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Mathematical and Numerical Models

3.1
Governing Equations

The physics of fluid flow is governed by conservation equations based on the

principles of conservation of mass (continuity), momentum (Newton’s second

law) and energy. These fundamental principles are expressed in terms of math-

ematical equations, which in their more general form are partial differential

equations. By solving these equations, namely Navier-Stokes equations, it is

possible to describe the fluid motion and its interaction with the surroundings,

accounting the forces and the physical constrains that ultimately character-

ize the flow. For incompressible flow, neglecting body forces, and neglecting

temperature changes the Navier-Stokes equations reduce to:

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

, (3.1.1)

∂ui

∂xi

= 0 , (3.1.2)

where t is the time, ui is the i− th component of the velocity vector, p is the

thermodynamic pressure, ρ is the fluid density, and ν is the kinematic viscosity.

3.1.1
Turbulent Flow

Turbulent flows can be characterized using the same motion equations showed

above, but as was pointed out, it would need massive computational resources

to solve for all the scales that compound the complete flow. To deal with this

problem, the governing equations can be filtered, so that only a relevant part

of those scales are calculated. According to Wilcox [4] there exist three forms,

used in turbulence-model research, in order to do that; the time average, the

spatial average, and the ensemble average.

Starting from the Navier-Stokes equations, it is possible to derive new

equations that describe the evolution of filtered magnitudes using any of the

previous mentioned filtration process. The selection of the filtering process will
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depend on the expected accuracy, the complexity of the flow, and the available

computational resources. According to Wilcox [4], time averaging is the most

appropriate approach because the majority of engineering applications are

more concerned with the mean velocity field than the velocity fluctuations.

Moreover, the relative low computational resources this approach demands is

an advantage compared to the other methodologies.

The time averaging process is done representing the instantaneous veloc-

ity as the sum of a mean and a fluctuating part

u (x, t) = ū (x, t) + u′ (x, t) , (3.1.3)

where ū is the average of u defined by

ū = lim
T→∞

1

T

∫ T

0

u dt , (3.1.4)

and u′ is the fluctuating part of u.

Replacing the previous velocity decomposition and taking the mean of the

continuity equation 3.1.2 we obtain the mean-continuity equation for steady

state:

∂ūi

∂xi

= 0 (3.1.5)

Replacing the previous velocity decomposition and taking the mean of

the momentum equation 3.1.1 we obtain the mean-momentum equation:

ūj
∂ūi

∂xj

= −1

ρ

∂p̄

∂xi

+ ν
∂2ūi

∂xj∂xj

−
∂u′

iu
′
j

∂xj

(3.1.6)

As can be seen, the non-linearity of the Navier Stokes equations leads to

the appearance of a momentum flux that acts as an apparent stress throughout

the flow. This term u′
iu

′
j, is unknown a priori and cannot be closed, so it is

necessary to use additional equations to solve for the additional unknowns.

The approach used in the present study to represent the Reynolds stress

term is based on the Boussinesq eddy-viscosity approximation, introduced by

Bousinesq in 1977. In this approach, Boussinesq proposed an analogy between

the turbulent stress and the viscous stress, in which the deviatoric part of the

turbulent stress tensor can be calculated as a linear function of the mean strain

rate as follows.

−u′
iu

′
j = −2

3
kδij + νt

(
∂ūi

∂xj

+
∂ūj

∂xi

)
, (3.1.7)

where νt is the kinematic turbulent viscosity and k is the turbulent kinetic

energy.
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Analogous to the molecular viscosity, the turbulent viscosity is defined

as being the result of the momentum transfer between adjacent layers of

fluid due to the movement of turbulent eddies at macroscopic level. Using

dimensional analysis the turbulent viscosity can be calculated by the product

of a characteristic velocity u∗ (x, t) and a characteristic length l∗ (x, t) scale as

follows:

νt = u∗ l∗ , (3.1.8)

Therefore, to close this system of equations the characteristic values

have to be computed in terms of known quantities obtained through modeled

transport equations. The various models are classified in terms of number of

transport equations solved in addition to the RANS equations. Among the

most popular models used in aerodynamics, one and two equations models

represent a good trade between low computational cost and accuracy. In the

present study it was used one model from each class. The features of both

turbulence models are described below together with their transport equations.

3.1.2
Spalart Allmaras Model

This model uses only one transport equation to compute for the turbulence

kinetic viscosity νt. Spalart and Allmaras in (1994) developed this model for

aerodynamic applications, focusing to remove the incompleteness of algebraic

and one equations models based on kinetic energy, and yet have a model

computationally simpler than two equation models [15]. As the previous model,

this have been largely tested modeling external aerodynamic flows such as

transonic flow over airfoils, including boundary-layer separation. According

to Godin P.,[9], the model provided quite successful results, but also showed

limitations as other models in predicting boundary-layer separation due to

adverse pressure gradients.

