Referências Bibliográficas

- 1 PIRES DE SOUZA, E. J. S.; JARDIM, J. L.; MACEDO, N. J. P. Power System Transient Stability Assessment Using Dynamic Equivalents and Transient Energy Functions, V Symposium of Specialists in Electric Operational and Expansion Planning, Vol. II, p. 413-417,1996.
- 2 PIRES DE SOUZA, E. J. S.; MACEDO N. J. P.; MEIRELLES, M. F.; JARDIM, J. L. Aplicação de Equivalentes Dinâmicos Baseados em Coerência em Estudos com Simulador em Tempo Real de Sistemas Elétricos. XIV Seminário Nacional de Produção e Transmissão de Energia Elétrica, Informe Técnico FL /GAT /09, 1997.
- 3 PIRES DE SOUZA, E. J. S.; LEITE DA SILVA, A. M. An Efficient Methodology for Coherency-Based Dynamic Equivalents, IEE Procedings-C, Vol. 139, Nº 5, p. 371-382, September 1992.
- 4 BROWN, W. T.; CLOUES W. J. Combination Load-Flow and Stability Equivalent for Power System Representation on A-C Network Analyzers, **AIEE Trans.**, v. 74, pp. 782-787,1995.
- 5 BROWN, H. E.; SHIPLEY, R. B.; COLEMAN, D.; NIED JR., R. E. A Study of Stability Equivalents, IEEE Trans. Power App. Syst. v. PAS-88, pp. 200-207, March 1969.
- 6 Ward, J. B. Equivalent Circuits for Power-Flow Studies, AIEE Trans.
 v. 68, pp. 373-382, 1949.
- 7 UNDRILL, J. M.; TURNER, A.E. Construction of Power System Electromechanical Equivalents by Modal Analysis, IEEE Trans. Power App. Syst. v. PAS-90, pp. 2049-2059, September/October 1971.
- 8 NISHIDA, S.; TAKEDA, S. Derivation of Equivalents for Dynamic Security Assessment. Electrical Power & Energy Systems. v. 6, n. 1, pp. 15-23, January 1984.

- 9 PRICE, W. W.; GULACHENSKY, E. M.; KUNDUR, P.; LANGE, F. J. Testing of the Modal Dynamic Equivalents Technique. IEEE Trans., v. PAS-97, pp. 1366 -1372, July/August 1978.
- CHANG, A.; ADIBI, M. M. Power System Dynamic Equivalents, IEEE Trans. Power App Syst. v. PAS-89, pp. 1737-1744, November/December 1970.
- 11 DE MELLO, R. W.; PODMORE, R.; STANTON, K. N. Coherency-Based Dynamic Equivalents: Applications in Transient Stability Studies, **Proc. PICA Conf.**, pp. 23-31, 1975.
- 12 PODMORE, R. Identification of Coherent Generators for Dynamic Equivalents, IEEE Trans. Power App. Syst, v. PAS-97, pp. 1344 -1354, July/August 1978.
- 13 GERMOND, A. J.; PODMORE, R. Dynamic Aggregation of Generating Unit Models. IEEE Trans. Power App. Syst. v. PAS-97, pp. 1060-1069, July/August 1978.
- 14 LEVENBERG, K. A Method for the Solution of Certain Nonlinear Problems in Least Squares. Quarterly of Applied Mathematics. v.II n.2, pp. 164 -168, 1944.
- 15 MARQUARDT, D. W. An Algorithm for Least Square Estimation on Nonlinear Parameters. SIAM Journal on Numerical Analysis. v.2 n.11, pp. 431 – 441, 1963.
- 16 PIRES DE SOUZA, E. J. S. Manual do Usuário do Programa de Cálculo de Equivalentes Dinâmicos por Coerência – EDINCO, Contrato FURNAS – PUC/Rio Nº 14.095., 2003.
- 17 Programa de Análise de Transitórios Eletromecânicos ANATEM, Manual do Usuário, V09-12/01, CEPEL, 2001.
- 18 ARAÚJO PEDRO, M. B. D. Agregação Dinâmica de Modelos de Sistemas de Excitação e Cálculo de Equivalentes Dinâmicos, Dissertação de Mestrado, PUC/Rio, 1999.
- 19 SOUZA, F. L. Agregação Dinâmica de Modelos de Estabilizadores Aplicados em reguladores de Tensão e Cálculo de Equivalentes Dinâmicos, Dissertação de Mestrado, PUC/Rio, 1999.

