
Vinícius Passos de Oliveira Soares

Aligning developer quality concerns, refactoring
applications, and their effects

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
September 2021

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Vinícius Passos de Oliveira Soares

Aligning developer quality concerns, refactoring
applications, and their effects

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Marcos Kalinowski
Departamento de Informática – PUC-Rio

Rio de Janeiro, September 21st, 2021

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



All rights reserved.

Vinícius Passos de Oliveira Soares
Sou estudante de Mestrado em Ciência da Computação pela
Pontifícia Universidade Católica do Rio de Janeiro (PUC-
Rio). Tenho bacharelado em Ciência da Computação pela
Universidade do Estado do Rio de Janeiro (UERJ). Minha
pesquisa atual tem como foco determinar a correlação en-
tre preocupações de desenvolvedores com relação à qualidade
do código sendo modificado, e tanto quais quanto como re-
fatorações são aplicadas ao código nestas situações. Assim,
pretende-se permitir que desenvolvedores tenham uma ma-
neira mais acurada de definir quais refatorações devem ser
aplicadas, e como devem ser aplicadas, dependendo da situa-
ção atual, e das preocupações do desenvolvedor no momento
da mudança. Como resultado de minha dedicação à pesquisa,
enviei trabalhos aceitos para veículos relevantes, como o Sim-
pósio Brasileiro de Engenharia de Software (SBES).

Bibliographic data
Passos de Oliveira Soares, Vinícius

Aligning developer quality concerns, refactoring applica-
tions, and their effects / Vinícius Passos de Oliveira Soares;
advisor: Alessandro Fabricio Garcia. – 2021.

96 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2021.

Inclui bibliografia

1. Refactoring – Teses. 2. Refactoring Complexity – Te-
ses. 3. Self-Affirmed Refactorings – Teses. 4. Non-Functional
Concerns – Teses. 5. Refatoração. 6. Atributos de Qualidade
Interna. 7. Refatorações Auto-Afirmadas. 8. Requisitos Não-
Funcionais. 9. Preocupações de Desenvolvedores. I. Fabricio
Garcia, Alessandro. II. Pontifícia Universidade Católica do Rio
de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Acknowledgments

I would like to first thank my advisor, Prof. Alessandro Fabricio Garcia, for
the guidance during this process, and the OPUS group, for all the help given
through these two years. I also thank my graduation advisor, Prof. Marcelo
Schots de Oliveira, for paving my path to the world of research. Special thanks
to my parents, for being at my side through all that has happened, and to
Daniel Coutinho, for all the help since my undergraduate years.

To CAPES and PUC-Rio, for the aids granted, without which this work does
not could have been accomplished. To FAPERJ, for the aids granted for the
projects I have participated.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Abstract

Passos de Oliveira Soares, Vinícius; Fabricio Garcia, Alessan-
dro (Advisor). Aligning developer quality concerns, refacto-
ring applications, and their effects. Rio de Janeiro, 2021. 96p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Even though the refactoring process has been increasingly investigated
in the last years, many of its characteristics remain poorly understood. Soft-
ware refactoring is the process of improving the maintainability of a system
through structural changes that do not alter its behaviour. Recent studies reve-
aled that software projects frequently have to undergo composite refactorings.
In such refactorings, developers perform a series of single transformations in
conjunction and in a single commit, which are expected to have a larger and
more positive impact than single refactorings. However, refactorings frequen-
tly cause changes that either keep the software quality the same, or cause it
to worsen, which lead recent works to look for potential causes of this beha-
vior. However, the complexity of these composite changes often affecting their
outcomes in some positive or (unexpectedly) negative way remains not inves-
tigated, much like the developers’ concerns while performing refactoring. For
the latter, some previous work was performed around characterizing and detec-
ting refactoring-related developer discussions. However, it is unknown whether
and how developers’ refactoring concerns made explicit in such discussions can
influence the refactorings’ effects on a system. Thus, this work reports two
studies aimed at bridging some of those gaps in knowledge in which causes
lead to the non-positive effects frequently found in refactoring, by understan-
ding: (i) if more complex refactorings are indeed more effective than simple
refactorings, as one would expect; (ii) in which situations developers tend to
have explicit concerns while refactoring the code; and (iii) what is the impact
of such concerns on the effectiveness of a refactoring to improve structural
quality. We analyze these characteristics and reach the following results: First,
as refactoring complexity increases, the effectiveness of such refactorings incre-
ases as well. Second, there is a relationship between refactoring effectiveness
and explicit refactoring concerns, in which the possibility of negative effects
is lower when developers are explicitly concerned about refactoring. Finally,
developers tend to be more explicit about their concerns on the refactoring
process when they are faced with more complex refactoring tasks.
Keywords

Refactoring; Internal Quality Attributes; Self-Affirmed Refactorings;
Non-Functional Requirements; Developer Concern.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Resumo

Passos de Oliveira Soares, Vinícius; Fabricio Garcia, Alessandro.
Alinhando preocupações de qualidade de desenvolvedores
a aplicações de refatorações e seus efeitos. Rio de Janeiro,
2021. 96p. Dissertação de Mestrado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

Mesmo com o processo de refatoração sendo investigado cada vez mais
nos últimos anos, muitas de suas características se mantém pouco compreen-
didas. Refatoração de software é o processo de melhorar a manutenibilidade
de um sistema por meio de mudanças estruturais que não alteram seu compor-
tamento. Estudos recentes revelaram que projetos de software frequentemente
recebem refatorações compostas. Em tais refatorações, desenvolvedores apli-
cam uma série de transformações únicas em conjunção e em um único commit,
e se espera que estas refatorações tenham um efeito maior e mais positivo do
que refatorações singulares. Porém, refatorações frequentemente causam mu-
danças que ou mantém a qualidade do software da mesma forma, ou causam
a piora do mesmo, levando trabalhos recentes a procurar causas em potencial
para este comportamento. Porém, o porquê da complexidade destas mudanças
compostas frequentemente afetarem seus resultados de alguma forma positiva
ou (inesperadamente) negativa continua não investigado. O mesmo ocorre com
o potencial efeito das preocupações dos desenvolvedores durante a aplicação
de refatorações. Sobre estas preocupações, alguns trabalhos anteriores foram
desenvolvidos em torno da caracterização e detecção de discussões de desen-
volvedores relacionadas a refatorações. Porém, não se sabe se e como estas
preocupações de desenvolvedores com refatorações, tornando-se explícitas em
tais discussões, podem influenciar os efeitos de refatorações em um sistema.
Portanto, este trabalho apresenta dois estudos com o objetivo de preencher a
lacuna no conhecimento de que causas levam aos efeitos não-positivos frequen-
temente encontrados em refatorações, procurando entender: (i) se refatorações
mais complexas realmente são mais efetivas do que refatorações simples, como
esperado; (ii) em que situações desenvolvedores tendem a explicitar suas pre-
ocupações com refatoração do código; e (iii) qual é o impacto de tais preo-
cupações na efetividade de uma refatoração em melhorar a qualidade estru-
tural do código. Nós analisamos estas características e atingimos os seguintes
resultados: Primeiro, conforme a complexidade das refatorações aumenta, a
efetividade das mesmas aumenta conjuntamente. Segundo, há uma relação en-
tre a efetividade de refatorações e preocupações explícitas com refatorações,
onde a possibilidade de efeitos negativos é menor quando desenvolvedores es-
tão explicitamente preocupados com refatoração. Finalmente, desenvolvedores

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



tendem a explicitar mais frequentemente suas preocupações com o processo de
refatoração quando deparados com tarefas de refatoração mais complexas.

Palavras-chave
Refatoração; Atributos de Qualidade Interna; Refatorações Auto-

Afirmadas; Requisitos Não-Funcionais; Preocupações de Desenvolvedores.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Table of contents

1 Introduction 13
1.1 Problem Statement and Limitations of Related Work 15
1.2 Main Research Contributions 17
1.2.1 Other Contributions 18
1.2.2 Publications 18
1.3 Dissertation Outline 19

2 Background and Related Work 21
2.1 Refactoring and its Mechanics 21
2.2 Refactoring Characteristics 23
2.3 Self-Affirmed Refactorings and Refactoring Explicitness 25
2.4 Non-Functional Requirements and Software Quality 27
2.5 Summary 32

3 On the Relation between Complexity, Explicitness, Effec-
tiveness of Refactorings and Non-Functional Concerns 33

3.1 Introduction 34
3.2 Related Work 36
3.3 Methodology 38
3.3.1 Research Questions 39
3.3.2 Project Selection 40
3.3.3 Data Collection 41
3.3.4 Data Analysis 42
3.4 Validation 44
3.4.1 Self-Affirmed Refactoring Validation 44
3.4.2 Non-Functional Concern Validation 45
3.5 Results and Discussions 47
3.5.1 Refactoring Complexity vs. Effectiveness 47
3.5.2 SARs vs. Complexity and Effectiveness 49
3.5.3 NFCs vs. Complexity and Effectiveness 51
3.6 Threats to Validity 55
3.7 Final Remarks 55
3.8 Summary 56

4 Relating Complexity, Explicitness, Effectiveness of Refac-
torings and Non-Functional Concerns: A Replication Study 58

4.1 Introduction 59
4.2 Related Work 61
4.3 Methodology 64
4.3.1 Research Questions 64
4.3.2 Project Selection 66
4.3.3 Data Collection 67
4.3.4 Data Analysis 69
4.4 Validation 70

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



4.4.1 The Validation Process 71
4.4.2 Self-Affirmed Refactoring Validation 72
4.4.3 Non-Functional Concern Validation 72
4.5 Results and Discussions 73
4.5.1 Refactoring Complexity vs. Effectiveness 73
4.5.2 SARs vs. Complexity and Effectiveness 75
4.5.3 NFCs vs. Complexity and Effectiveness 79
4.6 Threats to Validity 83
4.7 Final Remarks 83
4.8 Summary 84

5 Final Conclusions 86
5.1 Contributions and Future Work 86
5.2 Implications 88

Bibliography 90

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



List of figures

Figure 3.1 Adopted methodology. 40
Figure 3.2 Distribution (decimal percentage) of effects based on the

refactoring complexity. Each 0.1 on the horizontal scale repre-
sents 10% in change frequency of the corresponding effectiveness. 48

Figure 3.3 The frequency of self-affirmed and non self-affirmed
refactorings composed of 1, 2, 3, 4, or 5+ refactorings. 49

Figure 3.4 The negative, neutral and positive effect of self-affirmed
and non self-affirmed refactorings. Each 0.1 on the horizontal
scale represents 10% in change frequency of the corresponding
effectiveness. 50

Figure 3.5 The frequency of refactorings composed of 1, 2, 3, 4, or
5 or more refactorings grouped by the presence of mentions to
NFRs. 52

Figure 3.6 The negative, neutral and positive effects of refactorings
when coupled with changes in NFRs. Each 0.1 on the horizontal
scale represents 10% in change frequency of the corresponding
effectiveness. 53

Figure 4.1 Adopted methodology. 66
Figure 4.2 Distribution (decimal percentage) of effects based on the

refactoring complexity. Each 0.1 on the horizontal scale repre-
sents 10% in change frequency of the corresponding effectiveness. 74

Figure 4.3 The frequency of self-affirmed and non self-affirmed
refactorings composed of 1, 2, 3, 4, or 5+ refactorings. 76

Figure 4.4 The negative, neutral and positive effect of self-affirmed
and non self-affirmed refactorings. Each 0.1 on the horizontal
scale represents 10% in change frequency of the corresponding
effectiveness. 77

Figure 4.5 The frequency of refactorings composed of 1, 2, 3, 4, or
5 or more refactorings grouped by the presence of NFCs. 80

Figure 4.6 The negative, neutral and positive effects of refactorings
when coupled with changes in NFRs (considering only the
validated data set). Each 0.1 on the horizontal scale represents
10% in change frequency of the corresponding effectiveness. 81

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



List of Abreviations

SAR – Self-Affirmed Refactoring

NFR – Non-Functional Requirement

NFC – Non-Functional Concern

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Numbers have an important story to tell. They
rely on you to give them a clear and convinc-
ing voice.

Stephen Few, Lecture.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



1
Introduction

The activity of refactoring consists of applying one or more types of
transformations. Thus, developers focus on improving code quality as a means
to achieve a higher degree of maintainability [23]. These refactorings can
vary in effectiveness, depending on whether or not it successfully improves
internal code quality attributes [11, 23, 27, 40]. For example, they might
enhance cohesion as well as reduce coupling, complexity and size. These
internal quality attributes are the standard metrics for characterizing software
maintainability [2].

Another important characteristic of refactorings is that developers often
apply them in a combined effort, even though they were proposed as singular
transformations. These grouped transformations are known as composite or
batch refactorings [8]. The joint application of various transformation types
– i.e., more complex refactorings – is expected to affect the refactoring’s
likelihood of effectively improving code quality. These composite refactorings
comprise about half of the refactorings applied in software projects [8, 34].
Thus, research about them has been growing in popularity in the last few
years [8, 10].

Along with this, recent studies also described the many kinds of com-
posite refactoring patterns used in practice [50]. They range from a simple,
repeated usage of one or two different types of refactorings, to more complex
code refactorings spanning over 5 different types of transformations [9]. This
means that refactorings might not be only comprised of simple transformations
in reality. They might also require far more complex change sets in order to
fulfill their goal.

Regardless of refactoring complexity, most transformations primarily aim
at improving the code structure and its maintainability. However, changes in
which well-known code refactorings were performed might contain transforma-
tions related to other facets of software quality, represented by non-functional
requirements (NFRs) [30]. This connection between NFRs and refactorings is
strengthened by findings of empirical studies. They show a relationship be-
tween internal quality attributes and NFRs beyond maintainability, such as
security [18, 33, 44], performance [19, 26, 45, 46] and robustness [12, 13, 28].

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 1. Introduction 14

Although developers often apply refactorings in practice, their quality-
related concerns when doing so may not be explicitly mentioned along a
change. Thus, it can be difficult to determine how these concerns affect the
refactoring application. The detection of such concerns can be achieved through
the collection of:

Explicit mentions of refactoring-related terms. We define explicit
mentions of refactoring-related terms in commit messages, pull requests and is-
sue discussions related to a commit that contained a refactoring as “refactoring
explicitness”. These explicit mentions of refactoring-related terms in commit
messages are also popularly known as self-affirmed refactorings (SARs) [3, 42].
An example of a commit message containing a SAR is as follows: “Decou-
ple DefaultChannelPipeline from AbstractChannel. Motivation: DefaultChan-
nelPipeline was tightly coupled to AbstractChannel which is not really needed.
Modifications: Move logic of calling handlerAdded(...) for handlers that were
added before the Channel was registered to DefaultChannelPipeline by mak-
ing it part of the head context. Result: Less coupling and so be able to use
DefaultChannelPipeline also with other Channel implementations that not ex-
tend AbstractChannel”1.

Explicit mentions of concerns associated with NFRs. We define
explicit mentions of NFR-related terms in commit messages, pull requests
and issue discussions related to a commit as non-functional concerns, i.e.,
NFCs. An example of a commit message containing an NFC – in this case, of
Performance – is as follows: “Remove WeakOrderedQueue fromWeakHashMap
when FastThreadLocal value was removed if possible. Motivation: We should
remove the WeakOrderedQueue from the WeakHashMap directly if possible
and only depend on the semantics of the WeakHashMap if there is no other
way for us to cleanup it. Modifications: Override onRemoval(...) to remove the
WeakOrderedQueue if possible. Result: Less overhead and quicker collection
of WeakOrderedQueue for some cases.”2.

Once able to classify and detect developer quality-related concerns,
both developers and researchers can use this information in order to better
understand their influence in refactoring effectiveness. This understanding
allows us to determine if such concerns can be potentially related to the (non-
)positive effects found in refactoring applications.

Current studies show that refactorings are not always effective in terms
of improving structural quality attributes [8, 9, 50]. Even though recent studies

1Message example adapted from https://github.com/netty/netty/, in commit
a729e0fcd94009905d219665bdd069eb31433b7c

2Message example adapted from https://github.com/netty/netty/, in commit
640a22df9efb41e3d29b79916938c1c315be2872

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 1. Introduction 15

attempt to understand potential factors that influence refactoring effectiveness,
they mainly focus on analyzing if a refactoring is effective or not. Thus, it is
still not known whether developer concerns, and not only those related to the
maintainability of the code, have any relationship with the effectiveness of the
refactoring transformations. Also, it is unknown if, for example, a complex self-
affirmed refactoring applied when the developer explicitly showed concern with
maintainability (and other non-functional requirements) can (or not) have a
more positive impact on the software’s structural quality.

Thus, one could hypothesize that by combining multiple transformation
types, developers can better address major structural problems in the code [8,
34, 50]. These combinations of transformations could be considered “complex
refactorings”. Going even further, one might wonder if quality-related concerns
of the developers during refactoring application could be related to the
characteristics of the refactorings they perform in the code. Another possible
hypothesis is if refactoring effectiveness is related to developers explicitly
manifesting their concerns with the code’s quality when applying them.
However, there is a lack of knowledge if well-known refactorings [23] are more
effective when developers perform changes while concerned with NFRs.

1.1
Problem Statement and Limitations of Related Work

This section discusses related work and provides statements of our
research problem. We decompose our general problem in three specific research
problems.

Limited knowledge on the relationship between refactoring
complexity and effectiveness – In recent years, there has been a number
of studies correlating refactoring effectiveness to other factors. Their goal is to
understand which factors might be causing refactoring to fail to reach positive
effects. For example, one of these investigated factors is the set of refactoring
types being used together in a refactoring application [8, 9]. However, other
factors of a refactoring might have a relation to their effectiveness, and should
also be investigated. One such factor is the refactorings’ complexity, which
can be defined in a variety of ways. For instance, one aspect of refactoring
complexity is the number of transformations, including repeating ones, applied
in a refactoring. This aspect was explored in previous works, though results
say that it has little correlation to the actual effectiveness of the applied
refactorings [9]. However, other aspects of refactoring complexity might affect
refactoring effectiveness. Aspects such as the number of files affected by a
refactoring, or the number of different refactoring types applied in the same

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 1. Introduction 16

change set, are still mostly unexplored. Then, our first problem is defined
below:

Problem 1: There is a lack of studies that attempt to understand to
what extent certain aspects of refactoring complexity correlate to their
effectiveness.

Limited knowledge on to what extent developers having explicit
concerns with a refactoring may affect its effectiveness – As previously
stated, studies mainly aim at analyzing the relationship between refactoring
types and their effectiveness. Effectiveness in these studies is the ability of
refactorings to remove code smells and improve internal quality attributes.
However, the understanding of whether or not refactorings applied with the
explicit intent of refactoring have any difference in results is still unexplored.
Such an intent could be one of the factors related to the (non-)positive effects
of refactoring seen in practice.

Through the usage of self-affirmed refactorings [3, 20], it is possible to
discern between refactorings in which the developers were explicitly concerned
with refactoring, and those in which they were not. With this, we are able
to determine in which refactorings developers performed refactorings with
intent to the point of turning such intent explicit through a SAR [3]. However,
there is also a lack of studies that attempt to correlate the presence of self-
affirmed refactorings with the effectiveness of the refactorings applied in the
same change set. We can then define our second research problem as follows.

Problem 2: There is a lack of understanding on to what extent the
explicit concerns that developers have with refactorings in a change set
relate to their effectiveness in improving code quality.

Limited knowledge on to what extent developer non-functional
concerns relate to which refactorings they apply – As previously
described, many studies attempt to understand whether or not developer
refactorings are effective at removing specific code smells. These studies focus
on not only this general effectiveness, but also if they are effective at removing
the code smells they are supposed to remove [8, 16, 22]. Developers tend to
follow Fowler’s recommendations to refactor their code, combining them to
form larger changes [29]. However, some refactorings only rarely have any
positive effect, regardless of them being used in the recommended refactoring
mechanics [1, 8, 15, 16].

Despite existing studies already analyzing this issue in more depth,
there is still a search for potential factors that might be causing this lack

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 1. Introduction 17

of positive effects in refactoring usage. One factor comprises is the NFCs
during the developers’ change. Thus, one should relate those concerns to the
characteristics of the refactorings they have applied. By understanding this, it
would be possible to better recommend refactorings to developers. For instance,
a developer would not only rely on code smells present in the code as hints,
but also developer concerns. This also allows for improving recommendations
to developers that might not use refactorings only for code smell removal [30].
Given all these observations, we can frame our final research problem as follows.

Problem 3: There is still little understanding to what extent developers’
non-functional concerns affect refactoring usage and effectiveness.

1.2
Main Research Contributions

In this context, this work focuses on understanding to what extent de-
velopers having explicit concerns with either refactorings or NFRs correlate to
the characteristics of the applied refactorings. Not only that, but also the rela-
tion of such concerns to the effectiveness of the applied refactorings. Alongside
this, we also analyze their relationship to the relevant refactoring character-
istics, such as their complexity. Finally, our measurement of effectiveness is
whether and how the internal quality attributes of the affected elements were
changed. To reach the main goals of this work, we have achieved the following
contributions:

Contribution 1: We report an analysis on to what extent refactoring
complexity correlates to their effectiveness as well as determining which
aspect of refactoring complexity is the one that truly affects effectiveness.

