each one of the multiphase equations of the reservoir

model contain two types of derivatives that need to be discretized: second-order

spatial derivatives and first-order time derivatives. The spatial derivatives on the

left-hand side of the equations are of the form

𝜕

𝜕𝑥
(𝜉𝑥

𝜕𝜂

𝜕𝑥
)
𝑖,𝑗,𝑘

∆𝑥𝑖,𝑗,𝑘 = (
𝜕𝑓

𝜕𝑥
)
𝑖,𝑗,𝑘

∆𝑥𝑖,𝑗,𝑘 (2.50)

where 𝜉𝑥 represents the transmissibility in the 𝑥 direction, times ∆𝑥; 𝜂 represents

the potential gradient of the phase; and the indices 𝑖, 𝑗, 𝑘 represent the numerical

ordering of the control element in a given coordinate system.

This ordering of the elements, henceforth called grid blocks or cell blocks,

may be done in different fashions. Some common choices are (i) Natural ordering,

in which cells are numbered sequentially by rows or columns; (ii) D-4 ordering, in

which cells are numbered sequentially by diagonals; and (iii) Red-Black or A-3

ordering, in which cells are numbered sequentially by rows or columns but skipping

every other grid block; among others. The manner chosen to order the grid will

impact directly on the matrix structure that will arise in the linear system solver part

of the simulator, as shall be discussed subsequently (Ertekin et al., 2001; Behie et

al., 1984; and Price and Coats, 1974).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

42

For grids constructed using a block-centered system, as opposed to those

employing a point-distributed system, the problem unknowns represent the value

of the different variables (𝑃𝑜, 𝑆𝑤 and 𝑆𝑔) at the center of each cell. Also, in this

system, the transmissibility coefficients represent the connections between cells, as

illustrated in Figure 2.1 (Ertekin et al., 2001; and Peaceman, 1977).

Figure 2.1 – Schematic of a block-centered grid (Adapted from Ertekin et al., 2001).

Returning to the spatial derivative form presented previously, the terms may

be approximated by applying central-difference discretization to the derivatives

(Ertekin et al., 2001; Chen et al., 2006), resulting in

(
𝜉𝑥
∆𝑥
)
𝑖−
1
2
,𝑗,𝑘
∙ (𝜂𝑖−1,𝑗,𝑘 − 𝜂𝑖,𝑗,𝑘) + (

𝜉𝑥
∆𝑥
)
𝑖+
1
2
,𝑗,𝑘
∙ (𝜂𝑖+1,𝑗,𝑘 − 𝜂𝑖,𝑗,𝑘)

= (𝑇𝑐𝑥)𝑖−1
2
,𝑗,𝑘
∙ (𝜂𝑖+1,𝑗,𝑘 − 𝜂𝑖,𝑗,𝑘) − (𝑇𝑐𝑥)𝑖+1

2
,𝑗,𝑘

∙ (𝜂𝑖,𝑗,𝑘 − 𝜂𝑖−1,𝑗,𝑘)

(2.51)

Due to the size of the equations appearing in the formulation process, it is

worthwhile to introduce here the following simplifying notation

∆𝑥(𝑇𝑐𝑥∆𝑥𝜂)𝑖,𝑗,𝑘

= (𝑇𝑐𝑥)𝑖−1
2
,𝑗,𝑘
∙ (𝜂𝑖+1,𝑗,𝑘 − 𝜂𝑖,𝑗,𝑘) − (𝑇𝑐𝑥)𝑖+1

2
,𝑗,𝑘

∙ (𝜂𝑖,𝑗,𝑘 − 𝜂𝑖−1,𝑗,𝑘)

(2.52)

where is ∆𝑥 is a finite-difference operator on the space domain.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

43

Analyzing the three 3D multiphase equations in the black-oil model, we observe

that there will be three second derivative approximation, as exemplified in Equation

(2.52), in each one of them – one for each direction. This allows the left-hand side

of the equations to be further simplified by the following notation

∆(𝑇𝑐∆𝜂)𝑖,𝑗,𝑘 = ∆𝑥(𝑇𝑐𝑥∆𝑥𝜂)𝑖,𝑗,𝑘 + ∆𝑦(𝑇𝑐𝑦∆𝑦𝜂)𝑖,𝑗,𝑘

+ ∆𝑧(𝑇𝑐𝑧∆𝑧𝜂)𝑖,𝑗,𝑘
(2.53)

Considering now the time derivatives on the right-hand side, if the space

domain is fixed, the partial derivative becomes an ordinary derivative to be

evaluated at the grid points where the unknowns are defined. Then, discretizing the

time derivatives with backwards finite-difference, the terms representing the mass

accumulation within a cell may be expressed as

𝜕

𝜕𝑡
(𝑓)𝑖,𝑗,𝑘 =

1

∆𝑡
∙ (𝑓𝑖,𝑗,𝑘

𝑛+1 − 𝑓𝑖,𝑗,𝑘
𝑛) =

1

∆𝑡
∙ ∆𝑡𝑓 (2.54)

where 𝑛 is the time-step at which the function 𝑓 will be evaluated, representing a

moment in time; ∆𝑡 is the time difference between two consecutive time-steps; and

∆𝑡 is a finite-difference operator on the time domain. The option for a simpler, first-

order approximation of the time derivative stems from instability issues that arise

with forward or central-difference techniques.

In addition, to preserve mass conservation and avoid instabilities throughout

the simulation, the finite-difference time operator ∆𝑡 must be expanded using a

conservative scheme. For the two different functions that arise inside the partial

time derivatives in the multiphase equations, this equates to

∆𝑡 (
𝜙𝑆𝑐
𝐵𝑐
) = [

𝜙′

𝐵𝑐
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑐
)
′

] ∙ 𝑆𝑐
𝑛 ∙ (𝑃𝑜

𝑛+1 − 𝑃𝑜
𝑛)

+ (
𝜙

𝐵𝑐
)
𝑛+1

∙ (𝑆𝑐
𝑛+1 − 𝑆𝑐

𝑛)

(2.55)

and

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

44

∆𝑡 (
𝜙𝑅𝑠𝑆𝑜
𝐵𝑜

) = {[
𝜙′

𝐵𝑜
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑜
)
′

] ∙ 𝑅𝑠
𝑛 + (

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
′}

∙ 𝑆𝑜
𝑛 ∙ (𝑃𝑜

𝑛+1 − 𝑃𝑜
𝑛) + (

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1

∙ (𝑆𝑜
𝑛+1 − 𝑆𝑜

𝑛)

(2.56)

in which the following definitions apply

 𝜙′ =
𝜙𝑛+1 − 𝜙𝑛

𝑃𝑜
𝑛+1 − 𝑃𝑜

𝑛 (2.57)

 𝑅𝑠
′ =

𝑅𝑠
𝑛+1 − 𝑅𝑠

𝑛

𝑃𝑜
𝑛+1 − 𝑃𝑜

𝑛 (2.58)

(
1

𝐵𝑐
)
′

=

(
1

𝐵𝑐
𝑛+1) − (

1
𝐵𝑐

𝑛)

𝑃𝑜
𝑛+1 − 𝑃𝑜

𝑛
(2.59)

Thus far, only the variable and coefficient terms on the right-hand side of the

equations have had specified the time-step in which they should be evaluated. The

selection of the backwards-difference operator to discretize the time-derivative

terms now implies that the base time of the equations is 𝑛 + 1. This leads to the

evaluation of the left-hand side terms on the same 𝑛 + 1 time-step. Hence, the

variable 𝑃𝑜
𝑛+1 will now appear on both sides of the equations, and the

transmissibility coefficients, which contain terms that are dependent on pressure –

such as 𝐵𝑐, 𝜇𝑐 and 𝑅𝑠 – must also be evaluated at this same time-step. Furthermore,

other terms – such as 𝑘𝑟𝑐 – depend on the values of the saturation unknowns, also

to be calculated at time-step 𝑛 + 1. Consequently, the problem becomes highly

coupled and nonlinear. This specific construction of the problem equations is

denoted the Fully Implicit formulation (FIM).

The decision to apply a backwards-difference operator to the time derivatives

was not the sole one available. The reason for discretizing via backwards-difference

is related to the consequent stability of the problem. This option leads to a

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

45

simulation that is unconditionally stable, regardless of the size of the time-steps,

which allows for large time-steps to be taken even in difficult scenarios (strong

heterogeneities, gravitational effects, high flow rates, etc.) (Ertekin et al., 2001; and

Cheshire et al., 1980). The price to be paid for this stability is that the simulation

now requires the simultaneous solution of large, difficult-to-solve systems of

equations. Conversely, a forward-difference discretization would lead to a system

that is much less demanding to solve, but that is only conditionally stable, usually

demanding relatively small time-steps to be capable of achieving convergence.

Additionally, it may have greater difficulty representing the physics of the problem;

since, for example, in the resulting explicit formulation a pressure transient front

can only advance the distance of a single grid block per simulation step.

Finally, the finite difference multiphase flow equations derived in the fully

implicit formulation may be written concisely as

∆[𝑇𝑜 ∙ (∆𝑃𝑜 − 𝛾𝑜∆𝑍)]

𝑛+1

= 𝐶𝑜𝑝∆𝑡𝑃𝑜 + 𝐶𝑜𝑤∆𝑡𝑆𝑤 + 𝐶𝑜𝑔∆𝑡𝑆𝑔 − 𝑞𝑂𝑆𝐶
𝑛+1

(2.60)

∆[𝑇𝑤 ∙ (∆𝑃𝑜 − ∆𝑃𝑐𝑜𝑤 − 𝛾𝑤∆𝑍)]

𝑛+1

= 𝐶𝑤𝑝∆𝑡𝑃𝑜 + 𝐶𝑤𝑤∆𝑡𝑆𝑤 + 𝐶𝑤𝑔∆𝑡𝑆𝑔 − 𝑞𝑊𝑆𝐶
𝑛+1

(2.61)

∆[𝑇𝑔 ∙ (∆𝑃𝑜 − ∆𝑃𝑐𝑔𝑜 − 𝛾𝑔∆𝑍)]

𝑛+1
+ ∆[𝑇𝑜𝑅𝑠 ∙ (∆𝑃𝑜 − 𝛾𝑜∆𝑍)]

𝑛+1

= 𝐶𝑔𝑝∆𝑡𝑃𝑜 + 𝐶𝑔𝑤∆𝑡𝑆𝑤 + 𝐶𝑔𝑔∆𝑡𝑆𝑔 − 𝑞𝐺𝑆𝐶
𝑛+1

(2.62)

where the following definitions were employed

 𝐶𝑜𝑝 =
∀𝐵

∆𝑡
∙ [
𝜙′

𝐵𝑜
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑜
)
′

] ∙ (1 − 𝑆𝑤
𝑛 − 𝑆𝑔

𝑛) (2.63)

 𝐶𝑜𝑤 = −
∀𝐵

∆𝑡
∙ (
𝜙

𝐵𝑜
)
𝑛+1

 (2.64)

 𝐶𝑜𝑔 = −
∀𝐵

∆𝑡
∙ (
𝜙

𝐵𝑜
)
𝑛+1

 (2.65)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

46

 𝐶𝑤𝑝 =
∀𝐵

∆𝑡
∙ [
𝜙′

𝐵𝑤
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑤
)
′

] ∙ 𝑆𝑤
𝑛

 (2.66)

 𝐶𝑤𝑤 =
∀𝐵

∆𝑡
∙ (
𝜙

𝐵𝑤
)
𝑛+1

 (2.67)

 𝐶𝑤𝑔 = 0 (2.68)

𝐶𝑔𝑝 =
∀𝐵

∆𝑡
∙ ({[

𝜙′

𝐵𝑜
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑜
)
′

] ∙ 𝑅𝑠
𝑛 + (

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
′}

× (1 − 𝑆𝑤
𝑛 − 𝑆𝑔

𝑛) + [
𝜙′

𝐵𝑔
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑔
)

′

] ∙ 𝑆𝑔
𝑛)

(2.69)

 𝐶𝑔𝑤 = −
∀𝐵

∆𝑡
∙ [(

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1] (2.70)

 𝐶𝑔𝑔 =
∀𝐵

∆𝑡
∙ [(

𝜙

𝐵𝑔
)

𝑛+1

− (
𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1] (2.71)

The expanded version of these equations is presented separately in Appendix

A, for reference.

Linearization of the Multiphase Flow Equations

As previously mentioned, the equations describing the problem in the fully

implicit formulation are nonlinear in nature. This presents a significant challenge to

the solution of the system of equations that arises in each time-step of the reservoir

simulation, since nonlinear systems tend to be much more difficult to solve. The

linearization of the nonlinear equations is then of paramount importance.

A further issue that has not yet been handled and which will be addressed

presently is the evaluation of the transmissibility terms at the boundary positions.

Theoretically, the value of the pressure or saturation dependent terms that constitute

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

47

the transmissibility coefficients should be evaluated at the particular pressure or

saturation level seen at the interface between their two respective grid blocks.

However, in practice, these unknowns are determined solely at the cell centers, and

are not available at the coordinates of the block boundaries. This ensues the need

for a spatial weighing of these coefficients, through information obtained from the

individual cell blocks.

Before proceeding with the spatial weighing of the coefficients that arise on

the left-hand side of the multiphase equations, it is convenient to notice that they

may be subdivided into different terms, representing weak and strong

nonlinearities, as well as geometric aspects of the reservoir grid. The weak

nonlinearities are related to components which are just function of pressure, and

whose variations tend to be smoother, while the strong nonlinearities correspond to

the terms which are function either of saturation or capillary pressure, and whose

variations are generally more abrupt.

With regards to the capillary pressure terms, it is convenient to represent them

in a slightly different manner, making their relation to the saturation unknowns

explicit

 ∆𝑃𝑐𝑜𝑤 = 𝑃𝑐𝑜𝑤
′∆𝑆𝑤 (2.72)

 ∆𝑃𝑐𝑔𝑜 = 𝑃𝑐𝑔𝑜
′∆𝑆𝑔 (2.73)

in which the following definitions apply

 𝑃𝑐𝑜𝑤
′ =

𝑑𝑃𝑐𝑜𝑤
𝑑𝑆𝑤

 (2.74)

 𝑃𝑐𝑔𝑜
′ =

𝑑𝑃𝑐𝑔𝑜

𝑑𝑆𝑔
 (2.75)

and where these derivatives can be obtained from the capillary pressure curves

available from laboratory experiments or from correlation models.

The interblock transmissibilities can then be expressed as

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

48

 𝜉 = 𝐺 ∙ 𝑓𝑝 ∙ 𝑓𝑠 (2.76)

where 𝐺 is a geometric factor; 𝑓𝑝 is a pressure dependent function; and 𝑓𝑠 is a

saturation dependent function. The functions 𝑓𝑝 and 𝑓𝑠 must be determined at the

beginning of every time-step, and may assume one of the following forms

 𝑓𝑝 ≡ (
1

𝜇𝑐𝐵𝑐
) or (

𝛾𝑐
𝜇𝑐𝐵𝑐

) or (
𝑅𝑠
𝜇𝑜𝐵𝑜

) or (
𝑅𝑠𝛾𝑜
𝜇𝑜𝐵𝑜

) (2.77)

 𝑓𝑠 ≡ (𝑘𝑟𝑐) or (𝑘𝑟𝑐𝑃𝑐𝑜𝑤
′) or (𝑘𝑟𝑐𝑃𝑐𝑔𝑜

′) (2.78)

The geometric factors, on the other hand, are constant throughout the

simulation, and are conditioned only to the grid properties. They may be

approximated using the harmonic average of the properties of two contiguous grid

blocks. For a block-centered grid, the geometric factor between two cells aligned in

the 𝑥 direction assumes the form

 𝐺
𝑖±
1
2
,𝑗,𝑘

=
2𝐴𝑥𝑖,𝑗,𝑘𝑘𝑥𝑖,𝑗,𝑘𝐴𝑥𝑖±1,𝑗,𝑘𝑘𝑥𝑖±1,𝑗,𝑘

𝐴𝑥𝑖,𝑗,𝑘𝑘𝑥𝑖,𝑗,𝑘∆𝑥𝑖±1,𝑗,𝑘 + 𝐴𝑥𝑖±1,𝑗,𝑘𝑘𝑥𝑖±1,𝑗,𝑘∆𝑥𝑖,𝑗,𝑘
 (2.79)

The weak nonlinearity terms 𝑓𝑝 may be approximated in different ways, the

most common being upstream weighing and midpoint weighing. For the simulator

used in the scope of this work, the method of choice was upstream weighing. This

consists of evaluating the pressure dependent function as if it were in the center of

the cell which has the greatest flow potential between the two neighbors, that is, the

cell which is upstream of the other in the fluid flow. This procedure is exemplified

in Equation (2.80), once again for two cells aligned in the 𝑥 direction

(
𝛾𝑐
𝜇𝑐𝐵𝑐

)
𝑖+
1
2
,𝑗,𝑘

= (
𝛾𝑐
𝜇𝑐𝐵𝑐

)
𝑖,𝑗,𝑘

when (𝑃𝑐𝑖,𝑗,𝑘 − 𝛾𝑐𝑖+1
2
,𝑗,𝑘
𝑍𝑖,𝑗,𝑘) > (𝑃𝑐𝑖+1,𝑗,𝑘 − 𝛾𝑐𝑖+1

2
,𝑗,𝑘
𝑍𝑖+1,𝑗,𝑘)

(2.80)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

49

Here, the pressure used to calculate the value of the fluid properties is usually

taken to be the oil phase pressure, even if the fluid in question is water or gas.

Neglecting the capillary pressures in this particular application causes little or no

loss of accuracy.

The strong nonlinearity terms 𝑓𝑠 may also be approximated in different ways,

the most common being single-point upstream weighing and two-points upstream

weighing. Once more, the method chosen for the simulator used in this work was

single-point upstream, as illustrated in Equation (2.80).

It is now possible to return to the main challenge at hand, which is the

linearization of the left-hand side in the time domain. There are several different

techniques available to accomplish this. The most straightforward – and unstable –

one is the explicit method, briefly mentioned beforehand, in which the interblock

transmissibilities are simply evaluated at time-step 𝑛. Additional methods are:

extrapolation, simple iteration, linearized implicit and semi-implicit; all of which

improve stability, but that may still be unstable depending on the simulation

parameters. To achieve unconditional stability the linearization must be performed

with the fully implicit method. Difficult problems, such as those modeled by

compositional or thermal simulators, or those containing significant heterogeneities

and fracture networks, might only be solvable using this more rigorous approach.

In the fully implicit method, an iterative process is applied to the problem, in

which a term to be evaluated at time 𝑛 + 1 is approximated by its value at iteration

level 𝜐 + 1. Furthermore, the value at 𝜐 + 1 can be estimated by its value at

previous iteration 𝜐 plus a linear combination of terms arising from the partial

differentiation of the term with respect to each of the problem unknowns. This

aspect will be further detailed at the appropriate moment.

Next, it is necessary to deal with the nonlinearities present on the right-hand

side of the multiphase flow equations. The accumulation coefficients 𝐶𝑐𝑝, 𝐶𝑐𝑤 and

𝐶𝑐𝑔 all involve exclusively weak nonlinearities. Since they all refer to properties

within the cells, no spatial weighing is required here. Moreover, the time

linearization in this case cannot be done via the explicit method, by the very nature

of the conservative expansion used to generate these coefficients in the first place.

The implicit method is also not appropriate for this application, due to new

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

50

nonlinear terms that would arise in the process. Therefore, the most commonly used

method for the accumulation terms is simple iteration, in which the value of the

coefficient at time 𝑛 + 1 and iteration level 𝜐 + 1 is approximated directly by its

value at time 𝑛 + 1 and previous iteration 𝜐.

Finally, the rate terms 𝑞𝐶𝑆𝐶
𝑛+1 should be linearized in the time domain in a

manner similar to that chosen for the transmissibility coefficients, so as to not

introduce instabilities. These terms are related to the problem variables through the

inflow performance relationship equations, whose weak and strong nonlinearities

are evaluated using the value of the properties in the cell for which the equation is

written. Thus, no spatial weighing is required once more.

Solution of the Linear Finite-Difference Flow Equations

The application of the discretization procedure and the spatial and time

domain linearization methods described will transform the multiphase partial

differential equations into a set of linear finite difference equations. These can now

be more thoroughly defined for each individual grid block, using the following

additional terminology: subscripts 𝑛 to represent the cell for which the equations

are written, positioned at coordinate 〈𝑖, 𝑗, 𝑘〉; 𝑚 to represent a cell adjacent to the

one in question; 𝜓𝑛 to represent the set of all neighboring cells adjacent to cell 𝑛,

such that 𝜓𝑛 = 𝜓𝑥 ∪ 𝜓𝑦 ∪ 𝜓𝑧; and where ∆𝑚 represents a finite-difference

operator in the space domain, defined as

 ∆𝑚𝜁 = 𝜁𝑚 − 𝜁𝑛 (2.81)

With this notation, the multiphase flow equations for an arbitrary grid block

𝑛 may be written as

∑ 𝑇𝑜𝑛,𝑚
𝑛+1(∆𝑚𝑃𝑜

𝑛+1 − 𝛾̅𝑜𝑛,𝑚
𝑛∆𝑚𝑍)

𝑚 𝜖 𝜓𝑛

= 𝐶𝑜𝑝𝑛∆𝑡𝑃𝑜𝑛 + 𝐶𝑜𝑤𝑛∆𝑡𝑆𝑤𝑛 + 𝐶𝑜𝑔𝑛∆𝑡𝑆𝑔𝑛

− 𝑞𝑂𝑆𝐶𝑛
𝑛+1

(2.82)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

51

∑ 𝑇𝑤𝑛,𝑚
𝑛+1(∆𝑚𝑃𝑜

𝑛+1 − ∆𝑚𝑃𝑐𝑜𝑤
𝑛+1 − 𝛾̅𝑤𝑛,𝑚

𝑛∆𝑚𝑍)

𝑚 𝜖 𝜓𝑛

= 𝐶𝑤𝑝𝑛∆𝑡𝑃𝑜𝑛 + 𝐶𝑤𝑤𝑛∆𝑡𝑆𝑤𝑛 + 𝐶𝑤𝑔𝑛∆𝑡𝑆𝑔𝑛

− 𝑞𝑊𝑆𝐶𝑛
𝑛+1

(2.83)

∑ [𝑇𝑔𝑛,𝑚
𝑛+1(∆𝑚𝑃𝑜

𝑛+1 + ∆𝑚𝑃𝑐𝑔𝑜
𝑛+1 − 𝛾̅𝑔𝑛,𝑚

𝑛∆𝑚𝑍)

𝑚 𝜖 𝜓𝑛

+ (𝑇𝑜𝑅𝑠)𝑛,𝑚
𝑛+1

(∆𝑚𝑃𝑜
𝑛+1 − 𝛾̅𝑜𝑛,𝑚

𝑛∆𝑚𝑍)]

= 𝐶𝑔𝑝𝑛∆𝑡𝑃𝑜𝑛 + 𝐶𝑔𝑤𝑛∆𝑡𝑆𝑤𝑛 + 𝐶𝑔𝑔𝑛∆𝑡𝑆𝑔𝑛

− 𝑞𝐺𝑆𝐶𝑛
𝑛+1

(2.84)

where the terms 𝛾̅𝑐𝑛,𝑚
𝑛 represent the mean specific weight of the components 𝑐,

averaged between the values calculated for grid blocks 𝑛 and 𝑚.

The solution of these equations when the fully implicit discretization method

is applied in the time domain will require that Newton’s Iteration be employed

(Ertekin et al., 2001; and Chen et al., 2006). This numerical solution method

attempts to find the value of the unknowns that minimize the residuals of the

multiphase flow equations. Thus, it commences by rearranging the former

equations to residual form

𝑅𝑜𝑛
𝑛+1 = ∑ 𝑇𝑜𝑛,𝑚

𝑛+1(∆𝑚𝑃𝑜
𝑛+1 − 𝛾̅𝑜𝑛,𝑚

𝑛∆𝑚𝑍)

𝑚 𝜖 𝜓𝑛

− 𝐶𝑜𝑝𝑛(𝑃𝑜𝑛
𝑛+1 − 𝑃𝑜𝑛

𝑛) − 𝐶𝑜𝑤𝑛(𝑆𝑤𝑛
𝑛+1 − 𝑆𝑤𝑛

𝑛)

− 𝐶𝑜𝑔𝑛(𝑆𝑔𝑛
𝑛+1 − 𝑆𝑔𝑛

𝑛) + 𝑞𝑂𝑆𝐶𝑛
𝑛+1

(2.85)

𝑅𝑤𝑛
𝑛+1 = ∑ 𝑇𝑤𝑛,𝑚

𝑛+1(∆𝑚𝑃𝑜
𝑛+1 − ∆𝑚𝑃𝑐𝑜𝑤

𝑛+1

𝑚 𝜖 𝜓𝑛

− 𝛾̅𝑤𝑛,𝑚
𝑛∆𝑚𝑍) − 𝐶𝑤𝑝𝑛(𝑃𝑜𝑛

𝑛+1 − 𝑃𝑜𝑛
𝑛)

− 𝐶𝑤𝑤𝑛(𝑆𝑤𝑛
𝑛+1 − 𝑆𝑤𝑛

𝑛) − 𝐶𝑤𝑔𝑛(𝑆𝑔𝑛
𝑛+1 − 𝑆𝑔𝑛

𝑛)

+ 𝑞𝑊𝑆𝐶𝑛
𝑛+1

(2.86)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

52

𝑅𝑔𝑛
𝑛+1 = ∑ [𝑇𝑔𝑛,𝑚

𝑛+1(∆𝑚𝑃𝑜
𝑛+1 + ∆𝑚𝑃𝑐𝑔𝑜

𝑛+1

𝑚 𝜖 𝜓𝑛

− 𝛾̅𝑔𝑛,𝑚
𝑛∆𝑚𝑍)

+ (𝑇𝑜𝑅𝑠)𝑛,𝑚
𝑛+1

(∆𝑚𝑃𝑜
𝑛+1 − 𝛾̅𝑜𝑛,𝑚

𝑛∆𝑚𝑍)]

− 𝐶𝑔𝑝𝑛(𝑃𝑜𝑛
𝑛+1 − 𝑃𝑜𝑛

𝑛) − 𝐶𝑔𝑤𝑛(𝑆𝑤𝑛
𝑛+1 − 𝑆𝑤𝑛

𝑛)

− 𝐶𝑔𝑔𝑛(𝑆𝑔𝑛
𝑛+1 − 𝑆𝑔𝑛

𝑛) + 𝑞𝐺𝑆𝐶𝑛
𝑛+1

(2.87)

The next step is to approximate the residual at time-step 𝑛 + 1 by its value at

iteration 𝜈 + 1. This can be expressed as

 𝑅𝑐𝑛
𝑛+1 ≈ 𝑅𝑐𝑛

𝑛+1(𝜈+1) (2.88)

The residual values at iteration level 𝜈 + 1 can in turn be approximated by

their values at iteration 𝜈, which are already known, plus a linear combination of

terms derived from the differentiation of the residual equations with respect to all

of the problem unknowns. This amounts to the following expression

𝑅𝑐𝑛
𝑛+1(𝜈+1) = 𝑅𝑐𝑛

𝑛+1(𝜈) + (
𝜕𝑅𝑐𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

𝛿𝑃𝑜𝑛 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

𝛿𝑆𝑤𝑛

+ (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

𝛿𝑆𝑔𝑛

+ ∑ [(
𝜕𝑅𝑐𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

𝛿𝑃𝑜𝑚 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

𝛿𝑆𝑤𝑚
𝑚 𝜖 𝜓𝑛

+ (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

𝛿𝑆𝑔𝑚]

(2.89)

where the subsequent definitions apply

 𝛿𝑃𝑜𝑚 = 𝑃𝑜𝑚
𝑛+1(𝜈+1) − 𝑃𝑜𝑚

𝑛+1(𝜈) (2.90)

 𝛿𝑆𝑤𝑚 = 𝑆𝑤𝑚
𝑛+1(𝜈+1) − 𝑆𝑤𝑚

𝑛+1(𝜈)
 (2.91)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

53

 𝛿𝑆𝑔𝑚 = 𝑆𝑔𝑚
𝑛+1(𝜈+1) − 𝑆𝑔𝑚

𝑛+1(𝜈)
 (2.92)

The definition of the various partial derivatives of the residual equations is

left for Appendix A.

