8 Referências Bibliográficas

ÁVILA, G. Cálculo I: funções de uma variável. Livros Técnicos e Científicos. Rio de Janeiro, 1994.

ÁVILA, G. Análise Matemática para Licenciatura. Editora Edgard Blücher Ltda. São Paulo, 2001.

ANDRÉ, M. E.da C.(Org.) O papel da pesquisa na formação e na prática dos professores. 2ªEdição. Campinas (SP): Papirus, 2002.

_____. Etnografia da prática escolar. Campinas (SP): Papirus, 1995.

BALDINO, R. R. A Ética de uma Definição Circular de Número Real. São Paulo: Bolema, n. 10, 1997.

BARONI, R. L. S.; NASCIMENTO, V. M. *Um Tratamento, Via Medição, Para os Números Reais*. São Paulo: SBHMat, 2005.

BARUFI, M. C. B. A construção/negociação de significados num curso universitário inicial de Cálculo Diferencial e Integral. Tese (doutorado em Educação), USP, São Paulo, 1999.

BARTHEL, L. A Computerized Interactive Approach Real Numbers and Decimal Expansions. Proceedings of ICME 10, 2004.

BOYER, C. B. *História da Matemática*. Trad. Elza F. Gomide. São Paulo: Edgard Blücher, 2003.

BRASIL. Secretaria de Educação Fundamental. *Parâmetros Curriculares Nacionais: Matemática*. Brasília: MEC / SEF, 1998.

BRASIL. Secretaria de Educação Média e Tecnológica. *Parâmetros Curriculares* Nacionais: Ensino Médio, v. 3. Brasília: MEC, 2000.

BRASIL. Secretaria da Educação Média e Tecnológica. *Parâmetros Curriculares Nacionais para o Ensino Médio.* Brasília: MEC, 2002.

BRASIL. Secretaria da Educação Média e Tecnológica. *PCN+: Ensino Médio – orientações educacionais complementares aos Parâmetros Curriculares Nacionais*. Brasília: MEC, 2002.

BRASIL. Secretaria da Educação Média e Tecnológica. *Catálogo do Programa Nacional do Livro para o Ensino Médio – Matemática (PNLEM)*. Brasília: MEC, 2005.

BRASIL. Secretaria da Educação Básica. Ciências da natureza, matemática e suas tecnologias: Orientações curriculares para o ensino médio, v. 2. Brasília: MEC, 2006.

BRASIL. Secretaria da Educação Básica. *Guia de livros didáticos PNLD 2008: Matemática*. Brasília: MEC, 2007.

CANÁRIO, Rui. Escola: o lugar onde os professores aprendem. In: **Psicologia da Educação**, 6, pp. 9-27, 1998.

CARAÇA, B. J. Conceitos Fundamentais da Matemática. Lisboa: Gradiva - 2ª edição, 1998.

CARVALHO, J. B. P. F. Guia de Livros Didáticos de 1ª a 4ª séries. Brasília, DF:MEC, CENPEC, 1997.

CASTRO, M. R; <u>FRANT, J. B</u>; LIMA, F. M. *Produção de significados, funções e representações sociais*. In: 23a Reunião Anual da ANPED, 2000, Caxambu. CD Anais da ANPE 23, 2000.

Catálogo do Programa Nacional do Livro para o Ensino Médio. PNLEM/2005. Matemática / [coordenação Paulo Figueiredo Lima]. – Brasília: MEC, SEMTEC, FNDE, 2004..

COBIANCHI, A. S. Estudos de continuidade e números reais: matemática, descobertas e justificativas de professores. 2001. Tese (doutorado em Educação Matemática), UNESP, Rio Claro, 2001.

CORBO, O. Seção Áurea: um contexto para desenvolver a noção de incomensurabilidade de segmentos de reta. 2005. 243p. Dissertação (Mestrado em Educação), PUC-São Paulo, São Paulo, 2005.

COSTA, C. *Processos mentais associados ao pensamento matemático avançado: Visualização*. XI Encontro de Investigação em Educação. Matemática. Coimbra: 2002.

COURANT, R.; ROBBINS, H. O Que É Matemática?. Tradução: Adalberto S. Brito, Rio de Janeiro: Editora Ciência Moderna, 2000.

D'AMBRÓSIO, U. *Educação Matemática: da teoria à prática.* Campinas, Papirus, 1998.

DAMICO, A. Uma investigação sobre a formação inicial de professores de matemática para o ensino de números racionais no ensino fundamental. 2007. 316p. Tese (Doutorado em Educação Matemática), PUC-SP, São Paulo, 2007.

DANTE. L. R. *Matemática*. Vol 1. São Paulo: Ática, 2004a.

. *Matemática*. Vol 2. São Paulo: Ática, 2004b.

. Matemática. Vol 3. São Paulo: Ática, 2004c.

DELVAL, J. *Introdução à prática do método clínico*. Porto Alegre: Artmed, 2002.

DIAS, M. S. *Reta real:* conceito imagem e conceito definição. Dissertação (Mestrado em Educação Matemática), PUC-SP, São Paulo, 2002.

_____. Formação da imagem conceitual da reta real: um estudo do desenvolvimento do conceito na perspectiva lógico-histórica. 2007. Tese (Doutorado em Educação), Universidade de São Paulo, São Paulo, 2007.

DIAS, M. S; COBIANCHI, A. S. Correlação do Lógico e do Histórico no Ensino de Números Reais, Disponível em http://www.sbempaulista.org.br/epem/anais/, 2004. Acesso em: dez. 2006.

DOMINGOS, A. M. D. Compreensão de Conceitos Matemáticos Avançados: a Matemática do Início do Superior. Tese de doutorado em Ciências de Educação. Universidade Nova de Lisboa. Lisboa, 2003.

DREYFUS, T. Advanced mathematical thinking processes. In David Tall (Org.), *Advanced mathematical thinking* (pp. 25–41). Dordrecht: Kluwer, 1991

DUBINSKY, E. Reflective abstraction in advanced mathematical thinking. In: TALL, David (Ed.). *Advanced Mathematical Thinking*. Dordrecht: Kluwer, p. 95-123, 1991.

EVES, H. *Introdução à História da Matemática*. Campinas, SP: Editora da UNICAMP, 2004.

FISCHBEIN, E.; TIROSH, D.; HESS, P. The intuition of infinity. In: *Educational Studies in Mathematics*, 10, pp. 3-40, 1979.

FISCHBEIN, E.; JEHIAN, R.; COHEN, D. The concept of irrational numbers in high-school students and prospective teachers. *Educational Studies in Mathematics*, 29, p.29-44, 1995.

GARDINER, A. *Infinite Processes:* background to analysis. New York. Springer-Verlag New York Inc, 1982.

GIRALDO, V. Descrições e Conflitos Computacionais: O Caso da Derivada. Tese de Doutorado do Curso de Engenharia de Sistemas e Computação. COPPE-UFRJ. Rio de Janeiro, 2004.

GRANGER, G. G. O Irracional. São Paulo: Editora UNESP, 2002.

HALLETT, D. H. et al. *CÁLCULO DE UMA VARIÁVEL*. Livro Técnico e Científico: Rio de janeiro, 2004.

HERSHKOWITZ, R. Aspectos Psicológicos da Aprendizagem da Geometria e Visualização em Geometria: as duas faces da moeda. Boletim Gepem, Vol. 32. Rio de Janeiro, 1994

HERSHKOWITZ, R; SCHWARZ, B. *Prototypes: Brakes or Levers in Learning the Function Concept? The Role of Computer Tools.* Journal for Research in Mathematics Education, Vol. 30, No. 4, p. 362-389, 1999.

HERSHKOWITZ, R. & VINNER, S. *The Role of Critical and Non critical Attributes in the concept Image of Geometrical Concepts.* In Proceedings of the Seventh International Conference for the Psychology of Mathematics Education. Israel: Weizmann Institute of Science, 1983.

HOFFMANN, L. D. Cálculo: Um Curso Moderno e Suas Aplicações. Livro Técnico e Científico:Rio de. Janeiro, 2002.

IEZZI G.; DOLCE O.; DEGENSZAJN D.; PÉRIGO R.; ALMEIDA N. *Matemática:* ciências e aplicações. Vol 1. São Paulo: Atual, 2004a.

<i>Matemática:</i> ciências	e aplicações.	Vol 2.	São Paulo: Atua	l, 2004b.
_				

. *Matemática:* ciências e aplicações. Vol 3. São Paulo: Atual, 2004c.

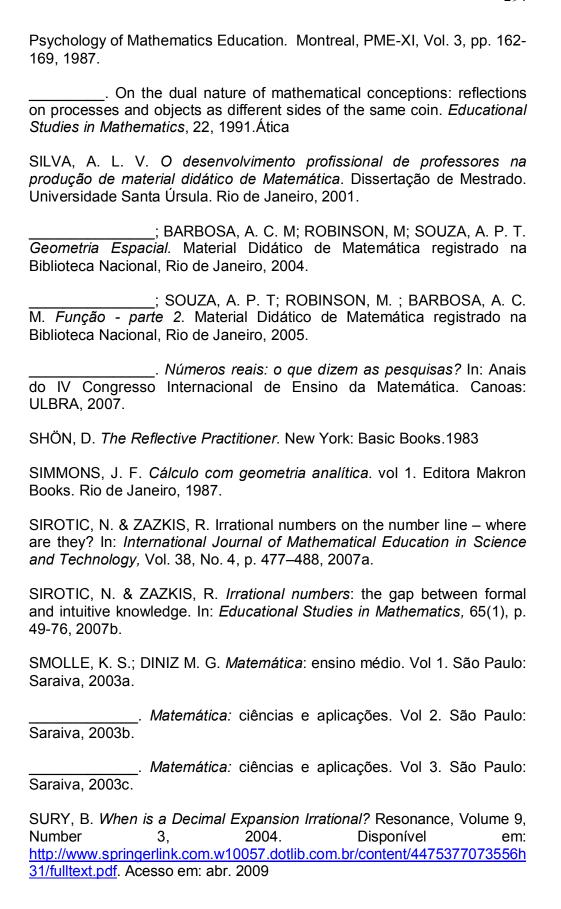
IFRAH, G. *História Universal dos Algarismos:* a inteligência dos homens contada pelos números e pelo cálculo. Rio de Janeiro: Nova Fronteira, 1997.

IGLIORI, S; SILVA, B. Conhecimento das concepções prévias dos estudantes sobre números reais: um suporte para a melhoria do ensino-aprendizagem. Anais da 21ª Reunião Anual da ANPED, Caxambu, 1998.

LEITHOLD, L. O Cálculo com Geometria Analítica. Editora Harbra. São Paulo, 1977.

LEVIATAN, T. *Introducing real numbers:* when and how?. Proceedings of ICME 10, 2004.

_____. A tale of two algorithms. In: *International Journal of Mathematical Education in Science and Technology*, Vol. 37, No. 6, 2006, pp. 629–642.


LIMA, E. L. *Curso de Análise.* Rio de Janeiro: IMPA: Instituto de Matemática Pura e Aplicada, 1976.

LIMA, E. L. et al. *A Matemática do Ensino Médio*. Coleção do professor de Matemática. vol 1. Rio de Janeiro: Sociedade Brasileira de Matemática, 1998.

LIMA, E. L. et al. *Exame de textos:* avaliação de livros Didáticos de Matemática para o Ensino Médio. Sociedade Brasileira de Matemática, Rio de Janeiro, 2001.