The equations used for this model are presented below.

νt = ν̃fv1 , (3.1.9)

where

∂ν̃

∂t
+ uj

∂ν̃

∂xj

= cb1 (1− ft2) S̃ν̃ −
(
cω1fω − cb1

κ2
ft2

)( ν̃

d

)2

+
1

σ

{
∂

∂xj

[
(ν + ν̃)

∂ν̃

∂xj

]
+ cb2

∂ν̃

∂xi

ν̃

∂xi

}
,

(3.1.10)
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fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
, S̃ = Ω+

ν̃

κ2d2
fv2

and

Ω =
√

2WijWij , Wij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
, (3.1.11)

Ω is the magnitude of the vorticity Wij, d is the distance from the field

point to the nearest wall. The parameters in the model equations for ν̃ are

shown in table [3.1]

fv2 = 1− χ

1 + χfv1
fω = g

[
1 + c2ω3
g6 + c6ω3

]1/6
Cb1 = 0.1355 cω3 = 2

g = r + cω2 (r
6 − r) r = min

[
ν̃

S̃κ2d2
, 10

]
Cb2 = 0.622 κ = 0.41

cω1 =
cb1
κ2

+
1 + cb2

σ
, σ = 2/3 σω2 = 0.856 cv1 = 7.1 ct3 = 1.2

ft2 = ct3 exp (−ct4χ
2) cv2 = 5 cω2 = 0.3 ct4 = 0.5

Table 3.1: Parameters in the model equation for ν̃

3.1.3
k-w SST Model

The k − ωSST model provides computation for u∗ and l∗ using the turbulent

kinetic energy k and the vorticity ω (specific dissipation rate) respectively.

Menter in 1994 [5] proposed this model aiming at obtaining accurate prediction

of aeronautic flows with strong pressure gradients and separation. Firstly he

proposed to modify the definition of the turbulent viscosity to account for the

effect of the transport of the principal turbulent shear stress. And secondly

utilizing a zonal formulation, in which the original k − ω model of Wilcox is

used in the inner region of the boundary-layer, while a high Reynolds definition

of the k − ε model is used in the outer region.

As a result, the performance of the mentioned models were improved by

avoiding shortcomings such as the free-stream turbulence dependency of the

k−ω model and the inability of the k− ε model to deal with separated airfoil

flows [25].

To meet that, the formulation of this model uses a blending function in

order to shift from one model to the other. The blending function is designed to

be one in the near-wall region, which activates the k−ω model, and zero away

from the surface, which activates the k − ε model. The complete formulation

used for this model is presented below.
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The kinematic turbulent eddy viscosity is defined as follows:

νt =
a1k

max (a1ω, SF2)
, (3.1.12)

where S is the invariant measure of the mean strain rate and F2 is a second

blending function:

∂ (ρūik)

∂xi

= Pk − β∗ρkω +
∂

∂xi

[(
µ+

µt

σk

)
∂k

∂xi

]
, (3.1.13)

where k is the turbulence kinetic energy, defined as k = 1
2

(
ū′2 + v̄′

2
+ w̄′2

)
the production of k is

Pk = µt
∂ūi

∂xj

(
∂ūi

∂xj

+
∂ūj

∂xi

)
, (3.1.14)

∂ (ρω)

∂t
+

∂ (ρūiω)

∂xi

=
γ

νt
Pk − βρω2 +

∂

∂xi

[
(µ+ σωµt)

∂k

∂xi

]
+2 (1− F1) ρσω2

1

ω

∂k

∂xi

∂ω

∂xi

, (3.1.15)

where the blending function F1 is defined by:

F1 = tanh


{
min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
;
4ρσω2k

CDkωy2

]}4
 , (3.1.16)

with CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi

, 10−10

)
and y is the distance to the

nearest wall.

F2 = tanh


[
max

(
2
√
k

β∗ωy
,
500ν

y2ω

)]2 , (3.1.17)

All the constants are computed by a blend from the corresponding constants

of the k − ε and the k − ω model via α = α1F + α2 (1− F ). The constant for

this models are presented below:

β∗ = 0.09 γ1 = 5/9 β1 = 3/40
σk1 = 0.85 σω1 = 0.5 γ2 = 0.44
β2 = 0.0828 σk2 = 1 σω2 = 0.856

a1 = 0.31

Table 3.2: Parameters in the model equations for k and ω
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3.2
Near-Wall Treatment

Turbulence models are usually derived to work outside the viscous sub-layer,

so the effects of the walls are not taken into account during the solution of the

transport equations. To circumvent this issue, most of the turbulence models

have to be modified in order to allow them to represent the near-wall region.

