
1 Evaluating an Adjusted Markowitz Approach on a Large

Set of Stocks

1.1 Introduction

Portfolio selection is of foremost importance in the real world, where

investment decisions directly affect the life of people. The traditional mean-

variance approach of Markowitz requires the estimation or modeling of all

variances and covariances, leading to unstable results when applied to a large

set of assets. The evolution of financial markets increases the number of asset

groups and the number of distinct assets in each group, leading the original

Markowitz approach to be less suitable to be used in practice. Besides, there

are transaction costs and leverage limits in the real world. These aspects

must be taken into account, even if the resulting solution lacks some proof

of theoretical optimality. Therefore, we propose a modified version of the

Markowitz approach which can deal with large number of assets as well as

leverage limits and transaction costs. Our methodology combines techniques

previously proposed in the literature to control for the possible “curse of

dimensionality” when estimating the covariance matrix of the assets with the

imposition of leverage limits and transaction costs. Furthermore, we modify the

utility function in order to maximize the Shape ratio of the final portfolio. Our

empirical tests use only stocks, but other asset classes can be easily included.

This paper evaluates a modified version of the mean-variance optimiza-

tion approach of Markowitz (1952). We set an evaluation environment which

prevents look-ahead bias in the estimation of coefficients, includes transaction

costs and maximizes the expected Sharpe Ratio (SR) of a portfolio containing

stocks listed in the NYSE, between 1981 and 2008. The adjustments we include

are:

1. Use of a multi-factor approach to model expected returns and covari-

ances;

2. Definition of a maximum leverage, setting the maximum weights on short

positions;
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3. Shrinkage of the estimation of factor coefficients by estimating portfolios

containing similar stocks, given the factors;

4. Use of a policy to reduce transaction costs.

The first adjustment was proposed by Sharpe (1964) using the single

factor model (CAPM). Chan et al. (1999) study the performance of different

factor models specifications. We use a four-factor model as in Carhart (1997)

which was derived from the three-factor model of Fama & French (1993a). The

fourth factor is important in order to include momentum.

We estimate the factor loadings for each stock by creating a portfolio

containing the stock itself and others with similar characteristics. This can be

seen as a shrinkage of the factor loading towards a portfolio containing related

stocks. By assuming that all covariance between different stocks are explained

by factor covariances and factor loadings, we greatly reduce the amount of

coefficients to be estimated, mitigating multi-dimensionality. The second and

third adjustments are related to the shrinkage of coefficients, which have

already been used to obtain better results in Ledoit & Wolf (2008). In order to

deal with transaction costs, we follow a “no-trade” region policy proposed in

Brandt et al. (2009) which greatly reduces turnover and performance loss. We

consider the setup of the evaluation environment, together with the shrinkage

of the estimation of factor loadings and the results we achieve, to be an original

contribution to the literature.

Our results show the portfolios generated by using our modified Markow-

itz approach have better risk-adjusted returns than naive portfolios like the

value-weighted and equal-weighted portfolios, even in the presence of trans-

action costs and absence of look-ahead bias in the estimation of coefficients.

These good results do not depend on the fact the sample has more bull years

than bear years. The optimized portfolios tend to perform better than the

benchmark in both periods. This suggests there is a positive economic value

in the covariance structure of stocks.

The paper is organized as follows. Section 1.2 describes the traditional

Markowitz approach, the multi-factor model of conditional expected returns

and covariances, the estimation of coefficients, and the adjustment we propose

to simplify the otimization problem. Section 1.3 describes the approach to deal

with transaction costs, the out-of-sample estimation procedure and the utility

function we choose. Section 1.4 presents the data and the results. Section 1.5

concludes.
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1.2 Markowitz optimization and extensions

1.2.1 General Formulation

Let rt+1, µt ≡ Et[rt+1], and Σt ≡ Et[(rr+1 − µt)(rr+1 − µt)
′] denote,

respectively, an Nt × 1 vector of stock returns, the expected returns and

covariance matrix conditional based on information up to period t. Both µt

and Σt are not observable, so we use estimated values µ̂t and Σ̂t, respectively.

The investor’s problem at t is to minimize portfolio volatility, subject to

a target expected return and weight constraints:

ω∗t = argmin
ωt

ω′tΣ̂tωt

s.t. ω′tµ̂ = µtarget

ω′t1 = 1

(1-1)

where ωt is an Nt× 1 vector of portfolio weights on stocks, µtarget is the target

expected rate of return from t to t+ 1 and 1 is a Nt × 1 vector of ones.

This formulation has a correspondent formulation as quadratic expected

utility maximization, each value of µtarget yields weights equivalent to the

optimal weights for a given risk aversion in the quadratic utility function (see

Brandt (2004)).

The optimal weights ω∗ which solve the optimization problem described

in (1-1) can be viewed as a function of the target expected return µtarget, the

conditional expected return µt and the conditional covariance matrix Σt.

