

Alex Ricardo Arquiñego Paz

Aplicação do Método GMRES na Solução de Problemas de Estabilidade em Sistemas de Energia Elétrica

Tese de Doutorado

Tese apresentada ao programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Elétrica.

Orientador : Prof. Ricardo Bernardo Prada Co-orientador : Prof. José Eduardo Onoda Pessanha

Rio de Janeiro Novembro de 2012

Alex Ricardo Arquiñego Paz

Aplicação do Método GMRES na Solução de Problemas de Estabilidade em Sistemas de Energia Elétrica

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Ricardo Bernardo Prada

Orientador Departamento de Engenharia Elétrica – PUC-Rio

> Prof. José Eduardo Onoda Pessanha Co-Orientador UFMA

Prof. Julio Cesar Stacchini de Souza UFF

Prof. Flávio Rodrigo de Miranda Alves Cepel

> Prof. Eduardo Nobuhiro Asada USP- São Carlos

Prof. Delberis Araujo Lima Departamento de Engenharia Elétrica – PUC-Rio

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico

Rio de Janeiro, 08 de Novembro de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Alex Ricardo Arquiñego Paz

Graduou-se em Engenharia Mecânica e Elétrica na Universidade Nacional San Luis Gonzaga de Ica (UNICA, Perú) em 1999. Mestre em Engenharia Elétrica pela Universidade Federal de Maranhão (UFMA, Brasil) em 2004.

Ficha Catalográfica

Paz, Alex Ricardo Arquiñego

Aplicação do Método GMRES na Solução de Problemas de Estabilidade em Sistemas de Energia Elétrica/ Alex Ricardo Arquiñego Paz; orientador: Ricardo B. Prada ; co-orientador: José Eduardo Onoda Pessanha. – 2012.

192 f. : il. (color.) ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2012.

Inclui bibliografia

 Engenharia elétrica – Teses. 2. Estabilidade em sistemas elétricos de potência. 3. Sistemas lineares. 4.
 GMRES. 5. Pré-condicionador. 6. Filtros-digitais. I. Prada, Ricardo B. II. Pessanha, José Eduardo Onoda.
 III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

Dedico este trabalho: a meu querido filho: José Guilherme (Guille) por seu imenso amor, ternura e força que me deram a energia e a esperança nesta etapa final do trabalho

Agradecimentos

A Deus, que me guia e acompanha no dia-a-dia, me ajudando na obtenção de meus objetivos e metas traçadas. A meu amigo inseparável que sempre me sabe dar tranquilidade e forças nos momentos mais difíceis.

Ao professor José E. Onoda Pessanha, pela incondicional amizade mostrada dentro e fora da sala de aula, pela perene motivação e acertada orientação no longo caminhar deste trabalho.

Ao professor Ricardo B. Prada, pelo seu continuo e imprescindível apoio que tornaram real a culminação do trabalho. A sua formidável orientação a través de muitas sugestões e/ou recomendações que enriquecerem a contribuição da pesquisa.

Aos professores membros da banca examinadora pelas pertinentes recomendações, sugestões e críticas construtivas que me permitiram afinar a elaboração do documento final da pesquisa.

A minha mãe Dona Dorihs e meu pai Don Gregorio, pelo inesgotável incentivo, amor incondicional, e pelo esforço dedicado a meu crescimento professional e pessoal.

A meus irmãos Rony e Juan, pelo continuo apoio e confiança que sempre me oferecem dia-a-dia.

A minha companheira e esposa Dayanne, pelo apoio, amor e compreensão que me motivaram na etapa final da pesquisa.

A meus incondicionais amigos do grupo de Sistema de Energia Elétrica (SEE) da PUC-RJ e do Grupo de Sistemas de Potência (GSP) da UFMA, pela verdadeira amizade.

Ao Conselho Nacional de Pesquisa e Desenvolvimento (CNPQ) e á Pontifícia Universidade Católica do Rio de Janeiro (PUC-RJ) pelo suporte financeiro suprido durante esses anos de pesquisa. Arquiñego Paz, Alex; Prada, Ricardo Bernardo (Orientador); Pessanha, José Eduardo Onoda (Co-orientador). **Aplicação do Método GMRES na Solução de Problemas de Estabilidade em Sistemas de Energia Elétrica**. Rio de Janeiro, 2012. 192p. Tese de Doutorado — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

O desenvolvimento e/ou a adaptação de métodos numéricos para aplicação em análises computacionais de estabilidade de sistemas elétricos no domínio do tempo costumam despertar interesse em função das dificuldades de solução das equações diferenciais e algébricas (EDAs) que representam a rede e seus componentes. Condições de operações muito carregadas e compensadas dificultam a solução, devido, p.ex., ao mau condicionamento da matriz Jacobiana, instabilidade numérica e singularidade. Uma dessas dificuldades pode surgir durante a solução de equações não lineares, especificamente no problema linear do tipo Ax = b. Para contornar estas e outras dificuldades, a presente tese procurou contribuir no aspecto numérico do problema destacando a aplicação do método iterativo Resíduo Mínimo Generalizado - GMRES na solução do problema. Optou-se por trabalhar na qualidade do pré-condicionador construído com base na matriz Jacobiana calculada no início do processo de solução. Verificou-se que, se esta matriz estiver bem condicionada, a qualidade do pré-condicionador resultante dela é boa para o GMRES atingir a convergência em poucas iterações. Comprovou-se através de experimentos numéricos com diferentes sistemas-teste e diferentes condições de operação, que o condicionamento da matriz Jacobiana é melhorado se escalonada, normalizada e reordenada antes da construção do pré-condicionador, resultando, de fato, num pré-condicionador de boa qualidade, agindo positivamente no desempenho do GMRES e consequentemente no processo global de solução.