- 20 ALBUQUERQUE, M. A. Agregação Dinâmica de Modelos de Estabilizadores com Dupla Entrada para o Cálculo de Equivalentes Dinâmicos, **Dissertação de Mestrado**, PUC/Rio, 2002.
- 21 KUNDUR, P.; Power Stability and Control, McGraw-Hill, Inc., 1994.
- 22 PIRES DE SOUZA, E. J. S. Identificação de Geradores Coerentes e Calculo de Equivalentes Dinâmicos, Tese de Doutorado, COPPE/UFRJ, 1987.
- 23 TINNEY, W. F.; POWELL, W. L. The REI Approach to Power Network Equivalents. **Proc. PICA Conf.**, pp. 314-320,1997.
- 24 Programa de Análise de Redes ANAREDE, Manual do Usuário, V07-08/99, CEPEL, 1999.

Apêndice 1: Dados do Sistema New England

Os dados de barras encontram-se na tabela A.1, onde a área 1 representa o sistema interno e a área 2 o sistema externo. Os dados de linhas e transformadores encontram-se na tabela A.2. A base utilizada é de 100 MVA

Barra	Tine	Tensão	Ângulo	Geração	Carga		Á mag
N°	про	(pu)	(graus)	(MW)	(MW)	(MVAr)	Area
1	PQ	1,000		0,0	0,0	0,0	1
2	PQ	1,000		0,0	0,0	0,0	1
3	PQ	1,000		0,0	322,0	2,4	2
4	PQ	1,000		0,0	500,0	184,0	2
5	PQ	1,000		0,0	0,0	0,0	2
6	PQ	1,000		0,0	0,0	0,0	2
7	PQ	1,000		0,0	233,8	84,0	2
8	PQ	1,000		0,0	522,0	176,6	2
9	PQ	1,000		0,0	0,0	0,0	2
10	PQ	1,000		0,0	0,0	0,0	2
11	PQ	1,000		0,0	0,0	0,0	2
12	PQ	1,000		0,0	9,5	88,0	2
13	PQ	1,000		0,0	0,0	0,0	2
14	PQ	1,000		0,0	0,0	0,0	2
15	PQ	1,000		0,0	320,0	153,0	2
16	PQ	1,000		0,0	329,4	32,3	2
17	PQ	1,000		0,0	0,0	0,0	2
18	PQ	1,000		0,0	158,0	30,0	2
19	PQ	1,000		0,0	0,0	0,0	2
20	PQ	1,000		0,0	680,0	103,0	2
21	PQ	1,000		0,0	274,0	115,0	2
22	PQ	1,000		0,0	0,0	0,0	2
23	PQ	1,000		0,0	247,5	84,6	2
24	PQ	1,000		0,0	308,6	-92,2	2
25	PQ	1,000		0,0	224,0	47,2	1
26	PQ	1,000		0,0	139,0	17,0	1
27	PQ	1,000		0,0	281,0	75,5	2
28	PQ	1,000		0,0	206,0	27,6	1
29	PQ	1,000		0,0	283,5	26,9	1
30	PV	1,048		250,0	0,0	0,0	1
31	PV	1,010		563,3	9,2	4,6	2
32	PV	1,020		650,0	0,0	0,0	2
33	PV	0,997		632,0	0,0	0,0	2
34	PV	1,012		508,0	0,0	0,0	2
35	PV	1,049		650,0	0,0	0,0	2
36	PV	1,050		560,0	0,0	0,0	2
37	PV	1,028		540,0	0,0	0,0	1
38	Vθ	1,027	6,6	0,0	0,0	0,0	1
39	PV	1,030		1000,0	1104,0	250,0	1

Tabela A.1 – Dados de barras

Da barra Para barr		Resistência (%)	Reatância (%)	Susceptância (Mvar)	Tape (pu)
1	2	0,350	4,110	69,870	A 2
1	39	0,100	2,500	75,000	
2	3	0,130	1,510	25,720	
2	25	0,700	0,860	14,600	
2	30	0,010	1,810		1,000
3	4	0,130	2,130	22,140	
3	18	0,110	1,330	21,380	
4	5	0,080	1,280	13,420	
4	14	0,080	1,290	13,820	
5	6	0,020	0,260	4,340	
5	8	0,080	1,120	14,760	
6	7	0,060	0,920	11,300	
6	11	0,070	0,820	13,890	
6	31	0,010	2,500		1,000
7	8	0,040	0,460	7,800	
8	9	0,230	3,630	38,040	
9	39	0,100	2,500	120,000	
10	11	0,040	0,430	7,290	
10	13	0,040	0,430	7,290	
10	32	0,010	2,000		1,000
12	11	0,160	4,350		1,000
12	13	0,160	4,350		1,000
13	14	0,090	1,010	17,230	
14	15	0,180	2,170	36,600	
15	16	0,090	0,940	17,100	
16	17	0,070	0,890	13,420	
16	19	0,160	1,950	30,400	
16	21	0,080	1,350	25,480	
16	24	0,030	0,590	6,800	
17	18	0,070	0,820	13,190	
17	27	0,130	1,730	32,160	
19	20	0,070	1,380		1,000
19	33	0,070	1,420		1,000
20	34	0,090	1,800		1,000
21	22	0,080	1,400	25,650	
22	23	0,060	0,960	18,460	
22	35	0,010	1,430		1,000
23	24	0,220	3,500	36,100	
23	36	0,050	2,720		1,000
25	26	0,320	3,230	51,300	
25	37	0,060	2,320		1,000
26	27	0,140	1,470	23,960	
26	28	0,430	4,740	78,020	
26	29	0,570	6,250	102,900	
28	29	0,140	1,510	24,900	
29	38	0,080	1,560		1,000