The modifications gave rise to a new classification of the turbulence models.

Low Reynolds models, which calculate the flow up to the wall using damping

functions that reduce the effect of turbulence as the solution moves

towards the wall. They require a very fine grid resolution, consequently,

it is computationally more expensive and restrictive for most of the

industrial applications.

High Reynolds models, which use wall functions to approximate the near

wall flow by analytically calculating the boundary-layer in the near wall

region from equations fitted to extensive experimental data. Since the

flow near the wall is not solved, using wall functions reduces notably the

quantity of cells used in the simulations and thus the computationally

cost required to solve the equations. The use of standard wall functions is

limited by several reasons. Most importantly, they do not hold for adverse

pressure gradient, rough surfaces and for separated flows, what can result

in spurious values in the solutions. However, it is possible to implement

modified wall functions to account for the mentioned phenomena in order

to improve the performance of the wall function.

3.3
Discretization

Since it is not always possible to find solutions for the Navier-Stokes equations,

which can represent the continuous values of u, p, ρ in space and time, the

continuous values are approximated by discrete expressions prescribing values

only at a finite number of points.

The process by which these discrete expressions are obtained is named

discretization. Different methods can be used to carry out this process, namely,

Finite Difference Method (FDM), Finite Elements Method (FEM) or Finite

Volume Method (FVM). Each of them uses its own schemes to approximate

the equation’s terms and divide the domain in smaller regions, usually trading

complexity and computational cost for accuracy. The OpenFoam code uses a

finite volume method for structured and unstructured grids.
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Spatial discretization. The domain is divided into cells, resulting in a

computational grid in which the solution of the governing equations is

carried out.

Governing equations discretization. The set of governing equations

(Navier-Stokes equations) are transformed into algebraic equations that

represent the physical problem in the discrete points of the grid.

Temporal discretization. To account for transient effects, every term in the

differential equations is integrated over time, so the time dimension is

divided into a set of discrete time steps.

3.3.1
Spatial discretization

The resulting computational grid stores cells identification and relations be-

tween them. The cells define not only the spatial localization, but also allow

the definition of the spatial derivatives on the grid points.

OpenFoam works with three dimensional polyhedral cells, holding the

following features: The cells must be contiguous, i.e., they do not overlap each

other and completely fill the domain. Each cell is bounded by a set of flat faces,

given the generic label f. Faces can be internal or boundary faces; internal faces

connect two cells inside the mesh and the boundary faces belongs to internal

cells as well as the boundary of the domain. An example of the space, time

domain and the geometric parameters involving two finite volumes are shown

in Fig. [3.1].

a) Discretization of the domain b) Cell geometric parameters

Figure 3.1: Discretization parameters [16]
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The tool used to get the domain discretized is the utility supplied by

OpenFoam named snappyHexMesh. As was explained this utility generates

three-dimensions unstructured grids automatically, containing hexahedra and

split-hexahedra, from a triangulated surface geometry in Stereolithography

(STL) format.

The grid generation process on the (STL) geometry begins by creating a

background hexagonal mesh that fills the entire domain as shown in Fig. [3.2].

This background mesh can be created using the blockMesh utility, provided

that the following criteria are met.

a) Geometry layout and far field

domain

b) Initial mesh

Figure 3.2: Grid generation step one and two [16]

– The mesh must consist purely of hexahedral cells.

– The cell aspect ratio should be approximately 1 to ensure the convergence

of the snapping procedure.

– There must be at least one intersection of a cell edge with the STL

surface.

After the definition of the background mesh, the domain’s cells are split

as shown Fig. [3.3] part (a), beginning at the STL surfaces according to a

given refinement level. The level of refinement is defined through a minimum

and a maximum value, which represents the number of times the initial cells

are divided in two. The minimum value is applied generally across the surface

and the maximum value is only applied in areas with larger curvature. Once

the feature and surface splitting is complete a process of cell removal begins as

shown in Fig. [3.3] part (b). Cell removal requires one or more regions enclosed

entirely by a bounding surface within the domain. The region in which cells

are retained are simply identified by a location vector within that region.
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a) Cell splitting b) Cell removal

Figure 3.3: Grid generation step three and four [16]

In the next stage, to remove the jagged surface that remains from the later

stage, the cell vertex points are snapped to the surface to sketch the original

surface form as shown in Fig. [3.4] part (a). An additional stage that can help

to get better results in high Reynolds simulations is the addition of layers of

hexahedral cells around the geometry surface as shown in Fig. [3.4] part (b).