- LIMA, G.A.B.O. *Modelos de categorização: apresentando o modelo clássico e o modelo de protótipos*. Perspectivas em Ciência da Informação, v.15, n.2, 2010. Disponível em: http://portaldeperiodicos.eci.ufmg.br/index.php/pci/article/. Acesso em ago. 2010.
- LÜDKE, M. ANDRÉ, M. *Pesquisa em Educação:* abordagens qualitativas, São Paulo: EPU, 1986.
- MALTA, I.; PALIS, G.L.R. *Números reais e seqüências numéricas*. Departamento de Matemática, PUC-Rio, 1994.
- MALTA, I.; PESCO, S.; LOPES, H. Cálculo a uma Variável: uma introdução ao cálculo. Coleção Matmídia. Rio de Janeiro: Ed. PUC-Rio, 2002.
- MEDEIROS, C. F; MEDEIROS A. O pensamento dialético de Bento de Jesus
- Caraça e sua concepção da educação Matemática. Ciência & Educação, v. 9, n. 2, p. 261-276, 2003. Disponível em: http://www.scielo.br/pdf/ciedu/v9n2/08.pdf. Acesso em set. 2010.
- MELLO, S. B. A Compreensão do Conceito de Número Irracional: uma radiografia do problema e uso da história como uma alternativa de superação. Dissertação de Mestrado da Universidade Federal Rural de Pernambuco, Recife, 1999.
- MOREIRA, P. C; SOARES, E. F; FERREIRA, M. C. C. Números reais: concepções dos licenciandos e formação matemática na licenciatura. In: *Revista Zetetiké*, vol. 7, No 12, Campinas, SP, 1999. pp.95 117.
- MOREIRA, P. C. O conhecimento matemático do professor. formação na licenciatura e prática docente na escola básica. Tese (doutorado em Educação) Universidade Federal de Minas Gerais, Belo Horizonte, 2004.
- MOREIRA, P. C; CURY, H. N; VIANNA, C. R. Por que análise real na licenciatura? São Paulo: *Revista Zetetiké*, v. 13, n.23, 2005.
- MOREIRA, P. C; DAVID, M. M. M. S. *A Formação Matemática do Professor*: licenciatura e prática docente escolar. Coleção Tendências em Educação Matemática. Autêntica. Belo Horizonte, 2005.
- MUNEM, M. A; FOULIS, D. J. Cálculo.Vol. 1. Livro Técnico e Científico:Rio de Janeiro, 1982.
- NIVEN, I. M. *Numbers:* rational and irrational. Englewood Cliffs, NJ. Mathematical Association of America, 1961.

- NÓVOA, A. (Org.). Os *Professores e Sua Formação*. Lisboa: Publicações Dom Quixote, 1992.
- PALIS, G.L.R. Comprimento da circunferência no ensino elementar. In: *Revista do Professor de Matemática*, 14, 29-37. SBM, 1989.
- _____. Tecnologia, Gráficos e Equações. In: Revista do Professor de Matemática, 26, 30-38. SBM, 1994.
- _____. *Números reais e aproximações*. Notas de aula da disciplina Introdução ao Cálculo. Departamento de Matemática, PUC-Rio, 1999.
- _____. Aproximações de um valor de bifurcação usando uma planilha. In: *Zetetiké*, 8 (13-14), 2000.
- ______. Educação Matemática: entrelaçando pesquisa e ensino, compreensão e mudança. In: *Educação On-line*, Puc-Rio, v. 1, p. 1, 2005.
- PENTEADO, C. B. Concepções do professor do Ensino Médio relativas à densidade do conjunto dos números reais e suas reações frente a procedimentos para a abordagem desta propriedade. Dissertação de Mestrado. Pontifícia Universidade de São Paulo. São Paulo, 2004.
- PEREZ, G. Prática reflexiva do professor de matemática. In: BICUDO, M. A. V.; PEREZ, G., COSTA, G.L.M., VIEL, S.R. *Desenvolvimento Profissional e Prática reflexiva*. BOLEMA, Ano15, no. 17, pp, 59 a 70, 2002.
- PINTO, M.; TALL, D. *Student Teachers' Conceptions of the Rational Numbers*. Published in Proceedings of PME 20, Valencia, vol. 4, pp. 139–146, 1996.
- PONTE, J. P. A calculadora e o processo de ensino-aprendizagem. *Educação e Matemática*. Lisboa, n. 11, 1989.
- RIPOLL, C.; RIPOLL, J. B.; SLVEIRA, J. F. P. *Números Racionais, Reais e Complexos*. Porto Alegre: Editora da Universidade Federal do Rio Grande do Sul, 2006.
- ROBINET, J. Les Réels: quels modèles en ont les élèves? Educational Studies in Mathematics, vol. 17, pp. 359-386, 1986.
- SANT'ANNA, N. F. P. *Práticas Pedagógicas para o ensino de frações objetivando a introdução à álgebra*. 328p. Tese (doutorado em Educação). Pontifícia Universidade Católica, Rio de Janeiro, 2008.
- SFARD, A. Two conceptions of mathematical notions: operational and structural. Proceedings of the Eleventh International Conference

- SZTAJN, P. Conteúdos, Atitudes e ideologia: a formação do professor de matemática. In: Candau, V. M. F. (org) *Magistério, construção, Cotidiano*. Petrópolis, Editora Vozes, p. 184-204, 1997.
- TALL, D; VINNER, S. Concept image and concept definition in mathematics with particular reference to limits and continuity. In: *Educational Studies in Mathematics*, vol 12, 151-169, 1981.
- TALL, D.; SCHWARZENBERGER R. Conflicts in the learning of real numbers and limits. *Mathematics Teaching*, 82, p.44-49, 1978.
- TALL, D. Concept Image and Concept Definition, *Senior Secondary Mathematics Education*, (ed. Jan de Lange, Michiel Doorman), OW&OC Utrecht, 37–41, 1988.
- TALL, D; GRAY, E; PITTA, D; PINTO, M. Knowledge Construction and diverging thinking in elementary and advanced mathematics, *Educational Studies in Mathematics*, 38 (1-3), 1999. Disponível em: http://www.warwick.ac.uk/staff/David.Tall/downloads.html#1999. Acesso em: abr. 2008
- TALL, D. The Transition to Advanced Mathematical Thinking. In: Grouws D. A. (Ed). *Handbook of Research on MathematicsTeaching and Learning*, ed. New York: Macmillan, p. 495-511, 1992.
- _____. Cognitive difficulties in learning analysis. In *Report on the Teaching of Analysis* (ed. Barnard A.), for the TaLUM committee, 1994.
- TARDIF, Maurice. Saberes profissionais dos professores e conhecimentos universitários. *Revista Brasileira de Educação*. Rio de Janeiro no. 13, pp. 5-14, 2000.
- _____. Saberes Docentes e Formação Profissional. Petrópolis: Vozes, 2002.
- THOMAS, G. B. Cálculo I. Ao livro Técnico S. A. Rio de Janeiro, 1965.
- VINNER, S. Concept definition, concept image and the notion of function. In: *International Journal of Education in Science and Technology*, vol. 14, 293-305, 1983.
- _____. The role of definitions in the teaching and learning of mathematics. In: TALL, David (Ed.), *Advances Mathematical Thinking*. Dordrecht: Kluwer, pp. 65-81, 1991.
- ZAZKIS, R & SIROTIC, N. *Making sense of irrational numbers*: focusing on representation. Proceedings of 28th International Conference for Psychology of Mathematics Education. Vol. 4. pp. 497-505, Bergen, Norway, 2004.

- 01 Anexo
- 02 Anexo Questionário do estudo preliminar
- 03 Anexo Carta de solicitação para a pesquisa
- 04 Anexo Carta consulta para os alunos da 3ª série
- 05 Anexo Levantamento de datas para os encontros
- 06 Anexo Confirmação das datas dos encontros
- 07 Anexo Ficha 1 de atividades
- 08 Anexo Ficha 2 de atividades
- 09 Anexo Ficha 3 de atividades
- 10 Anexo Ficha 4 de atividades
- 11 Anexo Respostas da questão P5 do Estudo Preliminar
- 12 Anexo Respostas da questão P6 do Estudo Preliminar
- 13 Anexo Respostas da questão P7 do Estudo Preliminar
- 14 Anexo Respostas da questão P8 do Estudo Preliminar
- 15 Anexo Respostas da questão P12 do Estudo Preliminar
- 16 Anexo Atividade Thaíssa-Vinícius
- 17 Anexo Atividade Thaíssa-Vinícius
- 18 Anexo Respostas da questão P9 do Estudo Preliminar
- 19 Anexo Respostas da questão P13 do Estudo Preliminar
- 20 Anexo Tabela do Excel

"...nós atribuímos à recta a qualidade de ser completa, sem lacunas, ou seja, contínua. Mas essa continuidade, em que consiste? A resposta a essa pergunta deve compreender em si tudo, e somente ela permitirá desenvolver em bases científicas o estudo de todos os campos contínuos. Naturalmente, não se consegue nada quando, para explicar a continuidade, se fala, dum modo vago, de uma conexão ininterrupta nas suas partes mais pequenas; o que se procura é formular uma propriedade característica e precisa da continuidade que possa servir de base a deduções verdadeiras e próprias.

Pensei nisso sem resultado por muito tempo mas, finalmente achei o que procurava. O meu resultado será talvez julgado, por várias pessoas, de vários modos mas a maior parte, creio, será concorde em considerá-la bastante banal. Consiste ele na consideração seguinte:

Verificou-se que todo o ponto da recta determina uma decomposição da mesma em duas partes, de tal natureza que todo o ponto de uma delas está à esquerda de todo ponto da outra. Ora, eu vejo a essência da continuidade na inversão desta propriedade e, portanto, no princípio seguinte: "se uma repartição de todos os pontos da recta em duas classes é de tal natureza que todo o ponto de uma das classes está à esquerda de todo ponto da outra, então existe um e um só ponto pelo qual é produzida esta repartição de todos os pontos em duas classes, ou esta decomposição de recta em duas partes".

Como já disse, creio não errar admitindo que toda gente reconhecerá imediatamente a exactidão do princípio enunciado. A maior parte dos meus leitores terá uma grande desilusão ao aprender que é esta a banalidade que deve revelar o mistério da continuidade. A este propósito observo o que segue. Que cada um ache o princípio enunciado tão evidente e tão concordante com a sua própria representação da recta, isso satisfaz-me ao máximo grau, porque nem a mim nem a ninguém é possível dar deste princípio uma demonstração qualquer. A propriedade da recta expressa por esse princípio não é mais que um axioma, e é sob a forma deste axioma que nós pensamos a continuidade da recta, que reconhecemos à recta a sua continuidade".

Questionário do estudo preliminar

Colégio Pedro II – Unidade Centro – 7 de dezembro de 2007

Questionário de reconhecimento de questões relacionadas à números reais

Nome: ______ turma: _____

Obrigada pela sua participação, pois será de grande importância para minha pesquisa no doutorado.

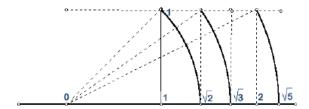
- 1) Escreva o número 3,1415 na forma de fração.
- 2) Escreva os números a seguir através de sua representação decimal, fazendo a divisão passo a passo, sem utilizar a calculadora.

a)
$$\frac{1}{8} = \frac{1}{8}$$

b)
$$\frac{50}{7} =$$

50 7

3) Escreva o número a seguir na forma decimal.


$$3 \times 10^{2} + 2 \times 10^{1} + 5 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-3} =$$

- 4) Escreva o número 1, 06405 através de sua decomposição nas potências de 10, conforme o número apresentado no item anterior.
- 5) Duas determinadas operações feita com números, numa calculadora de 9 dígitos, mostrou como resultado no visor os números 1,35353535 e 2,12345678. O que se pode afirmar sobre esses números? Eles são racionais ou irracionais? Por quê?
- 6) O número 0,121221222... é um decimal infinito cujas casas decimais só tem os algarismos 1 e 2 conforme um padrão: aumenta-se em um a quantidade de algarismos 2 separados pelo algarismo 1.

Esse número é racional ou irracional? Justifique sua resposta.

- 7) Utilize a calculadora e obtenha o número decimal correspondente ao número $M = \frac{53}{83}$.
- a) que número aparece no visor?
- b) O número $M = \frac{53}{83}$ é racional ou irracional? Justifique sua resposta.
- 8) Escreva a dízima periódica $5,\overline{4} = 5,44444...$ na forma de fração. Apresente todas as etapas do raciocínio que você utilizou.

