

Fabrício Cardoso da Silva

Detalhamento de Superfícies Utilizando Tesselação em Hardware

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre pelo Programa de Pósgraduação em Informática do Departamento de Informática do Centro Técnico e Científico da PUC-Rio.

Prof. Alberto Barbosa Raposo Orientador

Departamento de Informática – PUC-Rio

Prof. Marcelo Gattass

Departamento de Informática – PUC-Rio

Prof. Waldemar Celes Filho

Departamento de Informática - PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 29 de junho de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Fabrício Cardoso da Silva

Graduado em Engenharia da Computação na Universidade Federal do Pará em 2009, atualmente trabalha no TecGraf, instituto de pesquisa associado à PUC-Rio, tendo como área de concentração Computação Gráfica.

Ficha Catalográfica

Silva, Fabrício Cardoso da

Detalhamento de superfícies utilizando tesselação em hardware / Fabrício Cardoso da Silva ; orientador: Alberto Barbosa Raposo. – 2012.

62 f:il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Informática, 2012.

Inclui bibliografia

1. Informática – Teses. 2. Detalhamento de superfícies. 3. Programação em GPU. 4. Visualização em tempo real. I. Raposo, Alberto Barbosa. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

Aos meus jovens irmãos Abner e Esther.

Agradecimentos

Ao Tecgraf, por custear minha pesquisa na íntegra.

Ao professor Alberto Raposo, por ter me orientado desde o início desta caminhada em "terras estranhas," sempre muito paciente e motivador, estimulando-me continuamente a prosseguir apesar de minhas limitações, momentos de teimosia e sumiços.

À minha família, em especial minha mãe e meus irmãos Abner e Esther, pelo apoio incondicional, apesar de ocasionais dificuldades e desentendimentos.

À minha querida Daria, que, em sua distinta delicadeza, sempre proferiu palavras maravilhosas para me dar conforto e motivação para seguir em frente, apesar da distância que nos separa.

Aos meus grandes amigos Pedro Luchini e Renato Prado, pela incrível e incomparável amizade e hospitalidade desde os momentos iniciais desta jornada.

Aos meus amigos Markus, Samuel e, especialmente, Daniel, Pandu e Renano, os quais, mesmo tendo conhecido há apenas alguns meses, proporcionaram momentos preciosos que me permitiram manter grande tranquilidade durante a etapa final deste trabalho.

Aos excelentíssimos senhores Bruno Baère, Chrystiano Araújo, Eduardo Ceretta e Marcelo Arruda, com quem pude compartilhar muitos conhecimentos durante este programa de mestrado.

Aos antigos e atuais integrantes da equipe do Environ com quem tive o privilégio de trabalhar e aprender, pelos ótimos momentos proporcionados dentro e fora do ambiente de trabalho.

Resumo

Silva, Fabrício Cardoso; Raposo, Alberto Barbosa. **Detalhamento de Superfícies Utilizando Tesselação em Hardware.** Rio de Janeiro, 2012. 62p. Dissertação de Mestrado – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Técnicas de mapeamento de rugosidade são amplamente utilizadas para simular detalhes estruturais de superfícies tridimensionais com o intuito de aumentar a qualidade visual e compensar o baixo detalhamento geométrico usualmente aplicado aos modelos enviados à GPU por questões de desempenho. Avanços recentes no *pipeline* de renderização permitiram a geração massiva de vértices no hardware gráfico através do recurso de tesselação, oferecendo aos desenvolvedores uma poderosa ferramenta para controle do nível de detalhes de objetos. Este trabalho apresenta uma técnica para o detalhamento geométrico de modelos utilizando tesselação em hardware, baseada tanto em mapas précomputados quanto em dados de deslocamento gerados inteiramente na GPU por meio de técnicas de texturas procedimentais. Análises de desempenho e qualidade visual demonstram as vantagens do método proposto em relação a uma técnica de detalhamento baseada em imagens que é utilizada frequentemente em jogos eletrônicos para enriquecimento da qualidade visual de seus ambientes.

