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Abstract

L. Daniel Peralta; ; . Numerical study of the aerodynamics
of a race car rear wing. Rio de Janeiro, 2011. 87p. Dissertação
de Mestrado — Departamento de Engenharia Mecânica, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

In order to gain deeper understanding of the flow physics around low aspect

ratio wings, the current dissertation presents a numerical study of the flow

around a race-car rear wing, in particular, the PUC-Rio Formula-University

car. To diminish the time it takes to prepare a numerical simulation, we eva-

luate the performance and accuracy of a particular utility available in Open-

FOAM, namely, snappyHexMesh, which generates hexahedral unstructured

grids. The effect of using such a grid in numerical simulations employing two

different turbulence models (Spalart Allmaras and k − ω SST) for several

angles of attack is investigated. The methodology of the study comprised six

steps: 3D scanning of the real geometry, geometry modeling, grid genera-

tion, flow computation, solution validation, flow visualization and analysis.

The grid qualities were assessed using a simple two-dimensional case, which

showed good agreement with experimental data with an absolute difference

ranging between 0.39% and 8%. While comparing them with numerical va-

lidated data the difference ranged between 0.5% and 3.6%. By visualizing

the velocity and pressure fields, it was confirmed that the methodology used

in the current study is capable of capture the various physical phenomena

present in the flow around a rear wing, which is characterized by horseshoe

vortices at the end plates, local recirculation zones, tip vortices and their

interaction with the boundary layer at the suction surface. The simulations

showed that the size of the tip and horseshoe vortices increases with the

angle of attack, as well as their influence on the boundary-layer separation.

Consequently, although the end plates are known to be useful in reduction

of vortex, it was observed there is still a great waste of energy in their

formation.

Keywords
Computational Fluid Dynamics. Aerodynamics. Wing. Race Car.
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Resumo

L. Daniel Peralta; ; . Estudo Aerodiâmico . Rio de Janeiro, 2011.
87p. Dissertação de Mestrado — Departamento de Engenharia
Mecânica, Pontif́ıcia Universidade Católica do Rio de Janeiro.

A fim de obter uma compreensão mais profunda da f́ısica do escoamento

em torno de asas de baixa relação de aspecto, a presente dissertação

apresenta um estudo numérico do escoamento em torno da asa traseira de

um carro de corrida, em particular, o carro de fórmula da PUC-Rio. Para

diminuir o tempo que leva para preparar uma simulação numérica, avaliamos

o desempenho e a precisão de um utilitário dispońıvel no OpenFOAM

chamado snappyHexMesh, o qual gera malhas não estruturadas usando

em sua maioria elementos hexahédricos. O efeito do uso de tal malha nos

resultados das simulações numéricas é investigado, empregando dois modelos

de turbulência diferentes (Spalart Allmaras e k − omega SST) para vários

ângulos de ataque. A metodologia do estudo foi composta por seis etapas:

a digitalização da geometria, a modelagem da geometria, a geração da

malha, o cálculo do escoamento, a avaliação da solução, a visualização e

análise do escoamento. As qualidades da malha foram avaliados através de

um caso bidimensional simples, que mostrou boa concordância com dados

experimentais com uma diferença absoluta variando entre 0,39% e 8%.

Em quanto que comparando-os com dados numéricos validados a diferença

variou entre 0,5% e 3,6%. Visualizando os campos de velocidade e os campos

de pressão, foi confirmado que a metodologia utilizada no estudo é capaz

de capturar os diversos fenômenos f́ısicos presentes no escoamento, o qual

é caracterizado por vórtices de ferradura nas placas, zonas de recirculação

locais, vórtices de ponta e sua interação com a camada limite na superf́ıcie

de sucção. As simulações mostraram que o tamanho dos vórtices de ponta e

dos vórtices de ferradura aumenta com o ângulo de ataque, bem como sua

influência sobre a separação da camada limite. Conseqü entemente, embora

as placas sejam reconhecidamente úteis na diminuição dos efeitos de ponta,

ainda há um grande desperd́ıcio de enerǵıa na formação de vórtices.

Palavras–chave
Dinâmica dos Fluidos Computacional. Aerodinâmica. Asa.

Carro de Corrida.
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Summary of notations

Roman

CL lift coefficient
L lift
A reference area
c wing chord
s wing span
U∞ free-stream velocity
D drag
CD drag coefficient
Re Reynolds number
Cp pressure coefficient
u velocity vector
p thermodynamic pressure
(x, y, z) Cartesian coordinates
t time
u∗ average of u
u′ fluctuating part of u
u∗ characteristic velocity scale
l∗ characteristic length scale
k turbulent kinetic energy
Pk rate of production of turbulent kinetic energy
F1 blending function in the model equation for ω
F2 second blending function in the model equation for ω
CDkω constant in the model equation for ω
S invariant measure of the mean strain rate
a1 constant in the model equation for k and ω
fv1 closure coefficient in for the Spalart Allmaras model
fv2 closure coefficient in for the Spalart Allmaras model
fω closure coefficient in for the Spalart Allmaras model
g closure coefficient in for the Spalart Allmaras model
r closure coefficient in for the Spalart Allmaras model
cω2 closure coefficient in for the Spalart Allmaras model
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ft2 closure coefficient in for the Spalart Allmaras model

ct3 closure coefficient in for the Spalart Allmaras model

ct4 closure coefficient in for the Spalart Allmaras model

V cell volume

y+ non-dimensional coordinate

Sf cell face area vector

uτ shear velocity

Wij vorticity tensor

|d| distance between two adjacent nodes

fx interpolation factor

k component of Sf

Greek

ρ density

ν kinematic viscosity

µt turbulent viscosity

νt kinematic eddy viscosity

ω specific dissipation rate

ε rate of dissipation of the turbulent kinetic energy

τω wall shear stress

β∗ constant in the model equation for k

σk constant in the model equation for k

γ constant in the model equation for ω

β constant in the model equation for ω

σω constant in the model equation for ω

σω2 constant in the model equation for ω

σk1 constant in the model equation for ω

σk2 constant in the model equation for ω

γ1 constant in the model equation for ω and k

β1 constant in the model equation for ω and k

β2 constant in the model equation for ω and k

Ω magnitude of the vorticity

χ ratio between ν̃ and ν
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