9) Observe a figura a seguir, onde se mostra a construção dos números da forma \sqrt{n} , onde n é natural positivo.

Entre os inteiros 1 e 2, temos os números $\sqrt{2}$ e $\sqrt{3}$.

Entre os inteiros 2 e 3, temos os números

Entre os inteiros 3 e 4, temos os números

Entre os inteiros 1 e 100, quantos números não inteiros da forma \sqrt{n} existem? Apresente seu raciocínio.

10) Considere a sequência infinita $(a_1, a_2, a_3, ...)$ onde $a_1 = 2 + \frac{1}{4}$, $a_2 = 2 + \frac{1}{4 + \frac{1}{4}}$ e

$$a_3 = 2 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4}}}$$

- a) Escreva o elemento a₄ dessa seqüência.
- b) Expresse cada um dos termos a_1 , a_2 e a_3 na forma decimal. Apresente todos os passos do seu cálculo.
- 11) Pense no intervalo $[0, 1] = \{x \in \mathbb{R} / 0 < x \le 1\}$ e responda:
- a) Quantos números inteiros possui esse intervalo?
- b) Dê exemplo de três números racionais que pertença a este intervalo.
- c) Quantos números racionais há neste intervalo?
- d) Dê exemplo de três números irracionais pertencentes a este intervalo.
- e) Quantos números irracionais há neste intervalo?
- f) Qual o menor elemento desse intervalo?

- 12) Seja a sequência infinita (0,4; 0,04; 0,004; ...) de termo geral $a_n = \frac{4}{10^n}$. Agora, considere uma nova sequência infinita (S₁, S₂, S₃, ..., S_n, ...) onde S_n = $a_1 + a_2 + ... + a_n$.
- (a) Encontre os quatro primeiros termos de S_n.
- (b) Qual o limite de S_n quando n tende a infinito? Apresente uma justificativa.
- 13) Considere N = 2,314. Encontre dois valores para b, que satisfazem as desigualdades em cada caso:

(a)
$$N - 0.1 < b < N + 0.1$$
.

(b)
$$N - 0.01 < b < N + 0.01$$

(c)
$$|b-N| < 0.1$$

(d)
$$|b-N| < 0.01$$

(e)
$$N - 0.00001 < b < N + 0.00001$$

(f)
$$|b-N| < 0.00001$$

Mais uma vez obrigada pela sua participação!

Carta de solicitação para a pesquisa

Colégio Pedro II – Unidade Centro

28 de novembro de 2007

Solicitação para participação em pesquisa

Prezados alunos e alunas da 2ª série do Ensino Médio de 2007,

sou aluna do curso de doutorado em Educação na PUC Rio e o tema da minha pesquisa é o ensino-aprendizagem de números reais no Ensino Médio. No momento, estou no trabalho de campo, fase em que coletamos os dados para análise das questões que serão respondidas sobre o objeto de estudo.

Meus dados serão obtidos por meio de duas etapas. Na primeira, utilizarei um questionário, que deverá ser respondido por alunos da 2ª série, no caso vocês. Um dos objetivos deste questionário é identificar o conhecimento que vocês detêm sobre alguns assuntos de matemática que já foram estudados na escola. Esses dados serão de grande importância para a segunda etapa da pesquisa que acontecerá em 2008, com um grupo menor de alunos que na época, estarão cursando a 3ª série do Ensino Médio.

Dessa forma, conto com a colaboração de vocês para responderem este questionário no **dia 7 de dezembro às 10h da manhã**. Em contrapartida, neste dia, de 8h às 10h da manhã, estarei tirando dúvidas dos alunos que não passaram direto e farão a PAF de Matemática na semana seguinte. Também acontecerá no dia 7 de dezembro a entrega dos resultados pós COC, outro motivo importante para vocês comparecerem no colégio.

Para os alunos que já foram aprovados em Matemática, e já estão de férias, estou preparando uma lista com questões de vários vestibulares com os assuntos que aprendemos este ano. Conto com vocês.

Para alegrar o nosso encontro trarei bolo e refrigerantes!!

OBS: Se possível, tragam lápis, caneta, borracha e calculadora.

Conto com a colaboração de vocês,

Ana Lucia Vaz da Silva

Carta consulta para os alunos da 3ª série

Rio de Janeiro, 5 de março de 2008.

Queridos alunos da 3ª série do Ensino Médio da UEC,

Em primeiro lugar, parabéns por terem chegado ao último ano do Ensino Médio. Desejo que vocês tenham um excelente ano com muita determinação e dedicação aos estudos e conseqüentemente muitas realizações. Devo dizer que estou com saudades de vocês.

No final do ano do ano passado, antes das Provas Finais, iniciei um trabalho, parte da minha pesquisa de doutorado, com aproximadamente 70 alunos entre vocês que estavam na 2ª série. Foi um questionário com 13 questões relacionadas a números reais. Se alguém quiser o gabarito deste questionário é só me solicitar por e-mail.

Neste primeiro semestre de 2008, darei continuidade a este trabalho. Nesta etapa será necessária a presença de 35 alunos que estejam cursando a 3ª série. Este grupo será formado por alunos voluntários que desejam participar dos encontros. Os oito encontros serão agendados para os meses de março, abril e maio. Essas aulas acontecerão na sala de aula ou no laboratório de informática, trabalharemos problemas relacionados a números reais, utilizando conceitos vistos no Ensino Médio, podendo haver algum aprofundamento destes conceitos.

Sei que este ano é complicado para vocês participarem de atividades extras, dessa forma, quero esclarecer que além dessas aulas trazerem mais conhecimentos de Matemática para vocês, como se trata de um tema restrito que são os números reais, me proponho ao final de cada encontro ficar mais um tempo a disposição de vocês para tirar dúvidas em geral, específicas da 3ª série ou qualquer questão de vestibular.

Os encontros acontecerão no turno contrário das 13h às 14:30h. O dia será definido de acordo com a disponibilidade da maioria interessada, 2ª ou 4ª feira. Respondam as perguntas a seguir, estando ou não interessados. A partir delas darei continuidade à formação desse grupo.

Desde já agradeço a colaboração de vocês.

Obrigada pela atenção.

Ana Lucia Vaz da Silva – alvazsilva@hotmail.com

Nome:	Turma:
Desejo participar dos oito encontros. () SIM () NÃO	
Caso a resposta seja positiva: Marque o dia da semana de sua preferênci	a.
() 2 ^a feira – 13h às 14:30h () 4 ^a feira – 13h às 14:30h
Escreva e-mail ou telefone para contato.	telefone:

5 Anexo Levantamento de datas para os encontros

Turma	Total de alunos de cada turma	Total de respostas	Podem participar	Podem participar
301	31	20	4	2ª feira (4) 4ª feira ()
303	32	27	5	2 ^a feira (5) 4 ^a feira ()
305	31	23	11	2ª feira (8) 4ª feira (3)
307	31	26	8	2 ^a feira (7) 4 ^a feira (1)
309	35	21	8	2ª feira (6) 4ª feira (2)
Total	160	97	36	2 ^a feira (30) 4 ^a feira (6)

Confirmação das datas dos encontros

Rio de Janeiro, 2 de abril de 2008.
Prezado aluno (a), da turma,
após realizar a sondagem entre os alunos da 3ª série que gostariam de participar da
ninha pesquisa de doutorado, cujo tema é o ensino de números reais, cheguei a
um total de 34 alunos que desejam participar desses encontros, que acontecerão
nos dias 7, 14 e 28 de abril, 5, 19 e 26 de maio e 2 e 9 de junho, das 13h às
14:30h, na sala Já fiz um primeiro contato por e-mail, verifique na sua
caixa de entrada! Os alunos que participarem de pelo menos seis encontros
receberão um certificado de participação em nome da Unidade Centro do Colégio
Pedro II. Lembre-se que ao final de cada encontro, estarei disponível para tirar
suas dúvidas de Matemática!
Obrigada mais uma vez,

Ana Lucia Vaz da Silva – <u>alvazsilva@hotmail.com</u>

Ficha 1 de atividades

Colégio Pedro II – Unidade Centro – 7 de abril de 2008

Nome	turma	Você respondeu este questionário em dezembro?

Vocês estarão recebendo em outra folha a tabulação dos resultados obtidos nas nove primeiras questões do estudo preliminar.

Neste material, vocês colocarão a resposta correta de cada item. Esta resposta deverá ser uma decisão do grupo. E também um comentário sobre os resultados obtidos. Nenhum aluno deverá sair deste encontro com dúvidas sobre estas nove questões.

- 1) Escreva o número 3,1415 na forma de fração. Comentário:
- 2) Escreva os números a seguir através de sua representação decimal, fazendo a divisão passo a passo, sem utilizar a calculadora.

a)
$$\frac{1}{8} = \frac{1}{1} = \frac{50}{7} = \frac{50}{7} = \frac{7}{1} = \frac{1}{1} =$$

Comentário:

3) Escreva o número a seguir na forma decimal. $3 \times 10^2 + 2 \times 10^1 + 5 \times 10^0 + 2 \times 10^{-1} + 5 \times 10^{-3} =$

Comentário:

- 4) Escreva o número 1, 06405 através de sua decomposição nas potências de 10, conforme o número apresentado no item anterior. Comentário:
- 5) Duas determinadas operações feita com números, numa calculadora de 9 dígitos, mostrou como resultado no visor os números 1,35353535 e 2,12345678. O que se pode afirmar sobre esses números? Eles são racionais ou irracionais? Por quê?

Comentário:

6) O número 0,121221222... é um decimal infinito cujas casas decimais só tem os algarismos 1 e 2 conforme um padrão: aumenta-se em um a quantidade de algarismos 2 separados pelo algarismo 1.

Esse número é racional ou irracional? Justifique sua resposta. Comentário:

- 7) Utilize a calculadora e faça a divisão relacionada ao número $\frac{53}{83}$
- a) que número aparece no visor?

Comentário:

b) O número $\frac{53}{83}$ é racional ou irracional? Justifique sua resposta.

Comentário:

- 8) Escreva a dízima periódica $5,\overline{4} = 5,44444...$ na forma de fração. Apresente todas as etapas do raciocínio que você utilizou. Comentário:
- 9) Observe a figura a seguir, onde se mostra a construção dos números da forma \sqrt{n} , onde n é natural positivo.

Entre os inteiros 1 e 2, temos os números $\sqrt{2}$ e $\sqrt{3}$.

Entre os inteiros 2 e 3, temos os números

Entre os inteiros 3 e 4, temos os números

Comentário:

Entre os inteiros 1 e 100, quantos números não inteiros da forma \sqrt{n} existem? Apresente seu raciocínio.

Comentário:

10) Considere a sequência infinita $(a_1, a_2, a_3, ...)$ onde $a_1 = 2 + \frac{1}{4}$, $a_2 = 2 + \frac{1}{4 + \frac{1}{4}}$ e

$$a_3 = 2 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4}}}$$

a) Escreva o elemento a₄ dessa seqüência.

Comentário:

b) Expresse cada um dos termos a_1 , a_2 e a_3 na forma decimal. Apresente todos os passos do seu cálculo.

Comentário:

Ficha 2 de atividades

Colégio Pedro II – Unidade Centro – 28 de abril de 2008 – 3º Encontro

Nome	turma

Objetivos deste encontro:

1ª etapa - Discutir as respostas apresentadas pelas duplas na aula anterior;

2^a etapa - Fazer em dupla as duas atividades propostas;

3ª etapa - Produção de texto individual sobre seus conhecimentos de número real (racionais e irracionais) e uma avaliação do que foi visto nestes três encontros.

OBS: Nenhum aluno deverá sair deste encontro com dúvidas sobre as questões discutidas no grupo.

