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Abstract

Da Silva Junior, Manoel Feliciano; advisor: CarealMarcio da Silveira;
co-advisor: Braga, Arthur Martins Barbosatelligent Well Transient
Temperature Signal Reconstruction Rio de Janeiro, 2012. 162p. D.Sc.
Thesis — Departamento de Engenharia Mecénica, fRomtUniversidade
Catolica do Rio de Janeiro.

Intelligent Well (IW) technology has built-up sesaeryears’ production
experience. Numerous publications have described remote flow control and
monitoring capabilities can lead to fewer intervens, a reduced well count and
improved reservoir management. Despite the matwftyW equipment, the
concept of the integrated IW as a key element en“Digital Oil Field” still not
fully developed. Permanent monitoring systems irs thamework play an
important role as source of the necessary infoona#ibout actual production
system aiming model calibration and uncertainty imipation. However, each
extra permanently installed sensor increases thiswestallation complexity and
operational risk. A well-founded understanding dialv data is actually needed
and what analysis techniques are available to &xtine@ required information are
key factors for the success of the IW project. Thisrk proposes a new
framework to real-time data analysis through céiairey pre-processing. A
numeric IW transient temperature model is develpgested and validated to
generate synthetic data. It was chosen without loHs generality as a
representative application to test and validate ftbeansing” and feature
extraction algorithms developed. The results addeare compared with the state
of the art ones showing advantages regarding effii and potential to capture
mutual influence among processes.

Keywords
Intelligent Well; Numeric Flow Simulation; Finitel&nents; Data Analysis;
Robust Principal Component Analysis; Diffusion Maps
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Resumo

Da Silva Junior, Manoel Feliciano; orientador: Gdino, Marcio da
Silveira; co-orientador: Braga, Arthur Martins Basl. Reconstrucéo de
sinais transientes de temperatura em pocos inteligees Rio de Janeiro,
2012. 162p. Tese de Doutorado — Departamento dertBaga Mecanica,
Pontificia Universidade Catolica do Rio de Janeiro.

A tecnologia de pocos inteligentes ja possui mugioss de experiéncia de
campo. Inimeras publicacdes tem descrito como traterde fluxo remoto e os
sistemas de monitoragdo podem diminuir o nimerimtéevencdes, 0 nimero de
pocos e aumentar a eficiéncia do gerenciamentoeservatorios. Apesar da
maturidade dos equipamentos de completacdo o t¢ondei poco inteligente
integrado como um elemento chave do “Digital Oiel&i ainda ndo esta
completmente desenvolvido. Sistemas permanentesmdaitoracdo nesse
contexto tem um papel fundamental como fonte darmmcédo a respeito do
sistema de producdo real visando calibracdo de lowde minimizacdo de
incerteza. Entretanto, cada sensor adicional reptasaumento de complexidade
e de risco operacional. Um entendimento fundamenta que realmente é
necessario, dos tipos de sensores aplicaveis & tg@iicas de analises estdo
disponiveis para extrair as informacfes necess&@as pontos chave para o
sucesso do projeto de um poco inteligente. Esbaltia propde uma nova forma
de tratar os dados em tempo real de pocos intédigertravés da centralizacéo do
pré-processamento dos dados. Um modelo poco ieteégnumeérico para
temperatura em regime transiente foi desenvolvidstado e validado com a
intencdo de gerar dados sintéticos. A aplicacdoegmolhida sem perda de
generalidade como um exemplo representativo pdidagao dos algoritmos de
“limpeza” e extracdo de caracteristicas desenvosvi@s resultados mostraram
aumento da eficiéncia quando comparados com ocestadrte e um potencial
para capturar a influéncia matua entre os processasoducao.

Palavras Chave
Poco Inteligente; Simulacdo de escoamento; Elemadfitutos; Analise de
Dados; Analise de Componentes Principais Robustgas! de Difuséo.
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Symbols

D

S Saturation RS Solubility ratio of phase j’ in phase j
T Temperature KJT Joule-Thomson coefficient
u Velocity vector Cp Mass heat capacity at constant pressur
Ugm Gas drift velocity A Area
k Permeability tensor P Potential
K Relative permeability Q Porosity
p Pressure Cc Compressibility
q Volumetric flow U Internal energy
G; Thermal flow H Enthalpy
1% Density KT Thermal conductivity
U Viscosity (dynamic) T Stress tensor
A Relative mobility ,3 Volumetric thermal expansivity
g Standard gravity U wb  Wellbore heat transfer coefficient
fF Fanning friction factor R Radius
e Angle with the vertical yp Volumetric fraction of the liquid phase p
T Reservoir initial temperature X Volumetric fraction of the gas phase p
e p
g, Geothermal gradient y Opened_ surface area and total surface
area ratio
Tpal Shear stress at the pipe wall CO Distribution coefficient
D Diameter g Surface tension
Dh Hydraulic diameter Fp Flow pattern factor
& Pipe roughness | Inclination factor
R“ Reynolds number of the mixture Pr Prandt number
Reynolds number per unit length of radial
Re resenvoir flow Gr  Grashof number
Heat transfer coefficient between tubing to .
U, annulus Ra Raleigh number
Heat transfer coefficient between annulus to . -
& formation C, Discharge coefficient
lat, j Latent heat of phase j’ in phase j h Heat transfer coefficient
Subscript
\W Water component/phase m Mixture
0] Oil phase component/phase | Inflow
S  Rock f Fluid
z z direction t Tubing
r r direction a Annulus
P Phase



DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Acronyms and Abbreviations

CT Christmas Tree

DAS Distributed Acoustic Sensing

DM Diffusion Maps

DTS Distributed Temperature Sensing System
DTSS Distributed Temperature and Strain Sensing Sstem
DVS Distributed Vibration Sensing

EM Electromagnetic Method

ESP Electric Submersible Pump

FBG Fiber Bragg Grating

GLV Gas Lift Valve

GOR Gas-Oil Ratio

GVF Gas Void Fraction

ICV Inflow Control Valve

IPR Inflow Performance Relationship

W Intelligent Well

IWC Intelligent Well Completion

IWCS Intelligent Well Control System

IWIS Intelligent Well Interface Standardization
IWSCS Intelligent Well Surface Control System
JIP Joint Industry Project

MAD Median Absolute Deviation

MD Measured Depth

MEMS Micro Electro-Mechanical Systems

MIMOSA  Non-profit trade association dedicated to orations and

maintenance standards

MPFM Multi-Phase Flowmeter

MTTF Mean Time To Failure

NIST National Institute of Standards and Technolog
NP Non-Polynomial Time

NTP Network Time Protocol

OBC Ocean Bottom Cable

OLEDB Object Linking and Embedding Database


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

OPC
PCP
PDG
PES
PRODML
PVT
RED
RESQML
RMAD
RMSE
ROV
RPCA
RTD
SCAD
SCADA
SCM
SCRAMS
SHD
SOl
SONAR
SoS
SVvD
TCP/IP
TDM

TH

TSR
TTA
TVD
VSP

wWC
WCT
WDM
WH
WITSML

OLE for Process Control Connectivity
Principal Component Pursuit

Permanent Downhole Gauge

Petroleum Engineering Services
Production Markup Language
Pressure-Volume-Temperature Analysis
Regression Estimated Decline
Reservoir Characterization Markup Language
Robust Median Absolute Deviation

Root Mean Squared Error

Remote Operated Vehicle

Robust Principal Component Analysis
Resistance Temperature Detectors

Smoothly Clipped Absolute Deviation
Supervisory Control and Data Acquisition Sysém
Subsea Control Module

Surface-Controlled Reservoir Analysis & Maragement System
Symmetric Hausdorff Distance

Silicon on Insulator

Sound Navigation and Ranging

Speed of Sound

Singular Value Decomposition

Transmission Control Protocol/Internet Protocol
Time Division Multiplex
Tubing Hanger

Tubing Separation Tool
Temperature Transient Analysis
True Vertical Depth

Vertical Seismic Profile

Water Cut
Wet Christmas Tree
Wavelength Division Multiplex
Wellhead

Wellsite information Transfer Standard Marku p Language


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Figures

Figure 2.1 - IW completion example.

Figure 2.2 - ICV choke profile

Figure 2.3 - Control line and flatpack.

Figure 2.4 - Control line and flatpack.

Figure 2.5 - TH/WCT wet-mate feedthrough connector system for a
vertical and horizontal WCT.

Figure 2.6 - PRODML framework.

Figure 3.1 - FBG sensor basic principles.

Figure 3.2 - Convection velocity and SoS (Speed of Sound)
in k-w plane

Figure 3.3 - Backscattering based sensors.

Figure 3.4 - Performance chart

Figure 3.5 - Packer setting confirmation.

Figure 3.6 - Flow allocation analysis.

Figure 3.7 - Hydraulic fracturing performance monitoring.

Figure 3.8 - Metrological parameters definition and relationship.
Figure 3.9 - Quantifiable source of model uncertainties and their impact.
Figure 3.10 - IW monitoring system design basis

Figure 3.11 - Structure (left), well locations (middle) and permeability
distribution (right) for the PUNQS3 model.

Figure 3.12 - Horizontal IW completion for PUNQ S-3 production well.
Figure 3.13 - WC simulation results.

Figure 3.14 - Temperature in lower completion showing two and all

valves open.

Figure 4.1 - Well/Reservoir mutual (Alberts, Belfroid et al. 2007)
Figure 4.2 - Sensors positions and their response in a producing

horizontal well (Valiullin, Ramazanov et al. 2009)

24
27
27
28

28
32

38

40
43
44
46
46
46
48
49
53

56

57

59

64

65


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Figure 4.3 - Zonal intelligent well transient pressure response
(Muradov and Davies 2012).

Figure 4.4 - Zonal intelligent well transient temperature response
(Muradov and Davies 2012).

Figure 4.5 - Pressure and temperature transient sandface pure
response in a horizontal IW.

Figure 4.6 - Well-reservoir model geometry.

Figure 4.7 - Cylindrical-shaped reservoir layer.

Figure 4.8 - Annulus and tubing in a well segment.

Figure 4.9 - Well-reservoir segment and its radial layers

Figure 4.10 - ICV

Figure 4.11 - Geometry used in the valve model (A;=As3).

Figure 4.12 - Nonuniform quadrangular mesh.

Figure 5.1 - One well-reservoir layer/segment with an ICV.

Figure 5.2 - Temperature and pressure in a vertical well with 500 bpd
of oil production in the tubing and in the annulus.

Figure 5.3 - Reservoir pressure and temperature (oil production)
Figure 5.4 - Reservoir pressure and temperature (oil/water production)
Figure 5.5 - Pressure and temperature transients for 2000 [bpd] and
1000 [bpd].

Figure 5.6 - Well-reservoir schematic for case study.

Figure 5.7 - Well temperature:T(z, t=0).

Figure 5.8 - Well temperature: T(z, t=3h).

Figure 5.9 - Well temperature: T(z, t=24h).

Figure 5.10 - Well temperature: T(z=half segment, t).

Figure 5.11 - Well temperature:T(z, t=0).

Figure 5.12 - Well temperature: T(z, t=3h).

Figure 5.13 - Well temperature: T(z, t=24h).

Figure 5.14 - Well temperature: T(z=half segment, t).

Figure 5.15 - Well temperature:T(z, t=0).

Figure- 5.16 - Well temperature:T(z, t=3h).

Figure 5.17 - Well temperature:T(z, t=24h).

Figure 5.18 - Well temperature:T(z= half segment, t).

66

66

67
68
69
71
75
77
77
83

87

91
92
93
93
94
94
95
95
96
96
97
97
98
98


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Figure 5.19 - Well temperature:T(z, t=0h).
Figure 5.20 - Well temperature:T(z, t=3h).

Figure 6.1 - Integrated modeling and optimization framework.

Figure 6.2 - Value chain pyramid chart.

Figure 6.3 - Data analysis framework with centralized pre-processing.
Figure 6.4 - Integrated IW architecture.

Figure 6.5 - Integrated IW application with centralized pre-processing.

Figure 7.1 - Random noise.

Figure 7.2 - Systematic errors.

Figure 7.3 - Noise and drift of a real PDG (the green signal is the
“clean” one).

Figure 7.4 - Temperature gradient profile error due to reading unit
noise model in a real temperature measurement (blue line without
correction).

Figure 7.5 - Mean filter performance (red is the clean signal).

Figure 7.6 - Median filter performance (red is the clean signal).

Figure 7.7 - Maximum-minimum filter performance (red is the clean
signal).

Figure 7.8 - Moving-average filter performance (red is the clean
signal).

Figure 7.9 - Hard and soft shrinkage operator.

Figure 7.10 - Wavelet filter performance for the hard threshold (red is
the clean signal).

Figure 7.11 - Wavelet filter performance for the soft threshold (red is
the clean signal).

Figure 7.12 - Outliers problem.

Figure 7.13 - PCP as a denoising technique.

Figure 7.14 - Synthetic example of the inexact augmented Lagrange
multiplier RPCA algorithm.

Figure 7.15 - Rank(L) and Card(O) as function of the iteration.

Figure 7.16 - Relative error as function of the iteration.

99
99

102
103
104
105
107

108
109

110

111

113

113

114

115
116

117

117
118
120

121
122
122


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Figure 7.17 - Denoising procedure in the pre-processing framework
Figure 7.18 - Trefoil knot with Gaussian noise.
Figure 7.19 - Trefoil knot with Gaussian noise.
Figure 7.20 - Trefoil knot with Gaussian noise.

Figure 7.21 - Centralized pre-processing framework.

Figure 8.1 - Injector-producer pair pressure signal (dark blue and
light blue are lower and upper zones respectively; black producer
well).

Figure 8.2 - Injector-producer pair temperature signal (red and green
are lower and upper zones respectively; pink producer well).

Figure 8.3 — Pressure and temperature signals 1,2 and 3.

Figure 8.4 - Outlier removal and denoising in Olsen’s Work.

Figure 8.5 - Bi-orthogonal Spline39 wavelet functions.

Figure 8.6 - Transient detection approach based on mask-matching

pattern recognition.

Figure A.1 - Shear stress at the pipe wall.
Figure A.2 - Chen (1979) - Fanning friction factor.

Figure C.1 - Heat transfer within wellbore.

Figure D.1 - Cylindrical-shaped reservoir.
Figure D.2 - Control volume of the reservoir mass balance and flow
equations.

Figure D.3 - Volume control of the reservoir energy balance.

123
126
127
128
129

132
132
133
134

136

138

151
152

155

159

159
161


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Tables

Table 3.1 - Seismic sensors comparison by technology.
Table 3.2 - Typical metrological data for downhole sensors

Table 3.3 - Measurement types and application areas

Table 4.1 - IC and BC for layer 1
Table 4.2 - IC and BC for layer j

Table 8.1 - Bi-orthogonal Spline39 scaling filters.

Table 8.2 - Non-orthogonal Spline4246 scaling and wavelet filters.
Table 8.3 - Denoising/outlier removal and transient identification
performance results.

Table 8.4 - Denoising/outlier removal and transient identification
performance results using transient temperature signal.

Table 8.5 - Denoising/outlier removal and transient identification

performance results using pressure and temperature signals.

42
61
62

74
75

136
137

139

141

142


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

“The dictionary is the only place where success comes before work.”

Vince Lombardi
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1
Introduction

IW (Intelligent Well) technology has been built-ugeveral years of
production experience. Numerous publications haascidbed how remote flow
control and monitoring capabilities can lead toéewmterventions, a reduced well
count and improved reservoir management. Despie haturity of IW
equipment, the concept of the integrated IW asyaegkement in the “Digital Oil
Field” is still not fully developed. Today’s practi consists of evaluating the IW
value chain in a “fit-for-purpose” manner rathearthusing an integrated modeling
and optimization framework.

Design considerations of an IW project requiredaadard framework to
evaluate, select, define, execute and operate tbgcp and systematically
integrate the contributions from all disciplinesotved (Lau 2008). This means
that all connected physical components such asvasewells and production
facilities have to be taken into account. Additibyyaover simplification in the
integrated modeling assessments should be avordedamsistent treatment of all
important parameters of the production system shdad provided (Hudson,
Alves et al. 2011).

Permanent monitoring systems in this framework glaymportant role as
source of the necessary information about actuadlymtion system aiming at
model calibration and uncertainty minimization. Heer, each extra permanently
installed sensor increases the well’s installatomplexity and operational risk.
A well-founded understanding of what data is adyuakeded and what data
analysis techniques should be available to extrectequired information are key
factors for the success of the IW project.

There are a variety of robust, commercial and inseodata analysis tools
available to the operator (IW applications includekhe challenge is to compare
and integrate the results from these tools in a thay a reliable decision can be
made. The integrated approach calls for the opesatbosen models to be fully
integrated (from reservoir, wells/flowlines/ris¢ostopside facilities). There is no
off-the-shelf solution which efficiently mimics athe physical flow systems

described above. Neither there is a set of apphestwhich honors the needs of
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Intelligent Well Transient Temperature Signal Reconstruction 21

the different disciplines without important simpidtions that result in losing the
incremental value of the integrated modeling andinopation framework
(Hudson, Alves et al. 2011). A new data analysre@ach with a centralized pre-
processing is proposed aiming to design a robusmament monitoring
architecture to deliver the full “Added Value” dfe IW technology. It also allows
feature extraction that can potentially improve thmlity of the post-processing
and interpretation predictions. This new approaa$ ot yet been fully explored,
even though a successful application can be foundffshore production and
maintenance operations (Friedemann, Varma et @B)20

A numeric non-isothermal dynamic well-reservoir rabt developed and
validated as an IW representative application toegate synthetic data and
illustrate the applicability of this new data arsay approach. It combines the
reservoir temperature model from (Sui, Zhu et @D8) and the well temperature
model from (Muradov and Davies 2008) including tieeessary modifications for
the two phase flow formulation and multilayer reser.

The signal reconstruction algorithms can be useth vgingle point,
multipoint, and distributed/quasi-distributed temgiare monitoring systems. The
idea is identifying the impact of the temporal asmhtial resolution as well as
noise and outlier in the new data analysis fram&vwwoposed. Two algorithms
are used: robust principal component analysis (Esndli et al. 2011) for
denoising and outlier removal and DM (Diffusion MagCoifman and Lafon
2006) for feature extraction. The results are caeygbavith the ones from (Olsen
2011) showing in which cases there were improvemi@dbmpression and time

synchronization are discussed but they are sugtjastéuture work.

1.1
Scope

The goal of this thesis is to develop and studyeav rdata analysis
framework with centralized pre-processing. The gtudas limited to a
temperature transient application as a represeatakample without loss of

generality.
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1.2
Contributions

The contributions of this thesis can be summara=sed
* In-well monitoring system design framework with eégtated modeling
and optimization in mind;
* Numerical non-isothermal dynamic well-reservoir mbébor multi-layer
reservoir and vertical well equipped with inflontml valves;
» Data analysis pre-processing techniques for demmisiutlier removal and
feature extraction for in-well measurements basedrabust principal

component analysis and DM respectively.

1.3
Outline

The organization of this thesis can be summarizdoliows:

Chapter 2 reviews intelligent completion technology and agluces the concept
of integrated intelligent completion.

Chapter 3 reviews permanent monitoring systems and introslucenew IW
monitoring system design framework. The benefitdefling with data quality
control is presented.

Chapter 4 describes the numerical non-isothermal dynamid-meskervoir model
for multi-layer reservoir and vertical wells equgapwith inflow control valves
and its practical implementation.

Chapter 5 validates the model described in chapter 4 andlysesm temperature
transients caused by step-like change of downhoe dontrol devices.

Chapter 6 reviews data analysis and interpretation concaptsproposes a new
data analysis framework with centralized pre-preres

Chapter 7 reviews theoretical background for denoising, ieuttemoval and
feature extraction based on robust principal corepbanalysis and DM.

Chapter 8 validates and compares the denoising and feaktiraction algorithms
with the state of the art ones.

We conclude our research with a summary of ouritigel and a discussion for
future work inChapter 9.
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2
Intelligent Wells

A new completion technology named SCRAMS (Surfaceitvlled
Reservoir Analysis & Management System) was dewsoguring a JIP (Joint
Industry Project) in the mid-nineties by Shell aPES (Petroleum Engineering
Services)/Halliburton for saving cost associatethwoutine production logging
and planned operations to manage commingle ressrpooduction. In 1997
SCRAMS had its first installation in North Sea amdvas claimed to be the
world's first "smart” well completion system. Riglatfterwards Halliburton
replaced the technology name from SCRAMS to Smadifivéw or IWC
(Intelligent Well Completion) has been adopted ly market since then to avoid
trademark issues. Despite the name used a welbeeghiwith intelligent elements
which adds value to the well project during itedycle is the most accepted
definition of IW today.

The main objective of production optimization &ldi scale using “Digital
Oil Field” concepts is to maximize production aretavery focusing on safety
and environment. In this scenario, reservoir mamyd becomes a
multidisciplinary effort where IW as a key elemaitthe “Digital Oil Field” is
still under developmenfloday’s practice consists of evaluating IW valuaiohn
a “fit-for-purpose” manner rather than using anegrmated modeling and
optimization framework to select, define, executd aperate the IW project and
systematically integrate the contributions from dibsciplines involved (Lau
2008). Additionally, an integrated production maadglwhich takes into account
all connected physical components such as reserwetls and production
facilities have to be used. The workflow should idvaver simplification in the
integrated modeling assessments and provide a stensitreatment of all
important parameters of the production system (dngalves et al. 2011).

Well completion design as consequence of this neamdéwork is a
challenging task since today’'s technology has teduln a wide variety of
hardware and software being employed to manage cthreent well stock.
Relatively cheaper new hybrid (electric/hydrauliyy systems are becoming

available, enabling the flow control system and #emsor to share the same
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system architecture. This represents a reduced euoflcontrol lines and
allows interchangeable modules for actuators andsas, increasing the
installation flexibility while simplifying the ingtllation procedure. The end result
is less risky operations with equipment suitable # broader range of

applications.
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Figure 2.1 — System view of the IW in a subsea environment.
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This chapter has been written as an overview of lilve completion
elements, design considerations and installati@uirements according to an
integrated modeling and optimization framework iman An IW completion in
this context can be seen as actuators and sensarsamtrol system where the
reservoir is the process to be controlled. Figufieillustrates this idea in subsea

environment.

2.1
Permanent Monitoring Systems

IW monitoring systems continuously evolve. Theyrtsi@ with the basic
measurements of the conventional PDG (Permaneninbole Gauge) that was
only able to react to changes within the wellbdtewadays they can be equipped
with a wide range of sensors which enable thenotk ldeep into the reservoir
and/or identifymore subtle effects. This brings additional valehe IWs, being
able to control zonal production/injection proaetyy reduce the production
uncertainty and provide data for improving the resg models.

Next chapter will review IW monitoring systems, itheavailability,
applicability and limitations. It will discuss dagquisition issues in-depth; e.g.
resolution, data processing and reliability. Iniadd, an example of an integrated
IW application is given.