Through this contribution, we expect to be able to better recommend
refactorings to developers based on their complexity. We could also aid
developers in knowing which refactoring complexity aspects could be more
worrisome during refactoring application. With proper guidance, more effective
means of refactoring might be able to yield better results than what is currently
being considered in the academy and practice.

Contribution 2: We report an analysis on to what extent explicit
refactoring concerns, characterized by the presence of SARs in developer
discussions, affect refactoring effectiveness.

Through this, we expect to be able to better guide developers in deciding
whether or not specific situations might need a “focused” refactoring, i.e.,

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 1. Introduction 18

performing an attentive refactoring as a primary goal. Similarly, we also
expect to better guide developers in deciding in which situations they can
apply refactorings as a secondary goal, combined with other, more concerning
changes. We might also be able to suggest whether developers should need to
be more concerned with the process they follow when implementing complex
refactorings.

Contribution 3: We report an analysis on to what extent the presence
of NFCs in developer discussions affect the effectiveness of applied refac-
torings.

With this contribution, we expect to better guide developers in under-
standing which refactorings can be used to improve code quality in ways other
than through code smell removal. Alongside this, we also expect to better
understand if some concerns might need to be separated from refactoring con-
cerns. Another potential result is a new approach to recommending refactor-
ings to developers that work in conjunction with other quality-related changes.
One such example of this would be a refactoring that could potentially solve
problems created by a performance-enhancing change.

1.2.1
Other Contributions

We also consider the following contributions as relevant, and somehow
related to problems listed in Section 1.1. First, we offer a unique data set
of eight projects, comprised of information about (i) the internal quality
attributes of each element in each commit of a project; (ii) refactorings
performed in each commit of a project; and (iii) the corresponding developer
statements and discussions described in commit messages, issues, and pull
requests. We also offer an automatic, keyword-based SAR classifier adapted
from Ratzinger [42]’s proposed SAR classification method. By applying pre-
processing techniques to the developer discussions, and adapting the keyword
set, our approach achieves an F1-Score of 78%. Finally, we also offer a manually
validated data set comprised of 775 commits spread across the eight projects,
classified based on the presence of SARs, and which NFRs are discussed in
each of the commits or their related issues and pull requests.

1.2.2
Publications

At the time of the defense of this dissertation, this research has one
published paper [47] in which the author here is also the first author there.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 1. Introduction 19

We also contributed to the work of other researchers and collaborators, e.g.,
Bibiano et al [9]. Thus, part of our Master’s research and results are also
described in these co-authored papers. Table 1.1 lists the related publications in
which I have worked on during the Master’s period. Respectively, each column
has the publication title, the submission’s venue, its status, and whether it
was directly derived from this work, or just provided partial contributions.
Regarding the first four papers presented, all of them are already published
or were accepted in well-recognized international and national venues, such
as ICPC, ICSME and SBES. These are leading conferences in Software
Engineering subareas and all of them have QUALIS scores varying from A1 to
A3.

Table 1.1: Publications worked on during this research

Title Conference Status
Relation to
Master’s
Research

On the Relation between Complexity, Explicitness,
Effectiveness of Refactorings and Non-Functional Concerns [47]

SBES 2020
(QUALIS A3)

Published
Directly
Derived

How Does Incomplete Composite Refactoring
Affect Internal Quality Attributes [9]

ICPC 2020
(QUALIS A3)

Published Related

Revealing the Social Aspects of Design Decay [6]
SBES 2020
(QUALIS A3)

Published Related

Look Ahead! Revealing Complete Composite Refactorings
and their Smelliness Effects. [10]

ICSME 2021
(QUALIS A2)

Published Related

On the Influential Interactive Factors on Degrees
of Design Decay: A Multi-Project Study

SANER 2022
(QUALIS A2)

Submitted Related

Relating Complexity, Explicitness,
Effectiveness of Refactorings and Non-Functional Concerns:
A Replication Study

To be Defined Planned
Directly
Derived

1.3
Dissertation Outline

The remainder of this work, which is mainly structured as a combination
of two of our technical papers, namely one published and one to be submitted,
is organized as follows:

Chapter 2 presents the background, which introduces concepts related
to (i) refactoring and its mechanics; (ii) refactoring characteristics; (iii) self-
affirmed refactorings and refactoring explicitness; and (iv) non-functional
requirements and software quality. Moreover, we also discuss related work.

In Chapter 3, we present our first study. We performed a preliminary
analysis on four open-source projects, in order to determine the potential
relations between refactoring complexity, explicitness and effectiveness, as
well as NFCs. We first propose a potential relationship between refactoring
complexity and effectiveness, then later correlate such relationship to both

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 1. Introduction 20

refactoring explicitness and the presence of NFCs. This study consists of the
paper "On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns" [47], which was accepted on the
Brazilian Symposium on Software Engineering (SBES) in 2020.

Chapter 4 presents our second study, a replication of the first study
done with an improved and stricter methodology. We have also added four
new projects, summing a total of eight. This study improves upon the analysis
reported in Chapter 3, presenting new results. It consists of the paper “Relating
Complexity, Explicitness, Effectiveness of Refactorings and Non-Functional
Concerns: A Replication Study”, which is to be submitted to a journal.

Finally, Chapter 5 summarizes the conclusions of our work, presenting
the main contributions, implications, as well as the future work.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



2
Background and Related Work

This chapter contains the background and related work of this Masters’
dissertation. Section 2.1 clarifies the concept of refactoring, as well as its
mechanics. Section 2.2 discusses the characteristics of refactorings, such as
their complexity and their effectiveness. Section 2.3 presents the concept of
self-affirmed refactorings, which we use as refactoring explicitness. Section 2.4
describes the NFRs analyzed in this work, as well as how they relate to internal
software quality. Finally, Section 2.5 concludes this chapter.

2.1
Refactoring and its Mechanics

Refactoring is a software maintenance process that perform changes
on the code without altering its behavior in order to improve the code’s
quality [23]. This refactoring process can be performed in a variety of ways,
from a simple renaming of a variable (Rename Variable) to more complex
procedures. One example of a complex procedure would be transforming a
specific repeated block of code with method calls to an external method with
such block of code (Extract Method) [23]. Thus, by applying these different
refactoring types, developers can remove software quality problems named code
smells [56].

Code smells are intrinsically related to refactoring, as the refactoring
process is the main procedure employed by developers to either mitigate or
remove these code smells [23]. Code smells represent problematic structures in
the code. They do not directly lead to bugs or errors, but cause the code to
become more difficult to maintain [56], possibly influencing the introduction
of bugs in the future. One such example of code smell is the God Class, which
represents a class that contains too many responsibilities – and thus should
be split into two or more classes [23]. In the literature, it has been proven
that these smells do cause negative effects for the developers maintaining the
code [37], and that developers do wish to fix such problems in actual, real-life
scenarios [39].

The refactoring process is proven to at least mitigate the negative
effects of code smells in most cases [9]. However, misuse of refactoring can,

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 22

in fact, even introduce more code smells than what the code had before
their application [16]. Thus, it is not only necessary for developers to apply
refactorings when needed, they also have to be mindful of which refactoring
type to apply in which situation, in order to avoid degrading the software
quality even further.

On the application of these refactorings, a distinction can be made be-
tween single refactorings, i.e., the application of only one code transformation
in a single method/class; and composite refactorings, i.e., the application of
multiple refactorings in a single (or a small group of) method/classes, in order
to perform more sweeping changes to the code [32]. These composite refac-
torings can also be split into two groups, depending on which heuristic was
used to detect them. Commit-based, which means that the composite was a
group of refactorings applied within a single commit, or change, regardless of
which methods/classes they were applied on; and range-based, which means
that the composite was a group of refactorings applied over a series of com-
mits, or changes, consecutively performed over the same small set of meth-
ods/classes [50].

Still on the same context of refactorings, the following previous pieces
of work analyzed refactorings and their mechanics, as well as composite
refactorings:

Bibiano et al [9] performed a study on five different open-source
projects, in order to analyze the impact of incomplete composite refactorings
in their quality attributes. They did so by first identifying the most common
forms of incomplete composites, as well as their effects on internal quality
attributes. Then, they analyzed a set of incomplete composite refactorings in
five software projects, and how they affected the Feature Envy and God Class
smells, as well as four internal quality attributes. In their results, they described
that most incomplete composite refactorings tended to at least maintain the
internal structural quality of classes that contained code smells, even if they
failed to achieve positive results. Thus, this means that incomplete composite
refactorings have a mostly neutral effect on internal quality, which might
mean that there are factors related to composite refactorings that might affect
refactoring effectiveness.

Fernandes et al [21] evaluated how composites compare to single
refactorings in improving cohesion, (code) complexity, coupling, inheritance,
and size of affected elements. They analyzed refactoring operations on 23
software projects, on a set in which nearly 50% of it was comprised of re-
refactorings. This analysis was performed by measuring the effectiveness of
both refactorings and re-refactorings on the five internal quality attributes.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 23

They revealed that most operations improve attributes that are presumably
associated with the refactoring type that was applied, though many (35%)
still keep those attributes unaffected. They also showed that regardless of the
refactorings’ state as root-canal or floss refactorings, they mostly improved
attributes, or at least did not worsen their state, a result differing from previous
works. Thus, this means that refactorings may be applied in ways that achieve
improvements differently from their expected intention – which could be related
to developer concerns.

2.2
Refactoring Characteristics

As previously explained, refactoring is not necessarily a simple, standard-
ized process. There are many refactoring types to be mindful of, along with
the notion of single and composite refactorings. Also, these changes can have a
variety of different characteristics that can be quantified, thus making it possi-
ble to differentiate each refactoring application. One such characteristic, which
is the most explored by previous studies, is refactoring effectiveness. Refactor-
ing effectiveness is the quantifiable metric that determines if the refactoring
was able to improve code quality and, if it did, how intense was the change.
In most cases, researchers use two different metrics for determining refactor-
ing effectiveness: code smell density and diversity, as well as internal quality
attributes [9, 36, 43].

Code smell density and diversity are metrics that quantify how many code
smells are present in a single class/method (density), and how many different
types of smells are present in the same class/method (diversity) [36]. Through
these metrics, it is possible to more clearly see the effects of refactoring – a
refactoring could, for example, simply remove a smell, thus reducing density,
but not completely remove all smells from that type, thus keeping diversity
the same. However, while these metrics do allow for the measurement of
effectiveness, there is still the matter of refactorings being able to mitigate, yet
not entirely remove code smells altogether – which these metrics are unable to
detect.

Thus, researchers also use internal quality attributes to quantify refactor-
ing effectiveness. The most commonly-used internal quality attributes, which
are also the ones developers are most worried about, are Complexity, Cohesion,
and Coupling [2]. Within these internal quality attributes, there are individual
metrics that can be collected from the code, and that are directly related to
the presence of specific code smells – as even the common code smell detection
tools use such metrics for their detection [35]. Thus, with this, it is possible to

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 24

see the more slight effects of refactoring, i.e., smaller changes that can affect
individual attributes positively or negatively, even if the refactorings do not
completely remove or add an entire code smell.

Even though refactoring effectiveness is the most investigated charac-
teristic, there are other ways of characterizing refactoring as well. One such
characteristic is refactoring complexity. This complexity can be measured in
a variety of ways – through the number of refactorings applied in a compos-
ite [9], through the amount of classes/methods changed by a single refactor-
ing/composite, or through the number of unique refactoring types applied in a
composite. While all of these aspects of complexity exist, there is still little to
no research on the relationship between refactoring complexity and effective-
ness, i.e., if more complex refactorings have higher effectiveness or not.

The following previous studies analyzed refactoring effectiveness:
Alshayeb [5] performed an empirical analysis of three Java systems,

in order to evaluate claims that refactoring improves software quality. They
evaluated possible correlations of the internal quality attributes of cohesion,
coupling, (code) complexity, inheritance and size with the external quality
attributes of adaptability, maintainability, understandability, reusability and
testability. They performed this analysis by correlating nine metrics, split into
internal quality attributes, with each external quality attribute. Then, they
analyzed the trends of refactoring changes on each of these nine metrics,
and were thus able to determine how refactorings affected each of the five
external quality attributes. They concluded that there were no specific trends,
as refactorings could just as commonly improve an attribute in some classes,
while also worsen the same attribute in other classes of the same system. Thus,
this means that refactorings may not always have positive effects on the code.
This also means that analyzing specific measurable effects, instead of general
trends, might be a better approach for analyzing the effect of refactorings.

Bavota et al [7] studied whether internal quality attributes or code
smells relate with refactoring needs, based on 11 attributes (including size,
coupling and cohesion) and 10 types of smells. To do so, they mined the
history of three Java projects in order to investigate if refactorings do occur on
code component in which indicators suggest they are needed. They defined
these indicators as both critical values on quality-related metrics, as well
as the presence of smells detected by tools. By performing this analysis,
they were able to achieve results that indicate that quality metrics often do
not show a clear relationship with refactoring. This means that refactoring
operations are frequently applied in components that might not have any
measurable factor of degradation. Even when considering code smells, only 42%

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 25

of refactorings were performed in classes that contained such smells. Thus, this
might mean that developers’ concerns during refactoring may not only regard
the maintainability of the code, but also other potential concerns.

Chavez et al [17] investigated how root-canal and floss refactorings
relate with internal quality attributes, including cohesion, coupling, (code)
complexity, and inheritance. To do so, they performed an analysis of the
version history of 23 projects, and collected refactoring information through
the usage of RefactoringMiner. They classified refactoring effectiveness in two
manners: if at least one metric of an attribute improved, or if most metrics of an
attribute improved. With their results, they were able to notice that developers
frequently apply refactoring operations to code elements with at least one
internal quality attribute in a critically decayed state, which opposes previous
works. They also described that only 65% of refactoring operations are able
to improve their related internal quality attributes. They also described that
root-canal refactorings more frequently improved internal quality attributes.
Finally, they described that 55% refactorings performed together with other,
non-refactoring aims (defined by the changes done in the code) had positive
effects – however, only 10% had actual negative effects on the code. This
difference means that the concerns that developers have during the refactoring
process might be an important factor to consider in refactoring effectiveness.

The aforementioned pieces of work analyzed the relationship between a
variety of external factors and refactoring effectiveness. However, neither of
them had as one of their goals finding one (or more) aspects of refactoring
complexity that might have any correlation to their effectiveness.

2.3
Self-Affirmed Refactorings and Refactoring Explicitness

Currently, researchers differentiate between refactorings with and with-
out refactoring concern through the classification of floss and root-canal refac-
torings. They represent “a change set containing only refactoring applications”
and “a change set containing both refactorings and non-refactoring changes”,
respectively [34]. While the differentiation between floss and root refactorings
is effective at discerning refactoring intent, it is also very difficult to classify
change sets as floss or root canal. Thus, usage of such classification is limited
to manually-conducted studies, which have smaller, more concise data sets. On
the other hand, another method was recently developed to attempt to classify
changes as being primarily refactorings or not through the developers’ eyes –
the usage of self-affirmed refactorings [3, 20].

The presence of self-affirmed refactorings in software development has

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 26

been only recently explored. The term “self-affirmed refactoring” was coined
in the last few years [3]. Self-affirmed refactorings are the phenomenon in
which developers discuss about the refactoring process during, or soon after,
the refactoring application. This is usually done by searching for specific
keywords [42] or contexts [4] in commit messages in software repositories. Thus,
the method of detecting refactoring concerns through self-affirmed refactorings
only requires: (i) the extraction of developer discussions regarding the change
set, and; (ii) a classification of these discussions based on whether or not
refactorings are explicitly mentioned. Therefore, it is more viable for the
purpose of extracting concerns than the classification between floss and root
refactorings. By matching the presence of a refactoring in the code with
refactoring discussion in the commit message, it is possible to determine
whether or not the developer was concerned enough with the refactoring
process in order to externalize it through the message explaining the changes
performed in the commit.

The following previous studies analyzed refactoring explicitness:
Ratzinger [42], among many other contributions, proposed a phrase-

based approach to detecting developer discussions related to refactorings. To
do so, they performed an analysis of two out of the three projects analyzed in
the work as a whole – as one of the projects did not apply enough refactorings to
be considered. In this analysis, they manually classified refactorings as having
either a single refactoring, multiple refactorings, or no refactorings. They then
performed an iterative approach in attempting to identify refactorings using
only commit messages as input. They first started by using the word “refactor”,
then expanded the keyword set every iteration. Using these keywords, they
were able to label an average of 12% of changes as refactorings. This prediction
of refactorings through commit message keywords also had a high accuracy,
with 93% precision, and 98% recall. Thus, this means that self-affirmed
refactorings are not common, comprising only 12% of changes. It also means
that a keyword-based approach might be a valid way to classify commit
messages as being self-affirmed refactorings or not.

AlOmar et al [2] performed an empirical study on self-affirmed refactor-
ings in order to identify if frequently-used design metrics reflect what develop-
ers consider as quality. To do so, they extracted a group of design-related refac-
toring activities applied and documented by developers in 3795 Java projects.
They also extracted a group of structural metrics and anti-pattern enhance-
ment changes from these projects. With this, they were able to perform an
analysis of the impact of those refactoring operations with regards to state-of-
the-art metrics, in order to understand whether or not such metrics represent

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 27

developer concerns in practice. Results indicate that, for cohesion, coupling,
(code) complexity, and inheritance, the academia-standard metrics do reflect
developers’ definition of quality. However, developers do not consider metrics
such as encapsulation, abstraction, and design size often when determining
software quality. Thus, this work is important as it proves that self-affirmed
refactorings can be used as a factor for determining developer concerns. Along-
side this, they also showed that developers mainly focus on cohesion, coupling,
(code) complexity and inheritance when performing refactorings.

2.4
Non-Functional Requirements and Software Quality

The relationship between internal quality attributes and non-functional
requirements was addressed by a number of empirical studies. In such studies,
a strong relationship between four non-functional requirements – robustness,
security, maintainability and performance – and specific internal quality at-
tributes was described. Thus, we chose these four NFRs in order to be studied
in this work. These non-functional requirements can be defined as follows:

Maintainability represents developer concerns with long-term mainte-
nance of the code. It contains concepts such as code readability, good documen-
tation and effective modularization of the code, among others. Refactoring is
directly correlated to this NFR, as its main goal is improving maintainability.
Some examples of commit messages with maintainability concerns, and which
concerns they describe, can be seen as follows:

– “Change ImageDecodeOptions to match pattern from other options.
Summary: Update ImageDecodeOptions to support extending this class
(...)”1: In this example, developers describe changing a specific class
in order to match the code pattern of other similar classes. They also
describe changes to better support potential extensions in the future.

– “Renamed following the general naming convention used in Netty. Re-
named ‘delay’ to ‘checkInterval’ Added some design ideas, TODOs, and
FIXMEs.”2: In this example, developers describe renaming a specific
method to make its usage clearer. They also describe additions and im-
provements to code comments and documentation.

– “Rename PartitionFunction to BucketPartitionFunction. This com-
mit renames ‘PartitionFunction’ to ‘BucketPartitionFunction’ and re-

1Message example adapted from https://github.com/facebook/fresco/, in commit
6c05bc6f3d69648a6a3129d866cbcac4b739f327

2Message example adapted from https://github.com/netty/netty/, in commit
48e258c8107bfd9baacf77f9815ebb781431a45e

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 28

introduces ‘PartitionFunction’ as an interface. Partitioning function is
a general concept useful in different places (remote or local exchange
partitioning or partitioning spiller for join’s spill) so it deserves simple
expressive name.”3: In this example, developers describe a complex refac-
toring that starts by renaming an existing class to a more appropriate
name. Afterwards, they create a new interface with the same name the
class had before its renaming, since it could be useful in the future.

Robustness represents developer concerns with the project running
properly, avoiding potential failures, as well as recovering from failures without
issue. Thus, it contains concepts such as exception handling and error logging,
alongside others. Some examples of commit messages with robustness concerns,
and which concerns they describe, can be seen as follows:

– “Add information to TooManyBitmapsException for debugging (...)”4:
This example represents developer concern with exception logging. This
attribute of robustness encompasses all information regarding a specific
exception type, which is especially useful in the case of frameworks, such
as the system in this example.

– “Check if DnsCache is null in DnsNameResolver constructor. Motivation:
We miss checking if DnsCache is null in DnsNameResolver constructor
which will later then lead to a NPE. Better fail fast here. Modifications:
Check for null and if so throw a NPE. Result: Fail fast.”5: This example
represents developer concern with the robustness of the code, even if they
do not directly fix the exception itself. However, by throwing the error
earlier, other problems that could occur related to null-pointer exceptions
at the previous point of error can now be more easily identified.