1.2.2 Adjusting other expected utility functions

The general formulation given by Equation 1-1 requires three compon-

ents: the vector of expected returns µ, the covariance matrix Σ, and the target

expected return µtarget. In this section, we take µ and Σ as given. The target

expected return at each period t is chosen in order to maximize the investor’s

expected utility. For each target return there is a portfolio ω∗t (µtarget) (we add

µtarget to emphasize the fact the optimal weights depend on the target expected

return). Given ω∗t (µtarget), we can obtain the portfolio’s expected return and

variance. Hence, any expected utility function related to these characteristics

has a value for each µtarget.

The first impression is that the optimization of the expected utility by

this reasoning is a 2-step optimization: while choosing the target expected

return, we must compute the optimal weights for each µtarget, which is also

an optimization problem. However, this 2-step optimization does not require

excessive computational power and the resulting problem is simple. This occurs
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because the weights of optimal Markowitz portfolios are a linear function of

the target expected return, as shown in Campbell et al. (1997). Besides, the

resulting problem is a optimization problem over a single variable.

In order to obtain the relation between ωt and µtarget, let Lt be the

Lagrangian function of Equation 1-1:

L ≡ ω′tΣtωt + δ1(µtarget − ω′tµ) + δ2(1− ω′t1) (1-2)

Differentiating L with respect to ωt and setting to zero generates:

2Σtωt − δ1µ− δ21 = 0 (1-3)

By combining (1-3) to the equality constraints from (1-1), we find:

ω∗t = gt + htµtarget

gt =
1

D
[Bt(Σ

−1

t 1)− At(Σ
−1

t µ)]

ht =
1

D
[Ct(Σ

−1

t µt)− At(Σ
−1

t 1)]

At = 1
′Σ−1t µt

Bt = µ′tΣ
−1

t µt

Ct = 1
′Σ−1t 1

Dt = BtCt − A2

t

(1-4)

We further restrict the set of possible portfolios by removing all portfolios

which require a leverage level greater than 30%. Hence, we search over the

restricted set of optimal portfolios for the one which maximizes a given

expected utility function.

These results and restrictions turn the investor problem to:

µ∗target = arg max
µtarget

Et[U(r(ωt(µtarget)))]

s.t. ωt = gt + htµtarget

I(ωt < 0)′1 <= 0.3

ω′t1 = 1

(1-5)

where I(ωt < 0)′1 represents the sum of negative weights and

Et[U(r(ωt(µtarget)))] represents the investor’s expected utility.

There are two issues related to this approach. First, the selected portfolio

is not necessarily optimal, given the selected expected utility function. Second,

the set of mean-variance optimal portfolios with leverage lower than 30% may

be empty, given expected returns µt and covariances Σt.

The use of others expected utility functions adds flexibility to the
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approach and may allow a better performance comparison to other portfolio

selection approach.

1.2.3 Conditional expected returns and covariances

Since our investable set is a large set of stocks, we use multi-factor

models for expected returns and covariances. The use of these models facilitates

the assurance that the covariance matrix is positive definite and reduces

the number of coefficients to be estimated, leading to results less noisy and

unstable. Otherwise, the number of estimated coefficients would be too great,

given the sample size. For example, a set containing 1000 stocks would

require the estimation of 495,500 parameters. Michaud (1989) suggests the

unconstrained mean-variance optimization has a tendency to maximize the

effects of errors, and can yield results that are inferior to those of simple equal-

weighted or value-weighted schemes. The factor model for each stock return is

given as:
ri,t+1 = rf .1+ A+B.ft+1 + ǫt+1 (1-6)

where rf , 1, A, B, ft+1, and Σe, denote, respectively, the risk-free rate, a

Nt × 1 vector of ones, a Nt × 1 vector containing the constant coefficient for

each stock, a Nt × k matrix containing the factor sensitivity for each stock

and factor, the realized values for each factor at t + 1, and a Nt × 1 vector

containing unexpected chocks to returns.

By assuming Et[ǫt+1] = 0, this return model gives expected conditional

returns and covariance as follows:

Et[rt+1] = rf .1+ A+B.Et[ft+1]

Σt = B.Σf .B
′ + Σe

(1-7)

where Σf is the expected conditional covariance matrix for the factors and Σe

is the covariance matrix not explained by B.Σf .B
′. We assume the residuals

are uncorrelated across stocks. Hence, Σe is diagonal and the main diagonal

equals Et[ǫ
2
t+1].

Multi-factor models like this may find theoretical support on the Arbit-

rage Pricing Model, introduced in Ross (1976), or the Intertemporal Capital

Asset Pricing Model, introduced in Merton (1973). The first is based on ab-

sence of arbitrage arguments, while the second relies on equilibrium arguments.