2.2
Packers

IW packers are used to provide hydraulic isolabbmones which can be different
reservoirs or different layers of the same reseralbowing selective control; the
uppermost completion packer is also responsibleafarhoring the tubing and
providing the first safety barrier for the annultise same basic functions of the
conventional production packer. There are also @acfor isolation purposes that
have only isolating material with no anchoring whreduces the force needed for
unsetting them and allows a large number of ismhaintervals. The IW packers
also have feedthroughs to bypass control linescély an IW packer presents
from four to nine feedthroughs. During the setfimgcedures, the IW packer must
not have any relative movement of its component# stmes not transmit any

tension to the control lines.
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2.3
Inflow Control Valve

Inflow control valves are responsible for allowirsglective control of
production or injection. They can be actuated hylically, electrically or through
a combination of both (multiplexed). Even thougle tontrol of ICVs (Inflow
Control Valves) has been changed towards only hdraystems due to its
reliability and cost, nowadays there is a trendkbiac electrical and downhole
multiplexed systems. Mainly due to reliability inggement in downhole
electronics and number of feedthroughs restrictiontibing hanger and WCT
(Wet Christmas Tree) for subsea production. Thetmosimon control type is
still hydraulically actuated, which uses one opgnoontrol line for each valve
and a common close control line for the systenetiuce the number of hydraulic
control lines installed. In electrically actuatedlwes, an electrical motor is
responsible for the sleeve movement. The motorsaerngated using one single
electrical control line for all motors that supglialso the addressing information,
which is decoded in each valve. The electric/hylitasystems use an electric
control line for multiplexing and one or more hydlra control lines to provide
power to move the sleeve. The valves can alsodssifled according to the flow
control they provide as on-off, multiposition andfimitely variable. The on-off
valves only provide the selectivity by allowing mot the flow. The multiposition
valves provide several steps of choking, and asggded accordingly to the flow
rate expected on the well. They can use an indstesyto restrict the course and
provide the choking or an external device that gles a very controlled volume
of hydraulic fluid in each shifting. The infinitelyariable valves are more
complex and require feedback on their position dust the correct choking.
There are also different geometries for the valsuBces, but the most common
are circular and variable area slots, which arel useon-off/multiposition and
infinitely variable respectively. It is worth to mion that inflow control valves
not only control flow from annulus to tubing busalcontrol flow from tubing to
tubing using its shrouded version. The main pararsain specifying IW valves
are: number of choking positions, choking profflew range, maximum pressure

and maximum differential pressure.
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AL

Figure 2.2 - ICV choke profile

2.4
Lines, connectors, feedthrough connectors and clamp S

IW requires control lines to remotely control itsngponents and receive
data from the sensors. These lines have to be giedteagainst shocks and
chemical attacks during intervention proceduredustry standard Y4” lines are
generally used to offer mechanical resistance apolyaneric material to provide
chemical protection. To improve the support resista armor cables can also be
used alongside the lines, forming a flatpack. Iibsea IW applications the
electrical control lines are limited to single wioe twisted pair due to tubing
hanger wet-mate feedthrough connector system. tegemmended to use the
twisted pair electrical control line due to its s®i characteristics and
improvements in telemetry to handle multiple sessalr faster data rate. Fiber
optic applications have at least one fiber avadalypically three) and there are
mechanical restrictions in the TH/WCT connectorteys Subsea fiber optic
applications up to the writing of this thesis aot available due to TH/WCT wet-

mate connector system and downhole wet-mate casmect

single control line flatpack

Figure 2.3 - Control line and flatpack.
Control lines protectors — clamps — are used tal hbke lines to the

production tubing and to offer extra protectionitaear the tubing couplings,

where the diameter of the tubing is increased.
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single control line flatpack

Figure 2.4 - Control line protectors (Clamps).

Dry-mate connectors are used to connect a coninel to a sensor or
another control line. To pass the signal througd T™H and WH, wet-mate
feedthroughs connectors are used to ensure thake tie no pressure
communication. In subsea trees or downhole, weensannectors are used in
seawater environments or in the presence of praufitiids. There is a range of
electrical connectors, both dry and wet-mate, ageldthroughs qualified for
vertical and horizontal WCT commercially availablieis recommended the use
of single pin two contacts TH wet-mate feedthrosgstem due to the reasons
explained earlier in this section. This is not tase for the fiber optic counterpart
where there is only an advanced stage of developtoetgate for the TH/WCT
wet-mate feedthrough connector system and stillrel@mble solution for the
downhole wet-mate connector. Even though, dry matd ROV (Remote

Operated Vehicle) wet-mate connectors are qualdretilcommercially available.

Well-head

Dry mate
/ outlet > connector Wet-mate
] v / connector
)
“ A« Dry mate
A connector s
Wet-mate 1 Wet-mate
plug 4 / plug
Wet-mate Wet-mate
« receptacle / receptacle
Dry mate Dry mate

downhole

downhole
connector

connector

Figure 2.5 - TH/WCT wet-mate feedthrough connector system for vertical and horizontal
WCTs.
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2.5
Wet Disconnection Tool

IW is used integrated with other completion toalsts as artificial lift and
sand control. Typically when there are reliabilggues between upper and lower
completion a specific tool named WDT (Wet DiscortrmtTool) is necessary. It
enables upper completion to be disconnected fromedocompletion and
reconnected afterwards for maintenance purposesar#ircial lift using a high
performance ESP (Electric Submersible Pump) whias lower MTBF (Mean
Time Between Failure) is a representative examglehe reliability issues
mentioned. Basically it is a TSR (Tubing Separafi@ol) equipped with control
lines wet-mate connectors available to hydrauhediand electric lines but still in
development to fiber optic lines. Advances, howgvave been made do avoid
orientation requirement and expand the number @hnwcbls being available.
Based on the connection principle it can be cleski&s discrete or concentric as
can be seen in Figure 2.6. The former uses cororaitivet-mate connectors and

the latter and a manufacturer specific design.
Figure 2.6 — Discrete and concentric WDTSs respectively.

2.6
Multi-point Chemical Injection

A typical downhole chemical injection system cotssidf a chemical control
line and a chemical injection mandrel with a vaiwnstalled as part of the
production tubing string. Usually a check valvealso installed at the point of
injection to prevent flow from the production tugito the injection flow path. A
high-pressure pump, capable of overcoming the tupmessure, is installed on the
surface to pump fluid into the downhole point ofestion. They are used for

scaling control as water cut or condensate wateneases in oil wells and gas
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wells respectively. Other chemicals injected dowehonay be corrosion
inhibitors and hydrate inhibitors for gas wells.

IW completion is sensitive to scaling for properemgtion due to its
moveable parts. Installing a chemical injectiontays in this case should be
multi-point to guarantee continuous chemicals fiowthe annulus of each open
zone and no chemicals flow in the closed zonethitnscenario it is important the
complete integration between the IW and chemicgction system reinforcing
the idea of common architecture IW systems mentidnethe beginning of this

chapter.

2.7
Intelligent Well Control System

Subsea IW is controlled and monitored by a prodactsCM (Subsea
Control Module) installed on a WCT or a manifolctheTSCM provides one or
more hydraulic control lines to operate the dowehshfety valves and inflow
control valves as well as electrical/optical cohlirtes to the downhole sensors in
the completion. Umbilical and in-field jumpers stippnormally low/high
hydraulic pressure, electrical power and commurminatto SCM which come
from topside. This configuration is presented ire ttWIS (Intelligent Well
Interface Standardization) addendum of the ISO 28Z% as option 1
configuration 1. The first impression of this isfudly integrated system, less
complex with a reduced cost. To date this is diffito accomplish due to the lack
of a full compatible set of interfaces (mechani@éctric, protocols, hydraulic
power, etc.) leading to time consuming and cosilst@m solutions with impacted
reliability. In mature fields, upgrades to inst& in this way are even worse. In
addition, IW systems are becoming more complex ahding new sensors and
functions to face the integrated framework chaléengwvhich mean continuous
changes. The recommended solution for subsea IW@&ligent Well Control
System) to achieve reliable solutions is the usB\MiE option 3 configuration 2
as detailed in IWIS Recommended Practice A2. Thmsl lof solution allows
production control and IWCS tests to be done inddpetly and faster
introduction of new technologies with reduced ri8kthe operation phase, it also
makes the management of responsibilities clear.idBss IW interfaces
standardization there are two more efforts in d¢lisction (standardization) that is
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worth to mention: SIIS (Subsea Instrument Interfé&@®@ndardization) and
SEAFOM (Subsea Fiber Optic Monitoring). Improvensenin subsea
instrumentation reliability and promoting fiber @pinstrumentation in subsea

applications are the goals of them respectively.

2.8
Intelligent Well Surface Control System

IW surface control system is generally integratedthe field process
network through an application layer instead ofatadayer. This means that a
proprietary SCADA (Supervisory Control and Data Aisition System) is being
used by the IW supplier and might be a problemmtegrate with the existing one
in the production unit. Due to the variety of suerd and equipment involved, the
connectivity between them should be addressed atptioject phase. Open
protocol specification should be adopted to singplife project by reducing the
need of additional protocol translation. Among opeotocols that have been used
in IWSCS (Intelligent Well Surface Control Systemg should highlight OPC
(OLE for Process Control Connectivity) and TCP/IR{ismission Control
Protocol/Internet Protocol) running over industiiéthernet as the most accepted
and aligned with the standardization efforts merad earlier. Therefore, the
improved interoperability can provide the same nmfation and services even
when a change of supplier is needed. In the integramework scenario high
levels of instrumentation led to demand for improeats in the timing and
format of the provided data which is important &iroptimization processes. The
result was an effort of several companies for angaa high level protocol called
PRODML (Production Markup Language) that comes rio sblving the data
exchange problem through standardization. Otheutisols based on OLEDB
(Object Linking and Embedding Database) and higtoservers are also available
but PRODML framework seems to be stronger and suggdy almost all major
operators and service companies. In Figure 2.@ossible to see its scope which
includes: drilling, completion and interventions IMBML — Wellsite information
Transfer Standard Markup Language); maintenanc®®BA — Non-profit trade
association dedicated to operations and maintenataredards), SCADA and
reservoir characterization (RESQML - Reservoir @htarization Markup
Language).
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Figure 2.7 - PRODML framework.

The real-time data comes from the IW monitoringterys through the
IWSCS becoming available to the applications dhtocentralized pre-processing
proposed in this thesis and discussed in the ch#&t@he following chapter

reviews the IW monitoring system introducing a nelgsign framework.
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3
IW Monitoring Systems

The physical quantities actually measured by downhpermanent
monitoring systems and IW monitoring systems ammosat the same. The
differences and limitations between them are mastlgted to the equipment and
its installation requirements. They are dividedvio classes: deep reservoir and
near wellbore monitoring systems. Deep reservaisisg is related to 4D seismic
(time-lapse seismic), dynamic 3D resistivity andeaiing potential (electro-
kinetic), or, in other words, monitoring techniquesich capture the dynamics of
the entire reservoir. Near wellbore sensing inctudiee classical downhole
measurements such as pressure and temperature.

Permanent downhole sensors are usually classifigd tdchnology
(electronic or optical) and the number of monitopants (single point, quasi-
distributed and distributed). Single point senseid the physical quantity to be
monitored at one point. For example, pressure tisnomonitored close to the
reservoir depth or at the top of the interval dérest. The PDG is an example of
such sensor. Quasi-distributed sensors allow thaitorcng of the physical
quantities at a distinct number of positions acrties reservoir or interval of
interest. Note that a three-zone completion with pressure and one temperature
sensor installed at each reservoir interval dodsrejaresent a quasi-distributed
system; this requires at least three sensors megsbe same physical quantity to
be installed at various points across each inteatributed sensors take this
approach further by monitoring the same physicangty at a spatial resolution
as small as 0.5 m. The DTS (Distributed TemperaBemsor) is an example of
such sensor.

Permanent monitoring systems availability, applidgband limitations are
reviewed in the following sections. Metrology arediability are also addressed.
An example of an application using the Integratéd doncept completes this
chapter.
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3.1
Electronic Sensors

3.1.1
Pressure and Temperature

Electronic sensors have been used for more thagye2@s in PDGs for
measuring pressure and temperature. Quartz Resoteatonology completely
dominates the single point sensor market. It has vesponsible for increasing
pressure and temperature sensor reliability sinoe ¢arly nineties (Eck
1999/2000). MEMS (Micro Electro-Mechanical Systeras)l the associated SOI
(Silicon on Insulator) technology has been respgmedor the recent advances in
sensor reliability when installed in a High Presswand High Temperature
(HPHT) environment. MEMS also have shown promisdhi@ development of
sensors for measuring new physical quantities. cafgiressure and temperature
sensor data is shown in Table 3.2.

The mechanical protection, the type of telemetrpleyed and the available
number of transducers for each sensor depend omahnefacturer and the price.
Commercial sensors are typically capable of havipgo 4 sensors on the same

electric control line (1/4 inch tubing with one sted pair).

3.1.2
Quasi-Distributed Temperature

Increasing the number of sensor systems makes ristallation more
complex and time consuming, hence less suited damtole installation due to
the increasing level of operational risk. New npléik techniques have allowed
the installation of a larger number of smaller tenapure sensors on the same
cable without the need for multiple connectors arahdrels. For example, up to
48 temperature measurement sensors on a singke wsibg high resolution, RTD
(Resistance Temperature Detectors) are now comatigravailable (Gambhir,
Shrivastav et al. 2008).

Typical sensor data is shown in Table 3.2.
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3.1.3
Single Phase and Two-Phase Flowmeter

Differential pressure flowmeters based on the Menfrinciple are
commercially available for IW applications. Theypded on the differential
pressure, a quantity easily measured by two pressemsors. Flowmeters based
on the Venturi principle are best suited to singt@se measurements (e.g. water
injection). Their measurement uncertainty is < #4.%of the average) with a
rangeability of 4 to 1 (ratio of the maximum anchimium flow rates that can be
accurately measured). Their application to productivells is more restricted
since the fluid’s flow regime and the erosion vépm the Venturi’s throat can
both compromise the measurement.

By contrast, an inverted Venturi is suited to hitgwrates and has been
commercialized as a fullbore flowmeter (Ong, Aymastdal. 2007). It provides
the volumetric flow rate in the tubing together lwitemperature and pressure
measurements in the annulus and tubing. Some n@uarges provide calculated
measurements, such as WC and density, by includindensitometer or a
gradiometer. They can achieve an uncertainty of%t8epending on the PVT
(Pressure-Volume-Temperature Analysis) data unogytéKiryushkina, Sikandar
et al. 2011). An insertable Venturi has an openaicadvantage if low cost
interventions can be carried out by wireline, mgkitnonly a practical option for

conventional wells with dry trees.

3.14
Streaming Potential

A common logging tool used to characterize reserpooperties is the
spontaneous potential log. The streaming pote(dia of the component of the
spontaneous potential) is strongly influenced by ibsistivity of the fluids and
the differential pressure resulting from fluid flothrough the porous media
towards the well. Laboratory results and numeregieriments have shown that
one can measure strong signals (up to 100 mV) adymtion wells when low
salinity formation water is present (Jackson, Viaalpv et al. 2011). It should be
possible to interpret those measurements to detssrvoir fluid saturation
changes, e.g. due to encroaching water, at digapiceens or even hundreds of

meters from the well (Jaafar, Jackson et al. 20@phsed-loop reservoir
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management using a proactive reservoir controltegya instead of today’s
simulation model strategy would become practicahi$ promising development
bears fruit.

3.15
Permanent 3D Resistivity

The EM (Electromagnetic Method) provides a signhlclv is proportional
to the conductivity/resistivity of the formation darthe surroundings. It is
obtained through the induction of electrical eddyrents by an alternating
magnetic field, a phenomena that responds to fluithe formation pore space.
This behavior is complementary to seismic measumnsnésee below) which
mainly respond to impedance changes in layer batgsda It is significantly
easier to identify such changes in a time-lapsenmathan the detection of the
actual fluid itself. This monitoring system hasamge of 0.3 km for fluid fronts
showing a large resistivity contrast (Zhou, Julaneieal. 2002). No long-term
case histories have been reported only feasitsligies and field trials. These
studies have trialed surface-to-borehole and bdeeiosborehole time-lapse EM
sensitivity, and single well measurements. Thestathse requires the ability to
measure pico volts downhole which is currently ahtmlogical gap (Strack
2010).

3.1.6
Permanent Downhole Seismic

Improvements in time-lapse 3D seismic technologywehaemarkably
improved the quality of reservoir images. Borehene surface seismic can define
geometric boundaries with reasonable accuracynaoiuthe fluid content, at long
distances (Strack 2010). The latter is best medsbse the electromagnetic
technique. The downhole seismic measurements @@ med by time-lapse VSP
(Vertical Seismic Profile) for borehole-to-borehoseismic imaging and by
surface and OBC (Ocean Bottom Cable) seismic edidor for permanent or
temporary deployment. During the production phassan be used to passively
monitor rock fracturing from both injection and drztion activity. A typical
multilevel, downhole seismic monitoring systems hgsto 30 nodes with 4

channels/node (3c geophones + 1 hydrophone foriptagtcorrection) operating
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with a sampling rate varying from 4 to 0.25 ms. 1€or coupling with the
formation is essential for this type of system @i, Floch et al. 2008).

MEMS accelerometers are now replacing the olderct@magnetic
geophones due to their higher dynamic range, bevatiinear phase/amplitude
response, small size and weight; though theyrstifld improvement to minimize
noise at low frequencies (Mougenot, Cherepovskigle2011). The specification
of a downhole seismic accelerometer should congilikemoise floor, linearity,
dynamic range and (multi-component) cross-axisiteitn. Resonant frequency
should also be included since the sensor's upmdulusequency is a fraction of
its resonant frequency. It thus determines theitahsand displacement per g of
acceleration.

Typical 3c geophone data and the equation reqtireelate the geophone’s
electrical and mechanical data are given in Tat#fe 3

Permanent downhole seismic has not been installad iW completion to-
date. The extra cost and complexity of equippindVewith permanent downhole
seismic needs to be justified by the “Added Valwé’ for example, enabling
proactive control of the reservoir. Current techhiadevelopments in the

combination of seismic and EM methods may makeféasible.

3.2
Fiber Optic Sensors

Fiber optic sensors have been applied to permat@mhhole monitoring
systems since the mid-nineties (Zisk 2005). Iditi@nly DTS was adopted by
operators for temporary well temperature profilgdimg. It was only at the end of
the nineties with the development of FBG (Fiberdgy&rating) technology that
fiber optic sensing started to be used in permadewnhole monitoring systems
because FBG gave greater reliability and had thenpial to measure a variety of
physical quantities in the same cable. Single pgissure and temperature
sensors, flowmeters and 3C geophones are now mlineocially available at a
similar level of operational complexity and costlasir electronic counterpart, but
with a claimed higher level of reliability. Fibeptic’'s great advantage for sensing
is its distributed capability, even though electcoguasi-distributed sensors can
now incorporate a larger number of sensors on dngescable (>45) which raise
guestions about comparisons of those systems.
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The technological gap for fiber optic sensing raemaa reliable tubing
hanger wet-mate connector for subsea deepwatercapphs and a downhole
wet-mate connector for completions with multi tripstallation or upper
completion equipment that needs to be changedadguFor example, high rate
electric submersible pumps which have to be rediatea frequency greater than
the remainder of the completion.

The next sections describe the fiber optic sensawailable, their
metrological specifications and the basic prin@pté the technology that has
been exploited for permanent downhole monitorin@GEF Raman and Brillouin

backscattering, coherent Rayleigh backscatteringdgstributed polarimetry.

3.2.1
Pressure and Temperature, Quasi-Distributed Tempera ture, and
Quasi-Distributed Strain Sensors

The fiber optic alternative to electronic singleimioand quasi-distributed
sensors is based on FBG technology. An FBG is medllby forming a periodic
structure with a permanent change in the refradtiolex along the propagation
axis of the fiber optic (Culshaw and Kersey 2008)e frequency reflected by this
periodic structure depends on the optical periodhefgrating, which is itself a
function of temperature and strain (Figure 3.1)e Tnange in the optical path
length is of the order of 1 ppm/°C (CT) and 10 ppmn(Cs). Downhole
application of this technology faces the normallleinge of packaging and long

term stability.

Intensity

frequency Bragg Grating

A / z
é frequency
Ak, =C,-AT+Cs-6

frequency B
Figure 3.1 - FBG sensor basic principles.
Commercially available installations for dry treean have up to four

pressure and temperature sensors per fiber withe thptical fibers per control
line. Such completions have been successful in magk gas wells due to
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reliability issues with their electronic counterpar this harsh application with
levels of vibration under producing conditions.

Typical fiber optic pressure and temperature sewsda can be seen in
Table 3.2.

Quasi-distributed sensors based on FBG technologyalao available for
temperature and strain measurements. The FBG secaoibe easily multiplexed
by WDM (Wavelength Division Multiplex). TDM (Time Dision Multiplex) may
be included when the number of sensors increasés appundred, but with a loss
of accuracy and resolution. Current solutions idelboth approaches: WDM for
temperature measurement and WDM + TDM for strairmsneement. The main
limitation regarding the number of sensors is thenber of control lines,
connectors and fibers that can be handled simutesite without making the
installation too complex and risky.

Permanent monitoring of deformations experiencedvbely tubular, casing
and screens identifies the loads due to resenampaction or changes in the
geological conditions, e.g. due to a squeezinglagéir as experienced by wells
completed in pre-salt reservoirs. Strain measurésnaliow early prediction of
catastrophic failure situations. Corrective actioay then be taken to avoid the
complete loss of the well. The axial strain, théiua of curvature of bending and
crushing may be measured and, after signal proggs&ientification of the
deformation mode: axial compressing, bending, aa#ibn, shearing, pressuring
and/or thermal expansion can be computed (Rambave, & al. 2010). This
system is currently in the field trial stage.

Data for both types of quasi-distributed sens@mfterature and strain plus

temperature) are shown in Table 3.2.

3.2.2
Single Phase and Two-Phase Flowmeter

A fullbore, permanent, downhole flowmeter must @perover a wide range
of pressures, temperatures, mixtures of fluids #od regimes. Traditional
multiphase flowmeters are not suited for this emwinent. Only one downhole
flowmeter, with limitations related to minimum velty and maximum acoustic
noise, is currently being marketed. This flowmetgnultaneously measures the
volumetric flow rate and the fluid’s speed of sowsihg passive SONAR (Sound
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Navigation and Ranging) technology (Gysling and 4ead2003). The time
averaged flow profile in turbulent flow is measutadeach element of an array of
sensors. This value is then used to identify aadktspatially coherent structures
(eddies) that are travelling with the flow. Therafs from each element of the
array are processed to deconvolve its frequencand) the wavelength (or length
scale component,). The convection velocity can be then determineunfthe

signal’s spectrum by Equation 3.1:

U= (3.1)

w
k
U . Convection velocity of the eddies;

k= 7 - Length scale of the structures (wavenumber);

f =@ Frequency of the signal.

The volumetric flow rate is calculated from thidomty after a calibration
procedure. Figure 3.2 shows a plot of radian fraqudw) against wavenumber
(K). The dotted line in this plot corresponds te ttonvection (or bulk) velocity of

the mixture.

Frequency (Hz)

Wavenumber (1/ft)

Figure 3.2 - Convection velocity and SoS (Speed of Sound) in k-w plane.

The acoustic waves travelling in the fluid are atseasured. They propagate
both with and against the flow direction as a ommethsional acoustic wave

(Figure 3.2), representing the same coherent sitiegtconvecting along the axis
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of the tubing. The velocity of the mixture and tBeS (Speed of Sound) can be
determined from those velocities, see Eq. 2 and3E@Jnalmis, Johansen et al.
2010):

¢, =2 "¢ (3.2)
2
Sos=2 "¢ (3.3)

It should be noted that these waves only propagata one dimensional

wave if the frequency associated with the flow endath of a cut-off value:

¢ :1.84SoSl
D
The volumetric fractions for single phase or liqumixture are obtained
from Eq. 4:
Cn = YG + (1~ Y G (3.4)
Where

y - water fraction or water cut;
Ci1, C2 - constants obtained from the calibration procedur

The speed of sound is proportional to the squao¢ ob the ratio of the
compressibility and the density for multiphase floMe mixture compressibility
and density follow a similar relationship in whidfhey are equal to the
volumetrically averaged properties of the individmamponents (Eg. 5 and Eq.
6):

P =Xy + (1= X)p, (3.5)
1 _ x _1-x 3.6)
PnCn PG RG |

Where
X - represents the gas volume fraction;
C , Cq - constants obtained from the calibration procedur

This technology actually measures the dynamicrsiraithe tubing caused
by pressure fluctuation due to the turbulent flduais passive technique is only
suitable for relatively high rate wells.
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The acoustic noise generated by the IW valve cso bé used to confirm
the valve’s opening positions. The majority of mplbsition valves currently
used do not have position sensors with the vahgtipa being derived from
previous information on valve movements storechim ¢ontrol unit. Operational
experience has shown that it is not unusual fomke@dge of the valve position to
be uncertain. It can only be confirmed by closihg walve completely, with
consequent loss of production.