– “Use ChannelException when ChannelConfig operation fails in epoll. Mo-
tivation: In NIO and OIO we throw a ChannelException if a Channel-
Config operation fails. We should do the same with epoll to be consis-
tent. Modifications: Use ChannelException Result: Consistent behaviour
across different transport implementations.”6: In this example, developers
describe a change from a more generic exception type to a more specific
one. This, in turn, can allow for better exception handling and recovery

3Message example adapted from https://github.com/prestodb/presto/, in commit
1a4ac73ed993a1f818ff17c9196a67bdbb4f31dc

4Message example adapted from https://github.com/facebook/fresco/, in commit
df4e4ca57e9febcd8ff69a95c7628edcc6437ed9

5Message example adapted from https://github.com/netty/netty/, in commit
d7ff71a3d1d0ba16818ebe8ab44691197c2ffd48

6Message example adapted from https://github.com/netty/netty/, in commit
0c835420008bb1767ea1969cd8d63adf1c80e374

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 29

in the future, as well as allowing developers to better understand exactly
what caused a specific failure.

Security represents developer concerns with limiting information access
only to a specific subset of users, as well as blocking malicious access. Thus, it
contains concepts such as information hiding, cryptography, and secure data
transmission, among others. Some examples of commit messages with security
concerns, and which concerns they describe, can be seen as follows:

– “JCBC-1203: Add CertAuthenticator and related checks. (...) This
change brings in the CertAuthenticator as well as adds all kinds of sanity
checks so that invalid auth combinations are rejected. (...) This change-
set adds the CertAuthenticator (which can be used as a singleton) and
then adds checks to the CouchbaseAsyncCluster so that invalid combi-
nations depending on the environment settings are not allowed and error
quickly. (...)”7: In this example, developers describe adding a new kind of
authenticator to the system. They also describe the addition of a variety
of new checks in order to determine which combinations of authorizations
should be rejected.

– “Strip auth headers when redirected to another host. These are poten-
tially private and we don’t want to leak them to another host, regardless
of whether they’re created by the calling application or by the Authen-
ticator.”8: In this example, developers describe a change in which the
system now removes authentication-related headers from requests when
they are redirected to other hosts. This reduces the potential for infor-
mation leaks, thus improving security.

– “Introduce Handshake as a value object. I needed a non-terrible way to
provide the HTTPS handshake information to the async API. Previously
we were passing the live socket around, which was leaky and gross.
This creates a new value object that captures the relevant bits of the
handshake. We can use it in the response, the connection, and also in
the cache. It’s plausible that in the future we can use it to allow the
application to block requests if the handshake is insufficient.”9: In this
example, developers describe a change in which the system is now able to
separate only the necessary information from a socket in order to perform

7Message example adapted from https://github.com/couchbase/couchbase-java-client/,
in commit 88bc7f3003aee048ddd272fd850acaa457a13807

8Message example adapted from https://github.com/square/okhttp/, in commit
ed70981925e64fd0cb593d09bdd401ea4ea19848

9Message example adapted from https://github.com/square/okhttp/, in commit
e2bfa5dd6c0aee7d7e34b224a649500b9e5c267f

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 30

HTTPS handshakes. Thus, it eliminates potential leaking of information,
improving security.

Performance represents developer concerns with both the runtime and
resource usage of the code. Thus, it contains concepts such as memory usage,
I/O frequency, and parallelization, alongside others. Some examples of commit
messages with performance concerns, and which concerns they describe, can
be seen as follows:

– “Remove WeakOrderedQueue from WeakHashMap when FastThreadLo-
cal value was removed if possible. Motivation: We should remove the
WeakOrderedQueue from the WeakHashMap directly if possible and only
depend on the semantics of the WeakHashMap if there is no other way
for us to cleanup it. Modifications: Override onRemoval(...) to remove
the WeakOrderedQueue if possible. Result: Less overhead and quicker
collection of WeakOrderedQueue for some cases.”10: In this example, de-
velopers describe the removal of a specific ordered queue if it is not nec-
essary. With this, they describe the results being a code that generates
less overhead, quicker results, a clear sign of improved performance.

– “Give compiler hint about inline functions. Motivation: Some of the
methods are frequently called and so should be inlined if possible.
Modifications: Give the compiler a hint that we want to inline these
methods. Result: Better performance if inlined.”11: This example has
developers describing a change in which they performed changes to
meta-information of certain methods, in order to tell the compiler they
should be inlined. As inlined methods have less runtime than delegated
methods [26], this change improves code performance.

– “Lift Performance. Using ‘f.lift()’ directly instead of ‘subscribe’ improves
ops/second on the included test from 5,907,721 ops/sec to 10,145,486
ops/sec.”12: In this example, the developers describe a change in which,
instead of subscribing to an event listener, the system now calls the
function directly. And by doing so, improves code performance, as also
described by the developers in the commit message.

The following previous studies analyzed non-functional requirements
in relation with internal quality attributes. Siegmund et al [45] analyzed

10Message example adapted from https://github.com/netty/netty/, in commit
640a22df9efb41e3d29b79916938c1c315be2872

11Message example adapted from https://github.com/netty/netty/, in commit
7a3d91f43d12eb0b23a65662d26026c6cd451d76

12Message example adapted from https://github.com/ReactiveX/RxJava/, in commit
1ef689dd9200a915ba47ea5875bacf8a1ca8485d

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 31

whether and how refactorings can be used in order to optimize non-functional
properties of software product lines. To do so, they performed a case study by
fusing characteristics of refactorings with the feature-oriented programming,
forming refactoring feature models. Then, they performed an analysis on
the effects of refactoring applications on three non-functional properties:
performance, footprint and coding styles. They then extended this analysis as
an approximated influence of each refactoring on each non-functional property.
As a result, specifically related to performance, they found that refactorings
such as Inline Method, Inline Class and Remove Middleman can be used to
improve performance. This is due to their removal of delegation, which can
improve performance by up to 50%. However, they must still be applied with
caution, as Long Methods can cause cache mismatches on the processors, which
increases execution time.

Demeyer [19] hypothesized that the inclusion of polymorphism through
refactoring did not reduce the performance of the refactored code. In order to
prove this hypothesis, they performed an experiment by using a benchmark
C++ code. This experiment contained a set of programs using conditional
statements, and another program using polymorphism for the same task. They
then performed a million executions on each program, using an array with 20
objects, and reported the average runtime. With their results, they discovered
that, in fact, due to today’s compilers and processors, the code that used
polymorphism had higher performance than the code that did not. Thus,
this means that refactorings are not to be avoided by developers that look to
improve performance, but instead a tool they can use to improve it, depending
on the situation.

Cacho et al [12, 13] hypothesized that mechanisms related to improv-
ing software maintainability could affect the improvement of software robust-
ness. To prove such hypothesis, they conducted an empirical study to under-
stand how changes in C# programs affected their robustness. They focused on
changes in both normal and exceptional code, and how they affected exception
handling faults. They applied a change impact and control flow analysis across
many versions of 16 C# programs. Their results showed that most of the prob-
lems hindering software robustness in the analyzed programs stemmed from
changes in the normal code. Alongside this, they also showed that, even when
focusing only on changing exception handling, changes also introduced many
potential faults. Finally, they showed that maintainability-driven changes on
the exception handling mechanism introduces a flexibility that may lead to
the introduction of faults. This means that maintainability-driven changes can
cause effects on software robustness. However, this also means that developers

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 2. Background and Related Work 32

need to be more attentive when performing maintainability-driven changes, in
order to avoid potential negative effects on robustness in the future.

Chowdhury et al [18] evaluated to what extent the metric of coupling
propagation is effective at indicating security risks in software. To do so, they
performed a case study on two Java projects, from two different security stan-
dards. They then collected metrics related not only to coupling propagation,
but also other security-related aspects. Finally, they analyze the results of
these metrics, and if they accurately show the security disparity these projects
have. As a result, they found that coupling propagation is, in fact, related to
actual software security. They theorize that this might stem from the fact that
higher levels of coupling mean attackers can more easily access and compro-
mise multiple sections of the code. Alongside this, high coupling would mean
that messages that should be secure could go through classes that were more
vulnerable. Through this, we can see that the ability of refactoring to reduce
coupling can, in fact, be used to improve the security of a specific project.

While these works analyzed the applications of refactoring on the context
of NFRs, all of them focused on how refactorings could be used in order to
improve attributes specific to each NFR. Our work, on the other hand, focuses
on how developer concerns with specific NFRs can affect the refactoring’s
effectiveness, both in general, and looking at each specific internal quality
attribute.

2.5
Summary

This chapter provided the background to support the understanding
of this dissertation. We presented basic concepts, used throughout the next
dissertation chapters. We also discussed related work reporting studies on
refactorings, its mechanics, and its characteristics, as well as studies on self-
affirmed refactorings, and the relation between non-functional requirements
and software quality. The next two chapters present the empirical studies
that we conducted for addressing the problems listed on Section 1.1. For
this purpose, we analyzed the potential relationships between refactoring
complexity, refactoring effectiveness, refactoring explicitness, and the presence
of non-functional concerns, to determine how these factors interact, and
potentially discover ways to improve refactoring effectiveness.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



3
On the Relation between Complexity, Explicitness, Effective-
ness of Refactorings and Non-Functional Concerns

Previous studies have analyzed many different factors in order to deter-
mine which of them could influence refactoring effectiveness. Their goal is to
understand the common non-positive effect of refactorings [8, 9, 50]. However,
these works mainly focused on analyzing how the mechanics of the applied
refactorings affect such effectiveness, rather than how the refactoring-related
concerns of the developers performing the code transformations could do so.
Thus, we conducted an analysis on four large software projects, collecting data
related to refactoring complexity and effectiveness, as well as developer con-
cerns related to refactoring, and four non-functional requirements. We then
performed a manual validation of a sample of the data set, and analyzed the
potential relations that could exist between refactoring complexity, and various
developers’ concerns, with regards to refactoring effectiveness. These concerns
vary from explicit refactoring intents to typical non-functional requirements
affecting refactoring-containing changes.

As such, in this chapter, the paper On the Relation between Complexity,
Explicitness, Effectiveness of Refactorings and Non-Functional Concerns [47]
will be presented in its entirety. The paper was accepted and published on the
Brazilian Symposium on Software Engineering (SBES) in 2020. Due to this,
Section 3.1 describes themes similar to those already presented in Chapter 1 of
this dissertation, though with Chapter 1 describing it in more detail. Similarly,
Section 3.2 covers the same related works as those discussed in Chapter 2 of
this dissertation, with Chapter 2 once again being in more detail. The sections
were kept in order to preserve the paper in its entirety, but they may be skipped
due to the aforementioned repetition.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 34

On the Relation between Complexity, Explicitness, Effectiveness
of Refactorings and Non-Functional Concerns

Vinícius Soares,
Anderson Oliveira,
Juliana Alves Pereira

PUC-Rio, Rio de Janeiro, Brazil
[vsoares,aoliveira,juliana]@inf.puc-rio.br

Ana Carla Bibano,
Alessandro Garcia

PUC-Rio, Rio de Janeiro, Brazil
[abibiano,afgarcia]@inf.puc-rio.br

Paulo Roberto Farah1,2
Silvia Regina Vergilio1
1DInf-UFPR, Paraná, Brazil

2UDESC, Santa Catarina, Brazil
[prfarah,silvia]@inf.ufpr.br

Marcelo Schots
Universidade do Estado do Rio de Janeiro,

Rio de Janeiro, Brazil
schots@ime.uerj.br

Caio Silva,
Daniel Coutinho

PUC-Rio, Rio de Janeiro, Brazil
[csilva,dcoutinho]@inf.puc-rio.br

Daniel Oliveira,
Anderson Uchôa

PUC-Rio, Rio de Janeiro, Brazil
[doliveira,auchoa]@inf.puc-rio.br

3.1
Introduction

The refactoring activity consists of applying one or more refactoring
transformations types, focusing on improving code quality as a means to
achieve better maintainability [23]. Along software maintenance, developers
perform improvements to non-functional requirements (NFRs) while also
applying well-known code refactorings [30]. Even though developers often
apply refactorings in practice, concerns about refactoring and NFRs are
rarely explicitly mentioned along a change. Thus, one might wonder whether
refactoring is more effective when an explicit manifestation of such concerns
occurs. A refactoring is considered effective when it successfully improves
internal code quality attributes [11, 23, 27, 40], such as enhancing cohesion
or reducing coupling, complexity and size. Internal quality attributes are
not only the academy-standard metrics for detecting problematic code [2].
Empirical studies (see Section 3.2) also show a relationship between these
quality attributes and various NFRs beyond maintainability, such as security,
performance and robustness. However, there is no knowledge if well-known
refactorings [23] are more effective when developers perform changes with such
NFR concerns in mind.

In addition, even though refactorings were proposed as singular trans-
formations, developers often apply they in conjunction trough the so-called
batch or composite refactorings. The joint application of various transforma-
tion types – i.e., more complex refactorings – might increase the likelihood of
effectively improving code quality. Composite refactorings comprise about half
of the refactorings applied in software projects [8, 34]. Thus, their research has
been growing in popularity in the last few years [8]. Along with this, recent
studies also described the many kinds of composite refactoring patterns used in
practice [50]. They range from a simple, repeated usage of one or two different
types of refactorings, to complex processes spanning over 5 different types of
refactorings [9].

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 35

One could hypothesize that refactorings are expected to be more effective
in improving code structural quality based on (i) the combination of multiple
transformation types ("complex refactorings") in order to solve major struc-
tural problems in the code [8, 34, 50]; (ii) explicit mentions of concerns with
refactoring (refactoring explicitness) – which is also popularly known as self-
affirmed refactorings (SARs) [3, 42]; and (iii) explicit mentions of concerns
associated with NFRs (these concerns are referred to in this work as NFCs).

Studies show that refactorings are not always effective in terms of
improving structural quality attributes [8, 9, 50]. However, it is still not known
whether the expectations above have any relationship with the effectiveness of
refactoring. Existing studies only focus on analyzing if a refactoring is effective
or not; they do not investigate to what extent their complexity, as well as their
associated concerns, relates to its effectiveness. For example, a complex SAR
with an explicit concern with maintainability (and other NFRs) might have a
positive impact on the software’s structural quality.

In this context, this study intends to conduct a preliminary investigation
of whether and how the variation of refactoring complexity and its explicit
concerns correlates to the improvement of internal quality attributes. To
this end, we analyzed a total of 2,588 refactorings, obtaining information on
both their effects on internal quality attributes and the amount of unique
refactoring types they are composed of. We also developed and evaluated two
keyword-based classifiers, one for SAR, and one for NFC detection in developer
discussions – with the SAR detector reaching an F1-Score of over 80%. Through
this analysis, we achieved the following findings:

Refactoring Complexity. We were able to determine that the complexity of
a refactoring is impactful on their effects. As refactoring complexity increases,
so does the chance of positive impacts; however, so does the risk of having
a negative impact on the code. This reinforces the notion that refactoring
complexity should be considered in studies and refactoring techniques. Thus,
with proper guidance, a more effective means of refactoring can yield better
results than what is currently being considered in the academy.

Refactoring Explicitness. An explicit concern with refactoring, surprisingly,
more frequently affects their effectiveness negatively. Though many of the
explicit refactorings were more complex, the developers did not always select
refactoring type compositions that have shown themselves to be adequate to
the improvement of structural quality. Less complex refactorings, composed of
at most three types, had more positive effects – even if they were less effective
overall. These results suggest that developers might need to be more concerned

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 36

with the process they follow when implementing complex refactorings, and not
only the act of refactoring itself, as the improvement of code structure is not
being achieved. These results could also be explained by the lack in tool support
for complex refactorings, similar to what was found in other works [30, 51, 55].

Non-Functional Concerns. An explicit concern with NFRs may actually
hinder the application of refactorings. However, when concerns with maintain-
ability and robustness were present, refactorings generally had a more positive
effect, while performance and security brought positive impacts on only one
specific attribute each. This may also suggest a need for more optimization-
based recommenders [38] to aid developers in making changes that positively
affect necessary metrics without causing detriment to the others.

3.2
Related Work

This section classifies related works into three categories: effectiveness,
explicitness, and non-functional concerns.

Effectiveness. Alshayeb [5] performed an empirical analysis of three Java
systems, in order to evaluate claims that refactoring improves software quality.
They evaluated possible correlations of the internal quality attributes of
cohesion, coupling, (code) complexity, inheritance and size with the external
quality attributes such as maintainability and testability. They concluded
that refactorings rarely had positive effects on these attributes, being mostly
neutral. Similarly, on the same context of internal quality attributes, Bavota
et al [7] studied whether internal quality attributes or code smells relate
with refactoring needs, based on 11 attributes (including size, coupling and
cohesion) and 10 types of smells. Results showed that the analyzed refactorings
focused on changing components whose quality metrics did not indicate
problems in code.

Once again, regarding internal quality attributes, Chavez et al [17]
investigated how root-canal and floss refactorings relate with internal quality
attributes, including cohesion, coupling, (code) complexity and inheritance.
They found that over 94% of applied refactorings have negative impacts on at
least one internal quality attribute. Moreover, most refactorings improve their
quality attributes, while others keep them unaffected.

On the context of complex refactorings, Bibiano et al [9] performed a
study on 5 different open-source projects, in order to analyze the impact
of incomplete composite refactorings in their quality attributes. They found
that most incomplete composites have a neutral effect on internal quality

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 37

– neither increasing nor decreasing code quality. Also on the context of
composite refactorings, Fernandes et al [21] evaluated how composites compare
to single refactorings in improving cohesion, (code) complexity, coupling,
inheritance and size of affected elements. Among the analyzed refactorings,
65% improved attributes associated with their refactoring types, while 35%
kept them unaffected. Thus, while the aforementioned works studied potential
correlations between refactoring effectiveness and other factors, they did not
consider refactoring complexity and the presence of NFCs as potential factors.

Explicitness. The presence of SARs in software development has been only
recently explored – with the term “self-affirmed refactoring” being coined in the
last few years. Ratzinger [42] proposed a keyword-based approach to detecting
developer discussions related to refactorings. In the explored context, the goal
was the prediction of potential refactorings, which they achieved with a high
accuracy. Likewise, for SAR-related research, AlOmar et al [2] performed an
empirical study on SARs in order to identify if academia-standard design
metrics reflect what developers consider as quality. Results indicate that, for
cohesion, coupling, (code) complexity, and inheritance, the academia-standard
metrics do reflect developers’ definition of quality. However, for encapsulation,
abstraction, and design size, there is a mismatch on how metrics were proposed
and how they are used in practice. While both of the aforementioned works
analyzed the presence of SARs, they did not analyze a potential correlation
with the complexity and effectiveness of refactorings performed in the code.

Non-Functional Requirements The relationship between internal quality
attributes and NFRs is addressed by a number of works. Thus, we focus our
analysis on works addressing the NFRs that compose the NFCs analyzed in
this work.

Regarding performance, Siegmund et al [45] analyzed refactorings’ ef-
fects on the performance of software product lines. Refactorings such as Inline
Method and Inline Class can reduce the execution time on method calls, thus
improving performance. Also, Gotz et al [26] showed that removing code del-
egation and indirection can improve software performance by around 50%.
Demeyer [19] reported performance improvements after replacing conditional
statements with call methods through polymorphism. Some works also ana-
lyzed the relation between size, defined in terms of code statements, and per-
formance [24, 41]. Smith et al [46] discussed performance anti-patterns based
on coupling, cohesion, and (code) complexity of the inheritance hierarchy, con-
cluding that God Classes are detrimental to software performance.

In the context of robustness, it is common to use exception flow infor-

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 38

mation [12, 13]. It aims to improve code reliability by providing constructs for
sectioning code into exception scopes (e.g. try blocks) and exception handlers
(e.g. catch blocks). Jakobus et al [28] evaluated the robustness of 50 projects by
using the internal quality attributes of size and (code) complexity. Their find-
ings suggest that exception handlers are usually simplistic, and that developers
often pay little attention to exception scoping and behavior handling.

We also found works relating internal quality attributes to security.
Chowdhury et al [18] evaluated how internal quality metrics of coupling,
cohesion, and (code) complexity can indicate security risks in software. They
concluded that size metrics can indicate structures that could be exploited to
cause a denial of service attacks, while coupling can impact on how damage
may propagate to other components of the software. Yet, their results showed
that these metrics are not sufficient to indicate specific vulnerability types.
Other studies [33, 44] also support these findings.

The identification of NFCs in text and developer discussions has also
been explored. Lu et al [31] proposed an automatic classification of user
reviews into concerns with four NFR types: reliability, usability, portability and
performance. They evaluated the combinations of the classification techniques
and machine learning algorithms with user reviews collected from two popular
mobile apps from different platforms and domains. Results show that a
combination of algorithms achieves an F-measure of 71.8%. Casamayor et
al [14] applied a semi-supervised learning approach to identify NFCs in textual
specifications, using a collection of requirements-related documents from 15
different software development projects, consisting of 370 mentions to NFRs
and 255 functional ones.