The multi-factor model we use is an extension to the Fama-French 3-factor

model (Fama & French (1996)) discussed in Carhart (1997). It includes the

winner-minus-loser portfolio1 as a factor. The 4-factor model considers the

1The winner-minus-loser portfolios is a zero investment portfolio which takes long position
in stocks which performed above average in the previous 11 months and takes short positions
in stocks which performed below average in the same period.
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market return and return anomalies over distinct classes of size, momentum

and book-to-market. Following the literature which proposes the absence of

persistent abnormal returns, we also evaluate the performance when imposing

A = 0. Given these factors, the conditional expected return is given by:

Et[ri,t+1 − rf,t+1] = αi + βiEt[RMt+1 − rf,t+1] + siEt[RSMBt+1]

+ hiEt[RHMLt+1] + piEt[RWMLt+1]
(1-8)

where RMt+1, RSMBt+1, and RHMLt+1 are the returns from the three factor-

mimicking portfolios proposed by Fama & French (1996), and RWMLt+1 is

the return from the winners-minus-losers factor-mimicking portfolio discussed

in Carhart (1997). All factors are created by following the procedure described

in each paper over the sample of stocks we use. Section 1.4.1 show the factor

correlations.

1.2.4 Estimation

For each period t, we need to estimate A,B,Σf ,Σe and Et[ft+1] from the

subsample containing information available at period t.

Estimation of Et[ft+1]

Given that the factors are aggregated excess returns, there are several

works which find some degree of previsibility. For example, Cochrane (2008)

and Santa-Clara & Ferreira (ming) defend previsibility for stock market

returns, exactly the factors which explains most of single stock returns.

However, we assume historical means as predictors for Et[ft+1], as suggested in

Campbell et al. (1997). We use this predictor for 2 reasons. First, to simplify

the model structure (which already contains too many variables to estimate).

Besides, the articles defending return prediction present only a small coefficient

of determination for monthly returns.

Estimation of A and B

In order to estimate A and B, we adopt 2 distinct procedures. The

first procedure uses the returns of the stock to estimate its coefficients ai

and bi. In the second procedure, we generate for each stock i a portfolio i∗

containing stocks equivalent to stock i. Then, the return of this portfolio is

used to estimate the coefficients ai and bi. The second procedure removes the

biases caused by abnormal returns in the estimation of ai and bi. Furthermore,

the coefficients estimated for each portfolio tend to deviate lesser from the

market aggregated return. Hence, the aggregated estimation can be seen as
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a shrinkage towards a model which suggests no cross-sectional variation of

expected returns. This technique is consistent to the adjustment we propose

to check and or restrict the expected return model.

In the first procedure, the coefficients ai and bi which form the matrixes

A and B are estimated by an OLS regression of the following equation:

ri,t−rf,t = αi+βi(RMt−rf,t)+siRSMBt+hiRHMLt+piRWMLt+ui,t (1-9)

where RMt,RSMBt,RHMLt,RWMLt denote returns of the aggregated mar-

ket in excess of the risk-free rate, and returns for SMB, HML and WML factor

portfolios, respectively.

As stated before, the second procedure generates for each stock i a

portfolio i∗ containing stocks equivalent to stock i, in the sense the stocks

have similar characteristics. Let x̂i,t denote the M × 1 vector containing

the M normalized characteristics of stock i at period t2 . Define di,j,t ≡
(x̂i,t − x̂j,t)

′.(x̂i,t − x̂j,t) as a measure of distance between two stocks i and

j. For each stock i, we define at each period t an portfolio containing the

value-weighted combination of the 30 stocks closer to stock i (including the

stock i itself). That is, we generate a portfolio containing the 30 stocks with

lesser values of di,j,t, for each stock i and period t. Let r∗i,t denote the return of

this portfolio. The coefficients ai and bi which form the matrices A and B are

estimated by an OLS regression of the following equation:

r∗i,t−rf,t = αi+βiRMt−rf,t+siRSMBt+hiRHMLt+piRWMLt+ui,t (1-10)

where RMt,RSMBt,RHMLt,RWMLt denote returns of the aggregated mar-

ket in excess of the risk-free rate, and returns for SMB, HML and WML factor-

mimicking portfolios, respectively.

Estimation of Σf and Σe

For each period t, we estimate Σf as the sample covariance matrix of the

factor portfolio returns. Hence, every element σi,j of Σf is estimated by:

σ̂i,j =
1

t− 1

t
∑

q=1

(fi,q − f̄i)(fj,q − f̄j) (1-11)

where fi,q is the i-th factor portfolio return at period q and f̄i is the average

factor portfolio return between periods 1 and t.

In order to estimate Σe, we assume it to be diagonal. This is equivalent

2The M characteristics we include are: (i) accumulated return over the last 12 months,
(ii) stock price times shares outstanding, and (iii) book-to-market. All characteristics are
normalized at each period so the cross-section average and variance are 0 and 1, respectively.
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to assume all covariance among distinct stocks is explained by the factors. The

elements of the main diagonal are the sample variance of the part of returns

not explained by the model (difference between realized and forecast returns).