Other diagnostics could be added to improve thalitiom monitoring of
downhole equipment. As far as we are aware tmeti®ven being trialed.

Typical sensor data is shown in Table 3.2.

3.23
Permanent Downhole Seismic Sensors

The first fiber optic seismic sensors for permardownhole measurements
were installed in southwestern France for a walkw&P in 2002 (Knudsen,
Havsgard et al. 2003). It was a six level, tri-cam@nt (3C) accelerometer system
used for monitoring a gas storage field. Neithezcebnic nor fiber optic
permanent downhole seismic sensors have beendtfiatenstallation in an IW
to-date. The advantage of the fiber optic acceleters is their improved
metrological data (dynamic range, distortion, nofk®r and bandwidth). In
addition, fiber optic accelerometers bring operasicadvantages for OBC seismic
(no batteries or heavy copper cables). The resulhigh resolution seismic
imaging and better dynamic reservoir charactevra(dD) when one adds up
seismic acquisition reproducibility, acquisitiomd@uency flexibility and improved
metrological parameters of the sensors. Typica @atdownhole seismic sensors
are shown in Table 3.2. Table 3.1 is a simple caomspa of the three seismic
sensor technologies available. This table illusgathe important differences
regarding noise and bandwidth between the two melwniblogies which result in

improvements in noise of seismic deeper tracesratrdce resolution.

Electromagnetic MEMS Fiber Optic
Noise floor < 1000 ngHz < 700 nglHz < 100 ngfHz
Bandwith 10-240 Hz 0-800 Hz 1-1.4 kHz
Dynamic range 90 dB 120 dB 130dB
Distortion -70dB <-90dB <-90dB

Table 3.1 - Seismic sensors comparison by technology.
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3.24
Distributed Temperature and Distributed Temperature and Strain
Sensors

Distributed downhole sensors gave the missing @patmponent to the
reservoir and production engineers. The first iigted sensor for downhole
applications was based on Raman backscatteringDT®& It is also available
today DTSS (Distributed Temperature and Strain Bghsased on Brillouin
backscattering. Both methods are based on changd ispectral content as a
result of nonlinear interactions of the light prgping through the fiber optic. It
uses theoptical domain reflectometry technique which seadseries of optical
pulses into the fiber and extracts the scattegdtt from the same end of the fiber
(Figure 3.3). Raman backscattering measures tleasiiies of the Raman signal
at equal energy differences in opposite shiftedadions, producing a ratio which
depends only on temperature (Culshaw and Kerse8)20be backscattered light
is coupled, due to stimulated Brillouin backscatigr with an acoustic wave
which has half of the wavelength of the incomirghti The measured frequency
shift is the frequency of the acoustic wave whiepe&hds on the density ratio and,
therefore, on the temperature and strain (Culshawarsey 2008).

Directional
Coupler

| » /) [

¥

Optical ‘ Signal
Receiver Processing

Rayleigh

Intensity

Brillouin
>

Brillouin
P —

Raman Raman

Frequency

Figure 3.3 - Backscattering based sensors.
DTS is widely used for steam injection/productiamfple monitoring and

for flow allocation in wells with dry CT. Metrologal and operational restrictions
have resulted in it not being fully adopted by @pers for deepwater, subsea
installations. This is partly because the metralagparameters for a distributed
fiber optic measurement are not straightforwarde Specification of distributed

systems depends on all the parameters which atiectneasurement, e.g. total

length (distance), acquisition rate, spatial resofuand fiber attenuation. Hence,
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one has to adjust the spatial and time resoluttomeet the specifications of the
system being designed using a chart which plotsdtitea as a function of the
above parameters. Figure 3.4 is such a performahag for the hypothetical

system. It illustrates that a distributed measurgnsystem based on optical
domain reflectometry needs more than one paramisterdistance and sample
rate for this system, to define its metrology perfance. Note that the system
resolution is limited by its repeatability.

DTS has been used with IWs, but not DTSS. The vatided by first
recognizing and then identifying the cause of wegrity issues may prove to be
a justification for this type of monitoring systeirhey should be used when there
is a high risk of reservoir compaction, formatioowvement or high corrosive
environment.

Typical DTS and DTSS data are shown in Table 3.2.

Directional
o, Coupler

| > /) &%

il  Signals

Optical — Signal
c Receiver Processing|
o Noise
5 r'e
[e)
[}
i
Signals
rd
t-time
. 1
Distance e
Figure 3.4 - Performance chart
3.2.5

Distributed Acoustic/Vibration Sensors

Acoustic signals are widely measured & interpretedpstream Oil and Gas
production activities. They are used for conditimonitoring, failure prediction
and diagnosis of the cause of failure in rotatirechinery. They have become an
important component of the predictive maintenaricaeqgy. In addition, acoustic
signals can be correlated to flow rate, the pasitiba downhole valve, the correct

functioning of a gas lift valve, etc.
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The combination of a DAS/DVS (Distributed Acous8ensing/Distributed
Vibration Sensing) used in conjunction with distitidd temperature and single
point pressure and temperature sensors could mrawvievealth of information
about the downhole flow conditions as well as teefggmance of the equipment
and production process. Such combinations of dovenim@asurements have only
recently become available at the same operaticmaptexity as DTS where the
ability to share the same (preferable single maxgical fiber is an advantage.
This makes DAS/DVS a real option for deepwater emrment where only one
pin fiber optic tubing hanger connector is in thlwanced stage of development.

This technology was first trialed in a tight gasliwe optimize the design
and execution of a hydraulic fracturing operatidmolenaar, Hill et al. 2011).
Figures. 3.5 and 3.7 illustrates two DAS/DVS res@iiom this paper. Figure 3.5
is the trace generated by a bridge plug being datewFigure 3.7 shows
measurements during a hydraulic fracturing treatméihe most effective
treatment, as indicated by an intense red sigsagtithe toe of the well. IW
applications have not been reported to date buttgatve flow through the valve
and confirmation of the choke position are potdres.

In addition, development of distributed flow metgribased on SONAR
principles might be possible. Figure 3.6 shows lagopossible application: flow
allocation. Although there are qualitative techmigavailable, this type of sensor
has a high potential. This technique might also useful for geophysical
monitoring applications. A reduced risk level indathn to a simpler operation
was observed during VSP field trials.low signal to noise ratio was observed
though (Mestayer, Cox et al. 2011).

The technology is based on coherent Rayleigh batiesig using a highly
coherent laser and a time gated interferometerdasore the local acoustic and
vibrational disturbances. These disturbances indusgnall strain on the fiber
which causes a change in the path of the Rayleigttesing. Exciting the fiber
with pulses of highly coherent laser light causecal interference between light
scattered by different paths within the length loé tpulse. The backscattered
signal is then phase demodulated at a specific tiel@y to recover the acoustic
and vibrational disturbances acting at discretatsalong the fiber.
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monitoring.

Techniques based on polarimetry are also used strildited sensing.
Changes in local birefringence are measured ircoinéext of polarimetry through
optical time domain reflectometry forming the baprinciple of the distributed
pressure sensing system which is in the early sthgevelopment for downhole

applications.

3.3
Metrology and Reliability

When making a comparative analysis of sensors feasuring physical
guantities such as pressure, temperature and tlasvimportant that we use a
universal language. These are defined by the campébdies such as the NIST
(National Institute of Standards and Technology}Xhie U.S.A. Such language
eases communication between purchasers, supplieds naanufacturers by
preventing (unfortunately common) specificationoesr The harsh subsurface
environment coupled with the high cost of maintemaradds an additional
importance to understanding the metrological pataraeand their reliability.
Some important definitions from the Internationabcdbulary of Basic and
General Terms in Metrology — VIM (2007) (ISO/IEC@ are listed below and
in Figure 3.8:

. Accuracy — Close agreement between a measurement resulthand
measurand true value. Indicates the distance batteeabsolute value
of a physical quantity and its standard controled the competent

bodies. It is related to the systematic errordiefinstrument.
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. Repeatability— Close agreement between the results of successive
measurements of the same measurand made by thenseaseirement
conditions. It is expressed as multiples of stathdiaviation.

. Reproducibility— Close agreement between the results of successive
measurements of the same measurand made by vanmgalsurement
conditions. The reproducibility indicates the regabdity in all points of
the calibration range.

. Resolution— The smallest difference that can be seen betwieen
instrument indications. It is limited bellow by thepeatability.

. Stability — Ability of an instrument to maintain its metrologl
characteristics over a specified period of timeisltusually evaluated
over both short and long periods of time. The $itgbheasurement over
a short period of time is also known as repeatgbilihe slow variation
in the metrological characteristics of a measurgnmestrument known
is called drift. The drift is one of the componeatghe instrument long-
term stability.

. Measurement uncertainty- Indicates the measurement dispersion
around its true value of the instrument’s reliabjeerational range. The
factors that affect the measurement uncertaintyckassified as either
type A or type B. Components factors that are etell from a
statistical distribution of observations, and aemde characterized by a
standard deviation, are defined as being of the #pType B factors
are evaluated from probability density functionsdzhon experience or
other means not associated to observations.

The measurement uncertainty can be evaluated adasth combined or
extended. The standard measurement uncertaintystimmagded by a standard
deviation (or a multiple of it). The combined urteanty reflects the influence of
the individual components that make up the standaikrtainty. The extended
uncertainty is the combined uncertainty multipliegg a confidence interval.
Measurement uncertainty should be evaluated foligwihe 1SO-Guide98-3:
Guide to the Expression of Uncertainty in Measunen(iSO/IEC 2008).
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Figure 3.8 - Metrological parameters definition and relationship.

The comparison between downhole sensors is nornaalthifficult task.
Military standards are available for comparing seasvith respect to reliability.
Unfortunately such standards are not available rfotrology. Hence both
operators and suppliers have been forced to crémtie own standards for
metrological aspects based on experience and fietden parameters. The
situation is even worse for new technologies, agfiber optic sensing. The lack
of suitable standards, qualification tests and ttaive performance standards
hindered the introduction of the technology intee theld. In fact, it was
recognized that their development was essentiahfotechnology adoption.

The biggest metrological problem associated withwriwole sensors is
inability to periodic calibration. This disabilityndicates the need for equipment
with a high level of long-term stability togetheithv the use of measurement
uncertainty propagation algorithms in the modeld aptimization tools used to

control the field production.

3.3.1
Necessary Measurement Uncertainty and Placement Opt  imization

Total model uncertainty is typically studied by tpgantifiable uncertainties
present in the studied system. The real uncertairdy, on the other hand, be
larger due to the lack of knowledge. Sources ohtjfiable uncertainties can be
summarized as input, parameter and structure wckes and we restrict our

analysis to them. Monitoring systems impacts diyeodhput and parameters
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uncertainties through direct measurement and maddibration. Structure
uncertainty normally is forgotten when it comegshe metrological specification
of monitoring systems. The total model uncertaistchanged by the structure
uncertainty which can be seen as an independemtesai uncertainty due to
model equations, boundary conditions, simplificasioresolution, time and space
extrapolation, numerical errors, etc. (Figure 3[%)erefore it should be taken into
consideration for an appropriate assessment of itipgit and parameters

uncertainty.

>
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Input Output -g
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Figure 3.9 - Quantifiable source of model uncertainties and their impact.

A monitoring system must be designed to measureitapt events with a
given uncertaintydg). Estimation of the necessary measurement unogrt@iv)
depends on the data interpretation method emplayedits relative uncertainty
(9)). Generally speaking, if a measurement is relabedn event and additional
measurementsvi* (M=f(E,M*)); then the total measurement uncertainty or

minimum resolution can be calculated as (Silva, &dow et al. 2012):

2

Oy < fl(E’M*)zd'ZJrE,ZM“* a(Ea—fM) 5% (3.7)
Where

*\2 . . . .
f, (E, M ) J7 is the event interpretation model uncertainty;

2

z L 5: . |is the uncertainty from the measurements and
E,M a(E,M ) '

event propagated throughout the model or from aiseity analysis;
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M’ is the additional measurement:

Eis the event.

There are numerous examples of such measuremenetd-relationships
in the literature. For example the distributed termagure can be related to the
single-phase flow rate via the classical equatiBangey Jr. 1962; Elshahawi,
Osman et al. 1999):

Te_wa :qup( K+ f(t) R/va)
dT,, /dz 2T KR, U

(3.8)

Another example is the relation between the medsaceustic noise level
(>600 Hz) N*600 and the single-phase flowrafeand cross-sectional aré®a
(McKinley and Bower 1979):

3
NG, =C /’Acl (3.9)

Note that the relative uncertainty of this methedelatively low § ~ 0.2).

The time resolution required to reliably identifyetdesired event depends
on the event characteristic time scale. A goodcsiele of characteristic time
scales is provided by (Nyhavn, Vassenden et al0R00

Optimizing the placement of a single point sensor lbe done by the use of
Experimental Design. The wellbore and reservoirraoeleled for different flow
conditions to provide (noisy) input data for backetlation of phase flow rates
with the gauges placed at a number of locationdtipde completion designs may
be evaluated and ranked according to their confidelevel. Examples are

available from (Naevdal, Vefring et al. 2001).

3.3.2
Reliability

The reliability of a system or component is defirasdits ability to perform
a required task under the design conditions ovespecified period of time
(Rausand and Hgyland 2004). It is generally preskeas either a “probability of
failure” or a “probability of availability”. Longdrm reliability was the first
barrier to IW technology adoption. Even today, tlesign engineer must include

the supplier's quality assurance and reliability naagement program when
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specifying equipment. This program should incorporaontinuous design
improvement, manufacturing and testing based on dheerved reliability
performance.

Accelerated life time testing as well as risk assent evaluation for
installation, operation and maintenance are alspired (Aggrey 2007). For
example, a three zone IW based on electric/hydraathnology has a survival
probability or reliability of better than 85% aftgryears.

API-17N deals with general project risk managemergubsea operations
while 1SO 13628-6 provides a similar level of guida for production control
system and interface reliability.

A work from (Mathieson, Rogers et al. 2003) divid&t reliability into
mission reliability (survival of the IW equipmen&nd system reliability (full
completion survival). IW system reliability is flwr divided in four components:
monitoring, flow control, subsea and integratioreli&bility analysis of these
components can be used to quantify the impact ldbikty on the “Value
Added” by the availability of monitoring informati¢ zonal flow control and its
right-time optimization. Initiatives regarding qudication of the IW added value
taking into account reliability can be found in titerature(Ajayi, Mathieson et
al. 2005; Aggrey, Davies et al. 2006; Aggrey 200 RHese papers mainly focus on
the valve failure due to the impact of being unablehoke (for multi-position
applications). They also included the cost of aplamned intervention (which
may not happen due to cost). Note that the IW eqgeig from all major suppliers
has a valve failure mode “as is”. A change of itsipon to fully open or fully
closed is possible via a coiled tubing interventibaugh. The quantification of
reliability on the value of an IW monitoring systdras been explored but not yet
published.

The data from the IW monitoring system in an in&gd framework can be
shared by all production processes, minimizing soahd increasing the
monitoring system attractiveness. The most imporfantors that lead to the
selection of IW completions are the reductionhia umber of (i) wells and (ii)
risky interventions (due to reservoir control) g accessing marginal reserves
(Hudson, Alves et al. 2011).

A typical IW monitoring system consists of morerthane sensor and its

mandrel, a dry connector (sensor to control liné eontrol line to control line),
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an electrical control line, TH (Tubing Hanger)/WG#¥et-mate feedthrough
connector system, wellhead outlet, jumper, IWCSbilical and IWSCS. An

extrapolated five year reliability of better tha®% is typical of the newer
generation of electronic pressure and temperatensass in a three zone IW
application.

Oreda database is a good starting point for equipmadiability data for
topside and subsea equipment. The availability oélebility database which
automatically updates from day-to-day operationvainés and the resulting, field
validated, equipment performance statistics couptegbroduction applications
will yield great value for operators. Note thae tbperations and maintenance
information open standard (MIMOSA) should be usedexchange data among

production applications (as has been proposed YTNRL).

3.4
Basic Integrated IW Monitoring System Design Framew  ork

Well completion design within an integrated modgliand optimization
framework is a challenging task since today’s tedbgy has resulted in a wide
variety of hardware and software being employedntinage the current well
stock. A well completed with sensors and downhddsvfcontrol to achieve
specified objective needs downhole information ltova well management. The
required downhole information in most cases carbtdirectly measured. It
normally has to be derived from the parameters lwitian be measured with
today’s sensors. This can be illustrated by comsigehow a zonal flowrate might
be measured by a downhole flowmeter together with tlae auxiliary
measurements and interpretation methods that aexlede This includes
differential pressure measurement across a Vendtistributed temperature,
distributed acoustic, etc.

Downhole monitoring system is aimed to maximize tié value with
minimum cost. It might be considered as a mainetrfer the completion design
in a very general sense. Figure 3.10 shows permat@nnhole monitoring

design basis for the integrated modeling and ogtition framework.
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Figure 3.10 - IW monitoring system design basis

The following workflow illustrates an IW monitoringystem design

process:

1.

Identify where an IW is expected to add value arthtwinformation is
needed for an effective decision making.

Identify the major IW risks expected throughout lifetime. The risks
might include well completion conditions, zonal feemance changes,
installation complexity, equipment failure, etc. bSaquent well
treatment/workover operations needed to these teffsbould be also
evaluated.

Identify sets of available sensors that fit the \aboobjectives, its
reliability, cost and available interpretation mzdb.

Screen and rank these sets in the terms of rolssstiag@plicability and

informativity.

This basic workflow will help find an optimal dowale monitoring system

aimed at achieving the full added value. Note th@ use of the word

“informativity” above refers not only to the valued the parameters being

measured, but also to their spatial and temposalluéon.

This is a very broad area that is impossible toecan detail. We will

attempt to do a brief description of the sensorliegion areas followed by a

conceptual design example.
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3.5
Application Areas

A summary including measurement relevance to diffeapplication areas
is presented in Table 3.3. Note that instead of@@nthere are measurements to
the application areas relation due to the fact #nhatombination of different
sensors can provide similar sets of measuremestalways, some of the stand-
alone measurements are impossible to detect ceda@nts, measurement
combinations however help. The application areas bha@en grouped into:
» Conditional monitoring;
* Well performance;
*  Well stimulation;
* Flow assurance;
e Advanced completions;
* Reservoir characterization.

Published studies which have a similar intent a$ tthapter are commented

below:

¢ (Nyhavn, Vassenden et al. 2000), who provided & geod insight on what
information is needed for effective IW control, kad the available
measurements and sensors according to their avigylafat that time),
reliability, and simplicity to the application ate@dhey have analyzed the
major problems of IW management — complex and caatjmally
demanding model based IW control, associated irdtion needed,
measurement and event time scales and subseqlengiydata storage, and
processing and analysis power needed. Introduatfothe advanced data
processing methods — multivariate analysis, tinpsdaprocessing and soft-
sensing - were viewed to be of particular imporéairt the years to come.
Recognition that much IW value derives from thdigbio “handle surprises”
and promptly take action based on the high quafitprmation from the
downhole monitoring systems has been justified tveldast decade.

» Discussion on the available monitoring systems ntiesing monitoring areas
and the monitoring equipment evolution from the npoof view of IW

management was presented by (Kluth, Varnham &08I0). They have also
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provided an example of how the (monetary) valueinbbrmation can be
estimated.

* An attempt to overview major monitoring system dasapproaches based on
the above publications, including uncertainty aetiability considerations,
along with a list of available sensors and thepli&ptions was provided by
(Pari, Kabir et al. 2009).

3.6
IW Monitoring System Design Example

Let us consider a synthetic abstract example basedhe PUNQS3
reservoir model; a simplified version of a real em®ir that is publically
available. It has previously been shown by (BirdteerDemyanov et al. 2008;
Grebenkin and Davies 2010) to be a suitable catelifte IW. We will use the
optimal production strategy as developed by thagboass. It consists of one,
horizontal, 4 zone IW producer and two verticaleatjon wells to support
reservoir pressure and dispose the produced gasteF8.11 (middle) shows the
reservoir top view, the horizontal IW productionlhend the two injectors. The
production limits are liquid rate 600 sni/d and bottom hole pressure > 120 bar.

A reactive strategy (after breakthrough) is planfadcontrolling the IW,
the ICVs are operated based on zonal WC (Water &) GOR (Gas-Oil Ratio)
(Grebenkin and Davies 2010):

o =Qa _B+(GOR- Ry B (3.10)
Qi 1-gWC

The optimization strategy uses the normalized valae the choke criterion
for each ICV trying to improve oil production whikeeping the same liquid rate.
The ICV of the zone is closed (or choked) iteratively starting alwdy@m the
zone with highest WC. The control decision madecanfirmed if an oil
production improvement is achieved at each time.sfecommercial reservoir
simulator (Eclipse 100) with multi-segment capapivas used in the simulations
resulting an additional oil production of 0.17 MM3nfi.e. about $64 million

assuming oil price of $60/bbl.) for the worst casenario or reservoir uncertainty
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(Grebenkin and Davies 2010). All associated IW cletipn and operation costs

should be compared against this additional revenue.

Figure 3.11 - Structure (left), well locations (middle) and permeability distribution (right)
for the PUNQS3 model (Grebenkin and Davies 2010).

The horizontal IW producer contacted four reserviotervals over its
completion length of 1800 m. It had to deal witlcertainty in the distribution of
both the static and dynamic reservoir propertiewesas in the vertical or lateral
connectivity. Effective control of the IW requiregormation at the zonal level to
optimize the production process. A constant liquidduction rate with changing
reservoir and production conditions requires aifi@dl lift system which reacts
to changes in the BHP and phase cut. Gas lift vimsen as the artificial lift
method because of these conditions and the gas Axdglitional simulations
suggest that the ICVs will require changing oncementh to get full additional
production.

9 5/8" casing
/
GLV
"

Production
Packer

!
Dual
/ PDG

Isolation

Packer 312" IcV 7" Liner

ap

Figure 3.12 - Horizontal IW completion for PUNQ S-3 production well.
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The well design consisted of a 9 5/8” casing abibnereservoir with a 7”
liner installed across the 8 /12" openhole resersection with 4 %" production
tubing, isolation packers, 3 %" multi-position ¢ control valves and sensors
(Figure 3.12). The total depth of the well is 4580with GLV (Gas Lift Valve)
located at 1560 m (all measured depths). This tsanooptimal design for high
rate wells or long horizontal wells due to maximtate restriction but this is not
the case.

The reservoir data and well design suggest thatntlbaitoring system
should be able to monitor zonal WC, zonal pressme the performance of the
gas lift system. The required resolution of the &aoWC measurement was
identified as being the smallest change in WC thatld lead to a control
decision being made by the equation 3.10. The @bptonl production for the 4
zones are: 80.6, 141.1, 15 and 100/drafter valve 1 and 4 being choked which
corresponds to water cut changes of: -2, 5, 10-20% respectively and 4.6% of
improvement in oil production. They were found gsithe WC optimization
strategy on commercial reservoir flow simulatiorcl{gse™ 100). Figure 3.13
shows the simulation results (marked lines) andztiveal WC values (solid lines).
The smallest change in WC between two control astioccurred for Zone 1 in
1976. It corresponds to 2% of the absolute valuéchviwould need to be

measured at zonal liquid rates ranging from 5050 €hi/d.