<u>1^a etapa – Discussão no grupo: Anotem questões que julgarem pertinentes.</u>

2^a etapa – Atividades propostas

1) Observe as frações a seguir, escreva cada uma na sua forma decimal usando calculadora ou o algoritmo da divisão e diga se correspondem a decimais finitos ou dízimas periódicas. Apresente seus argumentos.

a) 17 40	b) $\frac{39}{140}$
c) 50 19	d) 129 2480

2) Os números racionais \mathbf{a} e \mathbf{b} em cada item a seguir estão representados, no sistema decimal, por dízimas. Encontre justificando, uma representação decimal para $\mathbf{a} - \mathbf{b}$.

a)
$$a = 0,777... = 0,\overline{7}$$
 e $b = 0,333... = 0,\overline{3}$ b) $a = 0,131313... = 0,\overline{13}$ e $b = 0,0444... = 0,0\overline{4}$

c)
$$a = 3.0181818... = 3.018$$
 e $b = 1.148148... = 1.148148$

<u>3ª etapa – Faça um texto sobre o que você sabe e sobre suas dúvidas a respeito dos números reais (racionais e irracionais) e ao final faça uma avaliação dos encontros realizados até aqui.</u>

Ficha 3 de atividades

Colégio Pedro II – Unidade Centro – 9 de junho de 2008 – 7º Encontro

Nome	turma

Os exercícios 1, 2 e 3 devem ser feitos utilizando a tabela do Excel, que foi entregue no último encontro, e a calculadora.

1) Calcule $\sqrt{3} + \sqrt{5}$, com erro menor que:

a) 10⁻¹

b) 10⁻²

c) 10⁻⁴

d) 10⁻⁶

2) Considere $N=\sqrt{11}$. Encontre os valores de b, que satisfazem as desigualdades em cada caso.

a) $|b-N| < 10^{-2}$

b) $|b-N| < 10^{-5}$

3) Encontre os resultados dos itens a seguir e comente sobre cada operação realizada, destacando, facilidades e dificuldades.

a)
$$\sqrt{2} + \sqrt{8}$$

b)
$$\sqrt{7} + \sqrt{13}$$

c)
$$\sqrt{3}.\sqrt{27}$$

d)
$$\sqrt{15}.\sqrt{15}$$

4) Agora, juntos, vamos demonstrar que $\sqrt{2}$ é um número irracional.

Ficha 4 de atividades

Colégio Pedro II – Unidade Centro – 16 de junho de 2008 – 8º Encontro

Nome	telefone	e-mail	turma

Chegamos ao nosso último encontro e agradeço profundamente a colaboração de vocês.

Este questionário é para ser respondido individualmente e sem consulta. Utilize a calculadora sempre que desejar.

É importante para a pesquisa que vocês justifiquem os itens. Use o verso da folha e se precisar peça outra folha.

- 1) Decida sobre a racionalidade ou a irracionalidade dos números a seguir. Cada decisão deve ser justificada.
- a) 0,1234
- b) $0, \overline{1234}$
- c) 0,1234...
- d) 0,1234...n n+1...onde n é natural

- e) $\sqrt{3}$
- f) $\frac{1}{3} + \sqrt{3}$ g) 2, 35674126578923
- 2) Quando dividimos dois números inteiros p e q, onde $q \neq 0$, e escrevemos o resultado na forma decimal, que resultados possíveis podemos obter?
- 3) Identifique se as frações a seguir são decimais finitos ou dízimas periódicas.
- 15

- 4) Utilizando a tabela de raízes quadradas, calcule os itens a seguir, explicando qual foi seu raciocínio e apresente o erro utilizado no seu cálculo.

a)
$$2\sqrt{3} + 3\sqrt{21}$$

b)
$$\frac{\sqrt{22}}{2}$$

11 Anexo

Respostas da questão P5 do Estudo Preliminar

Aluno	1,35353535	Justificativa	2,12345678	Justificativa	B ou RI
1	I	infinito	I	infinito	
2	R	não possui dízima	R	não possui dízima	
3	R	dá dízima	I	não é dízima	
4	- 10	du diziniu	-	indo o dizinta	X
		Continua com a sequência			A
5	R	repetida	I		
6	R	não é dízima	R	não é dízima	
7	R	não é dízima	R	não é dízima	
8	R	nao e dizima	R	nao e dizinia	
0	K	Apesar de apresentarem várias	K	Apesar de apresentarem	
		casas decimais, existe um		várias casas decimais,	
9	R	final, um algarismo que	R	existe um final, um	
		finaliza		algarismo que finaliza	
		Não pode ser colocado em		Não pode ser colocado em	
10	R		R		
1.1		forma de fração		forma de fração	V
11	T	1/ : :/1:	т	1/ : :/ 1:	X
12	I	dízima periódica	I	dízima periódica	
13	R	dízima	I	não é dízima	
14	R	tem um fim determinado	R	tem um fim determinado	
15	R	é dízima periódica e pode ser		não tem período	
		escrito em forma de fração		-	
16	R	seus números se repetem em	Ī	não apresentam sequência	
		sequência	-	repetitiva	
17	R	dízima periódica			
18					X
19	R		I		
20	I	infinito	I	infinito	
21	I	dízima periódica	I	dízima periódica	
22	R	pode ser escrito em forma de	R	pode ser escrito em forma	
22	K	fração	K	de fração	
23	R	dízima	não se pode		
23	K	diziilia	definir		
24	I	dízima	I	dízima	
25	I	dízima	R		
26					X
27	R	dízima			
28	I		I		
29	I	dízima	I	dízima	
20	R	dízima nois sagua um madra -	т	não termina e não segue	
30	K	dízima, pois segue um padrão	I	um padrão	
31	I	dízima	I	dízima	
32					X
33					X
34					X
	n	pode ser demonstrado em	т	não apresenta forma	
35	R	forma de fração 134/99	I	fracionária	
36	I	dízima	I	dízima	
	_	pode se representado na forma		pode se representado na	
	-			1	1
37	R		R	forma de fração	
	R R	de fração pois há uma sequência	R R	forma de fração pois há uma sequência	

40	I	dízima periódica (nº infinito)	R	nº infinito, porém não se pode afirmar que é dízima	
41				periódica	X
42					X
43					X
44					X
45	I	dízima periódica	R		Λ
46	1	dizinia periodica	- K		X
47	R		Ţ		71
48	I	dízima	Ī	dízima	
49	I		I		
50	R	é possível obtê-lo através de uma divisão	I	não é possível obtê-lo através de uma divisão	
51	I	Dízimas infinitas	I	dízimas infinitas	
52	R	dízima periódica	R	dízima periódica	
53	R	apesar de ser infinito tem um período que se repete	I	número infinito onde não há repetição do período	
54	R	São dízimas periódicas podem ser transformados em fração	R	São dízimas periódicas podem ser transformados em fração	
55	R	dá dízima	I	não dá dízima	
56	I	apresenta dízima	R	não apresenta dízima	
57					X
58	R	podem ser expressos por frações: 135353535/100000000	R	podem ser expressos por frações: 212345678/100000000	
59	R	possuem período	R	possuem período	
60	I	seus algarismos são infinitos	I	seus algarismos são infinitos	
61	R	parece ser uma dízima periódica, mas não possui reticências ou algo assim. Possuem o mesmo nº de casas decimais. Podem ser escritos na forma de fração.	R	possuem o mesmo nº de casas decimais. Podem ser escritos na forma de fração.	
62	R		R		
63	Ι	se repete um nº (seqüência) nas casas deciamis	Ι	há uma sequência de números crescentes	
64	R	são infinitos, porém podemos prever	R	são infinitos, porém podemos prever	
65	I	é dízima	R	Por mais que haja uma grande seqüência de números decimais, não se repetem e além disso, o número termina	
66	R	possui período	I	não possui período	
67	R	é dízima	R	é dízima	
68	R	sabemos qual será a sequência	I	não possui uma sequência	
69	I	é dízima	I	é dízima	
70	R	É dízima	I	Não é dízima	

B – resposta em branco

RI – respostas inadequadas

12 Anexo

Respostas da questão P6 do Estudo Preliminar

ALUNO	0,121221222	JUSTIFICATIVA
1	J	Infinit.o
2	I	Possui dízima.
3	I	Não é dízima.
4	I	É dízima.
5	I	E dizinia.
6	I	É dízima.
7	R	Seu período é mantido.
8		Pode ser colocado em forma de fração .
	R	
9	I	Apresenta dízima periódica.
10	I	Não pode ser colocado em forma de fração. É dízima.
11	R	
12	I	Há uma sequência lógica (dízima).
13	R	m 1/ :
14	R	Tem uma lógica.
15	I	Não há como escrevê-lo em fração.
16	I	Após a vírgula, sua sequência de decimais aumenta, mas não em sequência
1.5	.	repetitiva.
17	I	Não é uma dízima.
18	R	Não está na raiz.
19	R	270
20	I	Não possui uma resposta exata.
21		
22	I	Sendo uma dízima infinita não pode ser escrito na forma de fração se usarmos
	_	apenas números inteiros no numerador e denominador.
23	I	Não pode ser transformado em fração.
24	R	Não tem dízima.
25	I	O enunciado diz que ele é infinito.
26		
27	R	Se repete em alguma ordem seqüencial.
28	I	
29	I	Dízima.
30	R	Segue um padrão.
31		
32		
33		
34		
35	I	Não apresenta forma fracionária.
36	I	Dízima.
37	I	Não pode se representado na forma de fração.
38	R	É uma dízima.
39	R	É uma dízima.
40	I	Além de ser infinito, não pertence aos padrões dos números racionais.
41		
42		
43	I	É uma dízima não periódica.
44	R	Não é possível extrair fração.
45	I	Dízima periódica.
46	I	É uma dízima.
47		
48	I	Números racionais não possuem dízimas.
49	R	

50	I	Apesar deste ter um padrão, não pode ser obtido através de uma divisão.
51	I	É um número infinito.
52	I	Não é dízima periódica.
53		
54		
55	I	Não dá dízima.
56	R	Não apresenta uma dízima.
57		
58	I	É um número infinito sem período.
59	I	É infinito.
60	I	Seus algarismos são infinitos.
61	I	Não pode ser escritos na forma de fração, pois não é nem periódico nem finito.
62	R	
63	I	Pois sua continuação deriva de uma sequência, de um 2 a n() 2.
64	R	Podemos prever os outros números.
65	I	Pois não há fim deste número.
66	I	Não possui período.
67	I	Não é dízima periódica.
68	I	Obedece a uma sequência.
69	I	É infinito.
70	I	É infinito.