1.3 Evaluation Environment

In order to obtain a fair and realistic comparison between the Markowitz

approach and the naive value-weighted and equal-weighted portfolios, we

establish the following criteria:

1. The investable set is the same, at all periods;

2. The estimation of parameters, volatilities, coefficients and risk premia

for each factor to be used at period t+1 uses only information available

at period t;

3. The performance covers returns net of transaction costs.

The first criterion is useful because using only stocks the choice of

portfolios to be used as benchmark is straightforward. The second criterion

removes look-ahead bias from the estimation. However, the entire approach

still suffer from some degree of look-ahead-bias. This occurs because the

characteristics used are known to be correlated to the risk-return ratio given

our knowledge from the entire sample. The use of these characteristics is

indirect: in addition of the market excess return, three portfolios’ returns are

used as factors. The two first additional factors are the small-minus-big and

high-minus-low portfolios described by Fama & French (1996). These factors

attempt to exploit size and value anomalies. The third additional factor is the

winner-minus-loser portfolio suggested by Carhart (1997). This factor attempt

to exploit the 1-year momentum anomaly.

The inclusion of transaction costs aims to penalize turnover. Commonly,

an active technique which supposedly performs better than a naive approach

such as value-weighted portfolio without considering transaction costs depends

on excessive turnover and the absence of transaction costs. Considering trans-

action costs favors lower turnover approaches. In order to deal with transaction

costs, we use the approach described in Section 1.3.3.

We also test the performance of the technique by assuming 2 regimes,

with distinct factor loadings and risk premia for each regime. The procedure

is described in Section 1.3.4
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1.3.1 Utility function

The utility function the investor maximizes is the ex-ante Sharpe Ratio.

We choose the Sharpe Ratio because the investable set is restricted to ordinary

stocks and excludes bonds, commodities and other asset classes. Therefore,

the investor cannot allocate his wealth optimally given his risk aversion. The

Sharpe Ratio utility function is useful to enable the search of the better risk-

return ratio without considering risk aversion. In a second step, the optimal

stocks portfolio could be mixed with a risk-free bond in order to define the

optimal risk level. Besides, the Markowitz optimized portfolio with greater

Sharpe Ratio is the portfolio which generates the mean-variance efficient

frontier in the presence of a risk-free asset. Finally, the technique we propose

can be easily extended to include other asset types.

The maximization of the Sharpe Ratio in the Markowitz approach

is straightforward. The portfolio depends upon the expected returns and

covariances and the target expected return. For each target expected return,

there is an optimal portfolio with expected return and volatility. Therefore, we

choose the target expected return which maximizes the Sharpe Ratio, following

the procedure described in 1.2.2.

1.3.2 Out-of-sample procedure

In order to prevent look-ahead bias in the estimation of parameters,

volatilities, coefficients and risk premia associated to each factor, we employ a

growing estimation window.

Factor loadings, risk premia, residual volatility and factor covariances are

re-estimated for each period t using all information available at period t − 1.

Besides, the factor portfolios are created by following the procedure described

by Fama & French (1993a) and Carhart (1997). Therefore, the definition of

the set of stocks in each group (small, high, winner, etc) does not require any

information unavailable by the moment the portfolio return is used.

1.3.3 Transaction costs

We describe here a technique to take trading costs into account while

estimating optimal portfolios, from Brandt et al. (2009). The technique allows

transaction costs to vary across stocks and through time. Transaction costs may

impact differently the approaches to portfolio selection, even with equivalent

average turnover.

Let the “hold portfolio” at period t+1 be defined as the portfolio resulted

from keeping the stocks from period t. Let ωi,t−1, rp,t, and ri,t be the portfolio
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weight on stock i at period t− 1, the portfolio return from t− 1 to t and the

return from stock i from t − 1 to t, respectively. The “hold portfolio” weight

on stock i at period t is given by:

ωh
i,t = ωi,t−1

1 + ri,t
1 + rp,t

(1-12)

Let ci,t be the estimated transaction costs of trading stock i at t. The

portfolio return net of trading costs is the portfolio return less the absolute

change on weight from the “hold portfolio” multiplied by its transaction costs:

rp,t+1 =
N
∑

i=1

ωi,tri,t+1 − ci,t|ωi,t − ωh
i,t| (1-13)

Several theoretical studies suggest the optimal strategy with transaction

costs should consider a no-trade region, given current position (e.g. Leland

(2003)). If the desired portfolio weights (hereafter called “target portfolio”)

is inside the no-trade region, it is optimal not to trade. The intuition of this

result lies in the fact there is a first-order loss when trading inside the no-trade

region and only a second-order gain. Motivated by these theoretical results,

Brandt et al. (2009) propose a technique which model the no-trade region as

an hypersphere and shrinks the target portfolio to the hold portfolio.

Let ωtarget be the optimal portfolio obtained by the Markowitz approach,

ωh the weights from the “hold portfolio” and κ2 the radius of the no-trade

region. If
∑Nt

i=1
(ωtarget

i,t − ωh
i,t)

2/Nt <= κ2, the target portfolio is inside the no-

trade region at t. Therefore, the optimal policy is keeping the current portfolio.