Palavras-chave

Estabilidade em sistemas elétricos de potência; sistemas lineares; GMRES; pré-condicionador; filtros-digitais.

Abstract

Arquiñego Paz, Alex; Prada, Ricardo Bernardo (Advisor); Pessanha, José Eduardo Onoda (Co-advisor); **Application of GMRES Method in the Solution of Stability Problems in Electrical Energy System.** Rio de Janeiro, 2012. 192p. D.Sc. Thesis — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The development and/or adaptation of numerical methods when applied to power systems stability computer simulations in time domain are of interest due to the difficulties related to the solution of the algebraic differential equations (ADEs) which represent the network and its components. The solution of networks operating under heavy load conditions and extremely compensated is difficult due to the ill-conditioning of the Jacobian matrix, numerical instability and singularity. It can happen, for instance, when solving linear problems of type Ax = b. In order to overcome this and other difficulties, this thesis aims to contribute in the numerical aspect of the problem applying the Generalized Minimal Residual method – GMRES to solve the problem. The idea is to work over the preconditioner quality constructed based on the Jacobian matrix. It is shown that, if this matrix is well conditioned, the quality of the resulting preconditioner is good enough to the GMRES reaches convergence in few iterations. It is seen through numerical experiments using different test-systems and different operating conditions as well, that the Jacobian matrix conditioning is improved if scaled, normalized and reordered before the preconditioner construction, resulting, in fact, in a high quality preconditioner, improving the GMRES performance.

Keywords

Power systems stability; linear systems; GMRES; preconditioner; digital-filters.

Sumário

1	Apresentação1	15
1.1	Introdução1	15
1.2	O Problema1	6
1.3	Motivação1	17
1.4	Estrutura do Trabalho1	9
2	Conceitos Fundamentais de Técnicas de Solução de Equações	
	Algébricas Lineares e Diferenciais2	20
2.1	Introdução2	20
2.2	Solução de Sistemas de Equações Algébricas Lineares2	21
2.2.1	Identificação do Problema2	21
2.2.2	Técnicas de Solução2	21
2.2.3	Métodos Diretos2	22
2.2.4	Conceitos Associados aos Métodos Iterativos2	24
2.2.5	Técnicas de Projeção e Estratégias de Pré-Condicionamento3	33
2.2.6	Desempenho dos Métodos Iterativos	35
2.3	Conceitos Associados ás Técnicas de Solução das EDAs	38
2.3.1	Aspectos Básicos	38
2.3.2	O Método Backward Differentiation Formulae – BDF	39
2.3.3	Estratégias de Seleção de Ordem e Passo de Integração	11
2.3.4	Controle do Passo de Integração Através de Filtro Digital	13
3	Métodos Iterativos e Suas Estratégias4	15
3.1	Introdução	15
3.2	Historia da Arte	15
3.2.1	Métodos e Estratégias no Subespaço Krylov	
	– O Estado da Arte5	50
3.3	Conceitos Associados ao Subespaço Krylov	55
3.3.1	Algoritmos no Subespaço Krylov5	56
3.4	O Método Resíduo Mínimo Generalizado (GMRES)	57
3.4.1	O Pré-Condicionamento5	59

3.4.2	Reordenamento e Diferenças de Quocientes61	
3.4.3	Estratégias de Pré-condicionamento Baseadas em Fatoração	
	Incompleta62	
3.4.4	Pré-Condicionando o GMRES65	
3.4.5	Experimentos Numéricos71	
3.4.6	Sistema-Teste de 30 barras (IEEE30)72	
3.4.7	Sistema-Teste de 118 barras (IEEE118)76	
3.4.8	Comentários Finais	
4	Experimentos Numéricos	
4.1	Introdução84	
4.2	Considerações Gerais	
4.3	Experimentos	
4.3.1	Experimento Numérico I87	
4.3.2	Experimento Numérico II91	
4.3.3	Experimento Numérico III96	
4.3.4	Comentários Gerais sobre os Experimentos I, II e III101	
4.3.5	Experimento Numérico IV103	
4.3.6	Experimento Numérico V104	
-		
5	Conclusoes e Trabalhos Futuros	
5.1	Introdução	
5.2	A Proposta e as Contribuições	
5.3	Irabalhos Publicados	
5.4	Trabalhos Futuros113	
Referências Bibliográficas115		
Apendio	ce A – Formulas de Diferenciação Regressiva (BDF)130	
Apêndice B – Diagramas de Blocos dos Principais Controles Dinâmicos		
	Implementados no Programa Computacional132	
B.1	Modelos implementados no programa computacional132	
B.2	Máquina síncrona de polos salientes - MS134	