13 Anexo

Respostas da questão P7 do Estudo Preliminar

Aluno	a)	b) R ou I	Justificativa	C, E ou B
1	0,6385542	R	Porque tem resposta exata.	E
2	0,6385542	R	Pois não tem dízima	E
3	0,6385542	I	Pois não é dízima	E
4	0,6385542	I	1 dis nad e dizima	E
5	0,6385542	R		E
6	0,63855422	R	Pois é um número finito	E
7	0,63855422	I	Porque sua seqüência periódica não é a mesma	E
8	0,6385542	R	Pois ao ser colocada em decimal conseguimos	E
8	0,0383342	K	obter um número	E
9	0,63855422	I	Porque 53 não é divisível por 83	Е
10	0,638554	R	Pois está em forma de fração	C
11	0,6385542	K	1 ois esta em forma de fração	E
12	0,6385542	R	Não possui dízima	E
13	0,6385542	I	Pois não é dízima	E
14	53	I	Porque não possui um final	E
15	0,63855422	R	Pois pode ser escrito em forma de fração	C
16	0,64	I	Pois não apresenta dizima periódoca	E
17	0,638554216	I	Pois não é uma dízima	E
18	0,638554216	R	Pois não está na Raiz	E
19	0,036334210	K	Fois hao esta ha Kaiz	В
20	0,6385542	R	Porque a resposta é certa e exata	E
21	0,6385542	R	Pois não há resultado infinito	E
22	0,6385542	R	Pos está escrito sob a forma de fração	C
23	0,6385542	R	Pois é fração	C
24	0,6385542	R	Não possui dízima	E
25	0,63855422	R	Pois estamos dividindo dois primos	E
26	0,63855422	R	Porque é Dízima	E
27	0,63855422	I	Pois não há uma sequência repetição do número	E
28	0,6385542	R	Pode ser escrito em fração	C
29	0,6385542	R	Porque é uma fração	C
30	0,6385542	I	Porque é um decimal infinito que não segue um	E
30	0,0383342	1	padrão	E
31	0,6385542			В
32	0,63855422	I	Pois o resultado da fração dá um número irracional	Е
33	0,63855422			В
34				В
35	0,638554	R	Pois é uma fração. Todo número que pode ser escrito na forma de fração pertence aos racionais.	C
36	0,638554216	R	Porque está em forma de fração	С
37	0,6385542	R	Porque não deu dízima	E
38	0,63855422	R	Pois é uma fração	C
39	0,638554216			В
40	0,6385542	R	Pois não é um algarismo infinito e não possui dízima	E
41	0,64		, , , , , , , , , , , , , , , , , , ,	В
42	0,01	I	Não há repetição de períodos	E
43	0,6385542	R	Pois ele pode ser dividido	E
44	0,63855422	I	Pois pode ser representado por fração	E
45	0,63855422	R	2 oto pode ser representado por nação	E
46	0,6385542	10		В

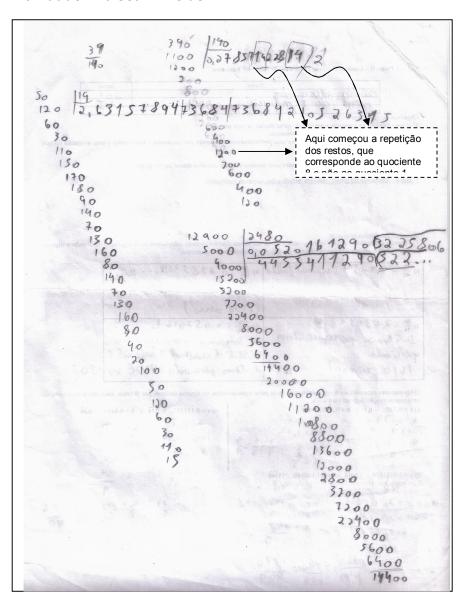
47	0,638554	I	Não tem dízima	Е
48	0,638554	R	Porque não tem dízima	Е
49	0,6386	R		Е
50	0,6385542	R	Pois pode ser obtido através de uma divisão	С
51	0,6385542	R	Pois obtemos em sua divisão um número finito	Е
			que pode ser escrito por meio de fração	
52	0,6385542	I	Porque se multiplicar o número 0,6385542 por 83	Е
			não dá exatamente 53 (pois ele é um dízima).	
53	0,6385542	I	Porque não possui um período fixo	Е
54	0,63855422	I	Pois não é uma dízima	Е
55		I	Pois não tem dízima	Е
56	0,63855422	R	Pois não forma dízima	Е
57				В
58	0,6385542	R	Pois pode ser expresso por fração	С
59	0,64	R	Pois é finito	Е
60	0,638554216	I	Porque seus algarismos são infinitos	Е
61	0,6385542	R	È finito e pode ser escrito em fração	Е
62	0,6385542	I		Е
63	0,63855422	I	Pois seu decimal é infinito, apesar de não	Е
			aparecer na calculadora que só apresenta os	
			dígitos	
64	0,63855422	I	Não posso prever quais serão os próximos	Е
			números, nçao possui um padrão	
65	0,63855422	I	Pois ao multiplicar 0,63855422 com 83 (fazendo	E
			a prova real) o resultado é aproximado, o que	
			indica que a divisão seria infinita.	
66	0,6385542	I	Pois não tem pelo menos período	Е
67	0,63855422	I	Pois não dá um número exato, a dízima não tem	E
			uma razão	
68	0,6385542	I	Não obedece a uma sequência	Е
69	0,6385542	I	Pois é infinito.	Е
70	0,6385542	I	Pois é infinito	Е

14 Anexo

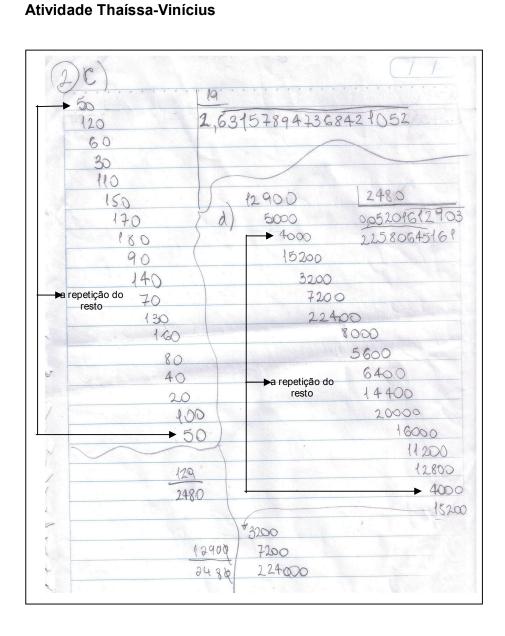
Respostas da questão P8 do Estudo Preliminar

Aluno	Justificativa
1, 2, 7, 37, 56, 58 justificou,	
65, 68, 69,	$\frac{54-5}{9} = \frac{49}{9}$
3	$\frac{5.9+4}{9} = 5,4444$
5	$\frac{54444\overline{4}}{1000000}$
6	$\frac{544444\overline{4}}{100000}$
8, 38	$5 + \frac{4}{9} = 5,444$
10	$\frac{50}{9}$
11	
12, 29	<u>5,4443</u> <u>99</u>
13, 20, 21, 30(justificou), 50	 quantidade de algarismos para na frente da vírgula para a quantidade de algarismos depois da vírgula.
14	$\frac{54}{10} \rightarrow \frac{54}{100} \rightarrow \frac{54}{1000}$
15	$\frac{5+0,\overline{4}}{5} + \frac{4}{9} + \frac{45+4}{9} = \frac{49}{9}$
18	$\frac{5,\overline{4}}{\overline{10}} = \frac{54444}{10000}$
19	
22	$5,444444 = x$ $54,444444 = 10x$ $49,000000 = 9x$ $9x = 49 x = \frac{49}{9}$
23	
24	$\frac{5,4}{90}$
25, 27	$5\frac{4}{9}$
35	$x = 5,444$ $x.10$ $10x = 54,444$ $10x = 54,4444$ $-x = 5,4444$ $9x = 49,0$ $x = \frac{49}{9}$
36, 40(participou do encontro)	$ \begin{array}{c} 54,4=10x \\ -5,4=10x \\ 49=9x \end{array} \qquad x = \frac{49}{9} $
43	Todo numeral até o período \rightarrow 54 sobre q(i vez) pois o período possui 1 algarismo $\frac{54}{9}$

44	$\frac{4}{10} = \frac{2}{5} + \frac{5}{5}x5 = \frac{27}{5}$
45	<u>544444</u> <u>100000</u>
46	$\frac{5}{1} + \frac{4}{9} = \frac{49}{9}$
49	$x = 5,4444$ $10x = 54,44$ $9x=49$ $x = \frac{49}{9}$
51	$5+0.4+0.04+0.004+0.0004 \rightarrow P.G$ infinita
52	$5,44x10 = 54,4 10x - x = 9x$ $54,4-5,4=49 \rightarrow \frac{49}{9}$ a 1 = 0,4 a 2 = 0,04
53	$q = 10^{-1}$
55	$\frac{5.9 + 4}{9}$ 4 \rightarrow dízima $\frac{49}{9} = 5, \overline{4}$ 9 \rightarrow 1 n° =9 porque a dízima é só de 1 n°
60	$\frac{\sqrt{\pi}}{7}$
61	54-5= 49 \rightarrow numerador 9 \rightarrow denominador $\frac{49}{9}$ Porque o período só possui um número.
63	$0,4444 = \frac{4}{9} \rightarrow 5, \overline{4} = \frac{5}{1} + \frac{4}{9} = \frac{5+36}{9} = \frac{41}{9}$
	$\frac{5}{1} + \frac{4}{9} = 5,4444 \qquad \frac{5}{1} + \frac{4}{9} = \frac{45+4}{9} = \frac{49}{9}$
4, 9, 11, 16, 17, 23, 26, 28, 31, 32, 33, 34, 39, 41, 42, 47, 48, 54, 57, 59, 62, 66, 67, 70?	Em branco


15 Anexo Respostas da questão P12 do Estudo Preliminar

Aluno	Item a	C, I ou B	Item b	C, I ou B
1	$S_n = a_1 + a_2 + a_3 + a_4$	I	Teem b	В
2	$S_4 = \frac{4}{10} + \frac{4}{10^2} + \frac{4}{10^3} + \frac{4}{10^4}$ $0,4 \qquad 0,44$	I		В
3	0,4 0,44 0,444 0,4444	С	$0,4444444444 = \frac{4}{9}$	С
4		В		В
5	0,4444	I		В
6	0,4444	I		В
7	0,4444	I		В
8	$S_1 = 0.4$ $S_2 = 0.44$ $S_1 = 0.444$ $S_2 = 0.4444$	С	∞, pois a seqüência é infinita	I
9		В		В
10	0,4444			В
11		В		В
12	0,4444 0,44444 0,444444 0,4444444 0,44444 0,44444444	I	Não tem limite ∞^- até ∞^+	I
13	0,4444 0,4444444 0,444444444444444 0,4444444444	I	Não tem limite	В
14	0 4444	I	0,444	I
15	S ₁ = 0,4 S ₂ =0,04 S ₃ = 0,004 S ₄ =0,0004	I	O limite também tende a infinito	I
16	$A_4 = \frac{4}{10^4} = 10^{-4}$	I		В
17	a ₁ = 0,4 a ₂ =0,04 a ₃ =0,004 a ₄ =0,0004	I	Próximo a zero, quanto maior o número, mais ele tende a zero.	I
18	$S_4 = 0.4 + 0.04 + 0.004 + 0.0004$	I		В
19 e 20		В		В
21	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С		В
22	0,4 0,04 0,004 0,0004	I		В
23		В		В
24	$S_{n} = \frac{0.4 \cdot \frac{4}{10^{4}}}{\frac{4}{10^{4}} - 1}$	I	$S_{n} = \frac{0.4}{1 - \frac{4}{10}}$	I
25 à 28		В		В
29	{0,4444; 0,44444; 0,444444; 0,444444}	I	∞ [±]	I
30	S ₁ = 0,4 S ₂ = 0,4 + 0,04=0,44 S ₃ = 0,4 + 0,04+0,004 = 0,444 S ₄ =0,4+0,04+0,004+0,0004=0,4444	С	0, porque o zero nunca será alcançado, mas o menor número tende sempre a ele	I
31 à 35		В		В
36	$S_1 = 0.4 + 0.04 = 0.44$ $S_2 = 0.4 + 0.04 + 0.004 = 0.444$ $S_3 = 0.4 + 0.04 + 0.004 + 0.0004 = 0.4444$ $S_4 = 0.4 + 0.04 + 0.004 + 0.0004 + 0.00004 = 0.4444$	C aceitamos		В