However, if
∑Nt

i=1
(ωtarget

i,t − ωh
i,t)

2/Nt > κ2, the optimal policy is change

the weights towards the target portfolio, up to the no-trade region centered in

the target weight:

ωi,t = αtω
h
i,t + (1− αt)ω

target
i,t

αt =
κ
√
Nt

√

∑Nt

i=1
(ωtarget

i,t − ωh
i,t)

2/Nt

(1-14)

This weighted average can be seen as shrinkage of the optimized portfolio

to the hold portfolio.

Section 1.4.2 presents and justifies the values of ci,t and κ used.

1.3.4 Experiment assuming two regimes

As a first attempt to evaluate the effect of relaxing the assumption of

constant factor loadings and risk premia over time, we divide the sample in

two. The first part contains periods in which the yield curve is positively

sloped, while the second part contains periods in which the yield curve is
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negatively sloped. All parameters, factor loadings, risk premia and covariances,

and residual volatilities, are estimated separately for each part. This division

is analogous to the procedure described in Brandt et al. (2009).

From the business cycle view, periods in which the yield curve is neg-

atively sloped tend to be associated to recessions. Hence, correlations among

stock characteristics and returns should vary if the parameters are estimated

separately for each part. Likewise, the risk premia associated to each factor

should be different across the two sample parts.

From the econometric view, it is important that each part contains

periods across the entire sample. In particular, the sample used to estimate

initial parameters should have periods from both parts.

From the portfolio manager view, a smoother transition would be a better

approach. If the estimated values are different, the transition between regimes

should generate great losses due to transaction costs. Besides, the transitions

can be associated to lesser market liquidity. Hence, the transaction costs may

be underestimated.

1.4 Empirical results

1.4.1 Data

Our sample consists of stocks listed in NYSE. We use monthly holding

period returns, shares outstanding and closing prices from CRSP monthly

database and quarterly data from Compustat to calculate the book equity.

The sample period is from June 1970 to December 2008. Before this period,

there was no quarterly data available for more than 20 companies with stocks

listed in NYSE. After exclusions, the number of valid stocks varies through

the sample, ranging from 520 to 714. We exclude from the sample:

1. Stocks with an asset code different from 10 or 11, according to CRSP

database3;

2. Stocks from a company not listed in Compustat;

3. Stocks from companies with negative book-to-market at any moment

during the sample period.

Removing stocks from companies with negative book-to-market generates

a quality bias in the sample. Therefore, a naive value-weighted strategy

over this sample should outperform an index like the S&P500. However, the

3This excludes certificates, ADRs, SBIs, Units, companies incorporated outside the U.S.,
closed-end funds and REIT’s.
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S&P500 performs better than the value-weighted portfolio from January 81 to

December 2008: the annualized values for average return, volatility and Sharpe

ratio are 0.109, 0.151, and 0, 365, respectively, surpassing the Sharpe ratio from

the value-weighted portfolio, which is 0.357.

Figure 1.4.1 shows the accumulated return for value-weighted and equal-

weighted portfolios using the stocks in the sample. Furthermore, the mean,

standard deviation and skewness of the value-weighted portfolio are 0.87%,

0.041, and −0.855, respectively. Finally, the mean, standard deviation and

skewness of the equal-weighted portfolio are 1.10%, 0.046, and −1.275, re-
spectively.

Figure 1.1: Accumulated return for value-weighted and equal-weighted portfolios

For each month, the book equity of a company is (in parenthesis, the field

code in Compustat): total assets (ATQ) minus liabilities (LTQ) plus balance-

sheet deferred taxes and investment tax credits (TXDITCQ), minus preferred

stock value (PSTKQ); the market value of a stock is shares outstanding times

closing price; the market equity of a company is the market value of all stocks

in CRSP from the same company. Finally, the book-to-market of a company

is the log of 1 plus book equity divided by market equity.

As risk-free rate, we use the 3-month Treasury bill secondary market rate

from FRED database. From the same source, we compute the yield slope as

the difference between market yield on U.S. Treasury securities at 10 and 1

year.

Finally, Table 1.1 presents the correlations among monthly returns from

each factor-mimicking portfolio. The largest correlation in absolute value is

between HML and WML portfolios: −0.28.
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Table 1.1: Correlation matrix
This table presents correlations among the factor portfolios. The correlation is over the entire sample.

M SMB HML

SMB 0.09
HML -0.24 -0.01
WML -0.17 -0.18 -0.28

1.4.2 Transaction costs

Our modelling of the transaction costs ci,t for stock i at period t follow

the approach used by Brandt et al. (2009), which attempts to capture two

empirical facts. First, that transaction costs vary across distinct stocks, being

larger for small caps than for large caps. Second, the decrease in transaction

costs over time. Among others, these results can be found in Domowitz et al.

(2001).

The transaction costs ci,t are modelled as:

ci,t = 0.006− 0.0025×MEi,t × Tt (1-15)

where MEi,t is the log of the market value of the stock normalized to the

interval [0, 1] and Tt captures declining costs over time. In the first month of

the sample, Tt = 2and it decreases linearly over each month, until Tt = 1 at

the last month of the sample4. As an example, the stock of lesser market value

at January, 74, has transaction costs of 1.2% at the same month. Likewise, the

stock of greater value at December, 2008, has transaction costs of 0.35% at

this month.