WCT atICVs
90

80 -

20 MJ’K
o AR

50 f
40
30

20
10

WCT, %

0 : T T T T T Date
1/1/67 1/1/69 2/1/71 2/1/73 3/1/75 3/1/77 4/1/79
100% open ICV1 WCT % 100% open ICV4 WCT %
100% open ICV2 WCT % 100% open ICV3 WCT %
—<«—Optimal ICV1 WCT % —+—Optimal ICV4 WCT %
—>«—Optimal ICV2 WCT % —<—Optimal ICV3 WCT %

Figure 3.13 - WC simulation results.
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Measurement of WC might be available by:

« Soft-sensing using single-point pressure and teatpex sensors of each
zone (Leskens, Smeulers et al. 2008);

» Single-point pressure and temperature of each zoddferential pressure
based flowmeter, and a densitometer;

* Surface MPFM (Multi-Phase Flowmeter).

The first alternative uses a soft-sensing algoritivhiich depends on an
integrated production model (reservoir, well, chgkand pipeline models) and an
error minimization procedure between calculated emehsured data. It has at
least 10% of model uncertainty (depending on tharnercial software used) plus
less than 1% of measurement uncertainty which usiggation 3.7 results in
10.05% of total uncertainty. Analyzing the secoftdraative, the most important
decision is the appropriate choice of the flowmefne low zonal flow rate
implies that SONAR or Inverted Venturi based flowerdas not an option due to
their minimum flow rate limits. An insertable Venmitdased flowmeter could be
used but it has a diameter restriction as a drakvhetich leads to a time
consuming and risky operation every time an intetio& is needed below the
flowmeter. The uncertainty in this case is 2.5% dudy to the measurement
uncertainty. The third alternative is a surface MPWhich has typically 5% of
WC measurement uncertainty for GVF (Gas Void Fomtilower than 60%
which is the case for this example.

The alternatives for the zonal pressure and gagdiformance are:

« PDG for each zone plus DTS or
* PDG for each zone plus quasi-distributed tempegatur

The PDG should have a dual-gauge configuration ylaisnand tubing
measurement) allowing formation and production tedte carried out in addition
to average reservoir pressure. Measurement unugrtai quartz based PDG is
enough for both applications. Continuous gas bitteol is done by changing the
average oil density above the gas lift valve (ggsction point) increasing the
drawdown (P,-Pws). The objective is maximiz&q;,q,) constrained bygmax and
Opmirs0p< Qpmax Where g,=qp(q;). The gas lift performance is impacted by the
reactive control strategy adopted which changesNie Neglecting friction and

kinetic energyPys can be written as:
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9 9
Pur = Pun* Ny (0—21+( h- i,-)(a—';l (3.11)

Where

(%ji:pi(p,T)g i=1,2.

Pressure and temperature measurement should be foisedning the
operational point when WC changes due to the ICViagament. A temperature
simulation using a commercial dynamic simulatorg®') for the base case (all
ICVs producing) and the worst case (only two ICMeducing) is shown in
Figure 3.14 after a stabilization time of one hdurs possible to see qualitative
results of the reactive control strategy and anrgppate identification of the
GLV injection point. The temperature resolution sldobe no less than 1.5 C
according to this sensitivity study (note the terapgere changes at GLV depth of
1560 m MD - Measured Depth). In addition, when ambp zones are producing,
the temperature is lower than the one when all z@me producing for the same
total flowrate, meaning that more oil is being proed as oil specific heat at
constant pressure is lower than the water one.uBeeof DTS requires 8 m of
spatial resolution to allow recognition of the tesrgture decline at a working
GLV. Note that a typical DTS system achieves thsotution in about 30 minutes
of temporal averaging while having a nominal spagaolution of 2 m assuming

a total length of 6 km.

Temperature, C
45 65 85 105

Base case - all zones
500 Producing

Worst case - two zones
1 producing

1000

1500

Measured depth down to
production packer, m

2500

3000

Figure 3.14 - Temperature in lower completion showing two and all valves open.
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Analyzing the resulting monitoring system altermas, there is no
monitoring system alternative that matches theeta of WC uncertainty
required. A study of the impact on the control tetgg should be done to identify
if there is a loss in the incremental IW benefitaithigher uncertainty is used.
Zonal pressure and gas lift performance monitodag be done using PDG and
DTS (or quasi-distributed temperature sensing enddse of fiber optic cannot be
installed) without special requirements as previpdscussed.

The Integrated IW monitoring system for this exaenplhich minimizes
equation 3.7 is a dual configuration PDG installedcach zone, a single mode
fiber for DTS, and a surface MPFM. There are noamasues with the reliability
of the IW monitoring system chosen and there areugh data available to
perform reliability assessments studies. Additibnaf a DAS is installed will
bring more reliable results with new diagnostic gbsities (ICV position

confirmation, sand production monitoring, etc.).
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Single-point Pressure and Temperature sensor (elgohic)

Maximum Values 15000 psi 150°C
Accuracy +/-3 ps +/-0.5 °C
Resolution 0.01 psi 0.001°C
Lon-term stability 1psilyear 0.1 °Clyear
Single-point Pressure and Temperature sensor (fibevptic)

Maximum Values 10000 psi 150°C
Accuracy +/-2 psi +/-0.1 °C (Full range)
Resolutiol 0.03 ps 0.02 °C (every secor
Lon-term stability 0.5 psilyear 0.1 °Clyear
Quasi-distributed Temperature sensor (electronic)

Maximum Number of sensors 48

Maximum Values 150 °C

Accuracy +/-0.1 °C

Resolution 0.003 °C (10 minutes)

Long-term stability 0.04 °Clyear

Quasi-distributed Temperature sensor (fiber optic)

Maximum Number of sensors 18

Maximum Values 150 °C

Accuracy +/-0.5 °C (Full range

Resolution 0.01 °C (every second)

Lon-term stability 0.05 °Clyear at 115'

Single phase and Two-phase Flowmeter (fiber optic)

Available from 2 3/8” to 5 %2" with length of 12 (including pressure and temperature sensor)
Minimum velocity of 3 ft/s for liquid and 10 ft/sf gas

Maximum Environmental Conditions 10000 psi / 150°C
Acquisition rat 10 ¢
Accuracy (single phase) +/-1% (of the measument)
Accuracy (volumetric flowrate and WC  +/-5% (of the measument)
and GVF)
Rangeability 1:20
Seismic sensors (geophone)
Sensitivity (S 1.32 Vlin/s 2
v ) . v(s):[sﬁjs—u(s)
Natural frequenc{ i :7\/:} 10 Hz R)g, s[b"R +9 ]J{hj
2\ m mR m
Open circuit damping ¢ 0.57 Where
Moving mass (m) 789 V(s) Voltage
Damping constant (R, 2066 Us) - velocity
t m Moving mass
Shunt resistence (R 2400 ohms k Elastic constant
67 Open circuit damping
[y Shunt resistence
[y Total resistence
Quasi-distributed Strain sensor (fiber optic)
Sensing fiber single mode
Monitoring length 36.5 to 73.2m (one fiber but #ystem can handle up to 8 fibers)
Strain resolution 10g1(every 5 minutes)
Tensile and compressive strain range 0.1% to 10%
Bending 10°/100ft
Distributed Temperature sensor (fiber optic)
Sensing fiber multimode or single mode
Maximum distanc 10 knr
Resolution 0.2°C (5 minutesx 1 m @ 5 Km)
Distributed Temperature and Strain sensor (fiber ogic)
Sensing fiber single mode
Maximum distance 30 km
Temperature Resolution 0.5 °C (5 minutes x 1 m @rh)
Strain Resolution 10u(5 minutes x 1 m @ 10Km)
Distributed Acoustic sensor (fiber optic)
Sensing fibe single mode
Maximum distance 10 km
Min spatial resolutio 2m
Max signal bandwith 5 kHz

Table 3.2 - Typical metrological data for downhole sensors
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Type

Application

Distributed

Quasi -distributed/Discrete  (limitations might be

applied due to spatial resolution)

A

\

=]

A

S

Q

4

EM

Condition Monitoring

Avrtificial lift
(operating GLV, ESP
performance, etc.)

\/

\/

VA

Well/Pipeline Integrity
(casing leak, flow behind
casing, packer isolation,
etc.)

Well/Pipeline Structural
integrity (reservoir
compaction, formation
movement, corrosion,
etc)

Well Performance

Injection or production
flow rate profiling

Influx identification

2

Sand production

Gas/water/oil cut profiling

Cross-flow between
zones/layers

Producing zone/layer
identification

Well Stimulation

Perforated intervals
identification

R A - = (= I

Acidized intervals
identification

Well cleanup

Hydraulic fracture
(height/length/location
identification)

Flow
Assurance

Slug flow monitoring

2| 2|22 2] 2] 2| =

Hydrates formation

Advanced
Completions

ICD/ICV/AICD
performance monitoring

ICV position

Reservoir
Characterization

Structural features
(faults, folds, etc)

Boundaries

Saturation Profiles

Well test

EM- electromagnetic (resistivity).

Table 3.3 - Measurement types and application areas
T- temperature, P- pressure, A- acoustic, V- vibration, S- seismic, € - strain, Q- flow and
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4
Numeric Non-Isothermal Dynamic Well-Reservoir Model

Several researchers have published results shotiagneed of well-
reservoir coupled simulation. (Vicente, Sarica ét 2001) showed in his
isothermal model that the traditional approach eéalipling wellbore flow from
reservoir flow in horizontal wells do not capturestinteraction between them at
early times. (Grubert, Wan et al. 2009) showed that impact of completion
design in the long-term well performance is notreotly achieved without two
tier coupling between well and reservoir. (AlbeBglfroid et al. 2007) analyzed
the dynamic behavior in the well and reservoir tdgimg the time and space
scales at which the well-reservoir coupling becomegortant. In Figure 4.1, a
time-space map from that work is reproduced in iotdeshow the spatial and
temporal relationship among common production @ses. It is possible, for
example, to see that well clean-up and reservairsients have strong coupling
and then should not be analyzed separately (cancanpletely). This simple
idea can illustrate when one should consider weservoir coupling.

Multilayer reservoir well testing models have bedgveloped and used
successfully during the past two decades. The adgaim downhole monitoring
systems in recent years have motivated new teatidganalysis techniques. Using
transient temperature and pressure data (Sui, Zhal.e2008) developed a
numerical simulator for qualitative analysis of ngas in permeability and skin-
factor in a multilayered vertical well. They indied that trasient temperature can
be more informative than pressure due to its sgitgito damage radius and
permeability. (Duru and Horne 2010) have found thdt properties such as
porosity and saturation could be estimated in aerse problem from pressure
and temperature transient analysis which are nailable from conventional
pressure transient analysis tools. (Valiullin, Raarev et al. 2009) highlighted
the importance of TTA (Temperature Transient Analygspecially when the
barothermal effect (transient fluid compressionsmgion at early times) takes

place for well test analysis.
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10 km
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1 km 4
CL)
—@ - wellbore storage
100 m- _@ = Slugging
= |0ading
R = Clean-up
= reservoir transients
10m
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= depletion
Tm T T T T
0,1s 10s 2 min 1 day 4 months 30 years

Figure 4.1 - Well/Reservoir mutual (Alberts, Belfroid et al. 2007)

TTA is not a mature technique and all possibilities’e not been explored
yet. A basic analysis workflow is available for dfate temperature of a single
layer for a horizontal well (Muradov and Davies 2D1it assumes that downhole
pressure and temperature measurements and PVT atataavailable. Its
applicability depends on the observation of théahtemperature change period.
In addition, when the formation and fluid thermabjperties are known then TTA
is sufficient to estimate fluid and reservoir flgsoperties. Otherwise, the multi-
layer problem is more complex due to every dowastréemperature response
being affected by the upstream ones. Two majoresshould be overcome to
solve this problem: transient heat losses and isah#flow rates. Transient heat
losses depend on the rate of the fluid heat losstduhe difference between the
temperature of this fluid and the formation. Assagnithe zonal temperatures are
stable before and shortly after the transients thaHTC (Heat Transfer
Coefficient) between annulus and formation can éfndd and used. Transient
zonal flow rates can be assumed constant duringrahsient period because their
fluctuations have only a second order impact ortehgperature signals (Muradov
and Davies 2012).

Figure 4.2 shows pressure and temperature behafioa producing
horizontal well through six sensors placed in défé positions. It shows clearly
distinct temperature change and practically no ghaim pressure. In addition,
temperature transients cannot be seen from aiéhsors which indicate that they
are affected by upstream flowing zones.
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Figure 4.2 - Sensors positions and their response in a producing horizontal well (Valiullin,
Ramazanov et al. 2009)

A real four zone horizontal IW pressure and temfpeeatransient responses
are shown in Figure 4.3 and Figure 4.4. The tramsi@s created by a cycle of the
wellhead choke keeping all four ICVs open. Oil, evatand gas were being
produced at that time and zones 1 and 4 corresfiohdel and toe respectively.
The zonal pressure response for all PDGs is allmusame and the differences
observed happen due to friction losses. The résuitt fact an average value for
the well instead of the impact in each zone dudht® pressure. The zonal
temperature response does not have the same behauia relevant zone can be
differentiated. It should be noted that the toe ez the only one that is not
affected by the others, representing the sandface pesponse as can also be
verified in Figure 4.2. A method for IW temperatualistribution analysis requires
that multiphase flow effects and reservoir-wellrthal interaction effects to be

accounted for (Muradov and Davies 2012).
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Figure 4.3 - Zonal IW transient pressure response (Muradov and Davies 2012).

100.6

100.4 f

O 100.2 7

100

Temperature
o

99.8

99.6

99.4 r T T : ' 1
21/08/04 22/08/04 23/08/04  24/08/04 25/08/04  26/08/04  27/08/04

Time

Figure 4.4 - Zonal IW transient temperature response (Muradov and Davies 2012).

The pressure and temperature responses of thet@eas shown in Figure
4.3 and Figure 4.4 is presented in Figure 4.5 @&oification purposes only. They
are the sandface pure response as stated andsdidqugviously.

Analytical and numerical studies towards a thermaltiphase flow model
in pipes and wellbore have been published in tteraliure for a long time.
(Ramey Jr. 1962) presented the first single phaselem which provides
temperature as a function of time and depth. (AiMdbanati et al. 1992) added
the two phase flow and well inclination in the mbdglasan and Kabir 2002)
have generalized the model to gas, oil and two epfil@sv taking into account
Joule-Thomson effect and kinetic energy for the llveek/formation system.
(Yoshioka, Zhu et al. 2005) presented a multiplsieady state temperature and
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pressure model along the wellbore in horizontallsvglMuradov and Davies
2009) proposed a general multiphase steady stdteemgperature model which
includes simultaneous fluid flow and heat transfet only in the annulus and
tubing but also in the formation through more rm@eos varying heat transfer
coefficients. It is at least to date the most catgomodel for IWs. The model was
derived from the total energy and mass balance tiemsaassuming known

pressure distribution.
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Figure 4.5 - Pressure and temperature transient sandface pure response in a horizontal
IW.

We propose a numerical model for a multilayeree@mesr and vertical well
equipped with intelligent completion (Silva, Muradet al. 2012). It combines the
reservoir temperature model by (Sui, Zhu et al.&0@cluding the necessary
modifications for the two phase formulation (Append), and the well
temperature model by (Muradov and Davies 2008). Tlessic diffusivity
equation by (Al-Khalifah, Aziz et al. 1987) is usénl the reservoir pressure
model. Pressure drop model including inflow effegt{Ouyang and Aziz 1998) is
used for the well pressure model despite its smmdhct in vertical wells. Finally,
the pressure and temperature loss due to the peesémn inflow control valve is
modeled for slighted compressible fluids. The reserand well equations are

discretized in time by implicit Euler and in spabeough finite element method
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over a nonuniform structured mesh. The resultirgfesy of nonlinear algebraic
equations is solved fully coupled by Newton’s metho

4.1
Well-Reservoir Model

The non-isothermal dynamic well-reservoir modediigded in layers. Each
layer is modeled as an adiabatic cylindrical-shapesdervoir experiencing
transient flow and a well segment experiencingdiemt flow through annulus and
tubing. Well segment transient is faster than reserthus it was considered
guasi-steady-state allowing the use of heat tramsfefficients (Appendix C). The
former is equipped with or without an ICV and tvgolation packers with the first
layer being the only exception, as shown in Figufe

Ln
T BRI
233283828 338383s
T R
L, Layer 2
xx""""m
it
L, Layer 1

Figure 4.6 - Well-reservoir model geometry.

Mutual influences among each layer such as crossfamd thermal

conduction are also taken into account. Pressundiltqum and constant total
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flow is assumed at the well head but without steragefficients or skin effect
being considered (the model is limited to the nesieregion).

The model studied is two dimensional for the reserand one dimensional
for the well. Reservoir is considered homogeneaunssotropic kn#k,) and two-
phase (oil/water or gas/liquid) saturated with ithigal pressure above the bubble
point. The well is vertical and drift-flux multipsa model (Appendix B) is
applied through correlations for the gas/liquidec&Shajar and Tang 2010) where
the initial rates are given. In liquid/liquid case simplifies to homogenous
multiphase model. Mass balance equations are detisag weighted properties
over volume fractions for the annulus and tubingesBure drop model is applied
with corrections due to inflow (Ouyang and Aziz 899Energy balance neglects
kinetic energy and viscous shear energy terms (6kah Zhu et al. 2005) but
heat transfer for annulus, tubing and near welllveggon are taken into account
(Muradov and Davies 2008).

4.1.1
Reservoir Layer Model (derived in appendix D)

Figure 4.7 - Cylindrical-shaped reservoir layer.

Assumptions made:
* Rock and fluids are slightly compressible;
» Porous media is considered anisotrogieK);
* Porous media is considered homogeneous;
» Capillarity pressure can be neglectpg=po= pg =p);
* Fluid saturations are assumed constant duringithelation period;
» Total compressibility times pressure is much smahan one ¢ p
<<1);
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* Immiscible fluids;
* Well segment length is small when compared withtthal length of
the well;
» Total well flow rate is constant;
» Control volume is in local thermal equilibrium ;
* Rock density is constand(; ~ dH; = CprdTy);
» The following approximation is valid:
1

dH = deT+;(1—,8T) dp
Mass balance and Darcy’s equations yields:
m%:DEQAtkEQDp—,quz)) (4.1)
Where
G=C+2,G
_ A
A=Y A

General energy balance equation yields:

(pCp)t%—I—w(/?)t T%—m (p+p: G, 1)%)=

~(#C, )(Ak (0P~ p,g02) T -
~(1-(B)T)(Ak {Op- p,g02)) @ p+O [k, OT) (4.2)
Where
Ky :¢zj8jk,‘ +(1- @)k,
(,OCp)t :(DijJSﬁ G *A-9)p; G
(PCp):Z,-P,—SI G
(ﬁ)t ZZjSi'BJ
(B)=2,5
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4.1.2

Well Segment Model

_
koS
D
~os@
> ee >
@
| ‘
£

T

N3 S
~oTE

Figure 4.8 - Annulus and tubing in a well segment.

Assumptions made:

4121

Phase fractionsy() are given for liquids and comes from (Ghajar and
Tang 2010) correlations for gas/liquidg)(for given rates;

Pressure drop model with correction due to inflosv dpplied
(Ouyang and Aziz 1998);

The total energy in the well segment does not chang

The well segment transient is fast when comparedeaeservoir;
There is only one phagedissolved in other phasge

The solubility change due to temperature is muchllemthan the

one due to pressure.

Mass balance

Annulus:
o (w)
0z

=(w) “

Where
(W), =27R: 2 oy Wy,
(w), = ”(Ffu - Fi)szaj %y

v - Open radial flow area over total radial flow are

Tubing:
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t=0 (4.4)

Where

(w), =7 A% Y

4.1.2.2
Momentum balance

Annulus:

a(p, U2 2
apa — ('Oma ma) + 2 fFaumaIOma_l_ pmagsirg (4.5)
0z 0z D.

Tubing:

a( 0 U 2
% _ (Iomt mt) + 2thUmt Pt +pmtgsir€ (4.6)
0z 0z D

Where the average properties (for the annulus anidd) are:
Pn=2,PY,

U :Z PiYiy
X P

The frictional force per unit of volume between agé phase fluid and the
wall is evaluated through the friction factdg: (andfgs) which is calculated by
using classic friction factor correlations for piglew (Appendix A). Chen
correlation is used for this purposes as recomnndéHasan and Kabir 2002).
It is not a strong effect in vertical wells but sitb be considered for high rate
wells.

For a gas-liquid flow in a vertical pipe the supsd gas velocity (cross
sectional area averaged velocity) is expressed asina of the distribution
coefficient Co,) and the gas drift velocityufy). It captures not only the
mechanisms of higher concentration of gas neacenéer of the pipeQoun,) but
also the tendency of buoyanayf). This explains why gas inside a vertical pipe
moves faster than liquid.

U, = G, + Uy,
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The average mixture velocity is defined as the sunthe superficial

velocities:
um = usg+ l'lsI: (1_ yl) ug+ yI q
Drift-flux model (Appendix B) is used through cdatons from (Ghajar
and Tang 2010) to obtaf®, ugm andy; from given rates.

4.1.2.3
Temperature model

The temperature model (Muradov and Davies 2008ersveld from total
energy balance and mass balance equations. It wadifeed here to fit the
assumptions made. Continuous inflow from the foromtheat transfer tubing-
annulus and annulus-formation, and one phase chi&ngecounted for in the
model presented in (4.7) and (4.8). The third RH& tendicated by index in
(4.7) represents the radial mass inflow per unienfth (v’). The last RHS terms
in (4.7) and (4.8) accounts for phase change framj and Joule-Thomson effect
whereH,aj Is the latent heat to change from the phasejjatwdk;r is the Joule-

Thomson  coefficient which is: kJT=%(,6’T—1) for liquid and
Py

Ky T (Ej for gas. It should be noted that there is only qiase
pC,z\0T),

dissolved in other anBsis the gas-oil solubility ratio from black oil mddall
coefficients in brackets are average coefficiemts dnnulus and tubing. Heat
transfer mechanisms among tubing, annulus and tomare accounted for

using heat transfer coefficientd{ andUy).

Annulus:
(w,), 2 =2mR (1) U (T - T)- 2R U( T- P+ wg( 7 ), +
+(W)a gsirg'+ ( Wq)k”)a +( Vyayj' |_||at,ij‘ (Z: ZII:: L J} aa% (.7)

Tubing:
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(we,), 2 =27R U, (T-T)+( 9, gsiei+

T
0z

P OR| | 10R

(4.8)
“i'| g, op, . || 0z

+ (WCkaT)t +(W)t,j' HI

4.1.3
Initial and Boundary Conditions

Two sets of initial and boundary conditions are medi. One set is used for
the first layer and another for any intermediamgela The first layer is assumed to
be the deepest one experiencing uniform flow witltabing but with or without
a valve. The intermediary one represents a convadtidW segment. The
presence of a valve is taken into account as ardifit boundary condition for the
next layer (Table 4.1 and 4.2). Crossflow and heaisfer between layers are also
considered exceptions for the first and last layBrgure 4.6). Transients can be
created by the wellhead choke or by the ICVs. Thtal is kept constant (the
sum of all layer flows) if the transient is createyl the ICVs. Equation 4.14 or
4.15 are used to account for the flowrate changthis case there will be flowrate
changes in the other zones to keep the total flimaganstant.