These works differ from our work because, while they attempted to collect
NFCs from project development history, they did not explicitly investigate the
association of refactoring complexity, effectiveness, explicitness, and NFCs.

3.3
Methodology

In this section, we describe the methodology adopted in our study.
The main goal of this work is to investigate to what extent the refactoring
complexity, as well as their associated concerns (explicitness and NFCs), relates
to its effectiveness, that is, to the improvement of internal quality attributes
in the software.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 39

3.3.1
Research Questions

Our analysis is guided by the following three research questions:

– RQ1. Is the complexity of refactorings related to their effective-
ness? RQ1 is motivated by a search of a potential correlation between
the complexity and effectiveness of refactorings. Thus, with this RQ, if
this correlation exists, we aim at understanding its nature. We define
complexity as the number of different refactoring types that compose the
applied refactoring. Similarly, we define effectiveness as the impact of the
refactoring in improving internal quality attributes by improving their as-
sociated metrics. We fully explain the reasoning for these definitions in
Section 3.3.4.

– RQ2. Are refactorings’ complexity and effectiveness related to
their explicitness? Since the complexity of refactorings may not be
the only factor that affects their effectiveness, RQ2 is built on top of
the idea that this other factor may be the developers’ explicit concern
about refactoring. This explicitness is defined as the presence of a SAR
in either a commit message, issue or pull request (or comment) related
to the changes where a refactoring was applied. If this explicitness is
related to the refactoring complexity and effectiveness, this RQ aims at
understanding how it takes place.

– RQ3. Do NFCs relate to refactoring effectiveness? Finally, RQ3
aims at investigating if there are other concerns that affect the effective-
ness of code refactoring. Thus, we define NFCs as the presence of one
of four analyzed NFRs in either a commit message, issue or pull request
(or comment) related to the changes where a refactoring was applied.

The choices and artifacts analyzed to answer the research questions are
listed as follows:

Selection of Internal Quality Attributes.We chose to individually analyze
each of the four internal quality attributes of cohesion, complexity, coupling
and size for two reasons: (i) their connection to the NFRs chosen for this work
(e.g., size and complexity correlates to performance), and (ii) due to their uses
in other works [9].

Selection of Non-Functional Requirements. Maintainability was chosen
due to its potential likeliness of influence in refactoring, i.e., it can be
considered as an usual concern, as according to previous works. The other
three NFRs were selected because they strongly relate with refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 40

The increase of security can be linked to refactoring strategies that redesign
application structures; preventing intruders from accessing sensitive code
commands. Improvements in robustness can be reached by the reorganization
of modules for integrating patterns geared at error handling (e.g, Chain
of Responsibility [25]). Finally, performance can be increased through the
detection, and subsequent refactorings, of code redundancies or a suboptimal
distribution of code entities.

Figure 3.1 summarizes the methodology adopted to answer the research
questions. First, we selected four projects, based on the criteria described in
Section 3.3.2. Second, we collected data regarding internal quality attributes,
refactorings and developer discussions, which is described further in Sec-
tion 3.3.3. Third, we performed an analysis of the collected data to obtain
composite refactorings (see Section 3.3.4) – which combine two or more refac-
toring types. In addition, we collected data about refactoring effectiveness, as
well as the presence of SARs and NFCs. Finally, we used this data to answer
each of the aforementioned research questions.

Figure 3.1: Adopted methodology.

3.3.2
Project Selection

Due to our focus on understanding the impact of complex refactorings
in real-world projects, we selected 4 projects – Couchbase Java Client, Dubbo,

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 41

OKHttp and JGit –, using the following criteria:
Java Open Source Projects. The project must be open-source, and devel-
oped primarily in Java. This increases this work’s replicability. Alongside this,
Java has the most support from outside tools, especially for internal quality
analysis – which are required for this work; Number of Contributors and
Activity. The project must still be actively worked on at the time of anal-
ysis, and must have a considerable number of contributors. Active projects
are more likely to accurately represent the state of the industry. Similarly, the
large amount of active contributors in these projects allow us to have a larger
selection of discussions; Project Age. The project must have been in devel-
opment for at least 5 years. Architecture degradation over time is more clearly
seen in older projects, which would then require developers to more frequently
apply refactorings.
Variety of Refactoring Types. The project must have a large variety of
different refactoring types (i.e., one of the refactorings as defined by Fowler
et al [23]) being used along its maintenance. This is important due to our
focus that is on refactoring complexity – which is defined as the amount of
different refactoring types used in a composite or single refactoring; Presence
of Composite Refactorings. The presence of composite refactorings in
the project must have been proven in other works. Once again, due to our
focus being on the analysis of complex refactorings, the presence of composite
refactorings in the analyzed projects is important. Thus, we decided to choose
projects in which the presence of composite refactorings was already proven
by other works, such as [9].

3.3.3
Data Collection

Thus, in order to attain the goals described previously, we extracted data
from three main points of view: (i) Internal Quality Data, which is necessary
for allRQs; (ii) Refactoring Data, which is also necessary for allRQs, and; (iii)
Developer Discussions, for RQ2 and RQ3. Their collection would enable their
correlation, thus allowing an understanding of refactoring complexity’s effect
on internal quality attributes. It also allows an understanding of a correlation
between the presence of SARs and NFCs in changes that contain refactorings,
and the complexity and effectiveness of these refactorings. The collection of
this data was done as follows:
Internal Quality Data. In order to obtain data related to internal quality
attributes, we must first collect the metrics that compose such attributes. To
this end, we used a tool called Understand [54]. Understand is a static code

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 42

analysis tool, which collects the internal quality metrics from each element, in
each commit, of each project. This then allows us to view a continuous trend
in the change of each metric in the project’s history. In turn, this enables a
detection of how changes improved – or worsened – the state of each attribute.
However, Understand has a very large amount of metrics related to the size and
complexity of the code, and lacks metrics for code cohesion. Thus, in order to
balance the amount of metrics in each attribute, we selected a set of 15 metrics,
which are listed in the work’s companion website [48].
Refactoring Data. For the data set related to the second point of view,
we focused on which kinds of refactorings were used during the project’s
development, as well as how they form composites. In order to detect and
classify refactorings based on the types proposed by Fowler [23], we used
RefMiner [52], a tool that collects refactoring information from the history
of Java projects. RefMiner has a high reported precision of 98%, and a recall
of 87% [52], which makes it a reliable tool for refactoring detection.
Developer Discussions. Finally, for the third point of view, we focused on
attempting to extract the messages and discussions written by developers when
changing the code. Thus, we extracted the following items from the projects’
repositories, by using the GitHub API: (i) Commit Messages; (ii) Related
Issues and Pull Requests; and (iii) Developer Comment Discussions. While we
were able to extract commit messages for all 4 projects, 2 of them (Couchbase
Java Client and JGit) did not have Issue and Pull Request information on
their GitHub repositories, since they utilize an external issue/review tracker.
However, this distinction in information availability may prove useful in
understanding how much SAR and NFC detection is capable of detecting
potential candidates with limited information.

3.3.4
Data Analysis

Once the aforementioned data was collected, we started the process
of data analysis. While the main steps and results are described in this
paper, additional information about it can be found in the work’s companion
website[48]. The analysis consisted of combining internal quality attribute and
refactoring complexity data with the presence of SARs and NFCs. Thus, this
allowed us to answer the proposed RQs (Section 3.3.1). This analysis was
performed as follows:
Refactoring Complexity and Effectiveness. Once we had access to both
refactoring-related and internal quality attribute data, we were able to de-
termine what would consist as "refactoring complexity", and how this would

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 43

affect their effectiveness. Originally, we intended to determine complexity as
a combination of how many refactoring types were used in a composite/single
refactoring, as well as how many code elements were affected. This metric for
affected elements was defined as the amount of unique classes and methods
related to the refactoring in question. However, we decided against using this
metric, as it did not have any relation with refactoring effectiveness in our anal-
ysis. Another potential complexity metric for refactoring exists – the amount
of single refactorings that are part of the same composite, regardless of type.
Nonetheless, we decided against using it, as it was already seen to not affect
refactoring effectiveness in other works [8].

Thus, we defined the metric for refactoring types as the number of unique
detected refactorings that composed either a composite or single refactoring.
In total, we were able to detect up to 52 unique refactoring types, at method
and class level – such as Extract Class, Move Method and Split Attribute –,
through the use of RefMiner. The full list of refactoring types is in the work’s
companion website [48].

To determine refactoring effectiveness, we analyzed each of the four in-
ternal quality attributes (complexity, cohesion, coupling and size) individually,
analyzing how a change in other parameters (refactoring complexity, presence
of SARs and NFCs) affected each attribute. In order to classify a change as
positive, negative or neutral, we used the following criteria: (i) if there was no
positive (reduction) nor negative (increase) change in any metric related to
the attribute, the change was neutral; (ii) if at least one of the metrics related
to the attribute had its value changed, and most metrics changed positively,
the change was classified as positive; (iii) in any other case, it was classified
as negative. Thus, by combining this effectiveness data with complexity data,
we could better understand if they relate with each other, and if so, how they
relate. Thereby, we were able to answer RQ1.
Composite Refactoring. Due to analyzing refactoring complexity – we
needed to group the previously obtained refactorings into composites. To do
so, we first used the range-based heuristic, as defined by Sousa et. al. [50].
This heuristic groups refactorings that affect similar elements in different
points of time as a composite, which would allow us to analyze changes that
spanned multiple commits. Afterwards, we grouped the remaining refactorings
into composites through a commit-based heuristic, also proposed by Sousa et.
al. [50]. This heuristic groups refactorings that were applied in the same commit
as a composite refactoring. Then, the remaining refactorings were classified as
single refactorings. Thus, we were able to group the highest possible amount
of interrelated refactorings into composites, in order to better detect the

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 44

complexity of the refactorings used by the developers when changing the code.
By doing so, we can combine this data with the internal quality attribute
metrics in order to answer RQ1.
Presence of Self-Affirmed Refactorings. By using the previously collected
developer discussions, we were able to automatically detect and classify which
refactorings had a correlated discussion in which a SAR was present. This
was done through keyword-matching, by using a set of 11 keywords and 8
phrases, which are listed in the work’s companion website [48]. The original
set of keywords was based on Ratzinger’s work [42], though we changed the set
in order to improve its accuracy for the data set we used in this work. Thus, by
combining this data with the previously collected complexity and effectiveness
data, we answered RQ2.
Non-Functional Concerns. By using the previously collected developer
discussions, we were able to automatically detect and classify them if they are
NFCs or not. This was also done automatically through keyword-matching,
by using a set of 69 keywords, which are listed in this work’s website [48]. We
decided on the keyword set based on previous manual analyses of the projects’
issue/PR messages. However, as we describe further in Section 3.4, this NFC
classifier has a very low accuracy, but a relatively high recall.

Considering this, we decided to focus our analysis on a manually validated
refactoring sample, designated by the classifier. Thus, we had a final analyzed
group of 196 refactorings. From this group, 92 refactoring changes did not
mention NFRs, while the other 104 did. In addition, 33 refactorings were
related to maintainability, 20 to security, 36 to performance, and 40 to
robustness – with potential intersections between these classifications. As such,
the combination of this manually-validated data with all the aforementioned
data sets allows us to answer RQ3.

3.4
Validation

With the goal of determining the reliability of the automatic detection of
SARs and NFCs, we performed manual validations for each, determining their
precision and recall.

3.4.1
Self-Affirmed Refactoring Validation

For the manual validation of SARs, we selected a set of 124 different
commits split into 63 commits from OKHttp, and 61 commits from Couchbase
Java Client. The set was also divided equally between three different groups:

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 45

(i) commits classified as SAR, and also classified as refactorings by RefMiner;
(ii) commits classified as SAR, but not classified as refactorings by RefMiner,
and; (iii) commits that were not classified as SARs.

We decided to validate commits from these two projects for the following
reasons: (i) both have a high frequency of SARs in relation to other projects –
enabling a more accurate check of which keywords are problematic and which
are missing; and (ii) While OKHttp has available information for commits,
issues, pull requests and comments, Couchbase Java Client only has commit
messages available. Thus, we can test if an actual difference exists in the
accuracy when less information is available. Likewise, the three groups were
decided for the following reasons: (i) ensuring that all keywords in the set
were verified. To do so, we selected SARs from the keyword sets with less
occurrences, and only later did we select those with more common keywords;
(ii) being able to detect if an actual refactoring was present when a SAR was
falsely detected.

We then performed a manual validation with 3 participants – all 3 being
authors of this work, and knowledgeable in the context of refactoring. 2 authors
classified a set of 42 random commits, while one last author classified a set of
40. These classified sets were also equally balanced between the three sets
described previously. In this validation, the participants were asked to identify
the following: (i) if there was any explicit mention of a term or phrase that
would lead to a direct association to a refactoring; (ii) which phrase led them
to understand identify the SAR, and; (iii) which keywords were related to
it. The full results of this validation are available in this work’s companion
website [48].

Through the completed validation, we can quantify the precision and
recall of the SAR detector. From this data set, it had a precision of 81.2%, and
a recall of 91.5% – leading to an F1-Score of 86%. Individually, the precision
was slightly lower for Couchbase Java Client in relation to OKHttp. However,
the classifier had over 80% recall in both projects. This can mean that the
unavailability of other kinds of discussions in two of the four projects analyzed
in this work might not have much impact in the final results.

3.4.2
Non-Functional Concern Validation

Similarly to the SARs validation, we also made efforts in attempting
to manually validate the NFC classifier – which was needed, due to the
complexity involved in identifying NFCs on textual data. First, we performed
a validation of 1200 issues from OKHttp. The data was split into those that

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 46

were detected as NFC and those that were not. This first validation was made
with 6 participants, all of them computer science master/doctorate students
knowledgeable in the context of NFRs. They were asked to classify the issues
as one (or more) of the NFCs used in this study (maintainability, robustness,
security and performance). They were also asked to determine which phrase
led them to their decision, and which keywords in that phrase could be used
to identify and classify that NFC.

Once again, we chose OKHttp due to the high frequency of NFR-related
discussions in that project, as well as the presence of issues and pull requests as
potential discussions to be analyzed. However, we found that the NFC classifier
precision was below-average (50.43%), even if the recall was good (82.66%) for
this data set. As such, we thought that, by allowing the classifier to focus
on commits in which changes actually occurred, and not only issues and pull
requests (which could be closed without any action in the code itself), we could
more accurately classify in terms of their related concerns.

Thus, we then specialized our validation for a new set of 553 commits
in which refactorings occurred – in order to perform the analysis for finding
a potential trend between the presence of NFCs and refactoring effectiveness.
This data set was split between three projects: OKHttp, Couchbase Java Client
and JGit. Thus, we could balance the set between projects in which we have
full information available, as well as projects in which we have only commit
information. We also attempted to balance the data set between mentions to
all four detected NFRs.

This validation was performed by 5 participants – once again, with all of
them being computer science master/doctorate students knowledgeable in the
context of refactoring. The validation process was very similar to the previous
one, though now the participants were also asked to describe how directly the
NFR was mentioned (if it was). In this case, they should identify if the NFR
was directly mentioned in the discussion, or if it could be indirectly derived
from the text under analysis.

Through this second validation, we can quantify the precision and recall
of the NFC classifier – leading to a precision of 53.90% and a recall of 72.13%,
correlating to an F1-score of 61.70%. The low precision might make the use
of the automatically classified data not a good approach for a quantitative
analysis. However, the good recall makes using it to collect a sample of NFC
discussions for validation – as discussed in Section 3.3.4 – a valid approach.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 47

3.5
Results and Discussions

In this section, we present the results that answer the RQs introduced
in Section 3.3.1. We begin by analyzing the correlation between refactoring
complexity and effectiveness (RQ1), then correlating our findings to the
presence of SARs (RQ2) and, finally, correlating all findings to the presence
of NFCs (RQ3). The numerical results for each of the analyses described in
this paper are available on the project’s website [48].

3.5.1
Refactoring Complexity vs. Effectiveness

At first, we attempted to understand how much the increase in refactoring
complexity affects each internal quality attribute of the refactored code. To
this end, we grouped refactorings into 5 categories, based on the number of
different refactoring types they were composed of. Categories 1 to 4 contained
refactorings with 1 to 4 refactoring types, respectively, while category 5+
contained those with 5 or more refactoring types, since these were rare
occurrences and, by combining them, we have a more balanced data set.

Figure 3.2 shows that, for the more complex refactorings – containing
4 or 5+ refactoring types –, the proportion of refactorings that had neutral
effects on the code decreased in all 4 attributes. In average, the difference be-
tween 1 to 5+ was 21.2%, with cohesion having a drastic reduction of 51.4%,
and high reductions in coupling and complexity. Conversely, the proportion
of positive and negative changes also increased. We can also notice that, pro-
portionately, the frequency of negative changes increased more than those of
the positive changes. In some cases (namely coupling and size), the number of
negative changes even overcame the number of positive changes. We observed
a significant difference in the distribution of effectiveness between refactoring
complexity levels for all quality attributes. The difference is with 95% confi-
dence (α = 0.05) using Kruskal-Wallis Chi-Squared test and Dunn’s post-hoc
test with Bonferroni adjustment, except for cohesion (p-value > 0.6). These
increases in the magnitude of effects for more complex refactorings follow what
would be expected – since, when adopting more types of refactorings, the pos-
sibility of making significant improvements (or deteriorations) in code quality
attributes is higher. Thus, complex refactorings could be a risky, but poten-
tially fruitful, endeavor.

Conversely, this increased complexity could also lead to more mistakes
during its execution, and thus potentially cause an increase in negative effects.
This increase in negative effects we experienced, thus, may be due to the lack

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 48

Figure 3.2: Distribution (decimal percentage) of effects based on the refactoring
complexity. Each 0.1 on the horizontal scale represents 10% in change frequency
of the corresponding effectiveness.

of tool support for the application of complex refactorings spanning multiple
refactoring types.

Finding 1: (RQ1) The more complex the refactorings are, the higher
their impact on structural code quality. This impact can be both positive
and negative.

Implications. Our results are interesting, since previous studies that ana-
lyzed other ways of defining refactoring complexity – such as the number of
refactoring instances in a composite [8], or the number of commits in a refac-
toring [8, 50] – found no relation between these complexity indicators and
internal quality attributes. In contrast, our results indicate that the diversity
of types in a refactoring tend to impact internal quality attributes. As such,

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 49

future studies may consider this indicator when evaluating the impact of refac-
toring complexity in internal and external quality attributes. From a practical
point of view, developers can benefit from our findings of how the addition
of more refactoring types to a composite affects the code: the increase in the
risk of causing negative changes, yet the potential for more frequent positive
changes.

3.5.2
SARs vs. Complexity and Effectiveness

By using the information of which refactorings were self-affirmed or not,
we are able to combine them with our previous results to uncover more findings.
To this end, we analyzed the correlation between refactoring complexity and
its self-affirmation, through SARs. Thus, Figure 3.3 presents the frequency of
self-affirmed (Has SAR) and non self-affirmed (No SAR) refactorings composed
of 1, 2, 3, 4, or 5+ refactorings. It can be seen that, while comparing the SAR
and No SAR sets, respectively, the proportion of single refactorings severely
decreased (57% to 34%), while the proportion of complex changes with 5 or
more refactorings severely increased (7% to 28%). The results are statistically
significant, using Wilcoxon Rank-Sum test at 95% confidence level (α = 0.05).

Figure 3.3: The frequency of self-affirmed and non self-affirmed refactorings
composed of 1, 2, 3, 4, or 5+ refactorings.

Thus, our findings reveal that, when the primary focus of developers is to
perform a refactoring – which could be indicated by a self-affirmation of their
refactoring [2] – they tend to perform more complex, and thus, more impactful,
refactorings.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 50

Finding 2: (RQ2) Developers tend to perform more complex refactorings
when they manifest an explicit concern with refactoring.

Figure 3.4 presents the effectiveness of self-affirmed (Has SAR) and non
self-affirmed (No SAR) refactorings. As discussed, we define effectiveness as the
improvement of cohesion, complexity, coupling and size. As in Section 3.5.1,
the frequency of neutral changes also decreased, in average, 7.4%. The results
for effectiveness between SARs vs non-SARs are statistically significant using
Wilcoxon rank sum test at 90% confidence level, except for cohesion (80%
level).

Figure 3.4: The negative, neutral and positive effect of self-affirmed and non
self-affirmed refactorings. Each 0.1 on the horizontal scale represents 10% in
change frequency of the corresponding effectiveness.