B.3	Regulador automático de tensão – RAT	136
B.4	Estabilizadores de potencia - PSS	144
B.5	Reguladores de velocidade - RV	145
B.6	Regulador automático de tensão - TYPE G (Kundur, 1994)	148
B.7	Limitador de sobre-excitação – OXL (Kundur, 1994)	148
B.8	Transformador de potência com tape variável - ULTC	149

Apêndice C Dados de Simulação Associados aos Métodos Numéricos 150

C.1	Parâmetros do experimento I	150
C.2	Parâmetros do experimento II	150
C.3	Parâmetros do experimento III	151

Apêndice D Dados de Simulação Associados aos Sistemas -Testes 152		
D.1	Sistema-Teste Kundur - 10 barras	152
D.2	Sistema-Teste IEEE118 – 118 barras	154
D.3	Sistema Interligado Norte-Nordeste Brasileiro – 564 barras	163

Lista de Tabelas

Tabela 2.1 – Desempenho dos métodos iterativos PCG, GMRES e MINRES	36
Tabela 3.1 – Descrição dos experimentos numéricos do GMRES e suas	
estratégias	72
Tabela 3.2 – Definição de parâmetros para o algoritmo GMRES – IEEE307	73
Tabela 3.3 – Resultados das simulações – Sistema IEEE30	74
Tabela 3.4 – Definição de parâmetros para o algoritmo GMRES – IEEE1187	77
Tabela 3.5 – Resultados das simulações – Sistema IEEE118	79
Tabela 4.1 – Dados sobre as simulações do Experimento I	38
Tabela 4.2 – Dados sobre as equações diferenciais ordinárias (EDO) e	
algébricas (EA) do Experimento I	38
Tabela 4.3 – Lista de contingências do Experimento I	38
Tabela 4.4 – Dados associados aos resultados do Experimento I	39
Tabela 4.5 – Número de condicionamento e autovalores da matriz Jacobiana	
do Experimento I	90
Tabela 4.6 – Dados sobre as simulações do Experimento II	92
Tabela 4.7 – Lista de contingências do Experimento II	92
Tabela 4.8 – Dados associados aos resultados do Experimento II	94
Tabela 4.9 – Dados sobre as equações diferenciais ordinárias (EDO) e	
algébricas (EA) do Experimento II	94
Tabela 4.10 – Número de condicionamento e autovalores da matriz	
Jacobiana do Experimento II	95
Tabela 4.11 – Sequência de eventos do Experimento III	96
Tabela 4.12 – Informações das máquinas síncronas do sistema N-NE	
Brasileiro	98
Tabela 4.13 – Dados sobre as equações diferenciais ordinárias (EDO) e	
algébricas (EA)	98
Tabela 4.14 – Número de condicionamento e autovalores da matriz	
Jacobiana do Experimento III	98
Tabela 4.15 – Número de condicionamento das matrizes Jacobianas)2
Tabela 4.16 – Tempo CPU10)2
Tabela 4.17 – Resultados para valor sugerido de τ 10)4
Tabela 4.18 – Descrição dos filtros considerados10)4
Tabela 4.19 – Simulações envolvendo o Filtro H211B4)5
Tabela 4.20 – Simulações envolvendo o Filtro PI4210	26

Lista de Figuras

Figura 2.1 – Conceito básico dos métodos BDFs de ordem/passo variável40
Figura 3.1 – O Algoritmo Básico do GMRES59
Figura 3.2 – Algoritmo básico do ILUT65
Figura 3.3 – Algoritmo do GMRES Pré-condicionado a esquerda68
Figura 3.4 – Diagrama unifilar do sistema-teste IEEE30 (Power, 2007)73
Figura 3.5 – Melhores desempenhos em termos de número de iterações –
IEEE3076
Figura 3.6 – Melhores tempos de CPU –76
Figura 3.7 – Diagrama unifilar do sistema-teste IEEE118 (Power, 2007)78
Figura 3.8 – Melhores desempenhos em termos de número de iterações –
IEEE11882
Figura 3.9 – Melhores tempos de CPU – IEEE11882
Figura 4.1 – Fluxograma do Gerenciador do protótipo computacional85
Figura 4.2 – Sistema-teste do Experimento I (Kundur, 1994)87
Figura 4.3 – Estrutura da Matriz Jacobiana – Sistema-teste de 10 Barras
Figura 4.4 – Distribuição espectral da matriz Jacobiana para os Casos (a) -
(d) do sistema 10 barras90
Figura 4.5 – Curvas obtidas pelo ILUT-GMRES e pelo programa ANATEM –
Experimento I91
Figura 4.6 – Estrutura da Matriz Jacobiana IEEE118 – 118 Barras93
Figura 4.7 – Distribuição espectral da matriz Jacobiana para os Casos (a) -
(d)93
Figura 4.8 – Curvas obtidas pelo BDF-GMRES e pelo programa ANATEM –
Experimento II95
Figura 4.9 – Diagrama unifilar do sistema Norte-Nordeste Brasileiro
Figura 4.10 – Estrutura da matriz Jacobiana do sistema N/NE – 564 Barras 99
Figura 4.11 – Distribuição espectral da matriz Jacobiana do sistema N/NE 100
Figura 4.12 – Tempo de CPU para diferentes métodos 100
Figura 4.13 – Curvas obtidas pelo BDF-GMRES e pelo programa ANATEM –
Experimento III101
Figura 4.14 – Efeitos do filtro H211B4(6)107
Figura 4.15 – Efeitos do filtro PI42(4)108

