
2 An Empirical Comparison of Two Portfolio Selection Ap-

proaches

2.1 Introduction

Portfolio selection are tools of foremost importance in the real world,

where investment decisions directly affect the life of people. The traditional

approach of Markowitz requires the estimation or modelling of all variances and

covariances, leading to unstable results when applied to a large set of assets.

The evolution of financial markets increases the number of asset groups and

the number of distinct assets in each group, leading the traditional approach

to be less suitable to be used by practitioners. Therefore, we consider portfolio

selection approaches which can deal with large set of assets a relevant field of

study.

This paper aims to compare and combine two approaches which sup-

posedly work well on large set of assets (in the case, stocks). The first is a

modified version of the mean-variance optimization approach of Markowitz

(1952) proposed in Chapter 1, while the second is the parametric approach to

portfolio selection proposed by Brandt et al. (2009). The objective of compar-

ing and attempting to combine the two approaches lies in the fact they assume

distinct paradigms. On one hand, the Markowitz approach attempts to obtain

better risk-adjusted returns by exploiting the covariance structure of stocks.

On the other hand, the parametric approach overweights stocks according to

some characteristics, leading to greater returns but with no success at reducing

volatility below the level of a value-weighted portfolio. Therefore, the compar-

ison between the two techniques can be seen as a comparison between the

economic values of the covariance structure of stocks and deviations from the

benchmark according to stocks’ characteristics and its relations to past returns.

In order to reinforce this idea, it is important to discuss two points. First, why

is the covariance structure more important to explain the Markowitz’s results?

Second, why isn’t the parametric approach able to reduce volatility by deviat-

ing from the benchmark according to some characteristic? The first point can

be justified by the fact the optimized portfolios have lower volatility than the

value-weighted, so its increase in Sharpe Ratio comes mainly from volatility

DBD
PUC-Rio - Certificação Digital Nº 0912808/CA



30

reduction. Besides, the expected return models over monthly horizons do not

show forecasting power greater than a naive model which assumes there is no

cross-sectional variation, as seen in Chapter 1. The second point is harder to

justify. In theory, nothing prevents the reduction of volatility by overweight-

ing stocks according to some characteristic. However, it can be seen that no

configuration of the three parameters lead to a volatility, say, 5% lesser than

the value-weighted.

The combination of techniques can be easily achieved by setting the ini-

tial weights of the parametric optimization as the optimal weights obtained

from the modified Markowitz approach. The comparison uses data from stocks

listed in NYSE, between 1974 and 2008, defines a comparison environment

without look-ahead bias, imposing limits on leverage, and including transaction

costs. Finally, both approaches attempt to use the same stock characteristics

to pursue better results and optimize the same expected utility. The modified

Markowitz approach uses a multi-factor model to explain expected returns

and covariances and includes adjustments to restrict leverage and deal with

transaction costs. The parametric approach defines the weight of each stock

as deviations from the benchmark (at first, the value-weighted portfolio) ac-

cording to the characteristics (market value, momentum and book-to-market)

and one parameter to each characteristic, estimated to maximize ex-post util-

ity over the sample. Our work is related to papers which attempt to compare

portfolios obtained from different models or approaches, like Fama & Macbeth

(1973), Frost & Savarino (1988), Michaud (1989),Chan et al. (1999), and Le-

doit & Wolf (2008).

We reach three main results. First, the portfolios generated by using our

modified Markowitz approach have better risk-adjusted returns than naive

portfolios like the value-weighted and equal-weighted portfolios, as well as the

parametric portfolios, even in the presence of transaction costs and absence

of look-ahead bias in the estimation of coefficients. Second, the parametric

portfolios perform barely better than value-weighted and worse than equal-

weighted or portfolios generated by the modified Markowitz approach. This

contradicts the results presented in Brandt et al. (2009). Given that the

characteristics, the parameterization and policy to minimize turnover (due

to transaction costs) are all the same, we can attribute the difference in

performance to the use of a restricted set of stocks (we do not include

stocks listed in AMEX and NASDAQ) and another sample period. Third,

the combination of techniques is unable to obtain better results than the ones

obtained by using only the modified Markowitz approach. These results suggest

the covariance structure of stocks can not be ignored when pursuing better
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return-risk ratios.

The paper is organized as follows. Section 2.2 describes briefly both

approaches and the comparison environment. Section 2.3 describes the data

and show the results. Section 2.4 concludes.