Moreover, we also observed that the proportion of negative changes for
SARs increased much more expressively (more than ten times) than the pro-
portion of positive changes. Thus, our results indicate that having refactor-
ings as the developers’ primary focus may actually hinder their effectiveness

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 51

– potentially due to this increase in complexity causing more mistakes in the
refactoring process. One possible reason for these results may be due to the
lack of tool support for applying complex refactorings, as described in other
works [30, 55, 51]. Therefore, we can expect that developers are performing
refactorings mostly manually. Thus, we can summarize the aforementioned
results as the following finding:

Finding 3: (RQ2) Self-affirmed refactorings tend to have a more negative
effect on the code than their counterparts.

Implications. Our results indicate that, when developers explicit their con-
cern in the refactoring process, they tend to do more complex refactorings –
though they also tend to perform worse. This may imply that developers have a
higher concern with the refactoring process when they apply complex refactor-
ings. Thus, they tend to explicit their refactorings concern on the commit mes-
sages. Consequently, it is surprising that they also yield more negative results.
Knowing this, developers should be more aware, beyond just the concern they
demonstrated with refactorings, of the process they follow when implement-
ing refactorings. This is important, as the main basic objective of refactoring,
improving the structure of the refactored code, is not being reached.

Interestingly, we also found that over 30% of the validated sample was
detected as an SAR by both the manual validation as well as the automatic
detector – but was not detected as a refactoring by RefMiner. Alongside this,
over 50% of the total commit messages (spanning all projects) were detected
as SARs and were not detected by RefMiner. Thus, this might mean that
developers frequently apply refactorings that differ from those defined by
Fowler [23], and are thus not detected by RefMiner. We also observed that
developers often customize even single refactorings, similar to was reported
by Tenorio et al[51] – which would impact their detection by RefMiner, as
they do not follow the steps defined by Fowler [23].

3.5.3
NFCs vs. Complexity and Effectiveness

In this section, we perform an analysis of how NFCs related to each of
the four NFRs (maintainability, security, performance and robustness), can
affect both the complexity and the effectiveness of their related refactorings.
As described in 3.3.4, we only used a set of 196 refactorings for this analysis,
split into a set of 92 which do not contain mentions to NFRs, and a set of 104
that do. Thus, Figure 3.5 presents the frequency of refactorings composed of 1,

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 52

2, 3, 4, or 5 or more refactoring types – divided into a set of changes in which
there was an explicit concern with one of the four NFRs, and one in which
there was not.

Figure 3.5: The frequency of refactorings composed of 1, 2, 3, 4, or 5 or more
refactorings grouped by the presence of mentions to NFRs.

From this, we can observe that, very similarly to when refactorings
are explicitly mentioned, complex refactorings are more frequent when the
developers express an explicit concern with NFRs. We found no statistical
difference (p-value > 0.6) between them. This is potentially a result of the the
NFR detector’s low accuracy, leading us to use a small validated data set –
further motivating a search for more effective automated NFR detection. Thus,
this can be summarized into the following finding:

Finding 4: (RQ3) Developers usually perform more complex refactorings
when they are explicitly attentive to NFRs.

Finally, we analyzed the impact of refactorings when coupled with NFCs.
First, by analyzing the difference between NFR-related changes for each of the
4 NFRs, we saw that the increase in the negative effects of refactorings was
significant – with no apparent increase in its positive effects. However, positive
changes were still more frequent than negative changes. This correlates to the
findings described in Section 3.5.2 – in which developer concerns reduce the
neutral effects of refactorings, but also increase the possibility for negative
effects. We also focused on the analysis of how mentions to each individual
NFR impacts on the effectiveness of refactorings. Figure 3.6 displays the results

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 53

of this analysis, by showing how each concern relates to affecting the internal
quality attributes. The attributes were analyzed individually by grouping their
related metrics.

Figure 3.6: The negative, neutral and positive effects of refactorings when
coupled with changes in NFRs. Each 0.1 on the horizontal scale represents
10% in change frequency of the corresponding effectiveness.

As expected, refactorings related to maintainability affect all internal
quality attributes rather equally, and with more positive than negative effects,
in general. Refactorings related to robustness also have a similarly-distributed
effect, though with less pronounced negative effects. This is interesting, as
maintainability would be the NFRmost related to refactoring itself, yet it tends
to cause more negative changes, in general, when compared to robustness.

Conversely, refactorings related to either security or performance are very
focused – tending to change a single attribute very positively, while negatively
affecting all others. In the case of security, we found that changes were usually
focused in improving cohesion between elements. Following the principle of
information hiding – it is expected for security-related changes to improve
the cohesion of the code, by keeping information close to only the classes
that use them. However, the fact that they often increase coupling in the
code is surprising as, according to Chowdhury et al [18], high coupling can be

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 54

considered a security flaw, as it may cause a higher propagation of potential
attacks.

In the case of performance, we found that changes were usually focused
on reducing code complexity. Some works also correlate performance to code
complexity-related changes, such as the addition of polymorphism, even with
an increase in the number of sentences [19]. This also corroborates with
our findings, as we detected that refactorings related to performance have a
high frequency of negative effects in size-related metrics. We found statistical
significance for internal quality attribute changes between the NFR types at
95% confidence level for coupling, and at 65% level for cohesion. But, we
did not find statistical difference for code complexity and size. Thus, we can
summarize these results in the following finding:

Finding 5: (RQ3) Refactorings concerned with maintainability and
robustness have a somewhat positive effect distributed through all metrics.
Refactorings concerned with performance and security, however, have very
focused effects – drastically improving one attribute with respect to the
others.

Implications. We observed that when developers explicit their concerns with
NFRs, they tend to perform more complex refactorings, with usually negative
impact. However, by looking more closely at the impact of each concern, we
can see that, usually, maintainability- and robustness-related concerns still
have a mostly positive effect on the code. Security- and performance-related
concerns, however, tend to cause mostly negative effects on the code, even if
they do improve one particular attribute severely. As such, we can derive that
these other concerns that developers may have can cause them to disregard the
refactoring process itself, thus causing the increase in the frequency of negative
changes.

We can also derive that specific concerns may even cause developers
to focus entirely on one specific attribute, with negative impacts over most
other attributes. Thus, when implementing refactorings, developers should
once again be more aware of the followed process – since balancing the
improvement of necessary attributes without negatively affecting others may
change the situation found in these results. This also motivates potential
search-based solutions, since there might be a lack of external support for
suggesting potential changes that attempt to balance improvement for most
affected attributes.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 55

3.6
Threats to Validity

Although we attempted to mitigate them to the best of our ability, this
work contains some threats to its validity, as follows:

Generalizability. We selected 4 projects from different fields (database, net-
work, distributed computing and git integration), and from different develop-
ers. However, the results we found might still not be generalizable to other
contexts (e.g., closed-source projects).

Accuracy of Refactoring Detection. Though RefMiner has high reported
accuracy in many different works, we did not directly evaluate its accuracy for
our set of projects. However, other works have used RefMiner for a similar set
of projects [9], and have reported good accuracy in its detection.

Accuracy of Self-Affirmed Refactoring Detection. Though we did man-
ually validate a sample of the data set in order to identify the detector’s accu-
racy, it still relies on a keyword-based classification to determine whether or
not a refactoring is self-affirmed. Thus, the detector might not be generaliz-
able to other projects, and its accuracy might change with new updates to the
analyzed projects.

Accuracy of NFC Classification. The accuracy of the NFC classifier is still
below-average, even when applied to a specialized data set, which makes it
unreliable for analysis. However, we attempted to mitigate this threat by only
using a manually validated data set from a sample of instances detected by
the classifier.

3.7
Final Remarks

This work attempted to understand the relationships between: (i)
refactoring complexity; (ii) refactoring effectiveness; (iii) refactoring self-
affirmation, and; (iv) the presence of NFCs during the refactoring process, in
improving internal quality attributes. We performed a quantitative analysis of
2648 refactorings, from four different open-source projects. Our results demon-
strate that developers tend to apply more complex refactorings when they are
explicitly concerned with either the refactoring process, or NFRs (i.e., security,
performance, robustness and maintainability). We also observed that complex
refactorings are both more impactful in affecting the code quality, and much
riskier than single refactorings. This is due to the fact that, the more complex
the refactorings are, the higher their positive and negative impact on structural
code quality.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 56

These findings, when combined with other studies, such as the one
proposed by Tenorio et al [51], which proposes that automated refactoring
tools may not currently provide support for customized refactoring, may in fact
present an even more entrenched problem. These available tools in commonly-
used IDEs only support simple, standardized single refactorings – having little
or no support for complex, customized composites. A possible explanation for
the drastic increase in the negative impacts of complex refactorings might be,
thus, that they had to be performed manually, with little aid from supporting
tools. Thus, our work intends to motivate tool developers into improving
support for more complex refactorings composed of multiple different types.

Our results might also drive researchers to understand why developers
tend to make worse refactorings when they explicitly mention their concern
with refactoring. Our findings can also motivate practitioners and researchers
in analyzing how to perform complex, yet effective, refactorings. This can be
helpful, as complex refactorings seem to be more effective at actually impacting
the code than their simpler counterparts.

As future work, we plan on further analyzing how other factors can
impact the refactoring process. We also plan on investigating specific patterns
of complex refactorings, and how they relate to their effectiveness. Finally, we
aim at extracting developers’ goals during the refactoring process to assess
whether additional non-refactoring goals affect how developers refactor their
code.

3.8
Summary

In the study presented in this chapter, we performed the initial steps into
solving the problems presented in Section 1.1.

For Problem 1, i.e., the lack of understanding of to what extent refactor-
ing complexity correlates to their effectiveness, we have seen that the complex-
ity aspect of number of unique transformation types composing a refactoring
is the one most related to refactoring effectiveness. With this, we also discov-
ered that complex refactorings, containing a higher variety of transformations,
are more impactful. Their simpler counterparts, containing only one or two
transformation types, have a higher chance of neutral effects. We described
complex refactorings as being able to offer a higher chance of positive effects
on the refactored design, though at a risk of a higher chance of introducing neg-
ative effects as well. These results reinforce that existing techniques [23] need
to be extended to progressively support developers while they are working
on the various transformations and their compositions to produce a complex

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 3. On the Relation between Complexity, Explicitness, Effectiveness of
Refactorings and Non-Functional Concerns 57

refactoring.
For Problem 2, i.e., the lack of understanding to what extent explicit

refactoring-related concerns relate to refactoring effectiveness, we observed
that, in general, developers explicit their concerns with refactorings through
SARs more often when performing more complex refactorings. However, refac-
torings accompanied by SARs surprisingly tended to have more frequently
negative effects overall than their non-SAR counterparts, even if the frequency
of positive effects was also higher. This observation reveals that developers
need refactoring guidance specialized in a stepwise fashion as they progress
along complex refactoring transformations. Our study is the first to consider
both SARs and non-SARs, and our observations encourage future research to
do the same.

Finally, for Problem 3, i.e, the lack of understanding on how NFCs affect
refactoring usage and effectiveness, we observed that, in general, developers
explicit their concerns with NFCs more often when performing more complex
refactorings. Alongside this, they perform more balanced refactorings, i.e.,
affecting all quality attrbutes equally, when concerned with maintainability and
robustness. In the case of security and performance, however, the refactorings
they perform are very skewed towards improving a specific internal quality
attribute to the detriment of others. This result shows that techniques should
present alternatives to developers in which the other quality attributes could
be either maintained or improved.

In the next chapter, we present a replication of the study presented in
this chapter, though with additions to the dataset and the methodology. The
goals of this replication are to (i) increase both the total and the validated
data set, to check the generalizability of the results; (ii) improve the validation
process, with a stricter methodology; (iii) understand how different SAR
classifiers operate under the same data set, and which is more appropriate
for our set; and (iv) improve our refactoring detection through the usage of
RefactoringMiner 2.0, a new version of the refactoring detection tool used in
the aforementioned work, which can detect a higher variety of refactorings,
with higher accuracy [53].

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



4
Relating Complexity, Explicitness, Effectiveness of Refactor-
ings and Non-Functional Concerns: A Replication Study

The first published work performed through this Master’s research
(Chapter 3) revealed various findings regarding the relation between refac-
toring complexity, refactoring explicitness, NFCs, and refactoring effective-
ness [47]. However, many new developments occurred in the area after the
publication of that work. RefactoringMiner, the tool used for refactoring detec-
tion in the original work, was updated to version 2.0, which included a variety
of new detected refactorings and with increased accuracy [53]. Alongside this,
a state-of-the-art machine learning-based approach for detecting self-affirmed
refactorings was developed [4]. Finally, there was a possibility of improving
certain parts of the methodology and increase the generalizability of its re-
sults.

Thus, we conducted an analysis on four new software projects as well
as re-analyzing data from the original four projects used in the previous work
(Chapter 3). We once again collected data related to refactoring complexity
and effectiveness, as well as developer concerns related to refactoring and four
non-functional requirements. We then performed a strict manual validation of
a sample of the data set, and performed a comparative analysis between our
SAR classifier and the state-of-the-art approach. Then, we then analyzed the
potential relations that could exist between refactoring complexity, refactoring
concerns, and non-functional concerns, with regards to refactoring effective-
ness.

As such, in this chapter, the paper Relating Complexity, Explicitness,
Effectiveness of Refactorings and Non-Functional Concerns: A Replication
Study will be presented in its entirety. The paper’s title is still temporary,
as it is still to be published in a journal in the future. Due to this, Section 3.1
describes themes similar to those already presented in Chapter 1 of this
dissertation, though with Chapter 1 describing it in more detail. Similarly,
Section 3.2 covers the same related works as those discussed in Chapter 2 of
this dissertation, with Chapter 2 once again being in more detail. The sections
were kept in order to preserve the paper in its entirety, but they may be skipped
due to the aforementioned repetition.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 59

Relating Complexity, Explicitness, Effectiveness of Refactorings
and Non-Functional Concerns

A Replication Study

Vinícius Soares,
Anderson Oliveira,
Juliana Alves Pereira

PUC-Rio, Rio de Janeiro, Brazil
[vsoares,aoliveira,juliana]@inf.puc-rio.br

Ana Carla Bibano,
Alessandro Garcia

PUC-Rio, Rio de Janeiro, Brazil
[abibiano,afgarcia]@inf.puc-rio.br

Paulo Roberto Farah1,2
Silvia Regina Vergilio1
1DInf-UFPR, Paraná, Brazil

2UDESC, Santa Catarina, Brazil
[prfarah,silvia]@inf.ufpr.br

Marcelo Schots
Universidade do Estado do Rio de Janeiro,

Rio de Janeiro, Brazil
schots@ime.uerj.br

Caio Silva,
Daniel Coutinho

PUC-Rio, Rio de Janeiro, Brazil
[csilva,dcoutinho]@inf.puc-rio.br

Daniel Oliveira,
Anderson Uchôa

PUC-Rio, Rio de Janeiro, Brazil
[doliveira,auchoa]@inf.puc-rio.br

4.1
Introduction

Refactoring is a key part of software maintenance, consisting of the ap-
plication of one or more transformations on the code, focusing on improving
its quality in order to increase the code’s maintainability [23]. Thus, a refactor-
ing is considered effective when it successfully improves internal code quality
attributes [11, 23, 27, 40], such as enhancing cohesion or reducing coupling,
complexity and size, which are the academy-standard metrics for detecting
problematic code [2]. Empirical studies (see Section 4.2) also show that these
internal quality attributes are not only able to quantify software maintainabil-
ity, but also have relationships with other non-functional requirements, such
as security, performance and robustness.

However, recent studies show that refactorings are not always effective
in terms of improving structural quality attributes [8, 9, 50]. These studies
primarily focus on analyzing if a refactoring is effective or not with regards
to the refactorings’ main characteristics, i.e., which refactoring type is being
used, and to combat which smell. Thus, this means that there are still key
refactoring characteristics that are still lacking in investigation in order to
determine to which extent they relate to refactoring effectiveness. These
characteristics include refactoring complexity, as well as the explicitness of
the developers’ associated concerns when performing such refactorings. For
example, a complex refactoring in which the developer explicitly mentioned
their own concern with the code maintainability could have a different effect
on the software’s structural quality.

Refactorings were originally documented only as singular transforma-
tions. However, developers often apply them in composition, through batch
or composite refactorings. Recent studies have described the many kinds of
composite refactoring patterns used in practice [50]. They can range from a
simple, repeated usage of one or two different transformation types, to com-

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 60

plex processes spanning over 5 different transformation types [9]. This joint
application of various transformation types seems to have some level of cor-
relation to the effectiveness of those refactorings in the improvement of code
quality [47]. Currently, these composite refactorings comprise about half of
the refactorings applied in software projects [8, 34]. Thus, research on these
composite refactorings has been growing in popularity in the last few years [8].

Alongside the application of well-known code refactoring transforma-
tions, developers can have a variety of different concerns, including the im-
provement of code characteristics related to its conformity to non-functional
requirements (NFRs) [30]. However, even though these refactorings are often
applied in practice, explicit mentions about refactoring, and NFR-related con-
cerns are not trivial to be detected alongside such changes. A previous study
developers seemed to be applying more complex refactorings when they ex-
plicitly manifested their refactoring and NFR-related concerns, and that refac-
torings could have recurring effects when paired with a specific NFR-related
concern [47].

In this context, this study intends to replicate and extend the study
performed by Soares et al [47]. To this end, we analyzed a set comprised
of the four projects analyzed by Soares et al [47], as well as four other
projects, thus doubling the size of the original work’s data set in terms of
project count. Alongside this, due to the upgrade to RMiner 2.0 [53] and the
updates to improve the methodology, we have more than tripled the total
number of analyzed refactorings of the original work, obtaining a total of 8,408
refactorings. We have obtained information on both these refactorings’ effects
on internal quality attributes as well as their complexity (number of unique
transformation types). We used the same keyword-based classification method
as the original work, with the same keyword list, which maintained a relatively
high F1-Score of 78%, even with the addition of the new projects. Through
this analysis, we achieved the following findings:

Refactoring Complexity. We were able to confirm that, just like in the
original work, the complexity of a refactoring has a correlation to its effect. As
refactoring complexity increases, both the potential of positive and negative
changes increase as well. Thus, this observation reinforces the importance of
studying refactoring complexity even further, showing that it is a factor that
should be considered when designing and analyzing refactoring techniques.
With proper support, the application of complex refactorings might be able
to achieve truly positive results, when compared to the more commonly-seen
non-positive effects.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 61

Refactoring Explicitness. We were once again able to confirm some of the
results of the original work, as we saw that refactorings in which developers
showed explicit concern with the refactoring process tended to be more
frequently complex than other refactorings. However, differently from the
original work, we have not seen an increase in negative effects. On the contrary,
negative effects were less common in refactorings that were self-affirmed. Thus,
this shows that developers may perform refactorings more effectively if they are
primarily concerned with the refactoring process itself. This does not, however,
exclude the possibility that the lack in tool support can be problematic for
complex refactorings, as was also stated by other works [30, 55, 51].

Non-Functional Concerns. We were unable to replicate the results of the
original work with regards to concerns with NFRs relating to refactoring
effectiveness. This could be justified by the original work not having a large
enough commit sample, as there is no automatic way to classify NFRs
and, thus, they had to use a manually-classified sample. In this work, we
have seen that when developers are concerned with NFRs, especially with
Maintainability, there is an increase in positive effects, and a decrease in
negative effects – though this increase is not very noticeable for Security and
Performance concerns. This, in turn, may suggest that developers concerned
with the quality of the code, in its many aspects, perform more directed,
and thus, more effective changes. This may suggest that a deeper analysis
of potential correlations between refactoring applications and NFR-related
concerns can lead to interesting results.

4.2
Related Work

The primary related work for this study is the original work we have
replicated and extended in this study: “On the Relation between Complexity,
Explicitness, Effectiveness of Refactorings and Non-Functional Concerns”,
by Soares et al [47]. In this work, the authors performed an analysis on a
set of 4 projects, looking to understand the possible relationships between
refactoring complexity, refactoring explicitness, and refactoring effectiveness.
Thus, it differs from our work due to our work extending upon this previous
work’s methodology and data set. Due to this, we have confirmed some of the
findings of this previous work, though in some cases, we have found differing
results.

The remainder of this section is split into the three following groups:
effectiveness, explicitness, and non-functional concerns.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 62

Effectiveness. Alshayeb [5] performed an empirical analysis of three Java
systems, in order to evaluate claims that refactoring improves software quality.
They evaluated possible correlations of the internal quality attributes of
cohesion, coupling, (code) complexity, inheritance and size with the external
quality attributes such as maintainability and testability. They concluded
that refactorings rarely had positive effects on these attributes, being mostly
neutral. Similarly, on the same context of internal quality attributes, Bavota
et al [7] studied whether internal quality attributes or code smells relate
with refactoring needs, based on 11 attributes (including size, coupling and
cohesion) and 10 types of smells. Results showed that the analyzed refactorings
focused on changing components whose quality metrics did not indicate
problems in code.

Once again, regarding internal quality attributes, Chavez et al [17]
investigated how root-canal and floss refactorings relate with internal quality
attributes, including cohesion, coupling, (code) complexity and inheritance.
They found that over 94% of applied refactorings have negative impacts on at
least one internal quality attribute. Moreover, most refactorings improve their
quality attributes, while others keep them unaffected.