Since the objective of the linearization method is to find the value of the

unknowns that tend to minimize the system residuals, the final step consists of

setting the residual at iteration level 𝜈 + 1 equal to zero, and solving the resulting

equations for all the unknowns at iteration level 𝜈 + 1. That is, solve

(
𝜕𝑅𝑐𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

𝛿𝑃𝑜𝑛 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

𝛿𝑆𝑤𝑛 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

𝛿𝑆𝑔𝑛

+ ∑ [(
𝜕𝑅𝑐𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

𝛿𝑃𝑜𝑚 + (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

𝛿𝑆𝑤𝑚
𝑚 𝜖 𝜓𝑛

+ (
𝜕𝑅𝑐𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

𝛿𝑆𝑔𝑚] = −𝑅𝑐𝑛
𝑛+1(𝜈)

(2.93)

– which is the final form of the residual equation of each phase, in each grid block

– simultaneously for all grid blocks. This entails the solution of a linear system of

3N equations, per iteration level, per simulation time-step, where N is the total

number of grid blocks.

The natural manner of treating this system of equations is to transform it into

matrix form and then solve for the unknowns through an adequate numerical linear

algebra technique. Therefore, the foremost step is determining how to construct the

coefficient matrix 𝐴 ̃ and the right-hand side vector 𝑓,̅ so that an equation of the

form

 𝑨 ̃𝒖̅ = 𝒇̅ (2.94)

can be solved for the vector 𝒖̅.

Observing the structure of the final form of the residual equation, it is

apparent that the problem unknowns are contained within terms of the form 𝛿𝜁,

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

54

where 𝜁 represents either oil pressure, water saturation or gas saturation. So, if the

vector containing the actual unknowns is given by

 𝒙 = (𝒙̅1, 𝒙̅2, 𝒙̅3, ⋯ , 𝒙̅𝑁)
𝑇 (2.95)

in which

 𝒙𝑛 = (𝑃𝑜𝑛 , 𝑆𝑤𝑛 , 𝑆𝑔𝑛)
𝑇
 (2.96)

then we can define the following differential solution vector

 𝒖̅ = 𝛿𝒙 = 𝒙̅ 𝑛+1
 (𝜈+1)

− 𝒙̅ 𝑛+1
 (𝜈)

 (2.97)

and the following initial condition

 𝒙̅ 𝑛+1
 (0)
= 𝒙̅ 𝑛 (2.98)

Returning to the final form of the residual equation (2.93), it is clear that the

right-hand side vector equates to the negative of the residual calculated from the

solution of the previous iteration

 𝒇̅ = −𝑹̅ 𝑛+1
 (𝜈)

 (2.99)

where

 𝑹̅ = (𝑹̅1, 𝑹̅2, 𝑹̅3, ⋯ , 𝑹̅𝑁)
𝑇 (2.100)

in which

 𝑹̅𝑛 = (𝑅𝑜𝑛 , 𝑅𝑤𝑛 , 𝑅𝑔𝑛)
𝑇
 (2.101)

with 𝑅𝑐𝑛 being defined in the initial form of the residual equations (2.85) – (2.87).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

55

Lastly, the coefficients multiplying the problem unknowns, in differential

form, are the partial derivatives of the residuals, with respect to the corresponding

unknowns. A matrix with coefficients of this kind is denoted a Jacobian matrix.

Therefore, the general format of the coefficient matrix is the following

 𝑨 ̃ = 𝑱 ̃ = [
𝑱 ̃1,1 ⋯ 𝑱 ̃𝑛,𝑚
⋮ ⋱ ⋮

𝑱 ̃𝑛,𝑚 ⋯ 𝑱 ̃𝑁,𝑁

] (2.102)

in which

 𝑱 ̃𝑛,𝑚 =

[

𝜕𝑅𝑜𝑛
𝜕𝑃𝑜𝑚

𝜕𝑅𝑜𝑛
𝜕𝑆𝑤𝑚

𝜕𝑅𝑜𝑛
𝜕𝑆𝑔𝑚

𝜕𝑅𝑤𝑛
𝜕𝑃𝑜𝑚

𝜕𝑅𝑤𝑛
𝜕𝑆𝑤𝑚

𝜕𝑅𝑤𝑛
𝜕𝑆𝑔𝑚

𝜕𝑅𝑔𝑛
𝜕𝑃𝑜𝑚

𝜕𝑅𝑔𝑛
𝜕𝑆𝑤𝑚

𝜕𝑅𝑔𝑛
𝜕𝑆𝑔𝑚]

 (2.103)

Analogously to the procedure employed with the solution vector, at the first

iteration level (when 𝜈 = 0), the residual vector and Jacobian matrix are evaluated

using the pressure and saturation values determined at the end of the previous time-

step 𝑛.

The submatrices 𝑱 ̃𝑛,𝑚 defined in Equation (2.103) represent the partial

derivatives of the three residual equations related to each grid block 𝑛, taken with

respect to the pressure and saturation unknowns of grid block 𝑚. However,

observing the initial residual equations, it becomes clear that these derivatives will

equate to zero for every grid block 𝑚 that is not adjacent to 𝑛, or that is not grid

block 𝑛 itself. Consequently, the coefficient matrix will be a sparse matrix3,

composed mostly of zeros, with non-zero block elements occurring only on the

main block diagonal and some off-diagonal blocks. The degree of sparsity may vary

3 Sparse Matrix – Term referring to a matrix in which most of the elements are zero (Peaceman,

1977). Its sparsity may be defined as the percentage of zero elements in the total element count. An

alternative description is presented by Wilkinson, to whom a matrix may be considered sparse if it

is advantageous to exploit the presence of the zeros, to save time and memory usage (Davis and Hu,

2010).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

56

significantly throughout the simulation process, usually being on the order of

𝑂(𝑁)(Stüben, 2007), but eventually reaching levels as high as 95%, depending on

the problem (Sheth and Younis, 2017). These off-diagonals with non-zeros

correspond to the coupling that exists between neighboring cells, that is, the relation

between the oil, water and gas residuals of one cell to the pressure and saturation

unknowns of the adjacent cells. The actual shape of the sparse Jacobian matrix will

then be intrinsically associated to the ordering scheme chosen for the reservoir grid,

as has been briefly explained, and to the manner with which the residual equations

are chosen to be numbered. For example, in the formulation presented in Equations

(2.96), (2.100) and (2.103) the residual variables were grouped together per grid

block, forming a repeating sequence of oil, water and gas equations. An alternative

scheme might be to group together all the oil equations, then all the water equations

and finally all the gas equations; this would significantly change the shape of 𝑱 ̃.

These different options for constructing the coefficient matrix can have direct

implications in the numerical methods to be utilized for solving the linear system

of equations, as will be shown further ahead.

The reservoir simulator used in this research provides both possibilities of

equation numbering, either grouped per grid block or per equation type. The grid

ordering scheme available thus far is natural ordering.

With these given definitions, the matrix equation of the system may now be

expressed as

 𝑱 ̃(𝜈) ∙ 𝛿𝒙̅ = −𝑹̅(𝜈) (2.104)

The solution procedure using Newton’s Iteration starts with the evaluation of

the residuals and their partial derivatives at the first iteration level, leading to the

construction of the Jacobian matrix 𝑱 ̃(𝜈=0) and the residual vector 𝑹̅(𝜈=0). Next,

the matrix equation is solved via an appropriate numerical method and the

differential solution vector 𝛿𝒙̅ is determined. From this, the next solution vector is

obtained

 𝒙 𝑛+1
 (𝜈=1)

 = 𝛿𝒙̅ + 𝒙̅ 𝑛+1
 (𝜈=0)

= 𝛿𝒙̅ + 𝒙̅ 𝑛 (2.105)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

57

Continuing the process, a new Jacobian matrix 𝑱 ̃(1) and residual vector 𝑹̅(1)

can be constructed, evaluated at 𝒙̅ (1), and the new matrix equation can be solved

so as to obtain a new 𝛿𝒙̅ vector, from which 𝒙̅ (2) is calculated subsequently.

The method then proceeds in identical fashion for iterations 𝜈 = 2, 3, … until

convergence is achieved or, alternatively, if a pre-established maximum number of

iterations are attempted. Once convergence is reached, the value of 𝒙̅ (𝜈) at the final

iteration level is considered to be the solution to the current time-step 𝒙̅ 𝑛+1. Finally,

the simulation advances to the next time-step and this same iterative process starts

anew.

As a last remark, there are two notable alternative solution methods available

for solving the simulation unknows. The first is named Implicit Pressure Explicit

Saturations (IMPES), because, as the name suggests, the pressure unknowns are

solved implicitly, while the saturations are determined explicitly. To accomplish

this, the equations in each grid block are initially combined so as to eliminate the

saturation variables, and then the pressure system is solved for simultaneously as a

first step. Afterwards, the pressure values obtained are used directly in the

saturation equations written for each grid block. The rationale behind this method

is the fact that pressure is considered to fluctuate more intensely and that its

variation travels farther into the reservoir. Saturations, on the other hand, tend to

alter less overall, and these variations move more slowly throughout the reservoir.

The second method is named Adaptative Implicit Method (AIM) and it combines

aspects of the Fully Implicit Method and of IMPES. The concept here is that some

grid blocks are treated in a fully implicit manner, while in others the pressures are

treated implicitly and the saturations explicitly. This is done because of eventual

convergence difficulties that might arise with the IMPES method, due to the fact

that in some regions of the reservoir the saturations could actually be undergoing

significant variations. This is especially true in water or gas fronts emanating from

injection wells.

Nevertheless, the linear system solvers implemented in the scope of this work

focused uniquely on the solution of systems arising from the fully implicit method,

with no treatment given to any other solution method. IMPES simulations are

commonly capable of being executed in shorter runtimes than AIM or FIM, but

with a price to be paid in terms of accuracy. Therefore, best overall efficiency is

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

58

probably achieved by applying IMPES to easy problems, and AIM or FIM to more

difficult ones (Aziz and Settari, 1979).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

3
Numerical Methods

The field of numerical linear algebra strives to solve large systems of

equations, written in matrix form, often originating from the mathematical

modeling of physical problems. One of the principal sources of matrix equations to

be solved are those resulting from the discretization of partial differential equations,

such as those describing the multiphase flow of fluid in porous media. This

discretization process generally leads to very large sparse linear systems, which

requires an efficient numerical method to be solved within a reasonable timeframe

(Trefethen and Bau III, 1997; Behie et al., 1984).

There are a variety of methods available for this purpose, with each presenting

advantages and disadvantages that must be carefully weighed so as to choose the

one most suited for the desired application. The selection of an appropriate method

is of particular importance in reservoir simulations due to the fact that the solution

of the linear system of equations being built at each iteration level is one of the most

processing-intensive, time-consuming steps of the simulation (Brown et al., 2015;

Sheth and Younis, 2017; and SPE – Reservoir Simulation).

Direct Methods

The solution methods originally developed to tackle linear systems of

equations belong to the category of Direct Methods, as described by Price and Coats

(1974). Among these methods, the most traditional one is known as Gaussian

Elimination (GE); which involves the factorization of the coefficient matrix 𝑨 into

lower and upper triangular matrices, respectively 𝑳 and 𝑼, and the subsequent

solution of two simpler systems via forward and then backward substitution (Lay,

2003). This is exemplified in Equations (3.1) – (3.5):

 𝑨𝒙 = 𝒃 (3.1)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

60

where

 𝑨 = 𝑳𝑼 (3.2)

is transformed into

 𝑳𝑼𝒙 = 𝒃 (3.3)

which can be easily solved in the following two steps

 𝑳𝒚 = 𝒃 (3.4)

 𝑼𝒙 = 𝒚 (3.5)

In the equations hereafter, boldface capital letters shall be used to represent

matrices, while boldface lower-cased letters shall be used to represent vectors.

Constants and scalar values will be represented by non-bold lower-cased letters. To

simplify notation, matrices and vectors will not be identified with any symbols

above their names (i.e. tilde or bar), unless otherwise specified.

A setback of the process described in Equations (3.1) – (3.5) involves the fact

that, in constructing 𝑳 and 𝑼, often it is not sufficient to apply straightforward

factorization to 𝑨, since it may be prone to instability due to round-off errors, and

so pivoting techniques must also be introduced to the procedure. This entails

additional calculations and the storage of at least one extra matrix. Moreover, when

dealing with sparse matrices, Gaussian Elimination or other factorization schemes

such as 𝑄𝑅, SVD4 or Cholesky (the latter being applicable only to Hermitian5

positive definite6 matrices) tend to introduce vast quantities of non-zero terms into

their respective factor matrices – which greatly increases the cost of solving the

4 SVD – Singular Value Decomposition.

5 Hermitian Matrix – A complex square matrix that is equal to its conjugate transpose. Represents

the generalization of a real symmetrical matrix in the complex domain (𝐴 = 𝐴𝑇 → 𝐴 = 𝐴∗).

6 Positive Definite Matrix – A matrix whose eigenvalues are all positive. Alternatively, a matrix

for which 𝑥𝑇𝐴𝑥 > 0, given any nonzero 𝑥 ∈ ℛ𝑚.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

61

system, since there will be many more numbers on which to operate (Trefethen and

Bau III, 1997). Furthermore, for similar reasons, these techniques also significantly

augment the storage requirement of the solution process, so as to keep all the new

non-zero terms that arise.

Due to these considerations, the cost of solving a linear system through direct

methods can be quite elevated, reaching the order of 𝑂(𝑚3) operations for a dense

coefficient matrix, where 𝑚 represents the matrix dimension (Trefethen and Bau

III, 1997). Since a solver’s runtime is strongly correlated to the number of

operations that must be performed, this means that the time required for a direct

solver to reach the solution increases very rapidly as the problem dimensions grow

in size. Even though for sparse matrices it is possible to exploit the sparsity pattern

to reduce the number of operations required by a reasonable factor, the resulting

count would still represent a major restriction in the ability of the reservoir engineer

to increase the number of grid blocks used to model the reservoir. As the reservoir

is further and further discretized, the time (and memory) required to solve the

resulting system of equations via direct methods simply becomes prohibitive

(Mattax and Dalton, 1990). Consequently, alternative solution techniques must be

adopted to overcome this limitation – leading to the application of a class of

algorithms called Iterative Methods.

Even though there exist other direct methods that do not explicitly factor the

coefficient matrix, such as Gauss-Jordan Reduction or Thomas’ Algorithm,

normally they either naturally require a greater number of operations or are

restricted to specific matrix structures – for example, tridiagonal matrices (Ertekin

et al., 2001). These limitations often make them unsuited to solve modern reservoir

simulation problems, with more complex matrix structures.

Iterative Methods

The overall concept behind Iterative Methods is to start with an initial guess

to the solution vector 𝑥 and successively improve this solution estimation in each

step of an iterative process, gradually progressing towards the actual solution. The

objective at each iteration step is to find a search-direction vector that most

efficiently points from the current intermediate solution to the true solution, as well

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

62

as to find the length of the path that should be pursued in that particular direction.

This true solution, however, is seldom actually reached in practice, because the

method is normally halted beforehand, whenever an intermediate solution comes

sufficiently close to it.

This particular characteristic of iterative methods, of delivering only

approximate solutions to the problems to which they are applied, might cause them

to seem less powerful than direct ones at first glance. However, oftentimes this is a

misconception. First, because the iterative method may well be capable of reaching

a solution as precise as one obtained by a direct method, given sufficient iteration

steps. More importantly though, they possess a very powerful trait not found in

direct methods, which is the fact that they may be able to provide a precise enough

answer with an appreciably smaller operation count; whereas direct methods will

only provide any answer at all after every operation has been concluded.

Consequently, the typical performance delivered by iterative methods in terms of

operation count is in the order of 𝑂(𝑚2), which represents a very significant

improvement from the work needed by general direct methods (Trefethen and Bau

III, 1997).

Furthermore, either kind of method may be considered inexact in the sense

that, when carried out on a computer, their results will be accurate, at best, to

machine precision 𝜀𝑀; even in the absence of rounding errors. In practice, for most

methods, the normal machine error will be on the order of 100 to 1000 times 𝜀𝑀.

Evidently, for iterative methods, the actual error of the final solution will also

depend on the convergence criteria adopted to end the iterative process, and the

rigor of this criteria will be contingent upon the accuracy of the answer desired by

the user. Hence, achieving rapid convergence for a given error tolerance is the main

objective of any iterative method (Trefethen and Bau III, 1997).

The customary choice of convergence criteria employed in iterative methods

designed to solve linear system of equations is presented in Equation (3.6)

 ‖𝒓𝑛‖ < 𝜂 ∙ ‖𝒃‖ (3.6)

where 𝒓𝑛 is the residual vector found during iteration level 𝑛 of the linear iterative

method; and 𝜂 is an arbitrarily specified parameter, denoted residual tolerance. For

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

63

all of the simulations performed throughout this research, the chosen residual

tolerance equaled 𝜂 = 10−10. It should be apparent that the smallest the value

chosen, the more precise the final result of the numerical method will be; however,

the more expensive it will be to reach that result.

The convergence criteria detailed in Equation (3.6) should not be confused

with the one applied to Newton’s Iteration in the linearization process performed at

each simulation time-step, which is based upon material balance considerations.

Likewise, the term mentioned Equation (3.6) as being the residual vector is not the

same as the one referred to in Chapter 2, associated with the mass-balance equations

(which is actually the right-hand side vector 𝒃 here), but instead it relates to the

error between the projection of the current intermediate solution, found at iteration

𝑛, and the right-hand side vector; as such

 𝒓𝑛 = 𝒃 − 𝑨𝒙𝑛 (3.7)

Finally, independent of the precision desired, a method cannot be allowed to

run freely until obtaining convergence, since it may eventually stagnate or even

become unstable along the process. Therefore, it is also necessary to define an upper

limit to the number of permissible iterations. The iteration limit defined for all the

simulations performed throughout this research was iter_lim = 15000.

Stationary Methods

Historically, the first group of iterative methods to be developed were based

upon the relaxation of the problem coordinates, eliminating components of the

residual vector through sequential relaxation steps (Saad, 2003; Peaceman, 1977).

These classical methods, known as stationary methods (Barrett et al., 1994), involve

the splitting of the coefficient matrix 𝑨 into two components

 𝑨 = 𝑨1 + 𝑨2 (3.8)

and then converting matrix equation (3.1) into a fixed-point problem

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

64

 𝒙𝑛+1 = 𝑨1
−1(𝒃 − 𝑨2𝒙𝑛) = 𝑩𝒙𝑛 + 𝒄 (3.9)

where 𝑩 and 𝒄 are independent of the iteration step.

Examples of this class of algorithms include Jacobi Iteration, Gauss-Seidel

(GS), as well as different kinds of Successive Overrelaxation Methods (SOR).

However, none of these methods are powerful enough to efficiently solve very large

systems of equations, such as the ones arising in modern reservoir simulations

(Chen et al., 2006; Kelly, 1995).

Dimensional Splitting Methods

One of the oldest class of iterative methods developed was based upon the

concept of splitting the dimensions of the problem and solving them independently,

as one-dimensional problems, with the aid of some parameters that varied with each

iteration. Of particular relevance was the Alternating-Direction Implicit Procedure

(ADIP), which was popular in reservoir simulation applications in the 1960’s and

1970’s, before other, more powerful methods were established (Ertekin et al., 2001;

Peaceman, 1977).

Approximate Factorization Methods

Another group of methods developed early on was based upon approximate-

factorization techniques. This involves the factorization of the coefficient matrix

into factors that do not decompose it in an exact manner, but which are easier to

compute and whose storage is less expensive. The most important of these to be

applied to reservoir simulation is Stone’s Strongly Implicit Procedure (SIP) from

1968, later improved by Weinstein et al. in 1969 and 1970, in which the problem is

transformed into

 𝑳′𝑼′ ∙ (𝒙𝑛+1 − 𝒙𝑛) = 𝒃 − 𝑨𝒙𝑛 (3.10)

where 𝑳′ and 𝑼′ are approximate factors of 𝐴 (Mattax and Dalton, 1990; Peaceman,

1977).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

65

As shall be shown further ahead, there are other approximate factorization

techniques available, but they were usually introduced to act as a preconditioner to

some other iterative method and, unlike SIP, were not developed to be stand-alone

procedures.

Projection Methods

More recently, a new class of non-stationary algorithms has been introduced

into the reservoir simulation field, based on the projection of 𝑚-dimensional

problems into a lower-dimensional Krylov subspace 𝒦𝑛. This means that, for a

given matrix equation, the search for the solution vector 𝑥 is performed on the

subspace spanned by the set of vectors composing a Krylov sequence. This

subspace during iteration level 𝑛 is defined as

 𝓚𝑛 = 𝑆𝑝𝑎𝑛{𝒃, 𝑨𝒃, 𝑨
2𝒃, 𝑨3𝒃,⋯ , 𝑨𝑛−1𝒃 } (3.11)

or, alternatively, if 𝒙0 = 0 (which is a common choice)

 𝓚𝑛 = 𝑆𝑝𝑎𝑛{𝒓0, 𝑨𝒓0, 𝑨
2𝒓0, 𝑨

3𝒓0, ⋯ , 𝑨𝑛−1𝒓0 } (3.12)

where this sequence keeps growing larger as the iterative process advances.

Therefore, the intermediate solutions will be contained within the following

subspace

 𝒙𝑛 ∈ 𝒙0 +𝓚𝑛 (3.13)

Moreover, the intermediate solutions may be calculated from

 𝒙𝑛 = 𝒙0 +∑𝜉𝑗𝑨
𝑗𝒃

𝑛

𝑗=0

 (3.14)

where 𝜉 represents the linear coefficients multiplying each basis vector (Saad,

2003).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

66

Methods belonging to this class are quite proficient at solving large systems

of equations and will be the focus of this thesis. The original Krylov projection

method is named Conjugate7 Gradient (CG) and was developed by Hestenes and

Stiefel in 1952 (Trefethen and Bau III, 1997). Although it is very efficient and

remains popular, its application is restricted to symmetric positive definite (SPD)

matrices, a prerequisite that makes it unsuited for solving the matrix equations

encountered in fully implicit multiphase flow, whose coefficient matrix is highly

asymmetrical and indefinite (Stüben et al., 2007). For this reason, modern reservoir

simulators must employ newer, more versatile methods, that combine speed with

the ability to tackle complex problems. The focus of this research will be the study

of three particular methods that tend to best encompass these characteristics, of

efficiency and robustness, and which are most commonly applied to current

reservoir simulators (Jackson et al., 2014; SPE – Reservoir Simulation Linear

Equation Solver). Specifically, it shall compare the performance of the following

algorithms: (i) ORTHOMIN, (ii) GMRES and (iii) BiCGSTAB.

The necessity of comparing different methods such as these stems from the

fact that there is not a fundamental rule determining an overall best method. The

performance of the methods is strongly related to the application in which they are

used, with each method possibly being the one most suited for a specific class of

problems, while being the worst one for a separate class (Berrett et al., 1994).

Furthermore, as computer processing power improves, the difference in

performance between methods of different quality tends to be accentuated; thus, as

the computer becomes faster, the more important it becomes to optimize the

numerical solver (Trefethen and Bau III, 1997).

One straightforward manner of comparing the different methods would be

through the cost required for them to perform each iteration step. Table 3.1

summarizes both the computational cost, in terms of the various operations

involved in the algorithms, and the memory necessary for each method to be

executed.

7 Conjugate Vectors – Two non-zero vectors 𝑝 ∈ ℛ𝑚 and 𝑞 ∈ ℛ𝑚 are defined as being conjugate

with respect to matrix 𝐴 if the following property holds true: 𝑝𝑇𝐴𝑞 = 0.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

67

Table 3.1 – Computational cost and memory requirement of the iterative methods studied.

 Computational Cost

Iterative

Method
MV AXPY DOT

Memory

Requirement

ORTHOMIN(k) 2 ~ 2 + k/2 ~ 3 + k/2 1 + 2k

GMRES(k) 1 ~ k/2 ~ 1½ + k/2 2 + k

BiCGSTAB 2 6 6 7

Here, Memory Requirement represents the number of additional vectors that

must be stored (excluding 𝒙 and 𝒃); MV represents the number of matrix-vector

multiplications; AXPY represents the number of vector additions and subtractions,

combined with a scalar multiplication; and DOT represents the total number of

inner products and vector norm calculations performed.

Although this table may serve as a reference for the cost of using any

particular method, the number of necessary iteration steps to solve a given reservoir

problem will vary between algorithms. Hence, to accurately assess their

performances, it is essential to compare the total runtime demanded by each one of

them. This entails running them on an actual simulator, using sample reservoir

models, and analyzing the times required for their convergence. These tests and

their results will be detailed in Chapter 5.

With regards to the convergence capability of the methods examined, in

contrast to the CG method, whose result is assured to converge after at most 𝑚

iterations, these do not have a well-established general convergence theory; in fact,

they may even diverge altogether. This behavior is often related to the conditioning

of the coefficient matrix, which may be expressed by the matrix’s condition number

𝜅(𝑨), an attribute related to the perturbation behavior of the problem.

To visualize this, matrix equation (3.1) may be seen as a function mapping an

independent vector 𝒙 onto a resulting vector 𝒃

 𝒙 → 𝑓(𝒙) = 𝒃 (3.15)

For a well-conditioned problem, small perturbations in 𝒙 lead to only small

perturbations in 𝑓(𝒙), while in ill-conditioned problems they may lead to large

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

68

perturbations (Trefethen and Bau III, 1997). The condition number of a matrix is

defined as

 𝜅(𝑨) = ‖𝑨‖ ∙ ‖𝑨−1‖ =
𝜎𝑚𝑎𝑥
𝜎𝑚𝑖𝑛

 (3.16)

where 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 represent the maximum and minimum singular values,

respectively. Alternatively, if matrix 𝑨 is normal (that is, 𝑨𝑨𝑇 = 𝑨𝑇𝑨), then it may

also be written as

 𝜅(𝑨) =
‖𝜆𝑚𝑎𝑥‖

‖𝜆𝑚𝑖𝑛‖
 (3.17)

where 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 represent the maximum and minimum eigenvalues,

respectively.