2.2 Comparison Methodology

In order to obtain a fair and realistic comparison between the parametric

approach and the adjusted Markowitz approach, we establish the following

criteria:

1. The investable set is the same, at all periods;

2. Both techniques use the same stock characteristics searching for a better

portfolio;

3. The leverage is limited to a short position of 30% of the investor’s wealth;

4. The estimation of parameters, volatilities, coefficients and risk premia

for each factor to be used at period t+1 uses only information available

at period t;

5. Neither of the approaches attempt to capture risk premia variation over

time;

6. The investor has the same preferences;

7. The performance covers returns net of transaction costs.

As the second criterion suggests, both approaches use the same stock

characteristics: book-to-market, stock size and momentum. The parametric

approach directly includes the three characteristics in the parameterization:

book-to-market, stock price times shares outstanding and the accumulated

return from the last 12 months are the characteristics . The use of these

characteristics by the traditional approach is indirect: in addition of the

market excess return, three portfolios’ returns are used as factors. The two

first additional factors are the small-minus-big and high-minus-low portfolios

described by Fama & French (1996). These factors attempt to exploit size

and value anomalies. The third additional factor is the winner-minus-loser

portfolio suggested by Carhart (1997). This factor attempt to exploit the 1-

year momentum anomaly.

The fourth criterion removes look-ahead bias from the estimation. How-

ever, the entire approach still suffer from some degree of look-ahead-bias. This
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occurs because the characteristics used are known to be correlated to the risk-

return ratio given our knowledge from the entire sample.

We include the fifth criterion because the estimation procedure in the

parametric approach assumes the optimal parameters are constant over time.

As a first attempt to evaluate the impact of this restriction in the relative

performance, we estimate both techniques considering two regimes. This

procedure is described in 2.2.3.

The inclusion of transaction costs aims to penalize turnover. Commonly,

an active technique which supposedly performs better than a naive approach

such as value-weighted portfolio without considering transaction costs depends

on excessive turnover and the absence of transaction costs. Considering trans-

action costs favors lower turnover approaches. In order to deal with transaction

costs, we use the same policy described in Brandt et al. (2009). Briefly, this

policy estimates a hypersphere centered at the current weights. If the optimal

weight lies inside this regions, it is optimal not to trade. If the optimal weight

lies outside, the weights are changed up to the border of the hypersphere

centered at the optimal weights.

2.2.1 Utility function

To compare the performance of the two approaches for an investor with

the same preferences, we represent his preferences by an expected utility

function. The utility function the investor maximizes is the ex-ante Sharpe

Ratio. We choose the Sharpe Ratio because the investable set is restricted to

ordinary stocks. Given the fact the investor can not include other asset classes

due to the parameterization used by the parametric approach, the Sharpe Ratio

is a good measure in the search for a portfolio superior to the value-weighted

portfolio. In a second step, the optimal portfolio could be treated as an asset

in an allocation optimization including all asset classes.

The maximization of the Sharpe Ratio in the parametric approach is

straightforward. The estimated parameters are the ones which maximize the

ex-post Sharpe Ratio. In the Markowitz approach, the portfolio depends upon

the expected returns and covariances and the target expected return. For each

target expected return, there is an optimal portfolio with expected return and

volatility. Therefore, we choose the target expected return which maximizes

the Sharpe Ratio.

2.2.2 Out-of-sample procedure

In order to prevent look-ahead bias in the estimation of parameters,

volatilities, coefficients and risk premia associated to each factor, we employ a
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growing estimation window.

For the parametric approach, we estimate the optimal parameters from

the first 104 months of the sample. This parameters are used to define the

optimal portfolio for the next 12 months. Then, the estimation sample is

increased to include these months, the parameters are re-estimated and used

for the next 12 months. The procedure continues until we reach the end of the

sample.

In the traditional approach, we re-estimate factor loadings, risk premia,

residual volatility and factor covariances for each period t, by using all

information available at period t− 1. Besides, the factor portfolios are created

by following the procedure described by Fama & French (1993a) and Carhart

(1997). Therefore, the definition of the set of stocks in each group (small, high,

winner, etc) does not require any information unavailable by the moment the

portfolio return is used.

2.2.3 Comparison assuming two regimes

The assumption of constant parameters through time is used to estimate

the optimal parameters in the parametric approach. This restriction motivates

one of the fairness criteria: that neither of the approaches attempt to capture

risk premia variation over time. As a first attempt to evaluate how the removal

of this assumption impacts both portfolio selection techniques, we divide the

sample in two. The first part contains periods in which the yield curve is

positively sloped, while the second part contains periods in which the yield

curve is negatively sloped. All parameters, factor loadings, risk premia and

covariances, and residual volatilities, are estimated separately for each part.