Lista de Abreviaturas e Notações

<u>Abreviaturas</u>

ANATEM	Programa de Análise de Transitórios Eletromecânicos de CEPEL.
ANAREDE	Programa de Análise de Redes de CEPEL.
AVR	Regulador Automático de Tensão (Automatic Voltage Regulator).
BCG	Método Gradiente Bi-conjugado
BiCGSTAB	Método Gradiente Bi-conjugado Estabilizado
BDF	Formula de Diferenciação Regressiva (Backward Differentiation
	Formulae)
CDU	Controlador Definido pelo Usuário do programa ANATEM
CEPEL	Centro de Pesquisas de Energia Elétrica de Brasil
CIGRE	Conseil International des Grands Réseaux Electriques
GC	Método Gradiente Conjugado
CPU	Unidade Central de Processamento
DASPK	Differential Algebraic Solver with a Precondicioned Krylov Iterative
	Method
EDAs	Sistema de Equações Diferenciais e Algébricas
EDOs	Sistema de Equações Diferenciais Ordinárias
ERAC	Esquema Regional de Alívio de Carga
FOM	Método de Ortogonalização Completa
CGS	Gradiente Conjugado Quadrado (Conjugate Gradient Squared)
GMRES	Método de Resíduo Mínimo Generalizado (Generalized Minimal
	Residual)
IEEE	Institute of Electrical and Electronics Engineers
ILU(k)	Pré-condicionador de fatoração incompleta baseado no nível de
	preenchimento (k)
ILU(ξ)	Pré-condicionador de fatoração incompleta com regra de
	preenchimento baseada no erro (ϵ)
ILUT(τ)	Pré-condicionador de fatoração incompleta com parâmetro limitante
ILUT(ρ,τ)	Pré-condicionador de fatoração incompleta com duplo parâmetro
	limitante
J_{SD}	Matriz Jacobiana resultante da simulação dinâmica
LINPACK	LINear equations software PACKage
Matlab	MATrix LABoratory
MMD	Reordenamento Mínimo Grau (Multiple Minimum Degree)

Método de Resíduo Mínimo
Operador Nacional do Sistema Elétrico Brasileiro
Limitador de SobreExcitação (Over eXcitation Limiter)
Sinal Estabilizante (Power System Stabilizer)
Método Iterativo do Resíduo Quase-Mínimo
Reordenamento Cuthill-McKee invertido
Sistema Interligado Nacional Brasileiro
Sucessive Overrelaxation
Symmetric Sucessive Overrelaxation
Método Iterativo Symmetric LQ
Transformador de Tape Variável (Under Load Tap Changing)

Notações e Símbolos

$\lambda(A)$	Autovalores da matriz A.
λmax(A)	Autovalor máximo da matriz A.
$\lambda min(A)$	Autovalor mínimo da matriz A.
R	Conjunto de números reales.
A ⁻¹	Inversa da matriz A.
A ^T	Matriz transposta de A.
ρ(A)	Raio espectral da matriz A.
A ₂	Norma Euclidiana da matriz A.
x ₂	Norma Euclidiana do vetor x.
J(x)	Matriz Jacobiana da matriz A.
[M]	Matriz de transformação no processo de Pré-condicionamento da
	matriz A.
[M] ⁻¹	Inversa da matriz de transformação M.
S	Conjunto de posições i, j da matriz A.
τ	Tolerância utilizada na fatoração incompleta ILUT.
ρ	Número de elementos não-nulos permitidos na fatoração
	incompleta ILUT.
K(A)	Número condição da matriz A.
(x, y)	Produto interno do vetor x e y, n-dimensional.
\prod_n	Conjunto de polinômios de grau n o menor.
$p_{n-1}(A)$	Polinômio de grau n-1
\bot	Perpendicular entre matrizes e vetores.