On the context of complex refactorings, Bibiano et al [9] performed a
study on 5 different open-source projects, in order to analyze the impact
of incomplete composite refactorings in their quality attributes. They found
that most incomplete composites have a neutral effect on internal quality
– neither increasing nor decreasing code quality. Also on the context of
composite refactorings, Fernandes et al [21] evaluated how composites compare
to single refactorings in improving cohesion, (code) complexity, coupling,
inheritance and size of affected elements. Among the analyzed refactorings,
65% improved attributes associated with their refactoring types, while 35%
kept them unaffected. Thus, while the aforementioned works studied potential
correlations between refactoring effectivness and other factors, they did not
consider refactoring complexity and the presence of non-functional concerns
(NFCs) as potential factors.

Explicitness. The presence of SARs in software development has been only
recently explored – with the term “self-affirmed refactoring” being coined in the
last few years. Ratzinger [42] proposed a phrase-based approach to detecting
developer discussions related to refactorings. In the explored context, the goal
was the prediction of potential refactorings, which they achieved with a high
accuracy. Likewise, for SAR-related research, AlOmar et al [2] performed an
empirical study on SARs in order to identify if academia-standard design
metrics reflect what developers consider as quality. Results indicate that, for

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 63

cohesion, coupling, (code) complexity, and inheritance, the academia-standard
metrics do reflect developers’ definition of quality. However, for encapsulation,
abstraction, and design size, there is a mismatch on how metrics were proposed
and how they are used in practice. While both of the aforementioned works
analyzed the presence of SARs, they did not analyze a potential correlation
with the complexity and effectiveness of refactorings performed in the code.

Non-Functional Requirements The relationship between internal quality
attributes and NFRs is addressed by a number of works. Thus, we focus our
analysis on works addressing the NFRs that compose the NFCs analyzed in
this work.

Regarding performance, Siegmund et al [45] analyzed refactorings’ ef-
fects on the performance of software product lines. Refactorings such as Inline
Method and Inline Class can reduce the execution time on method calls, thus
improving performance. Also, Gotz et al [26] showed that removing code del-
egation and indirection can improve software performance by around 50%.
Demeyer [19] reported performance improvements after replacing conditional
statements with call methods through polymorphism. Some works also ana-
lyzed the relation between size, defined in terms of code statements, and per-
formance [41, 24]. Smith et al [46] discussed performance anti-patterns based
on coupling, cohesion, and (code) complexity of the inheritance hierarchy, con-
cluding that God Classes are detrimental to software performance.

In the context of robustness, it is common to use exception flow infor-
mation [12, 13]. It aims to improve code reliability by providing constructs for
sectioning code into exception scopes (e.g. try blocks) and exception handlers
(e.g. catch blocks). Jakobus et al [28] evaluated the robustness of 50 projects by
using the internal quality attributes of size and (code) complexity. Their find-
ings suggest that exception handlers are usually simplistic, and that developers
often pay little attention to exception scoping and behavior handling.

We also found works relating internal quality attributes to security.
Chowdhury et al [18] evaluated how internal quality metrics of coupling,
cohesion, and (code) complexity can indicate security risks in software. They
concluded that size metrics can indicate structures that could be exploited to
cause a denial of service attacks, while coupling can impact on how damage
may propagate to other components of the software. Yet, their results showed
that these metrics are not sufficient to indicate specific vulnerability types.
Other studies[44, 33] also support these findings.

The identification of NFCs in text and developer discussions has also
been explored. Lu et al [31] proposed an automatic classification of user
reviews into concerns with four NFR types: reliability, usability, portability and

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 64

performance. They evaluated the combinations of the classification techniques
and machine learning algorithms with user reviews collected from two popular
mobile apps from different platforms and domains. Results show that a
combination of algorithms achieves an F-measure of 71.8%. Casamayor et
al [14] applied a semi-supervised learning approach to identify NFCs in textual
specifications, using a collection of requirements-related documents from 15
different software development projects, consisting of 370 mentions to NFRs
and 255 functional ones.

While these works analyzed the applications of refactoring on the context
of NFRs, all of them focused on how refactorings could be used in order to
improve attributes specific to each NFR. Our work, on the other hand, focuses
on how developer concerns with specific NFRs can affect the refactoring’s
effectiveness, both in general, and looking at each specific internal quality
attribute.

4.3
Methodology

In this section, we describe the methodology adopted in our study. Due
to this being a replication, and extension, of a previous study, similarities
and differences between the two methodologies will be highlighted. Similar
to the original work, the main goal of this work is to investigate to what
extent refactoring complexity, as well as quality-related developer concerns
(explicitness, and NFR-related concerns), relates to its effectiveness, i.e., the
improvement of the software’s internal quality attributes.

4.3.1
Research Questions

Our analysis is guided by the following three research questions, similarly
to the original work:

– RQ1. Is the complexity of refactorings related to their effective-
ness? In the original work, the authors proposed a potential correlation
between refactoring complexity and their effectiveness. Thus, with RQ1,
we aim at not only possibly confirming its existence, but also understand-
ing its nature. In this work, we use the same definition for complexity as
the original work, i.e., the number of different refactoring types that com-
pose the applied refactoring. Similarly, we also use the same definition for
effectiveness as the original work, i.e., the impact of the refactoring in im-
proving internal quality attributes by improving their associated metrics.
We fully explain the reasoning for these definitions in Section 4.3.4.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 65

– RQ2. Are refactorings’ complexity and effectiveness related
to their explicitness? The original work also showed a potential
correlation between refactoring explicitness and both their complexity
and effectiveness. Thus, RQ2 attempts to confirm the existence of such
correlation, as well as understanding how it affects the correlated factors.
This explicitness follows the same definition as the original work, i.e., the
presence of a SAR in either a commit message, issue or pull request (or
comment) related to the changes where a refactoring was applied.

– RQ3. Do NFCs relate to refactoring effectiveness? Finally, the
original work showed a potential correlation between NFCs and refactor-
ing complexity and effectiveness. Thus, RQ3 has at its goal an attempt
at confirming the existence of such correlation, as well as understand-
ing how it affects the correlated factors, similarly to how RQ2 analyzes
refactoring explicitness. In this work, we define NFCs in the same man-
ner as they were defined in the original work, i.e., as the presence of one
of four analyzed NFRs in either a commit message, issue or pull request
(or comment) related to the changes where a refactoring was applied.

The choices and artifacts analyzed to answer the research questions are
listed as follows:

Selection of Internal Quality Attributes. We kept the same internal
quality attributes used in the original work: cohesion, (code) complexity,
coupling and size. These attributes are not only already used by a variety
of other works [9], but they are also connected to the NFRs chosen for this
work (e.g., size and complexity correlates to performance).

Selection of Non-Functional Requirements.We also kept the same NFRs
as the original work: Maintainability, Robustness, Performance and Security.
Maintainability can be considered the primary concern of refactoring, as the
main goal of refactoring transformations is the improvement of code maintain-
ability. As for the other NFRs, they have some level of correlation to refactoring
processes. Robustness can be improved by reorganizing modules in order to in-
tegrate patterns geared at error handling (e.g., Chain of Responsibility [25]).
Performance can be improved through refactoring out code redundancies, as
well as fixing sub-optimal distributions of code entities.

The methodology we adopted is an adaptation of the original work’s
methodology, with the addition of four new projects, as well as the adoption of
more strict methodology processes, in order to improve the potential statistical
accuracy of this work. Thus, Figure 4.1 summarizes the methodology we
adopted to answer the research questions. First, we selected a set of eight

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 66

projects, a combination of the four projects from the original work, as well as
an additional four, chosen based on the criteria described in Section 4.3.2. With
these projects, we then collected data regarding internal quality attributes,
refactorings and developer discussions from all eight projects. This process is
further described in Section 4.3.3. Finally, we then performed an analysis of
the resulting data set, in order to group the individual transformations into
composite refactorings (see Section 4.3.4), as well as the collection of data
about refactoring effectiveness. Then, we classified the developer discussions
connected to each commit based on the presence of SARs and NFCs. This
resulting data set was then used in order to answer the proposed RQs.

Figure 4.1: Adopted methodology.

4.3.2
Project Selection

We followed similar criteria to the original paper for project selection in
this work. We kept the 4 projects from the previous work: Couchbase Java
Client, Dubbo, OKHttp and JGit. However, we also added a new set of 4
projects: Fresco, RxJava, Presto and Netty. These four new projects bring new

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 67

points of view, as they are from different developers from the original four, have
different ways of writing commit messages, and have different goals compared
to the original four systems. The choice of doubling the amount of projects
was made to balance both the time cost of analyzing each individual project,
while still bringing a high amount of new data. These projects were chosen
using the following criteria:
Java Open Source Projects. First of all, the project must be both open-
source, and have Java as its primary language. The usage of open-source
projects improves the work’s replicability, while the usage of Java projects
means we have access to a variety of support from outside tools, especially for
analyzing structural quality.

Number of Contributors and Activity. For this criteria, it means
that the project must both still be active at the time of analysis, as well as
having a considerable number of contributors. This means that the project
can more accurately represent the state of the industry throughout the years,
including current times. Also, with the projects having a significant amount
of contributors, it allows us to collect and analyze a larger set of developer
discussions, essential for SAR and NFC detection.
Project Age. For this criteria, the project must be at least 5 years old a
the time of the analysis. With this, we can more clearly see the potential
architecture degradation that occurred over the project’s lifespan, which is
more common in older projects, which then allows us to see the developers’
actions to mitigate such degradation.

Variety of Refactoring Types. For this criteria, the project must
have undergone the application of a large variety of different refactoring
transformations (as defined by Fowler et al [23]) used throughout its lifespan.
With this, we can more clearly analyze the complexity of these refactoring
actions, which uses different transformation types as its main metric.

4.3.3
Data Collection

With the intent to answer the previously-stated RQs, we performed data
collection, extracting data from three different groups: (i) Structural Qual-
ity Data, composed of the internal quality attributes for each element of
the project, required for determining refactoring effectiveness; (ii) Refactor-
ing Data, composed of which refactoring transformations were applied in each
commit, required for determining the presence of refactoring, and refactoring
complexity, and; (iii) Developer Discussions, composed of both commit mes-
sages and issues/pull requests, which are required for the classification of SARs

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 68

and NFCs. With this data, we are then able to perform a correlation analysis
in order to determine the potential relationships between them, thus confirm-
ing (or refuting) the ones described by Soares et al [47] in the original paper.
This collection process is described in more detail as follows:
Structural Quality Data. As previously stated, structural quality data is
comprised of the internal quality attributes for each element of the project.
Thus, we first collected metrics related to those internal quality attributes,
in order to quantify the project quality. For this, we used the Understand
tool [54]. It is a static code analysis tool, which collects metrics related to the
internal quality attributes from each element in each commit of each project.
Thus, we can then analyze the metrics in each pair of subsequent commits
in order to determine the changes in quality caused by each commit – which
then allows us to classify the changes as improving, or worsening, the state
of each attribute. Similarly to the original work, however, we have collected
only a subset of Understand’s metrics, in order to balance out the metric
amount in each attribute, comprised of a total of 15 metrics, listed in the
work’s companion website [49].
Refactoring Data. As previously stated, refactoring data is comprised of a
listing of which refactoring transformations were applied in each commit. Thus,
in order to detect, and classify these refactorings based on the transformations
proposed by Fowler et al [23], we used the RefactoringMiner 2.0 tool [53],
an updated version of the RefactoringMiner tool used in the original work.
This new version of the tool collects a large variety of refactoring information,
including 40 different refactoring types, up from the original version’s 15, from
each commit a Java project. Alongside this, it also has a high reported precision
of 99%, with a recall of 94% [53]. Thus, this makes RefactoringMiner a very
reliable tool for refactoring detection and classification.
Developer Discussions. Developer discussion data is comprised of discus-
sions logged in the projects’ repositories, during their evolution. Thus, we used
the GitHub API to extract the following items from the repositories of the se-
lected projects: (i) Commit Messages; (ii) Issues and Pull Requests. Similarly
to the original project, Couchbase Java Client and JGit did not have Issue
and Pull Request data, and thus were only comprised of Commit Messages.
However, as described by Soares et al [47], SAR detection is still accurate even
with only this information.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 69

4.3.4
Data Analysis

Once the data collection process was finished, we began the data analysis
process. Due to space-related concerns, some additional information about
this process can be found in the work’s companion website [49], though
all of the main steps and results are described in this paper. The analysis
process had at its goal combining the data related to refactoring effectiveness
with that related to refactoring complexity, refactoring explicitness, and non-
functional concerns. This, in turn, would allow us to answer our proposed RQs
(Section 4.3.1). This analysis was performed as follows:
Refactoring Complexity and Effectiveness. Through structural quality
and refactoring data, we were able to determine both refactoring complexity
and refactoring effectiveness. The original work by Soares et al [47] already
described that both the number of individual transformations, as well as the
number of affected code elements in a refactoring have no relation to refactoring
effectiveness. However, one aspect of refactoring complexity that does is the
number of unique transformation types used in each refactoring. Thus, this was
the chosen metric for refactoring complexity. In total, we were able to extract 40
unique transformation types with RefactoringMiner 2.0, at both method and
class level – such as Extract Superclass, Inline Method, andMove Attribute. The
full list of supported refactoring types is in the work’s companion website [49].

For refactoring effectiveness, we analyzed the metrics of each internal
quality attribute – (code) complexity, cohesion, coupling and size –, and how
they changed from one commit to another, when a refactoring was applied.
In order to determine each change as positive, negative or neutral, we first
determined which elements were affected by the refactorings in a specific
commit. Then, we determined which changes occurred to the metrics in the
internal quality attributes of these elements between the previous and the
current commit. Finally, we used the following criteria: (i) if at least one
of the metrics related to a specific attribute changed positively between
the two versions, we classified the change as positive; (ii) if no positive
changes occurred, and at least one of the metrics changed negatively, we
classified the change as negative; (iii) finally, if none of the previous two
conditions were fulfilled, we classified the change as neutral. This mirrors
the classification performed in the original work [47]. Thus, by combining
refactoring effectiveness and complexity data, we are able to better understand
whether and how they relate to each other – answering RQ1.
Grouping of Transformations in Refactorings. In order to correctly de-
termine refactoring complexity, we needed to group individual transformations

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 70

into single, or composite, refactorings. To do so, we utilized the commit-based
heuristic, proposed by Sousa et. al. [50]. This means that all transformations
applied in the same commit are considered as part of the same composite
refactoring. The rationale is that these within-commit transformations are co-
hesively contributing to the same task. Thus, they should be analyzed as com-
posing a well-cohesive refactoring. Finally, the remaining refactorings were
classified as single refactorings. Thus, this allows us to keep the commit as
our main unit of time, allowing us to more easily determine the relationship
between SARs and NFCs (which are directly correlated to a single commit)
and the refactoring actions themselves. With this, we strike a balance in how
many transformations we can combine into composite refactorings, and how
much we can ensure that the SARs and NFCs are directly correlated to the
changes being analyzed. Thus, by doing so, we can combine this data with the
internal quality attribute metrics in order to answer RQ1.
Presence of Self-Affirmed Refactorings. For the detection and classifi-
cation of SARs, we used the same approach as the one defined by Soares et
al [47], by creating an automatic, keyword-based classifier that matches a set
of 11 keywords and 8 key-phrases with the developer discussions in order to
determine if refactoring was discussed or not. The original keyword set they
developed was based on Ratzinger’s work [42], with the keyword set changed
in order to improve its accuracy for the projects they were analyzing. Initially,
we considered using a state-of-the-art machine learning-based classifier [4], but
through our validation process (described in more detail in Section 4.4), we
found out that the original keyword-based classifier, even without changing
the keywords, had a higher accuracy in SAR detection with our new set of 4
projects. Thus, by combining this data with the previously collected complex-
ity and effectiveness data, we are able to answer RQ2.
Non-Functional Concerns. For NFC detection and classification, the origi-
nal work already described the very low accuracy of NFC detectors [47]. Thus,
we skipped this step in this work, and performed the NFC detection and clas-
sification manually (this process is described in more detail in Section 4.4).
By combining the NFC data set from the original work with our new set, we
were able to have a manually-validated set of 775 commits. Thus, by using this
manually-validated set, we can answer RQ3.

4.4
Validation

With the goal of (i) determining the trustability on the automatic SAR
classification, and (ii) forming a manually classified data set of NFCs, we

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 71

performed a manual validation with a subset of commits from the 4 new
projects. The reason we focused on performing a validation on only the four
new projects is due to the original work already releasing their own validated
data set, thus allowing us to combine both sets to perform further verifications.

4.4.1
The Validation Process

For this new manual validation, we decided to perform both the SAR
and NFC validation in the same set of commits. Thus, we selected a set of 56
commits from each project, forming a complete set of 224 different commits.
This set was divided equally into four different groups, based on the results
from the automatic SAR detection, and RefactoringMiner’s refactorings: (i)
commits classified as SAR, and classified as refactorings by RMiner; (ii)
commits classified as SAR, but not classified as refactorings by RMiner; (iii)
commits not classified as SAR, but classified as refactorings by RMiner, and;
(iv) commits not classified as SAR, and also not classified as refactorings by
RMiner.

By equally splitting the data set between the four projects, we can
mitigate potentially biased results from focusing too much on a single project.
And by splitting the results in those four categories, we can be able to detect
interesting results, such as possible non-standard refactorings (classified as
SAR, but not detected by RMiner), as well as have initial ideas about the
frequency of actual SARs vs. refactorings in which no SAR was present.

This validation was performed with 7 participants – all 7 being knowl-
edgeable in both the context of refactoring and NFRs. Alongside this, we also
gave them a document with clear definitions of refactorings, self-affirmed refac-
torings, and NFRs/NFCs. This validation was done in two steps: first, each
participant would validate a set of 32 commits, equally split between the four
projects. Once all validations in the first step were completed, the sets were re-
shuffled, ensuring no participant had a repeating commit, and a second round
of validations were performed. Finally, with both validations complete, 2 au-
thors from this work then determined, for each conflicting classification, based
on their own experience, and the confidence of the answers by the participants,
which classification would be kept. The participants were asked to identify the
following: (i) if the commit contained a SAR in any of its discussions; (ii) which
sentence, and in which location (commit message, issue, etc.) was the SAR lo-
cated; (iii) which keywords in the sentence could be used to detect the SAR;
(iv) if any NFC was present, and which sentences contained potential NFCs;
(v) if a maintainability-related NFC was present; (vi) if a robustness-related

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 72

NFC was present; (vii) if a performance-related NFC was present, and; (viii) if
a security-related NFC was present. Finally, for (i), (v), (vi), (vii), and (viii),
the participants were asked to determine, in a scale of 1 to 5, which confi-
dence level they had in their classification. The full results of this validation
are available in this work’s companion website [49].

4.4.2
Self-Affirmed Refactoring Validation

With the results of this validation, we are then able to quantify the
precision and the recall of the SAR detector. Using only this new classification,
the resulting precision was of 69.7%, while the recall was of 80%, thus leading to
an F1-Score of 74.5%. As previously mentioned, however, we considered using
the state-of-the-art machine learning-based classifier proposed by AlOmar et
al [4]. Thus, we used the Azure service the authors made available in the paper’s
website 1 to classify this validated dataset, in order to determine its accuracy
for these four projects. However, this classifier was only able to reach a precision
of 52.3%, with a recall of 80.3%, thus leading to an F1-Score of 63.3%. With
these results, we could see that, even without changing the keyword set, the
keyword-based classifier still had a higher accuracy overall, so we decided to
use the same classifier as the original work. Finally, by considering both the
original work’s validated set, and the newly-validated set, the keyword-based
classifier reaches a precision of 74.9%, and a recall of 81.4%, thus leading to
an F1-Score of 78%.

4.4.3
Non-Functional Concern Validation

By using the same validation methodology as previously described in
Section 4.4.1, we are also able to form a manually-validated set of commits,
based on the presence of NFCs. Due to the original work’s classifier being
unable to reach a high accuracy [47], we decided to completely abandon the
automatic classification, and simply validate them manually in order to have a
data set to perform NFC analyses on. Thus, by combining this new classified
set with the original validated set released by Soares et al on their project’s
website [47], we were able to have the set of 775 classified commits, as described
in Section 4.3. From this group, 407 mentioned NFRs in their discussions, while
367 did not. Considering each individual NFR, we had 197 refactorings related
to Maintainability, 126 related to Robustness, 86 related to Performance, and
40 related to Security, including refactorings that can be classified as multiple
types.

1This was performed on July of 2021.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 73

4.5
Results and Discussions

In this section, we present the results of our analysis on the data, which
answers the RQs introduced in Section 4.3.1. First, we perform an analysis
on the potential relationship between refactoring complexity and effectiveness
(RQ1). Then, we perform an analysis on the results of RQ1 with regards
to the presence of SARs (RQ2). Finally, we then correlate the findings of
RQ1 with the presence of NFCs (RQ3). While we describe the results in this
paper, the numerical results for each of the described analyses is available on
the project’s website [49].