Layer 1 Initial Conditions Boundary Conditions
¥ lirn=T "G 2
aTw
(t=0) _kTJ 0; Lr:Rm 2= US‘w)Jv (Tlm - 'I*W‘.Z)
T |(rz):-reJ ~9-Z 0 "
T =k T
2 9z (r.z=0 P9z rz=l)
R . Tl(l) |(Lz:0):Te1
eservoir
P bimg 0= Pe =P, 02
ko g
ar (r=Ri.2 ZIR L1
)| =g u ,
Hhomeons K)ol (k) ad),
“), 9z (r,2=0) u), 9z (r.2=L,)
pi‘) |(v‘z:D): pel
T =T, - 972 T leey=To
Well P o= Py ~Pn? Puo’” l2)= Py
U, ,=0 U |0 =0

Table 4.1 - IC and BC for layer 1
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Layer | Initial Conditions Boundary Conditions
Tl([) lr:R.,z):Te, —0Z
(1)
oT;
(t=0) o o=Vl (T(il)'Tam)
T lr,z):Te‘ -0rz © ©
g, _, 9T,
kﬁa 0z lvvFD)_ i 0z IVVFH)
. T’S() |(vz:LN):TeN -G LN
Reservoir Q)
P; |(r:R€,1): pe, _pt,gz
B
P Nen=n -A 02 poor RS 2R
(=
i i i K, ap(lel i} K apl(t)l(
u " 9z 270 u i 9z =L
A b= Py 2, O
_ or
S A e () R P
(t=0) - - (t=0 = - -
T 0= =0z | T 0= =02 | T 05T b © (WCs), 11, +(wG), (tﬂ by =2 1m)
" kz‘zo): : ;
o e WG, ] +(wG,
- CIORCN
P = B =Pn 92| B =R =00 02| PO le 0= P | d(l‘)l l3am0= d,‘) =y OF
3 @7 AT R R R(,‘)l 0= p(;‘) k=1 -ap)
u =0 u, [3=0 Uyl =0 (W)irl Lz = (W)f,‘) b
Table 4.2 - IC and BC for layer j.
4.2

Heat transfer coefficients

A well-reservoir segment is shown in Figure 4.9hwits radial layers:
tubing, annulus, cement and formation. The heatsteanmechanisms among
them can be described by conduction, convectionradition. The overall heat
transfer coefficients for the radial geometry aesdal on the ones proposed by
Muradov (Muradov and Davies 2008). They are dividedubing-annulus and

annulus formation heat transfer coefficients (AppecC).

1

5
)
2 : g
3 3 =
o) = E
E] c <)
= < L
Ry
IR?to
i
Reo ”
wa
R

Figure 4.9 - Well-reservoir segment and its radial layers
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4.2.1
Heat transfer coefficient between annulus and tubin g

Convection, conduction and radiation due to the#un the annulus (the
latter was neglected here) and tubing as well asctmvection and conduction
through the tubing wall are taken into account:

1
U, =

i 1+Ri|n{F%oJ+F$ (4.9
h Ktubing Rti I%oha

The convection coefficients; andh, are based on correlations (Sieder and
Tate 1936; Churchill and Chu 1975; Churchill and CIfi5). Tubing and

annulus can be experiencing stagnant, laminar trangitional or turbulent flow.

The appropriate coefficient is chosen based on Rdgnoumber and Grashof
number. We use the fact that superposition is vfalidaminar flow with constant
heat flux and simultaneously developing velocitgdtbn, Reynolds et al. 1964).

4.2.2
Heat transfer coefficient between annulus to format  ion
Convection in the annulus (same as above), corautiirough the casing
wall and cement as well as conduction to the foionat calculated by:
1

Uaf
1, R m(&} R ln[aﬂ (4.10)
ha Kcasing RI R

C

ci cement

4.3
Inflow control valve

An inflow control valve is a downhole valve whichet basic mechanical
project is similar to a sliding sleeve valve buthviemote control. It reminds a
cage style trim control valve which provides a bakd plug and a sliding ring-
type seal. There are two kinds of flow area profdeailable: oblong (continuous
flow area) or circular (discrete flow area) as shaw Figure 4.10. The flow area
profiles can be exposed to the flow completely fetbopen) or partially (multi-
position or continuous). In the multi-position caskere are typically 2 to 6
intermediary positions with different areas. Bottesl equal percentage as flow
control strategy. Due to an industry standard tlex malve area (full open) is

equal to an equivalent tubing area, e. g. a 3 Yevhas its full open area equals
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to a 3 ¥2” tubing area (for same tubing weightsHould be noted that the valve
flow area profile always depends on the applicatiorother words, on the fluids
involved, pressure, temperature and expected fiaer A simplified approach for
ICV flow area design based on nodal analysis arid (flow Performance

Relationship) can found in (Konopczynski and AjagD4).

Figure 4.10 - ICV.

The flow control valve model used in this developimisnachieved using
Bernoulli and mass balance equations for an ideampressible fluid using the

geometry shown in Figure 4.11:

—

---‘?-----

Figure 4.11 - Geometry used in the valve model (A2=A3).
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(W) =2 2P0

e 1_( A j @1
A

We obtain the approximation equation for the raabmpressible fluid flow
correcting for viscous losses amgna contractathrough the valve discharge

coefficient Cy):

Cd = (W)real (4.12)

(W)ideal

Finally to compensate compressiof) @nd thermalK;) expansion effects

additional coefficients can be added:

C.YE
(W) o === A28pp0

1-[ 2 (4.13)
A

When the geometric factor is includ€q (4.13) becomes flow coefficient
(©):
(w),_ =CYRA\2Ap0 (4.14)
All factors are obtained experimentally and it ss@medRe > 10000and
defined at each valve trim position.
For flow mixtures of gas/liquid we have chosen @dpaYue et al. 2005)

model assumingiiquid >> pgasand gas quality small:

20pp

(W)real :C%YFa ’ 0.95 0.02
\/ 0.5(1_3’) (p'] +1 (419

y Py

Both equations (4.14 and 4.15) are presented iiveitd, Passos et al.
2009) and they are based on ISO-5167 (Measurenidhtia flow by means of
pressure differential devices inserted in circutawss-section conduits running
full).

Hydraulic connection between the annulus and tuisngade by an ICV.
The flow area of the valve is the same for thertiglwhen it is in a fully opened
position as a standard industry design. The pressuthe tubing at the valve
position can be derived from (4.14) neglecting coeepion and thermal

expansion effects:
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o __PAYS
pt,d pa,u 2Cd21%2
__AAY]
Ap=—-—"2-2 4.16
p 2Cd2A>2 (4.16)

The annulus density and velocity used in this eqnatan be modeled as
single phase or by averaging over volume fractmmtivo-phase (liquid/liquid).
Two phase (gas/liquid) can be derived from (4.18)hg phase fraction from
(Ghajar and Tang 2010) but not neglecting compoesand thermal expansion
effects.

The temperature change in the ICV can be modeledigih the isenthalpic

model:

1_
dH :(G_HJ dT+(a_H) dp= C; dT+ﬂ dp0
aT ), ap J; Yo

(8T-1)

p
From (4.18) the average two-phase temperature ehantpe valve can be

dT = dp= K;; dr (4.17)

calculated as:

wC, KJT) -

(Tt,d_T ):( (pt,d_ pau): KJT( Pia~ paL)

(we,)
AT =K, Ap (4.18)

Therefore, the fluid mixture temperature downstrehewalve is:
(we,) Tt (we), (Tu-a )
Tua = c) +(wc
(W p)t,u (W p)
The equation (4.19) is used as boundary condiborafyerj when layelj-1

(4.19)

a,u

is equipped with an ICV. It is assumed that ther@o phase change within the
valve trim and only liquids or slighted compressililids are flowing through at

below critical velocities.

4.4
Numerical Solution

Variational equations are derived from the difféel@requations of the well-

reservoir coupled model and then discretized iretimy implicit Euler and in
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space through finite element method on a nonunifetmictured mesh. The
resulting system of nonlinear algebraic equatiansadlved simultaneously by

Newton’s method using a preconditioned GMRES iteeadlgorithm as solver.

441
Variational Formulation

The well-reservoir equations are solved poandT in the reservoir and for
Pa, Pt Ua, U and T,, T; (@annulus and tubing of the well). In order to assthe
mathematical consistence of the formulation, wedne® state the regularity
properties of these variables. Let us say thatptiessure and temperature fields
of the reservoir and the velocity, pressure andptzature ones of the well are
solution to the variational problem in the dom&n= Q, x Q,, which we define
belonging to the following solution subspace:
S:=PxT xV,, xP, xT, =
{(pT U, U Py BT, DI AP TWT5u,,u 0V, g, pPAP,; T, TT,}

Where:

Pr={pOH(Q)| Play = P}

Tr={T OH (Q)}

VJ/’\'I::{UW DH 1(QV\) | uwlBQW: UBQV\}

Pr={p, OHY(QY}

Tr={T,, OH (Q,)}

Where H*(Q) is the Sobolev space of ordewhich is defined as:
of o f
HEQ) =1 f | fOL(Q),—0L,@Q);....— 0L, Q
(){I 2()6)( 2 (Q) I 2()}

This definition states that if a functidnbelongs toH"(Q) then f and its

derivatives up to order k have a finitg(Q) norm:

LZ(Q):{f:j|f|2dQ<+w}

It should be noted that in order to ensure the usmngss of the solution we

need to prescribe Dirichlet boundary conditiong®n
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The variational formulation is equivalent to thdfetiential formulation of
the coupled well-reservoir problem wherg and T are arbitrarily chosen
functions for the reservoir and,p,,T,.G,,p, and T, are arbitrarily chosen
functions for the annulus and tubing of the wellende, the well-reservoir
problem can be stated as: fipdPr,TOT,,(y,,4)0V,, (p,,R)0P, and
(T,.T)OT,, such thapopy, TOTw, @ .G )0V,,.(pa B)OP,, and  (T,.T)0T, are

subjected to:

In reservoir:
mj pdv—jD“p[@Atk[qD o @3 dv

+ j p(Ak{Op-p,g02)mh da=0

a0,

(c), [ 15 v-0(8), [ T30 avoe[ { b p g
Q Q Q

r

+(pC,) [ TOTHAK(Op-p, 01 2) dw
+f (1-(8))rOpTAk 0P~ o, g3 3) Tdw [O Tk, @ § dv

j T (k, (O0T)hda=0

0Q

T

In well annulus:

~ 0(pyu) -
u ——=>-"2dz-27R | U d=0
AAQIW o FS.QIW 0P W),

dp,u2  2f up j
ala 1 2 Ted &+ p, 85in0 | dz= 0
Qj Qj ( 0z D

(T- D-27 RUCF J) &

j (7R, (W G (T- )~ Alp W), ind) dz

P OR| ||0p
T C k). .+ C).H g 2 dz=0
a (PW p JT)a (10 y p)a lat g{ pao apa‘Ta J] 9z

Q

w

In well tubing:
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d(py),
Aé[ U[T dz=0

~ 0p, [ 9aY | 2. uip, -
p——dz- p( +—=2 +p0 osingd | d=0
JW ' 0z JW 0z D t

A[(pwC,) T8 d [ (27 RU(T- T+ A v), gnd) oz

Q Q,
Ha—g d=0
T 0z

W

A[T Py OR,
AQJWTt[(pw G kr), + (o y G, Hatgo[pm 5

Limited to the domairf) .

4.4.2
Space and time discretization

The space discretization process in the finite el@nmethod is essentially
the choice of how to divide the domain into elerseantd basis functions used to
describe the unknowns fields in each element. Thgice should take into
account influences of the variational formulaticggularity properties of the exact
solution, accuracy requirements, computational reffetc. The original infinite
solution subspace is replaced by the discretizexl aond therefore it becomes a
finite dimensional problem. Solution subspace of thew finite dimensional
problem are variables or degrees of freedom in edhent described by a set of
points which are uniquely determined by a piecewmsdynomial subspace
spanned by a Lagrange basis. In addition, mixeaddation is used and therefore
Babuska-Brezzi condition must be verified to engheeexistence and uniqueness
of this approximated solution (Brezzi and Forti@1® The resulting nonlinear
system of algebraic equations is expected to h#feient approximation of the
original problem.

A nonuniform quadrangular mesh is considered asplagial discretization
for reservoir and a uniform linear mesh is congdeas the spatial discretization

for well annulus and tubing as shown in Figure 4.12
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\ —/_—/ In

Tubbing

// 0 T

Figure 4.12 - Nonuniform quadrangular mesh.

Annulu
Reserv

An exponential element size function (4.21) wasdude minimize
numerical error in r direction due to expectedabdity close to the well-reservoir

interface where two dimensional and one dimensielghent are coupled.

1
h. )(N-)
h=h (ENJ , (4.21)
Where

h andh, are the first and the last element size respegtivel
The nonlinear system of equations can be explicghyritten in residual
form as:

In the reservoir:

P — p pop )
R ¢7Qf C - Al ( E%rarﬂ( %(O_ Pth'ﬂD dy+

A, (w"’p 1B 2 g goie) | a
R"=(p )IEf—dV o )tQIhETT% dy-

—mﬁ(mpfc kA P ay+

h

aTap, , OT(dp .
+(pCP)J.QhTA( ar or Ka(a_ Iot gSIWJJ dN+
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+j9h(1 (B)T )TA(K(ZEJ K%{? ptgsir@)} dy-

_I( T ot kTﬁa_TJ v+ (kﬁ[T KZDTaj

o or
In the well annulus:

py)

R = A, === dz-27R[ "u(p v} o

. 0p . [0p, U2 2f Uip .
Pa = 2 dz - aay_ Faalay si@ | d

R = A, (owe), 125 -
[, T.(27R.(1-1) Uu (T - T) - 20R U4 T- 7)) 7

-, T.(27R. (oG (T- 1)), + Ale v osB) dz

- op, Py OR| |0p,
-MQhT{(pyucpkn)ag’f(p yuG), b go( p:, aan azJ dz

In the well tubing:

R = A, —p”dz

.0 (0 | 26,0 .
R =], Hﬁd%-fgh 9( AL+ F"’;p‘m gsu?j de

0z 0z
T e aTt
R = A, (PWuG) T3t dz-
[, T (2R U (T-T)+ Alp v), gsifi) dz-

Py OR| |on
Po OB,

-*\Igﬁ{(pyucpkn) %ot (p yug), n(

Limited to the domaif.
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The resulting system remains time dependent. Impiime integration
methods find the solution using both current solutand later time unknowns.
Hence, implicit Euler method was chosen to perfame integration:

Let f*be the current unknowns anti*the unknowns in a later time so for

the implicit Euler we can write:

fk+1_fk

Tz g(t, fk+1) L k= gl g(t, fk+l)5t (4.23)

This equation shows that the system of equationst tveisolved in order to

—=g(k f) -

get the values of the unknowns in the later tirtié. The implicit time fully

coupled system from the well-reservoir equationssidved using Newton’s
method (Kelley 2003). It is a powerful iterativech@ique despite of its small
radius of convergence which requires a good inigakss. A simple linear

extrapolation was chosen to achieve this requirémen

Ck+1 — ZCk _Ck—l (4.24)
The well-reservoir nonlinear system of equation8Z
R(c) =0, (4.25)

is solved from its associated Jacobian matrix anesidue vector through a

sequence of iterations of the linear system:
J (c")dck = —R(ck)
c*t =ck +ack (4.26)

this is continued untiR(c") < tol R(CO)OI’ 5 <10l pgar

Where
‘Ji,J (Ck) = aR

ac;’

is the Jacobian matrix elements awdl is the required tolerance for the
chosen stopping method. Due to its flexibility amarical Jacobian matrix was
used instead of an analytic one even at the expehgeerformance and the
possibility of a small numerical error. The numatidacobian is computed using

the following steps:
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R(<)

for j from 1to #columnslo

c, —c+d
J#,OWS,,-(Cj) _ R(cpl); R(CJ)
ij < c

end for

The resulting sparse linear system is solved usipgeconditioned GMRES
iterative algorithm. Approximate minimum degreerdBring was chosen as the

preconditioner.
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5
Validation and Case Studies

5.1
Segment Validation

The models for one reservoir layer and one wellhsag were validated
against a commercial multiphysics modeling and $tien tool (Comsd™) and
a dynamic multiphase flow simulator (O3 independently and without valves.
Afterwards a fully coupled simulation for the wedlservoir layer/segment is
compared with Figure 4.5. The configuration used tie model for one
layer/segment is shown in Figure 5.1. It is usedtha validation procedure
(without ICVs) and case studies (with ICVs).

Figure 5.1 - One well-reservoir layer/segment with an ICV.
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51.1
Vertical Well

The well segment experiencing steady state flow560 bpd of oil
production in the tubing and in the annulus atttpeof the segment is simulated
for pressure and temperature. The simulation resrk presented ag;, pi, Ta
and T; profiles which are validated against Olfausing data reported in
(Muradov 2010) and reproduced as square dots irFitnere 5.2. As expected,
pressure profiles are dominated by hydraulic heatlauniform influx from the
annulus. Temperature profiles clearly show diffeesnfor tubing and annulus and
a good agreement with the reference data. Thetguméasures is reported as the

Euclidean Norm of the relative error which is 8®*for T, and 1.9 10 for T; .

Well Temperature Well Pressure
T[°F p [psi]
131 132 133 134 135 136 5840 5860 5880 5900 5920
5700 5700
5750 5750
5800 5800
) \ )
= £
£ 5850 ¢ £ 5850
v dJ
[=] [=]
5900 4 5900
5950 5950
6000 6000
¢ Taref o Ttref ——Ta ——Tt ——Tgeothermal ——Pa —Pt

Figure 5.2 - Temperature and pressure in a vertical well with 500 bpd of oil production in
the tubing and in the annulus.

The same simulation is repeated for 500 bpd oWaikér in the tubing and
in the annulus at the top of the segment. The tesué validated against Oiga
giving the Euclidean Norm of the relative error 1@ for T, and 6.2 1§ for T
for this case.
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Well Temperature Well Pressure
TI[°F] p [psi]
131 132 133 134 135 136 5800 5820 5840 5860 5880 5900 5920 5940
5700 5700
5750 5750
5800 5800
E £
=
§ 5850 £ 5850
0 [
[=] o
5900 5900
5950 5950
6000 6000
& Taref & Ttref ——Ta —Tt —Tgeothermal ——Pa —Pt

Figure 5.3 - Temperature and pressure in a vertical well with 500 bpd of oil/water

production in the tubing and in the annulus.

5.1.2
Cylindrical shaped reservoir

The cylindrical shaped reservoir is simulated fidrand oil/water up to 48
hours of production time after a step rate charfg2000 [bpd] of the total flow
done at the surface. During the simulations 10%eak is allowed in z direction
and gravitational effect and geothermal gradieet @nsidered. The parameters
used for the simulation are presented in TableeXckept by reservoir thickness:
150 [ft], reference temperature: 154.8 [°F], eglewa radius: 1000 [ft], and
saturation:S=1 and S=0.5 respectively to run the simulations. A commercial
multiphysics modeling and simulation tool (Con&9lis used as a reference tool
for: mesh size and time step tuning. The best matier the tuning procedure is
shown in Figures 5.3 and 5.4 for both cases. It adseved using a minimum
time step of 6 minutes and mesh size 45/45 witlsithemariation over direction
calculated by equation 4.21 usihgs/h;=1/15. The quality measure was again
based on the Euclidean norm of the relative erdoickvwere for oil production:
5.6 10° for p(r=Run:t), 5.3 10° for p(r,t=48h), 1.1 10° for T(r=Rwy 1), and 1.5 10
for T(r,t=48h).
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Reservoir Pressure at Rci Reservoir Pressure at 48h

p [psi]
p [psi]

t[h] r[ft]
——p(t) =——Comsol ——p(t) =——Comsol
Reservoir Temperature at Rci Reservoir Temperature after 48h

T[°F
T[°F

t[h] r [ft]

—T(t) ——Comsol «==T(r) ==——Comsol

Figure 5.3 - Reservoir pressure and temperature (oil production)

In the case of oil/water production the Euclideannm of the relative error
were: 3.4 14 for p(r=Rwy,t), 7.5 10° for p(r,t=24h), 4.2 10" for T(r=Rup,t), and
5.9 10* for T(r,t=24h).

Reservoir Pressure at Rci Reservoir pressure after 24h

t[h] r[ft]
—p(t) =——Comsol ——p(r) =——Comsol
Reservoir Temperature at Rci Reservoir Temperature after 24h

15355 o

T[°F

t[h] r [ft]

~—T(t) =——Comsol =T(r) =——Comsol

Figure 5.4 - Reservoir pressure and temperature (oil/water production)
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The validation procedure is completed through thly toupled simulation
of the segment for oil/water production experiegdwwo transients: first one 2000
[bdp] and second one 1000 [bpd] both are choke iogenA comparison of the
pressure and temperature behavior illustrated iguréi 4.5 indicates good

agreement with the real data, as shown in Figie 5.

Well Pressure Well Temperature
155 T ; T T T T
154.5 ‘
154
153.5
T 153
—pa  F 1525 —Ta
e====pt 152 Tt
151.5
151
150.5
0 24 48 72 96 120 144 0 24 48 72 96 120 144
t[h] t[h]

Figure 5.5 - Pressure and temperature transients for 2000 [bpd] and 1000 [bpd].

51.3
Case Studies

The model derived captures transient behavior muéilayer vertical well
equipped with intelligent completion. Basically,ista reasonable example of an
IW application. In an intelligent field scenarigal-time analysis tools are used
for reservoir management leading to production rogtation, better reservoir
characterization and flow allocation. Through thse wf appropriate tools it is
possible, in theory, to do pressure and temperanamsient analysis without
intervention or well shut-in. Automatic well testeere applied in a valid set of
continuously measured pressure during unplannetisiperiods proving that it
is possible (Olsen and Nordtvedt 2006).

Well-testing uses generally pressure transientoresgs due to production
rate changes to gather information about reseryooperties. Temperature
transients can also be used for this purposes d€ated by (Sui, Ehlig-
Economides et al. 2010) for conventional wells d&yd(Muradov and Davies

2010) for horizontal IWs. Therefore, it is possileprinciple to have the same
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result when changing flowrate downhole by a mukipon ICV without zonal
shut-in. The developed model is used to show ialély this possibility
pushing a little bit further what have been devebtbpvhich are only for zonal
shut-in.

A three zone vertical IW equipped with multiposititCVs is chosen as the
study case. The choke profile is selected from &"3ICV of a commercial
product line and it is the same in all the simwoliasi. It is assumed constant
properties per layer. Data used to perform the kitimns is presented in Table
5.1 and a simplified well schematic in Figure 5T&e pressure is assumed to be
above the bubble point.

Figure 5.6 - Well-reservoir schematic for case study.

5131
Base Case

The three zones are producing 1000 bpd of oil esith uniform flow
distribution and the well choked. A transient of0BObpd is then created by
opening the surface choke and all layers have &ptatb this new total rate of
6000 bpd. In addition, as all reservoir properées equivalent at the different
layers, the same behavior is expected towardsetméfiv constant total flow rate.

All ICVs are kept fully open during the whole nunoat experiment. The result is
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shown in

Figures 5.7 to 5.11. The temperature slafitow the expansion and

Joule-Thomson effects in all zones. The valves fund mixture in the upper

layers are also present. It should be noted tleaptbsence of annulus and tubing

in the model cannot be neglected for appropriattetstanding of the temperature

behavior.

Depth [m]

Depth [m]

T[°C]
75 75.5 76 76.5 77 77.5 78 785 79
3340

3360
3380
3400
3420
3440
3460
3480
3500

Ts1 Tas2 Tts2 Tgeothermal «=——=Tas3 «—Tts3

Figure 5.7 - Well temperature:T(z, t=0).

T[°C]
75 75.5 76 76.5 77 77.5 78 785
3340

3360
3380
3400
3420
3440
3460
3480
3500

Ts1 Tas2 Tts2 Tgeothermal =—=Tas3 «—Tts3

Figure 5.8 - Well temperature: T(z, t=3h).
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T[°C]
75 75.5 76 76.5 77 77.5 78 78.5

Ts1 Tas2 Tts2 Tgeothermal Tas3 «=——=Tts3

Figure 5.9 - Well temperature: T(z, t=24h).

t [h]

785

78

77.5

77

T[°C]

(.

