
3 Forecasting the cross-sectional variation in stock returns

3.1 Introduction

Several studies present models which explain the variability in stock

returns. By grouping related stocks in portfolios and considering long-term

statistics, some models can explain up to 90% of returns variability. If such

variability exists and is also related to expected returns, it should be possible

to check its existence assuming a forecast environment (without look-ahead

bias) and evaluating statistics over shorter horizons. Under this environment,

a model which can forecast stock return variability could be plugged red into

a portfolio optimization framework in order to generate economic value.

Several studies present models which explain the variability in stock

returns. By grouping related stocks in portfolios and considering long-term

statistics, some models can explain up to 90% of returns variability. If such

variability exists and is also related to expected returns, it should be possible

to check its existence assuming a forecast environment (without look-ahead

bias) and evaluating statistics over shorter horizons. Under this environment,

a model which can forecast stock return variability could be plugged into a

portfolio optimization framework in order to generate economic value.

Our work can be divided in three parts, all related to the forecast of the

cross-sectional expected return variation in stocks. The first part evaluates

the forecasting performance of standard, skeptical and naive models using

alternative statistics. The second part is an attempt to find better models

according to the alternative statistics proposed in the first part. The third

part evaluates all expected return models in the previous parts from the

portfolio manager point of view by plugging the model into a Markowitz

optimization framework. Better models should generate better return/risk

ratios if the covariance model is the same. In the second part, we search

for better models using two different approaches. The first approach defines

a model set containing several models estimated by the Fama-Macbeth and

searches for better model combinations according to each of the short-run

statistics. The second approach defines a single model containing several factors

and estimates using the LASSO technique (Tibshirani (1996)). Besides, we use
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a set of portfolios beyond the traditional portfolios sorted by size and book-to-

market. The set of portfolios include: 100 portfolios sorted on size and book-

to-market, 48 portfolios sorted by industry, 25 portfolios sorted by size and

1-year momentum and 10 portfolios sorted on earning/price.

The benchmark models are the CAPM (Sharpe (1964)) and the Fama-

French 3-factor model (Fama & French (1993a)). Others works on the cross-

sectional variation of stock expected returns include: Jagganathan & Wang

(1996), Lettau & Ludvigson (2001) and Petkova (2006). All these articles have

in common the fact they consider fitted and realized returns averaged across

the entire sample when checking the model capacity to explain cross-sectional

variation. Instead, we use monthly and average monthly return over one year

to check forecasting power (not explanatory). We are not aware of other works

using short-horizon statistics or using LASSO in the context of asset returns.

Our results suggest the CAPM and Fama-French do not perform better

than naive models (for example, the historical mean) if we consider return

statistics over short horizons or return/risk ratios of optimized portfolio

assuming each expected return model. This part can be seen as an expansion

of the work Welch & Goyal (2008) to evaluate models to explain the cross-

sectional variation of stock expected returns. Finally, combination of models

and LASSO estimation may provide better results, as shown by a relevant

positive economic value from both approaches. A Sharpe ratio maximizer

investor would be willing to spend more than 200 basis points to exchange

the S&P500 by the portfolios generated by a modified Markowitz optimization

using these models.

The paper is organized as follows. Section 3.2 formulates the problem,

that is, the variability of expected returns. Section 3.3 describes the statistics

we use and evaluate benchmark, naive and skeptical models according to

them. Section 3.4 attempts to search for better models on a linear multi-

factor environment. In 3.4.1 we define a set containing several linear models

and attempt to find good combinations according to short-run statistics. In

3.4.2 we use LASSO estimation on a linear model with 24 factors. Section 3.5

presents the experiment to evaluate models according to the economic value

of the Markowitz optimized portfolio obtained by plugging the model. Section

3.6 concludes.

3.2 Problem Formulation

Let ri,t+1 be the holding period return of an asset (or portfolio) i from

period t to t+ 1. We define the return in excess of the market r∗i,t+1 as:
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r∗i,t+1 = ri,t+1 − rb,t+1 (3-1)

where rb,t+1 is the benchmark return. In this paper, we use the S&P500 index

as benchmark.