This division is analogous to the procedure described in Brandt et al. (2009).

The same division is used in Chapter 1 and the portfolios perform worse than

without 2 regimes.

From the business cycle view, periods in which the yield curve is neg-

atively sloped tend to be associated to recessions. Hence, correlations among

stock characteristics and returns should vary if the parameters are estimated

separately for each part. Likewise, the risk premia associated to each factor

should be different across the two sample parts.

From the econometric view, it is important that each part contains

periods across the entire sample. In particular, the sample used to estimate

initial parameters should have periods from both parts.

From the portfolio manager view, a smoother transition would be a better

approach. If the estimated values are different, the transition between regimes

should generate great losses due to transaction costs. Besides, the transitions
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can be associated to lesser market liquidity. Hence, the transaction costs may

be underestimated.

2.2.4 Parametric approach

We describe the parametric approach proposed by Brandt et al. (2009).

We parameterize the optimal portfolio weights as a linear function of

stock characteristics:
ωi,t = ω̄i,t +

1

Nt

θT x̂i,t (2-1)

where Nt be the number of stocks in the investable set at each date t, ω̄i,t is the

base weight of stock i, θ is a vector of coefficients to be estimated, and x̂i,t are

the characteristics of stock i, standardized cross-sectionally to have zero mean

and unit standard deviation across all stocks in the investable set at date t.

The characteristics we use to generate three factors are related to equity value

(me), book-to-market (btm) and accumulated return (mom).

The accumulated return is the accumulated return for the last twelve

months. The equity value is the the log of 1 plus book equity (with a lag of at

least 6 months) divided by market equity computed using shares outstanding

and closing prices from the previous month. The book-to-market is the market

value of the stock, computed using data from the previous month. The three

factors are related to the coefficients θmom, θbtm, and θme, respectively. We use

lagged values in order to enable all data required to define the characteristics

to be already known at period t .

The assumption of constant θ across stocks and over time is the key to

estimate its optimal values. Since the coefficients are constant through time,

the coefficients that maximize the investor’s conditional expected utility at a

given date are the same for all dates. Therefore, these coefficients maximize

the investor’s conditional expected utility.

θ̂ = argmax
θ

E[u(rp,t+1)] = argmax
θ

E
[

u
(

Nt
∑

i=1

ωi,tri,t+1

)]

(2-2)

Thus, we can estimate the optimal coefficients θ̂ by maximizing the

corresponding sample analogue.

2.2.5 Markowitz approach

We use the same portfolios described in Chapter 1.

The optimal weights ω∗ which solve the Markowitz problem can be viewed

as a function of the target expected return µtarget, the conditional expected

return µ and the conditional covariance matrix Σt. For each period t, we choose

the target expected return which maximizes the investor’s expected utility
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function. This 2-step optimization does not require additional computational

power: it can be shown that the weights of optimal Markowitz portfolios are a

linear function of the target expected return.

Given the large number of stocks, we use a multifactor model for returns

(and covariances). Each stock return is given by the risk-free rate plus a

constant coefficient related to the stock plus the factor set multiplied by stock

sensitivity to each factor plus a residual.

The multi-factor model we use is an extension to the Fama-French 3-

factor model (Fama & French (1996)) proposed in Carhart (1997) to include

the portfolio winner-minus-loser as a factor. The 4-factor model considers the

market return and return anomalies over distinct classes of size, momentum

and book-to-market - the same characteristics used to define the active

deviation from the benchmark portfolio in the parametric case. We evaluate

the performance when imposing A = 0. Given these factors, the conditional

expected return is given by:

Et[ri,t+1 − rf,t+1] = αi + βiEt[RMt+1 − rf,t+1] + siEt[RSMBt+1]

+ hiEt[RHMLt+1] + piEt[RWMLt+1]
(2-3)

The estimation follows the Fama-Macbeth procedure. Given the good

results obtained in Chapter 1 by the alternative technique to estimate factor

loading for each stock, we also check the performance using factor loadings

estimated by the aggregated method discussed in the paper. Finally, Σe is

assumed to be diagonal and the i-th element of its diagonal is the variance of

the time series comprising differences between realized and fitted returns.