The smaller the condition number, the more concentrated the spectrum of the

matrix (the smaller the spectral radius8), and thus the better conditioned it is.

Unfortunately, the Jacobian matrices built during each step of Newton’s Iteration

are generally very ill-conditioned. This implies that if one attempts to solve the

corresponding system of linear equations straightaway with one of the algorithms

mentioned here, there is a high probability that the iterative method will stagnate.

Indeed, in practical applications, these methods are rarely functional without the aid

of a preconditioner. The aim of the preconditioner is, just as the name suggests, to

better condition the problem before attempting to solve it or, in other words, to

reduce its condition number. This theme will be further explored in 87 and different

preconditioning strategies shall be evaluated. Preconditioning is of such importance

to the solution methods that oftentimes they are tailored to the specific application

at hand and, frequently, constructing the preconditioning matrix and performing

calculations with it essentially consumes more time than the underlying iterative

method itself (Stüben et al., 2007). For this reason, the iterative algorithms are

8 Spectrum of a Matrix – Refers to its complex set of eigenvalues, with the Spectral Radius

representing the magnitude of the largest eigenvalue.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

69

sometimes called accelerators and the numerical solvers for a specific problem are

actually named after the preconditioning strategy.

Nonetheless, for now this feature will be simply integrated directly into the

original versions of the aforementioned methods, to form their respective

preconditioned versions. This entails that one or more steps of the algorithm will

consist of pre-multiplying some vector 𝒓 by 𝑴−1, where 𝑴 is the preconditioning

matrix, to obtain a resulting vector 𝒒. The cost of preconditioning, in terms of the

number of times it is applied per iteration, is presented in Table 3.2 for each method.

Table 3.2 – Computational cost of applying a

preconditioner to the iterative methods.

 Computational Cost

Iterative Method Preconditioning

ORTHOMIN(k) 1

GMRES(k) 1

BiCGSTAB 2

The memory requirement associated with the preconditioners may vary

widely. It may be as inexpensive as storing a single extra vector, or as costly as

storing an additional matrix the size of 𝑨; and eventually even larger. More will be

said of this in Chapter 5.

3.2.1
ORTHOMIN Method

Prior to the development of the ORTHOMIN method by Vinsome (1976),

SIP was the most commonly used method in reservoir simulators. This new method,

based on the minimization of the residual vector computed at each iteration level,

proved not only to be very competitive for solving reservoir problems, but also

introduced a set of advantages to previous methods in use, such as (i) not depending

on arbitrary iteration parameters, whose optimal value needed to be estimated; (ii)

its convergence is insensitive to transmissibility ratios and asymmetry of the

coefficient matrix; (iii) and being applicable to matrices with any number of

diagonal bands (Vinsome, 1976).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

70

Ultimately, the aim of the method is to minimize the following objective

function

 ‖𝒓𝑛+1‖ = ‖𝒓𝑛 − 𝛼𝑨𝒒𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.18)

Therefore, the step-length 𝛼 used to advance from one intermediate solution

𝒙𝑛 to the next 𝒙𝑛+1

 𝒙𝑛+1 = 𝒙𝑛 + 𝛼𝒒𝑛 (3.19)

may be determined directly from

 (𝑨𝒒𝑛)
𝑇 ∙ (𝒓𝑛) = (𝑨𝒒𝑛)

𝑇 ∙ (𝛼𝑨𝒒𝑛) (3.20)

which, in turn, also implies that the new residual vector 𝒓𝑛+1 computed at each step

 𝒓𝑛+1 = 𝒓𝑛 − 𝛼𝑨𝒒𝑛 (3.21)

will be orthogonal to the previous projection vector 𝑨𝒒𝑛.

Furthermore, at every iteration step the new search vector 𝒒𝑛 is constructed

in a manner so that its 𝑨-projection is orthogonal to all of the previously generated

projections ((𝑨𝒒𝑛) ⊥ (𝑨𝒒𝑖) , ∀ 𝑖 < 𝑛). This attempts to optimize the search for the

true solution by covering an ample search region.

On the other hand, this manner of selecting the search vectors leads to a

marked disadvantage of the method, which is the fact that, as the iterative process

progresses, the additional storage requirement to keep all of the previous vectors

may become significant, potentially growing to the size of the original coefficient

matrix. Moreover, this feature also means that an increasing number of

orthogonality coefficients 𝛽 must be calculated each time, which causes the

orthogonalization process to become increasingly more costly and susceptible to

rounding errors (Vinsome, 1976).

However, in practice, these orthogonalized projection vectors do not need to

all be stored, and the method may be constrained so as to maintain only the previous

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

71

𝑘 vectors, without losing its ability to converge. This leads to the ORTHOMIN(k)

variation of the method. There is no theory as of yet on an optimal number for the

parameter 𝑘, though traditionally it is set at some pre-established level and kept

constant throughout the process. For this research a novel approach was taken, as

introduced by Baker et al. (2009), in which the reset parameter is permitted to vary

between cycles. Although it was originally proposed for the GMRES(k) method,

this same concept is also applicable for ORTHOMIN(k), and was found to

accelerate the convergence rate when compared to a fixed reset strategy.

The idea behind the procedure is that the drop in the residual norm between

iterations is correlated to the angle between their residual vectors

 cos ∠(𝒓𝑛+1, 𝒓𝑛) =
‖𝒓𝑛+1‖

‖𝒓𝑛‖
= 𝛾 (3.22)

where 𝛾 is the convergence rate, and where smaller values represent faster

convergence.

If the reduction in the residual norm is significative, then the angle between

the residual vectors should be large. To the limit, if consecutive residual vectors are

determined to be orthogonal, then an exact solution has been found.

The strategy consists of varying the reset parameter 𝑘 between a maximum

value 𝑘𝑚𝑎𝑥 and a minimum value 𝑘𝑚𝑖𝑛, through steps of size 𝛿, depending on the

quality of the rate of convergence. It starts by adopting 𝑘 = 𝑘𝑚𝑎𝑥 and then

gradually decreasing it every time that the convergence rate between cycles is worse

than 𝛾𝑚𝑖𝑛, but better than 𝛾𝑚𝑎𝑥, until the limit of 𝑘 = 𝑘𝑚𝑖𝑛 is reached. Alternatively,

if convergence is better than 𝛾𝑚𝑖𝑛 then 𝑘 is left unaltered, while if convergence is

worse than 𝛾𝑚𝑎𝑥 then 𝑘 is reset back directly to its maximum value 𝑘𝑚𝑎𝑥. Similarly,

once 𝑘 reaches its minimum value 𝑘𝑚𝑖𝑛, if a further attempt is made to reduce it,

instead of doing so the procedure resets it directly back to 𝑘𝑚𝑎𝑥.

The values of these parameters were originally chosen from the authors’

recommendations, with 𝑘𝑚𝑎𝑥 = 30, which is a typical value for the reset parameter

in any case; 𝑘𝑚𝑖𝑛 = 3; 𝛿 = 3; 𝛾𝑚𝑖𝑛 = cos(80°) ≈ 0.175; and 𝛾𝑚𝑎𝑥 = cos(8°) ≈

0.99. They were further tested for optimization in this work, but since they were

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

72

found to provide the best results in several cases, they were maintained as

suggested.

The pseudocode of the preconditioned ORTHOMIN method implemented is

presented in Algorithm 3.1 (Ertekin et al., 2001). Besides the different resetting

strategy, a second alteration was made to the original version of the algorithm

presented in literature. In particular, whenever starting a new reset cycle, the first

search vector is taken directly as the final search vector of the previous cycle,

instead of being computed anew from the final residual vector of the previous cycle.

This adaptation was found to consistently aid convergence in the test cases

performed.

As a note, the matrix storage format adopted for the work done in this research

was the traditional Compressed Sparse Row (CSR) format. In it, matrices are not

stored in their full forms, with all zero and non-zero entries arranged according to

their coordinate positions. Instead, it represents the matrices in an abstract manner,

through the use of three auxiliary vectors: (i) row_ptr, which stores the address of

where the first non-zero in each row is located; (ii) col_ind, which stores the column

index of the non-zero terms sequentially, row by row; and (iii) nz_values, which

keeps the actual values of the non-zero entries, also grouped row wise.

Consequently, all mathematical operations done on the matrices, as well as the

construction of the different preconditioning matrices, had to be tailored to conform

to this format.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

73

Algorithm 3.1 – Preconditioned ORTHOMIN Iterative Method.

𝒙0 = 0

𝒓0 = 𝒃 − 𝑨𝒙0

𝒒0 = 𝑴−1𝒓0

𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (‖𝒓0‖ < 𝜂 ∙ ‖𝒃‖)

𝜌 = ‖𝒓0‖, 𝛾 = 1

𝐰𝐡𝐢𝐥𝐞 𝑗 < 𝑖𝑡𝑒𝑟_𝑙𝑖𝑚

𝑇𝑒𝑠𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝛾) 𝑎𝑛𝑑 𝑎𝑑𝑗𝑢𝑠𝑡 𝑐𝑦𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑘) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑙𝑦

𝐟𝐨𝐫 𝑗 = 0 𝐭𝐨 𝑘

 𝛼 =
〈𝒓𝑗 ∙ 𝑨𝒒𝑗〉

〈𝑨𝒒𝑗 ∙ 𝑨𝒒𝑗〉

 𝒙𝑗+1 = 𝒙𝑗 + 𝛼𝒒𝑗

 𝒓𝑗+1 = 𝒓𝑗 − 𝛼𝑨𝒒𝑗

 𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (‖𝒓𝑗‖ < 𝜂 ∙ ‖𝒃‖)

 𝐟𝐨𝐫 𝑖 = 0 𝐭𝐨 𝑗

 𝛽𝑖 =
〈𝑨𝑴−1𝒓𝑗+1 ∙ 𝑨𝒒𝑖〉

〈𝑨𝒒𝑖 ∙ 𝑨𝒒𝑖〉

 𝐞𝐧𝐝

 𝒒𝑗+1 = 𝑴
−1𝒓𝑗+1 + ∑ (𝛽𝑖𝒒𝑗)

𝑗
𝑖=𝑗−𝑘+1

𝐞𝐧𝐝

𝛾 =
‖𝒓𝑘‖

𝜌

𝜌 = ‖𝒓𝑘‖

𝒒0 = 𝒒𝑘

𝐞𝐧𝐝

3.2.2
GMRES Method

The Generalized Minimum Residual method is an extension of the Minimum

Residual (MINRES) method, which had been developed for symmetric matrices, to

encompass asymmetric ones. It was first introduced by Saad and Schultz (1986)

and it is also based upon the successive minimization of the residual vector over

each iteration step. This means that the magnitude of the residual vector decreases

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

74

monotonically as the iterations progress, and that after 𝑚 steps the method is

assured to converge:

 ‖𝒓𝑛+1‖ ≤ ‖𝒓𝑛‖ (3.23)

The problem of minimizing the residual vector is analogous to a least square

problem. The algorithm commences with the following objective function

 ‖𝒃 − 𝑨𝒙𝑛‖ = ‖𝒃 − 𝑨(𝒙0 +𝒦𝑛)‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.24)

Then, the vector belonging to the Krylov subspace that takes the solution

vector from 𝒙0 to 𝒙𝑛 is substituted for the product of an orthonormal9 matrix 𝑽𝑛 of

dimension (𝑚 × 𝑛), whose columns span the Krylov subspace 𝒦𝑛, and an unknown

vector 𝒚𝑛

 ‖𝒃 − 𝑨(𝒙0 + 𝑽𝑛𝒚𝑛)‖ = ‖𝒓0 − 𝑨𝑽𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.25)

Note that the term inside the parenthesis is equivalent to

𝒙𝑛 = 𝒙0 + 𝑆𝑝𝑎𝑛{𝒗1, 𝒗2, … , 𝒗𝑛}

= 𝒙0 + 𝜓1𝒗1 + 𝜓2𝒗2 +⋯+ 𝜓𝑛𝒗𝑛
(3.26)

where 𝜓𝑛 represents the 𝑛-th entry of the vector 𝒚𝑛.

The columns of the orthogonal matrix 𝑽𝑛 can be constructed one at a time by

applying a procedure known as the Arnoldi Iteration, which consists of sequentially

reducing matrix 𝑨 to Hessenberg10 form 𝑯̃𝑛

 𝑨𝑽𝑛 = 𝑽𝑛+1𝑯̃𝑛 (3.27)

9 Orthonormal Matrix – A matrix whose columns consist of orthogonal unit vectors; that is, vectors

whose norm equals one.

10 Hessenberg Matrix – A nearly triangular matrix that also has the first opposite sub-diagonal filled

with nonzero values. A matrix may possess either upper or lower Hessenberg form.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

75

where 𝑯̃𝑛 has the following format

 𝑯̃𝑛 =

[

ℎ11 ⋯ 0 ℎ1𝑛
ℎ21 ℎ22 0 ⋮
0 ⋱ ⋱ 0
0 0 ℎ𝑛,𝑛−1 ℎ𝑛𝑛
0 0 0 ℎ𝑛+1,𝑛]

 (3.28)

This recursive process generates a new column 𝒗𝑛+1 at each step, which can

be computed by the following relationship involving the columns calculated at the

previous steps

 𝑨𝒗𝑛 = ℎ1𝑛𝒗1 +⋯+ ℎ𝑛𝑛𝒗𝑛 + ℎ𝑛+1,𝑛𝒗𝑛+1 (3.29)

The Arnoldi Iteration that generates 𝒗𝑛+1 is ultimately a modified Gram-

Schmidt orthogonalization procedure that implements the relationship described in

Equation (3.29). As an alternative, orthogonalization could be performed using

Householder Triangularization, but this option was not investigated further in this

research.

Because even a modified Gram-Schmidt procedure may still suffer from loss

of orthogonality due to round-off errors, a test for loss of orthogonality was

implemented into the Arnoldi Iteration, as suggested by Kelly (1995). If ever such

a loss was detected, the vectors would then be submitted to a re-orthogonalization

process. The verification criteria for this correction is presented in Equation (3.30)

 ‖𝑨𝒗𝑛‖ + 𝜀‖𝒗𝑛+1‖ = ‖𝑨𝒗𝑛‖ (3.30)

where 𝜀 represents the numerical tolerance for orthogonalization breakdown. Here

this parameter was adopted to be 𝜀 = 10−32.

Once the Arnoldi Iteration is complete, the problem is transformed into

 ‖𝒓0 − 𝑽𝑛+1𝑯̃𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.31)

The first unitary vector 𝒗1 may be defined conveniently as

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

76

 𝒗1 =
𝒓0
‖𝒓0‖

=
𝒓0
𝛽

 (3.32)

and the problem thus rewritten to

 ‖𝛽𝒗1 − 𝑽𝑛+1𝑯̃𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.33)

Since both vectors inside the norm are contained within the column space of

𝑽𝑛+1, multiplying on the left by its transpose does not alter the magnitude of the

norm (Trefethen and Bau III, 1997). Given that 𝑽𝑛+1 is orthonormal, this equates

to

 ‖𝑽𝑛+1
𝑇𝛽𝒗1 − 𝑯̃𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.34)

which, by construction of 𝑽𝑛+1 (since 𝒗1 is orthogonal to all other 𝒗𝑖), is also

equivalent to

 ‖𝛽𝒆1 − 𝑯̃𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.35)

where 𝒆1 is the canonical vector pointing towards the first direction (1, 0,0, …)𝑇.

Therefore, the challenge is to now find a minimizer 𝒚𝑛 that suits Equation

(3.35). This is a much less costly task than solving the original problem, because

the problem dimensions have now been reduced from 𝑚×𝑚 to (𝑛 + 1) × 𝑛, where

𝑛 ≪ 𝑚.

A simple manner of obtaining this minimizer is applying 𝑄𝑅 factorization to

the Hessenberg matrix, by way of plane rotations (Saad and Schultz, 1986). The

idea here is to pre-multiply 𝑯̃𝑛 by the following rotational matrix 𝑭𝑛 at each step

of the iteration

 𝑭𝑛 = [

1 0 0 0
0 ⋱ 0 0
0 0 𝑐𝑛 −𝑠𝑛
0 0 𝑠𝑛 𝑐𝑛

] (3.36)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

77

where 𝑐𝑛 = cos(𝜃𝑛) and 𝑠𝑛 = sin(𝜃𝑛); and where the angle of rotation 𝜃𝑛 is chosen

so as to eliminate the new element created in the last row of 𝑯̃𝑛.

Now, if the sequence of rotations applied throughout the iterative process is

defined as

 𝑸𝑛 = 𝑭1 ∙ 𝑭2… ∙ 𝑭𝑛 (3.37)

then one has that

 𝑸𝑛𝑯̃𝑛 = 𝑹𝑛 (3.38)

where 𝑹𝑛 has the following structure

 𝑹𝑛 =

[

𝑟11 𝑟12 ⋯ 𝑟1,𝑛−1 𝑟1,𝑛
0 𝑟22 ⋯ 𝑟2,𝑛−1 𝑟2,𝑛
0 0 ⋱ ⋮ ⋮
0 0 0 𝑟𝑛−1,𝑛−1 𝑟𝑛−1,𝑛
0 0 0 0 𝑟𝑛,𝑛
0 0 ⋯ 0 0]

 (3.39)

Finally, the problem may be converted into

 ‖𝑸𝑛𝛽𝒆1 − 𝑸𝑛𝑯̃𝑛𝒚𝑛‖ = ‖𝒈𝑛 − 𝑹𝑛𝒚𝑛‖ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (3.40)

where

 𝒈𝑛 = 𝑸𝑛𝛽𝒆1 (3.41)

represents a transformed right-hand side.

It is important to note that it is not necessary to explicitly recalculate 𝒈𝑛 and

𝑹𝑛 in their entireties at every iteration, since the latest rotation to be applied,

corresponding to the current iteration, will solely affect the final two elements of

𝒈𝑛 and the final column of 𝑹𝑛. On the other hand, the final column of 𝑹𝑛 added at

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

78

each iteration will also need to be updated with respect to all of the previous

rotations (Saad and Schultz, 1986).

At each iteration, if the column being added to 𝑯̃𝑛+1, and consequently to

𝑹𝑛+1, is represented by

 𝒉𝑛+1 =

[

𝑟1,𝑛+1
𝑟2,𝑛+1
⋮

𝑟𝑛,𝑛+1
𝑟𝑛+1,𝑛+1
ℎ𝑛+2,𝑛+1]

 (3.42)

then the rotation necessary to eliminate its last element may be determined by the

following definitions of the terms comprising the rotational matrix 𝑭𝑛+1:

𝑐𝑛+1 =

𝑟𝑛+1,𝑛+1

√(𝑟𝑛+1,𝑛+1)
2
+ (ℎ𝑛+2,𝑛+1)

2

(3.43)

and

𝑠𝑛+1 =

−ℎ𝑛+2,𝑛+1

√(𝑟𝑛+1,𝑛+1)
2
+ (ℎ𝑛+2,𝑛+1)

2

(3.44)

Once the rotations have been performed, the least square problem takes the

format of an upper triangular system, which can consequently be solved without

much effort via backwards substitution, by simply disregarding the last row of 𝑹𝑛

and the last element of 𝒈𝑛. The resulting vector is the minimizer 𝒚𝑛, with whom it

is possible to subsequently determine the solution vector at the current step

 𝒙𝑛 = 𝒙0 + 𝑽𝑛𝒚𝑛 (3.45)

Afterwards, the residual 𝒓𝑛 at that same step could theoretically be computed,

to verify if convergence has been reached satisfactorily. However, due to the

manner with which 𝒚𝑛 is constructed, the norm of the residual is actually available

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

79

at every iteration at no additional cost. It can be obtained directly as the final

element of the vector 𝒈𝑛. Therefore, the repetitive calculation of 𝒚𝑛, 𝒙𝑛 and 𝒓𝑛 per

iteration step are not required, except once convergence has been successfully

achieved, which can be easily established by the value of the (𝑛 + 1) component

of 𝒈𝑛.

Furthermore, the only situation where the algorithm may breakdown, which

would occur if element ℎ𝑛+1,𝑛 equals zero during the Arnoldi process (because then

𝒗𝑛 can no longer be built recursively), can be demonstrated to mean that the

algorithm has in fact converged. Thus, in this instance 𝒙𝑛 may be considered to be

the exact solution to the problem (Trefethen and Bau III, 1997).

The final issue to be tackled with the algorithm presented is the fact that, as

the process advances, the number of vectors 𝒗𝑛 that must be stored increases

continuously. Since these vectors have dimension 𝑚, the storage cost may become

prohibitive if too many iterations are required for convergence, similar to the

ORTHOMIN(k) case. To remedy this, the key is to reset the method after a pre-

determined 𝑘 number of steps and use the latest solution prior to reset 𝒙𝑘 as the new

initial guess in the next cycle. This leads to the GMRES(k) version of the method.

The reset strategy adopted for the GMRES(k) method is identical as the one

described for ORTHOMIN(k), with the exception of two parameters. Here the

maximum reset value was altered to 𝑘𝑚𝑎𝑥 = 50 and the minimum to 𝑘𝑚𝑖𝑛 = 5.

This was due to the results of some test cases performed, that found these higher

values to improve the convergence rate of the problems.

The pseudocode of the preconditioned GMRES method implemented is

presented in Algorithm 3.2 (Saad and Schultz, 1986; Barrett et al., 1994).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

80

Algorithm 3.2 – Preconditioned GMRES Iterative Method.

𝒙0 = 0, 𝑗 = 0, 𝛾 = 1

𝒓0 = 𝒃 − 𝑨𝒙0, 𝛽 = ‖𝑴−1𝒓0‖, 𝛼 = 𝛽

𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝛽 < 𝜂 ∙ ‖𝑴−1𝒃‖)

𝐰𝐡𝐢𝐥𝐞 𝑗 < 𝑖𝑡𝑒𝑟_𝑙𝑖𝑚

 𝒗0 =
𝒓0

𝛽
, 𝒈 = 0, 𝒈[0] = 𝛽, 𝑗 = 𝑗 + 1

 𝑇𝑒𝑠𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝛾) 𝑎𝑛𝑑 𝑎𝑑𝑗𝑢𝑠𝑡 𝑐𝑦𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 (𝑘) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑙𝑦

 𝐟𝐨𝐫 𝑖 = 0 𝐭𝐨 𝑘

 𝒗𝑖+1 = 𝑴
−1(𝑨𝒗𝑖)

 𝐟𝐨𝐫 𝑤 = 0 𝐭𝐨 𝑖

 𝑯̃[𝑤, 𝑖] = 〈𝒗𝑖+1 ∙ 𝒗𝑤〉

 𝒗𝑖+1 = 𝒗𝑖+1 − 𝑯̃[𝑤, 𝑖]𝒗𝑤

 𝐞𝐧𝐝

 𝑇𝑒𝑠𝑡 𝑓𝑜𝑟 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑓 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦

 𝑯̃[𝑖 + 1, 𝑖] = ‖𝒗𝑖+1‖

 𝒗𝑖+1 =
𝒗𝑖+1

‖𝒗𝑖+1‖

 𝐟𝐨𝐫 𝑤 = 0 𝐭𝐨 𝑖

 𝐺𝑖𝑣𝑒𝑛𝑠_𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑯̃[𝑤, 𝑖], 𝑯̃[𝑤 + 1, 𝑖], 𝑐[𝑖], 𝑠[𝑖])

 𝐞𝐧𝐝

 𝐺𝑖𝑣𝑒𝑛𝑠_𝐵𝑢𝑖𝑙𝑑(𝑯̃[𝑖, 𝑖], 𝑯̃[𝑖 + 1, 𝑖], 𝑐[𝑖], 𝑠[𝑖])

 𝐺𝑖𝑣𝑒𝑛𝑠_𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑯̃[𝑖, 𝑖], 𝑯̃[𝑖 + 1, 𝑖], 𝑐[𝑖], 𝑠[𝑖])

 𝐺𝑖𝑣𝑒𝑛𝑠_𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝒈[𝑖], 𝒈[𝑖 + 1], 𝑐[𝑖], 𝑠[𝑖])

 𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (|𝒈[𝑖 + 1]| < 𝜂 ∙ ‖𝑴−1𝑏‖)

 𝐞𝐧𝐝

 𝛾 =
|𝒈[𝑖+1]|

𝛼

 𝛼 = |𝒈[𝑖 + 1]|

 𝐿𝑒𝑎𝑠𝑡_𝑆𝑞𝑢𝑎𝑟𝑒_𝑈𝑝𝑑𝑎𝑡𝑒(𝑯̃, 𝒈, 𝑽, 𝑖 − 1) → 𝒚 → 𝒙𝑗

 𝒓0 = 𝒃 − 𝑨𝒙𝑗

 𝛽 = ‖𝑴−1𝒓0‖

 𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝛽 < 𝜂 ∙ ‖𝑴−1𝒃‖)

𝐞𝐧𝐝

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

81

3.2.3
BiCGSTAB Method

The most modern of the iterative methods implemented was the Biconjugate

Gradient Stabilized algorithm. It was devised by Henk Van der Vorst (1992) as an

improvement over the previously known Biconjugate Gradient (BCG) method by

Lanczos, dating from 1952, the Conjugate Gradient Squared (CGS) method by

Sonneveld, dating from 1989, the and Quasi-Minimal Residual (QMR) method by

Freund and Nachtigal, dating from 1991. It was devised to smooth the oftentimes

erratic convergence rate of some of the other methods, and to avoid matrix

operations on the transpose of 𝑨 (Barrett et al., 1994; Sleijpen and Fokkema, 1993).

All of these methods listed are efforts to generalize the CG method for

nonsymmetrical matrices and are based on three-term recurrences, which may be

considered to be the most powerful nonsymmetrical approach currently available

(Trefethen and Bau III, 1997). Further variations of the BiCGSTAB method that

were later developed, such as BiCGSTAB2 by Gutknecht (1993) and

BiCGSTAB(L) by Sleijpen and Fokkema (1993), were not incorporated to the

algorithm in this research. The main reason for this was due to greater focus being

devoted to the different preconditioning strategies, rather than to the underlying

iterative method.

Biorthogonalization11 processes are generally based on the Lanczos Iteration,

which attempts to reduce a Hermitian matrix to unitary, tridiagonal form. However,

when dealing with matrices that are not Hermitian in nature, this reduction is

normally not achievable to full extent; requiring a compromise between either

keeping the unitary transformations or the tridiagonal form. The Hessenberg

orthogonalization of GMRES does the former (resulting in the Arnoldi Iteration),

whereas biorthogonalization procedures rely on the latter, leading to a non-unitary

tridiagonal biorthogonalization (Trefethen and Bau III, 1997):

 𝑨 = 𝑽𝑻𝑽−1 (3.46)

11 Biorthogonal Matrix – A matrix 𝑉 whose columns are not orthogonal to each other, but are

instead orthogonal to the columns of (𝑉−1)𝑇 .