The variability we want to forecast is the expected return in excess of

the market from period t to t + 1, conditional on information known at t, for

a set of portfolios:
Et[r

∗

i,t+1] = Et[ri,t+1 − rb,t+1] (3-2)

Therefore, we evaluate models which attempt to explain Et[r
∗

i,t+1] by fore-

casting return for each asset i, without attempting to forecast the benchmark

expected return.

3.3 Short-horizon statistics

In order to evaluate the forecasting power of several stock return forecast

models, we use 183 portfolios from Kenneth French’s website:

1. Group 1: 100 portfolios sorted on size (market equity) and book-to-

market (ratio of book equity to market equity).

2. Group 2: 25 portfolios sorted on size (market equity) and momentum

(prior 2-12 returns). The monthly size breakpoints are the NYSE market

equity quintiles. The monthly prior (2-12) return breakpoints are NYSE

quintiles. The portfolios constructed each month include NYSE, AMEX,

and NASDAQ stocks with prior return data.

3. Group 3: 48 portfolios sorted on industry.

4. Group 4: 10 portfolios sorted on earnings/price ratio. Portfolios are

formed on E/P at the end of each June using NYSE breakpoints.

By using multiple groups of portfolios, we attempt to expand our analysis

beyond traditional sorted by only one or two characteristics (mainly to explain

size and value effects). Lewellen et al. (2010) describe various concerns which

are most severe when a couple of factors explain nearly all of the variation

in expected returns. A desirable model should be able to successfully forecast

variations in expected returns among different portfolios when there is some

variation, and, do not forecast spurious variations when there are none. So we

include portfolios sorted by industry and earning/price ratio, which are groups

with lesser spread in expected returns.

The returns are from January 1961 to December 2008. Table 3.1 presents

the cross-sectional standard deviation of average monthly returns σavgret,

average cross-sectional standard deviation σ̄ and the total variability explained
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Table 3.1: Cross-sectional statistics
This table presents cross-sectional statistics for the 4 portfolios groups and the entire set of portfolios. The statistics are
the cross-sectional standard deviation of average monthly returns σavgret, average cross-sectional standard deviation σ̄

and the total variability explained by the first 5 principal components (PC1-PC5).

Group σavgret σ̄ PC1 PC2 PC3 PC4 PC5
Group 1 0.003 0.030 77.0 3.6 2.9 1.0 0.7
Group 2 0.004 0.024 81.2 7.1 4.6 1.7 1.0
Group 3 0.002 0.042 56.4 6.5 4.2 3.7 2.6
Group 4 0.002 0.017 85.6 6.0 2.7 1.3 1.0
All groups 0.003 0.033 72.2 3.1 2.4 2.1 1.3

by the first 5 principal components (PC1-PC5) of the portfolio returns. The

values of σavgret and σ̄ show the variability of monthly returns is far greater

than the variability of average monthly returns over the period. As expected,

the returns of Group 3 are less explained by the first 5 principal components.

We propose three statistics to evaluate the forecasting power of the cross-

sectional variation in stock returns. They ressemble the cross-section R2 used

since Fama & French (1993b), with two differences. First, the returns are from

the average of distinct horizons (monthly, annual, entire sample). Second, the

weight of the each portfolio’s forecasting error is related to the market value

of the portfolio.

Let Sm be the first statistic as follows:

Sm,t ≡ 1−

∑N

i=1
ωi,te

2
i,t∑N

i=1
ωi,t(r∗i,t+1

− r̄∗i,t+1
)2

(3-3)

where i represents a index of portfolios, ωi,t is the portfolio’s market value,

ei,t is the difference between forecast and realized returns, r∗i,t+1 is the realized

return in excess of the market and r̄∗i,t+1 is the cross-sectional average return

in excess of the market.