	0,44444			
37	,	В		В
38	$S_1 = 0.4$ $S_2 = 0.4 + 0.04 = 0.44$ $S_3 = 0.4 + 0.04 + 0.004 = 0.444$ $S_4 = 0.4 + 0.04 + 0.004 + 0.0004 = 0.4444$	С	Infinito, pois S _n é resultado da quantidade de n	I
39 à 45		В		В
46	$S_n = \frac{4}{10} + \frac{4}{100} + \frac{4}{1000} + \frac{4}{10000} = \frac{4}{10000000}$ $S_1 = 0,4 \qquad S_2 = 0,4 + 0,04$	I		В
47	$S_1 = 0.4$ $S_2 = 0.4 + 0.04$ $S_3 = 0.4 + 0.04 + 0.004$ $S_4 = 0.4 + 0.04 + 0.004 + 0.0004$	С		В
48		В		В
49	$S_1 = 0.4$ $S_2 = 0.4 + 0.04 = 0.44$ $S_3 = 0.4 + 0.04 + 0.004 = 0.444$ $S_4 = 0.4 + 0.04 + 0.004 + 0.0004 = 0.4444$	С	$S_{\infty} = \frac{a_I}{q - 1} = \frac{0.4}{10 - 1} = \frac{4}{10}$ $\frac{4}{90} = 0.0444$ $q = \frac{0.4}{0.44} = \frac{4}{10}x\frac{100}{4} = 10$	I
50	(0,4; 0,44; 0,444; 0,4444)	С	1	I
51	a ₁ = 0,4 a ₂ =0,04 a ₃ =0,004 a ₄ =0,0004	E	$S_n = \frac{a_1}{1 - q} = \frac{0.4}{1 - \frac{1}{10}}$ $= \frac{0.4}{\frac{9}{10}} = \frac{\frac{4}{10}}{\frac{9}{10}} = \frac{4}{10}x\frac{10}{9} = \frac{4}{10}x\frac{10}{$	С
52	$(0,4; 0,04; 0,004; 0,0004)$ $S_n = 0,44444$	I	Não tem limite	I
53		В	$S_n = \frac{a_1}{1 - q} = \frac{4}{1 - \frac{1}{10}}$ $= \frac{4}{0.9} = 4x \frac{10}{9} = \frac{40}{9}$??
54	$a_1 = 0.4$ $a_2 = 0.04$ $a_3 = 0.004$ $a_4 = 0.0004$	I		В
55		В		В
56	$S_1 = 0.4$ $S_2 = 0.4 + 0.04 = 0.44$ $S_3 = 0.4 + 0.04 + 0.004 = 0.444$ $S_1 = 0.4$ $S_2 = 0.4 + 0.04 = 0.44$	С		В
57	S ₃ = 0,4 + 0,04+ 0,004 = 0,444 S ₄ =0,4+0,04+0,004+0,0004=0,4444	C		В
58	$S_1 = 0.4$ $S_2 = 0.44$ $S_3 = 0.444$ $S_4 = 0.4444$ $a_1 = 0.4$ $a_2 = 0.04$	C		В
59	$a_3=0,004$ $a_4=0,0004$	I	$0,\overline{4}$??
60	$S_4 = 0.4 + 0.04 + 0.004 + 0.0004 = 0.4444$	I		В
61	$S_1 = 0,4$ $S_2 = 0,44$ $S_3 = 0,444$ $S_4 = 0,4444$		O limite tende a infinito também. A soma vai ser infinita e, assim, podem ter infinitos números como resultado da soma.	I
62 e 63		В		В
64	S ₄ =0,4 + 0,04+0,004+0,0004 S _n = 0,4444	I		В
65		В		В
66	$S_1 = 0.4$ $S_2 = 0.44$ $S_3 = 0.444$ $S_4 = 0.4444$			В
67	0.4 + 0.04 + 0.004 + 0.0004	В		В
68 69 e 70	0,4 + 0,04 + 0,004 + 0,0004 0,4444	I D		В
096/0		В		В

16 Anexo

Atividade Thaíssa-Vinícius

17 Anexo

18 Anexo Respostas da questão P9 do Estudo Preliminar

Aluno	Entre os inteiros 2 e 3	A, I ou B	Entre os inteiros 3 e 4	A, I ou B	Entre os inteiros 1 e 100,? Apresente seu raciocínio.	A, I ou B
1	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	A cada n° você tem mais 2. \sqrt{n} entre 1 e 1000 = 2 +4+6+8++198 $\frac{198}{2} = 99$ n=99 Não lembro a fórmula de S _n para PA, mas a PA é {2,4,6,, 198}	A
2	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
3	√5 ,e √6	I	√8 e √9	I	$ \frac{1-2 \to (n-1x2) + 3(n-1)}{\sqrt{2} \text{ e } \sqrt{3}} $ $ 2-3 \to \sqrt{5} \text{ e } \sqrt{6} $ $ 3-4 \to \sqrt{8} \text{ e } \sqrt{9} $ $ 99-100 \to \sqrt{200} \text{ e } \sqrt{201} $ $ (100-1)x2 = 198 R: 198 $	I
4	$\sqrt{5}$,e $\sqrt{6}$	I	$\sqrt{8} \mathrm{e}\sqrt{9}$	I		В
5		В		В		В
6	$\sqrt{3}$ e 2	I	2 e √5	I	infinitos	I
7	$\sqrt{5}$,e $\sqrt{6}$	I	$\sqrt{7}$ e $\sqrt{8}$	I		В
8	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
9	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	$2^2 = 4$; $3^2 = 9$; $4^2 = 16$, 9^2 81 e 10^2 100	I
10	$\sqrt{5}$, e $\sqrt{7}$	I	$\sqrt{9} e \sqrt{10}$	I	$\frac{100}{2} = 50 100 \to \text{total}$ $\frac{100}{2} \to \text{impares}$	I
11	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
12	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	infinitos	I
13	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{9}$, $\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$, $\sqrt{15}$ e $\sqrt{16}$	A		В
14	$\sqrt{3}$ e $\sqrt{4}$	I	$\sqrt{4}$ e $\sqrt{5}$	Ι	99, pois nº n = nºs – 1 = 100 – 1 =99	I
15	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	Todos que não são quadrados perfeitos.	A

					0 1 1 0: [1	
					Quadrados perfeitos: $\sqrt{1}$,	
					$\sqrt{4}$, $\sqrt{9}$, $\sqrt{81}$, $\sqrt{100}$	
					$\sqrt{n} = 90 \text{ números}$	
16	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
					Pois existe	
17	$\sqrt{3}$ e 2	I	2 e √5	I	$1-2\sqrt{n} - 2-2\sqrt{n} - 3$ 60 números, pois 1 à 10 são 6, logo de 1 a 100 são 60	I
18	$\sqrt{5}$,e $\sqrt{6}$	I	$\sqrt{7}$ e $\sqrt{8}$	I	n números	I
19	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
20		В		В		В
21	$\sqrt{5}$,e $\sqrt{6}$	I	√7 e √8	I		В
					$\sqrt{1} = 1, \ \sqrt{4} = 2, \sqrt{9} = 3,$	
22	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	$\sqrt{81} = 9$, $\sqrt{100} = 10$ 2+4+6+8++196 + 198	A
	√8		√13 , √14 e √15		$99 \div 2 = 49.5$ $200 \times 49.5 = 9900$	
	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e		10 11 12		$\sqrt{1}$, $\sqrt{4}$, $\sqrt{9}$,, $\sqrt{81}$,	
23	$\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	$\sqrt{100} \rightarrow \tilde{\text{sao}} 10 \text{ números}$ Total: 90	A
24	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	2 ⁵⁰	I
25	$\sqrt{5}$	I		В		В
26	$\sqrt{5}$	I		В		В
27	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
28	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
29	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	infinitos	I
30	$\sqrt{5}$,e $\sqrt{6}$	I	√7 e √8	I	100x2 = 200 - 2 = 198	I
31	√5 e √7	I	$\sqrt{11} \mathrm{e} \sqrt{13}$	I		В
32	$\sqrt{5}$ e $\sqrt{7}$	I	$\sqrt{11} \mathrm{e} \sqrt{13}$	I		В
33		В		В		В
34	$\sqrt{5}$ e $\sqrt{7}$	I	$\sqrt{11} e \sqrt{13}$	I		В
35	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	$ \begin{array}{ccc} 1-2 \rightarrow 2 & q=2 \\ 2-3 \rightarrow 4 & & \\ 3-4 \rightarrow 6 & \dots & \\ 1 \rightarrow 2 = 2 \text{ resultados} \end{array} $	I
	1		I	1	100 0110000	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Г		Γ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$1 \rightarrow 3 = 6$ resultados	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$S_n = \frac{q}{q-1} = \frac{2}{2-1} = 2^{98}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$2^2 = 4$; $3^2 = 9$; $4^2 = 16$,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	$\sqrt{3}$ e 2	I	2 e $\sqrt{5}$	I	$9^2 81 e 10^2 100$	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·		V 5		9 números diferentes de \sqrt{n}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e	٨		٨		ī
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	$\sqrt{8}$	Α	$\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	Α		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e	٨	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$,	٨		D
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	$\sqrt{8}$	Α	$\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	Α		Б
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	$\sqrt{5}$. $\sqrt{6}$. $\sqrt{7}$ e		$\sqrt{10} \cdot \sqrt{11} \cdot \sqrt{12}$			_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39		Α		Α		В
40 $\sqrt{8}$ $\sqrt{8}$ $\sqrt{8}$ $\sqrt{8}$ $\sqrt{13}$ $\sqrt{14}$ e $\sqrt{15}$ $\sqrt{13}$ entre 1 a $10 = 2, 3, 4, 5, 6, 7, 1$ $\sqrt{13}$ $\sqrt{14}$ e $\sqrt{15}$ $\sqrt{13}$ entre 1 a $10 = 2, 3, 4, 5, 6, 7, 1$ $\sqrt{13}$ $\sqrt{14}$ e $\sqrt{15}$						√4 √0 √64 √91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40		A		A		I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		√8		√13 , √14 e √15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	$\sqrt{5}$,e $\sqrt{6}$	I	$\sqrt{7}$ e $\sqrt{8}$	I		В
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e	Α.	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$,	A	100 0 - 01	т
43 $\sqrt{4} e \sqrt{5}$	42	$\sqrt{8}$	А	$\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	А	100 – 9 – 91	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	√4 e √5	Ţ	./5 e ./6	Ţ		В
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44		A		A		В
45		√7 e √8		$\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$			
40 $\sqrt{8}$ A $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$ A $$	45		В		В		В
40 $\sqrt{8}$ A $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$ A $$		$\sqrt{5}$ $\sqrt{6}$ $\sqrt{7}$ e		$\sqrt{10} \sqrt{11} \sqrt{12}$			_
47 $\sqrt{5}$, $e\sqrt{6}$ I $\sqrt{7}$ $e\sqrt{8}$ I	46		Α		A		В
48 B	47		Ţ		T		В
48		√3 ,e √6		ν/ ε νδ			В
49 $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$ A $\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$ A $\sqrt{10}$ A \sqrt	48		В		В		
49 $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$ A $\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$ A $S_n = \frac{a_1(q^n - 1)}{q \ 1} = \frac{2 \cdot (2^{198} - 1)}{2 - 1} = 4^{198} - 2$							
49 $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$ A $\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$ A $S_n = \frac{a_1(q^n - 1)}{q \ 1} = \frac{2 \cdot (2^{198} - 1)}{2 - 1} = 4^{198} - 2$						$3-1\rightarrow 6$	
50 50 x 2 = 100 números não 1		$\sqrt{5}$ $\sqrt{6}$ $\sqrt{7}$ e		$\sqrt{10} \sqrt{11} \sqrt{12}$		3-4-0	
50 50 x 2 = 100 números não 1	49	1/8	A	$\sqrt{13}$ $\sqrt{14}$ e $\sqrt{15}$	A	$S_n = \frac{a_1(q - 1)}{1} =$	I
50 50 x 2 = 100 números não 1		v o		V15, V17 5 V15		q I	
50 50 x 2 = 100 números não 1						$\frac{2.(2-1)}{2}=4^{198}-2$	
						2 - I 50 x 2 = 100 números não	
	50	$\sqrt{5}$,e $\sqrt{6}$	I	$\sqrt{6} \text{ e } \sqrt{7}$	I		I