Palavras-chave

Detalhamento de superfícies; programação em GPU; visualização em tempo real

Abstract

Silva, Fabrício Cardoso; Raposo, Alberto Barbosa (advisor). **Surface Detailing Using Hardware Tessellation.** Rio de Janeiro, 2012. 62p. MSc. Dissertation— Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Bump mapping techniques are widely used to simulate structural details of tridimensional surfaces in order to improve visual quality and compensate for the low geometric detailing generally applied to models sent to the GPU due to performance issues. Recent advances in the rendering pipeline enabled the massive generation of vertex data in the graphics hardware by means of the tessellation feature, providing developers with a powerful tool to control the meshes' level of details. The present work proposes a technique for geometric detailing of models using hardware tessellation, both based on pre-computed depth maps and on displacement data generated entirely on the GPU through procedural textures techniques. Performance and visual quality analysis demonstrates the advantages of the proposed method in relation to an image-based technique commonly used in videogames for enhancing the visual quality of the environments.

Keywords

Surface detailing; GPU programming; real time visualization

Sumário

1 Introdução	12
2 Trabalhos relacionados	16
3 Fundamentos	19
3.1 Pipeline de renderização em OpenGL	19
3.1.1. Vertex Shader	20
3.1.2. Tessellation Control Shader	21
3.1.3. Primitive Generator	22
3.1.4. Tessellation Evaluation Shader	23
3.1.5. Geometry Shader	24
3.1.6. Fragment Shader	24
3.2 Introdução a texturas procedimentais	25
4 Detalhamento de superfícies baseado em imagens	28
4.1 Parallax mapping	28
4.1.1. Algoritmo original	28
4.1.2. Limitação de deslocamento	30
4.2 Parallax occlusion mapping	31
4.2.1. Visão geral	31
4.2.2. Amostragem do mapa de profundidade	32
4.3 Conclusões	33
5 Detalhamento de superfícies com tesselação em GPU	35
5.1 Definição das superfícies paramétricas	35
5.2 Detalhamento utilizando mapas pré-computados	36
5.2.1. Visão geral	36
5.2.2. Implementação	37
5.3 Detalhamento procedimental	42
5.3.1. Visão geral	42

5.3.2. Implementação	44
6 Resultados	48
6.1 Qualidade de renderização	48
6.1.1. Mapas pré-computados	48
6.1.2. Abordagem procedimental	49
6.2 Desempenho	51
6.2.1. Mapas pré-computados	51
6.2.2. Abordagem procedimental	54
7 Conclusão e trabalhos futuros	56
7.1 Trabalhos futuros	57
8 Bibliografia	59

Lista de Figuras

Figura 1: Tesselação de terrenos no jogo Tom Clancy's H.A.W.X. 2	14
Figura 2: Pipeline de renderização da OpenGL	20
Figura 3: Morphing no vertex shader	21
Figura 4: Efeito da variação dos níveis de tesselação interno e externo	22
Figura 5: Diferentes modos de espaçamento na subdivisão de	
triângulos e quads	23
Figura 6: Ordem de operações por fragmento	25
Figura 7: Vegetação gerada procedimentalmente	26
Figura 8: Visualização incorreta da curvatura da superfície	29
Figura 9: Deslocamento de coordenadas de textura	29
Figura 10: Parallax mapping com limitação de deslocamento	30
Figura 11: Determinação do ponto de interseção mais próximo	32
Figura 12: Amostragem do mapa de profundidade	33
Figura 13: Renderização de cena com normal mapping e parallax	
occlusion mapping	34
Figura 14: Mapas de normais e altura pré-computados	37
Figura 15: Níveis de tesselação sobre superfície paramétrica	39
Figura 16: Comparação visual entre técnicas de detalhamento por	
meio de tesselação e simulação por pixel com POM	50
Figura 17: Superfícies detalhadas com os efeitos gerados	
procedimentalmente na GPU	51
Figura 18: Relação de desempenho por primitiva entre tesselação e	
POM	53
Figura 19: Média de desempenho por resolução dos mapas aplicados	53
Figura 20: Desempenho médio por efeito procedimental	55

Lista de Tabelas

Tabela 1: Comparação de desempenho entre detalhamento por meio	
de tesselação e simulação por pixel	52
Tabela 2: Desempenho da abordagem de detalhamento procedimental	54

Tudo quanto vive, vive porque muda; muda porque passa; e porque passa, morre. Tudo quanto vive perpetuamente se torna outra coisa, constantemente se nega, se furta à vida.

Fernando Pessoa