1 Apresentação

1.1 Introdução

Devido à competitividade nos mercados de energia elétrica, sistemas elétricos de potência cresceram, e continuam crescendo em dimensão e complexidade, sem deixar de observar certas restrições (principalmente as econômicas e ambientais), a fim de suprir e atender consumidores cada vez mais exigentes. Ainda, tendo que acompanhar o crescimento dos níveis de carga, com um serviço contínuo e confiável, preservando a qualidade da energia fornecida. Nesse cenário de crescimento, destacam-se, além dos níveis e da complexidade das cargas, a quantidade e a complexidade dos dispositivos de controle atuais, principalmente os de tensão, tanto ao nível de geração quanto de transmissão. Vários equipamentos e estratégias fazem parte do dia a dia da operação e das fases de planejamento para assegurar a boa qualidade do produto final (energia elétrica firme e de qualidade na sua forma de consumo) de acordo com metas pré-estabelecidas (níveis de tensão e frequência, por exemplo). Para uma monitoração e avaliação de seus serviços, as concessionárias de energia elétrica fazem uso de diversas estratégias e ferramentas, destacando-se aqui os programas computacionais, principalmente para investigar causas e consequências de distúrbios nos sistemas elétricos através de reproduções fiéis, podendo incluir testes de medidas preventivas/corretivas. Esta tese quando se refere a programas computacionais, está na verdade enfatizando os modelos matemáticos e as técnicas numéricas neles disponíveis.

Como resultado das necessidades acima, simulações computacionais passaram a envolver sistemas elétricos extremamente complexos em termos de configuração, dispositivos de controle, características e níveis de cargas. A combinação desses fatores, junto com particularidades do(s) fenômeno(s) investigado(s), forma fatores complicadores quando se trata de solucionar os sistemas matemáticos resultantes, sejam os puramente algébricos, os compostos por Equações Diferencias e Algébricas (EDAs), ou os compostos apenas por Equações Diferencias Ordinárias (EDOs), mesmo nos melhores ambientes computacionais, principalmente se os modelos e os métodos numéricos usados forem limitados em alguns aspectos importantes. Os métodos matemáticos podem simplesmente falhar durante o processo de solução ou não serem econômicos em termos de tempo de CPU e espaço de memória.

Portanto, programas computacionais associados à solução de diferentes classes de problemas envolvendo sistemas elétricos tornaram-se uma questão de preocupação demandando não apenas por tecnologias computacionais eficientes, mas também por modelos matemáticos adequados e técnicas numéricas bem organizadas em termos de eficiência computacional e robustez (solução de sistemas lineares mal-condicionados, por exemplo).

1.2 O Problema

Simulação no domínio do tempo é uma forma de análise útil para as concessionárias de energia elétrica desenvolverem estudos computacionais associados a fenômenos de estabilidade em sistemas de energia elétrica, pois através dela é possível:

- Determinar o tempo de coordenação dos equipamentos; p.ex., controle da excitação dos geradores, chaveamento de bancos de capacitores, compensadores estáticos e dispositivos para corte de carga devido à subtensão (ERAC).
- Esclarecer o fenômeno investigado e ajuda na prevenção contra o dimensionamento excessivo na fase de projeto. Simulação no domínio do tempo força uma análise mais cuidadosa e a utilização (desenvolvimento) de modelos mais aprimorados.
- Simular dinâmicas rápidas associadas com as fases finais do distúrbio.
- Demonstrar e apresentar o desempenho dinâmico do sistema através de gráficos onde se visualiza a evolução no tempo do fenômeno simulado.
- Visualizar como o desempenho do sistema é afetado tanto pela dinâmica rápida, comum nos estudos convencionais de estabilidade transitória, como pelas dinâmicas lentas, associadas com os transformadores de tape variável e com os limitadores de corrente de campo dos geradores, por exemplo.

O desenvolvimento e/ou a adaptação de métodos numéricos para aplicação em análises computacionais de estabilidade de sistemas elétricos no domínio do tempo costumam despertar interesse em função das dificuldades de solução das equações diferenciais e algébricas (EDAs) que representam a rede e seus componentes. Condições de operações muito carregadas e compensadas dificultam a solução, devido, p.ex., ao mau condicionamento da matriz Jacobiana, instabilidade numérica e

singularidade. Uma dessas dificuldades pode surgir durante a solução de equações não-lineares através do método Newton-Raphson, especificamente no subproblema linear do tipo (1.1).

$$A \cdot x = b \tag{1.1}$$

É mostrado ao longo da tese que, o problema que pode dificultar a solução está associado ao número de condicionamento de matrizes de coeficiente (neste caso, a matriz Jacobiana que representa o sistema elétrico incluindo dispositivos dinâmicos) próximas da singularidade e com autovalores muito espalhados na distribuição espectral, alguns com magnitudes muito elevadas.

1.3 Motivação

Para contornar as dificuldades apresentadas acima, e outras mais, a presente tese procurou contribuir no aspecto numérico do problema integrando e aproveitando adequadamente os avanços na solução das EDAs, destacando a aplicação do método iterativo Resíduo Mínimo Generalizado - GMRES (Saad et al., 1986) no subproblema linear (1.1). A opção pelo GMRES está baseada nas suas características adequadas para solucionar o problema, já que a matriz Jacobiana do sistema elétrico incluindo dispositivos dinâmicos além de mal-condicionada, é bloco-diagonal dominante, altamente esparsa e não-simétrica (Pai et al., 1995). Portanto, ao invés de se usar um método direto tradicional, cuja característica é fornecer uma solução para o sistema linear em um número fixo de passos sujeitos apenas a erros de arredondamento, optou-se pelo método iterativo GMRES pré-condicionado que gera uma sequência de vetores solução após se estabelecer o vetor inicial x(0) (Chen, 2005).