2.3 Empirical results

2.3.1 Data

Our sample consists of stocks listed in NYSE. We use monthly holding

period returns, shares outstanding and closing prices from CRSP monthly

database and quarterly data from Compustat to calculate the book equity.

The sample period is from June 1970 to December 2008. Before this period,

there was no quarterly data available for more than 20 companies with stocks

listed in NYSE. After exclusions, the number of valid stocks varies through

the sample, ranging from 520 to 714. We exclude from the sample:

1. Stocks with an asset code different from 10 or 11, according to CRSP

database1;

1This excludes certificates, ADRs, SBIs, Units, companies incorporated outside the U.S.,
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2. Stocks from a company not listed in Compustat;

3. Stocks from companies with negative book-to-market at any moment

during the sample period.

Removing stocks from companies with negative book-to-market generate

a quality bias in the sample. Therefore, a naive value-weighted strategy over

this sample outperform an index like the S&P500.

Figure 2.3.1 shows the accumulated returns for value-weighted and

equal-weighted portfolios using the stocks in the sample. Furthermore, the

mean, standard deviation and skewness of the value-weighted portfolio are

0.87%, 0.041, and −0.855, respectively. Finally, the mean, standard deviation

and skewness of the equal-weighted portfolio are 1.10%, 0.046, and −1.275,

respectively.

Figure 2.1: Accumulated returns for value-weighted and equal-weighted port-
folios

For each month, the book equity of a company is (in parenthesis, the field

code in Compustat): total assets (ATQ) minus liabilities (LTQ) plus balance-

sheet deferred taxes and investment tax credits (TXDITCQ), minus preferred

stock value (PSTKQ); the market value of a stock is shares outstanding times

closing price; the market equity of a company is the market value of all stocks

in CRSP from the same company. Finally, the book-to-market of a company

is the log of 1 plus book equity divided by market equity.

As risk-free rate, we use the 3-month Treasury bill secondary market rate

from FRED database. From the same source, we compute the yield slope as

the difference between market yield on U.S. Treasury securities at 10 and 1

year.

closed-end funds and REIT’s.
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2.3.2 Transaction costs

Our modelling of the transaction costs ci,t for stock i at period t follow

the approach used by Brandt et al. (2009), which attempts to capture two

empirical facts. First, that transaction costs vary across distinct stocks, being

larger for small caps than for large caps. Second, the decrease in transaction

costs over time. Among others, these results can be found in Domowitz et al.

(2001).

The transaction costs ci,t are modelled as:

ci,t = 0.006− 0.0025×MEi,t ∗ Tt (2-4)

where MEi,t is the log of the market value of the stock normalized to the

interval [0, 1] and Tt captures declining costs over time. In the first month of

the sample, Tt = 22 and it decreases linearly over each month, until Tt = 1 at

the last month of the sample. As an example, the stock of lesser market value

at January, 74, has transaction costs of 1.2% at the same month. Likewise, the

stock of greater value at December, 2008, has transaction costs of 0.35% at

this month.

Our costs are lesser than the costs used in Brandt et al. (2009) for two

reasons. First, our sample starts 10 years later. Besides, since we use only

NYSE stocks, transaction costs are supposed to be lesser than in a sample also

containing stocks from AMEX and NASDAQ.

2.3.3 Results

In this Section, we present the performance of 12 distinct portfolios:

– Value-weighted and equal-weighted portfolios;

– Parametric portfolio, parameters optimized from the entire sample;

– Parametric portfolio, parameters optimized from the growing windows

scheme described in Section 2.2.2;

– 4 portfolios from the Markowitz optimization approach (M1, M2, M3

and M4, as described in Chapter 1);

– Parametric portfolio, deviating from alternate portfolios as initial

weights:

– Active weights deviating from the equal-weighted portfolio;

– Active weights deviating from M2;

– Active weights deviating from M4;

– Active weights deviating from M4, parameters divided by 2.

2We also test T1 = 3 and achieve similar results.
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By evaluating these portfolios, we can compare both techniques to the

naive portfolios, compare the performance of one technique relative to the

other and check the possibility to combine the approaches. The division of

parameters by 2 can be seen as a shrinkage towards the initial weights. Several

empirical articles present performance improvement after shrinking estimated

parameters towards a prior. An example is Ledoit & Wolf (2008).

All returns are net of transaction costs. We use the procedure to handle

transaction costs described in Chapter 1 in all portfolios except the value-

weighted and equal-weighted. The leverage is limited to a short position of

30% of the investor’s wealth.