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

82

or, when 𝑛 < 𝑚,

 𝑨𝑽𝑛 = 𝑽𝑛+1𝑻̃𝑛 (3.47)

where the columns of 𝑽 are orthogonal to the columns of (𝑽−1)𝑇 – even though

they are not unitary; and 𝑻̃𝑛 is a tridiagonal matrix.

Similarly, we have

 𝑨𝑇𝑾𝑛 = 𝑾𝑛+1𝑺̃𝑛 (3.48)

where 𝑺̃𝑛 is tridiagonal; and

 𝑾 = (𝑽−1)𝑇 (3.49)

Analogously to GMRES, the new vectors 𝒗𝑛+1 and 𝒘𝑛+1 that comprise the

matrices in Equation (3.47) and Equation (3.48) may be obtained recursively, but

now limited to just three-terms (as opposed to the entire sequence of terms that

came before it)

 𝑨𝒗𝑛 = 𝛾𝑛−1𝒗𝑛−1 + 𝛼𝑛𝒗𝑛 + 𝛽𝑛𝒗𝑛+1 (3.50)

and

 𝑨𝒘𝑛 = 𝛽𝑛−1𝒘𝑛−1 + 𝛼𝑛𝒘𝑛 + 𝛾𝑛𝒘𝑛+1 (3.51)

where 𝛼𝑛 are the coefficients in the main diagonal of 𝑻̃𝑛 and 𝑺̃𝑛; 𝛽𝑛 are the

coefficients in the first lower diagonal of 𝑻̃𝑛 and first upper diagonal of 𝑺̃𝑛; and 𝛾𝑛

are the coefficients in the first upper diagonal of 𝑻̃𝑛 and first lower diagonal of 𝑺̃𝑛.

Thus, the vectors formed in the process will belong to the two Krylov

subspaces specified in Equations (3.52) – (3.53)

 𝒗𝑛 ∈ 𝑆𝑝𝑎𝑛{𝒗1, 𝑨𝒗1, … , 𝑨
𝑛−1𝒗1} (3.52)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

83

and

 𝒘𝑛 ∈ 𝑆𝑝𝑎𝑛{𝒘1, 𝑨
𝑇𝒘1, … , (𝑨

𝑇)𝑛−1𝒘1} (3.53)

Contrary to the procedure applied in GMRES, in which the basis vectors were

forcibly made to be orthogonal via Gram-Schmidt orthogonalization, the process

described by Equations (3.50) – (3.51) depends on the orthogonality of the basis

vectors arising automatically. In practice, this may not occur due to the

accumulation of rounding errors over time and the method may be prone to

stagnation and numerical breakdown. This occurs, for example, if 𝒗𝑛 = 0 or 𝒘𝑛 =

0 at some step (Trefethen and Bau III, 1997).

The process that was just introduced describes the concept behind the BCG

method. The stabilized version of this biorthogonalization adjusts the recursive

procedure presented, so as not to involve calculations with the transpose of matrix

𝑨.

The complete derivation of BiCGSTAB is not as straightforward as those of

the previous algorithms and shall not be performed in full. Nevertheless, perhaps

just as valuable is its comparison to the more easily comprehended CG algorithm.

Considering the CG method, in which the solution is updated via

 𝒙𝑛+1 = 𝒙𝑛 + 𝛼𝑛𝒑𝑛 (3.54)

and the residual vector via

 𝒓𝑛+1 = 𝒓𝑛 − 𝛼𝑛𝑨𝒑𝑛 (3.55)

where 𝒑𝑛 represents a search vector belonging to the Krylov subspace; and 𝛼𝑛

represents the step-length (calculated in a manner so that the residual vectors 𝒓𝑛+1

and 𝒓𝑛 are orthogonal to each other), in BiCGSTAB these relations can be rewritten

as

 𝒙𝑛+1 = 𝒙𝑛 + 𝛼𝑛𝒑𝑛 + 𝜔𝑛𝒔𝑛 (3.56)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

84

and

 𝒓𝑛+1 = 𝒓𝑛 − 𝛼𝑛𝑨𝒑𝑛 − 𝜔𝑛𝑨𝒔𝑛 (3.57)

where there are now two search vectors 𝒑𝑛 and 𝒔𝑛; and where 𝛼𝑛 and 𝜔𝑛 are their

respective step-length coefficients. However, here 𝒔𝑛 can also be considered to

represent an intermediate version of the residual vector. It is easy to see this if one

compares its definition

 𝒔𝑛+1 = 𝒓𝑛 − 𝛼𝑛𝑨𝒑𝑛 (3.58)

with the definition of the residual 𝒓𝑛+1 given in Equation (3.55), for the CG

algorithm. This definition of 𝒔𝑛 also leads to the following relationship

 𝒓𝑛+1 = 𝒔𝑛+1 − 𝜔𝑛𝑨𝒔𝑛 (3.59)

Therefore, the coefficient 𝜔𝑛 can be seen, additionally, as a parameter to

smooth the convergence rate by minimizing the residual norm. It is calculated so as

to take the steepest descent step in the direction of the intermediate residual 𝒔𝑛

(Saad, 2003).

Finally, the search direction vector in CG is updated via

 𝒑𝑛+1 = 𝒓𝑛+1 + 𝛽𝑛𝒑𝑛 (3.60)

where 𝛽𝑛 may be calculated based on the fact (also valid for BiCGSTAB) that 𝒑𝑛+1

is constructed orthogonal to the current projection vector 𝑨𝒑𝑛 – meaning that they

are 𝑨-conjugate by definition:

 𝒑𝑛+1
𝑇𝑨𝒑𝑛 = 0 (3.61)

Thus, its definition in CG becomes

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

85

 𝛽𝑛 =
𝒓𝑛+1

𝑇 ∙ 𝒓𝑛+1
𝒓𝑛𝑇 ∙ 𝒓𝑛

 (3.62)

where 𝛽𝑛 may be seen to represent the improvement in the residual reduction

obtained in the current step (since it is the ratio of the current and previous norms).

Comparatively, BiCGSTAB updates the search direction vectors via

 𝒑𝑛+1 = 𝒓𝑛+1 + 𝛽𝑛𝒑𝑛 − 𝛽𝑛𝜔𝑛𝑨𝒑𝑛 (3.63)

and, as stated in Equation (3.58), via

 𝒔𝑛+1 = 𝒓𝑛 − 𝛼𝑛𝑨𝒑𝑛 (3.64)

Consequently, the definition of 𝛽𝑛 is somewhat altered to

 𝛽𝑛 =
𝜌̃𝑛+1
𝜌̃𝑛

∙
𝛼𝑛
𝜔𝑛

 (3.65)

which includes the previously identified parameters 𝛼𝑛 and 𝜔𝑛, as well as the term

𝜌̃𝑛+1

𝜌̃𝑛
, which from the definition of 𝜌̃𝑛

 𝜌̃𝑛 = 𝒓𝑛
𝑇 ∙ 𝒓0 = 〈𝒓𝑛 ∙ 𝒓0〉 (3.66)

may also be seen to represent an improvement in residual reduction, similarly to

CG (Saad, 2003; and Yuvashankar et al., 2016).

The pseudocode of the preconditioned BiCGSTAB method implemented is

presented in Algorithm 3.3 (Barrett et al., 1994).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

86

Algorithm 3.3 – Preconditioned BiCGSTAB Iterative Method.

𝒙0 = 0, 𝜌0 = 1,

𝒓0 = 𝒃 − 𝑨𝒙0

𝒓̂0 = 𝒓0, 𝒑1 = 𝒓0

𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥

 𝜌𝑖 = 〈𝒓̂0 ∙ 𝒓𝑖−1〉

 𝑇𝑒𝑠𝑡 |𝜌𝑖| 𝑓𝑜𝑟 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛

 𝐢𝐟 𝑖 > 1

 𝛽𝑖 =
𝜌𝑖

𝜌𝑖−1
∙
𝛼𝑖−1

𝜔𝑖−1

 𝒑𝑖 = 𝒓𝑖−1 + 𝛽(𝒑𝑖−1 − 𝜔𝑖−1𝒖𝑖−1)

 𝐞𝐧𝐝

 𝒖𝑖 = 𝑨(𝑴
−1𝒑𝑖)

 𝛼𝑖 =
𝜌𝑖

〈𝒓̂0 ∙ 𝒖𝑖〉

 𝒙𝑖 = 𝒙𝑖−1 + 𝛼𝑖(𝑴
−1𝒑𝑖)

 𝒔𝑖 = 𝒓𝑖−1 − 𝛼𝑖𝒖𝑖

 𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (‖𝒔𝑖‖ < 𝜂 ∙ ‖𝒃‖)

 𝒕𝑖 = 𝑨(𝑴−1𝒔𝑖)

 𝜔𝑖 =
〈𝒕𝑖 ∙ 𝒔𝑖〉

〈𝒕𝑖 ∙ 𝒕𝑖〉

 𝑇𝑒𝑠𝑡 |𝜔𝑖| 𝑓𝑜𝑟 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛

 𝒙𝑖 = 𝒙𝑖 + 𝜔𝑖(𝑴
−1𝒔𝑖)

 𝒓𝑖 = 𝒔𝑖 − 𝜔𝑖𝒕𝑖

 𝐶ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (‖𝒓𝑖‖ < 𝜂 ∙ ‖𝒃‖)

𝐞𝐧𝐝

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

4
Preconditioners

Preconditioners form an integral part of any efficient numerical solver

designed to handle linear systems of equations of considerable size. State-of-the-art

preconditioners may be of such complexity that their processing time may even

surpass that of the iterative method with which they are coupled (Trefethen and Bau

III, 1997). However, if well designed, they are capable of significantly reducing the

total time required to solve some of the most challenging problems encountered. In

many instances, their use may be the only manner available to reach a precise

enough solution to a specific problem. Hence, the robustness of the solution method

may actually be much more dependent on the quality of the preconditioner than on

the Krylov projection method employed (Saad, 2003).

As previously explained, the convergence rate of an iterative method depends

on some intrinsic properties of the coefficient matrix, such as the spectrum of its

singular values or its eigenvalues. The concept behind preconditioning is that of

transforming the original linear system into an equivalent one that has a more

favorable spectrum. Consequently, the solution of this equivalent system will be

identical to that of the original system, but should be more easily attained (Barrett

et al., 1994).

Incorporation of the Preconditioner into the Iterative Method

There are several forms of applying a preconditioner to a matrix equation.

The most straightforward one, named left preconditioning, involves the pre-

multiplication of both sides of the original equation by the inverse of the

preconditioning matrix

 𝑴−1𝑨𝒙 = 𝑴−1𝒃 (4.1)

where 𝑴 represents the preconditioning matrix.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

88

Analyzing the transformed Equation (4.1), it should be clear that the

convergence behavior of any iterative method used to solve it will now depend on

the properties of 𝑴−1𝑨, instead of just 𝑨. The ideal situation, in terms of improving

the matrix conditioning, would be the case where 𝑴 = 𝑨, because then 𝑴−1𝑨 = 𝑰,

and the condition number would equal to 𝜅 = 1. Unfortunately, in this case

calculating 𝑴−1𝑨 would be as hard as solving the original problem. Alternatively,

if 𝑴 = 𝑰, then calculating 𝑴−1𝑨 would prove to be trivial, but the condition

number would remain unchanged. Therefore, determining a suitable 𝑴 involves

finding a matrix between these extremes – that is, one that offers a favorable

compromise between being a reasonable approximation of 𝑨 and having an inverse

that is not too costly to obtain. Overall, it is common for 𝑴 to be derived in some

way from the original coefficient matrix 𝑨 (Trefethen and Bau III, 1997).

An alternative form of preconditioning, denoted as right preconditioning,

takes the form

 𝑨𝑴−1𝑴𝒙 = 𝒃 (4.2)

which may be rewritten as

 𝑨𝑴−1𝒚 = 𝒃 (4.3)

with

 𝒙 = 𝑴−1𝒚 (4.4)

This option is usually the preferred one, due to the fact that it does not alter

the residual vector to be minimized in the iterative method and, consequently, does

not require the convergence criteria to be modified (Saad, 2003; and Al-Shaalan et

al., 2009). This can be seen in Equation (4.5) for the right preconditioned case

 𝒓𝑛 = 𝒃 − 𝑨𝑴
−1𝑴𝒙 = 𝒃 − 𝑨𝒙 (4.5)

which in the left preconditioned case would otherwise become

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

89

 𝒓𝑛 = 𝑴−1(𝒃 − 𝑨𝒙) (4.6)

Finally, even further preconditioning options are available, such as a

combination of the previous ones into a two-stage approach. If we now consider

 𝑴 = 𝑴𝐿𝑴𝑅 (4.7)

the equation would then be transformed into

 𝑴𝐿
−1𝑨𝑴𝑅

−1𝑴𝑅𝒙 = 𝑴𝐿
−1𝒃 (4.8)

The direct application of the preconditioner in any of these forms – for

example, by converting the matrix equation into

 𝑨̃ ∙ 𝒙̃ = 𝒃̃ (4.9)

where 𝑨̃ = 𝑴𝐿
−1𝑨𝑴𝑅

−1; 𝒙 = 𝑴𝑅𝒙; and 𝒃̃ = 𝑴𝐿
−1𝒃, and then solving for 𝒙̃ (and

subsequently for 𝒙), is usually not necessary, nor is it practicable. It is preferable

instead to transform the original versions of the iterative algorithms into alternate,

preconditioned versions, where the preconditioner is introduced in the fashion

previously mentioned

 𝑴−1𝒓 = 𝒒 (4.10)

as recurring steps throughout the iterative process. An example demonstrating a

complete derivation of this type of transformation can be found in Golub and Van

Loan’s Matrix Computations (1996). The algorithms exhibited in Chapter 3 already

had the preconditioning step from Equation (4.10) embedded into them, as

explained by Barrett et al. (1994).

This form of preconditioning is of particular importance because often neither

matrix 𝑴 nor its inverse 𝑴−1 are ever actually built. In fact, Equation (4.10) should

not be interpreted as involving the actual multiplication of the inverse of 𝑴 by a

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

90

vector 𝒓, but understood as the solution of a new system of equations

(𝑴𝒒 = 𝒓), whose result will be obtained by exploiting special characteristics of 𝑴.

Furthermore, this latter strategy completely avoids matrix-matrix operations, such

as the ones that would occur if right or left preconditioning were performed directly,

and which are very costly to compute.

Ideally, solving a system of the form of Equation (4.10) several times in the

course of an iterative method should be as inexpensive as possible. Ultimately, it

will be a compromise that involves both the costs of constructing the preconditioner

during an initialization phase as well as applying it at every iteration, versus a

reduction in the number of total iteration steps required for the convergence of the

iterative method. The construction cost varies widely depending on the

preconditioning method (as does the impact it might have on the number of

iterations), while its application normally leads to an increase in the work count by

a constant multiplicative factor per iteration (Barrett et al., 1994).

Survey of Preconditioners

The variety of preconditioners available is very diverse, ranging from

incredibly simple to extremely complex configurations. Their strength, in terms of

being able to solve difficult problems, will normally vary in a corresponding

fashion. This section shall present some of the most commonly used methods

(Trefethen and Bau III, 1997).

The most basic preconditioner is named Jacobi, and consists of building 𝑴

from the main diagonal of the coefficient matrix

 𝑴 = 𝑑𝑖𝑎𝑔(𝑨) (4.11)

This has the significant convenience of requiring the storage of just 𝑚

additional numbers, the equivalent of a single vector in ℛ𝑚. Moreover, the

construction of 𝑴−1 is quite straightforward – its structure is also that of a diagonal

matrix, whose entries are the reciprocals of their corresponding entries in 𝑴.

Furthermore, a variant version exists for matrices that contain blocks of non-

zeros (Barrett et al., 1994). This is the case of the coefficient matrix arising in the

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

91

simulation of multiphase flow, where there are several variables per grid block,

which may be grouped together. In this case, matrix 𝑴 becomes a block diagonal

matrix, where each block may be seen as a submatrix within 𝑴. The entries of 𝑴−1

are then equal to the inverse of their corresponding submatrices in 𝑴. For two or

three-phase problems these are still relatively cheap calculations.

This preconditioner was implemented during the course of this research.

However, as was expected, its results were very poor, due to the strong ill-

conditioned nature of the matrix equations in fully implicit multiphase simulations.

Therefore, it will not feature in the comparisons displayed in the following chapter

nor will it be further examined. The next techniques discussed, on the other hand,

were not implemented and are listed here for historical purpose.

A second option of preconditioner involves performing one or more steps of

one of the stationary methods, such as Jacobi, Gauss-Seidel or SSOR. For example,

the preconditioning matrix based on SSOR may be written as

 𝑴 = (𝑫 + 𝜔𝑬) ∙ 𝑫−1 ∙ (𝑫 + 𝜔𝑭) (4.12)

where 𝑬 represents the lower triangular part of 𝑨, without the main diagonal; 𝑭

represents the upper triangular part of 𝑨, without the main diagonal; 𝑫 represents

the main diagonal; and 𝜔 is the relaxation parameter. The preconditioning steps of

the algorithms can then be implemented in two stages

 (𝑰 + 𝜔𝑬𝑫−1) ∙ 𝒛 = 𝒓 (4.13)

 (𝑫 + 𝜔𝑭) ∙ 𝒒 = 𝒛 (4.14)

where the matrix structure in Equations (4.13) – (4.14) renders them easy to solve

(Saad, 2003).

Another class of preconditioners that is likewise related to one of the iterative

methods mentioned in Chapter 3 is called Dimensional Splitting.

In addition, direct methods may also be applied as preconditioners, for

example, via Gaussian Elimination without pivoting. The idea here would be to

solve the system relatively fast, but without much concern for precision, that is, in

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

92

an unstable manner; then use the result as input for the iterative method (Trefethen

and Bau III, 1997).

Other available options that will not be described in detail, but that are listed

here for the sake of completeness, include: Lower-Order Discretization; Domain

Decomposition; Coarse-Grid Approximation; Local Approximation; Symmetric

Approximation; Splitting a Multi-Term Operator; Periodic Approximation; and

Polynomial Preconditioners (Trefethen and Bau III, 1997).

Implemented Preconditioners

In the next sections will be presented the algorithms that were implemented

in this research, namely: (i) ILU; (ii) Nested Factorization; and (iii) Constrained

Pressure Residual. The first two belong to a class of methods called Approximate

Factorization. One algorithm of this kind, SIP, was also discussed in the previous

chapter. The third and final method is also the more complex one, and combines

the techniques of Splitting the Problem Variables and Coarse-Grid Approximation,

as shall be detailed further ahead. These three methods are the ones that have been

most commonly implemented in recent reservoir simulators (Hammersley and

Ponting, 2008; Gries et al., 2013; SPE – Reservoir Simulation Linear Equation

Solver).

4.3.1
ILU Preconditioner

Approximate factorizations schemes consist of determining factors of a

matrix that do not perfectly decompose it. These factors should be easier to build

than the exact ones and should keep some of the advantageous characteristics of the

original matrix, such as sparsity, while also serving as a reasonable approximation

to it. To maintain sparsity, some or all of the new non-zero elements that would

have been created during the factorization process, denoted fill, are discarded from

the factor matrices. The degree of fill-in permitted to occur during the factorization

is subject to user choice and will impact both the cost of the process, as well as how

closely the factors represent the original matrix. To be worthwhile, carrying

additional non-zeros must be compensated by faster convergence of the iterative

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

93

method. In general terms, constructing the approximate factors is a costly procedure

and often will equal that of one or more iterations of the method (Barrett et al.,

1994).

Perhaps the most famous preconditioning method, and the one that made the

preconditioning technique popular, is the Incomplete LU Factorization (ILU)

(Trefethen and Bau III, 1997). It is the equivalent of the Incomplete Cholesky

Factorization (IC) for nonsymmetric systems of equations, and was first introduced

by Meijerink and Van der Vorst (1977), who also proved that the factors are

guaranteed to exist for M-Matrices12. It entails performing Gaussian Elimination on

the coefficient matrix to create both an upper triangular factor and a lower triangular

one, meanwhile limiting the amount of fill-in that would normally be generated by

this process.

Once the factors have been built, they can be used to solve the preconditioning

steps in the iterative method. This is exemplified next:

 𝑨 ≈ 𝑳̃𝑼̃ = 𝑴 (4.15)

where 𝑨 ≠ 𝑴. Consequently, Equation (4.10) equals

 𝑳̃𝑼̃𝒒 = 𝒓 (4.16)

which may be solved easily in the following two steps

 𝑳̃𝒚 = 𝒓 (4.17)

 𝑼̃𝒒 = 𝒚 (4.18)

due to the triangular structure of the 𝑳̃ and 𝑼̃ matrices.

An alternative form of factoring the coefficient matrix would be via the use

of three matrices (Barrett et al., 1994), an upper triangular one, a diagonal one and

finally a lower triangular one, such that

12 M-Matrix – A Z-Matrix (one containing positive diagonal and negative off-diagonal entries)

whose eigenvalues have nonnegative real parts.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

94

 𝑴 = (𝑫 + 𝑳)𝑫−1(𝑫 + 𝑼) = (𝑫 + 𝑳) ∙ (𝑰 + 𝑫−1𝑼) (4.19)

In this case, the preconditioner could be applied as follows

 (𝑫 + 𝑳) ∙ 𝒚 = 𝒓 (4.20)

 (𝑰 + 𝑫−1𝑼) ∙ 𝒒 = 𝒚 (4.21)

Meijerink (1983) and Behie et al. (1984) also proposed a block procedure for

the ILU algorithm using this alternative form, in which the matrix operations would

be performed on entire blocks, instead of the individual entries. Nevertheless,

neither this three-term factorization nor the block treatment were implemented in

this research.

The simplest form of ILU, denoted ILU(0), involves not allowing for any fill-

in to be introduced; which means that the non-zero pattern of 𝑳̃ and 𝑼̃ correspond

exactly to that of 𝑨, here represented as 𝑁𝑍(𝑨). This factorization can be performed

in different manners, depending on the way upon which the matrix is swept during

the execution of the algorithm. The pseudocode presented in Algorithm 4.1 for

constructing the incomplete factors considers the version known as IKJ (Saad,

2003). In practice, only one matrix is actually built, with all the non-zero elements.

From this base algorithm several variants are possible. For example, during

the construction of the factors, all non-zero terms arising in positions that did not

previously belong to 𝑁𝑍(𝑨) were simply disregarded. Alternatively, it is possible

to partially compensate the exclusion of these terms by quantifying the total amount

discarded per row, that is, by adding all its dropped terms, and then subtracting this

sum from the corresponding diagonal entry of the preconditioner matrix. This

variation is denoted Modified ILU Factorization (MILU). Here the number of non-

zeros to be stored remains unchanged (Saad, 2003).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

95

Algorithm 4.1 – ILU Preconditioner.

𝐟𝐨𝐫 𝑖 = 2, 3, … ,𝑚

 𝐟𝐨𝐫 𝑘 = 1,… , 𝑖 − 1

𝐢𝐟 (𝑖, 𝑘) ∈ 𝑁𝑍(𝑨)

𝑎𝑖𝑘 = 𝑎𝑖𝑘 𝑎𝑘𝑘⁄

𝐞𝐧𝐝

𝐟𝐨𝐫 𝑗 = 𝑘 − 1,… ,𝑚

𝐢𝐟 (𝑖, 𝑗) ∈ 𝑁𝑍(𝑨)

𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎𝑘𝑗

𝐞𝐧𝐝

𝐞𝐧𝐝

 𝐞𝐧𝐝

𝐞𝐧𝐝

Another possibility is related to the concept of fill-in previously mentioned.

It involves allowing for non-zeros to appear in locations not belonging to 𝑁𝑍(𝑨).

There exist two types of strategies for accepting fill-in; the first is based on the

structure of the non-zeros, while the second is based on a numerical tolerance for

the elements created. The structural option introduces the concept of level of fill,

defined for each element (𝑖, 𝑗) in matrix 𝑨 as

 𝑙𝑒𝑣𝑒𝑙𝑖𝑗 = {
0

∞

if

otherwise

𝑎𝑖𝑗 ≠ 0, or 𝑖 = 𝑗

 (4.22)

Each time an element 𝑎𝑖𝑗 is calculated in Algorithm 4.1, its level of fill must

also be updated by the following rule:

 𝑙𝑒𝑣𝑒𝑙𝑖𝑗 = 𝑚𝑖𝑛{𝑙𝑒𝑣𝑒𝑙𝑖𝑗; 𝑚𝑎𝑥{𝑙𝑒𝑣𝑒𝑙𝑖𝑘; 𝑙𝑒𝑣𝑒𝑙𝑘𝑖} + 1} (4.23)

Subsequently, the elements are updated not based on whether they belong to

𝑁𝑍(𝑨), as was the case before, but instead on whether their level of fill does not

exceed a specified parameter 𝑝. Consequently, in ILU(𝑝) all elements with fill level

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

96

below or equal to 𝑝 are kept, while the remaining ones are dropped. The particular

case 𝑝 = 0 leads to the same algorithm previously presented. This method poses

the disadvantage of often demanding high computational effort, due to the

additional calculations required and to the continuous work of updating the fill

levels (Saad, 2003).

The second strategy mentioned determines that all elements whose magnitude

is smaller than a certain threshold value shall be dropped from the incomplete

factors. This concept makes greater mathematical sense, in that it tends to keep only

the most relevant entries (those with most significant physical meaning). However,

it has the hindrance that it does not limit beforehand the amount of memory to be

occupied by the preconditioner, since the number of fill-ins to be introduced is

difficult to predict in advance (Barrett et al., 1994).

An option to circumvent this drawback is to establish a maximum number of

fill-ins per row. This approach leads to the ILUT(𝑝, 𝜏) algorithm. It involves

keeping only the 𝑝 largest elements in each row of 𝑳̃ and the 𝑝 largest elements in

each row of 𝑼̃ that are above the tolerance threshold 𝜏𝑖, defined as

 𝜏𝑖 = 𝜏 ∙ ‖𝑟𝑜𝑤(𝑖)‖ = 𝜏 ∙ ‖𝑎𝑖∗‖ (4.24)

where 𝜏 represents a relative threshold tolerance.

Analogous to the ILU(𝑝) algorithm, ILUT(𝑝, 𝜏) will also be equivalent to

ILU(0) whenever both 𝑝 = 0 and 𝜏 = 0. The pseudocode for building ILUT is

presented in Algorithm 4.2, in which 𝑤 is a full-length working vector used to

perform computations on a given row and 𝑤𝑘 is its 𝑘-th entry (Saad, 2003).