76.5

76

755

s TS| s TS 2 TtS2 emm=TQs3 e T1S3

Figure 5.10 - Well temperature: T(z=half segment, t).

5.1.3.2
Two-Phase at Middle Zone

The second case study has the upper and lower pooegcing 1000 bpd of
oil and the middle zone producing 50% of water &0&o of oil which is also
producing 1000 bpd. A transient of 3000 bpd is @y opening the surface
choke and the total flowrate is kept constant afiénbase case. The new fluid in
the annulus of the middle layer has a stronger t&adcity with a weaker Joule-
Thomson effect when compared with the fluid in thking. The heat cannot be
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transferred fast enough resulting in the differéshavior of the temperature

profiles and temperature transient presented inreg5.12 to 5.15.

T[°C]
75 75.5 76 76.5 77 77.5 78 785 79

3340
3360
3380
T 3400
E 3420
A& 3440
3460
3480

3500

e [S] e TQS2 e T{S2 e TgeOthermal  ee=Tas3 eweTts3

Figure 5.11 - Well temperature:T(z, t=0).

T[°C]
75 75.5 76 76.5 77 77.5 78 785

3340
3360
3380
T 3400
%_ 3420
A& 3440
3460
3480

3500

e T§] = TQS) e TYS2  wmmmTgeothermal ==——=Tas3 «—Tts3

Figure 5.12 - Well temperature: T(z, t=3h).
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T[°C]
75 75,5 76 76,5 77 77,5 78 78,5

e TS] e TQS2 TS 2 Tgeothermal Tas3 «==——Tts3

Figure 5.13 - Well temperature: T(z, t=24h).

t [h]

78,5

77,5

77

T[°C]

76,5

75,5

s TG e T QS 2 Tts2 e=—===Tas3 e=—=Tts3

Figure 5.14 - Well temperature: T(z=half segment, t).

5.1.3.3
Different Permeability at Middle Zone

The third case study has a total flowrate of 30p@ but now the middle
zone has a higher permeability. All zones are pecodu oil when a 3000 bpd
transient is created by opening the surface chAkein the base case the total
flowrate of 6000 bpd is kept constant. The tempeeafprofiles and transient
presented in Figures 5.16 to 5.18 show the efféca digher flowrate at the

middle layer resulting in a similar behavior of theevious case but weaker this


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-Rio - Certificacdo Digital N° 0821306/CA

Intelligent Well Transient Temperature Signal Reconstruction 97

time. It is also possible to note a stronger Jdllemson effect and a faster

transient.

T[°C]
75 75.5 76 76.5 77 77.5 78 785 79

3340
3360
3380
3400
3420
3440
3460
3480
3500

Depth [m]

Ts1 Tas2 Tts2 Tgeothermal =——Tas3 =——Tts3
Figure 5.15 - Well temperature:T(z, t=0).

T[°C]
75 75.5 76 76.5 77 77.5 78 78.5
3340

3360
3380
3400
3420
3440
3460
3480
3500

Depth [m]

Ts1 Tas2 Tts2 Tgeothermal e==—=Tas3 «=——=Tts3

Figure- 5.16 - Well temperature:T(z, t=3h).
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T[°C]
75 755 76 76.5 77 775 78 785
3340 : : v : : :

3360

3380
"= 3400
£ 3420
3440
3460
3480
3500

[m

Deptl

Ts1 Tas2 Tts2 Tgeothermal Tas3 e=——Tts3

Figure 5.17 - Well temperature: T(z, t=24h).

t [h]

785

78

77.5

77

T[°C]

76.5

76 |

75.5

e [G] e T3S 2 Tts2 e====Tas3 e=—=Tts3

Figure 5.18 - Well temperature:T(z= half segment, t).

5134
Zonal Transient

The last case study has a total flowrate of 500 Wwhich is kept constant
during the experiment. Upper and lower zones aoglyming 1000 bpd and the
middle one 3000 bpd of oil. A zonal transient 00@QMpd is created at the middle
zone by changing the ICV flow area. The temperafu@files and transient
reproduce the behavior found in a real well (VéilniIRamazanov et al. 2009), as

presented in Figure 4.2. The temperature transdieabmes weaker as the upper
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layers are approached and this effect is even grofor vertical wells (Figure
5.19to 5.22).

Ts1 Tas2 Tts2 Tgeothermal =——Tas3 =——Tts3

Figure 5.19 - Well temperature:T(z, t=0h).

Ts1 Tas2 Tts2 Tgeothermal =——Tas3 =——Tts3

Figure 5.20 - Well temperature:T(z, t=3h).
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T[°C]

Ts1 Tas2 Tts2 Tgeothermal e=—=Tas3 «——Tts3

Figure 5.21 - Well temperature:T(z, t=24h).

t [h]

78,5

78 k" """"""""" """"""""" ’ """"""""

o NG R oo e
e

S0 N s "
76 ' . '

Ts1 Tas2 Tts2 Tas3 Tts3

Figure 5.22 - Well temperature:T(z= half segment, t).

100


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-Rio - Certificacdo Digital N° 0821306/CA

Intelligent Well Transient Temperature Signal Reconstruction 101
Oil data Water data Well data Formation data Other data
Cpo = 0.64 [% Cpw =095 [lb e Rup = 6 [in] Ky = 50 [mD] Kee =1 thTlep
K, = oos[”" K, 034[ R, = 4.81 [in] o=l K.=K = 10[
hft°F hft°F o = 28I == hreor
#, = 0.6 [cP] = 0.34 [cP] R = 4.27 |in] ¢ =02 e = 0.045e — 3|m]
€ =¢ +S,60+SuC0 =
Py =36 ;fal Py = 64 }%] Ry, = 2.75 [in] q=13.248 ['%Jl
1
= psi
=22¢-5 [—]
ft fe . 2
B = 0.0009 | =3 °""l B, = 0.0001 t,—,,F] Ry =241in] | Dy = 11480 [ft] g = 9.80665 [m/s
o = 09e — 5[—] ¢, =0.1e—5[—] y=09 Pyoy @D,y = 5920 [psi] Cy=05

So =075 S, =025 Tyer = 136@D,.s [°F] A, = 627 [in?]
Ky S° A=K _ Su’ Choke profile: 100, 12, 9, 6, 3,
RS T e M C —o03 2,1, 0 (% Open)
= 0.94 = 018 " "’°F
=0.94[] =0.18[ ]

K, —175[”"]
A YT

1
A=2,+4, =112

b
pr =135 [ ]

[

Lo —s05
Pe=poy p”— o

7ol

hy = 300 [ft]

g0 = 00167 rf—’;]

= 152—5[};]

Table 5.1 - Data used in simulation of the cases 1 and 2.
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Data Analysis

A decade after the first IW had been installedjrdegrated modeling and
optimization framework, shown in Figure 6.1, wasogwsed by Brouwer
(Brouwer, Needal et al. 2004). This paper desciitoeg established concepts from
control engineering and meteorology can be usedofoduction and reservoir
management. Since then, research and developmenrt inidated in areas of
reduced order modeling, optimization, monitoringsteyns, data analysis and

assimilation.

L e e e e e e e e e = - System

----------- t---1
l I 1
I Optimlzatlon
m I
|

Tl

Assimilation L Modelling & Optimization

Database

8 Integrated

Figure 6.1 - Integrated modeling and optimization framework.

Data analysis can be defined as the procedure tosgdnsform data into
knowledge along the value chain path for makingisiees as shown in the
pyramid chart of the Figure 6.2. Data analysis assimilation aims to provide
the necessary information for model calibration amndertainty minimization to
avoid unreliable decision making. Typically soft@artools commercially
available support all data analysis proceduresa daguisition, pre-processing,
post-processing and interpretation without integgtatnodeling and optimization

in mind.
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Data Post-p

elling

rocessing &
3(lling

Figure 6.2 - Value chain pyramid chart.

Data acquisition and pre-processing deals withesssuch as: sampling,
denoising, outlier removal, compression and timechyonization. As mentioned
earlier, pre-processing is done by application, gas lift optimization and IW
have its own application tools. The integrated nliade and optimization
framework aims to use appropriate pre-processingnwove the quality of the
data analysis and assimilation procedure. One wajomg so is to perform in
one place the pre-processing of the real-time tfzh is used by the different
applications. This implies that the data from thedoiction system are viewed as
a single data set. Denoising, outlier removal amskimg data can then be treated
in a traceable manner, assuring the same level u#litq control to all
measurements. Further, time synchronization ofrieasured values will be more
robust. This can be used to improve predictionsiofual influences of processes
with different time scales rather than today’s pracof only using it to adjust the
correct sample rate for each process (decimatidmyhnis essential for field scale
analysis (Aggrey, Davies et al. 2007). As can lense Figure 6.3 the centralized
pre-processing can potentially improve the qualdly the post-processing
predictions. Although this approach has not yenbiedly explored, a successful
application of it can be found in offshore operatoand maintenance
(Friedemann, Varma et al. 2008).
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SENSORS

EXPERT

KNOWLEDGE HISTORICAL
INFORMATION

ERRORS

! DENOISING &

1| ouTLIER REMOVAL

1 1 DECISION
! ASSESSMENT MAKING
' TME DATA RECOGNTION

! SYNCHRONIZATION RECONCILIATION ITION)

1

1

| COMPRESSION/ (22513;‘;?82) APPLICATIONS
1 DECIMATION

1

1

1

1

1

FEATURE DIAGNOSIS
EXTRACTION (CLASSIFIER)

Figure 6.3 - Data analysis framework with centralized pre-processing.

A comprehensively architecture that relates theividies from the
subsurface sensor to the engineer’s office istiied in Figure 6.4. Bandwidth,
noise, outliers, missing data, time synchronizationited storage capacity, and
data quality control are examples of common issmeigh need to be properly
managed to avoid getting incorrect results duriatpdanalysis; not to mention
issues such as sensor placement (important iniérgnsnalysis) and mechanical
coupling (important in downhole seismic and acaustnsors). Furthermore,
downhole sensors cannot be calibrated without & wdrvention. Nothing can
be done when their measurement error changes. \iimy the errors are large
enough to be found using physical constraintspoissible to discard the incorrect
measurements adequately. Published literature lysgahtains little general
information on installation details or data acaiiosi issues, unless they refer to a

specific application.
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Time syncronization
Outliers

SEM Missing Dat: Limited Storage
INTERFACE  [PyNi—, Capacity
Limitation /
] DATA
gd HISTORIAN
_______ ! Production platform

w WCT
SENSORS SENSORS

<«—— Noise

Data Analysis Integrated Database
Applications A Including Real-Time
Data

“— Noise

.
H
H

ﬂ <«— Noise

Subsea/Downhole

Figure 6.4 - Integrated IW architecture.

Applications employed for post-processing and datarpretation, data
reconciliation and assimilation include reservoirammagement, advanced
completions, well performance, flow assurance, wgélinulation and condition
monitoring. There are a variety of robust, commarand in-house tools available
to the operator for those applications individualline challenge is to compare
and integrate the results from these tools in a thay a reliable decision can be
made. The integrated approach calls for the opesatbosen models to be fully
integrated (from reservoir, wells/flowlines/ris¢cstopside facilities). There is no
off-the-shelf solution which efficiently mimics ahe physical systems described
above. Neither is there a set of applications whicmors the needs of the
different disciplines without important simplifigabs that result in losing the
incremental value of the integrated framework (HudsAlves et al. 2011).

IW monitoring system has benefited in recent ydams the measurement
of new physical quantities combined with new datalgsis methodologies.
Instrumentation and other hardware advances héwmeead more flexibility at the
design and installation stage which have been emwplbh variety of new
applications. A basic IW monitoring system desiganfework is presented in
Chapter 3 aiming to choose a fit for purpose IW iwoimg system based on the
available interpretation tools. The challenge fbe tintegrated modeling and
optimization framework is how to capture appropmiatthe mutual influence

among processes in order to improve the decisidinga
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Due to the integrated production and optimizati@mfework real-time data
is growing towards unmanageable amounts. Curreailadole technologies are
able to collect and transmit data from downholdysea and surface production
units to wherever they are needed. Even thoughdealbyments are still facing
limitations as bandwidth, time synchronization, s&i missing data as well as
standard criteria to data quality control and asiteélgy (Mathis and Thonhouser
2007). Some of those limitations are treated irtligily in the data analysis pre-
processing at the application level and othersatall making traceability and
effectiveness of the pre-processing in this scerdwubtful.

A step forward for data analysis at least for IWplagations is centralized
pre-processing as can be seen in Figure 6.5.nbtighe intention to replace the
existing post-processing and interpretation toalailable but to improve them
through a better framework. It is worth mentionitigat criteria for data
standardization and feature extraction are enatitershe success of this new
framework.

Data analysis pre-processing as proposed in tleisighperforms basically
four procedures:

» Denoising/missing data interpolation/outlier remlpva
e Compression/decimation;

* Time synchronization;

» Feature extraction.

They are used due to necessity of reliable date, ¢f outliers, missing data
and measurement noise to improve the accuracy Hedtieeness of the post-
processing and interpretation procedures. The iadditprocedures included refer
to the mentioned issues, especially in subsea agiglhs, as bandwidth
limitation, time synchronization, data overloaddaspatially distributed sensing.
Feature extraction was also included to captuteeéntces among processes.

Denoising/missing data interpolation/outlier remopeocedure is studied
by using RPCA (Robust Principal Component Analysisg PCP (Principal
Component Pursuit) to approximately restore ancrsgp the signal from noise
and outliers which is assumed sparse (Lin, Cheal.e2010). Missing data are
allowed and the procedure is done simultaneousiyutih a surrogate convex

optimization approach.
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Compression and time synchronization have beeniestucecently from
Olsen (Olsen et al, 2011) and Aggrey (Aggrey, Dange al. 2006) for transient

and steady state signals. They are treated agfutork in this thesis.

PROCESS
PLANT

|
|
|
|
|
|
|
|
Data Quality Controll
»~ and Feature Extracﬂion
|
|
|
|
|
|
|
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Missing D
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WCT
SENSORS

<«— Noise

Limited Storage
/ Capacity

HISTORIAN .
Production platform

_______

N

Post-Processing &

Interpretation Integrated Database
Applications \ :;mluding Real-Time
ata

<«— Noise

s ) OPERATION PRODUCTION RESERVOIR
j| <« Noise APPS APPS APPS

Figure 6.5 - Integrated IW application with centralized pre-processing.

Feature extraction is introduced by using DM (Caifmand Lafon 2006)
which allows identification, e. g., of an abnorntmhavior and can be used to
improve pattern recognition, classification andreation procedures of the data
analysis post-processing and interpretation. InpBra7 and 8 we describe the
pre-processing theory, validating and applyingrtee framework through the use
of the non-isothermal dynamic well-reservoir mottegjenerate synthetic “clean”
data. Artificial noise, multiple outliers and misgidata are introduced to corrupt
the original “clean” data and then used as inpuh&pre-processing framework.
The main goal is to automatically identify pressarel temperature transients.
The cleansing and feature extraction procedurefonmpeances are compared
against a state of the art one (Olsen 2011). Thie m@ntribution of this new
framework is not only completing all cleansing wsimultaneously with less
sensitivity to outliers and missing data but alsakmg possible the use multiple

signals, including different ones, surveying the mea phenomena.
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Pre-processing Theory Background

Real monitoring systems suffer of various typesdafa corruption. They
might be caused by installation, telemetry, senaads aging, being classified as:
random, systematic, and gross errors. Specifidallydownhole monitoring we
emphasize connection, coupling, and placement ediwrors as the ones that
nothing can be done after installation without atlyaintervention.

In this chapter, first we describe random, syst@nand gross errors, with
some real examples, and afterwards how to modeh.ti&econd, we present
common techniques used in downhole monitoring syste treat noise and
outliers introducing RPCA via PCP (Candeés, Li et2l11) which is, roughly
speaking, a signal separation problem, as one eofptbces of our framework.
Finally, we present a feature extraction techniQased on DM (Coifman and
Lafon 2006) and our full pre-processing framework.

7.1
Corrupted Measurement Data

Random, systematic and gross errors are the mgmestof errors in
measurement systems. As the name states the rasdora are characterized by
unknown and unpredictable changes. They are assumdoke additive and

modeled using the equation 7.1:

yt,noise = yt+ r (7.1)
Where:
r N(0,0%)

0.4 I“
0.2

| L L L L L L L L
o 100 200 300 400 500 600 700 800 900 1000

Figure 7.1 - Random noise.
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The systematic errors occur mainly due to a flawthe equipment.
Normally they can be minimized or even eliminated\king the equipment aging
and environment impact (signal trend model). Thap ©e arranged in three
minor groups classified as: bias, drift and degtiada(Figure 7.2). Bias consists
basically in a constant variation over time, digt deviations occurring after
sensor calibration, and degradation is basicaklyaimount of noise getting bigger
due to the aging of the monitoring system. All th@se affected by an incorrect
equipment specification or an inappropriate enviment. The latter is common in
downhole monitoring systems due to the uncertaiaigsociated to the

environment.

Bias 1 Drift 1 Degradation

. ° X
. °
. oo o0 ® * x
e 4 ° e ® . X X :
. . . ® x X ')
oo
. '] °® X o X PRI x X
. o4 °
) e 0o X
o ® X
e q

L) LR
. e0 %0 . X
o q °

\

»
+>>

\ 4

Figure 7.2 - Systematic errors.

The descriptions above allow us to illustrate d sggnal behavior which is
normally a mixture of them. An example of degraoiatand drift can be seen in
Figure 7.3. The signal was gathered from a PDGalilest at 2905.42 m (TVD -
True Vertical Depth) in a water injector horizontakll. The “clean” signal,
without the effect of drift and degradation, is peen one and as the sensor is
getting old degradation and drift is becoming lardieis important to observe that
these types of errors are normally identified bgrade or when the measurement
is clearly unfeasible. This example was made maagmoise and drift right after

installation and right after retrieval.
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Pressure

p [kgf/cmz]

Time [hours]

Figure 7.3 - Noise and drift of a real PDG (the green signal is the “clean” one).

An example of drift due to reading unit noise imliatributed temperature
sensing is presented using a published noise modelanti-stokes/stokes
measurements as function of signal intensity (Hadled Kimish 2008).

The measured temperature in a distributed temperaensing system is
calculated by the equation 7.2 as function of efee measurement, differential

loss and anti-stokes/stokes ratio:

1_1 1 |
—=—-—In|— (7.2)
T T, DL (loj

Where:
DL — Differential Loss
| — anti-stokes and stokes intensity ratio

lo — anti-stokes and stokes intensity ratio at refeedemperaturer()

Let's assume that reference temperature and diffieteloss have a
negligible impact on the temperature uncertaintpni-the reference paper, the
noise of stokes and anti-stokes signals are modbi¢lde equation 7.3:

2+

o=,c +
Where:

2
signalcz (7.3)

C1, & — constants;

Isignai — Signal intensity.
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Applying equation 7.3 to calculate the uncertaiotythe temperature gives
as result the equation 7.4 assuming independent idewkically distributed

measurements distributions:

1Y Tas )
o :(I__j aﬁs+(_ijj o? (7.
S I S

The equation 7.4 shows that the temperature unertearies with signal
intensity which is function of the position. As énpretation methods used for
distributed temperature sensing depend on tempergtradient they are directly
impacted. Therefore this systematic error should tékeen into account to
minimize misinterpretations. It is worth mentionitigat signal processing as trace
averaging and moving averaging within trace norynafied to minimize noise is
not able to remove this kind of effect and it shibbné removed before any signal
processing be done. An example of this effect meal distributed temperature
measurement can be seen in Figure 7.4. The terapesagnal was gathered from
a DTS installed in a producer horizontal well (oor&) where we are interested in
the 505 m of the horizontal length starting at 4MD). The lines black and
blue corresponds to the temperature signals aftgrals processing with and

without systematic error correction due to noispesglence with position.

Distributed Temperature

Figure 7.4 - Temperature gradient profile error due to reading unit noise model in a real

temperature measurement (blue line without correction).

The last major type of error is the gross erroreeyl occur when the

instrument goes on complete failure and they adergtood as errors associated
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to the production process. Typically they are medels a product of a switching
distribution times a Gaussian distribution but Hedwailed Distributions or a
linear combination of Gaussian Distributions magodbe used:

yt,outlier = yt,switching [yt corrupting (7-5)

It should be noted that the outlier is assumecdetaradditive error over the

original signal and the switching distribution ypically Bernoulli or Markov.

7.2
Denoising and Outlier Removal

All major types of measurement errors describethenlast section can be
minimized through the use of filters. There areyoBlof them heavily used in
downhole monitoring systems signals: mean filteedmn filter, maximum-
minimum filter, moving average filter and wavelétefr. In addition to them we
introduced a non-conventional RPCA via PCP as a mgwe of filter for

simultaneous denoising and multiple outlier remdeahnique.

7.2.1
Conventional Filters

In this section we describe the most used filtergildwnhole monitoring
systems especially for transient analysis appbecati As mentioned earlier they
consist of 5 filters:

The mean filter is the simplest one and consistsmoothing the signal by
taking the average value of the lasineasurements. This filter can be modeled by

the equation 7.6:

Vimean == (Vi ot V) (7.6)
w+1

To illustrate the mean filter performance we hakiesen a synthetic signal
built using piece-wise regular polynomials as &refice clean signal. This signal
is available in the Wavelab 850 Mat'&bToolbox from Stanford University. A
random noise normally distributed with mean O atehdard deviation 10 is
added to the clean signal and filtered (with30) afterwards (Figure 7.5). The
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result is then compared with the clean signal thhdi2 norm of the relative error
giving 6.48x10".

0 20 40 60 80 100

Figure 7.5 - Mean filter performance (red is the clean signal).

The median filter works in a similar way of the meane but instead of
taking the mean of the lastvalues it takes the median of them. This filtem ba
modeled by the equation 7.7:

(Vo < Yomua< Yo) I even

Yt median = ( (7.7)

Yi-w < 1/2( yt,-(W+1)/2+ yt’—(W‘l)/z) S yt'o) Hw- odc

As before using the synthetic signal and noise, \&itd the samew, we
evaluate the performance of the median filter mglkancomparison between the
filtered and the clean signals. The result givé110® (L2 norm of the relative

error).

70

60}
50|
40}
30}
20}

10t /

0 . . . .
0 20 40 60 80 100

Figure 7.6 - Median filter performance (red is the clean signal).
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The maximum-minimum filter consists in taking a m@@ment and
replacing it when the value is lower than a minimamhigher than a maximum

value. This filter can be modeled by the equatidh 7
yt D yt D[ X,min’ ymax]
yt,min D yt < M,min (7-8)

yt,max— min —

yt,max u yt > M,max

The performance of this maximum-minimum filter dgpirthe same

comparison as before gives as result 6.96x12 norm of the relative error).

80

70+

60+

50+

40}

30+

20+

10+

0

0 20 40 60 80 100

Figure 7.7 - Maximum-minimum filter performance (red is the clean signal).

The moving-average filter works taking a numbernoéasurements at a
specific time and producing an average value oftéaken values. The number of
measurement defines a window in time which can dygnanetric or symmetric
regarding this specific time. It should be notedttfor the asymmetric case it is
expected phase problems. Depending on the sigisac#m be a problem. This

filter can be modeled by the equation 7.9:

y :i(y +..+y) (7.9)
t,mva W+1 t=w t
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Figure 7.8 - Moving-average filter performance (red is the clean signal).

The performance of this moving-average filter doihg same comparison

as before gives as result 3.13%1Q2 norm of the relative error).