The next statistic, Sy, considers average monthly returns over each year:

Sy,t ≡ 1−

∑N

i=1
ωi,t(e

y
i,t+1)

2

∑N

i=1
ωi,t(r

y
i,t+1 − r̄

y
i,t+1)

2
(3-4)

where i represents a index of portfolios,ωi,t is the portfolio’s market value, eyi,t
is the difference between average forecast and average realized returns over a

year, ryi,t+1 is the monthly excess return averaged over one year and r̄
y
i,t+1 is

the cross-sectional average of ryi,t+1.

Finally, the statistic Ss consider average monthly returns over the entire

sample:

Ss ≡ 1−

∑N

i=1
ωi,t(e

s
i,t+1)

2

∑N

i=1
ωi,t(rsi,t+1 − r̄si,t+1)

2
(3-5)

where i represents a index of portfolios, t and t+ 1 represent periods, ωi,t is a

measure of the portfolio’s market value, esi,t is the difference between average
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forecast and average realized returns over the sample, rsi,t+1 is the monthly

excess return averaged over the sample and r̄si,t+1 is the cross-sectional average

of rsi,t+1. Ss is more related to the cross-sectional R2 used to measure the

explanatory power of models which attempt to explain cross-section variation

in returns.

At first, we use these statistics to compare the performance of benchmark,

naive and skeptical return models. These models attempt to model the

expected return in excess of the market Et[r
∗

i,t+1] and they are defined as

follows:

1. Model 1: Et[r
∗

i,t+1] = 0 for every portfolio i, “no variation”

2. Model 2: Et[r
∗

i,t+1] = ciEt[rm,t+1 − rf,t], “CAPM”

3. Model 3: Et[r
∗

i,t+1] = c1,iEt[rm,t+1 − rf,t] + c2,iEt[SMBt+1] +

c3,iEt[HMLt+1], “FF 3-factor”

4. Model 4: Et[r
∗

i,t+1] = ai, “intercept”

5. Model 5: Et[r
∗

i,t+1] = ai + bir
∗

i,t, “intercept + lag”

The “no variation” model simply states there is not expected variation

in portfolio returns from t to t + 1 conditional on all information available

at t. The two following models use factors and are based on Sharpe (1964)

CAPM and the 3-factor model proposed in Fama & French (1996). The last

two models go in the opposite direction. Instead of risk premia for factors times

factor loadings, they allow intercepts (“intercept” model) and intercepts plus

lag times a coefficient.

The “CAPM” and “FF 3-factor” models are estimated by the Fama-

Macbeth procedure (Fama & Macbeth (1973)). This procedure involves two

steps and the objective is to estimate both factor loadings and factor risk

premia. Let the expected return in excess of the market be defined as follows:

Et[r
∗

i,t+1] = αi + β′

iδ̄t (3-6)

where βi is a vector containing factor loadings and δ̄t is the risk premia for

each factor.

In the first step, δ̄t is replaced by the realized return of the factor-

mimicking portfolio, so αi and βi are estimated for each portfolio i by OLS

from:
r∗i,t+1 = αi + β′

iRX,t+1 + ei,t (3-7)

where RX,t is the return of the factor-mimicking portfolios.

The second step involves the estimation of the risk premia for each factor

and uses α̂i and β̂i estimated during the first step. Given α̂i and β̂i, we estimate
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Table 3.2: Results - growing window of estimation
This table presents average values of S̄m, S̄y and the Ss statistic for the “no variation”, “CAPM”, “FF 3-factor”,

“intercept” and “intercept + lag” models. The value in parenthesis is the standard-deviation of the statistic over the
sample. The estimation procedure uses a growing window of estimation.

Model S̄m × 100 S̄y × 100 Ss × 100
“no variation” 13.13 (15.37) 20.07 (17.63) 14.05
“CAPM” 12.80 (15.54) 18.61 (18.85) 13.78
“FF 3-factor” 12.64 (16.37) 17.80 (25.11) 30.70
“intercept” 13.05 (16.34) 19.38 (24.85) 77.34
“intercept + lag” 12.65 (18.42) 30.73 (24.85) 80.51

the risk premia for each factor at period t by OLS from the cross-section of

portfolios:
r∗i,t+1 − α̂i = δ′tβ̂i + ui,t (3-8)

Finally, the risk premia δ̄t+1 is estimated as the average of the estimated

risk premia from the last, say, w periods.