Durante o desenvolvimento desta tese, notou-se que a maior parte das referências consultadas (citadas ao longo do texto) estava associada à aplicação de métodos iterativos baseados no subespaço Krylov em estudos envolvendo sistemas de energia elétrica para a solução do problema linear do fluxo de carga. Pouco se encontrou com relação às análises no domínio do tempo. Ainda, a maioria dessas referências também estava associada à aplicação de métodos iterativos do subespaço Krylov em análises de estabilidade transitória angular fazendo uso do método trapezoidal implícito com solução simultânea (ou alternada).

Portanto, outra proposta é estender a faixa de fenômenos e incluir os de longa duração, como os de estabilidade de tensão, e para tal, é desejável um método de integração estável em termos de variação do comprimento do passo, já que em simulações envolvendo fenômenos de longa duração o método de integração deve variar o comprimento do passo sempre que possível, visando desta forma melhorar a eficiência computacional do processo de solução. Optou-se, portanto, pelo método *Backward Differentiation Formulae* - BDF (Capítulo 2) com mecanismo de passo variável (Brenan et al., 1996) por apresentar tais características. A presente tese surge então com uma contribuição para a solução das EDAs associadas à análise de estabilidade no domínio do tempo: o BDF-GMRES.

Uma vez estipulada à proposta, a eficiência computacional passou a ser um fator preocupante. Já que o método BDF é bem consolidado para este tipo de aplicação, foram investigadas formas para melhorar a eficiência de todo o processo de solução, estando dividida em duas etapas. Uma, aplica filtros digitais para o controle do erro resultante das heurísticas consideradas pelo método quando se calcula um novo passo de integração. A outra é através do GMRES e entre as encontradas optou-se por trabalhar na qualidade do pré-condicionador construído com base na matriz Jacobiana J(x) calculada no início do processo de solução. Verificou-se que, se esta matriz estiver bem condicionada, a qualidade do pré-condicionador resultante dela é boa para o GMRES atingir a convergência em poucas iterações. Como informado anteriormente, matrizes Jacobianas que representam sistemas elétricos reais geralmente são mal condicionadas, sendo necessárias, portanto, estratégias numéricas para torna-las bem condicionadas, ou, pelo menos, melhorar suas características (menor número de condicionamento e autovalores agregados próximos da origem da distribuição espectral).

Por fim, comprova-se através de experimentos numéricos com diferentes sistemasteste e diferentes condições de operação, que o condicionamento da matriz Jacobiana é melhorado se escalonada, normalizada e reordenada antes da construção do précondicionador, resultando, de fato, num pré-condicionador de boa qualidade, agindo positivamente no desempenho do GMRES e consequentemente no processo global de solução. Destaca-se também o desempenho de filtros digitais para controle do erro associado ao método BDF de passo variável. O BDF-GMRES solucionou todos os cenários sem nenhum tipo de interrupção, mesmo os mais adversos.

18

1.4 Estrutura do Trabalho

O presente documento está organizado da seguinte forma, com exceção do atual Capítulo:

- Capítulo 2 Conceitos Fundamentais de Técnicas de Solução de Equações Algébricas Lineares e Diferenciais, Solução de Sistemas de Equações Algébricas Lineares, Conceitos Associados às Técnicas de Solução das EDAs.
- Capítulo 3 Métodos Iterativos e Suas Estratégias: Origens e Perspectivas, A História da Arte, Conceitos Associados ao Subespaço Krylov, O Método Resíduo Mínimo Generalizado (GMRES), Pré-Condicionando o GMRES, Testes Computacionais.
- Capítulo 4 Apresenta experimentos numéricos a fim de verificar a eficiência e a robustez do BDF-GMRES em estudos de estabilidade de sistemas de energia elétrica, utilizando-se sistemas-teste hipotéticos e o sistema elétrico Norte-Nordeste Brasileiro.
- Capítulo 5 Conclusões e Recomendações.
- Apêndices.

2 Conceitos Fundamentais de Técnicas de Solução de Equações Algébricas Lineares e Diferenciais

2.1 Introdução

Sistemas de equações algébricas lineares se destacam pela importância e pela assiduidade com que são encontrados em diversas aplicações científicas e industriais. No caso de estudos envolvendo sistemas de energia elétrica, dependendo do cenário e da dimensão do sistema elétrico de interesse, o sistema linear resultante pode ser de grande porte, requisitando uma técnica eficiente de solução, a fim de evitar problemas de memória (demanda por muito espaço de armazenamento) e excessivo tempo de CPU. Geralmente, em sistemas de energia elétrica, tanto em análises em regime-permanente como no domínio do tempo, os esforços associados à solução de sistemas algébricos lineares são responsáveis pelas maiores parcelas inerentes ao tempo de CPU total gasto, bem como espaço de memória.