As with any preconditioner, the more closely the 𝑳 and 𝑼 factors approximate

𝑨 the better they should function in aiding convergence. It is to be expected that, as

more non-zeros are maintained, fewer iterations would be needed to solve the linear

system. On the other hand, the cost of setting-up the preconditioner and of executing

the preconditioning step during each iteration will also increase correspondingly.

Hence, the possible gains to be had with more accurate factorizations may be offset

by the cost of determining and operating with the factors themselves (Saad, 2003).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

97

Algorithm 4.2 – ILUT Preconditioner.

𝐟𝐨𝐫 𝑖 = 1,… ,𝑚

𝑤 = 𝑎𝑖∗

𝐟𝐨𝐫 𝑘 = 1, … , 𝑖 − 1 𝐚𝐧𝐝 𝑤𝑘 ≠ 0

𝑤𝑘 = 𝑤𝑘 𝑎𝑘𝑘⁄

𝐷𝑟𝑜𝑝 𝑤𝑘 𝑖𝑓 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝜏𝑖

𝐢𝐟 𝑤𝑘 ≠ 0

𝑤 = 𝑤 − 𝑤𝑘 ∗ 𝑢𝑘∗

𝐞𝐧𝐝

𝐞𝐧𝐝

𝐷𝑟𝑜𝑝 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑤 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝜏𝑖

𝐾𝑒𝑒𝑝 𝑜𝑛𝑙𝑦 𝑝 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑛 𝐿 𝑎𝑛𝑑 𝑈 𝑝𝑎𝑟𝑡𝑠

𝑙𝑖𝑗 = 𝑤𝑗 𝐟𝐨𝐫 𝑗 = 1,… , 𝑖 − 1

𝑢𝑖𝑗 = 𝑤𝑗 𝐟𝐨𝐫 𝑗 = 𝑖, … ,𝑚

𝐞𝐧𝐝

For this thesis, the ILU(0), MILU and ILUT variants were implemented in a

first moment. To limit the total combinations of preconditioners and iterative

methods to be eventually tested for performance, a preliminary test was completed

to compare ILU(0), MILU and ILUT(5, 10-4). The choice of parameters for ILUT

were based upon values presented by Saad (2003), since no theory exists

establishing optimal criteria for their selection.

The preliminary tests performed used a set of five matrix equations available

from the Matrix Market (https://math.nist.gov/MatrixMarket/). This Market is a

repository of sparse matrix data originating from a variety of applications and

presented in triplet format (non-zero entries listed alongside their addresses, by

column and then row order). Information on the matrices contained in the multiple

sets and directions on how to obtain them are described in the guide presented by

Duff et al. (1992).

Part of this matrix database is named the Harwell-Boeing Collection, which

contains the SHERMAN set of equations, which are related to oil reservoir

simulation. The characteristics of the problems are presented in Table 4.1:

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

98

Table 4.1 – Summary of reservoir simulation problems from the SHERMAN set.

Problem #
Grid

Dimensions

Number of

Components

Matrix

Dimension

Number of

Non-Zeros

Simulator

Formulation

1 10 x 10 x 10 1 1000 x 1000 3750 Black Oil

2 6 x 6 x 5 5 1080 x 1080 23094 Thermal

3 35 x 11 x 13 1 5005 x 5005 20033 IMPES

4 16 x 23 x 3 1 1104 x 1104 3786 IMPES

5 16 x 23 x 3 3 3312 x 3312 20793 FIM Black Oil

Results from solving these matrix equations indicated that the MILU method

was not effective for this class of problems, with two of the five problems not

reaching convergence. This same conclusion had been observed before by Behie

(1985).

Both ILU(0) and ILUT(5, 10-4) were successful in solving all five problems.

Overall, ILUT(5, 10-4) was capable of delivering solutions in fewer iterations,

sometimes with shorter computational times. However, the time required for its

construction was also consistently higher, and did not scale well with problem size.

Therefore, from the class of ILU preconditioners, the ILU(0) version was the one

chosen for the subsequent tests to be performed, and henceforth it shall be referred

to simply as ILU.

Furthermore, these problems were also used to validate the correctness of the

implemented versions of the BiCGSTAB, GMRES and ILU algorithms. This was

done by solving the five reservoir scenarios described in Table 4.1 using the codes

projected for the reservoir simulator, and comparing the results with the ones

obtained using the software MATLAB (the remaining algorithms implemented do

not have built-in functions in MATLAB for comparison) (MATLAB, 2019). The

analysis also involved examining the solution vectors obtained by the reservoir code

and by MATLAB for each solver configuration (BiCGSTAB with ILU and

GMRES with ILU) to establish their equivalence, as well as verifying whether the

number of iterations required for convergence were similar. The results of these

analyses are presented in Table 4.2. They show that the algorithms implemented for

the reservoir simulator appear to be compatible with the versions available in

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

99

MATLAB. The improved performance seen in the GMRES method implemented

for the simulator can most likely be attributed to the variable reset strategy adopted.

Table 4.2 – Iteration count comparison between the reservoir code and MATLAB.

Reservoir Code: Iteration Count MATLAB: Iteration Count

Problem # BiCGSTAB GMRES(k) BiCGSTAB GMRES(k)

1 39 57 39 70

2 8 15 8 15

3 99 166 122 226

4 28 38 28 54

5 27 38 27 54

4.3.2
Nested Factorization Preconditioner

The second preconditioner implemented is called Nested Factorization, and it

also belongs to the class of Approximate Factorization methods. It was first

proposed by Appleyard and Cheschire (1983) and soon became extremely popular

in the field of reservoir simulation due to its superior performance in several

reservoir scenarios. It is considered one of the most robust techniques available

(Mattax and Dalton, 1990). Contrary to other factorization schemes, such as IC or

ILU, Nested Factorization does not explicitly build the factor matrices, nor are the

factors structured strictly as triangular matrices. Instead, it only assembles a single

diagonal matrix during initialization and afterwards, during the preconditioning

steps, sequentially builds lower and upper factors by adding one dimension at a time

to the preconditioner (Appleyard and Cheschire, 1983).

Because this procedure was created specifically for the purpose of solving

reservoir problems, the factorization process was developed so as to assure material

balance for each phase present. This is based on the fact that the sum of the elements

of vector 𝒃 formed during each nonlinear iteration equals the net rate of mass

accumulation for that time-step. Consequently, the error in material balance may be

obtained from the sum of the elements of the residual vector 𝒓 during the linear

iterations:

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

100

 𝒓0 = 𝒃 − 𝑨𝒙0 (4.25)

If the initial solution is established from

 𝑴𝒙0 = 𝒃 (4.26)

then,

 𝒓0 = (𝑴− 𝑨)𝒙0 (4.27)

From Equation (4.27) it is possible to deduce that if the sum of each column

of 𝑴 and 𝑨 are identical, then the sum of the elements of 𝒓0 will equate to zero,

assuring material balance (Cheshire et al., 1980). Thus, 𝑴 is built so that

 𝑐𝑜𝑙𝑠𝑢𝑚(𝑴) = 𝑐𝑜𝑙𝑠𝑢𝑚(𝑨) (4.28)

where 𝑐𝑜𝑙𝑠𝑢𝑚(𝑨) represents a block diagonal matrix formed by the sum of the

block column elements of matrix 𝑨.

It can be further shown that if 𝒓0 is forced to have zero sum, then the

subsequent residuals 𝒓𝑛 – resulting from the remaining iteration steps – will

likewise sum to zero.

In three-dimensional problems the coefficient matrix consists of seven

diagonal bands, and may be decomposed in the manner shown in Equation (4.29)

 𝑨 = (𝑫+ 𝑳1 + 𝑼1) + (𝑳2 + 𝑼2) + (𝑳3 +𝑼3) (4.29)

Here the outer bands 𝑳3 and 𝑼3 represent the interactions between different

planes, while the central diagonals contain the interactions within planes. On the

next level, inside the central diagonals, 𝑳2 and 𝑼2 represent the interactions

between different lines, while the next central diagonals contain the interactions

within lines. Finally, inside these central diagonals, 𝑳1 and 𝑼1 represent the

interactions between cells, while the final central diagonal 𝑫 contains information

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

101

pertaining to the individual cells. This nested tridiagonal structure is exploited by

constructing the preconditioner in the following sequence:

 𝑴 = (𝑷 + 𝑳3) ∙ (𝑰 + 𝑷
−1𝑼3) (4.30)

 𝑷 = (𝑻 + 𝑳2) ∙ (𝑰 + 𝑻
−1𝑼2) (4.31)

 𝑻 = (𝑩 + 𝑳1) ∙ (𝑰 + 𝑩
−1𝑼1) (4.32)

where 𝑩 is a block diagonal matrix defined as

𝑩 = 𝑫− (𝑳1𝑩

−1𝑼1) − 𝑐𝑜𝑙𝑠𝑢𝑚(𝑳2𝑻
−1𝑼2)

− 𝑐𝑜𝑙𝑠𝑢𝑚(𝑳3𝑷
−1𝑼3)

(4.33)

It is interesting to note the similarity between the format of the three

tridiagonal matrices in Equations (4.30) – (4.32) and the 𝑳𝑫𝑼 format presented in

Equation (4.19). Also similar is the manner with which the equations are solved,

involving two steps, one with each part of the decomposition, as per Equations

(4.20) – (4.21).

For the matrices defined in Equations (4.30) – (4.32) for Nested Factorization,

this solution procedure is done in a hierarchical fashion (Appleyard and Cheshire,

1983). In the outermost level one solves

 (𝑷 + 𝑳3) ∙ (𝑰 + 𝑷
−1𝑼3) ∙ 𝒒 = 𝒓 (4.34)

using

 𝒒′ = 𝑷−1(𝒓 − 𝑳3𝒒
′) (4.35)

which can be solved explicitly one plane at a time, in a forward sweep through the

reservoir, and then use

 𝒒 = 𝒒′ − 𝑷−1𝑼3𝒒 (4.36)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

102

which can also be solved explicitly one plane at a time, but now in a backward

sweep.

However, in both Equation (4.35) and Equation (4.36) one must be able to

solve equations of the form

 𝒛 = 𝑷−1𝒚 (4.37)

where 𝑷−1 is not available directly. Therefore, it becomes necessary to first solve

 (𝑻 + 𝑳2) ∙ (𝑰 + 𝑻
−1𝑼2) ∙ 𝒛 = 𝒚 (4.38)

for each plane, by using

 𝒛′ = 𝑻−1(𝒚 − 𝑳2𝒛
′) (4.39)

which can be solved explicitly one line at a time, in a forward sweep through the

plane, and then use

 𝒛 = 𝒛′ − 𝑻−1𝑼2𝒛 (4.40)

which can also be solved explicitly one line at a time, but in a backward sweep.

Again, the steps involving Equation (4.39) and Equation (4.40) require

solving equations of the form

 𝒘 = 𝑻−1𝒗 (4.41)

where 𝑻−1 is also not available directly. Therefore, it becomes necessary to first

solve

 (𝑩 + 𝑳1) ∙ (𝑰 + 𝑩
−1𝑼1) ∙ 𝒘 = 𝒗 (4.42)

for each line, by using

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

103

 𝒘′ = 𝑩−1(𝒗 − 𝑳1𝒘
′) (4.43)

which can be solved explicitly one cell at a time, in a forward sweep through the

line, and then use

 𝒘 = 𝒘′ − 𝑩−1𝑼1𝒘 (4.44)

which can also be solved explicitly one cell at a time, but in a backward sweep.

Finally, the steps involving Equation (4.43) and Equation (4.44) require

knowledge of 𝑩−1 to be solved. Since 𝑩 was constructed to be a block diagonal

matrix, determining its inverse is a straightforward matter, whose operation count

depends on whether the problem is one, two or three-dimensional. It is worth noting

from the procedure just described that the only storage that is actually required is

that of 𝑩−1, and that 𝑩 itself is not needed (𝑩−1𝑼1 could also be stored to avoid

some additional calculations, if so desired and if memory is not an impediment).

Although the previous equations may seem to be implicit at first glance, as

stated, they are actually explicit when calculated sequentially. That is because, due

to the edges of the reservoir, the diagonal bands 𝑳𝑛 and 𝑼𝑛 do not span the

coefficient matrix completely. This can be observed in Figure 4.1, which represents

the block matrix structure for a simple 𝑁𝑥 = 2, 𝑁𝑦 = 2, 𝑁𝑧 = 2 reservoir grid

numbered using natural ordering, and containing 3 components, whose equations

are clustered per cell (instead of per component, for example). In terms of the

efficiency of the method, it is advantageous to number the smallest dimensions

innermost, which normally implies numbering in the z-direction first (Appleyard

and Cheschire, 1983).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

104

Figure 4.1 – Matrix structure for a (2×2×2) grid with natural ordering and with 3 phase

components grouped together per cell. Darker colors represent the lower diagonal bands

while lighter colors represent the upper ones.

As an example, when performing the calculations in the forward or backward

directions for the plane equations, the first steps are reduced to

 𝒒′ = 𝑷−1𝒓 (4.45)

and

 𝒒 = 𝒒′ (4.46)

respectively, because 𝑳3 and 𝑼3 will initially be zero. Furthermore, in the

subsequent planes, the would-be implicit parts of the equations, 𝑷−1𝑳3𝒒
′ and

𝑷−1𝑼3𝒒, respectively, depend only on the results obtained from the factorization

of the plane that came just prior to it. The exact same occurs concerning the line

and cell factorizations.

4.3.3
Constrained Pressure Residual Preconditioner

The final preconditioner implemented is called Constrained Pressure

Residual. It consists of a two-stage approach based on the assumption that pressure

is the principal variable governing fluid flow (Stüben et al., 2007). The foundation

of the method resides in first approximately decoupling the pressure and saturation-

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 * * * * * * * * * * * *

2 * * * * * * * * * * * *

3 * * * * * * * * * * * *

4 * * * * * * * * * * * *

5 * * * * * * * * * * * *

6 * * * * * * * * * * * *

7 * * * * * * * * * * * *

8 * * * * * * * * * * * *

9 * * * * * * * * * * * *

10 * * * * * * * * * * * *

11 * * * * * * * * * * * *

12 * * * * * * * * * * * *

13 * * * * * * * * * * * *

14 * * * * * * * * * * * *

15 * * * * * * * * * * * *

16 * * * * * * * * * * * *

17 * * * * * * * * * * * *

18 * * * * * * * * * * * *

19 * * * * * * * * * * * *

20 * * * * * * * * * * * *

21 * * * * * * * * * * * *

22 * * * * * * * * * * * *

23 * * * * * * * * * * * *

24 * * * * * * * * * * * *

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

105

related variables through the use of a decoupler. Next, the pseudo-decoupled

pressure system is solved, using techniques especially suited to it. Subsequently, its

solution is used to update the residual vector, and then the full system can be solved

for all variables simultaneously.

The idea behind multi-stage methods such as this is longstanding, having first

been proposed in the field of reservoir simulation by Behie and Vinsome (1982),

under the name Combinative Method. In their method, the subsystems were

separated using partial, but exact, Gaussian Elimination onto the pressure equations,

and the pressure variables were then computed through complete Gaussian

Elimination. Next the residual was updated and the full system solved via

incomplete factorization. Afterwards, Wallis (1983) coined the term CPR as he

proposed an adaptation to the ORTHOMIN procedure that consisted of constraining

the residual vector so as to establish zero residual sum on one or more subsets of

coordinates, such as individual planes or, alternatively, on the pressure coefficients.

This was also performed using a two-stage approach to the preconditioning steps,

with incomplete factorization as the outer preconditioner (second stage).

Furthermore, his work proposed a different preconditioning approach to the inner

stage (first stage) that accounted for the distinct characteristics of individual

submatrices in the coefficient matrix, performing local incomplete factorizations

with varying levels of infill. Wallis et al. (1985) further expanded on this theme by

applying a different tactic to the inner stage, through the use of a constraint matrix

that sought to dampen the dominant eigenvectors of the problem, forcing the

residual vectors to be orthogonal to their resulting eigenspace.

The contemporary approach to CPR is motivated by all of these concepts, and

usually involves solving the pressure system with a numerical method specifically

suited to the nearly elliptic13 equations characteristic of that particular subsystem

(Stüben et al., 2007; Cao et al., 2005). One of the most fitting method for this inner

stage is Algebraic Multigrid (AMG), which is derived from the powerful concept

of Geometric Multigrid (GM). Both AMG and GM use the strategy of divide-and-

conquer to search for problems’ solutions with the aid of less discretized grids.

13 Elliptic Equations – Partial differential equations of the form

𝐴𝑢 = 𝑎11𝑢𝑥𝑥 + 𝑎12𝑢𝑥𝑦 + 𝑎22𝑢𝑦𝑦 + 𝑎1𝑢𝑥 + 𝑎2𝑢𝑦 + 𝑎0𝑢 = 𝑓

that possess the following property: 4𝑎11𝑎22 > 𝑎12
2.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

106

Multigrid methods are generally considered to be the fastest numerical methods

currently available to solve elliptic PDEs (Trottenberg et al., 2001). On the other

hand, the second stage of the preconditioner that solves for all of the variables

simultaneously involves a hyperbolic14 system of equations, which can be handled

proficiently by ILU techniques (Stüben et al., 2007; Cao et al., 2005). In a way, the

first stage may be seen as responsible for handling the long-range effects, while the

second stage deals with the short-range ones (Hammersley and Ponting, 2008).

To visualize this entire process, following the approach of Stüben et al.

(2007), we first consider the matrix equation

 𝑨𝒒 = [
𝑨𝑝𝑝 𝑨𝑝𝑠
𝑨𝑠𝑝 𝑨𝑠𝑠

] [
𝒒𝑝
𝒒𝑠
] = [

𝒓𝑝
𝒓𝑠
] = 𝒓 (4.47)

in which the equations are numbered with respect to the variable types (instead of

with respect to the grid points, for example), and where 𝑨𝑝𝑝 represents the pressure

block coefficients; 𝑨𝑠𝑠 represents the saturation block coefficients; 𝑨𝑝𝑠 and 𝑨𝑠𝑝

represent coupling coefficients between the pressure and saturation variables; 𝒒𝑝

and 𝒒𝑠 represent the pressure and saturation-related variables, respectively; and 𝒓𝑝

and 𝒓𝑠 represent the pressure and saturation-related residuals.

Applying a decoupler 𝑫 to the coefficient matrix, it is transformed into

 𝑫𝑨 = 𝑨̃ = [
𝑨̃𝑝𝑝 𝑨̃𝑝𝑠

𝑨̃𝑠𝑝 𝑨̃𝑠𝑠
] (4.48)

Now, the solution of the pressure equations 𝒒𝑝 may be estimated via

 𝑨̃𝑝𝑝 ∙ 𝒒𝑝 = 𝒓𝑝 (4.49)

using an AMG solver to be detailed further forward.

The residual vector 𝒓 is then updated

14 Hyperbolic Equations – Partial differential equations of the same form as elliptic ones, but that

possess instead the following property: 4𝑎11𝑎22 < 𝑎12
2.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

107

 𝒓̂ = 𝒓 − 𝑨̃ [
𝒒𝑝
𝟎
] (4.50)

so as to partially remove the effects of the pressure variables.

Next, the full system is solved approximately through an ILU factorization

(represented here by 𝑴)

 𝒒̂ = 𝑴−1𝒓̂ (4.51)

in a manner similar to the single-stage global preconditioner that was previously

described.

In this research, the technique chosen for the second stage was standard

ILU(0) factorization, also described previously, which was recommended by Cao

et al. (2005). This option sought to limit the already increased setup time required

by CPR.

Finally, the complete solution is obtained by combining the two partial

solutions of each stage

 𝒒 = 𝒒̂ + [
𝒒𝑝
𝟎
] (4.52)

Moreover, this entire process can be seen as equivalent to applying a single-

stage preconditioner of the form

 𝑴2𝑆
−1 = 𝑴−1 [𝑰 − (𝑨̃ −𝑴) [𝑨̃𝑝𝑝

−1
𝟎

𝟎 𝟎
]] (4.53)

to the preconditioning step of the iterative method being used:

 𝑴2𝑆
−1𝒒 = 𝒓 (4.54)

This means that the same preconditioner is being employed in each

preconditioning step of the iterative method. This observation is important because

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

108

the preconditioned versions of the methods presented in Chapter 3 assume this

particular condition. Otherwise, flexible variants such as FGMRES would have to

be used (Saad, 2003; and Hammersley and Ponting, 2008).

Returning to the first part of the algorithm, the decoupling of the problem

variables, its objective is to comply to four main criteria: (i) weaken the coupling

between the variables – that is, minimize ‖𝑨̃𝑝𝑠‖ as much as possible; (ii) reduce the

condition number of the full system (𝜅(𝑨̃) < 𝜅(𝑨)) and of the pressure system

(𝜅(𝑨̃𝑝𝑝) < 𝜅(𝑨𝑝𝑝)); (iii) be relatively inexpensive to compute; and (iv) maintain

the nearly elliptic nature of the pressure variables (Stüben et al., 2007; and Gries et

al., 2013).

Although the coefficient matrix is usually highly asymmetrical and indefinite,

frequently the pressure subsystem 𝑨𝑝𝑝 is nearly symmetrical and presents diagonal

dominance, with a positive diagonal and negative off-diagonal values (Z-Matrix

properties), and may even possess eigenvalues with positive real parts (resembling

M-Matrix properties). These are all characteristics which are amenable to AMG

methods and that may eventually be lost through the decoupling process (𝑨̃𝑝𝑝 could

become strongly asymmetrical, and even indefinite), degrading the performance of

the solver considerably (Gries et al., 2013; and Stüben et al., 2007).

Several techniques have been proposed to act as decouplers. The most

common ones include Alternate-Block Factorization (ABF) and quasi-IMPES (QI),

which were used, for example, in the works of Cao et al. (2005), Stüben et al. (2007)

and Hammersley and Ponting (2008). Lacroix et al. (2001), Scheichl et al. (2003)

and Al-Shaalan et al. (2009) offered some additional decoupling options, however,

some of their procedures tend to lead to significant transformations to the pressure

system, often eliminating the elliptic nature in unpredictable ways.

In this research, an alternative form of decoupling named Dynamic Row Sum

(DRS) was selected, according to the work of Gries et al. (2013), who developed it

based on the work of Scheichl et al. (2003). To be more precise, in this method 𝑫

is intended to act more as a global preconditioner to the matrix equation than as an

actual decoupler. Considering a coefficient matrix ordered by grid points, or point-

wise ordered, the decoupler may be defined as the following diagonal matrix

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

109

 𝑫 = [
[𝑫]1 0 0
0 ⋱ 0
0 0 [𝑫]𝑖

] (4.55)

whose diagonal blocks assume the following structure for a three-phase problem:

 [𝑫]𝑖 = [
𝛿1 𝛿2 𝛿3
0 1 0
0 0 1

] (4.56)

in which the entries of the first row are specified as

 𝛿𝑖 =

{

 0

1

if

otherwise

|[𝑎𝑥,1]𝑖,𝑖|

∑ |[𝑎𝑥,1]𝑖,𝑗|
𝑛𝑝𝑜𝑖𝑛𝑡𝑠
𝑗=1,𝑗≠𝑖

< 𝜀𝑑𝑑

 (4.57)

where 𝑛𝑝𝑜𝑖𝑛𝑡𝑠 represents the number of neighboring connections for a particular

grid block.

This decoupler configuration will result in a pressure submatrix 𝑨̃𝑝𝑝 that

reflects the sum of all the relevant pressure-aligned parts of the different phases of

the coefficient matrix. Hence, only the parts of 𝑨 relevant to the pressure system

and that are expected not to degrade the performance of AMG are included in the

preconditioned matrix 𝑨̃, which is guaranteed to have only positive diagonal entries

and which should possess diagonal dominance, unless the value of 𝜀𝑑𝑑 is chosen

too small. Here, the value of this parameter was set to 𝜀𝑑𝑑 = 0.2, as per Gries et al.

(2013).

Furthermore, a second check is performed to avoid the inclusion of saturation

couplings that have only negligible effect on pressure. The value of 𝛿𝑖 is thus set to

zero whenever the following condition is met:

 ∑ |[𝑎1,𝑥]𝑖,𝑗|

𝑛𝑝𝑜𝑖𝑛𝑡𝑠

𝑗=1

< 𝜀𝑝𝑠 |[𝑎1,1]𝑖,𝑖|
(4.58)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

110

The magnitude of 𝜀𝑝𝑠 will determine which saturation rows with weak

coupling shall be excluded. As suggested by Gries et al. (2013), this was taken to

be 𝜀𝑝𝑠 = 0.02 for the simulations performed.

Moreover, there is a further adjustment that could be performed on the 𝛿𝑖

factors so as to scale all of them into the same volume base, in a procedure named

weighted DRS, or wDRS (Brown et al., 2015). The method as first proposed by

Scheichl et al. (2003) operated on terms that were all in reservoir volume dimension

(reservoir pressure and temperature conditions), whereas both the simulators

encountered commercially and the one used for this research handle all quantities

in surface volume conditions (standard pressure and temperature). Thus, a proper

scaling of the decoupler may be accomplished by transforming the diagonal blocks

of 𝑫 into

 [𝑫]𝑖 = [
𝛿𝑜(𝐵𝑜 − 𝑅𝑠𝐵𝑔) 𝛿𝑤(𝐵𝑤) 𝛿𝑔(𝐵𝑔)

0 1 0
0 0 1

] (4.59)

It should be noted that the procedure presented does not truly decouple the

problem variables (the submatrix 𝑨𝑠𝑝, for example, is left unaltered by wDRS),

which could negatively impact the performance of the second stage of CPR.

However, by facilitating the convergence rate of AMG, it seeks a compromise

between the efficiency of the first and second stages of the method.

After preconditioning with wDRS, there are additional options of decouplers

that could be applied to the matrix equation in an attempt to achieve a stronger

degree of decoupling. These would act as right preconditioners. Gries et al. (2013)

tested two such alternatives, namely quasi-ABF and Saturation Column Elimination

(SCE), but neither method improved at all the performance obtained from pure

wDRS. Consequently, no additional decouplers were implemented for the CPR

algorithm.

The last feature of the algorithm that still requires detailing is the actual AMG

solver used for the first stage. Some of the key features of AMG that render it so

attractive as a solver are its robustness, its scalability (particularly when used in

conjunction with a Krylov method) and the fact that no geometric grid information

is required for its application. These factors provide the flexibility desired for an

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

111

efficient plug-in solver and allow for detailed reservoir models, with the added

option of employing non-structured grids (Stüben et al., 2001; and De Sterck et al.,

2007). In the CPR algorithm AMG constitutes part of the solution procedure, but

the method is so efficient and versatile that in many scenarios it could also be

applied as a stand-alone solver (Gries, 2017).

The overall idea behind multigrid methods involves two basic principles: (i)

error smoothing; and (ii) coarse grid correction. Error smoothing implies that, after

the application of some iterative smoothing procedure, the error of the approximate

solution becomes smooth. This means that the high frequency components of the

error, if we were to apply a Fourier expansion to it, become small, while the low

frequency components remain nearly constant. In fact, the error may actually still

be large, but the purpose of this principle is that it can be made smooth over the

domain. Subsequently, coarse grid correction states that a quantity that is smooth

on a fine grid Ωℎ (say, a well discretized grid) may be approximated accurately on

a coarser grid Ω𝐻, where fewer variables are represented (Trottenberg et al., 2001).