51	$\sqrt{5}$,e $\sqrt{6}$	I	$\sqrt{6} \mathrm{e}\sqrt{7}$	I	100-42 = 88	I
52	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	$1=\sqrt{1} 100=\sqrt{10000}$ $10000 - 100 = 9900$ $10000 → total de números$ $100 → total de nos inteiros$ $9900 → total de nos irracionais$	A
53	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$, $\sqrt{15}$, $\sqrt{17}$ $\sqrt{18}$	I	Entre 1 e 2 \rightarrow 2 Entre 2 e 3 \rightarrow 4 Entre 3 e 4 \rightarrow 8 100-1 = 99 Existem 2 ⁹⁹ números não inteiros da forma \sqrt{n} .	I
54	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	Entre 1 e 2 \rightarrow 2 entre 2 e 3 \rightarrow 4 entre 3 e 4 \rightarrow 6 entre 1 e 10 \rightarrow 90 entre 10 e 20 \rightarrow 290 entre 20 e 30 \rightarrow 490 entre 90 e 100 \rightarrow 1890 Entre 1 e 100 \rightarrow 9900 $a_{100} = 99x2=198$	A
55	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{2}$ e $\sqrt{9999}$	I	A partir de 1 tem-se $\sqrt{2}$ e antes de $100 = \sqrt{10000}$ é $\sqrt{9999}$ $10000 - 2 = 9998$	I
56	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
57	$\sqrt{3}$ e $\sqrt{4}$	I	$\sqrt{4}$ e $\sqrt{5}$	I	$ 1 - 100 $ $ 2 n^{os} - 2 n^{os} da forma \sqrt{n} $ $ 97 - 98 \rightarrow \sqrt{98} e \sqrt{99} $ $ 98 - 99 \rightarrow \sqrt{99} e \sqrt{100} $ $ 99 - 100 \rightarrow \sqrt{100} e \sqrt{101} $ $ 100 \div 2 = 50 n^{os} \sqrt{n} $	I
58	$\sqrt{5}$	I		В		
59	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	1 → 2 = 2 resultados 1 → 3 = 6 resultados 1 → 4 = 12 resultados 1 → N = N ² - N resultados 1 → 100 = $100^2 - 100 = 9900$ resultados	A
60	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$ \sqrt{10}, \sqrt{11}, \sqrt{12}, \\ \sqrt{13}, \sqrt{14} e \sqrt{15} $	A	quase infinito	I
61	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{9}$, $\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$	I	Vai aumentando dois em cada intervalo. 2 +4+6+8+10+32+34+36 Soma dos n ^{os} pares de 1 a 100	I

					$S_n = \frac{(a_1 + a_n)n}{2}$ $S_{50} = \frac{50(2 + 98)}{2} = 2500$	
62	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	Entre 4 e 5 $\rightarrow \sqrt{17}$, $\sqrt{18}$, até $\sqrt{24}$ 8 números 2(1+2+3+4++99) 1^2 , 2^2 , 3^2 ,, 100^2	A
63	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	$1^{2}, 2^{2}, 3^{2},, 100^{2}$ são 100 inteiros inteiros 1 e 100 \rightarrow $\sqrt{1}$ até $\sqrt{10000}$ 10000 - 100 = 9900	A
64	$\sqrt{5}$,e $\sqrt{6}$	I	√7 e √8	I	$1-2 \rightarrow 2$ $2-3 \rightarrow 2$ $3-4 \rightarrow 2$ $3-4 \rightarrow 2$ Entre 1 e 10 tenho 18 raízes $18 \times 10 = 180$	I
65	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	$ \begin{array}{c} 1 - 2 \rightarrow 2 \\ 2 - 3 \rightarrow 4 \\ 3 - 4 \rightarrow 6 \\ 4 - 5 \rightarrow 8 \\ \dots \\ a_n = a_1 + (n-1).r \\ a_{99} = 198 \\ S_3 = 12 S_n = 396 \\ \text{(fez certo e apagou)} $	A
66	$\sqrt{5}$,e $\sqrt{6}$	Ι	√8 e √9	I		В
67	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A	2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 90	I
68		В		В		В
69	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В
70	$\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ e $\sqrt{8}$	A	$\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$ e $\sqrt{15}$	A		В

Respostas da questão P13 do Estudo Preliminar

Itens a e c

Aluno	Item a	C, I ou B	Item c	C, I ou B
	2,314- 0,1< b <2,314+ 0,1		h 2 214 <0.1	
1	2,214< b < 2,414		b-2,314 < 0,1	
	2,213 e 2,2135		2,315 e 2,316	
2	2,311 e 2,312			В
3	2,314 e 2,315		2,314 e 2,3145	
4	2,214< b< 2,414			В
-	2,314-0,1 b< 2,314+0,1			D
5	2,214< b< 2,414			В
	2,314- 0,1< b< 2,314+0,1		b- 2,314< 0,1	
6	2,214< b< 2,414		b< 2,414	
	b= 2,215 ou b= 2,216		b= 2,413 ou b= 2,412	
7	2,214< <2,414		b= 2,413 ou b= 2,412 b< 2,414	
7	b= 2,314/ 2,216		b< 2,413 ou 2,412	
0	2,314-0,1 b< 2,314+0,1		b- 2,314< 0,1	
9	2,214< b< 2,414		b= 2,314	
1.0	2,214< b<2,414		·	D
10	b= 2,314 e 2,400			В
12	2,25 e 2,4073		0,2 e 1,45	
13	2,25 e 2,4073		0,2 e 1,45	
14	2,3 e 2,4		2,4 e 2,3	
	b> 2,214		ý · j-	
15	b< 2,414		b= 2,413 ou b= 2,412	
	b= 2,215 ou b= 2,216		, , , , , , ,	
1.6	2,314-0,1 b< 2,314+0,1			D
16	, , , , , ,			В
	2,314-0,1 b< 2,314+0,1		0.1 - N = b	
17	2,214< b< 2,414		0,1-2,314=	
	b= 2,314 ou b= 2,324		-2,214 ou – 2,213	
18	b=0,01		b=0,21	
			b- 2,314< 0,1	
	2,314- 0,1< b< 2,314+0,1		0.1	
19	2,214< b< 2,414		$b < \frac{0.1}{2.314} = 0.043215$	
	b= 2,216 ou b= 2,322			
			b= 0,023215 ou b= 0,033215	
21	2,214< b< 2,414		b= 2,514 ou b= 2,614	
	b= 2,314 ou b= 2,3			
22	2,214< b< 2,414		2,315 ou 2,316	
	b= 2,215 ou 2,216		2 224	
24	2,244 e 2,255		2,334	
28	2,314 - 0,1 2,214 < b < 2,414		2,334 e 2,335	
	b= 2,334 e 2,234			
29	2,25 e 2,4089		b< 2,414	
			0 e 1,5 ??????	
30	2,314< b< 2,414		b- 2,314< 0,1	
	b= 2,324 b'= 2,413		b= 2,312 b'= 2,313	
2.1	1 2215 13 2412		b-2,314< 0,1	
31	b= 2,215 b'= 2,413		b< 2,414	
			b= 2,413 b'= 2,412	
32	b= 2,215 b'= 2,413		b- 2,314< 0,1 b< 2,414	
			b= 2,413 b = 2,412	
33	b= 2,215 b'= 2,413		b- 2,314< 0,1 b< 2,414	

			b= 2,413 b'= 2,412	
34	2,214< b< 2,414 b= {2,215; 2,307}	A	b- 2,314< 0,1 b< 2,414 b= {2,413; 2,412}	As
37	2,314 - 0,1 2,214< b< 2,414 b= 2,215; 2,314	A	$ b-2,314 < 0,1$ $b < \pm 2,314 + 0,1$ $2,414 -2,214$ $b = 2,45 b = -2,213$	I
38	2,214< b< 2,414	I		В
40	2,214< b< 2,414 b = 2,216 b = 2,315	A	0.05 0.06 b - 2.314 = 0.05 b = 2.364 b - 2.314 = 0.06 b = 2.374	A
43	2,214< b< 2,414 b = 2,300 b = 2,310	A	b- 2,314< 0,1 b< 2,414 b pode ser 0 ou 1	I
44	2,214< b< 2,414 b= 2,215 ou 2,404	A	b = 2,415 ou b = 2,5	I
46	2,214 < b< 2,414	I		В
47	2,314 - 0,1 < b< 2,314 + 0,1 2,313 < b < 2,315	I		В
48	2,314 - 0,1 < b< 2,314 + 0,1 2,214 < b < 2,214	I	b-2,314 < 0,1 b+2,314 < 0,1 b<0,1-2,314 = -2,214	I
49	2,314 - 0,1 < b < 2,314 + 0,1 2,313 < b < 2,315 b = 2,3 ou $b = 2,4$	A	b- 2,314< 0,1 b< 2,414 b = 2,2 ou b = 2,3	I
50	2,214 < b< 2,414 b = 2,314 ou b = 2,312	A	b- 2,314< 0,1 b = 2,314 ou b = 2,212	I
51	2,214< b< 2,414 b = 2,3 ou b = 2,314	A	b-2,314 = 0,01 $b = 2,324b-2,314 = 0,02$ $b = 2,334$	A
52	2,214< b< 2,414	A	b-2,314 < 0,1	I
53	2,314 e 2,324	A	2,3 e 2,31	A
54	2,214< b< 2,414 b = 2,314		b-2,314 < 0,1 b=2,324 $b=2,404$	A
56	2,214< b< 2,414 b = 2,3 ou b = 2,215	A	b-2,314 < 0,1 b = 2,316 ou b = 2,317	A
57	2,214< b< 2,414 b = 2,314 ou b = 2,234	A	b- 2,314< 0,1 b < 2,414 b = 2,40 ou b = 2,3	A
58	N - 0.1 = 2.214 N + 0.1 = 2.414 B = 2.314 ou $b = 2.313$	A		В
60	2,311 e 2,312	A		В
61	2,214 < b< 2,414 b = 2,3 ou b = 2,4	A	b-2,314 < 0,1 2,31 e 2,32	A
62	2,214< b< 2,414	I	b < 2,414	I
63	2,214< b< 2,414 b = 2,3		b-2,314 < 0,1 b-2,314 = 0,014 $b=2,328$	I
64	2,214< b< 2,414 b = 2,314 ou b = 2,324	A	2,317 e 2,316	A
65	N-0,1 < b 2,314-0,1 < b b > 2,214 b < N+0,1 b < 2,414	I	b-2,314 < 0,1 b-2,314 < 0,1 $b < 2,414-b+2,314 < 0,1$ $-b < -2,214b > 2,214$	Ι
66	2,214 < b< 2,414 b = 2,220 ou b = 2,3	A	b < 2,414 1 e 2	Ι

67	2,214 < b< 2,414 b = 2,315 ou b = 2,320	A	b-2,314 < 0,1 2,3 e 2,31	A
68	2,214 < b< 2,414 b = 2,215 ou b = 2,413	A	b-2,314 < 0,1 0,001 ou -0,045	I
69	2,214 < b< 2,414 2,213 e 2,212	I	2,313 certa	I
70	2,214 < b< 2,414 2,3 e 2,4	A		В
Alunos	: 8, 11, 20, 23, 25, 26, 27, 35, 36, 39, 41, 42, 45, 55 e 59	В	Alunos: 8, 11, 20, 23, 25, 26, 27, 35, 36, 39, 41, 42, 45, 55 e 59	В