Este Capítulo apresenta conceitos fundamentais sobre Técnicas de Solução de Sistemas de Equações Algébricas Lineares e de Equações Diferenciais e Algébricas, conceitos esses essenciais para um bom entendimento dos aspectos matemáticos inerentes aos métodos de solução dessas duas formas de sistemas de equações. Como informado no Capítulo 1, os métodos iterativos se destacam como uma das mais importantes frentes de investigação deste trabalho, devido as suas tendências promissoras em solucionar eficientemente sistemas lineares de grande porte, com reduzida capacidade de armazenagem e baixo tempo de CPU, muitas vezes superando os tradicionais métodos diretos. Basicamente, as técnicas iterativas são compostas por dois grupos de métodos; os estacionários e os não-estacionários.

Como mostrado ao longo neste capítulo através de exemplos ilustrativos, os métodos não-estacionários mostram-se mais eficientes para aplicações envolvendo sistemas elétricos de potência de grande-porte, eficiência esta que pode e deve ser melhorada através de técnicas de pré-condicionamento e estratégias numéricas bem elaboradas.

Já a solução dos sistemas de equações diferenciais e algébricas correspondem ao tradicional método de diferenciação regressiva, ou simplesmente BDF (em inglês: *Backward Differentiation Formulae*).

2.2 Solução de Sistemas de Equações Algébricas Lineares

2.2.1 Identificação do Problema

Muitos componentes dos sistemas de energia elétrica, dependendo do fenômeno investigado, são matematicamente modelados por sistemas de equações algébricas e diferenciais (dinâmicas rápidas e lentas associadas à estabilidade de tensão, angular e de frequência), equações diferenciais ordinárias (transitórios eletromagnéticos), ou sistemas puramente algébricos lineares (regime-permanente). Essencialmente, quando se investiga um sistema de energia elétrica real de grandes dimensões, temse associado a primeira e a terceira categoria, sistemas algébricos lineares também de grande porte, e em geral, a matriz de coeficientes resultante é esparsa com uma estrutura apropriada de elementos não nulos (zeros), e a solução pode ser obtida por um método direto. Entretanto, métodos diretos podem ser bem dispendiosos em termos de espaço de memória e tempo de CPU, visto que durante o processo de solução podem aparecer elementos não nulos, em posições anteriormente ocupadas por elementos nulos, mesmo com estratégias de reordenamento para reduzir estas entradas. Nestes casos, métodos iterativos são mais atrativos em comparação aos métodos diretos, mesmo se a matriz for densa; seus requisitos de espaço de memória e tempo de CPU são geralmente menores da ordem de magnitudes (Van der Vorst, 2003). Ao invés de solucionar o sistema original do tipo (1.1), métodos iterativos solucionam um sistema equivalente menos complexo, ou seja, o sistema original é substituído por outro cuja solução é mais fácil de obter. Além disso, métodos iterativos não requerem o armazenamento de matrizes, apenas a habilidade de realizar multiplicações matriz-vetor.

2.2.2 Técnicas de Solução

Como já mencionado, existem duas classes bem consolidadas de métodos numéricos para a solução de sistemas de equações lineares esparsas e de grande porte: os diretos e os iterativos. Os métodos diretos fornecem uma solução para o sistema representado pela Equação (2.1) em um número fixo de passos, sujeitos apenas a erros de arredondamento. Já as técnicas iterativas começam o processo de solução com uma aproximação inicial $x^{(0)}$ para a solução x, gerando a partir deste ponto uma sequência de vetores $\{x(k)\}_{k=0}^{\infty}$ que converge para x. Ambos os métodos são abordados nas próximas seções, destacando-se alguns métodos mais mencionados e

usados na literatura, evitando-se por enquanto as complexidades matemáticas inerentes às respectivas classes de solução:

$$A \cdot x = b \tag{2.1}$$

2.2.3 Métodos Diretos

O método de eliminação de Gauss-Jordan pode ser aplicado para resolver sistemas de equações lineares da forma (2.1), para um ou mais vetores \vec{b} , como também para determinar a inversa da matriz *A* se necessário. Para atividades especificas de inversão da matriz de coeficientes, o método Gauss-Jordan apresenta uma aceitável eficiência quando comparado a outros métodos. Entretanto, existem desvantagens associadas a esse método, sendo estas (Mayer, 2004; Golub & Van Loab, 1996; Stoer, 1993; Halmos, 1987):

- Armazenamento e manipulação simultânea de todos os vetores à esquerda.
- Caso o cálculo da inversa da matriz A não seja necessário, o tempo computacional do método é reduzido em pelo menos três vezes se comparado aos similares quando aplicados para o mesmo fim.
- Quando a matriz inversa é determinada explicitamente, aplica-se um novo vetor b, resultando em uma solução diferente da encontrada no processo inicial. A razão está no erro de arredondamento associado à aritmética computacional.