In the “intercept” and “intercept + lag” models, ai and bi are estimated

by OLS. Hence, âi is the sample average return in excess of the market in the

“intercept” model.

Table 3.2 presents the statistics for the models defined before, using a

growing window to estimate coefficients and risk premia associated to each

factor. The difference in Sm is small, although the ’no cross-sectional variation

model’ performs better. The statistic Sy presents a greater variation, favoring

the no-cross-section variance model and the model with intercept plus one lag.

The models which allow intercepts provide a greater explanation of the average

variation in returns, as shown in the last column. The result for the “FF 3-

Factor” model for Ss is lesser than displayed in previous papers. This occurs

because the set of portfolios does not include only portfolios sorted by size and

book-to-market and the estimation of coefficients and risk premia uses only

information available until each period.

Given evidence of time-varying risk premia and factor exposures, we re-

estimate coefficients and risk premia for each factor by using a rolling window

of 10 years in both parts of the estimation procedure. Table 3.3 shows the

results. This reduce the Sm for the models with intercept and has little effect

in the other two models. There is small average decrease in Sy and an overall

increase in Ss.

These results suggest that if we remove look-ahead bias to estimate

coefficients and risk premia to each factor and include portfolios sorted by

others characteristics, the “FF 3-factor” performs much worse than the naive

models which replace factors by intercepts and lags. Besides, the statistics over

shorter horizons show a negligible difference in performance between models,

with some advantage to “no variation” and “intercept + lag” models.
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Table 3.3: Results - rolling window of estimation
This table presents average values of S̄m, S̄y and the Ss statistic for the “no variation”, “CAPM”, “FF 3-factor”,

“intercept” and “intercept + lag” models. The value in parenthesis is the standard-deviation of the statistic over the

sample. The estimation procedure uses a rolling window of estimation (10 years).

Model S̄m × 100 S̄y × 100 Ss × 100
“no variation” 13.13 (15.37) 20.07 (17.63) 14.05
“CAPM” 12.96 (15.39) 19.76 (17.55) 20.08
“FF 3-factor” 12.51 (16.40) 16.62 (25.47) 40.54
“intercept” 12.08 (17.01) 16.01 (26.56) 93.60
“intercept + lag” 11.24 (19.50) 25.23 (25.24) 93.40

3.4 Search for a better model

Results from Section 3.3 suggest the benchmark models are not better

than the skeptical model to explain cross-sectional variation in stock returns.

This raises the following question: can a single linear or combination of linear

models achieve better results?

In order to answer to this question, we attempt two model combination

approaches. The first approach (Section 3.4.1) selects models from a large set

according to the performance of the combination. The set contains only models

estimated by the Fama-Macbeth procedure. The second approach (Section

3.4.2) estimates a single model containing several factors by using the LASSO

Method (e.g. Hastie et al. (2008)).

3.4.1 Combination of models estimated by Fama-Macbeth procedure

The following equation describe the general functional form of the returns

in excess of the market for portfolio i:

Et[r
∗

i,t+1] = αi + βiδM,t+1 + ciδX,t+1 + dir
∗

i,t (3-9)

where δM,t+1 is the market risk premia and δX,t+1 is the risk premia associated

to another factor, from the list:

1. Small-minus-big and high-minus-low portfolios;

2. Term spread;

3. Variation in term spread;

4. Default spread;

5. Variation in default spread;

6. Aggregated earnings/price ratio;
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7. Variation in aggregated earnings/price ratio;

8. Variation in the risk-free rate;

9. Variation in unemployment;

10. Inflation (accumulated, one year).

We obtain term spread, default spread, inflation, aggregated earn-

ings/price ratio and risk-free rate from Amit Goyal’s website. Small-minus-big

and high-minus-low portfolios returns are also from Kenneth French’s website1

In addition, the set of models is defined by combining the following

assumptions:

1. αi = 0 vs. αi free;

2. βi = 0 vs. βi free;

3. ci = 0 vs. ci free;

4. di = 0 vs. di free;

5. Risk premia for each factor estimated from last 1,3,6,12 or 120 months.

It is noteworthy that this functional form and assumptions include the

“no variation”, “CAPM”, “intercept” and “intercept + lag” models evaluated

in Section 3.3.