Table 2.1 presents statistics for the value-weighted and equal-weighted

portfolios, as well as the in-sample and out-of-sample parametric portfolios.

The value-weighted portfolio has an annualized average return of 10.4% and

a 14.3% volatility. The Sharpe ratio is 0.362, and alpha, beta and residual

volatility are −0.006, 1.000 and 0.011, respectively. Alpha, beta and residual

volatility are measured against the returns from the value weighted portfolio

without imposing transaction costs. The largest average position on a stock

is 4.6% and the average monthly turnover is 0.2% of the investor’s wealth.

The equal-weight portfolio has greater returns 13.2% and volatility 15.8%. Its

Sharpe ratio is 0.506 and average monthly turnover is 7% of the investor’s

wealth.

The parametric portfolio optimized from the entire sample has 12.1%

average returns and 18.1% volatility, causing the Sharpe ratio to be 0.384.

The average turnover is 1.8% and average proportion of stocks shorted is 38%.

The portfolio’s alpha, beta and residual volatility are 0.016, 0.914 and 12.5%,

respectively. The average short position is 30%. This means the restriction on

leverage was active at virtually all periods. Finally, the parameters θmom, θme,

and θbtm are 0.965, −1.906, and 1.957, respectively. Therefore, the portfolios

overweights stocks that performed above average in the last year, have market

value below average and a greater book value in relation to its market value.

The portfolio optimized following the out-of-sample procedure performs even

better. The volatility falls to 17.6% and the Sharpe ratio is 0.396. The better

performance of the out-of-sample over the in-sample suggests the freedom to

adjust the parameters throughout the sample compensates for the absence of

periods in which the parameters are used. However, the parametric approach

does not perform better than the equal-weighted case.

It is worth comparing the results with those of Brandt et al. (2009).

There, the sample also includes stocks from AMEX and NASDAQ, there

is no limit on leverage and the evolution of transaction costs through time
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Table 2.1: Naive and parametric portfolios performance
This table presents statistics from four portfolios, considering transaction. All statistics are from January, 81 to December,
2008. The columns labeled “VW” and “EW” displays the value-weighted and equal-weighted portfolios, respectively. The
last 2 columns present statistics for the parametric approach. The column labeled “IS” displays the performance of the
parametric technique optimizing θ over the entire sample. The column labeled “OOS” displays the performance of the

portfolio estimated by following the Out-of-sample procedure. The first set of rows shows the estimated average coefficients
for each parameter followed by the standard deviation. The second set of rows shows statistics of the portfolio weights,

averaged across time. These statistics are: average absolute weight, maximum and minimum portfolio weight, the average
sum of negative weights in the portfolio, average fraction of non-positive weights in the portfolio, and average turnover.

The third set of rows displays annualized portfolio return statistics: average return, standard deviation and Sharpe Ratio of
returns, and the alpha, beta, and volatility of idiosyncratic shocks of a market model regression. The fourth set of rows
presents average characteristics of the portfolio over time. The rows labeled “me”, “mom” and “btm” show measures of

market value, momentum and book-to-market, respectively. The returns are net of transaction costs.

Variable VW EW IS OOS

θ̄mom - - 0.965 1.987 (1.268)
θ̄me - - -1.906 -0.924 (0.747)
θ̄btm - - 1.957 5.247 (2.684)

|ωi| × 100 0.105 0.157 0.268 0.257
maxωi × 100 4.689 0.187 3.054 2.594
minωi × 100 0.001 0.142 0 0.004
∑

ωiI(ωi < 0) 0 0 -0.300 -0.299
∑

I(ωi ≤ 0)/N - - 0.384 0.433
∑

|ωi,t − ωh
i,t| 0.002 0.070 0.018 0.049

r̄ 0.104 0.132 0.121 0.122
σ(r) 0.143 0.158 0.181 0.176
SR 0.362 0.506 0.380 0.396
α -0.006 0.020 0.016 0.016
β 1.000 1.024 0.914 0.924

σ(ǫ) 0.011 0.056 0.125 0.115

me 1.297 0 -0.995 -0.576
mom 0.107 0 0.140 0.045
btm -0.437 0 1.499 1.787

is different. Their out-of-sample portfolio including the same approach to

handle transaction costs has average returns of 28.4% and volatility of 21.2%.

The average short position is 156% of the investor’s wealth. The optimal

parameters for θmom, θme, and θbtm are 3.154, −0.845 and 4.021, respectively.