This layers consist of cells aligned to the boundary surface representing the

boundary-layer over the surface. The number of layers and its distributions is

an important issue that has to be controlled when setting up the layers growth

in order to achieve the y+ value desired for the first cell, according to each

kind of wall treatment.

a) Snapping process b) Grid layers generation

Figure 3.4: Grid generation step five and six [16]

3.3.2
Governing Equations Discretization

The Navier-Stokes equations (3.1.1) are discretized using the Finite Volume

Method. In this method, the discretization of each term is formulated by first

integrating the term over the cell, or control volume V . Volume and surface

integrals are then linearized using appropriate schemes to be read during

each job run-time. To begin the discretization process the volume integrals

are transformed into surface integrals using the Gauss theorem, allowing to

evaluate the values at the faces rather than at the volumes. The discretization

of the different terms is carried out as follows:
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∫
V

∂ui

∂t
+

∫
V

∂uiuj

∂xj

=

∫
V

− 1

ρ

∂p

∂xi

+

∫
V

ν
∂2ui

∂xj∂xj

, (3.3.1)

Convective Term

∫
V

~∇ · (ρ~u~u) dV =

∫
S

d~S · (ρ~u~u) ≈
∑
f

~Sf · (ρ~u)f ~uf , (3.3.2)

where ~uf is evaluated using second order UPWIND scheme.

Diffusive Term

∫
V

~∇ · (ν∇~u) dV =

∫
S

d~S · (ν∇~u) ≈
∑
f

νf ~Sf · (∇~u)f , (3.3.3)

where the dot product can be calculated as follows:

~Sf · (∇~u)f =
∣∣∣~∆∣∣∣ uN − uP∣∣∣~d∣∣∣ + ~k · (∇~u)f , (3.3.4)

where the first term on the right is the orthogonal contribution and the second

term is the non-orthogonal corrector. ~Sf is the face area vector, and
∣∣∣~d∣∣∣ is the

distance between two adjacent nodes as shown in Fig. [3.1]. The vector~Sf is

decomposed in two components ~Sf = ~∆+~k, where the vector ~∆ is chosen to be

parallel with ~d and ~k is the other component. P and N are the points around

the face f and (∇~u)f is calculated as follows.

(∇~u)f = fx (∇~u)P + (1− fx) (∇~u)N , (3.3.5)

where fx is an interpolation factor

Pressure Term ∫
V

∇p dV =
∑
f

~Sf p , (3.3.6)

3.3.3
Boundary Conditions

In order to solve the governing equations, boundary conditions have to be

specified on all boundary faces. The boundary conditions used to set the

simulation are two types:

– Dirichlet prescribes the value of the dependent variable on the boundary

and is therefore termed fixed value.
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– Neumann prescribes the gradient of the variable normal to the bound-

ary and is therefore termed fixed gradient.

To specify the real boundary conditions of a flow, the later numerical

description of the boundary conditions are applied differently on each boundary

surface. In incompressible fluid flow there are the following physical boundaries.

– Inlet The velocity field at the inlet is supplied and, for consistency, the

boundary condition on pressure is zero gradient.

– Outlet The pressure field at the outlet is supplied and a zero gradient

boundary condition on velocity is specified.

– No-slip, impermeable wall The velocity of the fluid is equal to that of

the wall itself, i.e., a fixed value condition can be specified. The pressure

is specified zero gradient since the flux through the wall is zero.

– Symmetry plane. The symmetry plane condition specifies the compo-

nent of the gradient normal to the plane should be zero.

– For turbulent flows, the inlet and outlet boundary conditions on tur-

bulence variables (k and ω, for example) are typically assigned to fixed

values and zero gradients, respectively. The boundary conditions for the

turbulence properties on the wall depend on the form of the selected

turbulence model and the near-wall treatment [7].

3.3.4
Calculation of the flow field

The systems of partial differential equations are treated in the segregated

way, meaning that they are solved one at a time, with the inter-equation

coupling treated in the explicit manner. All dependent variables share the

same control volumes, which is usually called the co-located or non-staggered

variable arrangement.

The form of the presented equations shows a linear dependence of velocity

on pressure and vice-versa. So, to solve the problem of pressure-velocity

coupling, the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)

is used.

The SIMPLE algorithm by Patankar [3] is formulated as follows:

1. Guess the pressure field.

2. Solve the momentum equations to obtain the velocity field.

3. Solve the pressure correction equation.
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4. Calculate the pressure using the pressure correction and the guessed

pressure.

5. Calculate the velocity field using the velocity-correction formulas.

6. Solve the discretization equations for the other magnitudes.

7. Treat the corrected pressure as a new guessed pressure, return to step

two, and repeat the whole procedure until a converged solution is

obtained.
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