Itens b e d

Aluno	Item b	C, I ou B	Item d	C, I ou B
1	2,304 < b < 2,324 2,314 e 2,315	A	b-2,314 < 0,01	A
2	2,313 certo e 4, 310	I	2,311 e 2,310	В
3	2,314 e 2,315	A	2,311 e 2,3145	A
4	2,304 < b < 2,324	I	b-2,314 < 0,01	I
5	2,304 < b < 2,324	I	b-2,314 < 0,01	I
6	2,304 < b < 2,324 2,305 ou 2,323	A	b < 2,324 b = 2,323 b = 2,322	A
7	2,304 < b < 2,324 2,305 ou 2,323	A	b < 2,324 b = 2,323 b = 2,322	A
9	2,304 < b < 2,324	I	2,313 certo	I
12	2,312 certo e 3,3172	I	2,312 e 2,310	A
13	2,312 e 2,317	A	2,312 e 2,310	A
14	2,31 e 2,32	A	2,3 e 2,2	I
15	2,304 < b < 2,324 2,323 ou 2,321	A	b = 2,321 $b = 2,323$	A
17	2,304 < b < 2,324 2,313 ou 2,314	A	-2,304 e -2,303	I
18	b = 1	I	b = 0.02	I
19	2,304 < b < 2,324 2,305 ou 2,320	A	$b-2,314 < 0,01$ $b < \frac{0,01}{2,314} = 0,04322$ $b = 0,002322 b = 0,003322$	I
21	2,304 < b < 2,324 2,3 ou 2,302	I	b = 2,325 b = 2,424	I
22	2,315 e 2,316	A	2,315 e 2,316	A
24	2,306 e 2,317	A	2,316 certo	I
28	2,304 < b < 2,324 2,314 ou 2,310	A	b=2,315 b= 2,316	A
29	2,304 < b < 2,324 2,318 ou 2,321	A	b=2,31 certo b= 2,25	I
30	2,304 < b < 2,324 2,314 ou 2,315	A	b=2,3145 b=2,3144	A
31	2,304 < b < 2,324 2,305 ou 2,323	A	b < 2,324 b=2,323 b= 2,322	A
32	2,304 < b < 2,324 2,305 ou 2,323	A	b < 2,324 b=2,323 b= 2,322	A
33	2,304 < b < 2,324 2,305 ou 2,323	A	b < 2,324 b=2,323 b= 2,322	A
34	2,304 < b < 2,324 2,305 ou 2,323	A	b < 2,324 b=2,323 b= 2,319	A
37	2,304 < b < 2,324 2,306 ou 2,314	A	b-2,314 < 0,01	I

			b < ±2,314 + 0,01	
20	2 204 - 1 - 2 204	т	b= 2,324 b = -2,304	D
38	2,304 < b < 2,324 2,304 < b < 2,324	I	b-2,314 = 0,005 b = 2,319	В
40	2,304 < 0 < 2,324 2,306 ou 2,318	A	b-2,314 = 0,003 b = 2,319 b-2,314 = 0,004 b = 2,318	A
	2,304 < b < 2,324		b-2,314 < 0,01	
43	2,305 ou 2,320	A	b < 2,324 0 ou 1	I
4.4	2,304 < b < 2,324	4		т.
44	b = 2,305 b= 2,323	A	b = 2,326 $b = 2,5$	I
46	2,304 < b < 2,324			В
47	2,314-0,01 < b < 2,314+0,01	I		В
	2,3			
			b-2,314 < 0,01	
48	2,304 < b < 2,324	I	B+2,314 < 0,01	I
			B < 0.01 - 2.314 = -2.304 $b < 2.321$	
49	2,304 < b < 2,324	A		I
	b = 2,310 $b = 2,320$		b=2,2 e b=2,1	
50	2,304 < b < 2,324 b = 2,305 $b = 2,306$	A	b-2,314 < 0,01 b = 2,314 (certa) b = 2,212	I
	b = 2,305 b = 2,306 $2,304 < b < 2,324$		b-2,314 (certa) $b-2,212b-2,314=0,001$ $b=2,315$	
51	B = 2,314 $b = 2,320$	A	$b-2,314 = 0,001 \ b = 2,313$ $b-2,314 = 0,002 \ b = 2,320$	A
52	2,304 < b < 2,324	I	b-2,314 < 0,01	I
	· ·			
53	2,314 e 2,315	A	2,31 e 2,314	A
54	2,304 < b < 2,324 2,314	I	b-2,314 < 0,01	В
56		В	b=2,316 ou 2,317	A
57	2,314-0,01=2,304	I	2,314-0,01=2,304	I
	2,314+0,01=2,324 2,3 e 2,303 N-0,01 = 2,314 - 0,01 = 2,304		2,314+0,01=2,324 2,30 e 2,32	
58	N+0,01 - 2,314 - 0,01 - 2,304 N+0,01=2,324	A		В
36	b=2,305 e b=2,323	А		Ь
60	2,313 e 2,310	A		В
	2,304 < b < 2,324		b-2,314 < 0,01	
61	2,32 e 2,311	A		Α
62	2,304 < b < 2,324	I	2,320 e 2,319 b < 2,324	I
02		1		1
63	2,304 < b < 2,324 2,314	I	b-2,314 < 0,01	I
	· ·		b-2,314 = 0,001 b = 2,315 x-2,314 < 0,01	
64	2,304 < b < 2,324	A	, ,	Α
	2,308 ou 2,318		2,315 e 2,316 ±(b-N) < 0,01 b-2,314<0,01 b	
	$2,314-0,01 < b \ b > 2,304$		<2,324	
65	B < 2,314 +0,01 b < 2,324	I	-b+N < 0.01 -b < 0.01-2.314	I
	, , ,		-b < -2,304 $b > 2,304$	
66	2,304 < b < 2,324	Λ	b-2,314 < 0,01	I
00	2,314 ou 2,320	Α	b < 2,324 1,5 e 2,1	1
67	2,304 < b < 2,324	A	b-2,314	A
	2,310 ou 2,315		2,3145 ou 2,3146	
68	2,304 < b < 2,324	A	b-2,314 < 0,01	I
	2,305 ou 2,323	•••	0,031 ou 0,089	
			Alunos: 8, 10,11, 16, 20, 23, 25,	
	s: 8, 10,11, 16, 20, 23, 25, 26, 27,	В	26, 27, 35, 36, 39, 41, 43, 45, 55,	В
35, 30	5, 39, 41, 43, 45, 55, 59, 69 e 70.		59, 69 e 70.	

Itens e e f

Itens e e i		C I D	I4 £	C I D
Aluno	Item e	C, I ou B	Item f	C, I ou B
1	2,31399 < b < 2,31401	A	b-2,314 < 0,00001	A
1	b = 2,313991 e b= 2,31400	7.1	$b = 2,314001 \ b = 2,314002$	71
3	2,314 e 2,314001	A	2,314005 certo	I
4	2,31399 < b < 2,31401	I	b-2,314 < 0,00001	I
5	2,31399 < b < 2,31401	I	b-2,314 < 0,00001	I
6	2,31399 < b < 2,314	I	b < 2,3141	I
	b = 2,31340 e b = 2,31341 $2,31399 < b < 2,314$	1	b = 2,3140 certo b = 2,339 b < 2,3141	
7	b = 2,31340 e b= 2,31341	I	b = 2,3140 certo b = 2,331	I
12	2,31400 e 2,3140002	A	2,3139 e 2,3129	I
13	2,31400 e 2,3140002	A	2,3139	I
15	2,31399 < b < 2,31401 b = 2,31400 certo e b=	I	b = 2,31400 certo e b= 2,31399	I
10	2,31399	т	1 0.000001	т
18	b = 0	I	b = 0,000001 $b-2,314 < 0,00001$	I
19	2,31399 < b < 2,31401 b = 2,31400	I	$b < \frac{0,00001}{2,314} = 0,000004$	I
			b = 0,000003 $b = 0,000002$	
21	2,31399 < b < 2,31401 b = 2,31400	I	$b = 2,31402 \ b = 2,31403$	I
22	b = 2,314000000001 b = 2,314000000002	A	b = 2,314 b = 2,31399999999	A
24	2,314005 e 2,314006	A	2,314002	I
28	2,224 e 2,234	I	2,234 e 2,335	I
29	2,31400 e 2,313999	A	2,31300	I
31	2,31399 < b < 2,31401 2,314001 e 2,314002	A	b < 2,31401 2,314001 e 2,314002	A
32	2,314001 e 2,314002 2,31399 < b < 2,31401 2,314001 e 2,314002	A	b < 2,31401 2,314001 2,314001 2,314002	A
33	2,314001 e 2,314002 2,31399 < b < 2,31401 2,314001 e 2,314002	A	b < 2,314001 2,314001 2,314001 2,314002	A
34	2,314001 € 2,514002 2,31399 < b < 2,31401 2,314 € 2,314001	A	b < 2,31401 2,3140 certo e 2,1555	I
38	2,31399 < b < 2,31401	I	2,3140 certo e 2,1333	В
40	2,31400 < b < 2,31401 Não há valor	I		В
43	2,31399 < b < 2,31401 2,31400	I	b < 2,31401 0 ou 1	I
44	2,31399 < b < 2,31401 2,31400 e 2,314005	A	2,31402 e 2,314025	I
46	2,31399 < b < 2,31401	I		В
70	2,515// \0 \2,51701	1		ט
48	2,31399 < b < 2,31401	I	b-2,314 < 0,00001 b+2,314 < 0,00001 $b < -2,31399$	I
49	2,31399 < b < 2,31401 2,31400 e 2,313998	A	b < 2,31401 2,31400 certo e 2,31398	I
	=,51.00 C =,515>>0			i
50	2,31399 < b < 2,31401 2,31299 e 2,31199	I	2,314 e 2,212	I
50 51	2,31399 < b < 2,31401	I A	2,314 e 2,212 b - 2,314 = 0,000001 2,314001 e 2,3140001	I A
	2,31399 < b < 2,31401 2,31299 e 2,31199 2,31399 < b < 2,31401		b - 2,314 = 0,000001	

54	2,31399 < b < 2,31401 b = 2,314 certo	Ι	b-2,314 < 0,00001	I
57	2,31401	I	b < 2,31401	I
58	2,31400 e 2,313998	A		В
62	2,31399 < b < 2,314001	I	b < 2,31401	I
63	2,314002	I	b-2,314 < 0,00001 b-2,314 = 0,000001 = 2,314001	I
64	2,31399 < b < 2,31401 2,31325 e 2,31326	Ι	b - 2,314 < 0,00001 2,31400001 e 2,314000001	A
65	2,31400-0,00001 < b b > 2,31409 2,31400 +0,00001 > b b < 2,31401	I	±(b-N) < 0,00001 b < 2,31401 b > 2,31409	I
66	2,31399 < b < 2,31401 2,3134	I	b < 2,31401 2 ou 1	I
67	2,31400 e 2,314005	A	2,3 e 2,2	I
68	2,31399 < b < 2,31401 2,314	I	b-2,314 < 0,00001 0,001 ou 0,0001	I
25, 26, 27	2, 8, 9, 10, 11, 14, 16, 17, 20, 23, 7, 30, 35, 36, 37, 39, 41, 42, 45, 47, 55, 56, 59, 60, 61, 69 e 70	В	Alunos: 2, 8, 9, 10, 11, 14, 16, 17, 20, 23, 25, 26, 27, 30, 35, 36, 37, 39, 41, 42, 45, 47, 55, 56, 59, 60, 61, 69 e 70	В

Tabela do Excel

Esta tabela, feita no Excel, contém uma aproximação na 14° casa decimal para os valores de \sqrt{N} , para cada N entre 1 e 50.

1	1,000000000000000
2	1,41421356237310
3	1,73205080756888
4	2,000000000000000
5	2,23606797749979
6	2,44948974278318
7	2,64575131106459
8	2,82842712474619
9	3,000000000000000
10	3,16227766016838
11	3,31662479035540
12	3,46410161513775
13	3,60555127546399
14	3,74165738677394
15	3,87298334620742
16	4,000000000000000
17	4,12310562561766
18	4,24264068711928
19	4,35889894354067
20	4,47213595499958
21	4,58257569495584
22	4,69041575982343
23	4,79583152331272
24	4,89897948556636
25	5,000000000000000

26	5,09901951359278
27	5,19615242270663
28	5,29150262212918
29	5,38516480713450
30	5,47722557505166
31	5,56776436283002
32	5,65685424949238
33	5,74456264653803
34	5,83095189484530
35	5,91607978309962
36	6,000000000000000
37	6,08276253029822
38	6,16441400296898
39	6,24499799839840
40	6,32455532033676
41	6,40312423743285
42	6,48074069840786
43	6,55743852430200
44	6,63324958071080
45	6,70820393249937
46	6,78232998312527
47	6,85565460040104
48	6,92820323027551
49	7,000000000000000
50	7,07106781186548