The parameters are of the same sign, but they imply a greater deviation

towards past winner and value stocks and a lesser deviation towards small

stocks. The huge gap in performance is probably caused by two factors: our

limit on leverage and the absence of stocks from AMEX and NASDAQ.

Table 2.2 presents the portfolios generated by the Markowitz optimiza-

tion, using 4 distinct versions of the 4-factor model. The average returns range

from 10.9% to 12.6%, the volatility range from 13.1% to 13.6%. Excluding the

M1 model,which performs worse than the others, the Sharpe ratio is close to

0.525. The average monthly turnover is approximately 10% of the investor’s
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Table 2.2: Markowitz portfolios performance
This table presents statistics from four portfolios, considering transaction costs. All statistics are from January, 81 to
December, 2008. The columns correspond to Markowitz optimized portfolios using return models M1, M2, M3 and M4,
respectively. The first set of rows shows statistics of the portfolio weights, averaged across time. These statistics are:

average absolute weight, maximum and minimum portfolio weight, the average sum of negative weights in the portfolio,
average fraction of non-positive weights in the portfolio, and average turnover. The second set of rows displays annualized

portfolio return statistics: average return, standard deviation and Sharpe Ratio of returns, and the alpha, beta, and
volatility of idiosyncratic shocks of a market model regression. The returns are net of transaction costs. The returns are net

of transaction costs. The third set of rows presents average characteristics of the portfolio over time. The rows labeled
“me”, “mom” and “btm” show measures of market value, momentum and book-to-market, respectively.

Variable M1 M2 M3 M4

|ωi| × 100 0.235 0.160 0.171 0.142
maxωi × 100 4.113 1.747 3.792 1.971
minωi × 100 0.016 0.006 0.004 0.002
∑

ωiI(ωi < 0) -0.180 -0.121 -0.111 -0.044
∑

I(ωi ≤ 0)/N 0.197 0.182 0.133 0.094
∑

|ωi,t − ωh
i,t| 0.116 0.099 0.094 0.091

r̄ 0.109 0.125 0.121 0.126
σ(r) 0.133 0.136 0.131 0.139
SR 0.426 0.531 0.527 0.527
α 0.006 0.023 0.020 0.020
β 0.873 0.862 0.850 0.904

σ(ǫ) 0.043 0.055 0.047 0.049

me 0.507 0.115 0.175 0.045
mom 0.369 0.030 0.017 0.001
btm -0.396 0.223 0.197 0.152

wealth. All portfolios have positive alpha, the beta is close to 0.9 and the re-

sidual volatility ranges from 0.013 to 0.056. All portfolios perform better than

the value-weighted and parametric portfolios. Excluding the M1 model, the

Markowitz portfolios also perform better than the equal-weighted portfolio.

Still comparing with the parametric portfolios, the portfolios generated by the

traditional approach present a larger turnover, but require lesser leverage.

The imposition of A = 0 improves the performance when the factor

loadings are estimated directly from the stocks returns. This suggests the

abnormal returns do not persist and reduce return forecasting power. There is

no impact when the factor loadings are estimated from portfolios. In this case,

the intercepts are already very close to 0 and the adjustment does not affect

performance.

Finally, it is worth to evaluate whether it is possible to combine the port-

folio approaches. Therefore, we change the benchmark portfolio ω̄t. Originally,

ω̄t corresponds to the value-weighted portfolio. In our attempt to combine the

approaches, we change ω̄t to the equal-weighted portfolio, as well as Markow-

itz portfolios with return models M1 and M3. Unfortunately, the portfolios

generated do not perform better than the original portfolios. The statistics for
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Table 2.3: Parametric technique deviating from alternate portfolios
This table presents statistics from four portfolios, considering transaction costs. The portfolios obtained by applying the
parametric optimization to initial weights distinct from the value-weighted benchmark. The first column presents the
portfolio obtained by using the equal-weighted portfolio as initial weights. The following two columns display statistics

from the portfolio by using the Markowitz portfolios from return models M2 and M4, respectively. The last column
presents the result by applying the parametric approach to the Markowitz portfolio using return model M4, with optimal
parameters divided by 2. All statistics are from January, 81 to December, 2008. The first set of rows shows the estimated
average coefficients for each parameter followed by the standard deviation. The second set of rows shows statistics of the
portfolio weights, averaged across time. These statistics are: average absolute weight, maximum and minimum portfolio

weight, the average sum of negative weights in the portfolio, average fraction of non-positive weights in the portfolio, and
average turnover. The third set of rows displays annualized portfolio return statistics: average return, standard deviation
and Sharpe Ratio of returns, and the alpha, beta, and volatility of idiosyncratic shocks of a market model regression. The

fourth set of rows presents average characteristics of the portfolio over time. The returns are net of transaction costs.