All coefficients are estimated by the Fama-Macbeth procedure. The first

stage uses a rolling windows of 120 months, while the second stage uses average

risk premia from last 1,3,6,12 or 120 months.

We impose an additional constraint: for each group of portfolios, the

weighted sum of expected returns in excess of the market equal zero, that

is:
∑

ωi,tEt[r
∗

i,t+1] = 0 for each group of portfolios. In order to impose this

constraint, we shift all the forecast excess returns from a given group of

portfolios for a same value.

Given the set of 473 models defined before, we attempt to find the best

equal-weighted combination of n models according to S̄m or S̄y. As n increases,

the number of possible combinations increases exponentially. Hence, we restrict

the combinations we explore by the following procedure:

1. Find the best model (according to the statistic) - this is the best model

combination (M1) for n = 1;

1Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 3.4: Results - best equal-weighted combination of 7 models
This table presents average values of Sm and Sy and the Ss statistic for the “no variation” and “FF 3-factor” models, as

well as the best equal-weighted combinations of 7 models considering Sm and Sy . The value in parenthesis is the
standard-deviation of the statistic over the sample. The estimation procedure uses a rolling window of estimation (10

years).

Model S̄m × 100 S̄y × 100 Ss × 100
Model “No variation” 13.13 (15.37) 20.07 (17.63) 14.05
Model “FF 3-factor” 12.51 (16.40) 16.62 (25.47) 40.54
Best combination for S̄m 13.71 (16.71) 30.33 (18.09) 52.40
Best combination for S̄y 2.31 (39.86) 44.71 (19.17) 60.99

Table 3.5: Results - best equal-weighted combination of 7 models, out-of-
sample procedure
This table presents average values of Sm and Sy and the Ss statistic for the “no variation” and “FF 3-factor” models, as
well as the best equal-weighted combinations of 7 models considering Sm and Sy .The best model combination from the

first half of the sample is used in the second half, and vice-versa. The value in parenthesis is the standard-deviation of the
statistic over the sample. The estimation procedure uses a rolling window of estimation (10 years).

Model S̄m × 100 S̄y × 100 Ss × 100
Model “No variation” 13.13 (15.37) 20.07 (17.63) 14.05
Model “FF 3-factor” 12.51 (16.40) 16.62 (25.47) 40.54
Best combination for S̄m 13.20 (16.59) 28.76 (17.43) 42.71
Best combination for S̄y 2.48 (41.40) 43.98 (19.33) 62.81

2. Find the best equal-weight combination of two models containing M1.

The two portfolios are the best combination (M2) for n = 2;

3. Repeat the procedure using M2 to select the best combination (M3) for

n = 3, and so on.

Table 3.4 presents the results for the best 7-model combinations according

to Sm and Sy. The best combination according to Sm has better performance

than both benchmark models. The best model combination according to Sy

performs much better according to Sy and Ss statistics, but poor performance

when considering Sm.

Although the estimated coefficients and risk premia use only information

available in the beginning of each period, the approach to select and combine

models uses the performance over the entire sample. Therefore, even if the

estimation procedure does not suffer from look-ahead bias, the model selection

approach does. Besides, given the large set of available models, we cannot rule

out data-mining bias. We consider this approach to be robust to both issues.

As an argument, we evaluate a modified version of this approach. The first

step is to split the sample in two, from 1971 to 1989 and from 1990 to 2008.