Our costs are lesser than the costs used in Brandt et al. (2009) for two

reasons. First, our sample starts 10 years later. Second, since we use only

NYSE stocks, transaction costs are supposed to be lesser than in a sample also

containing stocks from AMEX and NASDAQ.

1.4.3 Results

In this Section, we present the performance of value-weighted and equal-

weighted portfolios, as well as four portfolios from the Markowitz optimization

approach with the following expected return models:

1. Factor loadings estimated from Equation (1-9) (M1);

2. Factor loadings estimated from Equation (1-9), imposing A = 0 (M2);

3. Factor loadings estimated from Equation (1-10) (M3);

4We also test T1 = 3 and achieve similar results.
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4. Factor loadings estimated from Equation (1-10), imposing A = 0 (M4);

All returns are net of transaction costs. We use the procedure to handle

transaction costs described in Section 1.3.3 in all portfolios except the value-

weighted and equal-weighted. The leverage is limited to a short position of

30% of the investor’s wealth.

Table 1.2 presents statistics for the value-weighted and equal-weighted

portfolios. The value-weighted portfolio has an annualized average return of

10.4% and a 14.3% volatility. The Sharpe Ratio is 0.362, and alpha, beta and

residual volatility are −0.006, 1.000 and 0.011, respectively. Alpha, beta and

residual volatility are measured against the returns from the value weighted

portfolio without imposing transaction costs. The largest average position on

a stock is 4.6% and the average monthly turnover is 0.2% of the investor’s

wealth. The equal-weight portfolio has greater returns 13.2% and volatility

15.8%. The Sharpe Ratio is 0.506 and the average monthly turnover is 7% of

the investor’s wealth.

Table 1.2 also presents the portfolios generated by the Markowitz optim-

ization, using 4 distinct versions of the 4-factor model. The average returns

range from 10.9% to 12.6%, the volatility range from 13.1% to 13.6%. Exclud-

ing the M1 model,which performs worse than the others, the Sharpe Ratio is

close to 0.525. The average monthly turnover is approximately 10% of the in-

vestor’s wealth. All portfolios have positive alpha, the beta is close to 0.9 and

the residual volatility ranges from 0.013 to 0.056. All portfolios perform better

than the value-weighted portfolio5. Excluding the M1 model, the Markowitz

portfolios also perform better than the equal-weighted portfolio.

The imposition of A = 0 improves the performance when the factor

loadings are estimated directly from the stocks returns. This suggests the

abnormal returns do not persist and reduce return forecasting power. There is

no impact when the factor loadings are estimated from portfolios. In this case,

the intercepts are already very close to 0 and the adjustment does not affect

performance.

1.4.4 Economic value

By following a procedure similar to Fleming et al. (2001), we estimate

the economic value of the Markowitz optimized portfolios for a Sharpe Ratio

maximizer investor.

For a given portfolio p, we take the average and standard deviation of

monthly returns over each year i: r̄pi and stdpi . The economic value ∆p of

5If we reduce the limit on leverage to 100% of the investor’s wealth, all portfolios perform
worse and the average short position goes from 58% to 87%.
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Table 1.2: Naive and Markowitz portfolios performance
This table presents statistics from six portfolios, considering transaction costs. All statistics are from January, 81 to
December, 2008. The columns correspond to value-weighted and equal-weighted portfolios, followed by Markowitz

optimized portfolios using return models M1, M2, M3 and M4, respectively. The first set of rows shows statistics of the
portfolio weights, averaged across time. These statistics are: average absolute weight, maximum and minimum portfolio

weight, the average sum of negative weights in the portfolio, average fraction of non-positive weights in the portfolio, and
average turnover. The second set of rows displays annualized portfolio return statistics: average return, standard deviation
and Sharpe Ratio of returns, and the alpha, beta, and volatility of idiosyncratic shocks of a market model regression. The

returns are net of transaction costs. The returns are net of transaction costs. The third set of rows presents average
characteristics of the portfolio over time. The rows labelled “me”, “mom” and “btm” show measures of market value,

momentum and book-to-market, respectively.

Variable VW EW M1 M2 M3 M4

|ωi| × 100 0.107 0.158 0.235 0.160 0.171 0.142
maxωi × 100 4.665 0.187 4.113 1.747 3.792 1.971
minωi × 100 0.001 0.142 0.016 0.006 0.004 0.002
∑

ωiI(ωi < 0) 0 0 -0.180 -0.121 -0.111 -0.044
∑

I(ωi ≤ 0)/N - - 0.197 0.182 0.133 0.094
∑ |ωi,t − ωh

i,t| 0.011 0.070 0.116 0.099 0.094 0.091

r̄ 0.104 0.132 0.109 0.125 0.121 0.126
σ(r) 0.143 0.158 0.133 0.136 0.131 0.139
SR 0.357 0.506 0.426 0.531 0.527 0.527
α -0.007 0.020 0.006 0.023 0.020 0.020
β 1.000 1.024 0.873 0.862 0.850 0.904