Hence, in a way, the smoothing process is responsible for reducing the high

frequency error components, while the coarser grids are responsible for reducing

the low frequency ones (Stüben, 2007). This is due to the fact that those low

frequency error components on the fine grid become high frequency ones on a

coarser grid; thus, each grid is ultimately responsible for reducing the high

frequency components corresponding to its own scale.

To perform the conversion of the variables between fine and coarse grids, a

coarsening strategy must first be defined, to select which fine variables will be

carried to the coarse grid and which shall remain as fine. Additionally, two

operators must be introduced: (i) a restriction operator 𝑰ℎ
𝐻, to perform the transfer

from fine to coarse grid; and (ii) an interpolation operator 𝑰𝐻
ℎ , to perform the transfer

back from coarse to fine grid (Trottenberg et al., 2001). This is illustrated in

Equations (4.60) – (4.61):

 𝑰ℎ
𝐻 = ℱ(Ωℎ) → ℱ(Ω𝐻) (4.60)

 𝑰𝐻
ℎ = ℱ(Ω𝐻) → ℱ(Ωℎ) (4.61)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

112

Thus, given a problem originally on a fine grid

 𝑨ℎ𝒖ℎ = 𝒇ℎ (Ωℎ) (4.62)

AMG begins by finding an approximate solution 𝑢̅ℎ via an initial guess 𝒖ℎ
(0) and

a smoothing procedure, called pre-smoothing. This may normally be accomplished

with one or more steps of a Gauss-Seidel iteration. Here a single step was chosen,

as per Stüben et al. (2001). The classical Gauss-Seidel procedure is shown in

Equation (4.63) (Ertekin et al., 2001):

 𝑢ℎ𝑖
(𝑘+1) =

1

𝑎ℎ𝑖𝑖
[𝑓ℎ𝑖 −∑𝑎ℎ𝑖𝑗

𝑖−1

𝑗=1

𝑢ℎ𝑗
(𝑘+1) − ∑ 𝑎ℎ𝑖𝑗

𝑛

𝑗=𝑖+1

𝑢ℎ𝑗
(𝑘)] (4.63)

where 𝑘 is the Gauss-Seidel step, or iteration level; and 𝑛 is the dimension of square

matrix 𝑨ℎ.

Next, the residual (also known as the defect) is computed

 𝒅ℎ = 𝒇ℎ − 𝑨ℎ𝒖̅ℎ (4.64)

and then restricted

 𝒅𝐻 = 𝑰ℎ
𝐻𝒅ℎ (4.65)

to transfer it to the coarse domain Ω𝐻.

AMG now exploits the fact that solving the defect equation

 𝑨𝒆 = 𝒅 (4.66)

is equivalent to solving the original equation, with 𝑒 representing the error vector,

such that

 𝒖 = 𝒖̅ + 𝒆 (4.67)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

113

as demonstrated next

 𝑨𝒖 = 𝑨𝒖̅ + 𝑨𝒆 → 𝒇 = (𝒇 − 𝒅) + 𝒅 = 𝒇 (4.68)

Unfortunately, the solution of Equation (4.66), in the form just presented, is

as difficult as the original problem. However, if in this case 𝑨 is approximated by a

matrix 𝑨̃ whose solution is simpler to obtain, then the following iterative process

may be established

𝒖̅ℎ

(𝜈) → 𝒅ℎ
(𝜈) = 𝒇ℎ − 𝑨ℎ𝒖̅ℎ

(𝜈) → 𝑨̃ℎ𝒆ℎ
(𝜈) = 𝒅ℎ

(𝜈) → 𝒖̅ℎ
(𝜈+1)

= 𝒖̅ℎ
(𝜈) + 𝒆ℎ

(𝜈)
(4.69)

In the context of AMG, 𝑨̃ is simply the coefficient matrix that operates on the

coarse grid Ω𝐻. It can be constructed as follows

 𝑨𝐻 = 𝑰ℎ
𝐻𝑨ℎ𝑰𝐻

ℎ (4.70)

and also receives the name of Galerkin operator.

Returning to the algorithm and omitting the iteration levels (𝜈) for simplicity,

the defect equation is now solved on the coarse grid

 𝑨𝐻𝒆𝐻 = 𝒅𝐻 (4.71)

and its result is interpolated back to the fine grid

before a new approximate solution can be found

 𝒖ℎ = 𝒖̅ℎ + 𝒆ℎ (4.73)

Likewise, this new solution 𝒖ℎ should also be smoothed out, in a process

called post-smoothing. This is done, for example, by using one or more steps of

 𝒆ℎ = 𝑰𝐻
ℎ𝒆𝐻 (4.72)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

114

Gauss-Seidel iteration. Once again, here a single step was chosen, following Stüben

et al. (2001). The order of relaxation in both cases is C-F, which means that it is

first applied to the coarse variables and then to the fine ones.

Finally, since this is an iterative process, this solution may serve as the initial

guess 𝒖ℎ
(1) for a subsequent cycle of the procedure described by Equation (4.69).

This can be further repeated until a satisfactory solution 𝒖ℎ
(𝜈+1) is reached, given

a set of stopping criteria. The criteria chosen for this research were of either

attaining a residual reduction of 𝜀 = 10−6, as suggested by Gries et al. (2013), or

reaching a maximum number of 𝜈𝑚𝑎𝑥 = 2 AMG cycles. This last parameter was

defined based on the results of test cases performed with the simulator. Although,

these are relatively relaxed criteria, they seemed to lead to best overall convergence.

The process described thus far has been a simplified version of a full AMG

cycle, having made use of only two grids, one fine and one coarse. In practice,

additional coarse grids are required for the method to be functional. The reason for

this is that there is a limit to the degree of how coarse a grid can be made from a

given fine grid; otherwise, the interpolation of the coarse grid results will not lead

to an accurate representation of the fine variables. Conversely, if the defect equation

remains too challenging to be solved on the coarse grid, with too many variables

present, then not enough coarsening has been accomplished and the solution

process cannot advance. A compromise between these two issues is reached by

performing multiple coarsening steps recursively, that is – the coarse grid of one

level becomes the fine grid of the next, such that no restriction or interpolation is

too abrupt, and that the dimensions of the coarsest level are sufficiently reduced so

that it may be solved with minor effort (normally via a direct method). This is the

reasoning behind the name multigrid (Trottenberg et al., 2001).

There are several ways to implement a multigrid cycle. Two possibilities are

depicted in Figure 4.2, representing a four-grid scenario with two options of cycle

index value: 𝛾 = 1 (on the left) and 𝛾 = 2 (on the right). The filled dots in the figure

represent grids where only smoothing is performed, while the empty dots represent

the coarsest grids of the cycles, where an exact solution is calculated. The lines

symbolize either restriction or interpolation operations. The V-Cycle was the only

one implemented in this work.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

115

Figure 4.2 – Examples of AMG Cycles (Adapted from Trottenberg et al., 2001).

The coarsening strategy that will be used to generate these coarse grids needs

to assure that the smooth errors can be determined via interpolation, while

maintaining the size of the coarse grid operator at a reasonable level. These

constraints are intimately related to the number of coarse variables (C-variables)

and to the strength of their connectivity to the fine variables (F-variables). They

implicate limiting the number of C-variables, so as to restrain the amount of work

per cycle, while still keeping the remaining F-variables sufficiently connected to

them, which involves surrounding the F-variables with C-variables from which to

interpolate. At the end of the process every variable will belong to exactly one of

two subsets

 Ωℎ = Cℎ ∪ Fℎ (4.74)

where Cℎ is the set of coarse variables; and where Fℎ is the set of fine variables

(Stüben et al., 2001 and Trottenberg et al., 2001).

The strategy chosen in this research is named Standard Coarsening, as

presented by Stüben et al. (2001). It requires that the F-variables have a minimum

number of its neighbors be represented as C-variables, and particularly those most

closely related to it, guaranteeing strong C-F connectivity. For a given variable 𝑖

whose coupled variables are represented by 𝑗 ∈ 𝑁𝑖 (where 𝑁𝑖 represents the set

containing all variables connected to 𝑖), a connection is defined as strong whenever

 −𝑎𝑖𝑗 ≥ 𝜀str ∙ 𝑚𝑎𝑥
𝑎𝑖𝑘 < 0

|𝑎𝑖𝑘| (4.75)

and its complete set of strong couplings is denoted by

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

116

 𝑆𝑖 = { 𝑗 ∈ 𝑁𝑖 | 𝑖 strongly coupled to 𝑗 } (4.76)

It is assumed here that no strong positive connections exist, even if positive

off-diagonals occasionally arise in the coefficient matrix. A value of 𝜀str = 0.75

was adopted for this parameter, after adjustments through some test cases.

Since the coupling relations might not be symmetric, a second connectivity

set is also defined which contains all variables 𝑗 which are strongly coupled to 𝑖

 𝑆𝑖
𝑇 = { 𝑗 ∈ Ω | 𝑖 ∈ 𝑆𝑗 } (4.77)

The C/F splitting then consists of selecting a first variable 𝑖 to become a C-

variable and consequently defining all 𝑗 variables which are strongly coupled to it

as F-variables (𝑗 ∈ 𝑆𝑖
𝑇). The method proceeds by selecting another variable among

the undecided ones to become the next C-variable, then all the variables strongly

coupled to it are made to be F-variables, with these steps continuing until every

variable has been accounted for as either coarse or fine. This procedure assures that

coarsening is performed towards directions in which the smooth error changes more

slowly.

To further ensure that a uniform distribution of C and F-variables occurs, with

the F-variables surrounded by C-variables, a strategy must also be implemented for

selecting the next C-variable from the undecided ones (U-variables). This is done

by introducing a new parameter 𝜆𝑖 which measures the importance of any U-

variable remaining and is defined as

 𝜆𝑖 = |𝑆𝑖
𝑇 ∈ U| + 2|𝑆𝑖

𝑇 ∈ 𝐹| (4.78)

where |𝑆| denotes the number of variables present in a given set 𝑆.

This strategy initially forces variables with many strong connections to

themselves to be selected as C-variables; however, as it progresses, it begins

tending to select as C-variables those U-variables with most connections to F-

variables. This ensures that each F-variable is strongly coupled to at least one C-

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

117

variable, as well as ensuring that none of the C-variables is strongly coupled to any

previously chosen C-variable (Stüben et al., 2001).

Once every variable has been selected on a given level, the multigrid

approach continues by taking the variables defined as coarse (those that will

compose the coarse grid) and performing a new selection onto them, to create an

even coarser grid. The systematic construction of ever coarser grids persists until

some pre-established criterium is met, such as a maximum number of permissible

grids having been created or a minimum number of variables having been selected

for a new grid. The CPR version implemented in this work employed both of these

criteria, adopting a limit of at most 10 coarse grids and at most 1000 variables in

the coarsest grid, and halting the grid construction process once either of them was

reached. The values of these parameters were also subject to some fine tuning

through experimentation.

Focusing now on the restriction and interpolation operators, it was decided to

construct them transposed to one another on each grid level. As stated by Stüben et

al. (2001), it has been shown in practice that even if the coefficient matrix is

asymmetrical, this choice does not seem to cause increased difficulty for AMG and

simplifies the setup phase of the algorithm.

The strategy chosen to interpolate (and, consequently, to restrict) is named

Standard Interpolation. It attempts to enforce that each F-variable have a fixed

percentage of its total connectivity accounted for in the C-variables. This is

represented by the parameter 𝜏 ≥ 1 in Equation (4.79), such that the following

inequality is satisfied

 ∑|𝑎𝑖𝑘|

𝑘∈𝑃𝑖

≥
1

𝜏
∑|𝑎𝑖𝑗|

𝑗∈𝑁𝑖

 (4.79)

where 𝑃𝑖 represents the set of interpolation variables pertaining to 𝑖 ∈ 𝐹.

In Standard Interpolation this set is defined so as to include the strong coarse

connections, as well as to partially account for the strong fine connections. The

strong coarse and strong fine connection sets are represented as follows,

respectively

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

118

 𝐶𝑖
𝑠 = 𝐶 ∩ 𝑆𝑖 (4.80)

 𝐹𝑖
𝑠 = 𝐹 ∩ 𝑆𝑖 (4.81)

The interpolation set can then be defined as

𝑃̂𝑖 = 𝐶𝑖

𝑠 ∪ ⋃ 𝐶𝑗
𝑠

𝑗 ∈ 𝐹𝑖
𝑠

(4.82)

which includes all of the strong coarse variables directly coupled to 𝑖 ∈ 𝐹, as well

as those coupled to its strong fine neighbors. In this sense, the neighborhood of 𝑖 ∈

𝐹 may be extended to include the additional connections arising from its fine

neighbors (De Sterck et al., 2007)

𝑁̂𝑖 = 𝑁𝑖 ∪ ⋃ 𝑁𝑗

𝑗 ∈ 𝐹𝑖
𝑠

(4.83)

This kind of interpolation strategy, that considers connections beyond the

direct neighborhood of the fine variable subject to interpolation, is called a Long-

Range strategy. In this case distance-two points were also included into the

interpolation set. As demonstrated by De Sterck et al. (2007), such interpolation

methods may significantly improve the convergence capabilities of AMG and

reduce overall processing time.

Moreover, as proposed by Stüben et al. (2001), the interpolation set may also

be divided into two distinct subsets, one containing the negative connections and

another with the positive ones

 𝑃̂𝑖 = 𝑃̂𝑖
−
∪ 𝑃̂𝑖

+
 (4.84)

Assuming that smooth error has small residuals after relaxation

 𝑨𝒆 ≈ 0 (4.85)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

119

then, for each 𝑖 ∈ 𝐹, the error equation can be written in the form

 𝑎𝑖𝑖𝑒𝑖 + ∑ 𝑎𝑖𝑗𝑒𝑗
𝑗∈𝑁𝑖

= 0 (4.86)

Substituting every 𝑒𝑗 ∈ 𝐹𝑖
𝑠 by

 −
1

𝑎𝑗𝑗
∑ 𝑎𝑖𝑘𝑒𝑘
𝑘∈𝑁𝑖

 (4.87)

leads to the following interpolation formula for the error vector:

 𝑒𝑖 = ∑ 𝑤𝑖𝑘𝑒𝑘
𝑘∈𝑃̂𝑖

 with 𝑤𝑖𝑘 = {

−𝛼𝑖 𝑎̂𝑖𝑘 𝑎̂𝑖𝑖⁄ (𝑘 ∈ 𝑃̂𝑖
−
)

−𝛽𝑖 𝑎̂𝑖𝑘 𝑎̂𝑖𝑖 (𝑘 ∈ 𝑃̂𝑖
+
)⁄
 (4.88)

where 𝑤𝑖𝑘 represents the interpolation weights, used to compute the F-variables

from the C-variables; and where the weight coefficients, which function as scaling

factors, are defined as

 𝛼𝑖 =
∑ 𝑎̂𝑖𝑗

−
𝑗∈𝑁̂𝑖

∑ 𝑎̂𝑖𝑘
−

𝑘∈𝑃̂𝑖

 (4.89)

 𝛽𝑖 =
∑ 𝑎̂𝑖𝑗

+
𝑗∈𝑁̂𝑖

∑ 𝑎̂𝑖𝑘
+

𝑘∈𝑃̂𝑖

 (4.90)

in which

 𝑎̂𝑖𝑗
− = {

𝑎̂𝑖𝑗

0

if 𝑎̂𝑖𝑗 < 0

if 𝑎̂𝑖𝑗 ≥ 0
 and 𝑎̂𝑖𝑗

+ = {

0

𝑎̂𝑖𝑗

if 𝑎̂𝑖𝑗 ≤ 0

if 𝑎̂𝑖𝑗 > 0
 (4.91)

These parameters can be further detailed as follows

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

120

 𝑎̂𝑖𝑖 = 𝑎𝑖𝑖 + ∑ 𝑎𝑖𝑗
(−𝑎𝑗𝑖)

𝑎𝑗𝑗
𝑗∈𝐹𝑖

𝑠

 (4.92)

 𝑎̂𝑖𝑘 = ∑ 𝑎𝑖𝑗
(−𝑎𝑗𝑘)

𝑎𝑗𝑗
𝑗∈𝐹𝑖

𝑠

 where 𝑘 ∈ 𝐶𝑗
𝑠⋃𝑁𝑗

𝑤 (4.93)

 𝑎̂𝑖𝑗 = 𝑎𝑖𝑗 where 𝑗 ∈ 𝐶𝑖
𝑠⋃𝑁𝑖

𝑤 (4.94)

and where a connected variable may contribute as 𝑎̂𝑖𝑘, 𝑎̂𝑖𝑗 or even both, depending

on which subsets it belongs to. Notice that for these formulas 𝑗 represents variables

with a direct connection to 𝑖, while 𝑘 represents those with an indirect connection.

In the scenario where there is not any strong positive connection (𝑃̂𝑖
+
= ∅)

the equations can be modified such that 𝛽𝑖 = 0 and all positive connections are

added directly to the diagonal.

Furthermore, to avoid a substantial increase in work and storage requirement

that would occur due to the Standard Interpolation strategy’s broader neighboring

sets, the interpolation operators are normally truncated (De Sterck et al., 2007). This

is done by suppressing, in each row, all interpolation weights which are smaller

than the largest one by a certain factor. A value of 𝜀𝑡𝑟 = 0.7 was adopted for this

parameter. Although this may seem an aggressive limit, it proved essential in

avoiding that the interpolation matrix retain an excessive number of nonzero terms,

as the size of the problems being solved increased. Lastly, after truncation is

completed, the remaining weights are rescaled so as to preserve the total row sum.

With respect to the remaining variables 𝑖 ∈ 𝐶, the transfer between grids is

performed directly and interpolation is simply given by

 (𝑒𝑖)ℎ = (𝑒𝑖)𝐻 (4.95)

It is worth noting that all of the coarsening process, involving the sequential

selection of coarse sets of variables, and then the construction of all the restriction,

interpolation and coarse-grid operators, may be performed in their entireties during

the setup phase of CPR (Brown et al., 2015).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

121

The solution stage of AMG (located within the solution stage of CPR), called

upon to solve the pressure system, may be executed recursively, as per the

pseudocode presented in Algorithm 4.3 (Trottenberg et al. 2001). In this code, the

finest grid level is represented by 𝑘 = 𝜉, while the coarsest level is 𝑘 = 0, and only

a single V-Cycle is performed at each iteration. This version of multigrid is denoted

Correction Scheme (CS), due to the fact that, on the coarse grids, the equations

solved are related to corrections to the fine grid approximation. It is those

corrections which are transferred between grids. The Full Multigrid (FMG)

approach, which was not implemented, starts the process with an approximate

solution on the coarsest level (as opposed to the finest level with CS) and also

involves the direct transfer of these approximate solutions between grids (in

addition to the correction transfers).

Furthermore, in the implemented version of the algorithm the solution on the

coarsest grid is obtained via Gaussian Elimination, utilizing the software

UMFPACK. This direct solver is comprised of a series of routines for solving

sparse linear systems through the Unsymmetric Multifrontal method, as described

by Davis and Duff (1997).

Finally, a general overview of the CPR algorithm is depicted in Figure 4.3.

Figure 4.3 – Flow diagram representing the CPR preconditioning algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

122

Algorithm 4.3 – AMG Solver.

𝒖𝜉
(0) = 0

𝒓𝜉
(0) = 𝒇𝜉 − 𝑨𝜉 𝒖𝜉

(0)

𝜈 = 0

𝐰𝐡𝐢𝐥𝐞 ‖𝒓𝜉
(𝜈)‖ > 𝜂 ∙ ‖𝒇𝜉‖ and 𝜈 < 𝜈_𝑙𝑖𝑚

𝑘 = 𝜉

𝒖𝑘
(𝜈+1) = 𝐴𝑀𝐺_𝐶𝑦𝑐𝑙𝑒(𝑘, 𝒖𝑘

(𝜈), 𝑨𝑘, 𝒇𝑘)

{

𝒖̅𝑘
(𝜈) = 𝑆𝑚𝑜𝑜𝑡ℎ(𝒖𝑘

(𝜈), 𝑨𝑘, 𝒇𝑘)

𝒅̅𝑘
(𝜈)
= 𝒇𝑘 − 𝑨𝑘 𝒖̅𝑘

(𝜈)

𝒅̅𝑘−1
(𝜈)
= 𝑰𝑘

𝑘−1 𝒅̅𝑘
(𝜈)

𝐢𝐟 𝑘 = 1

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑆𝑜𝑙𝑣𝑒 (𝑨𝑘−1 𝒆𝑘−1
(𝜈) = 𝒅̅𝑘−1

(𝜈)
)

𝐞𝐥𝐬𝐞 𝑘 > 1

𝒆𝑘−1
(𝜈) = 𝐴𝑀𝐺_𝐶𝑦𝑐𝑙𝑒 (𝑘 − 1, 0, 𝑨𝑘−1, 𝒅̅𝑘−1

(𝜈)
)

𝐞𝐧𝐝

𝒆𝑘
(𝜈) = 𝑰𝑘−1

𝑘 𝒆𝑘−1
(𝜈)

𝒖𝑘
(𝜈) = 𝒖̅𝑘

(𝜈) + 𝒆𝑘
(𝜈)

𝒖𝑘
(𝜈+1) = 𝑆𝑚𝑜𝑜𝑡ℎ(𝒖𝑘

(𝜈), 𝑨𝑘, 𝒇𝑘)

}

𝒓𝜉
(𝜈+1) = 𝒇𝜉 − 𝑨𝜉 𝒖𝜉

(𝜈+1)

𝜈 = 𝜈 + 1

𝐞𝐧𝐝

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

5
Performance of Reservoir Simulator Solvers

To assess the efficiency of the various solvers implemented, several reservoir

simulations were carried out to compare different aspects of the solvers’

performance, such as total simulation duration, time required to construct the

preconditioners, number of linear iterations executed, among others. These

simulations were performed using a simulator named Geresim Simulator (GSim),

which is being currently developed at Pontifical Catholic University of Rio de

Janeiro, as a joint project with Petrobras. The objective of these tests was to evaluate

the robustness and efficiency of the solvers, in terms of their capacity to handle

problems of considerable size and the computational effort they required to achieve

convergence. The aim was thus to find the solver most suited to integrate a

simulator developed for multiphase reservoir flow problems with fully implicit

formulation.

This chapter will first introduce the reservoir model and the computer that

were used, as well as describe some aspects of the simulations performed.

Subsequently, the results obtained in these simulations shall be detailed and

analyzed, with the main conclusions presented. To facilitate comprehension, a

diagram is presented in Figure 5.1 depicting the main parts of a reservoir simulator

that are relevant to the ensuing discussions.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

124

Figure 5.1 – Diagram depicting the most relevant parts of a reservoir simulator.

It can be seen here that the linear solver, the object of interest of this thesis,

is an entity which is called upon by a nonlinear solver to find the solution to a linear

system of equations that it deemed necessary to construct (during a linearization

process). Whenever the linear solver is requested to return a solution to a set of

equations, it will proceed by first constructing a preconditioner, in what constitutes

the bulk of a Setup Stage, and then attempt to solve the system via an iterative

method, in what represents a Solution Stage. During this solution stage, the iterative

method will further call (several times) for the solution of some new linear systems

of equations, through a process denoted here as preconditioner solution (such as

described in Chapter 4). Once the iterative method identifies that it has obtained a

suitable enough solution, the linear solver shall return this solution to the nonlinear

one, which in turn will verify if convergence for a given time-step has been

satisfactorily reached, or if additional linearization steps are necessary.

Finally, although the actual memory demanded by the various solution

processes used in each problem will not be specifically analyzed here (the focus

being directed to other aspects of their performances), this factor may eventually

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

125

restrict which techniques can be employed in certain cases, if the memory available

is not sufficient. In terms of the total memory necessary for the solver, this will

include the memory consumption of the iterative method, seen previously in Table

3.1, in addition to that of the preconditioner, whose values are estimated in Table

5.1. The matrix column in this table represents the number of additional matrices

that must be built, and that will occupy an amount of memory equivalent to that of

the original coefficient matrix, while the vector column represents the number of

vectors to be built, not counting the solution and right-hand side ones. It must be

stressed, however, that the figures presented here should be considered to be general

approximations of the actual memory consumptions seen in practice. This is

especially true in the case of CPR, whose memory requirement depends profoundly

on the size of the coarse grids built during the AMG process, which is a particularly

difficult trait to predict beforehand.

Table 5.1 – Memory requirement for the various implemented

preconditioning methods.

 Memory Requirement

Preconditioner Matrices Vectors

ILU 1 1

NF 0 ~ 11

CPR ~ 3 ~ 40

Problem Description

Reservoir Model

The reservoir model used for the simulations employed a cartesian grid with

rectangular dimensions of size 2,500 meters x 2,500 meters x 100 meters in the 𝑥,

𝑦 and 𝑧 directions, respectively. Its spatial orientation is horizontal. The reservoir

rock is homogeneous and isotropic, with an absolute permeability of 1000 mD, and

it possesses a uniform initial porosity of 30%.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

126

The reservoir is originally saturated with oil and water, with the contact

between the free fluids occurring 60 meters from the top of the formation. The

connate water saturation inside the free oil zone is equal to 8.8%. The original

reservoir pressure at the top depth is 200 kgf/cm2, while the initial bubble point

pressure of the oil phase is 100 kgf/cm2. The hydrocarbon phases are treated as

black-oil fluids and their FVF, viscosity and solubility ratios are characterized

through PVT tables. For the oil phase, at the initial reservoir pressure, these values

are defined as 1.31 m3/m3, 1.03 cP and 105.96 m3/m3, respectively.

The well configuration consists of a five-spot pattern, with a single production

well on each corner of the reservoir and an injection well at its very center; as seen

in the topside view depicted in Figure 5.2. Every well is completed and perforated

exclusively on the top layer of the reservoir. Additionally, all of the wells are

controlled by their respective bottom-hole pressures (BHP), with the producers set

to operate at 195 kgf/cm2 and the injector limited to 205 kgf/cm2. No further

restrictions or boundary conditions were imposed for the simulations.

Figure 5.2 – Reservoir and well configuration viewed from the top.

Computer Configuration

The hardware used for the simulations was an Intel Core i7-6700 CPU

comprised of 4 cores, each with 8 logical processors running at 3.40 GHz, and using

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

127

32 GB of RAM. In addition, the simulator software was run in a Windows 10

operating system with 64-bit architecture (x64 processor), and was compiled using

Intel’s C++ 19.0 Compiler.

It is important to note, however, that since neither the simulator code nor the

solvers have yet been programmed to operate in parallel (employing multiple

processors), the simulations have basically made use of a single CPU per run.

Exceptions are some of the mathematical routines, such as vector norms and

additions, which have been designed to operate using multiple threads.