Tabela A.2 – Dados de linhas e transformadores

Gerador Nº	H (s)	D (pu/pu)	X _e (%)	X _d (%)	X _q (%)	X' _d (%)	X" _d (%)	T' _{do} (s)	T'' _{do} (s)	T" _{qo} (s)
1	42,0	4,00	1,25	10,00	6,90	3,10	2,83	10,20	0,050	0,10
2	30,3	9,75	3,50	29,50	28,20	6,97	4,00	6,56	0,048	0,12
3	35,8	10,00	3,04	24,95	23,70	5,31	3,70	5,70	0,048	0,11
4	28,6	10,00	2,95	26,20	25,80	4,36	3,00	5,69	0,050	0,10
5	26,0	3,00	5,40	67,00	62,00	13,20	8,90	5,40	0,045	0,09
6	34,8	10,00	2,24	25,40	24,10	5,00	3,83	7,30	0,050	0,07
7	26,4	8,00	3,22	29,50	29,20	4,90	3,80	5,66	0,040	0,06
8	24,3	9,00	2,80	29,00	28,00	5,70	3,80	6,70	0,048	0,12
9	34,5	14,00	2,98	21,06	20,50	5,70	3,80	4,79	0,030	0,09
10	500,0	10,00	0,30	2,00	1,90	0,60	0,40	7,00	0,050	0,14

Tabela A.3 – Dados das máquinas (MD02 - Anatem).

Tabela A.4 – Dados dos reguladores de tensão (MD01 - Anatem).

Gerador	Ka	Ke	K _f	T _m	Ta	T _e	T _f	L _{min}	L _{max}
N°	(pu/pu)		(s)	(s)	(s)	(s)	(s)	(pu)	(pu)
1	5,00	1,00	0,040	0,00	0,06	0,250	1,000	-6,00	9,00
2	6,20	1,00	0,057	0,00	0,05	0,405	0,500	-7,00	9,00
3	5,00	1,00	0,080	0,00	0,06	0,500	1,000	-7,00	9,00
4	5,00	1,00	0,080	0,00	0,06	0,500	1,000	-6,00	9,00
5	40,00	1,00	0,030	0,00	0,02	0,785	1,000	-6,50	9,00
6	5,00	1,00	0,075	0,00	0,02	0,471	1,246	-6,00	9,00
7	40,00	1,00	0,030	0,00	0,02	0,730	1,000	-6,50	8,50
8	5,00	1,00	0,085	0,00	0,02	0,528	1,260	-6,50	8,50
9	40,00	1,00	0,030	0,00	0,02	1,400	1,000	-6,50	8,50

Tabela A.5 – Dados dos estabilizadores de sistemas de potência (MD01 – Anatem).

Gerador	K	Т	T ₁	T ₂	T ₃	T ₄	L _{min}	L _{max}
N°	(pu/pu)	(s)	(s)	(s)	(s)	(s)	(pu)	(pu)
1	2,00	1,60	0,90	0,03	1,00	0,02	-1,00	1,00
2	3,00	1,50	0,70	0,02	0,80	0,01	-1,00	1,00
3	3,00	1,50	0,70	0,02	0,80	0,01	-1,00	1,00
4	3,00	1,50	0,70	0,02	0,80	0,01	-1,00	1,00
5	2,00	1,60	0,90	0,03	1,00	0,02	-1,00	1,00
6	2,00	1,60	0,90	0,03	1,00	0,02	-1,00	1,00
7	3,00	1,50	0,70	0,02	0,80	0,01	-1,00	1,00
8	3,00	1,50	0,70	0,02	0,80	0,01	-1,00	1,00
9	2,00	1,60	0,90	0,03	1,00	0,02	-1,00	1,00

Tabela A.6 – Dados de turbinas e reguladores de velocidade (MD02 – Anatem).

Gerador Nº	R (pu)	T (s)	T ₁ (s)	T ₂ (s)	L _{min} (pu)	L _{max} (pu)	D _{turb} (pu)
1	0.05	0.10	2.10	7.00	0.00	3.25	0.50
5	0.04	0.18	2.90	7.80	0.00	6.60	0.40
8	0.05	0.10	2.20	7.00	0.00	7.02	0.50
9	0.06	0.20	2.00	6.00	0.00	8.50	0.40

Tabela A.7 – Dados de turbinas e reguladores de velocidade (MD03 – Anatem).