σ(ǫ) 0.002 0.056 0.043 0.055 0.047 0.049

me 1.297 0 0.507 0.115 0.175 0.045
mom 0.107 0 0.369 0.030 0.017 0.001
btm -0.437 0 -0.396 0.223 0.197 0.152

portfolio p is given by:

n
∑

i=1

r̄pi −∆p

stdpi
=

n
∑

i=1

r̄bi
stdbi

(1-16)

where n, r̄bi , and stdbi are the number of years and the average and standard

deviation of the benchmark monthly returns, respectively. The benchmark is

the value-weighted portfolio in the presence of transaction costs. The value of

∆p represents the amount a Sharpe Ratio maximizer investor is willing to pay

to be indifferent between portfolio p and the benchmark.

Table 1.3 shows in the first column the economic value for several

portfolios optimized using the Markowitz approach. The relative performance

equals the relative performance according to the Sharpe Ratio. A Sharpe

Ratio maximizer investor would be willing to pay more than 200 basis points

to hold Markowitz optimized portfolios using return models M2, M3 or M4.

These results suggest the multi-factor model of stocks covariance has relevant

economic value.

We also present the values obtained by applying the mean-variance utility

used in Fleming et al. (2001). In this case, the economic value ∆p of portfolio
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Table 1.3: The economic value of Markowitz optimized portfolios
This table presents the economic value (in basis points) according to three criteria of four distinct portfolios. The first

column is the economic value for a investor with expected utility function given by the Sharpe ratio. The next two columns
consider an investor with mean-variance utility and distinct values of risk aversion parameter λ.

Portfolio Sharpe-ratio λ = 1 λ = 10
(basis points) (basis points) (basis points)

Equal-weighted 160 264 54
Markowitz (M1 model) 24 68 218
Markowitz (M2 model) 259 220 328
Markowitz (M3 model) 257 197 365
Markowitz (M4 model) 265 227 292

p is given by:

T
∑

t=1

(1+rp,t−∆p)−
λ

2× (1 + λ)
(1+rp,t−∆p)

2 =
T
∑

t=1

(1+rb,t)−
λ

2× (1 + λ)
(1+rb,t)

2

(1-17)
where rp,t is the monthly return of portfolio p at t,rb,t is the monthly return of

the benchmark at t and λ is a measure of risk aversion.

As the last two columns of Table 1.3 show, all portfolios have a positive

economic value. Furthermore, investors with greater risk aversion prefer the

Markowitz optimized portfolios (200 to 370 basis points of economic value)

over the equal-weighted portfolio.

1.4.5 Results: segmentation by bull and bear years

Table 1.4 shows the segmented performance of value-weighted, equal-

weighted and Markowitz optimized portfolios using models M2 and M4. In

order to segment the performance, we divide the sample in two: bull and bear

years. We classify bull years as years in which the benchmark return is greater

than the risk-free rate. Conversely, bear years are years in which the benchmark

return is lesser than the risk-free rate. The sample contains nine bear years.

In general, the statistics related to weight distribution are the same

across the two sub-samples. Besides, bear years tend to be associated to a

greater volatility. The results show that the portfolios perform better than the

benchmark both in bull and bear years. M2 has a negative alpha (−0.004), but
it is greater than the value-weighted’s alpha in presence of transaction costs

(−0.009). The main point of this segmentation is to show that the superior

performance of the Markowitz portfolios do not depend on the fact the sample

contains much more bull years. Even if we consider a random sub-sample

containing the same number of bull and bear years, these portfolios would

perform better than the market.
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Table 1.4: Naive and Markowitz portfolios performance segmented by bull and
bear years

This table presents statistics from six portfolios, considering transaction costs. All statistics are from January, 81 to
December, 2008. The columns correspond to value-weighted and equal-weighted portfolios, followed by Markowitz

optimized portfolios using return models M2 and M4, respectively. The first set of rows shows statistics of the portfolio
weights, averaged across time. These statistics are: average absolute weight, maximum and minimum portfolio weight, the

average sum of negative weights in the portfolio, average fraction of non-positive weights in the portfolio, and average
turnover. The second set of rows displays annualized portfolio return statistics: average return, standard deviation and
Sharpe Ratio of returns, and the alpha, beta, and volatility of idiosyncratic shocks of a market model regression. The

returns are net of transaction costs. The returns are net of transaction costs. We classify bull years as years in which the
benchmark return is greater than the risk-free rate. Conversely, bear years are years in which the benchmark return is

lesser than the risk-free rate. The sample contains nine bear years.