The wavelet filter has proven to be valuable fonalsing in particular the
wavelet shrinkage method proposed by (Donoho arthsione 1994) which
provides min-max optimal solution. Today many wat®lthreshold techniques
are available but we focus on those studied bygi©2011) which is aligned with
this thesis goals.

Waveshrink method is based on the principle th&genbas smaller wavelet
coefficients than the underlying signal. Therefidne@e apply a threshold function
to penalize those coefficients, while preserving signal, we eliminate the noise.
Basically it has three steps: wavelet transformnbisy signal, apply a shrinkage
operator to the resulting coefficients, and appig tinverse of the wavelet

transform to restore the signal. Mathematicallyaih be expressed as:
g, :w—l( D(W( Ynoie) /1)) (7.10)
Where:
W — wavelet transform
D — shrinkage operator

A - Threshold

W1 — inverse wavelet transform

The main requirement of the Waveshrink method isgumally spaced signal

and an appropriate primary resolution level. Dejraman the application of the
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correct choice of the wavelet family and scalingdtion, the shrinkage operator
which can be hard, soft, or a function (linearnkiiGarrote, SCAD — Smoothly
Clipped Absolute Deviation, etc.), the thresholtneator, and the noise estimator
can be completely different. An extensive work bB9lsen 2011) indicated
Spline39 wavelet, SCAD shrinkage rule, RED (Redoss&stimated Decline)
threshold estimator, and RMAD (Robust Median Absolbeviation) noise
estimator as recommended choices for pressuradrdaranalysis.

The performance of the Waveshrink method is ilktsl using the same
signal and noise as before for the hard and sofihlskge operator (Figure 7.9)

which can be mathematically expressed as:

D (W( X,noise) ’A) = W( yt noise) .:HW(X.nOiSB)‘)/‘

(7.10)
D (W( yt,noise) ’A) = Slgr( V\( YHOiSE)) maX( 0‘ V\( Ynois) _A)
1 1
0.5 1 05
0 ] 0
-0.5f 1 05
Yo 2 a2 e s 100 o 20 40 60 80 100

Figure 7.9 — Soft and hard shrinkage operator, respectively.

To accomplish the comparison we choose Symletv&|(l8) as the wavelet
family and threshold of 3.16. The results were 2145 and 9.01x18 (L2 norm
of the relative error) for the hard and soft thddlhrespectively as can be seen in
Figure 7.10 and Figure 7.11.
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60 80 100

Figure 7.10 - Wavelet filter performance for the hard threshold (red is the clean

signal).

0 20 40 60 80 100

Figure 7.11 - Wavelet filter performance for the soft threshold (red is the clean

signal).

7.2.2
Robust PCA via Principal Component Pursuit

In order to understand this robust PCA (Principainfponent Analysis)
algorithm, we firstly describe the PCA problem adoa rank minimization
problem: given a matrifo, where columns are the observation vectors cazcupt
by Gaussian noise, find the optimal low-rank appr@tion in I2-sense.

Mathematically if we know we can formulate the problem as:
. 2
rplen||D—L||F st. rank( )< r (7.10)
If we do not, as:

. a
min rank(A)+E|| D- L||i (7.11)
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Where
D=L+N;
L — low rank signal;

N — Gaussian noise.

The optimal solution for the former is given by =UH (Z)VT where
H (Z) ZZ]jZPaiS the hard-threshold operator. In other words, SMD (Singular

Value Decomposition) of choosing the singular values higher than a pasitiv

As the latter problem is NP (Non-Polynomial Timaydh normally the rank df is

replaced by the sum of the singular values dfe., its nuclear nornjL|, which

leads to the following convex optimization problé@Recht, Fazel et al. 2010):
. a 2
min o +Sjo-L; 742
This new problem optimal solution is given by::USM,(Z) V' where

2-1la,2>1la
S (Z)=1Z+1l/a,5<-1la is the soft-threshold operator.
0
The well-known problem with the above methods issge/ity to outliers
(Figure 7.12). There are a lot of works on robystg these kinds of methods,
most of which consisting in first detecting and omafimg, and afterwards filling

them through some heuristics.

TN

Figure 7.12 - Outliers problem.

A recent work by (Candes, Li et al. 2011) showeat ihwe assume low-
rank signal and sparse outliers, an exact recogtthe signal is expected with
high probability from arbitrary and completely umkmn outliers corruption
patterns if a convex optimization problem called PP(Principal Component

Pursuit) is solved. It is worth mentioning thatstigroblem is different from the


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Intelligent Well Transient Temperature Signal Reconstruction 119

matrix completion problem introduced by (Candés delcht 2009) which
simultaneously detects the corrupted entries, @sdappropriately the low-rank
component to the remaining reliable entries. Matiwgrally, an observation
matrix DOO ™" may be decomposed as low-rank signal maltriand sparse

outliersO solving the following optimization problem:

rP|Nn|| L], + 2|0, stD= L+ O (7.13)
Where
A= !

\/max(m,n);

L — low rank signal;

O — sparse outliers.

The exact recovery is achieved if the following bds are provided fok
and O (Candes, Li et al. 2011):
£, min(m, n)

rank(L) <
- ,u(log(max(m,n)))

5|, < o, mr (7.14)

Where
u - coherence of =1);

P,, P, — positive constants.

Notice that A =

1
\Jmax(m,n)

under the assumptiongorks with high probability for recovering any lonank,
incoherent matrix (Candes, Li et al. 2011).
Before we go further we present the relaxed versibthe problem 7.13

(Zhou, Li et al. 2010) which includes noise and alo deal with missing data:

rm)n” L], + 20|, st| D~ (L+ Q). <o (7.15)

IS not a tuning parameter which means that
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The relaxed version of the problem can be seen @snaising technique.
Given a data matrix, it separates the signal aednthise in two other matrices:

one low rank (signal) and one sparse (outiliers@pas presented in Figure 7.13.

10 10
15 - 15
20 20

25 25
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Data Matrix Low Rank Outliers/Noise

Figure 7.13 - PCP as a denoising technique.

A closed form solution for this problem is not knowand numerous
approaches are available to find the minimizer. extensive comparison of the
solvers: lterative Threshold, Accelerated Proxim@radient, Augmented
Lagrange Multiplier, and Inexact Augmented LagraMsétiplier can be found in
(Lin, Chen et al. 2010), leading to Inexact Augneeintagrange Multiplier as the
faster solver for the same accuracy to the RPCAlpmo. The latter was selected
and used throughout this thesis. It worth mentignan alternative approach
presented by (Becker, Candeés et al. 2011) for phidolem using TFOCS, a
general purpose first-order conic solver, whichdoies a comparable solution
regarding relative error and can be used to prptther algorithms.

The augmented Lagrange multiplier method when adpio the problem
7.14 gives the following optimization problem:

. a
r[1|on||L|| +A|O], +(Y, D= (L+ O)>+E" D-(L+ O)||i (7.16)

Where the third term enforces the relaxed congtraia the matrix of
Lagrange multipliersY and fourth term makes the objective function #iric
convex, improving the convergence.

The inexact augmented Lagrange multiplier algoritfitm, Chen et al.

2010) which solves 7.16 is presented below:
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Input: D, A

D
Yo =—7=:09=0,a,>0,0>1k=0
0 J(D)Oo 0> 0,0

While (not converged)

(U,S,V)=svd D- Q+a,' Y)
L, =US.(9V

Ok+1 = S/mlzl ( D_ I'k+1 +a;l Yk)
Y =Y+ @, ( D~ Ly + Q)

Qv = Pa,
k=k+1
end
Output: L, O

It worth mentioning that in the implementation dfist algorithm the
parameter. andp might need to be tuned.

A synthetic example using a data matrix D(100x1f@@ned by a normally
distributed low-rank signal L and a uniformly dibtrted sparse outliers illustrates

the presented algorithm working.

50 .

100 100 100

0 50 100 0 50 100 0 50 100

Figure 7.14 - Synthetic example of the inexact augmented Lagrange multiplier
RPCA algorithm.

The bounds provided for this example are rank(Bb)and card(0)=20%. As
can be seen in Figure 7.15 at less than 30 itexsiiiohas been converged to the

specified tolerance.


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Intelligent Well Transient Temperature Signal Reconstruction

8600

8500

8400

83001

8200

card(0)

8100

8000

7900

7800

L L L L
0 5 10 15 20

L L L L
10 15 20 25 30

Iteration Iteration

Figure 7.15 - Rank(L) and Card(O) as a function of iteration.

122

The relative error as a function of iteration iowh in Figure 7.16. It

confirms the convergence of the algorithm in 2&aitiens. Notice that the

computational cost for this algorithm is higher rthhe classical PCA but the

difference is not expressive. This example in #m@e computer using MatLdb

took 0.6 s against 0.08 s to run.
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Figure 7.16 - Relative error as function of the iteration.
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In the context of the centralized pre-processimgmigwork the inexact
augmented Lagrange multiplier algorithm RPCA isduser the missing data,
denoising, and outlier removal procedure. As wesateing the relaxed problem
7.16 a noise level estimator is necessary to ciyredefine the algorithm
tolerance. The robust median noise estimator asetkin (Olsen 2011) is used to

solve this problem.

Data RPCA
Variable 1 ’
—_—
Data RPCA
[ ]
[ ]
[ ] [ ]

Data

RPCA
Acquisition Variable N

Noise Estimation

Figure 7.17 - Denoising procedure in the pre-processing framework

7.3
Feature Extraction

A general multi-sensor feature extraction framewbdsed on Diffusion
Maps (Coifman and Lafon 2006) is presented in #®@stion. Two important
aspects of this method which were extensively saign (Lafon 2004) are used:
density-invariant embedding and extension of amgembedding. In the approach
we assume that all sensors are measuring difféeatires of the same physical
phenomenon. Since different features might havkeriit characteristic scales,
they are chosen empirically during the traininggstétraining signal embedding).
New signal embedding extension is calculated aasisdied accordingly using K-
NN (k-nearest neighbor classifier). This completeg general idea of the

framework which is explained in the next two subt&ms.
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7.3.1
Diffusion Maps

DM (Coifman and Lafon 2006) is a non-linear dimensility reduction and
clustering technique suitable for non-uniformlytdsuted datasets. The technique
unifies the analysis of spectral clustering andcspé embedding algorithms
through a probabilistic framework. The general ige@ntroduced by a notion of
diffusion distance which is the distance of a randealk between two nodes on a
graph. Notice that this definition can reveal diffiet local structures at different
times. The graph nodes are then non-linearly endxbdah the eigenvector
coordinates of a normalized graph Laplacian comgthe diffusion distance into
Euclidean distance in the embedded space. Theréfogeves a probabilistic
meaning for this distance which depends on thesdatéensity and geometry. DM
when compared with other techniques is robust tsenand computationally

inexpensive for small and medium datasets.

7.3.1.1
Diffusion Maps Algorithm

Given a data setX ={x}" , %00 “we construct a weighted symmetric

graph using as nodes. A distance between elementndx; of the dataset is
defined and used to weight the graph edges. A ushaice for the weight

function is the Gaussian kernel:

LCEY)
Wg(x, >§): e ¢

Where
D — distance defined for the dataset, e.g., Eudiidistance;

¢ — characteristic scale (kernel bandwidth).

Afterwards a random walk (diffusion process) isuoed by computing a
row-normalized Markov matrix (transition probabjlinatrix) taking into account
the influence of the density which gives the newnké

W, (%, %)
W , =
E,a(x )ﬁ) qg(xi)aq()s)a

Where

qg(x)=;V\4(>.<, X)
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a=0 means maximal density influence (graph Laplaoerator)
a=1 means minimal density influence (Laplace-Beliraperator)
A symmetric normalization is applied to the new redrpreparing for
spectral decomposition which enables the geomstiniture of the dataset to be

studied in a compact feature space.

W (x, x) = ea(X: %)
sym\ %1 7% V(Xi)O.SV()ﬁ)O.S

Where
Voo (%)= 2 W, (% X)
j
A complete sequence of eigenvectors and eigenvalués,, are available,
satisfying:

Wsyr#’l(t) ( X) = /]lt(t)wl t) ( X)
1=A, >|A)= ...z‘AI

(t)

Wherel (new space dimensionality) is chosen based oreifegd tolerance

The diffusion distance approximation can be intetga as the Euclidean
distance (Coifman and Lafon 2006):
I(t)

D? (%) kZ:;/‘kzt (‘/’k (%) -4 ( %))2 =H\Pt (%)= ( ’1‘)”2
Where
W, =[A¢,(x).... A% (x)] for somet>0 is the DM of the datase
into the Euclidean spade'.

7.3.1.2
Toy Example

A Trefoil Knot with Gaussian noise is used as aesentative example of
the potential of the DM as a clustering algorithithe data set X is three-

dimensional with 400 data points (Figure 7.18):
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x=sin(X)+r
X =3 y=sin(t)+2sin(a2 }r
z=cos(t)- 2cos(2 ¥ r
Where
O<t<2r
r 1 N(0,0.05)
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Figure 7.18 - Trefoil knot with Gaussian noise.

The Gaussian Kernel is assembled using Euclidestardies to every point
in the data set. Color is only used to indicatdéedént data which means that an
additional dimension for color is not used. Thaultssg DMs for Trefoil using the
first two eigenvaluesi{ and ;) and kernel bandwidth of 0.35 can be seen in
Figure 7.19. It shows that in the diffusion spake Trefoil was completely
untied, meaning all similar data is representeettogr. In addition, the algorithm
on anhp notebook equipped with an i5 processor and usiag - &™ took 0.266

S to run.
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Figure 7.19 - Trefoil knot with Gaussian noise.

7.3.2
Feature Extraction Framework

The aim of our feature extraction framework is apture the underlying
and mutual influences of the production processethé context of integrated
production framework. The multi-sensor is basedtloa spectral and density
invariant embedding of the DMs framework using Mahabis distance. It is
appropriate to multivariate analysis for the tragistage and allows the DMs to
be computed simultaneously for the different sign&lach scale parametgifor
each required feature of the signal is chosen based on the Singer Measur
(Coifman and Lafon 2006):

D*(x-x)

SM(g)=. e °

This measure can be interpreted asahape curve where the extremities
represent a non-connected graph and a Markov chaisteady state. As
recommended by (Coifman and Lafon 2006) the optinedle of the scale
parameter is chosen as the midpoint of the linadraf thes shape curve.

Nystrom extension as proposed by (Lafon 2004) sdu® compute the
embedding coordinates for the new signal. The tasuthen classified by k-
Nearest Neighbors (K-NN). The framework is preseéimeFigure 7.19.
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Figure 7.20 - Trefoil knot with Gaussian noise.

A multi-sensor framework which was introduced aedtéd by (Keller,
Coifman et al. 2010) on an audio-visual speechgeition application might be
also explored for real-time production signalaudes similar ideas of the work by
(Lafon 2004) and seems to be more general thaframework. In this work each
signal is embedded separately and then appendéé skame coordinates system.
Different distances might be used with the weigintctions for each different
signal by using SHD (Symetric Hausdorff Distandeth@ embedded space which
deals with the matching and alignment requirem#r@smay occur. Once again a
simple classifier as k-NN is used. The evaluatibthis technique is considered a
future work in this thesis.

7.4
Pre-processing Framework

The integrated production and optimization framdwaealls for multi-
sensor data analysis and fusion to recover unaerlyirocesses and mutual
influences through a more informative and less iappbn dependent data
analysis approach. In this context a centralizedpsocessing (Figure 7.17) less
sensitive to noise, outliers, missing data, ande abb deal with time
synchronization, compression/decimation/data redacand feature extraction is
a goal to pursue as presented in Chapter 6. Weopeofp use the algorithm
presented in section 7.2 to deal simultaneousiy wibise, missing data, and

outliers, and the algorithm presented in secti@itd@.deal with feature extraction.
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Time synchronization and compression/decimationeweot included in the
centralized pre-processing framework proposedimthesis. They are considered

a future work.

)
Data RPCA
~—
)
Data | RPCA R
Acquisition Variable 2 "
—

Data ‘ RPCA R
Acquisition Variable N

[ To Post-Processing
Noise Estimation Sy / Interpretation

Compression /

—
Decimation

Diffusion Maps

Figure 7.21 - Centralized pre-processing framework.

Time synchronization has to deal with time lagsaasonsequence of the
different low level time references and networkedet synchronization issues.
Efforts to solve the time synchronization problesing open standards can be
found in JIPs as SIIS and IWIS but they still fewnh a solution. At the network
level a recent standard IEEE-1588 (Standard PoeciBime Protocol) which is a
replacement for the NTP (Network Time Protocoljars important advance for
distributed systems in automation technology. [hbsted clocks can be
synchronized, e.g., with an accuracy of less thamidrosecond via Ethernet
networks with low demands on the local clocks dmel ietwork and computing
capacity. From the data analysis point of view tggachronization impact on the
multivariate advanced correlation and analysis. €Tiseries analysis has been
successfully used by (Aggrey 2007) to solve dafgnaient problem in multiple
IW data. We see this problem as part of the cean&@lpre-processing framework
using clustering algorithms to deal with the datgranent problem. It is worth
mentioning that it is not a replacement for the l@wel time synchronization.
Sparse subspace clustering (Elhamifar and VidaBp@étight be an option for a
clustering algorithm to deal with this problem.

Compression/decimation/data reduction is alwayssane for monitoring

systems in subsea production environment due titeldhbandwidth, storage, and
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computing capacity. In addition, the data overldad to the increasing number of
sensors make this problem even worse as mentian€hapter 6. On the other
hand, data analysis might be impacted by theseiddgts especially by the lossy
ones. The most frequent approach used is takisgniesmber of measurements by
removing the ones with no significant informaticontent. It is accomplished by
discarding measurements with assumed small vangtimm the time intervals.
This task is completed through a specified thre$laold it is signal dependent.
Notice that data analysis algorithms which needabgspaced measurements as,
e.g., PCA and Waveshrink are impacted by this agadroWe see this problem as
a change in the data acquisition by using compressnsing (Candés, Romberg
et al. 2006) where the signal is acquired compressel can be reconstructed
lossly, solving the problem. It is worth mentionitigat in this case the denoising
and outlier removal proposed in this text shouldiifierent.

The following chapter describes the work by (Ol&811) regarding pre-
processing techniques which is used as a refensnde for validation purposes.
Pressure and temperature data generated by thésatbermal dynamic IW-
reservoir model developed are corrupted by noigk @irtliers and used as the
input for both approaches. Only pressure is readiypared for denoising/outlier
removal and transient identification. Transient pemature data is not available in
the literature or in Olsen’s work. Case studies plete the chapter showing the

results.
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8
Pre-processing Framework Validation and Case Studie s

The Chapter 8 is divided in: signal generationjdalon and case studies.
Signal generation presents the synthetic pressume temperature signals
generated from the noise/outlier model used andti®edeveloped in Chapter 4.
Validation is accomplished through the comparisath the results from the work
by (Olsen 2011) which has an extensive study araatic filtering and transient
identification on real-time transient pressure algn Our feature extraction
approach was applied for transient identificatiant bs described earlier it is
general and can be used for different applicatiénsally, case studies evaluate
denoising/outlier removal and transient identificat on transient temperature
signals, and transient identification on both. # worth mentioning that
temperature transient analysis is limited and awred in early stage of
development (Muradov and Davies 2011). In addittbere are almost none real

data available in the literature for IW applicason

8.1
Noise, Outlier, and Signals

Transient signals in real wells might be generated to shut-ins or zonal
shut-ins in case of IWs. They can be used in canteal-time production
monitoring as an opportunity well-test. Automatitefing and transient detection
for this application provide the appropriate preqassing to be used for well-test
analysis enabling more frequent tests and consdguerore information to
optimize reservoir management.

Real pressure and temperature signals in a dua &gector IW and its
producer pair can be seen in the Figures 8.1 @de8pectively. Notice that only
the lower zone was closed creating a transientn krth the graph scale used it is
possible to see the noise and the outliers. Itsgsksea well with a water depth of
1168 m and downhole sensors installed at 2644.4d2856.5 m (TVD).
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Figure 8.1 - Injector-producer pair pressure signal (dark blue and light blue are lower and
upper zones respectively; black producer well).
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Figure 8.2 - Injector-producer pair temperature signal (red and green are lower

and upper zones respectively; pink producer well).

The pressure and temperature signals used in tiiatan and case studies
in this thesis were generated synthetically from@napter 4 model. It is assumed
that those signals are representative of the orasuaned in an IW. We choose to
generate synthetic signal for two main reasonsiable of transient pressure and
temperature signals available in the literature [¥/s and the complete control
over the true noise level used in these signalsb& dair with the comparisons
made against Olsen’s work we do not generate faaeges with less than 10

measurements, the time interval is kept under 3s#@nds, noise distribution is
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normal with mean zero and variance within 1 tody the outliers distribution is
uniform with level within 5 to 100 times the noiswel.

Three different synthetic sets of pressure and &zatpre signals were
generated as representative signals from real TWigy are corrupted by noise
and outliers and the same amount of both are aodedch set of pressure and
temperature signals as they come from the sameorseAl three sets were
generated by 10 rate changes at random within 2@&Q0 bpd. Each signal has
sample rate of 6 minutes and 27000 measurementiel®uvere chosen from
uniform distribution with level varying from 10 00 times of the noise level and
number within 0.3% to 5% of the total number of sweaments and noise is
assumed to be additive white Gaussian noise witiawvee within 1 to 6. Partial

pressure and temperature of signals 1, 2 and Be&aeen in Figure 8.3.
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Figure 8.3 — Pressure and temperature signals 1,2 and 3.

The quality of the filtering is measured by the RBM@Root Mean Squared
Error) divided by the noise level estimate (stadddeviation). This metric was
introduced by (Olsen 2011) to compare differenndesed signals with different
noise levels. Outlier removal and transient idésdtion performance are
measured by the percentage of success in the rérapndain the identification
after the outlier removal/denoising proceduress ktonsidered an error when the

identification occurs after three measurements fndmare it actually happens.

RMSET :%\/ﬁlZ( y_ y,clean)2 (8-1)

t
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Where

6 — hoise standard deviation.

8.2
Denoising/Outlier Removal and Transient Identificat  ion

The wavelet analysis to denoise pressure signalsdatect transients was
first introduced by (Kikani and He 1998). Sincertha lot of work have been
done such as, e.g., the work by (Athichanagorn,nkloet al. 1999) which
introduced the seven step procedure for procesiatg from downhole sensors,
the work by (Ribeiro, Pires et al. 2008) which skdwhat there is no universal
wavelet transform to be applied in any dataset ttuestrong dependence on
decomposition level and wavelet type, and the wayKOlsen 2011) who did an
extensive study on automatic outlier removal, deingi data reduction, and
transient identification on pressure and rate ditpravell test analysis. The latter
addressed the problem presented by (Ribeiro, Bires. 2008) and was used as

reference work to ours for validation purposes.

8.2.1
Denoising/Outlier Removal

The work by (Olsen 2011) developed a method to afleddd remove
multiple outliers without requirements regardinge tBignal considered. The
outliers are detected and removed by a median filith noise estimation from
the Waveshrink method. The latter is used aftersvémd conventional denoising
purposes. In the opinion of the author, this metlaodiresses the two main
drawbacks found in wavelet analysis in the petnolendustry literature: single

outlier removal and dependence upon the signal ideresl. The idea is

schematically illustrated in Figure 8.5.

Median
Filter ‘

Figure 8.4 - Outlier removal and denoising in Olsen’s Work.