4.5.1
Refactoring Complexity vs. Effectiveness

As our first goal, we focused on understanding how the different levels
of refactoring complexity interacts with refactoring effectiveness, when applied
to each internal quality attribute of the refactored code. We kept the original
work’s 5 categories, which divided commits into complexity levels based on
the number of different transformation types in a refactoring. Thus, categories
1 to 4 contained refactorings composed of 1 to 4 transformation types, while
category 5+ contained those with 5 or more transformation types, as once the
number goes above 5, it tends to vary a lot – thus making it better to group
them, and consider that group as the most complex kinds of refactorings. The
results of this analysis are in Figure 4.2.

In Figure 4.2, it is possible to see that as complexity increases, so does
the impact of refactorings – similarly to one of the findings of the previous
work. This is signified by the reduction in neutral effects, thus making it more
possible to have a non-neutral effect, or, in other words, an impactful effect.
Considering all projects, the average percentage of neutral effects reduced from
28% (at complexity 1) to 5.5% (at complexity 5+) – a very large reduction.
While not as intense as the neutral effects, there was also a clear reduction in
the frequency of negative effects – the average began at 34%, and reduced to
11.6%. This differs from the original work of Soares et al [47], as the increase
in negative effects on high-complexity refactorings reported in their work did
not occur. By using a the Kruskal-Wallis test, we could see that the statistical
significance for the results found in (code) Complexity and Coupling are quite
close to significant (p-values < 0.06). However, the results for Cohesion, and
especially Size did not achieve the same statistical significance (p-values of 0.10
and 0.19, respectively)

In fact, in these results, it is possible to see that the positive effects

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 74

Figure 4.2: Distribution (decimal percentage) of effects based on the refactoring
complexity. Each 0.1 on the horizontal scale represents 10% in change frequency
of the corresponding effectiveness.

increased dramatically, while the non-positive effects drastically reduced in
frequency as the complexity increased. This means that high-complexity
refactorings, i.e., those that combine a high variety of different transformation
types into a single, large refactoring, can have significantly better effects on
the code. Thus, this means that the increased effort of complex refactorings
might be a worthy endeavor, as the potential for positive results is clearly
seen. Alongside this, the inherent effort of applying complex refactorings can
be reduced by improvements in automated tool support, which can allow for a
much easier application of complex refactorings, spanning a variety of possible
transformations.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 75

Finding 1: (RQ1) As refactoring complexity increases, the frequency of
positive effects on the code increase with it – thus reducing the possibility
of refactorings causing non-positive effects.

Implications. The results of this RQ are interesting, as it confirms the
previous study’s findings about refactoring complexity, when defined as the
number of different transformation types that compose a refactoring, is related
to refactoring effectiveness. As such, this can be an interesting point for
future studies – an understanding of to what extent specific combinations
can influence refactoring effectiveness. For developers, the results of this work
can benefit from the understanding that, even though the effort is higher, the
application of complex refactorings is worth pursuing, with a high potential
for frequent positive changes.

4.5.2
SARs vs. Complexity and Effectiveness

Thus, by taking the information related to refactoring explicitness (i.e.,
the presence of SARs), we are able to combine them with the results of
RQ1 in order to achieve new findings. For this end, Figure 4.3 presents the
difference in frequency of refactorings with different complexity levels between
the refactoring set where SARs were not present, and the refactoring set in
which SARs were present, respectively. By performing this comparison, we
can understand if explicit refactoring-related concerns during the refactoring
process can actually be related to the effectiveness of the applied refactoring.
Comparing the two, it is possible to see that, between the non-SAR and
the SAR sets, respectively, the proportion of single refactorings decreased
(46.8% to 32%), while the proportion of complex changes (5+ transformation
types) increased (14.3% to 26.6%). By using the Wilcoxon Rank-Sum Test
to determine the statistical significance of the results, we can see a resulting
p-value of 0.008, thus showing that these results are statistically significant
(p-value < 0.05).

With this, our findings confirm the ones from the original paper – explicit
refactorings are more frequently complex than their non-explicit counterparts.
However, there is a difference between the two works, as in this result, the more
complex refactorings (5+) were already much more common even in the non-
SAR data set, which might have been caused by the increase in the amount
of transformation types from Refactoring Miner 2.0. With these results, we
could then say that, when the developers are concerned with refactoring, to
the point of expressing and documenting their concern explicitly, represented

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 76

Figure 4.3: The frequency of self-affirmed and non self-affirmed refactorings
composed of 1, 2, 3, 4, or 5+ refactorings.

through a self-affirmation of their refactoring [2] – they tend to perform more
complex refactorings, spanning a variety of different refactoring types.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 77

Finding 2: (RQ2) When developers manifest an explicit concern with
refactorings, they also tend to perform refactorings containing a higher
variety of transformation types.

By then analyzing the potential relationship between the presence of
SARs and refactoring effectiveness, we reached the results presented in Fig-
ure 4.4. Keeping the same definition of complexity between the four internal
quality attributes, we can see the following results: Between non-SARs and
SARs, respectively, the percentage of neutral changes did not change much,
in average (20.4% to 20.3%), while the percentage of negative effects visibly
reduced (28.2% to 19.1%). Comparing these results with the ones described
by Soares et al [47], we can see that the conclusions clearly differ. In Soares et
al’s work, they described SARs as having usually more detrimental changes,
increasing the frequency of negative effects. On the other hand, in our work,
we show SARs as having a definite increase in positive changes, mainly reduc-
ing the frequency of negative effects. By performing the Wilcoxon Rank-Sum
Test on these results in order to test their statistical significance, all internal
quality attributes reached the same p-values of 0.1.

Figure 4.4: The negative, neutral and positive effect of self-affirmed and non
self-affirmed refactorings. Each 0.1 on the horizontal scale represents 10% in
change frequency of the corresponding effectiveness.

This result is very different from the one found by the work by Soares et
al [47]. The original work described SARs as having a much more frequently

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 78

negative effect on the code in comparison to their non-SAR counterparts. Our
work directly contradicts this finding, as the frequency of negative effects was
the only aspect which was visibly reduced between the non-SAR and SAR data
sets. Thus, our results show that when developers explicitly show their concern
with refactorings, they tend to make refactorings with less negative effects on
the code: the possibility of neutral effects stays the same, but the possibility
of positive effects is larger. This might mean that developers do perform more
effective refactorings when their primary concern is the refactoring process
itself, which is an effect that can be even more intensified by a proper aid of tool
support for the application of complex refactorings (which are more common
in SARs), as other works describe the current state of refactoring support tools
as lacking [30, 55, 51]. Thus, we can summarize the aforementioned results as
the following finding:

Finding 3: (RQ2) When a developer explicitly describes their concern
with refactorings through self-affirmed refactorings, they also more fre-
quently perform refactorings with less negative effects on the code, com-
pared to their non-SAR counterparts.

Implications. These results confirm the previous work’s findings of developers
performing more complex refactorings when they make their concern explicit
along the change process. Thus, this might mean that developers write about
their refactoring processes in commit messages more often when the refactor-
ings reach higher levels of complexity. However, our results also contradict the
previous work’s findings regarding refactoring explicitness’s effects on refactor-
ing effectiveness – as we found that refactorings in which developers explicitly
talk about the refactoring process have usually less negative effects on the
code.

These new results make sense, considering the increase in refactoring
complexity, and the effects of complexity on refactoring effectiveness. Thus,
this means that developer concerns can, in fact, influence the effectiveness of
the refactorings they apply. As such, this means that correlating developer
concerns and refactoring usage can be an interesting research direction for
future studies. For practitioners, our findings imply that a good documentation
process is important for refactorings, potentially letting collaborators uncover
and fix errors in the process before the proponent commit. Undocumented
refactorings can remain unnoticed, and negative effects can easily find their
way into the code base.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 79

Alongside this, in the previous work, it was reported that around 30%
of the refactorings classified as SARs by the manual validations were not de-
tected as refactorings by RefactoringMiner. This leads the authors to believe
that those SARs included applications of refactorings that were not supported
by RefactoringMiner. In this work, with the usage of RefactoringMiner 2.0,
the percentage of SARs (as classified by the manual validations) that were
not detected as refactorings by RefactoringMiner was only 6%. This means
that RefactoringMiner’s updates did cause it to detect a larger, more real-
istic variety of refactorings that appeared in SARs and were not previously
collected. However, the remaining 6% SARs undetected by RefactoringMiner
could show that developers may apply refactorings that do not necessarily fit
the refactoring types described by Fowler et al [23] and, thus, are undetected
by RefactoringMiner.

4.5.3
NFCs vs. Complexity and Effectiveness

Finally, we analyze whether and how concerns with each of the four
NFRs (maintainability, robustness, performance and security) can affect both
the complexity and the efficiency of the refactorings applied in their associated
commits. Due to there not being an automated solution for NFR classification,
we have done this process manually (as detailed in Section 4.4), having a total
set of 407 validated commits in which NFRs were mentioned, and another set
of 367 in which no NFRs were mentioned. Thus, Figure 4.5 shows the frequency
of refactorings in each complexity category (1, 2, 3, 4 or 5+), comparing those
in which NFRs were present with the set in which no NFRs were mentioned.

Once again, we can see that, very similarly to what occurred between
SARs and non-SARs, complex refactorings are more common when developers
are explicitly expressing their NFCs. Unfortunately, similarly to the original
work, we were unable to achieve complete statistical significance for the results
of this RQ, even with the increased data set. By applying the Wilcoxon Rank-
Sum Test between the NFR and non-NFR distributions, the resulting p-value
was 0.91, a resulting value far from statistical significance. The previously-
described results can be summarized into the following finding:

Finding 4: (RQ3) When explicitly showing concerns with NFRs, devel-
opers perform more complex refactorings with a higher frequency.

Once this was done, we then analyzed the potential relationship between
NFCs and refactoring effectiveness. To do so, we analyzed the difference

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 80

Figure 4.5: The frequency of refactorings composed of 1, 2, 3, 4, or 5 or more
refactorings grouped by the presence of NFCs.
between NFR-related changes for each one of the four NFRs. Finally, we
analyzed the impact of refactorings when coupled with NFCs. First, by
analyzing the difference between NFR-related changes for each of the 4 NFRs,
we saw that the increase in the negative effects of refactorings was significant
– with no apparent increase in its positive effects. However, positive changes
were still more frequent than negative changes. This correlates to the findings

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 81

described in Section 4.5.2 – in which developer concerns reduce the neutral
effects of refactorings, but also increase the possibility for negative effects. We
also focused on the analysis of how mentions to each individual NFR impacts on
the effectiveness of refactorings. Figure 4.6 provides the results of this analysis,
by showing how each concern relates to affecting the internal quality attributes.
The attributes were analyzed individually by grouping their related metrics.

Figure 4.6: The negative, neutral and positive effects of refactorings when
coupled with changes in NFRs (considering only the validated data set).
Each 0.1 on the horizontal scale represents 10% in change frequency of the
corresponding effectiveness.

Considering only the validated data set, we can see that refactorings in
which developers were concerned with NFRs tended to have a slight increase in
frequency of positive effects, when compared to the non-NFR set. Of the NFR
groups, refactorings with a focus on Maintainability, Performance and Security
tended to have more positive effects (averaging on around 66% of refactorings
being positive), while Robustness had a lower average (61%), though it was
still more than those without NFRs (56%). Individually analyzing each internal
quality attribute, Maintainability and Performance seemed to have more

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 82

balanced effects (ranging from 60-70% of the refactorings being positive), while
Robustness and Security seemed to have more skewed effects (ranging from 45
to 80% of the refactorings being positive).

Thus, this partially contradicts the findings of the original work, which
stated that Maintainability and Robustness had balanced effects, while Perfor-
mance and Security were skewed towards specific internal quality attributes.
In these results, while Maintainability kept its balanced results, refactorings
applied when developers were concerned with Robustness tended to lack im-
provements to Coupling. On the other hand, Security kept its skewed results,
though this time with most refactorings causing improvements to Size, while
refactorings applied when developers were concerned with Performance had
balanced results, similar to those of Maintainability. Similarly to the original
work, we were also unable to find complete statistical significance for the re-
sults of this finding. However, in this case, the correlations between Coupling
and the NFR Types, with the usage of the Kruskall-Wallis test, reached a rel-
atively low p-value of 0.07. Meanwhile, Cohesion, (code) Complexity and Size
reached p-values of 0.24, 0.16 and 0.33, respectively. The previously-described
results can be summarized in the following finding:

Finding 5: (RQ3) Refactorings applied when developers are concerned
with NFRs have more positive effects than those in which they do not show
such explicit concern. When developers are concerned with Maintainability
or Performance, they tend to make more balanced refactorings in terms of
the internal quality attributes of the code. Conversely, when they apply
refactorings while concerned with Robustness or Security, they tend to
have skewed results, with regards to the internal quality attributes.

Implications. We first observed that refactorings applied when developers
were concerned with NFRs had similar, though slightly different effects than
those applied when developers were concerned with refactorings. While both
NFRs and SARs led to more positive effects in refactorings, SARs had
less negative effects overall, while keeping the frequency of neutral effects.
Conversely, NFRs other than Maintainability led to less neutral effects overall,
while keeping the frequency of negative effects, while Maintainability led to
effects similar to those observed in the SARs, as expected. This might mean
that mixing different concerns into a single change may be risky, as it keeps a
non-negligible chance of the refactorings having a negative effect overall – which
is mitigated when developers are mainly concerned with Maintainability.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 83

4.6
Threats to Validity

Although we performed a variety of actions to attempt to mitigate
potential threats to the validity of this work to the best of our ability, some
threats still remain, described as follows:

Generalizability. While we now selected a total group of 8 projects, from a
variety of different fields and from different developers, the results we found
might still not be able to be generalized for other contexts, especially those
related to closed-source projects.

Accuracy of Refactoring Detection. RefactoringMiner, while having a
high reported accuracy [53], did not have its accuracy evaluated for our specific
data set. However, other works have used RefactoringMiner for similar sets of
projects [9], while still having a good level of accuracy in refactoring detection.

Accuracy of Self-Affirmed Refactoring Classification. The keyword-
based classifier we used for SAR classification in this work may not be
generalizable to other projects, due to the keyword set potentially needing
to change. However, to mitigate this, we have performed an evaluation of
the classifier’s accuracy with regards to a manually validated sample of the
data set, leading to a decently high level of accuracy, and still surpassing the
accuracy of another, state-of-the-art classifier in this specific data set.

Lack of NFR-related Data. Due to automatic classification of NFR discus-
sions still not being possible with a reasonable accuracy, we had to perform
our NFR-related analyses with a manually validated sample of the data set,
containing only 770 out of the 8,408 refactorings analyzed in the other RQs.
Thus, this means that the results of that analysis might not be generalizable
as well.

4.7
Final Remarks

This work had at its goal confirming whether and how the relationships
between four factors manifest, these being: (i) refactoring complexity (repre-
sented by the amount of different transformation types in a single refactoring);
(ii) refactoring effectiveness (represented by the improvement in internal qual-
ity attributes); (iii) refactoring explicitness (represented by the presence of
SARs), and; (iv) the presence of NFCs during the refactoring process (repre-
sented by the presence of NFR-related discussions). We performed a quanti-
tative analysis of 8,408 refactorings, from eight different open-source projects.
With our results, we can show that developers tend to apply more complex

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 84

refactorings when they are explicitly concerned with either the refactoring pro-
cess itself, or with other NFRs. We also observed that the application of these
complex refactorings can be an endeavor worth pursuing, as they tended to
have more frequently positive effects on the refactored code.

These findings show that these complex refactorings can be a powerful
tool in the developers’ hands for code maintainability, and thus may require
more support from automated tools. Recent studies, such as the one proposed
by Tenorio et al [51], describe automated refactoring tools as lacking in pro-
viding support for customized, complex refactorings – supporting only simple,
standardized transformations. Thus, a proper support for these complex trans-
formations may lead developers to perform them with less effort, making them
a more enticing practice, and thus potentially leading to more positive code
maintenance results overall. Thus, this work can motivate tool developers into
improving support for these complex refactorings, combining a variety of dif-
ferent transformation types into a single change. Alongside this, our results
might also motivate researchers into considering factors such as refactoring
complexity, refactoring explicitness, and the presence of NFCs as being poten-
tially important in code quality improvement. This, thus, can lead researchers
into, for example, analyzing potential techniques for performing more complex
refactorings efficiently.

As future work, we plan on further analyzing how other developer-related
factors can impact the refactoring process. Alongside this, we also plan to verify
how refactoring patterns – i.e., a specific combination of transformations – can
relate to their potential effectiveness. Finally, we aim at uncovering a potential
way of using these developer-related factors (such as refactoring explicitness
and NFCs) to determine the possible developers’ goals during the refactoring
process.

4.8
Summary

This chapter aimed at replicating the study performed in Chapter 3. As
previously described in that Chapter, our goals with this paper are increasing
the project data set – by doubling the project amount from 4 to 8 –, improving
the validation process – by performing a stricter, multi-phase validation –,
improving SAR detection – by comparing our approach with a state-of-the-
art, machine learning-based approach –, and improving refactoring detection
– through the usage of RefactoringMiner 2.0.

Our results both confirm and contradict those from the first study,
in all three problems presented in Section 1.1. For Problem 1, i.e., the

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 4. Relating Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns: A Replication Study 85

lack of understanding of to what extent refactoring complexity correlates
to their effectiveness, we contradict the finding of the first study regarding
the relationship between complexity and effectiveness. In these results, we
discovered that complex refactorings have more frequent positive effects when
compared to their simpler counterparts, with a noticeable reduction in neutral
effects. In the next chapter, we revisit the main contributions of this Masters’
dissertation, and present new challenges and opportunities for improvement
and future work, which have emerged along the studies performed throughout
this Masters’ dissertation.

For Problem 2, i.e., the lack of understanding to what extent explicit
refactoring-related concerns relate to refactoring effectiveness, we confirm the
results of the first study regarding the relation between refactoring explicit-
ness and complexity – that, in general, developers explicit their concerns with
refactorings through SARs more often when performing more complex refac-
torings. However, we contradict the first study’s results regarding the relation
between SARs and refactoring effectiveness, with refactorings accompanied by
SARs having more frequent positive effects overall, with also a clear reduction
in the frequency of negative effects, compared to their non-SAR counterparts.

Finally, for Problem 3, i.e, the lack of understanding on how NFCs
affect refactoring usage and effectiveness, we confirm the results of the first
study regarding the relation between NFCs and refactoring complexity – that
developers explicit their concerns with NFCs more often when performing more
complex refactorings. However, we contradict the first study’s results regarding
the relation between NFCs and refactoring effectiveness, with refactorings
related to NFCs having, on average, more positive effects overall. Alongside
this, we have also seen that developers perform more balanced refactorings
when they are concerned with Maintainability and Performance, while having
more skewed results when performing refactorings related to concerns with
Robustness and Security – though not to the same extent as reported in the
first study.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



5
Final Conclusions

Refactoring is a process that tries to improve software quality and main-
tainability, to generally mixed results. While definitely capable of achieving
positive changes, many refactorings tend to either not change the code in any
significant manner, or cause the code’s quality to decay even more than it
previously was. Thus, uncovering the factors that can potentially increase the
effectiveness of such changes is paramount for its usage in software engineering
as a whole. Thus, the analysis of factors such as refactoring complexity, refac-
toring explicitness, and developer concerns with NFRs, can reveal interesting
observations on how this refactoring effectiveness can vary depending on those
conditions.

In this work, our goal was to understand how these factors correlate
to each other, and to refactoring effectiveness, so we can then help direct
future studies in which characteristics can lead to interesting results, and
also direct developers in understanding how their actions can influence the
effectiveness of the refactorings they perform. To do so, first, we quantified
refactoring complexity through the number of different transformation types
in a refactoring, and refactoring effectiveness through the variations in the
metrics related to the four internal quality attributes. Then, we analyzed the
potential relationships between this complexity and refactoring effectiveness,
so we could then understand how either refactoring explicitness – through the
presence of SARs – or non-functional concerns can affect these two factors.

5.1
Contributions and Future Work

In summary, the main contributions and their possible impact on collab-
orative software communities are described as follows.

Contribution 1: A Dataset of Internal Software Quality, Refactoring
Characteristics, and Developer Discussions. In this work, we collected data
from a total of 8 projects. For each project, we collected 15 metrics related
to software quality, divided into the four internal quality attributes of Cohe-
sion, Coupling, (code) Complexity and Size, for each commit. We collected the
refactoring history of each project, describing which transformations were per-

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 5. Final Conclusions 87

formed in each commit of the project. Finally, we collected commit messages,
issues and pull requests from these projects, and classified them based on the
presence of SARs. We also have a data set containing a group of 775 commits,
manually validated and classified based on the presence of SARs and NFCs on
their related discussions.