Description of the Simulations

The simulations performed using the model previously described sought to

investigate the algorithms’ capacity to solve the linear equations assembled by the

simulator as the dimensions of the problem grew in size, and to compare the speed

of the different algorithms with respect to one another. This was accomplished by

gradually increasing the number of grid blocks in which the reservoir was

partitioned, thus increasing the total cell count, and consequently the number of

equations to be solved simultaneously. The problem sizes selected are presented in

Table 5.2, together with the number of divisions that were adopted in each direction.

For these simulations every cell was considered to be active. Since the simulator is

being developed using a fully implicit black-oil formulation, there are three degrees

of freedom per cell; therefore, the total number of equations and, consequently, of

degrees of freedom to be solved simultaneously shall be three times the total

number of elements.

Table 5.2 – List of the problem sizes selected and the corresponding grid dimensions

adopted.

Number of

Elements
10,000 20,000 50,000 100,000 200,000

Grid

Dimensions
35x30x10 45x45x10 70x70x10 100x100x10 100x100x20

Number of

Degrees of Freedom
30,000 60,000 150,000 300,000 600,000

Furthermore, the simulations were set to run for a fixed number of 10 time-

steps in each case. The results presented have been normalized per time-step, so as

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

128

to form a basis from which to estimate the duration of longer simulation scenarios.

To verify that this strategy would not produce inconsistent or biased results, one

simulation of a coarser problem (with approximately 6000 grid blocks) was run for

a full year using the different solvers. The results indicated that the performance of

the solvers relative to one another did not vary significantly as the simulation

progressed from the early time-steps to the latter ones. This is depicted in Table 5.3,

which shows the relative runtimes of the various solvers in the initial and final time-

steps (using the runtime of the fastest configuration as the base time), as well as the

variation observed in their relative performances when comparing these two

periods.

Part of the results of this full year simulation with GSim are presented in

Figure 5.3, alongside the results of an identical simulation performed with the

commercial software IMEX from CMG (IMEX, 2018). The attributes shown are

the production curve of the P1 producer well and injection curve of the I1 injector

well as a function of time. The purpose of this comparison between simulators is

simply to validate that the one used for this research has results that are compatible

to those of a field-proven simulator.

Table 5.3 – Comparison of the solvers’ relative performance in the early and late time-

steps.

 First 5 Time-Steps Last 5 Time-Steps Relative

 Runtime

 Variation Iterative Method
Relative

Runtime

Relative

Position
 Relative

Runtime

Relative

Position

BiCGSTAB_ILU 1.8703 3 1.7179 3 -8.15%

BiCGSTAB_CPR 2.1293 4 2.2939 4 7.73%

GMRES_ILU 2.8764 6 2.5287 6 -12.09%

GMRES_CPR 2.1362 5 2.4386 5 14.16%

ORTHOMIN_ILU 1.0000 1 1.0000 1 0.00%

ORTHOMIN_CPR 1.0751 2 1.0746 2 -0.05%

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

129

Figure 5.3 – Results for a one-year simulation using both IMEX (red curves) and GSim

simulators (blue curves). The top graph represents water injection rate in well I1, while the

bottom graph represents oil production rate in well P1.

Finally, because the performance of the solvers was not uniform, with some

having relatively better or worse results than others, not all of the solvers were

employed for every problem size. Whenever a solver configuration was deemed as

being consistently inferior to its counterparts it ceased to be evaluated.

Numerical Results

For each of the problems considered, several attributes of the simulations

were assessed. These will now be presented in this section.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

130

The first aspect to be analyzed is the total simulation runtime (clock-time)

measured for each solver configuration, in each grid size. This is depicted in Figure

5.4, normalized per time-step. The time durations reported here encompass all of

the tasks the simulator must perform throughout the course of a simulation, with

the main ones being the construction of a linear system of equations at every

nonlinear (Newton) step of each time-step, and then the solution of these equations

by means of the iterative solvers. As a benchmark, Intel’s commercial direct solver

Pardiso is also included in the performance assessment (Schenk and Gärtner, 2018).

Pardiso is a very efficient solver that is designed to operate proficiently using

parallel cores. This characteristic makes it distinct from conventional direct

factorization methods designed for general sparse matrices, which tend to have their

performances degraded when applied in a parallel manner (Davis and Duff, 1997).

Figure 5.4 – Total simulation runtime per time-step with each iterative solver as function

of grid size.

It can be seen here that from the very start the Nested Factorization

preconditioner presented results that were an order of magnitude slower than the

ILU and CPR methods. Because of this, only a few results are shown with this

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

10E3 20E3 50E3 100E3 200E3

C
lo

ck
-T

im
e

p
er

 T
im

e-
St

ep
 (

s)

Number of Grid Elements

BiCGSTAB_ILU BiCGSTAB_CPR BiCGSTAB_NF GMRES_ILU

GMRES_CPR ORTHOMIN_ILU ORTHOMIN_CPR PARDISO

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

131

preconditioner, since the solver configurations that included it were not competitive

with relation to the remaining ones.

The reason for the markedly inferior results obtained with NF is not evident.

It could perhaps be attributed to the implementation of the algorithm, and not to the

technique itself, which has been proven very effective in commercial simulators in

the past. However, it might also be related to the actual model being tested. Due to

its isotropic properties and to the fact that the cells’ horizontal dimensions are much

larger than their vertical ones, the vertical transmissibilities are much greater than

the horizontal ones. In addition, the ordering scheme adopted by the simulator in

constructing the linear equations was natural order, with the numbering starting in

the x-direction and then advancing in the y-direction and, finally, z-direction.

Because of this, the coefficients representing interactions between planes – that is,

between layers in the z-direction – have higher values than those representing

interactions between lines or within lines. The issue with this is the fact that the

interplane coefficients are positioned in the outer diagonals (𝐿3 and 𝑈3), while NF

presents much better convergence whenever the smallest coefficient values are

outermost and the largest ones innermost. Nested Factorization is actually quite

sensitive to the ordering of the axes, and tests performed by Appleyard and

Cheschire (1983) and by Behie (1985) show cases where variations in ordering

represented an increase of as much as 5 times in the number of iterations required,

and in some scenarios even led to divergence. In any case, this would have to be

investigated further so as to establish the true cause; unfortunately, though, time

restrains prevented this from being accomplished in the course of this research.

Furthermore, the performance of the solver composed of GMRES

preconditioned with ILU also proved to be consistently worse than the others, and

was already demanding 4 times as much clock-time as the second worse method

when the grid size reached 50,000 cells. Therefore, it was also discarded as a

candidate for optimal configuration, and shall not be included in some of the

subsequent analyses. In addition, this serves as an indicator that ILU may not be as

robust as CPR, due to a stronger dependency on the iterative method to which it is

coupled.

Figure 5.4 also reveals that, with the exception of the aforementioned

methods, all the remaining ones were capable of delivering faster results than the

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

132

Pardiso solver. This result is compatible with the performances observed by Chen

et al. (2006) with respect to banded Gaussian Elimination and indicates that, for

reservoir problems of considerable size, iterative solvers are extremely competitive

when compared to direct ones. The ratio of the clock-time required by the iterative

solvers with respect to Pardiso is presented in Figure 5.5, corresponding to the

results seen on the most refined grid, with 200,000 cells. Considering all cases, the

improvement obtained with the iterative solvers ranged from 2.5 up to 20 times the

speed of the direct solver.

Figure 5.5 – Ratio of clock-times between the iterative solvers analyzed in relation to the

direct solver Pardiso.

Focusing now on the comparison between the iterative solvers themselves,

Figure 5.6 presents the total clock-time expended per time-step by each of them in

completing all of their inner functions, comprised mainly of constructing a

preconditioner at every Newton step and then of finding the solution to the system

of equations. As described previously, the solution stage of the solvers includes

both the operations performed by the iterative methods, as well as one or more calls

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

BiCGSTAB_ILU BiCGSTAB_CPR GMRES_CPR ORTHOMIN_ILU ORTHOMIN_CPR

R
at

io
 o

f
C

lo
ck

-T
im

es

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

133

to the solution routines of the preconditioning methods, for every linear iteration

performed.

Figure 5.6 – Total clock-time required per time-step by each iterative solver as function of

grid size.

The behavior of the curves in Figure 5.6 demonstrates that the solver

combining the ORTHOMIN iterative method with the CPR preconditioner

consistently delivers superior results, when compared to the remaining

configurations. On the finest grid, the time consumed by the other solvers to reach

convergence was up to 7 times higher than this combination, as illustrated in Figure

5.7. Moreover, the coupling of CPR with the two other iterative methods

(BiCGSTAB and GMRES) produces results similar to one another, and both tend

to be faster than methods preconditioned with simple ILU. This speedup seen in

iterative methods preconditioned with CPR over those preconditioned with ILU is

very similar to the results observed by Stüben et al. (2007) and Gries et al. (2013),

in tests performed with various models using FGMRES (Saad, 2003).

Furthermore, for this problem, given a fixed preconditioner (CPR or ILU),

the ORTHOMIN iterative method tends to be consistently faster than BiCGSTAB

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

180,0

200,0

10E3 20E3 50E3 100E3 200E3

C
lo

ck
-T

im
e

p
er

 T
im

e-
St

ep
 (

s)

Number of Grid Elements

BiCGSTAB_ILU BiCGSTAB_CPR GMRES_CPR ORTHOMIN_ILU ORTHOMIN_CPR

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

134

(except with ILU on the 200,000 elements grid), which in turn tends to be faster

than GMRES.

Figure 5.7 – Ratio of the different solver runtimes with respect to the runtime of

ORTHOMIN_CPR.

The runtime required by each solver also has a very strong correlation to the

number of linear iterations necessary for the iterative methods to converge. Figure

5.8 shows the average iteration count performed per Newton step before

convergence was attained. The explanation for this behavior may be visualized in

Figure 5.9, which presents the residual reduction profile of the various methods

throughout an iterative process. It shows how the slope of residual reduction

advances much more aggressively towards convergence in the case of CPR than

with ILU.

It becomes evident from these images that the power of CPR arises from its

capacity to significantly reduce the number of linear iterations required to solve the

systems of equation, an order of magnitude or more below the number needed by

ILU. This is further exemplified in Figure 5.10, which depicts the ratio between the

number of iterations performed by the various solvers preconditioned by ILU, with

0

1

2

3

4

5

6

7

8

BiCGSTAB_ILU BiCGSTAB_CPR GMRES_CPR ORTHOMIN_ILU

R
at

io
 o

f
C

lo
ck

-T
im

es

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

135

respect to their versions preconditioned by CPR. The data was taken from the

100,000 elements grid and shows that whenever the iterative methods were

preconditioned with ILU, they demanded anywhere from 5 to 20 times the number

of iterations when compared to CPR. These results are compatible to those observed

by Brown et al. (2015), where factors greater than 10 were also detected.

Figure 5.8 – Iteration count per Newton step for the different solvers as a function of grid

size.

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

10E3 20E3 50E3 100E3 200E3

It
er

at
io

n
 C

o
u

n
t

p
er

 N
ew

to
n

 S
te

p

Number of Grid Elements

BiCGSTAB_ILU BiCGSTAB_CPR GMRES_ILU

GMRES_CPR ORTHOMIN_ILU ORTHOMIN_CPR

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

136

Figure 5.9 – Residual reduction behavior of the various preconditioned iterative methods.

Figure 5.10 – Iteration count ratio of methods preconditioned with ILU over CPR.

1,00E-11

1,00E-10

1,00E-09

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

id
u

al
 R

ed
u

ct
io

n

Iteration

BiCGSTAB_ILU BiCGSTAB_CPR GMRES_ILU

GMRES_CPR ORTHOMIN_ILU ORTHOMIN_CPR

0

5

10

15

20

25

BiCGSTAB GMRES ORTHOMIN

R
at

io
 o

f
It

er
at

io
n

 C
o

u
n

ts

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

137

Another analysis pertaining to Figure 5.6 and Figure 5.8 concerns the fact

that, for a given preconditioner, the time expended per step by the various iterative

methods may differ substantially. This observation is summarized in Table 5.4 and

Table 5.5, which present the ratio of the runtimes consumed per iteration by the

solution stages of the solvers, when preconditioned via CPR and ILU, respectively.

Table 5.4 – Ratio of the runtimes to perform each iteration of the different methods, when

preconditioned with CPR.

 Grid Size

Ratio 10E3 20E3 50E3 100E3 200E3 Average

ORTHOMIN/GMRES 1.095 1.078 1.078 1.084 1.018 1.071

BiCGSTAB/GMRES 1.698 1.753 1.770 1.752 1.693 1.733

BiCGSTAB/ORTHOMIN 1.551 1.626 1.642 1.616 1.663 1.620

Table 5.5 – Ratio of the runtimes to perform each iteration of the different methods, when

preconditioned with ILU.

 Grid Size

Ratio 10E3 20E3 50E3 100E3 200E3 Average

ORTHOMIN/GMRES 1.121 1.126 1.119 1.074 - 1.110

BiCGSTAB/GMRES 1.547 1.612 1.617 1.558 - 1.583

BiCGSTAB/ORTHOMIN 1.380 1.431 1.445 1.450 1.421 1.426

It can be observed from these that GMRES appears to have the fastest

iterations, with its results being very close to those of ORTHOMIN, and both being

notably faster (per iteration) than BiCGSTAB.

The reason for this can be traced to the computational costs introduced in

Table 3.1 and Table 3.2. If we consider that the coefficient matrices (𝑅𝑚×𝑚)

constructed for this reservoir are very sizable and block heptadiagonal in form, it is

simple to deduce that it will have, on average, approximately 20 non-zeros per row.

A matrix-vector product (MV) in this case will closely equate to 20 vector-vector

products, such as dot products or norm calculations (DOT), in terms of floating-

point multiplications and additions. If we now bear in mind that vector-vector

products consist of 𝑚 multiplications and (𝑚 − 1) ≈ 𝑚 additions, and that

operations of the type AXPY consist of one vector product by a scalar (𝑚

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

138

multiplications) and one vector sum (𝑚 additions), the operation count for each

iterative method can be estimated according to Table 5.6. The actual number of

operations will be equal to the values indicated there, times the number of problem

unknowns 𝑚. These values were projected assuming the reset parameters of

GMRES(k) and ORTHOMIN(k) to be constant and equal to their adopted upper

limits (which is the worst-case scenario) of 50 and 30 iterations, respectively.

Table 5.6 – Operation count per degree of freedom for each iterative method.

 Operation Count

Iterative Method Addition Multiplication Preconditioner

GMRES 72 72 1

ORTHOMIN 75 75 1

BiCGSTAB 52 52 2

Referring to this table and to the runtime ratios seen previously, it is apparent

that the preconditioning operation of solving the system

 𝒒 = 𝑴−1𝒓 (5.1)

comprises a sizable portion of the time required for every step of the iterative

method.

Even though the BiCGSTAB algorithm has only 70% of the number of

floating-point multiplications and additions when compared to ORTHOMIN or

GMRES (which in turn differ between themselves by only 5%), the fact that it must

execute one extra time the preconditioning solution routine causes its time

consumption to rise appreciably. Therefore, for this method to be competitive,

either the preconditioning solution must not be too costly or, otherwise, the

preconditioner must result in many less iterations being necessary. This was the

case when we compare BiCGSTAB to GMRES, but not so when measured against

ORTHOMIN, not even when considering the less expensive ILU preconditioner.

This conclusion can be visualized through the schematic in Figure 5.11. It is also

demonstrated in Table 5.7, which presents the relative weight of the preconditioner

solution routine with respect to the total iterative method runtime, for each of the

preconditioners considered.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

139

Figure 5.11 – Comparison of the potential impact of the preconditioner operations in the

total runtime of the iterative method (solution stage of the solver).

Table 5.7 – Average time consumption of the

preconditioning solution routines for each iterative

method, as a percentage of the total solver solution

stage.

 Preconditioner

Iterative Method CPR ILU

GMRES 90.90% 55.10%

ORTHOMIN 87.70% 55.10%

BiCGSTAB 91.50% 66.11%

Another aspect of any preconditioner that may also cause a significant impact

in the total solver runtime is its construction. Ideally, preconditioners should be

inexpensive to build and its construction time should scale more or less linearly

with problem size; otherwise, the time consumed assembling them might outweigh

their benefit to the underlying iterative method.

The behavior of the construction time of CPR and ILU with respect to

problem dimension can be seen in Figure 5.12. Although there is a nonlinear

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

140

increase in runtime early on, with the coarser grids, the tendency of the curves

seemed to stabilize as the problem grew in size.

Figure 5.12 – Construction time of CPR and ILU preconditioners as a function of grid size.

In any case, considering the proportional time demanded by the construction

stage of the preconditioner with respect to the total solver runtime, as demonstrated

in Figure 5.13, the values observed can be considered to be very reasonable.

0,0

2,0

4,0

6,0

8,0

10,0

12,0

10E3 20E3 50E3 100E3 200E3

C
lo

ck
-T

im
e

p
er

 T
im

e-
St

ep
 (

s)

Number of Grid Elements

BiCGSTAB_ILU BiCGSTAB_CPR BiCGSTAB_NF GMRES_ILU

GMRES_CPR ORTHOMIN_ILU ORTHOMIN_CPR

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

141

Figure 5.13 – Decomposition of the solvers’ total runtime, in terms of the setup (i.e.

preconditioner construction – dark colors) and solution (i.e. iterative method – light colors)

stages.

The proportion of construction time to total time observed in Figure 5.13, and

detailed in Table 5.8, remains relatively constant with respect to problem

dimension, which supports the conclusion that they are scaling well.

Table 5.8 – Ratio of the time required by the preconditioner construction relative to the

total solver runtime.

 Grid Size

Solver 10E3 20E3 50E3 100E3 200E3 Average

BiCGSTAB_ILU 2.88% 2.50% 1.86% 1.49% 1.20% 1.99%

BiCGSTAB_CPR 14.89% 15.62% 14.06% 14.28% 13.37% 14.45%

GMRES_ILU 1.60% 1.08% 0.63% 0.41% - 0.93%

GMRES_CPR 15.15% 15.36% 14.37% 14.08% 12.72% 14.34%

ORTHOMIN_ILU 4.63% 3.55% 2.93% 2.62% 0.98% 2.94%

ORTHOMIN_CPR 33.75% 34.49% 36.11% 39.05% 37.34% 36.15%

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

10E3 20E3 50E3 100E3 200E3

C
lo

ck
 T

im
e

p
er

 T
im

e
-S

te
p

 (
s)

Number of Grid Elements

BiCGSTAB_ILU Total BiCGSTAB_CPR Total GMRES_CPR Total ORTHOMIN_ILU Total ORTHOMIN_CPR Total

BiCGSTAB_ILU Build BiCGSTAB_CPR Build GMRES_CPR Build ORTHOMIN_ILU Build ORTHOMIN_CPR Build

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

142

The final study undertaken involved stressing the ORTHOMIN_CPR solver

to higher limits. Since this combination of iterative method and preconditioner had

been observed to be a very promising solver configuration, it was decided to test its

robustness even more. This was done by further discretizing the reservoir grid. The

simulator was thus set to run using grid sizes of 500,000 and 1,000,000 elements

(corresponding to 1,500,00 and 3,000,000 degrees of freedom, respectively), with

160x160x20 and 225x225x20 divisions in each direction, respectively.

The result of these simulations is presented in Figure 5.14, which shows that

the solver continued to be capable of reaching convergence. Although the required

runtime naturally increased in conjunction with problem dimension, it is interesting

to notice that this increase seems to be of reasonable magnitude. This conclusion

stems from the observation that the performance of iterative methods can normally

be expected to scale in the order of 𝑂(𝑚2) (Trefethen and Bau III, 1997); therefore,

if we calculate the proportion between runtimes of different problems and also

calculate the proportion of their dimensions squared, the ratio of these numbers

would be expected to approach unity (or at least to approach a relatively constant

scalar value):

(
𝑡2
𝑡1
⁄)

(
𝑚2

𝑚1
⁄)

2 ≈ 1 (5.2)

Moreover, ratios below this value would be an indication that the solver is

scaling well with respect to problem dimension. When this parameter is computed

for the runtimes seen with ORTHOMIN_CPR, the numbers remain below this

threshold for the entire range of simulations, as seen in Figure 5.14.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

143

Figure 5.14 – Total solver runtime required by ORTHOMIN_CPR as a function of grid

size, and relative rate of increase in required time in relation to the increment in problem

size.

0

0,2

0,4

0,6

0,8

1

1,2

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

10E3 20E3 50E3 100E3 200E3 500E3 1000E3

R
atio

 o
f (Tim

e R
atio

)/(Size R
atio

) 2

C
lo

ck
-T

im
e

p
er

 T
im

e-
St

ep
 (

s)

Number of Grid Elements

t_ratio/size_ratio2 ORTHOMIN_CPR

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

6
Final Considerations

Reservoir simulation is an essential activity in the development of

hydrocarbon fields, because it offers insight into future reservoir performance under

distinct operational conditions and well placements. However, to be of practical

use, a simulator must be capable of delivering accurate results in a timely manner

which, consequently, requires an appropriate numerical solver.

This thesis investigated various iterative solvers designed for reservoir

simulation applications. These solvers combine an iterative method with a

preconditioning technique to gradually approach the solution to linear systems of

equations constructed by a reservoir simulator. The iterative method is responsible

for defining a strategy on how the search space for the solution will be created,

while the preconditioner helps optimize the search directions undertaken in that

space.

Identifying robust and efficient solvers suited for a reservoir simulator was

the primary objective of this work. Robust because it must be able to converge on

a solution for a wide range of problems, since a developer does not know

beforehand which models will be studied in his simulator. Efficient because it must

deliver the results within a reasonable timeframe to be of use in decision-making

processes during the development and management a field.

Conclusions

The tests completed for this thesis assessed the performance of solvers

comprised of the BiCGSTAB, GMRES and ORTHOMIN iterative methods and

ILU, NF and CPR preconditioners, considering the multiple combinations possible.

This involved employing them to solve a model reservoir problem, using several

different grid dimensions, and analyzing diverse aspects of the results.

These experiments indicated that the solver consisting of ORTHOMIN

preconditioned with CPR provided the best overall results amongst all

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

145

configurations, for the reservoir model investigated. It proved to be both robust,

capable of solving problems with over one million grid blocks, and efficient,

delivering solutions 3 to 7 times faster than the next most competitive iterative

solvers, and 20 times faster than Intel’s commercial solver Pardiso.

Furthermore, the tests revealed that the CPR preconditioner serves as an

excellent option for simulator solvers. It consistently outperformed the remaining

preconditioners, in terms of reducing the number of iterations necessary for

achieving convergence, and proved to scale well with problem size, even when

considering its relatively costly construction stage.

Moreover, ORTHOMIN seemed to be a very competitive iterative method,

especially when coupled with CPR. BiCGSTAB also displayed promising results

due to the fact that it most consistently kept the number of required iterations low.

However, the runtime cost per iteration of this method can be significantly superior

to those of the other methods, primarily because of an extra preconditioning

solution operation that it must carry out. Therefore, it must either be able to

converge on even fewer iterations than the remaining methods, or be coupled with

a preconditioner that consumes less clock-time for its solution stage.

Suggestions for Future Research

The field of numerical solvers is so rich and challenging that there are

uncountable additional aspects that could be further explored by future research.

Nonetheless, some of the most promising and interesting ones will be mentioned

here: (i) study of the effect of different ordering schemes in the solvers’

performance; (ii) implementation of new versions of the algorithms studied, for

them to operate in parallel using multiple machines (clusters) and multiple cores

(Collins et al., 2013); (iii) implementation of new versions of the algorithms to run

on GPU instead of CPU (Appleyard et al., 2014; Zhou and Tchelepi, 2013).

Furthermore, any future research initiated based on the algorithm codes

implemented for this thesis should first further validate the results observed herein

by testing additional reservoir models with more complex geometries and property

distributions, as well as test the appearance and disappearance of the gas phase,

once the reservoir simulator is fully operational.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

7
Bibliographical References

AL-SHAALAN, T. M. et al. Studies of Robust Two Stage Preconditioners for

the Solution of Fully Implicit Multiphase Flow Problems. Proceedings from the

SPE Reservoir Simulation Symposium held in The Woodlands, Texas. Society of

Petroleum Engineers (SPE), 2009. SPE 118722.

APPLEYARD, J. R. et al. Accelerating Reservoir Simulation Using GPU

Technology. Proceedings from the SPE Reservoir Simulation Symposium held in

The Woodlands, Texas. Society of Petroleum Engineers (SPE), 2014. SPE 141402.

APPLEYARD, J. R.; CHESHIRE, I. M. Nested Factorization. Proceedings from

the Reservoir Simulation Symposium held in San Francisco, California. Society of

Petroleum Engineers of AIME, 1983. SPE 12264.

AZIZ, K.; SETTARI, A. Petroleum Reservoir Simulation. Applied Science

Publishers Ltd., 1979. ISBN: 0-85334-787-5.

BAKER, A. H.; JESSUP, E. R.; KOLEV, T. V. A Simple Strategy for Varying

the Restart Parameter in GMRES(m). Document prepared as an account of work

sponsored by an agency of the United States Government. Journal of Computational

and Applied Mathematics. Lawrence Livermore National Library, 2007.

BARRETT, R. Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods. 2nd ed. In: Other Titles in Applied Mathematics Series.

Society for Industrial and Applied Mathematics (SIAM), 1994. ISBN: 978-0-

89871-328-2.

BEHIE, A. Comparison of Nested Factorization, Constrained Pressure

Residual and Incomplete Factorization Preconditionings. Proceedings from the

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

147

SPE Middle East Oil Technical Conference and Exhibition in Bahrain. Society of

Petroleum Engineers (SPE), 1985. SPE 13531.

BEHIE, A.; COLLINS, D.; FORSYTH, P. Incomplete Factorization Methods for

Three-Dimensional Nonsymmetric Problems. Computer Methods in Applied

Mechanics and Engineering. n. 42. pp. 287-299. Elsevier, 1984.

BEHIE, A.; VINSOME, P. K. W. Block Iterative Methods for Fully Implicit

Reservoir Simulation. In: Society of Petroleum Engineers Journal. Society of

Petroleum Engineers of AIME, 1982.

BROWN, G. L.; COLLINS, D. A.; CHEN, Z. Efficient Preconditioning for

Algebraic Multigrid and Red-Black Ordering in Adaptative-Implicit Black-

Oil Simulators. Proceedings from the SPE Reservoir Simulation Symposium held

in Houston, Texas. Society of Petroleum Engineers (SPE), 2015. SPE 173231.

CAO, H. Parallel Scalable Unstructured CPR-Type Linear Solver for

Reservoir Simulation. Proceedings from the SPE Annual Technical Conference

and Exhibition held in Dallas, Texas. Society of Petroleum Engineers (SPE), 2005.

SPE 96809.

CELES, W.; CERQUEIRA, R.; RANGEL, J. L. Introdução a Estruturas de

Dados: com Técnicas de Programação em C. Rio de Janeiro: Elsevier, 2004. 2a

Reimpressão. ISBN: 85-352-1228-0.