Variable EW M2 M4 M4 + shrinkage

θ̄mom 1.845 (1.144) 1.691 (1.159) 1.777 (1.137) 0.889 (0.568)
θ̄me -0.169(0.571) -0.426 (0.606) -0.294 (0.591) -0.147 (0.295)
θ̄btm 4.939 (2.426) 4.370 (2.488) 4.660 (2.417) 2.330 (1.209)

|ωi| × 100 0.257 0.255 0.256 0.245
maxωi × 100 2.390 2.012 2.159 1.623
minωi × 100 0.004 0.003 0.004 0.002
∑

ωiI(ωi < 0) -0.297 -0.299 -0.299 -0.267
∑

I(ωi ≤ 0)/N 0.416 0.425 0.418 0.340
∑

|ωi,t − ωh
i,t| 0.050 0.029 0.036 0.017

r̄ 0.133 0.131 0.132 0.130
σ(r) 0.185 0.161 0.167 0.149
SR 0.438 0.484 0.478 0.514
α 0.026 0.029 0.029 0.028
β 0.935 0.858 0.870 0.846

σ(ǫ) 0.127 0.104 0.110 0.086

me -0.866 -0.754 -0.783 -0.559
mom 0.042 0.039 0.033 0.047
btm 1.910 1.719 1.798 1.447

the three portfolios are in Table 2.3. However, the portfolios perform better

than the parametric portfolio obtained using value-weighted portfolio as ini-

tial weights. This suggests that the initial weights matter and can influence

the performance

In addition, we shrink the parameters estimated with an active deviation

from the Markowitz portfolio with return model towards 0: all parameters are

divided by 2. This portfolio performs better than the combined portfolio (the

Sharpe Ratio goes from 0.479 to 0.514), but still performs worse than the M3

portfolio. However, this experience can not be seen as an appropriate test of

the performance of portfolios with shrunk parameters. The limit on leverage

can also be seen as a form of shrinkage, so it is not possible to separate both

effects.

DBD
PUC-Rio - Certificação Digital Nº 0912808/CA



42

Figure 2.2: Sharpe Ratio for each year

Figure 2.2 presents the Sharpe Ratio for each year. The value-weighted

portfolio performs equal or worse than the Markowitz portfolio over almost all

years, except 1988 to 1990, 1995 and 1998 to 1999. The better performance

of the Markowitz than the parametric portfolios seems to come from the

years 1990 to 1995 and 2000. Finally, the parametric portfolio performs better

than the value-weighted portfolios over most of sample and its poor overall

performance comes from 1990, 1995 and 2000.

2.3.4 Results: two regimes

Table 2.4 presents statistics for portfolios obtained from both traditional

and parametric approaches, following the 2-regimes strategy described in 2.2.3.

The two portfolios’ performance is far below the obtained without 2 regimes.

It seems the several discrete switches between regimes generate excessive

transaction costs.

Tables 2.5 and 2.6 present the returns statistics during the positive slope

and inverted regime, respectively. The parametric portfolio performs better in

the positive slope regime, but Markowitz portfolio’s performance on inverted

slope regime compensates this loss.
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Table 2.4: Two regimes
This table presents statistics from two portfolios, considering transaction costs and following the procedure to allow 2

regimes, as described in Section 2.2.3. The columns labeled “Markowitz” and “Parametric” show statistics for the
Markowitz (M3 return model) and the parametric approach, respectively. All statistics are from January, 81 to December,
2008. The first set of rows shows the estimated average coefficients for each parameter followed by the standard deviation.
The second set of rows shows statistics of the portfolio weights, averaged across time. These statistics are: average absolute
weight, maximum and minimum portfolio weight, the average sum of negative weights in the portfolio, average fraction of

non-positive weights in the portfolio, and average turnover. The third set of rows displays annualized portfolio return
statistics: average return, standard deviation and Sharpe Ratio of returns, and the alpha, beta, and volatility of

idiosyncratic shocks of a market model regression. The fourth set of rows presents average characteristics of the portfolio
over time. The returns are net of transaction costs.