Tabela A.8 – Dados de turbinas e reguladores de velocidade (MD05 – Anatem).

(Gerador Nº	C ₁ (pu)	C ₂	C ₃	C ₈ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	T _C (s)	T _{max} (pu)	D _{turb} (pu)
	1	20.60	0.724	0.564	0.22	0.20	0.20	10.00	0.50	3.25	0.50
	5	20.00	0.690	0.570	0.20	0.22	0.22	10.20	0.50	6.60	0.52
	8	20.00	0.720	0.564	0.19	0.20	0.21	9.90	0.50	7.02	0.49
	9	20.18	0.700	0.539	0.20	0.22	0.22	10.10	0.30	8.50	0.52

Observação: Os dados considerados para os modelos de turbina e regulador de velocidade dos geradores coerentes do sistema externo estão apresentados no capítulo 3.

Apêndice 2: Método de Levenberg-Marquardt

Seja F(x) uma função dada pelo somatório dos quadrados de m funções nãolineares de um parâmetro vetorial x, apresentado na equação (1). O termo 1/2 é incluído para evitar a aparição de um fator 2 nas derivadas. A função $f_i(x)$ é definida como $y_i - g(x, \omega_i)$, onde y_i representa os pontos de referência e $g(x, \omega_i)$ é a função modelo desejada, sendo ω uma variável independente.

$$F(x) = \frac{1}{2} \sum_{i=1}^{m} f_i^2(x)$$
 (1)

A aproximação quadrática para esta função objetivo pode ser obtida considerando os três primeiros termos da expansão em serie de Taylor, avaliados na estimativa atual x_k da solução apresentada na equação (2). O índice k indica a quantidade calculada em x_k .

$$F(x_{k} + p) \cong F_{k} + g_{k}^{T}p + \frac{1}{2}p^{T}G_{K}p$$
⁽²⁾

onde:

p : passo para o mínimo.

g : gradiente de F (∇F) , e

G : é a matriz Hessiana de F $(\nabla^2 F)$.

O valor mínimo do lado direito da equação (2) será atingido se p_k é um mínimo da seguinte função quadrática:

$$\Phi(\mathbf{p}) = \mathbf{g}_{\mathbf{k}}^{\mathrm{T}} \mathbf{p} + \frac{1}{2} \mathbf{p}^{\mathrm{T}} \mathbf{G}_{\mathbf{k}} \mathbf{p}$$
(3)

Calculando um ponto estacionário p_k da equação (3), i.e. $\nabla \Phi(p_k) = 0$, podemos verificar que este ponto satisfaz o sistema linear abaixo:

101

$$G_{k}p_{k} = -g_{k} \tag{4}$$

Seja J(x) a matriz Jacobiana de dimensão $m \times n$ da função vetorial f(x) e $G_i(x)$ a matriz Hessiana de dimensão $n \times n$ de $f_i(x)$. Da equação (1) resulta:

$$\mathbf{g}(\mathbf{x}) = \mathbf{J}^{\mathrm{T}}(\mathbf{x})\mathbf{f}(\mathbf{x}) \tag{5}$$

$$G(\mathbf{x}) = \mathbf{J}^{\mathrm{T}}(\mathbf{x})\mathbf{J}(\mathbf{x}) + \mathbf{Q}(\mathbf{x})$$
(6)

onde:

$$f(x) = [f_1(x), f_2(x), ..., f_m(x)]^T$$

$$Q(x) = \sum_{i=1}^{m} f_i(x) G_i(x)$$

Substituindo as equações (5) e (6) na equação (4), resulta:

$$\left(\mathbf{J}_{k}^{\mathrm{T}}\mathbf{J}_{k}+\mathbf{Q}_{k}\right)\mathbf{p}_{k}=-\mathbf{J}_{k}^{\mathrm{T}}\mathbf{f}_{k}$$
(7)

A direção de busca do método de Levenberg-Marquardt é definida como a solução das equações:

$$(\mathbf{J}_{k}^{\mathrm{T}}\mathbf{J}_{k} + \lambda_{k}\mathbf{I})\mathbf{p}_{k} = -\mathbf{J}_{k}^{\mathrm{T}}\mathbf{f}_{k}$$

$$(8)$$

onde λ_k é um escalar não-negativo e I é a matriz identidade. As estimativas da solução são obtidas pela equação (9).

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{p}_k \tag{9}$$

Apesar de ser preciso calcular e inverter uma aproximação da matriz Hessiana de dimensão $n \times n$ a cada iteração, o esforço computacional deste método é baixo para n pequeno.