Then, the selected models from the first part are used in the second part, and

vice-versa. Table 3.5 presents the results for the best 7-model combinations

using this adjustment.

The model combination according to Sm still performs little better than

the “no variation”. However, this variation is negligible if the volatility of this
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measure is taken in account. Finally, the model combination according to Sy

performs ahead of others (except Sm) and almost as well as the selected model

using the entire sample.

3.4.2 Combination of models estimated by LASSO

The LASSO is a shrinkage method which restricts the estimated coeffi-

cients by
∑N

i=1
|βi| ≤ t, for some t.

Equivalently, the LASSO can be seen modeled as a Bayesian estimation.

Let {βj}
p
j=0 be a set of coefficients to be estimated from the equation yi =

β0+
∑p

j=1
xijβj+ǫi where i identifies each sample element. The sample contains

N elements. The parameters are estimated from the criterion:

β̃ = argmin
β
{

N∑

i=1

(yi − β0 −

p∑

j=1

xijβj)
2 + λ

p∑

j=1

|βj|} (3-10)

The sum
∑p

j=1
|βj| can be seen as the log-prior density for {βj}

p
j=1. Hence,

λ controls the relative weight on the prior. Instead of defining a specific value

for λ, we estimate the coefficients by using 6 different values of λ and combine

the forecasts.

We consider a multi-factor model with a set of 24 lagged variables (in

the sense that xt is known at period t), given by:

Et[r
∗

i,t+1] = αi + βixt (3-11)

where βi is a vector of 24 coefficients and xt is a vector of 24 lagged factors.

This model is different from the models used in Section 3.4.1. Those models

use concurrent factors and estimate the risk premia associated to each factor,

in a 2-step procedure. Therefore, the expected return is the combination of

estimated factor coefficients and risk premia. Instead, this model uses lagged

variables as factors and the expected return is the combination of estimated

factors coefficients and current factor value.

The factors we use are: earnings price ratio , variation in earnings

price ratio (difference between consecutive months), variation in earnings

price ratio (difference between 3 months), variation in earnings price ratio

(difference between 12 months), variation in earnings (difference between

consecutive months). variation in earnings (difference between 3 months),

variation in earnings (difference between 12 months), book-to-market ratio,

market excess (1 month interval), market excess return ( 3 months), market

excess return (12 months), risk-free rate, variation in risk-free rate ( 1 month

interval), inflation, term spread, term spread variation (consecutive months),

default spread, default spread variation (consecutive months), small-minus-
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Table 3.6: Results - Performance of models estimated by Lasso
This table presents average values of Sm and Sy and the Ss statistic for the “no variation” and “FF 3-factor” models, as

well as for models estimated by the Lasso technique.

Model S̄m × 100 S̄y × 100 Ss × 100
Model “No variation” 13.13 (15.37) 20.07 (17.63) 14.05
Model “FF 3-factor” 12.51 (16.40) 16.62 (25.47) 40.54
λ = 0.04 13.05 (16.34) 19.38 (24.85) 77.34
λ = 0.02 13.05 (16.34) 19.39 (24.85) 77.34
λ = 0.01 13.11 (16.39) 19.60 (24.96) 77.94
λ = 0.005 13.07 (17.17) 21.96 (25.48) 78.33
λ = 0.0025 12.03 (19.61) 26.54 (26.52) 81.62
λ = 0.00125 9.48 (24.39) 30.18 (28.52) 81.46
Equal-weighted combination 13.31 (17.46) 26.01 (24.92) 80.84

big accumulated returns (1 month interval), small-minus-big accumulated

returns (3 month interval), small-minus-big accumulated returns (12 month

interval), high-minus-low accumulated returns (1 month interval), high-minus-

low accumulated returns (3 months interval), high-minus-low accumulated

returns (12 months interval), vix (1-month lag). All factors are used with

1-month lag.