The median filter considered is a moving windowefilwith a window size

of n measurements which is usually small comparedgonasimeasurements. If
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the value in the middle of the window is higherrththe median plus a given
threshold, it will be considered an outlier andrétfiere removed. The threshold is
calculated using the noise estimator proposed on@bo and Johnstone 1994) as
being the MAD (Median Absolute Deviation) dividedy 1.6745 which is
evaluated at the first decomposition level in thevelet transform but using only
the absolute values of the non-zero detail coeffits. In Olsen’s work it is called
a RMAD divided by 0.6745 to make it different frorthe original.
Mathematically, the median filter can be defined as
_ |y, |mediaf w- y<3o0
Yt median = { B |mediar( W- M >3
Where:
o = RMAD/0.6745;
w - window size.

Notice that the maximum window size recommendeti9aneasurements

from which 9 outliers can be removéavz;lJ and it is empirically defined in the

scope of the well-test analysis (Olsen 2011).

The Waveshrink method was selected as the denofgiag for pressure
and rate signals since wavelet analysis was intediuto well-test analysis by
(Kikani and He 1998). However, only with the work @ico, Aguiar et al. 2009)
and (Olsen 2011) an extensive study was done riegandavelet selection,
shrinkage rule, threshold estimator, noise estimatod primary resolution level
to choose. The best selection for the Waveshrinthatein Olsen’s work were
based on average results of the smallest errohenrdéot-mean-squared sense
between the clean signal and the noisy signal farerthan 500 synthetic pressure
or rate signals. The characteristics of those $sgware chosen as representative
ones from real-time pressure and rate signals gadtfeom North Sea wells.

The Waveshrink method (Donoho and Johnstone 1994)ased on the
principle of shrinking the wavelet coefficients tamds zero in order to remove
noise. The main idea is to transform sigpnato the wavelet domain, shrink its
empirical wavelet coefficients towards zero, arah&form the shrunk coefficients

back to the signal domain. Mathematically, it carskated as:


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Intelligent Well Transient Temperature Signal Reconstruction 136

9, =W D(W( Vo) 1))
Where:

W — wavelet transform;

D — shrinkage operator;
A —threshold function;
W1 —inverse wavelet transform.

The shrinking operator might be hard, soft or acfiom and operates on the
wavelet coefficients through a threshold estimatahich is function of the noise
and the resolution level considered. In Olsen’skatbe best options for pressure
and rate signals in the scope of the well testyasmahre:

Bi-orthogonal spline39 wavelet for pressure (FigBu&and Table 8.1):

Wavelet function for decomposition
T T T T T

Wavelet function for reconstruction
T T T T

Figure 8.5 - Bi-orthogonal Spline39 wavelet functions.

0 1 2 3 4 5 6 7 8
O EREREN N N = =
128 | 64 8 64 64 64 8 64 128
o 1 1 1
"N 4 |2 |3

Table 8.1 - Bi-orthogonal Spline39 scaling filters.
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Non-orthogonal spline4246 wavelet for rate (Tab®:8

0 1 2 3 4 5
h(N) 1 73 |3 |1
80 |8 |8 80
. 1|1
h(N B
(N) > |3
1 |7 |11 |7 1
g(N) - |3 7= = 2 =
32 |32 |16 |16 |32 |32
1 |3 |3 1
N = |2 hd el
9(N) 80 |8 |8 80

Table 8.2 - Non-orthogonal Spline4246 scaling and wavelet filters.

Shrinkage operator: SCAD (Fan and Li 2001):

sgn(dj) ma>(‘dj‘—/1 () ‘dj‘SZ/]
D, = (3.7-19d,-3.%ign( d )4 24<|d[<3.71
1.7
d, d;|>3.72
Where

Threshold functiono(-0.51j + 3.2§ j = 1,..., (j is the resolution level);

RMAD
0.6745

Minimum resolution level recommendegd{N)=logs(N)-1 (N is the number

Noise estimationo =

of measurements).

Unequally spaced signal measurements are norneglyired to be denoised
in real pressure and rate measurements. Wavelbtsanassumes equally spaced
signal measurement to achieve its full error pentomce. It is recommended in
Olsen’s work to assume equally spaced signal measnts even when they are
not in the scope of the well test analysis. Themmnaason indicated is to avoid the
interpolation of the signal measurements which setadmagnify noise structures

present in the signal measurements.
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8.2.2
Transient Detection

In the literature there are a variety of transidetection methods. The
majority of them are based on pattern recognitiegression, threshold or wavelet
methods. The transient detection presented ins#ttion describes the approach
used by (Olsen 2011) for automatic pressure trahsletection in the scope of
well-test analysis. It is based on a mask-matclpatiern recognition approach
performed right after outlier removal and denoigingcedures (Figure 8.7).

Outlier
memmg Removal &
Denoising

Figure 8.6 - Transient detection approach based on mask-matching pattern recognition.

Transient
Detection

Predefined
Patterns

A transient is detected if the signal window, whistsupposed to represent
a transient taken from the real-time measuremétgsntirely inside a predefined
mask. Four masks representing a build-up with ppogssure increase and
decrease and a drawdown with prior pressure ineraad decrease patterns are
available. They were generated by considering thethstic and real pressure
signal used in the work. The windows are 20 measents wide (10
measurements before and 10 measurements afteegiening of the transient)
and 20 pressure values height which means a Meréisalution ofPyaPmin/20.
In order to ensure the identification performarite, pressure difference should
be at least three times the estimated noise I8s¢lwith standard deviation of at

least 0.1 of the entire signal standard deviation.

8.3
Validation Using Only Pressure Signal

The validation of the RPCA denoising/outlier remlov@chnique is
performed comparing the result with the mediarefiltvaveshrink technique for
the three pressure signals presented in sectiorN8tice that set 1 is an average
signal, set 2 is worse regarding outliers (leved ammber), and set 3 is worse

regarding noise (level). The parameters used ®iater were: Spline39 wavelet,
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decomposition level 5, SCAD as shrinkage operatdrtareshold 04 (j=1,..,5).
Transient identification uses the same approachpeoimy the performance of
DM technique with the mask matching technique ffierthree pressure signals. As
discussed earlier it is considered an error for D technique when the
identification occurs after three measurements fvamere it actually happens or
when the identification do not fit entirely insititee predefined mask for the mask-

matching technique. All results are summarizedaddld 8.3.
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Figure 8.8 - Denoising/outlier removal and transient identification results using pressure

signal.

Median Mask
+
Waveshrink Matching
0.229 0.389 80% 75%
0.157 0.418 90% 70%
0.481 0.621 75% 70%

Table 8.3 - Denoising/outlier removal and transient identification performance results
using pressure signal.

Notice that our approach only uses the noise estilauad the assumption of
sparse outliers and low rank signal to denoise arttier removal. Even for 1D

signal it is possible adequately use the technimyuesing time slices of the signal


DBD
PUC-Rio - Certificação Digital Nº 0821306/CA


PUC-RIo - Certificacdo Digital N° 0821306/CA

Intelligent Well Transient Temperature Signal Reconstruction 140

as columns of the data matrix (low rank matrix bgnstruction). For

multidimensional signals the same approach is @sedach dimension forming
at least a block-sparse matrix. Missing data is aroissue and all of them are
treated simultaneously. Transient identificatiors lsadrawback due to training

process common to a pattern recognition algorithm.

8.4
Case Studies

We divided the case studies in two types. The fms¢ shows that the
temperature signal can be used in the same wdegzéssure signal in transient
detection. The other concludes that denoisingfutliemoval and feature
extraction methods are appropriate for multidimenal signals of multiple
sensors as can be found in IW applications. Nadé ttie great advantages of the
proposed methods are the possibility of treatingumiform data and the no need
of a previous knowledge of the signal but the ndesesl. The computational
performance of these methods is reasonable andceenparable to the reference
ones. However, a more detailed study is needednlynbor medium and high

dimensions data.

8.4.1
Denoising and Outlier Removal of Transient Temperat  ure Signals

The goal of this case study is showing that isdla&nperature signal can
be used in the correct transient detection. Thepéeature signals used are the
same as the ones described in section 8.1. Thefirsirdiltered and afterwards
used in the transient detection. The filter usely tme noise level estimator, the
feature extraction method, which was trained wamperature transient signals,
and the K-NN classifier that required order 6. Tdected results are shown in
Table 8.4.
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Figure 8.9 - Denoising/outlier removal and transient identification results using

temperature signal.

0.439 80%

Table 8.4 - Denoising/outlier removal and transient identification results using
temperature signal.

8.4.2
Transient Detection through Pressure and Temperatur e Signals

Transient detection was tested with the three sfitthemperature signals
described in section 8.1. They were filtered athanprevious study case and the
results can be seen in Table 8.5. If we comparerésalts with the isolated
pressure and temperature results we can see anvement in the percentage of
correct detection due to the additional dimensiomther words, the use of the
pressure signal in the detection process. Note wwatcan include the spatial
dimensional when distributed and quasi-distribigdedsors are used. In this case,
nonuniform spatial distribution of sensors and mofoarm sample rate are not a
problem for the proposed algorithms. The end redolt this case can be seen in
Table 8.5.
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0.229/0.439 90%

m 0.157/0.259 95%
Signal 3 0.481/0.738 80%

Table 8.5 - Denoising/outlier removal and transient identification performance results
using pressure and temperature signals.
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9
Conclusions and Future Works

Integrated production optimization calls for retirsy the way we deal with
the multiple pieces of the petroleum production zbeiz The system view
perspective should lead to better production sydtelmavior prediction and fast
response to unexpected events. IW and monitorisgesys in this perspective
might improve both if an adequately use of the mebdbgy available is performed.
In this thesis we focused on modeling and datayaisapre-processing for well
test applications as one example IW monitoring esyist in the context of
integrated modeling and optimization framework. ¥delress the problem of IW
monitoring system design, a fully coupled non-igothal dynamic IW-reservoir
model, and partially the data analysis pre-proogssiramework through
denoising/outlier removal and feature extractionhteques. In the following
sections we summarize our achievements and the wioidt still to be done.

9.1
IW Monitoring Systems Design

A method to design IW monitoring systems for thiegnated modeling and
optimization framework has been developed. It wagdiad to an IW application
using reactive control strategy and artificial ki a representative example. The
main objective was to introduce interpretation magdecertainty as constrain to
adequately specify a fit for purpose IW monitorsygtem. A detailed quantitative

study for different applications is certainly a wao be done.

9.2
Fully Coupled Non-Isothermal Dynamic IW-Reservoir M odel

A fully coupled dynamic non-isothermal two-phase llsweservoir
numerical model for vertical IWs and multilayer eegoirs in the scope of well
test analysis has been developed. The model waessfally applied to multi-
zone temperature transient analysis of well totad @onal rate change. The
numerical studies showed that transient temperadues to zonal rate change
without closing is achievable in a multilayeredene®ir. Thermal conduction and
crossflow between layers were included in the mdugltheir impact was not

independently presented in case studies. Even thihwggheat transfer coefficients
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allow the use of gas-liquid mixtures in the drifix¥ model it was not completely
tested. Wellbore storage effect was neglected inmoadel since our study is
limited to the reservoir drainage area but realadatovided by (Valiullin,

Ramazanov et al. 2009) showed that it can hideetimy time effect of the
transient temperature. Inclusion of time depenéeutations for the IW will bring

better understanding of fast transients but itgs a future work.

9.3
Data Analysis Pre-Processing

A new data analysis approach to IW applicationshwaentralized pre-
processing has been developed. Denoising and éeaktiraction techniques were
applied to the transient pressure generated byntbael developed in this thesis
and compared with a reference study by (Olsen 20Irdnsient temperature was
introduced in this context showing similar resulegarding denoising/outlier
removal and transient identification. The techngjapplied showed satisfactory
results for multi-sensor applications. As geneeahhiques they can be used with
different applications to confirm their applicabyliin the centralized pre-
processing approach. Data reduction/compressiontiared synchronization pre-
processing procedures were presented but not egdlualn addition,
computational load should be evaluated for diffetene scale applications and

data sizes but they are all considered a futurdcwor
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Appendix A

Fanning Friction Factor

Fanning friction factor is a dimensionless numbbattrepresents a
dimensionless shear stress at the pipe wall (Figui¢ and it represents one-
fourth of the Darcy friction factor:

_> ‘_

_> ‘_

—_—) —

E— 7-wall +—

f Twall — —

F 1 2 _— <
- pu

2 — «—

K;ﬂ

Figure A.1 - Shear stress at the pipe

wall.

Various friction factors correlations are availalet Chen correlation is
used as recommended by Hasan and Kabir (Hasan ahol R002). Even the
friction factor effect is not a dominant effect feertical wells it is considered to
take into account for high flow rate wells.

Simplified multiphase flow models use the same Isinghase approach
averaging the phases over a volume. Dispersed antinaous phases are
combined and modeled as a new continuous mixtuesehHence, the results

from single phase can be applied:

Laminar flow:
fo :E R, < 2300
R

m
Transitional flow:

(Rm B RmL)

fo=f +pm )
] " (RmT_RmL)

(Fer =F o) 2300< R < 4000

Turbulent flow (Chen correlation):

1.1098
o & 50452 [ +5.85888? R > 4000
3.7065D R 2.8257 R

i:
-
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Where:

R = p,U,D
Hm

Hm = Z“iyi
J

Fanning Friction Factor - Chen &/D
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Figure A.2 - Chen (1979) - Fanning friction factor.

It should be noted that for the annulus the hydcadiameter is used to
calculate Reynolds number:

_ 4 cross sectional area
wetted perimeter

h

Correction factor due to influx in production wellgorous pipe) is also
applied (Ouyang and Aziz 1998):

Laminar flow:
— 16 0.6142
f_ _R—m(1+o, 04304R°*'%)

Turbulent flow:

fe =f(1-0.0153R**™)

Where:
Py D
K,

R

e

| — Index for radial inflow mixture.
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Appendix B

Drift-flux model

The drift-flux multiphase model was introduced byb2r and Findlay for
two-phase flow in 1965 (Zuber and Findley 1965)r Rogas-liquid flow in a
vertical pipe the superficial gas velocity (crosst®nal area averaged velocity) is
expressed as a sum of the distribution coeffic(€} and the gas drift velocity
(ugm. It captures not only the mechanisms of highercentration of gas near the
center of the pipeQ, um) but also the tendency of buoyaney). This explains
why gas inside a vertical pipe moves faster theundi:

U, = G, + Uy,

The average mixture velocity is defined as the safthe superficial
velocities:

u

S9

u, =—>
Xg

g

Xy = A
At A
Drift-flux model is used in this thesis through @ations (Ghajar and Tang
2010):

- gas void fraction

u
Co(u +u

sg s

Xg = |)+U

gm

01
Py

u u a
Co: S9 1+| =L
u.,+u u

sg sl sg

Patm
Uy, = 2.9(1.22+ 1.28i06) pys

o (gDrf( + coQ)(,O. —,09) /22)0'25
Where:
o - Superficial tension;

6 — Angle with vertical axis.
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A general two-phase heat transfer correlation (Kind Ghajar 2006) for
estimating the heat transfer coefficients regasllet flow pattern, gas-liquid
combination and pipe inclination angle is also udéds valid for liquid and
permanent gas without taking phase changing intolad.

The general heat transfer correlation is describyed

B X 01— Fp o Pl‘g 0.2 4 o ,10.25
weraosd [ () ]

Where:
Gas quality y):

X= mg

m,—m
M, = Py Usy A
m=au A

Flow pattern factorK, ) and inclination factorlf ):

Liquid phase heat transfer correlation (Sieder Baig 1936):

_0.027Re"® Pr°K

L D
Re=—A4D
#(1-%,)

In the heat transfer coefficient of the liquid pbdke correction due to the
viscosity term was considered negligible. The 1Ddeioused to describe the
behavior of the annulus and tubing cannot capttis éffect because it is
averaged withim (r=r,,) to T(r=0) and therefore it is meaningless.

The drift-flux multiphase model is used for applioa where there is
gas/liquid and it is used only in the well segm@mnulus and tubing).
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Appendix C

Heat Transfer Coefficients

A reservoir layer/well segment is shown in Figur& @ith its radial layers:
tubing, annulus, cement and formation. The heatsfeax mechanisms among
them can be described by conduction, convectionradition (neglected here).
The overall heat transfer coefficients used intdmaperature model is taken into
account the individual conductive and convectiveibes to transfer heat within
the wellbore. Heat transfer coefficients were usetthe development of this thesis
assuming that well transient is faster than resertransient therefore it is
possible to reach thermal equilibrium allowing héansfer coefficient to be
defined.

.

5
n
2 5 =
3 3 £
el b= ;<
> < o
= < L
R
glo
ci
Reo i
R, wb
R,

Figure C.1 - Heat transfer within wellbore.

h; - Heat transfer coefficient between tubing to annlus
The convection and conduction due to the fluidshim annulus and tubing
as well as the conduction through the tubing wadltaken into account:
1

Uta=
1+F\>‘In(R°j+ R
h K (R) R
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The convection coefficientdy and h, are based in correlations. The

appropriate coefficient for the annulus is chosasell on Reynolds number. The
tubing and annulus can be experiencing stagnamtinéa, and transitional or
turbulent flow. We use the fact that superposii®walid for laminar flow with
constant heat flux and simultaneously developindgpoy and temperature
profiles (Heaton, Reynolds et al. 1964).

Forced convectionrRe> 2300):

Turbulent or transitional flow (Sieder and Tate 8p3

For tubing:
0.027Re"® Pr*° K

2Rti

For annulus:

0.027Re"® Pr"° K,

2(R;-R,)
Natural convectionRe< 2300):
Inner wall (Sieder and Tate 1936)
For tubing:

h:

ha:

h :1.84%(Rq)1/30r h =3.66for 2R [ L

t
For annulus:
In this case we use superposition (Heaton, Reyratlds. 1964) and divide
the problem in two:

- A pipe experiencing inner convection with outesulated:

h,.. =1. 84M(R%)”3 orh, =366for2(R,-R,)0 L

Where

- L is the length of the well segment.

- A pipe experiencing outer convection with innesulated. In this case the
orientation is important:

Vertical outer wall (Churchill and Chu 1975):
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0.387Ra”* 2(R,-R,)

0402/ |
1+
PY,

Maouen =| 0.825+

It is used for inclinations of 45° and above.
Horizontal outer wall (Churchill and Chu 1975):

2

0.387Ra’® 2(Ri—R,)

0.559"°) Ka
1+
Pr,

It is used for inclinations of 45° and below.

Therefore,h, is:

ha = hainner + haouter

Stagnant fluid or pure natural convection (Dropéd Somerscales 1965):

haoutel’z = O 6+

In this case we assume that we have stagnant dloig in the annulus,

hence:
h = 0.04Ra"® P K,
&mp%j
Ro

It should be noted that strong buoyancy effecijzeeted in the flow which

Gr . : . . .
—— is close to unity, otherwise it may be ignoredpime natural convection, the

R€
strength of the buoyancy-induced flow is measurngthe Rawhere less than £0
is laminar flow and above 1is turbulent flow.

The heat transfer coefficients, and h, have to take into account the
simultaneous flow inside the tubing and inside d@in@ulus. Stephan correlation

(Stephan 1962) is used for this purpose:

0.86(&j | +[1— 0.1{F%J J
(R~ R) R R

R R
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In the above equations the dimensionless terms aegeribed as:
Prandtl Number:

K

Grashof Number:

Gra - (RCI B I%o)3 ?OazﬂaA -Iz-i

Pr

Ha
3 2
or = (R 98°ALT
Hy
Raleigh Number:
Ra= GrPr

Reynolds Number:

re < PU2(R,~ R)
a /ja

ptut 2 Ri
Hy

h, - Heat transfer coefficient between annulus to formation

Re =

It takes into account the conduction through th&ntawall and cement as
well as the convection and conduction through dmmétion.

-1
af_l 1

—+
ha anb

- Heat transfer between annulus and wellbore

U

It takes into account the conduction through trerngawall and cement.
_ 1

anb -
AR
K R. K R

casing Cl cement co,
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Appendix D

Cylindrical-Shape Reservoir Layer Equations

Two phase formulation for an adiabatic cylindrishbped reservoir layer

(Figure D.1) experiencing transient flow is derivedhis appendix.

Figure D.1 - Cylindrical-shaped reservoir.

The following group of assumptions was used fortass balance and flow
equations for the control volume shown in Figurg:D.
- Rock and fluids are slightly compressible;

- Porous media is considered homogeneous;

- Capillarity pressure can be neglecter = p, = p);

- Fluid saturations are constant during the sinmuteperiod;

- Total compressibility times pressure is much senahan onéq pll 1) ;

- Immiscible fluids;

(P,AU,.) ,
P L.,
(P AU,),
(ppAfupr)ouI p -«
s | |
t1
u,
(PAU,,),

Figure D.2 - Control volume of the reservoir mass balance and flow equations.
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Mass Balance:

(. S.)
WZS = +0{pu,)=0

dp 0(p,S)) _
PE+¢ a’i{p __ppDEup_upDDpp

Defining formation and fluids compressibility as:

0
Cf :la_(oandc“5 :_1ﬁ

@op P, op

Making the necessary arrangements yields:

p,S

op _
@[E——Dm—chuj Mp
J

Where:
G=C+2GS
i
u= Zuj
]
Darcy’s Equation:

K.
u, =-—-k [@Dp—ppgDz)
Hy

Defining relative mobility as:
K

Hy
Making the substitution in Darcy’s equation:
u, =-AK [@Dp—ppgmz)

Combining with mass balance equation yields:

p

0
ma—fﬂﬁﬁkaEﬁDp—pngZ)}Zq(Dp—pj 13 p
i j
Making the assumption that reservoir layer heighd eﬁDp)zare small

implies hence the ter@ci (Dp—,oj gl]z) [0 p can be dropped resulting in:
i

0
@, a—? =0 [Q/Lk [{Op- pg0 z))

Where:
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a{33)

It should be noted that the equation deritiad the same mathematical form

of the classic diffusivity equation from the wedkt analysis.

(w A z upz) out

r L.
(PUAu,,)... | SIS T — | (pUAu),
u,
Tu
(PUA.u,)

Figure D.3 - Volume control of the reservoir energy balance.

Energy balance
According to Bear (Bear 1988), the temperature Wienaof the fluids in
porous media is based on the basic mass and haafdr principles. Therefore, it
can be derived by the general energy balance equ@ird and Frost 1966):
opJ
ot
Enthalpy definition:

+DiEU®:—po—DEm—ﬂDu

H=U+P
0

Fourier law:

g, =-00k.0T)

Total conductivity (formation and fluids):

Ky =gk, +(1- ok,

Bulk internal energy (formation and fluids):

AU =gpU +(1L-g)p

According to Al-Hadhrami (Al-Hadhrami, Elliot et .aR003) the term
-7 :0u can be replaced mylp, resulting:

9
5#@%%1m+a—@mUJ=—DmpH®+Dm&Dﬂ
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Assumptions:

The control volume (Figure D.3) is in local thermeduilibrium (quasi-
steady-state assumption);

Rock density is constant:

dU, =dH, = C, dT,

The following approximation is valid:

dH = deT+%(1—,8T) dp

Defining:

oC, =¢C,+(1-@)p;C,

Making the assumptions and final arrangementsdgyiel

—0T 0 0

,OCpE—WTa—f—(DCf (p+p, G, T)a—f:pu GOT+(1- 8 Yul pOrfk,0T)

The multiphase formulation can be derived using Haene approach
resulting:

Y S G +(1-0)p; ij%‘(ﬂ Z$ﬂjj 1%_(”( e 7%):

;,ojsj C%jJuDDT+[1—(Z[J’j J T|ull mD[ﬁ(¢Zj: Sk, + (1- )k, ]DTJ

J

The meaning of the equation terms can be summaaized
LHS:
Term 1 - transient temperature variation;
Term 2 - transient formation and fluid expansiorcompression;
RHS:
Term 3 - heat convection;
Term 4 - viscous dissipation and fluid expansioc@npression;
Term 5 - heat conduction.

This equation is presented in chapter 4 as equétian
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