CHEN, Z.; HUAN, G.; MA, Y. Computational Methods for Multiphase Flow in

Porous Media. Society for Industrial and Applied Mathematics (SIAM), 2006.

ISBN: 0-89871-606-3.

CHESHIRE, I. M. et al. An Efficient Fully Implicit Simulator. Proceedings from

the European Offshore Petroleum Conference and Exhibition, 1980.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

148

COLLINS, D. A.; GRABENSTETTER, J. E.; SAMMON, P. H. A Shared-

Memory Parallel Black-Oil Simulator with a Parallel ILU Linear Solver.

Proceedings from the SPE Reservoir Simulation Symposium held in Houston,

Texas. Society of Petroleum Engineers (SPE), 2003. SPE 79713.

DAKE, L. P. Fundamentals of Reservoir Engineering. In: Developments in

Petroleum Science. v. 8. Elsevier, 1978. ISBN: 978-0-444-41830-2.

DAVIS, T. A.; DUFF, I. S. An Unsymmetric-Pattern Multifrontal Method for

Sparse LU Factorization. In: SIAM J. Matrix Anal. Appl. v. 18. n. 1. pp. 140-158.

Society for Industrial and Applied Mathematics (SIAM). 1997.

DAVIS, T. A.; HU, Y. The University of Florida Sparse Matrix Collection.

ACM Transactions on Mathematical Software. v. V. n. N. pp. 1-28. 2010.

DE STERCK, H. et al. Distance-Two Interpolation for Parallel Algebraic

Multigrid. Numerical Linear Algebra with Applications. Lawrence Livermore

National Library, 2007. Document prepared as an account of work sponsored by an

agency of the United States Government.

DUARTE, L. S. et al. PolyTop++: an Efficient Alternative for Serial and

Parallel Topology Optimization on CPU & GPUs. Springer, 2015.

DUFF, I. S.; GRIMES, R. G.; LEWIS, J. G. User’s Guide for the Harwell-Boeing

Sparse Matrix Collection. 1992. Available on

<https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/>. Accessed on 29

May, 2018.

ERTEKIN, T.; ABOU-KASSEM, J. H.; KING, G. R. Basic Applied Reservoir

Simulation. In: SPE Textbook Series. v. 7. Society of Petroleum Engineers (SPE),

2001. ISBN: 1-55563-089-8.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

149

GOLDBERG, D. What Every Computer Scientist Should Know About

Floating-Point Arithmetic. ACM Computing Surveys. v. 23. n. 1., 1991.

GOLUB, G. H.; LOAN, C. F. V. Matrix Computations. 3rd ed. The John Hopkins

University Press, 1996. ISBN: 0-8018-5413-X.

GRIES, S. et al. Preconditioning for Efficiently Applying Algebraic Multigrid

in Fully Implicit Reservoir Simulations. Proceedings from the SPE Reservoir

Simulation Symposium held in The Woodlands, Texas. Society of Petroleum

Engineers (SPE), 2013. SPE 163608.

GRIES, S. On the Convergence of System-AMG in Reservoir Simulation.

Proceedings from the SPE Reservoir Simulation Symposium held in Montgomery,

Texas. In: SPE Journal. Society of Petroleum Engineers (SPE), 2017. SPE 182630.

GROSSMANN, C.; ROOS, H. G.; STYNES, M. Numerical Treatment of Partial

Differential Equations. Springer Science & Business Media, 2007. ISBN: 978-3-

540-71584-9.

GUTKNECHT, M. H. Variants of BICGSTAB for Matrices with Complex

Spectrum. Journal of Scientific Computing. v. 14. n. 5. pp. 1020-1033. Society for

Industrial and Applied Mathematics (SIAM), 1993.

HAMMERSLEY, R. P.; PONTING, D. K. Solving Linear Equations in

Reservoir Simulation Using Multigrid Methods. Proceedings from the SPE

Russian Oil & Gas Technical Conference and Exhibition held in Moscow, Russia.

Society of Petroleum Engineers (SPE), 2008. SPE 115017.

IMEX. IMEX Technical Manual. Computer Modeling Group (CMG). 2018.

JACKSON, H.; TARONI, M.; PONTING, D. K. A Two-Level Variant of

Additive Schwarz Preconditioning for Use in Reservoir Simulation. 2014.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

150

KELLY, C. T. Iterative Methods for Linear and Nonlinear Equations. Society

for Industrial and Applied Mathematics (SIAM), 1995.

LACROIX, S.; VASSILEVISKI, Y. V.; WHEELER, M. F. Decoupling

Preconditioners in the Implicit Parallel Accurate Reservoir Simulator

(IPARS). In: Numerical Linear Algebra Applications. n. 8. pp. 537-549. John

Wiley and Sons, 2001.

LAY, D. C. Linear Algebra: and its Applications. 3rd ed. Addison Wesley, 2003.

ISBN: 0-201-70970-8.

MATLAB. MATLAB Release Notes. MathWorks, 2019.

MATTAX, C.; DALTON, R. L. Reservoir Simulation. In: SPE Monograph Series.

v. 13. Society of Petroleum Engineers (SPE), 1990. ISBN: 1-55563-028-6.

MEIJERINK, J. A.; VAN DER VORST, H. A. An Iterative Solution Method for

Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix.

Mathematics of Computation. v. 31. n. 37. pp. 148-162. American Mathematical

Society (AMS), 1977.

MEYERINK, J. A. Iterative Methods for the Solution of Linear Equations

Based on Block Factorization of the Matrix. Proceedings from the Reservoir

Simulation Symposium held in San Francisco, California. Society of Petroleum

Engineers of AIME, 1983. SPE 12262.

PEACEMAN, D. W. Fundamentals of Numerical Reservoir Simulation. In:

Developments in Petroleum Science. v. 6. Elsevier, 1977. ISBN: 0-444-41578-5.

PONTING, D. K. et al. An Efficient Fully Implicit Simulator. Proceedings from

the European Offshore Petroleum Conference and Exhibition. In: Society of

Petroleum Engineers Journal, 1983. SPE 11817.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

151

PRICE, H. S.; COATS, K. H. Direct Methods in Reservoir Simulation.

Proceedings from the SPE-AIME 3rd Symposium on Numerical Simulation of

Reservoir Performance held in Houston, Texas. American Institute of Mining,

Metallurgical and Petroleum Engineers, 1974. SPE 4278.

SAAD, Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for

Industrial and Applied Mathematics (SIAM), 2003.

SAAD, Y.; SCHULTZ, M. H. GMRES: A Generalized Minimal Residual

Algorithm for Solving Nonsymmetric Linear Systems. Journal of Scientific

Computing. v. 7. n. 7. Society for Industrial and Applied Mathematics (SIAM),

1986.

SCHEICHL, R.; MASSON, R.; WENDEBOURG, J. Decoupling and Block

Preconditionings for Sedimentary Basin Simulations. Kluwer Academic

Publishers, 2003.

SCHENK, O.; GÄRTER, K. Pardiso User Guide Version 6.0.0. Intel, 2018.

SCHILDT, H. C++: The Complete Reference. 3rd ed. McGraw-Hill, 1998. ISBN:

0-07-213293-0.

SHETH, S. M.; YOUNIS, R. M. Localized Solvers for General Full-Resolution

Implicit Reservoir Simulation. Proceedings from the SPE Reservoir Simulation

Symposium held in Montgomery, Texas. Society of Petroleum Engineers (SPE),

2017. SPE 182691.

SLEIJPEN, G. L. G.; FOKKEMA, D. R. BICGSTAB(L) for Linear Equations

Involving Unsymmetric Matrices with Complex Spectrum. In: Electronic

Transactions on Numerical Analysis. v. 1. pp. 11-32. Kent State University, 1993.

SOCIETY OF PETROLEUM ENGINEERS (SPE). Reservoir Simulation Linear

Equation Solver. Available on

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

152

<https://petrowiki.org/Reservoir_simulation_linear_equation_solver>. Accessed

on 07 June, 2018. [?].

SOCIETY OF PETROLEUM ENGINEERS (SPE). Reservoir Simulation.

Available on <https://petrowiki.org/Reservoir_simulation>.

Accessed on 07 June, 2018. [?].

STÜBEN, K. An Introduction to Algebraic Multigrid. In: TROTTENBERG, U.;

OOSTERLEE, C.; SCHÜLLER, A. Multigrid. St. Augustin, Germany: German

National Center for Information Technology (GMD). Institute for Algorithms and

Scientific Computing (SCAI). Elsevier, 2001. Appendix A. pp. 413-532.

STÜBEN, K. Solving Reservoir Simulation Equations. Proceeding from the 9th

International Forum on Reservoir Simulation held in Abu Dhabi, UAE. St.

Augustin, Germany: German National Center for Information Technology (GMD).

Institute for Algorithms and Scientific Computing (SCAI), 2007.

STÜBEN, K. et al. Algebraic Multigrid Methods (AMG) for the Efficient

Solution of Fully-Implicit Formulations in Reservoir Simulation. Proceedings

from the SPE Reservoir Simulation Symposium held in Houston, Texas. Society of

Petroleum Engineers (SPE), 2007. SPE 105832.

TREFETHEN, L. N.; BAU III, D. Numerical Linear Algebra. Society for

Industrial and Applied Mathematics (SIAM), 1997. ISBN: 978-0-898713-61-9.

TROTTENBERG, U.; OOSTERLEE, C.; SCHÜLLER, A. Multigrid. St.

Augustin, Germany: German National Center for Information Technology (GMD).

Institute for Algorithms and Scientific Computing (SCAI). Elsevier, 2001. ISBN:

0-12-701070-X.

VAN DER VORST, H. A. BiCGSTAB: A Fast and Smoothly Converging

Variant of BI-CG for the Solution of Non-Symmetric Linear Systems. In:

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

153

Journal on Scientific and Statistical Computing. v. 13. pp. 631-644. Society for

Industrial and Applied Mathematics (SIAM), 1992.

VINSOME, P. K. W. Orthomin, An Iterative Method for Solving Sparse Sets

of Simultaneous Linear Equations. Proceedings from the SPE-AIME 4th

Symposium on Numerical Simulation of Reservoir Performance held in Los

Angeles, California. American Institute of Mining, Metallurgical and Petroleum

Engineers, 1976. SPE 5729.

WALLIS, J. R. Incomplete Gaussian Elimination as a Preconditioning for

Generalized Conjugate Gradient Acceleration. Proceedings from the Reservoir

Simulation Symposium held in San Francisco, California. Society of Petroleum

Engineers of AIME, 1983. SPE 12265.

WALLIS, J. R.; KENDALL, R. P.; LITTLE, T. E. Constrained Pressure

Acceleration of Conjugate Residual Methods. Proceedings from the SPE

Reservoir Simulation Symposium held in Dallas, Texas. Society of Petroleum

Engineers (SPE), 1985. SPE 13536.

YUVASHANKAR, V..; NEJAD, M. S..; LIU, A. Understanding Bi-Conjugate

Gradient Stabilized Method (Bi-CGSTAB). [2016?]. Available on

<http://www.yuvashankar.com/ blog/2016/6/25/understanding-the-bi-conjucate-

gradient-stabilized-method>. Accessed on 25 Dec., 2017.

ZHOU, Y.; TCHELEPI, H. A. Multi-GPU Parallelization of Nested

Factorization for Solving Large Linear Systems. Proceedings from the SPE

Reservoir Simulation Symposium held in The Woodlands, Texas. Society of

Petroleum Engineers (SPE), 2013. SPE 163588.

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

A
Complete Multiphase Flow Equations and Jacobian Terms

The complete multiphase flow equations of the black-oil model and the

entries to the Jacobian matrix are depicted in this appendix as derived for the fully

implicit formulation, with 𝑃𝑜, 𝑆𝑤 and 𝑆𝑔 as the simulation variables. The definitions

of all terms are identical to the ones presented in Chapter 2. Analogously, the

equations in this appendix were also derived or extracted from Ertekin et al.’s Basic

Applied Reservoir Simulation (2001).

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

155

A.1
Multiphase Flow Equations

(i) Oil

𝑇𝑜𝑥
𝑖+
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖+1,𝑗,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖+1,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑥
𝑖−
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖−1,𝑗,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖−1,𝑗,𝑘)

+ 𝑇𝑜𝑦
𝑖,𝑗+

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗+1,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗+1,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑦
𝑖,𝑗−

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗−1,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗−1,𝑘)

+ 𝑇𝑜𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘+1
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗,𝑘+1 − 𝑃𝑜𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑧
𝑖,𝑗,𝑘−

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝛾𝑜

𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘−1
𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘−1)

=
∀𝐵

∆𝑡
[
𝜙′

𝐵𝑜
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑜
)
′

]
𝑖,𝑗,𝑘

∙ (1 − 𝑆𝑤𝑖,𝑗,𝑘
𝑛 − 𝑆𝑔𝑖,𝑗,𝑘

𝑛)

∙ (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛) −
∀𝐵

∆𝑡
(
𝜙

𝐵𝑜
)
𝑖,𝑗,𝑘

𝑛+1

∙ (𝑆𝑤𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑤𝑖,𝑗,𝑘

𝑛 + 𝑆𝑔𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑔𝑖,𝑗,𝑘

𝑛)

− 𝑞𝑂𝑆𝐶𝑖,𝑗,𝑘
𝑛+1

(A.1)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

156

(ii) Water

𝑇𝑤𝑥
𝑖+
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖+1,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖+1,𝑗,𝑘

𝑛+1 − 𝛾𝑤
𝑛+1𝑍𝑖+1,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1

+ 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘
𝑛+1 + 𝛾𝑤

𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑤𝑥
𝑖−
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘 − 𝛾𝑤

𝑛+1𝑍𝑖,𝑗,𝑘

− 𝑃𝑜𝑖−1,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑜𝑤𝑖−1,𝑗,𝑘

𝑛+1 + 𝛾𝑤
𝑛+1𝑍𝑖−1,𝑗,𝑘)

+ 𝑇𝑤𝑦
𝑖,𝑗+

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗+1,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗+1,𝑘

𝑛+1

− 𝛾𝑤
𝑛+1𝑍𝑖,𝑗+1,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 + 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑤𝑦
𝑖,𝑗−

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘

− 𝑃𝑜𝑖,𝑗−1,𝑘
𝑛+1 + 𝑃𝑐𝑜𝑤𝑖,𝑗−1,𝑘

𝑛+1 + 𝛾𝑤
𝑛+1𝑍𝑖,𝑗−1,𝑘)

+ 𝑇𝑤𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘+1
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘+1

𝑛+1

− 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 + 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘
𝑛+1

+ 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑤𝑧
𝑖,𝑗,𝑘−

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘

− 𝑃𝑜𝑖,𝑗,𝑘−1
𝑛+1 + 𝑃𝑐𝑜𝑤𝑖,𝑗,𝑘−1

𝑛+1 + 𝛾𝑤
𝑛+1𝑍𝑖,𝑗,𝑘−1)

=
∀𝐵

∆𝑡
[
𝜙′

𝐵𝑤
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑤
)
′

]
𝑖,𝑗,𝑘

∙ 𝑆𝑤𝑖,𝑗,𝑘
𝑛

∙ (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛) +
∀𝐵

∆𝑡
(
𝜙

𝐵𝑤
)
𝑖,𝑗,𝑘

𝑛+1

∙ (𝑆𝑤𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑤𝑖,𝑗,𝑘

𝑛) − 𝑞𝑊𝑆𝐶𝑖,𝑗,𝑘
𝑛+1

(A.2)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

157

(iii) Gas

 𝑇𝑔𝑥
𝑖+
1
2
,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖+1,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖+1,𝑗,𝑘

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖+1,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑔𝑥
𝑖−
1
2,𝑗,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘 − 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖−1,𝑗,𝑘
𝑛+1 − 𝑃𝑐𝑔𝑜𝑖−1,𝑗,𝑘

𝑛+1

+ 𝛾𝑔
𝑛+1𝑍𝑖−1,𝑗,𝑘)

+ 𝑇𝑜𝑥
𝑖+
1
2
,𝑗,𝑘

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖+1,𝑗,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖+1,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1

+ 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑥
𝑖−
1
2
,𝑗,𝑘

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖−1,𝑗,𝑘

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖−1,𝑗,𝑘)

+ 𝑇𝑔𝑦
𝑖,𝑗+

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗+1,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗+1,𝑘

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖,𝑗+1,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1

− 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑔𝑦
𝑖,𝑗−

1
2
,𝑘

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗−1,𝑘

𝑛+1

− 𝑃𝑐𝑔𝑜𝑖,𝑗−1,𝑘
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗−1,𝑘)

+ 𝑇𝑜𝑦
𝑖,𝑗+

1
2,𝑘

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗+1,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗+1,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑦
𝑖,𝑗−

1
2,𝑘

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗−1,𝑘

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖,𝑗−1,𝑘)

+ 𝑇𝑔𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘+1
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘+1

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖,𝑗,𝑘+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1

− 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑔𝑧
𝑖,𝑗,𝑘−

1
2

𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 + 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑔
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘−1

𝑛+1

− 𝑃𝑐𝑔𝑜𝑖,𝑗,𝑘−1
𝑛+1 + 𝛾𝑔

𝑛+1𝑍𝑖,𝑗,𝑘−1)

+ 𝑇𝑜𝑧
𝑖,𝑗,𝑘+

1
2

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘+1

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘)

− 𝑇𝑜𝑧
𝑖,𝑗,𝑘−

1
2

𝑛+1𝑅𝑠
𝑛+1 (𝑃𝑜𝑖,𝑗,𝑘

𝑛+1 − 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘 − 𝑃𝑜𝑖,𝑗,𝑘−1

𝑛+1 + 𝛾𝑜
𝑛+1𝑍𝑖,𝑗,𝑘−1)

=
∀𝐵
∆𝑡
({[

𝜙′

𝐵𝑜
𝑛 +𝜙

𝑛+1 (
1

𝐵𝑜
)
′

] ∙ 𝑅𝑠
𝑛 + (

𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
′}
𝑖,𝑗,𝑘

× (1 − 𝑆𝑤𝑖,𝑗,𝑘
𝑛 − 𝑆𝑔𝑖,𝑗,𝑘

𝑛) + [
𝜙′

𝐵𝑔
𝑛 + 𝜙

𝑛+1 (
1

𝐵𝑔
)

′

]
𝑖,𝑗,𝑘

∙ 𝑆𝑔𝑖,𝑗,𝑘
𝑛)

∙ (𝑃𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑃𝑜𝑖,𝑗,𝑘

𝑛) −
∀𝐵
∆𝑡
[(
𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1]

𝑖,𝑗,𝑘

∙ (𝑆𝑤𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑤𝑖,𝑗,𝑘

𝑛)

+
∀𝐵
∆𝑡
[(
𝜙

𝐵𝑔
)

𝑛+1

− (
𝜙

𝐵𝑜
)
𝑛+1

∙ 𝑅𝑠
𝑛+1]

𝑖,𝑗,𝑘

∙ (𝑆𝑔𝑖,𝑗,𝑘
𝑛+1 − 𝑆𝑔𝑖,𝑗,𝑘

𝑛) − 𝑞𝐺𝑆𝐶𝑖,𝑗,𝑘
𝑛+1

(A.3)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

158

A.2
Jacobian Matrix Entries

(i) Oil Derivatives with respect to Neighboring Cells

 (
𝜕𝑅𝑜𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

= [𝑇𝑜𝑛,𝑚
(𝜈) + [∆𝑚𝑃𝑜

(𝜈) − 𝛾̅𝑛
𝑜𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑜𝑛,𝑚
𝜕𝑃𝑜𝑚

)

(𝜈)

] (A.4)

 (
𝜕𝑅𝑜𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑆𝑤𝑚

)

(𝜈)

] (A.5)

 (
𝜕𝑅𝑜𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑆𝑔𝑚

)

(𝜈)

] (A.6)

(ii) Water Derivatives with respect to Neighboring Cells

(
𝜕𝑅𝑤𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

= [𝑇𝑤𝑛,𝑚
(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − ∆𝑚𝑃𝑐𝑜𝑤

(𝜈)

− 𝛾̅𝑛
𝑤𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑤𝑛,𝑚
𝜕𝑃𝑜𝑚

)

(𝜈)

]

(A.7)

(
𝜕𝑅𝑤𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) − ∆𝑚𝑃𝑐𝑜𝑤

(𝜈)

− 𝛾̅𝑛
𝑤𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑤𝑛,𝑚
𝜕𝑆𝑤𝑚

)

(𝜈)

− 𝑇𝑤𝑛,𝑚
(𝜈)𝑃′𝑐𝑜𝑤𝑚

(𝜈)
]

(A.8)

 (
𝜕𝑅𝑤𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

= 0 (A.9)

(iii) Gas Derivatives with respect to Neighboring Cells

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

159

(
𝜕𝑅𝑔𝑛
𝜕𝑃𝑜𝑚

)

(𝜈)

= [𝑇𝑔𝑛,𝑚
(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) + ∆𝑚𝑃𝑐𝑔𝑜

(𝜈)

− 𝛾̅𝑛
𝑔𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑔𝑛,𝑚
𝜕𝑃𝑜𝑚

)

(𝜈)

+ (𝑇𝑜𝑅𝑠)𝑛,𝑚
(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑃𝑜𝑚

)

(𝜈)

]

(A.10)

 (
𝜕𝑅𝑔𝑛
𝜕𝑆𝑤𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑆𝑤𝑚

)

(𝜈)

] (A.11)

(
𝜕𝑅𝑔𝑛
𝜕𝑆𝑔𝑚

)

(𝜈)

= [[∆𝑚𝑃𝑜
(𝜈) + ∆𝑚𝑃𝑐𝑔𝑜

(𝜈) − 𝛾̅𝑛
𝑔𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑔𝑛,𝑚
𝜕𝑆𝑔𝑚

)

(𝜈)

+ 𝑇𝑔𝑛,𝑚
(𝜈)𝑃′𝑐𝑔𝑜𝑚

(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑆𝑔𝑚

)

(𝜈)

]

(A.12)

(iv) Oil Derivatives with respect to Current Cell

(
𝜕𝑅𝑜𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

= [∑ (−𝑇𝑜𝑛,𝑚
(𝜈)

𝑚∈𝜓𝑛

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑃𝑜𝑛

)

(𝜈)

)

− 𝐶𝑜𝑝𝑛
(𝜈) + (

𝜕𝑞𝑂𝑆𝐶𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

]

(A.13)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

160

(
𝜕𝑅𝑜𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

= [∑ ([∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑆𝑤𝑛

)

(𝜈)

)

𝑚∈𝜓𝑛

− 𝐶𝑜𝑤𝑛
(𝜈) + (

𝜕𝑞𝑂𝑆𝐶𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

]

(A.14)

(
𝜕𝑅𝑜𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

= [∑ ([∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕𝑇𝑜𝑛,𝑚
𝜕𝑆𝑔𝑛

)

(𝜈)

)

𝑚∈𝜓𝑛

− 𝐶𝑜𝑔𝑛
(𝜈) + (

𝜕𝑞𝑂𝑆𝐶𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

]

(A.15)

(v) Water Derivatives with respect to Current Cell

(
𝜕𝑅𝑤𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

= [∑ (−𝑇𝑤𝑛,𝑚
(𝜈)

𝑚∈𝜓𝑛

+ [∆𝑚𝑃𝑜
(𝜈) − ∆𝑚𝑃𝑐𝑜𝑤

(𝜈)

− 𝛾̅𝑛
𝑤𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑤𝑛,𝑚
𝜕𝑃𝑜𝑛

)

(𝜈)

) − 𝐶𝑤𝑝𝑛
(𝜈)

+ (
𝜕𝑞𝑊𝑆𝐶𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

]

(A.16)

(
𝜕𝑅𝑤𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

= [∑ ([∆𝑚𝑃𝑜
(𝜈) − ∆𝑚𝑃𝑐𝑜𝑤

(𝜈)

𝑚∈𝜓𝑛

− 𝛾̅𝑛
𝑤𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑤𝑛,𝑚
𝜕𝑆𝑤𝑛

)

(𝜈)

+ 𝑇𝑤𝑛,𝑚
(𝜈)𝑃′𝑐𝑜𝑤𝑛

(𝜈)
)

− 𝐶𝑤𝑤𝑛
(𝜈) + (

𝜕𝑞𝑊𝑆𝐶𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

]

(A.17)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

161

 (
𝜕𝑅𝑤𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

= [−𝐶𝑤𝑔𝑛
(𝜈) + (

𝜕𝑞𝑊𝑆𝐶𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

] (A.18)

(vi) Gas Derivatives with respect to Current Cell

(
𝜕𝑅𝑔𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

= [∑ (−𝑇𝑔𝑛,𝑚
(𝜈)

𝑚∈𝜓𝑛

+ [∆𝑚𝑃𝑜
(𝜈) + ∆𝑚𝑃𝑐𝑔𝑜

(𝜈)

− 𝛾̅𝑛
𝑔𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑔𝑛,𝑚
𝜕𝑃𝑜𝑛

)

(𝜈)

− (𝑇𝑜𝑅𝑠)𝑛,𝑚
(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑃𝑜𝑛

)

(𝜈)

)

− 𝐶𝑔𝑝𝑛
(𝜈) + (

𝜕𝑞𝐺𝑆𝐶𝑛
𝜕𝑃𝑜𝑛

)

(𝜈)

]

(A.19)

(
𝜕𝑅𝑔𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

= [∑ ([∆𝑚𝑃𝑜
(𝜈)

𝑚∈𝜓𝑛

− 𝛾̅𝑛
𝑜𝑛,𝑚

∆𝑚𝑍] (
𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑆𝑤𝑛

)

(𝜈)

) − 𝐶𝑔𝑤𝑛
(𝜈)

+ (
𝜕𝑞𝐺𝑆𝐶𝑛
𝜕𝑆𝑤𝑛

)

(𝜈)

]

(A.20)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

162

(
𝜕𝑅𝑔𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

= [∑ ([∆𝑚𝑃𝑜
(𝜈) + ∆𝑚𝑃𝑐𝑔𝑜

(𝜈)

𝑚∈𝜓𝑛

− 𝛾̅𝑛
𝑔𝑛,𝑚

∆𝑚𝑍] (
𝜕𝑇𝑔𝑛,𝑚
𝜕𝑆𝑔𝑛

)

(𝜈)

− 𝑇𝑔𝑛,𝑚
(𝜈)𝑃′𝑐𝑔𝑜𝑛

(𝜈)

+ [∆𝑚𝑃𝑜
(𝜈) − 𝛾̅𝑛

𝑜𝑛,𝑚
∆𝑚𝑍] (

𝜕(𝑇𝑜𝑅𝑠)𝑛,𝑚
𝜕𝑆𝑔𝑛

)

(𝜈)

)

− 𝐶𝑔𝑔𝑛
(𝜈) + (

𝜕𝑞𝐺𝑆𝐶𝑛
𝜕𝑆𝑔𝑛

)

(𝜈)

]

(A.21)

DBD
PUC-Rio - Certificação Digital Nº 1612872/CA

DBD
PUC-Rio - Certificação Digital Nº 1612782/CA