The coefficients of Equation 3-11 are estimated by the Lasso technique

using values of λ in the set {0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04}. Table 3.6

presents the statistics for the models estimated by each λ and the equal-

weighted combination of all models. The results give multiple insights:

1. The changes in performance for distinct values of λ suggest there is a

trade-off between good performance on short-horizon and long-horizon

statistics;

2. The combined forecast seems to perform better than forecasts from single

models;

3. The combined forecast perform better than the benchmark models in all

statistics.

Finally, we can compare the performance of the equal-weighted combin-

ation of lasso models to the out-of-sample best combinations according to S̄m

or S̄y. Compared to the S̄m combination, the lasso combination presents equi-

valent values of S̄m and S̄y and greater Ss (80 versus 42). Compared to the Sy

combination, the lasso combination shows lesser S̄y and greater S̄m and Ss.
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3.5 Economic Value of each model

As an alternative way to classify the models, we attach each portfolio

into a portfolio optimization framework. In resume, we optimize the portfolio

of a Sharpe Ratio maximizer investor on a investable set consisting of all the

183 portfolios considered in the previous sections as available assets. We follow

the optimization procedure described in Chapter 1, with two differences. First,

the same covariance model is use in for all models. This ensures the benefits

come from the expected return model. Second, the leverage is set to the same

value at all periods.

The expected conditional covariance model is the same from the “CAPM”

model in Chapter 1 - a single factor and the residual covariance between

distinct assets is assumed to be 0. The leverage is adjusted so the sum of

short positions equals 100% of the investor’s wealth at any period. For each

asset, the expected return is defined as the forecast expected return in excess of

the market by a simple assumption of the market expected return: the average

market return up to this period.

By following a procedure similar to Fleming et al. (2001), we estimate

the economic value of the Markowitz optimized portfolios for a Sharpe Ratio

maximizer investor.

For a given portfolio p, we take the average and standard deviation of

monthly returns over each year i: r̄
p
i and std

p
i . The economic value ∆p of

portfolio p is given by:

n∑

i=1

r̄
p
i −∆p

std
p
i

=
n∑

i=1

r̄bi
stdbi

(3-12)

where n, r̄bi , and stdbi are the number of years and the average and standard

deviation of the benchmark monthly returns, respectively. The benchmark is

the portfolio optimized considering the “No variation” described in Section

3.3.

The value of ∆p represents the amount a Sharpe Ratio maximizer investor

is willing to pay to be indifferent between portfolio p and the benchmark.

Table 3.7 shows the economic value for several portfolios optimized using

the Markowitz optimization. Compared to the “no variation” model, all models

have positive economic value, except the “FF 3-factor” model. The naive

models display a good performance, but are beat by the models we find using

both the model combination and LASSO approaches. The best combination

for S̄y does not perform well, what is another suggestion one should look for

short horizon statistics when evaluating models.
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Table 3.7: The economic value of Markowitz optimized portfolios

Portfolio Sharpe-ratio
(basis points)

Model “CAPM” 50
Model “FF 3-factor” -38

“intercept” 154
“intercept + lag” 196

Best combination for S̄m 229
Best combination for S̄y 26

LASSO (equal-weighted combination) 386

3.6 Conclusions

This work attempted to compare standard, naive and skeptical by short

horizon statistics and model performance when plugged to a Markowitz

optimization framework. Naive portfolios perform better than traditional

models like the CAPM or the Fama-French 3 factor model according both

criteria. Besides, we considered two distinct approaches to select better models.

The first approach defined a model set containing several models estimated

by the Fama-Macbeth and searched for better model combinations according

to each of the short-run statistics. The second part defined a single model

containing several factors and estimated it using the LASSO technique. Both

approaches generate models which perform better according to the Markowitz

experiment. These models also perform slightly better according to the short

horizon statistics we propose. The first part can be seen as an expansion of the

work Welch & Goyal (2008) to evaluate models that explain the cross-sectional

variation of stock expected returns.

Further improvements to the current analysis may include: adding factors

uncorrelated to the ones we use, obtaining theoretical results about the relation

between short horizon statistics performance and economic value; expanding

the portfolio set.
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