Variable Markowitz Parametric

θ̄mom,slope>0 - 1.865
θ̄me,slope>0 - -1.309
θ̄btm,slope>0 - 5.216
θ̄mom,slope<0 - 2.388
θ̄me,slope<0 - -0.145
θ̄btm,slope<0 - 5.708

|ωi| × 100 0.210 0.257
maxωi × 100 6.617 2.573
minωi × 100 0.006 0.005
∑

ωiI(ωi < 0) -0.169 -0.299
∑

I(ωi ≤ 0)/N 0.201 0.434
∑

|ωi,t − ωh
i,t| 0.202 0.052

r̄ 0.112 0.121
σ(r) 0.146 0.177
SR 0.403 0.388
α 0.001 0.016
β 0.948 0.928

σ(ǫ) 0.053 0.117

me 0.104 -0.626
mom 0.014 0.012
btm 0.119 1.801

Table 2.5: Two regimes - positive slope regime
This table presents statistics from two portfolios over the positive slope regime, considering transaction costs and following
the procedure to allow 2 regimes, as described in Section 2.2.3. The columns labeled “Markowitz” and “Parametric” show
statistics for the Markowitz (M3 return model) and the parametric approach, respectively. All statistics are from January,

81 to December, 2008.The rows display annualized portfolio return statistics: average return, standard deviation and
Sharpe Ratio of returns, and the alpha, beta, and volatility of idiosyncratic shocks of a market model regression. The

returns are net of transaction costs.

Variable Markowitz Parametric

r̄ 0.104 0.122
σ(r) 0.153 0.186
SR 0.367 0.396
α -0.003 0.016
β 0.977 0.950

σ(ǫ) 0.051 0.122
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Table 2.6: Two regimes - inverted slope regime
This table presents statistics from two portfolios over the inverted slope regime, considering transaction costs and following
the procedure to allow 2 regimes, as described in Section 2.2.3. The columns labeled “Markowitz” and “Parametric” show
statistics for the Markowitz (M3 return model) and the parametric approach, respectively. All statistics are from January,

81 to December, 2008.The rows display annualized portfolio return statistics: average return, standard deviation and
Sharpe Ratio of returns, and the alpha, beta, and volatility of idiosyncratic shocks of a market model regression. The

returns are net of transaction costs.

Variable Markowitz Parametric

r̄ 0.158 0.118
σ(r) 0.086 0.105
SR 0.905 0.353
α 0.053 0.010
β 0.613 0.667

σ(ǫ) 0.055 0.551

2.4 Conclusions

We presented an empirical comparison of two portfolio selection tech-

niques, with distinct paradigms. On one hand, the modified Markowitz ap-

proach attempts to obtain better risk-adjusted returns by exploiting the cov-

ariance structure of stocks. On the other hand, the parametric approach over-

weights stocks according to some characteristics, leading to greater returns but

with no success at reducing volatility below the level of a value-weighted port-

folio. Therefore, the comparison between the two techniques can be seen as a

comparison between the economic values of the covariance structure of stocks

and deviations from the benchmark according to stocks’ characteristics and its

relations to past returns. We also attempted to combine both approaches and

a simple 2-regimes approach.

We reach three main results. First, the portfolios generated by using

the modified Markowitz approach have better risk-adjusted returns than naive

portfolios like the value-weighted and equal-weighted portfolios, as well as the

parametric portfolios, even in the presence of transaction costs and absence

of look-ahead bias in the estimation of coefficients. Second, the parametric

portfolios perform barely better than value-weighted and worse than equal-

weighted or portfolios generated by the modified Markowitz approach. This

contradicts the results presented in Brandt et al. (2009). Given that the

characteristics, the parameterization and policy to minimize turnover (due

to transaction costs) are all the same, we can attribute the difference in

performance to the use of a restricted set of stocks (we do not include

stocks listed in AMEX and NASDAQ) and another sample period. Third,

the combination of techniques is unable to obtain better results than the ones

obtained by using only the modified Markowitz approach. These results suggest

the covariance structure of stocks can not be ignored when pursuing better
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return-risk ratios. The experiment using 2 regimes fails for both approaches,

in the sense the performance is worse than in the 1-regime case.

Further improvements may include: consider others expected utility

functions, attempt to dissociate the effects of modeling expected returns and

expected covariances. Finally, an approach to exploit successfully time-varying

investment opportunities could be another source of improvement.
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