Variable VW EW M2 M4

Bull years

|ωi| × 100 0.109 0.158 0.158 0.141
maxωi × 100 4.482 0.184 2.151 2.300
minωi × 100 0.001 0.141 0.005 0.002
∑

ωiI(ωi < 0) 0 0 -0.107 -0.042
∑

I(ωi ≤ 0)/N - - 0.171 0.070

r̄ 0.187 0.209 0.209 0.202
σ(r) 0.116 0.123 0.109 0.110
SR 1.171 1.276 1.437 1.375
α -0.006 0.017 0.037 0.026
β 1.000 0.989 0.840 0.877

σ(ǫ) 0.001 0.045 0.048 0.041

Bear years

|ωi| × 100 0.112 0.157 0.167 0.142
maxωi × 100 5.053 0.187 1.526 1.890
minωi × 100 0.002 0.141 0.003 0.003
∑

ωiI(ωi < 0) 0 0 -0.150 -0.049
∑

I(ωi ≤ 0)/N - - 0.206 0.084

r̄ -0.072 -0.029 -0.052 -0.035
σ(r) 0.179 0.205 0.169 0.178
SR -0.718 -0.416 -0.637 -0.512
α -0.009 0.043 -0.004 0.020
β 0.998 1.068 0.863 0.927

σ(ǫ) 0.004 0.074 0.065 0.063
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Table 1.5: Two regimes
This table presents statistics from two portfolios, considering transaction costs and following the procedure to allow 2

regimes, as described in Section 1.3.4. The column labelled “M3” shows statistics for the Markowitz (M3 return model). All
statistics are from January, 81 to December, 2008. The first set of rows shows statistics of the portfolio weights, averaged
across time. These statistics are: average absolute weight, maximum and minimum portfolio weight, the average sum of
negative weights in the portfolio, average fraction of non-positive weights in the portfolio, and average turnover. The

second set of rows displays annualized portfolio return statistics: average return, standard deviation and Sharpe Ratio of
returns, and the alpha, beta, and volatility of idiosyncratic shocks of a market model regression. The returns are net of

transaction costs. The third set of rows presents average characteristics of the portfolio over time. The rows labelled “me”,
“mom” and “btm” show measures of market value, momentum and book-to-market, respectively.

Variable M3

|ωi| × 100 0.210
maxωi × 100 6.617
minωi × 100 0.006
∑

ωiI(ωi < 0) -0.169
∑

I(ωi ≤ 0)/N 0.201
∑ |ωi,t − ωh

i,t| 0.202

r̄ 0.112
σ(r) 0.146
SR 0.403
α 0.004
β 0.948

σ(ǫ) 0.053

me 0.104
mom 0.136
btm 0.119

1.4.6 Results: two regimes

Table 1.5 presents statistics for portfolios obtained from the Markowitz

optimization, using the “M3” model and following the 2-regimes strategy

described in 1.3.4. The portfolio’s performance is far below the obtained

without 2 regimes: the Sharpe Ratio falls from 0.527 to 0.403 when applying

2 regimes to the M3 model. The performance loss comes from both average

returns and volatility. The results suggest the several discrete switches between

regimes generate excessive transaction costs.

Table 1.6 presents the returns statistics during the positive slope and

inverted regimes.

1.5 Conclusions

This paper reaches three main results. First, the covariance structure of

stocks has positive economic value, that is, an investor with expected utility

given by the Sharpe Ratio (we also test risk-averse quadratic utility) would

be willing to spend basis points in order to exchange value-weighted portfolio

by the portfolios optimized by the adjusted Markowitz approach we propose,
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Table 1.6: Two regimes - results segmented by regime
This table presents statistics from two portfolios over the positive slope and inverted slope regimes, considering transaction
costs and following the procedure to allow 2 regimes, as described in Section 1.3.4. All statistics are from January, 81 to
December, 2008.The rows display annualized portfolio return statistics: average return, standard deviation and Sharpe

Ratio of returns, and the alpha, beta, and volatility of idiosyncratic shocks of a market model regression. The returns are
net of transaction costs.

Variable Positive Slope Inverted Slope

r̄ 0.104 0.158
σ(r) 0.153 0.086
SR 0.367 0.905
α -0.003 0.053
β 0.977 0.613

σ(ǫ) 0.051 0.055

even with no look-ahead bias and in the presence of transaction costs. The

adjustments we include are fundamental to improve the performance and beat

the benchmark. Second, the “smooth” estimation approach we propose to

estimate factor loadings seems to generate better results than the traditional

estimation. In particular, there is no difference between results allowing or not

abnormal returns (returns not explained by the factors). Third, the “no-trade”

adjustment to handle transaction costs is successful to reduce the monthly

turnover to approximately 9%, providing a good balance between minimizing

losses due to transaction costs and adjusting the portfolio towards weights with

better risk-adjusted expected returns. These good results do not depend on the

fact the sample has more bull years than bear years. The optimized portfolios

tend to perform better than the benchmark in both periods. The 2-regimes

experiment does not yield proper results and another approach should be used

to attempt to exploit time-varying investment opportunities.

Further improvements and insights could be achieved by an experiment

attempting to separate the effects of cross-sectional variation in returns and

the covariance structure. As mentioned previously, an approach to exploit

successfully time-varying investment opportunities could be another source

of improvement. Finally, the approach could be extended to include additional

asset classes.
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