Contribution 2: A Keyword-Based Classifier of Self-Affirmed Refactor-
ings. By automating Ratzinger [42]’s proposed keyword-based SAR classifica-
tion, while also adapting the keyword set to the 4 projects analyzed in the
first study, we created an automated keyword-based classifier of SARs, with a
respectable F1-Score of 78%. We also compared the accuracy of the classifier
on only the new set of 4 projects, for which it was not adapted to, with the
accuracy of a state-of-the-art machine learning-based classifier, showing that
our F1-Score of 74.5% on this second data set surpassed the machine learning
approach’s F1-Score of 63.3%.

Contribution 3: A Set of Initial Insights on Refactoring Complexity, Ef-
fectiveness, Explicitness, and Non-Functional Concerns. With the first study,
we were able to determine some preliminary results that were later confirmed,
even if many of them were contradicted. The presence of both SARs and NFCs
are related to an increase in refactoring complexity, and an increase in refactor-
ing complexity leads to a reduction in the frequency of neutral effects. We also
discovered that the complexity aspect of the number of different transforma-
tion types in a refactoring is the one most related to refactoring effectiveness.
These findings show that not only the mechanical aspects of refactoring could
be related to their effectiveness. Developer-related aspects, such as their con-
cerns, could impact refactoring effectiveness as well.

Contribution 4: An Analysis on the Relationship Between Refactoring
Complexity, Effectiveness, Explicitness, and Non-Functional Concerns. With
the second study, we were able to uncover some interesting results related to
the relationship between these various factors. We found that more complex
refactorings lead to a higher frequency of positive effects – a trait that is also
shared by refactorings performed when developers are explicitly concerned
with the refactoring process. We found that refactoring effectiveness increases,
even if slightly, when developers are concerned with NFRs. We also saw that
concerns with some NFRs might have differing results when compared to
others. Some refactorings with NFR-related concerns had their effectiveness
balanced among all 4 internal quality attributes, while others have a higher
disparity between the effectiveness in each of the 4 attributes.

Taking these contributions into account, we could potentially suggest
future steps to be taken to improve this research. The first, and primary

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 5. Final Conclusions 88

potential future work, is the addition of new projects, and the increase
in the size of the data set. Changes arose in the results after updating
RefactoringMiner to RefactoringMiner 2.0, and changing the project count.
However, without complete statistical accuracy, this result might change
further as more projects and refactoring types are added into the data set.
Secondly, we can analyze in further detail why the machine learning-based
approach failed at detecting self-affirmed refactorings correctly, and where it
can improve, in order to reach high margins of accuracy with its classifiers
(>90%). Finally, we can also look more deeply into specific combinations, in
order to understand which specific combinations of refactoring types, when
coupled with specific concerns, leads to positive results. An understanding of
these aspects can allow us to recommend specific refactorings depending on
the developers’ intent with their changes.

5.2
Implications

This dissertation provides several findings that lead to implications
that can be useful to researchers, tool developers, and practitioners. These
implications are described as follows.

The study and application of complex refactorings is a worthy
endeavor. In both studies, we were able to see that refactoring complexity is
very much related to refactoring effectiveness – thus meaning that researchers
might be able to uncover potentially interesting results from exploring this
characteristic of refactoring in greater depth. Alongside this, in both studies,
we saw a greater potential for positive effects in complex refactorings, meaning
practitioners could use this information when planning code maintenance –
as a well-implemented application of complex refactorings can lead to much
more frequent positive changes. Finally, the relevance of refactoring complexity
revealed in this work can imply that tool developers should look into improving
automated refactoring tools to allow for better support of complex, customized
refactorings, as the widely-used tools currently fail to do so [51].

Developer concerns can influence refactoring. In both studies, we
were able to see that both the presence of SARs and NFCs were correlated
to refactorings of higher complexity, as well as differing levels of effectiveness
between refactorings accompanied by SARs or NFCs, and those not accom-
panied by them. Thus, once more, this means this is a promising research
direction for future studies, as a deeper analysis on how developer concerns,
even outside of just quality-related concerns, can affect refactoring can lead to
much more accurate and customizable refactoring recommendation systems in

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Chapter 5. Final Conclusions 89

the future. Alongside this, practitioners can use this information to determine
the importance of actually documenting their concerns, as this can lead to
them being more attentive to the changes they performed, and allow them to
detect potentially negative results, fixing them before actually committing the
changes.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Bibliography

[1] AL DALLAL, J.; ABDIN, A.. Empirical evaluation of the impact of
object-oriented code refactoring on quality attributes: A sys-
tematic literature review. IEEE Transactions on Software Engineering,
44(1):44–69, 2017.

[2] ALOMAR, E. A.; MKAOUER, M. W.; OUNI, A. ; KESSENTINI, M.. Do
design metrics capture developers perception of quality? an
empirical study on self-affirmed refactoring activities. arXiv
preprint arXiv:1907.04797, 2019.

[3] ALOMAR, E.; MKAOUER, M. W. ; OUNI, A.. Can refactoring be self-
affirmed? an exploratory study on how developers document
their refactoring activities in commit messages. In: 3RD IWOR, p.
51–58. IEEE, 2019.

[4] ALOMAR, E. A.; MKAOUER, M. W. ; OUNI, A.. Toward the automatic
classification of self-affirmed refactoring. Journal of Systems and
Software, 171:110821, 2021.

[5] ALSHAYEB, M.. Empirical investigation of refactoring effect on
software quality. Information and Software Technology, 51(9):1319–1326,
2009.

[6] BARBOSA, C.; UCHÔA, A.; COUTINHO, D.; FALCÃO, F.; BRITO, H.;
AMARAL, G.; SOARES, V.; GARCIA, A.; FONSECA, B.; RIBEIRO, M.
; OTHERS. Revealing the social aspects of design decay: A
retrospective study of pull requests. In: PROCEEDINGS OF THE
34TH BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING, p. 364–
373, 2020.

[7] BAVOTA, G.; DE LUCIA, A.; DI PENTA, M.; OLIVETO, R. ; PALOMBA,
F.. An experimental investigation on the innate relationship
between quality and refactoring. Journal of Systems and Software,
107:1 – 14, 2015.

[8] BIBIANO, A. C.; FERNANDES, E.; OLIVEIRA, D.; GARCIA, A.; KALI-
NOWSKI, M.; FONSECA, B.; OLIVEIRA, R.; OLIVEIRA, A. ; CEDRIM, D..

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Bibliography 91

A quantitative study on characteristics and effect of batch refac-
toring on code smells. In: ESEM, p. 1–11. IEEE, 2019.

[9] BIBIANO, A. C.; SOARES, V.; COUTINHO, D.; FERNANDES, E.; COR-
REIA, J.; SANTOS, K.; OLIVEIRA, A.; GARCIA, A.; GHEYI, R.; FONSECA,
B.; RIBEIRO, M.; BARBOSA, C. ; OLIVEIRA, D.. How does incomplete
composite refactoring affect internal quality attributes? In: 28TH
ICPC, 2020.

[10] BIBIANO, A. C.; ASSUNÇAO, W.; COUTINHO, D.; SANTOS, K.; SOARES,
V.; GHEYI, R.; GARCIA, A.; FONSECA, B.; RIBEIRO, M.; OLIVEIRA, D. ;
OTHERS. Look ahead! revealing complete composite refactorings
and their smelliness effects.

[11] BOURQUIN, F.; KELLER, R. K.. High-impact refactoring based
on architecture violations. In: 11TH EUROPEAN CONFERENCE ON
SOFTWARE MAINTENANCE AND REENGINEERING (CSMR’07), p. 149–
158. IEEE, 2007.

[12] CACHO, N.; CÉSAR, T.; FILIPE, T.; SOARES, E.; CASSIO, A.; SOUZA, R.;
GARCIA, I.; BARBOSA, E. A. ; GARCIA, A.. Trading robustness for
maintainability: An empirical study of evolving c# programs.
In: 36TH ICSE, p. 584–595. ACM, 2014.

[13] CACHO, N.; BARBOSA, E. A.; ARAUJO, J.; PRANTO, F.; GARCIA, A.;
CESAR, T.; SOARES, E.; CASSIO, A.; FILIPE, T. ; GARCIA, I.. How
does exception handling behavior evolve? an exploratory study
in java and c# applications. In: IEEE ICSME, 2014.

[14] CASAMAYOR, A.; GODOY, D. ; CAMPO, M.. Identification of
non-functional requirements in textual specifications: A semi-
supervised learning approach. Information and Software Technology,
52(4):436 – 445, 2010.

[15] CEDRIM, D.; SOUSA, L.; GARCIA, A. ; GHEYI, R.. Does refactoring
improve software structural quality? a longitudinal study of 25
projects. In: PROCEEDINGS OF THE 30TH BRAZILIAN SYMPOSIUM
ON SOFTWARE ENGINEERING, p. 73–82, 2016.

[16] CEDRIM, D.; GARCIA, A.; MONGIOVI, M.; GHEYI, R.; SOUSA, L.;
DE MELLO, R.; FONSECA, B.; RIBEIRO, M. ; CHÁVEZ, A.. Understand-
ing the impact of refactoring on smells: A longitudinal study of
23 software projects. In: PROCEEDINGS OF THE 2017 11TH JOINT

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Bibliography 92

MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING, p. 465–
475, 2017.

[17] CHÁVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM, D. ; GARCIA, A..
How does refactoring affect internal quality attributes? a multi-
project study. In: 31ST SBES, p. 74–83. ACM, 2017.

[18] CHOWDHURY, I.; CHAN, B. ; ZULKERNINE, M.. Security metrics
for source code structures. In: 4TH INTERNATIONAL WORKSHOP
ON SOFTWARE ENGINEERING FOR SECURE SYSTEMS, p. 57–64. ACM,
2008.

[19] DEMEYER, S.. Maintainability versus performance: What’s the
effect of introducing polymorphism? 2003.

[20] DI, Z.; LI, B.; LI, Z. ; LIANG, P.. A preliminary investigation of self-
admitted refactorings in open source software (s). In: PROCEED-
INGS OF THE 30TH INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING AND KNOWLEDGE ENGINEERING. KSI Research Inc. and
Knowledge Systems Institute Graduate School, 2018.

[21] FERNANDES, E.; CHÁVEZ, A.; GARCIA, A.; FERREIRA, I.; CEDRIM, D.;
SOUSA, L. ; OIZUMI, W.. Refactoring effect on internal quality
attributes: What haven’t they told you yet? Information and
Software Technology, 126:106347, 2020.

[22] FOKAEFS, M.; TSANTALIS, N. ; CHATZIGEORGIOU, A.. Jdeodorant:
Identification and removal of feature envy bad smells. In: 2007
IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE,
p. 519–520. IEEE, 2007.

[23] FOWLER, M.. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[24] AN, G.; BLOT, A.; PETKE, J. ; YOO, S.. Pyggi 2.0: Language indepen-
dent genetic improvement framework. In: 27TH JOINT MEETING
ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYM-
POSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, p.
1100–1104. ACM, 2019.

[25] GAMMA, E.; HELM, R.; JOHNSON, R. ; VLISSIDES, J.. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Pearson
Educationl, 1994.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Bibliography 93

[26] GÖTZ, S.; PUKALL, M.. On performance of delegation in java. In:
2ND INTERNATIONAL WORKSHOP ON HOT TOPICS IN SOFTWARE
UPGRADES, HotSWUp ’09. ACM, 2009.

[27] HAYASHI, S.; SAEKI, M. ; KURIHARA, M.. Supporting refactoring
activities using histories of program modification. Transactions on
Information and Systems, 89(4):1403–1412, 2006.

[28] JAKOBUS, B.; BARBOSA, E. A.; GARCIA, A. ; DE LUCENA, C. J. P..
Contrasting exception handling code across languages: An ex-
perience report involving 50 open source projects. In: IEEE 26TH
ISSRE, p. 183–193, 2015.

[29] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. A field study of
refactoring challenges and benefits. In: PROCEEDINGS OF THE ACM
SIGSOFT 20TH INTERNATIONAL SYMPOSIUM ON THE FOUNDATIONS
OF SOFTWARE ENGINEERING, p. 1–11, 2012.

[30] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. An empirical study of
refactoring challenges and benefits at microsoft. TSE, 40(7):633–
649, 2014.

[31] LU, M.; LIANG, P.. Automatic classification of non-functional
requirements from augmented app user reviews. In: 21ST EASE,
p. 344–353. ACM, 2017.

[32] MENS, T.; TOURWÉ, T.. A survey of software refactoring. IEEE
Transactions on software engineering, 30(2):126–139, 2004.

[33] MOSHTARI, S.; SAMI, A.. Evaluating and comparing complexity,
coupling and a new proposed set of coupling metrics in cross-
project vulnerability prediction. In: 31ST ANNUAL SYMPOSIUM ON
APPLIED COMPUTING, p. 1415–1421. ACM, 2016.

[34] MURPHY-HILL, E.; PARNIN, C. ; BLACK, A. P.. How we refactor, and
how we know it. TSE, 38(1):5–18, 2011.

[35] OIZUMI, W.; SOUSA, L.; OLIVEIRA, A.; GARCIA, A.; AGBACHI, A. B.;
OLIVEIRA, R. ; LUCENA, C.. On the identification of design prob-
lems in stinky code: experiences and tool support. Journal of the
Brazilian Computer Society, 24(1):13, 2018.

[36] OIZUMI, W.; SOUSA, L.; OLIVEIRA, A.; CARVALHO, L.; GARCIA, A.;
COLANZI, T. ; OLIVEIRA, R.. On the density and diversity of

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Bibliography 94

degradation symptoms in refactored classes: A multi-case study.
In: 2019 IEEE 30TH INTERNATIONAL SYMPOSIUM ON SOFTWARE
RELIABILITY ENGINEERING (ISSRE), p. 346–357. IEEE, 2019.

[37] OLBRICH, S.; CRUZES, D. S.; BASILI, V. ; ZAZWORKA, N.. The
evolution and impact of code smells: A case study of two open
source systems. In: 2009 3RD INTERNATIONAL SYMPOSIUM ON
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, p. 390–
400. IEEE, 2009.

[38] PAIXAO, M.; HARMAN, M.; ZHANG, Y. ; YU, Y.. An empirical study of
cohesion and coupling: Balancing optimization and disruption.
IEEE Transactions on Evolutionary Computation, 22(3):394–414, 2017.

[39] PALOMBA, F.; BAVOTA, G.; DI PENTA, M.; OLIVETO, R. ; DE LUCIA,
A.. Do they really smell bad? a study on developers’ perception
of bad code smells. In: 2014 IEEE INTERNATIONAL CONFERENCE ON
SOFTWARE MAINTENANCE AND EVOLUTION, p. 101–110. IEEE, 2014.

[40] PARNIN, C.; GÖRG, C.. Lightweight visualizations for inspecting
code smells. In: SYMPOSIUM ON SOFTWARE VISUALIZATION, p. 171–
172. ACM, 2006.

[41] PETKE, J.; HARMAN, M.; LANGDON, W. B. ; WEIMER, W.. Specialising
software for different downstream applications using genetic
improvement and code transplantation. IEEE TSE, 44(6):574–594,
2018.

[42] RATZINGER, J.. sPACE – Software Project Assessment in the
Course of Evolution. Doctoral dissertation, Vienna University of Tech-
nology, 2007.

[43] SANTOS, J. A. M.; ROCHA-JUNIOR, J. B.; PRATES, L. C. L.; DO NASCI-
MENTO, R. S.; FREITAS, M. F. ; DE MENDONÇA, M. G.. A systematic
review on the code smell effect. Journal of Systems and Software,
144:450–477, 2018.

[44] SIAVVAS, M.; KEHAGIAS, D.AND TZOVARAS, D.. A preliminary study
on the relationship among software metrics and specific vul-
nerability types. In: INTERNATIONAL CONFERENCE ON COMPU-
TATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), p.
916–921, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Bibliography 95

[45] SIEGMUND, N.; KUHLEMANN, M.; PUKALL, M. ; APEL, S.. Optimizing
non-functional properties of software product lines by means of
refactorings. In: 4TH INTERNATIONAL WORKSHOP ON VARIABILITY
MODELLING OF SOFTWARE-INTENSIVE SYSTEMS, volumen 37, p. 115–
122. Universität Duisburg-Essen, 2010.

[46] SMITH, C. U.; WILLIAMS, L. G.. Software performance antipatterns.
In: 2ND INTERNATIONAL WORKSHOP ON SOFTWARE AND PERFOR-
MANCE, 2000.

[47] SOARES, V.; OLIVEIRA, A.; PEREIRA, J. A.; BIBANO, A. C.; GARCIA,
A.; FARAH, P. R.; VERGILIO, S. R.; SCHOTS, M.; SILVA, C.; COUTINHO,
D. ; OTHERS. On the relation between complexity, explicitness,
effectiveness of refactorings and non-functional concerns. In:
PROCEEDINGS OF THE 34TH BRAZILIAN SYMPOSIUM ON SOFTWARE
ENGINEERING, p. 788–797, 2020.

[48] SOARES, V.; OLIVEIRA, A.; PEREIRA, J.; BIBANO, A. C.; GARCIA, A.;
FARAH, P. R.; VERGILIO, S.; SCHOTS, M.; SILVA, C.; COUTINHO, D.;
OLIVEIRA, D. ; UCHÔA, A.. Website, 2020.

[49] SOARES, V.; OLIVEIRA, A.; PEREIRA, J.; BIBANO, A. C.; GARCIA, A.;
FARAH, P. R.; VERGILIO, S.; SCHOTS, M.; SILVA, C.; COUTINHO, D.;
OLIVEIRA, D. ; UCHÔA, A.. Website, 2021.

[50] SOUSA, L.; CEDRIM, D.; GARCIA, A.; OIZUMI, W.; BIBIANO, A. C.;
TENORIO, D.; KIM, M. ; OLIVEIRA, A.. Characterizing and identi-
fying composite refactorings: Concepts, heuristics and patterns.
In: 17TH ICSE, 2020.

[51] TENORIO, D.; BIBIANO, A. C. ; GARCIA, A.. On the customization of
batch refactoring. In: 3RD IWOR, p. 13–16. IEEE Press, 2019.

[52] TSANTALIS, N.; MANSOURI, M.; ESHKEVARI, L. M.; MAZINANIAN, D.
; DIG, D.. Accurate and efficient refactoring detection in commit
history. In: 40TH ICSE, p. 483–494. ACM, 2018.

[53] TSANTALIS, N.; KETKAR, A. ; DIG, D.. Refactoringminer 2.0. IEEE
Transactions on Software Engineering, 2020.

[54] SCIENTIFIC TOOLWORKS, INC. Understand, 2020.

[55] VAKILIAN, M.; CHEN, N.; NEGARA, S.; RAJKUMAR, B. A.; BAILEY,
B. P. ; JOHNSON, R. E.. Use, disuse, and misuse of automated
refactorings. In: 34TH ICSE, p. 233–243. IEEE Press, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA



Bibliography 96

[56] VAN EMDEN, E.; MOONEN, L.. Java quality assurance by detect-
ing code smells. In: NINTH WORKING CONFERENCE ON REVERSE
ENGINEERING, 2002. PROCEEDINGS., p. 97–106. IEEE, 2002.

DBD
PUC-Rio - Certificação Digital Nº 1921368/CA


	Aligning developer quality concerns, refactoring applications, and their effects
	Resumo
	Table of contents
	Introduction
	Problem Statement and Limitations of Related Work
	Main Research Contributions
	Other Contributions
	Publications

	Dissertation Outline

	Background and Related Work
	Refactoring and its Mechanics
	Refactoring Characteristics
	Self-Affirmed Refactorings and Refactoring Explicitness
	Non-Functional Requirements and Software Quality
	Summary

	On the Relation between Complexity, Explicitness, Effectiveness of Refactorings and Non-Functional Concerns
	Introduction
	Related Work
	Methodology
	Research Questions
	Project Selection
	Data Collection
	Data Analysis

	Validation
	Self-Affirmed Refactoring Validation
	Non-Functional Concern Validation

	Results and Discussions
	Refactoring Complexity vs. Effectiveness
	SARs vs. Complexity and Effectiveness
	NFCs vs. Complexity and Effectiveness

	Threats to Validity
	Final Remarks
	Summary

	Relating Complexity, Explicitness, Effectiveness of Refactorings and Non-Functional Concerns: A Replication Study
	Introduction
	Related Work
	Methodology
	Research Questions
	Project Selection
	Data Collection
	Data Analysis

	Validation
	The Validation Process
	Self-Affirmed Refactoring Validation
	Non-Functional Concern Validation

	Results and Discussions
	Refactoring Complexity vs. Effectiveness
	SARs vs. Complexity and Effectiveness
	NFCs vs. Complexity and Effectiveness

	Threats to Validity
	Final Remarks
	Summary

	Final Conclusions
	Contributions and Future Work
	Implications

	Bibliography