Uma vantagem interessante e importante é a confiabilidade do método baseada na estabilidade apresentada quando comparado a outros métodos diretos, aumentando sua robustez se uma estratégia de pivotamento completo for aplicada. A sequência de operações executadas na eliminação Gauss-Jordan constitui-se como uma base de novas alternativas, como é o caso dos métodos de eliminação Gaussiana e decomposição triangular.

A. Estratégias de Pivotamento

A troca de linhas é necessária quando um elemento pivô $a_{kk}^{(k)}$ é zero. Esta troca de linhas tem a forma $(E_i) \leftrightarrow (E_p)$ onde *p* é o menor inteiro maior que *k* com $a_{pk}^{(k)} = 0$. De fato, é geralmente necessário realizar trocas de linhas mesmo quando os elementos pivô não forem zero, a fim de se reduzir os erros de arredondamento associados a aritmética de dígitos finitos. Para se evitar este problema, o processo de pivotamento é realizado selecionando-se um elemento grande $a_{pk}^{(k)}$ para pivô e trocar as *k*-ésimas e *p*-ésimas linhas, seguido das trocas das *k*-ésimas e *p*-ésimas colunas, se necessário. A estratégia mais simples é selecionar o elemento na mesma coluna que esteja abaixo da diagonal e que possua o maior valor absoluto. Um exemplo ilustrativo que segue pode ser útil para se entender este procedimento.

B. Fatoração Triangular LU

Considere a hipótese de se representar a matriz A como um produto de duas matrizes:

$$LU = A \tag{2.2}$$

Onde L é uma matriz triangular inferior, e U uma matriz triangular superior. O sistema linear de interesse pode ser representado na seguinte forma matricial:

$$\begin{bmatrix} \alpha_{11} & 0 & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\ \alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44} \end{bmatrix} \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\ 0 & \beta_{22} & \beta_{23} & \beta_{24} \\ 0 & 0 & \beta_{33} & \beta_{34} \\ 0 & 0 & 0 & \beta_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
(2.3)

Considerando-se a decomposição (Equação (2.2)) para resolver o conjunto linear:

$$Ax = (LU)x = L(Ux) = b$$
(2.4)

Pode-se observar por inspeção a possibilidade de dividir o sistema linear em dois sistemas triangulares lineares, resultando na seguinte simplificação:

$$Ly = b$$
 (2.5)

E depois resolver:

$$Ux = y \tag{2.6}$$

A vantagem está na facilidade em se resolver um sistema de equações triangulares, simplificando o processo de solução. Assim, a Equação (2.5) pode ser resolvida através do processo substituição progressiva, representada pelas Equações (2.7) e

(2.8). Já o sistema representado pela Equação (2.6) pode ser resolvido pelo processo de substituição regressiva, representada pelas Equações (2.9) e (2.10). É interessante notar que, uma vez que determinada a decomposição LU de *A* é possível resolver mais rapidamente o sistema algébrico ao variar o vetor à esquerda, sendo esta uma vantagem relevante sobre outros métodos (Mayer, 2004; Golub, 1996; Stoer, 1993; Halmos, 1987).

$$y_i = b_1 / a_{11}$$
 (2.7)

$$y_{i} = 1/a_{i,i} \left[b_{i} - \sum_{j=1}^{i-1} a_{i,j} y_{i} \right]$$
 i=2,3,..n (2.8)

$$x_n = y_n / b_{n,n} \tag{2.9}$$

$$x_{i} = 1/b_{i,i} \left[y_{i} - \sum_{j=i+1}^{n} b_{i,j} y_{j} \right]$$
 $i = n-1, n-2,...,1.$ (2.10)

Para matrizes altamente esparsas e de grande porte, o processo de solução não é, a principio, diferente do método geral da fatoração triangular LU; o problema está no preenchimento de elementos não zero e grandes durante o processo de solução. Estes esquemas de decomposição (ou de eliminação) devem minimizar o número de elementos indesejados não zero. Estes novos elementos, inicialmente zeros, tornamse valores representativos durante o processo de solução, e, como consequência, o espaço de armazenagem requerido é bem maior.

As n entradas conhecidas da matriz $A_{(nxn)}$ podem ser usadas para determinar parcialmente as m incógnitas de L e o mesmo número em U. Se uma única solução é desejada, entretanto, certo número de condições adicionais nas entradas de L e U se fazem necessárias. Vários métodos podem ser usados para estabelecer essas condições, como o Doolittle's (Burden, 1989).

2.2.4 Conceitos Associados aos Métodos Iterativos

Quando um sistema linear é suficientemente pequeno permitindo um uso adequado e limitado de espaço de memória, é preferível usar uma técnica direta eficiente que minimize os erros de arredondamento. O método de Eliminação Gaussiana com Pivotamento Parcial é uma escolha apropriada neste caso (Burden, 1989). Entretanto, sistemas lineares de grande porte com elevada porcentagem de elementos nulos (zeros) obedecendo a certo padrão pode ser resolvido de forma eficiente usando um

método iterativo, onde a principal ideia é converter o sistema original (Equação (2.1)) por um sistema equivalente cuja solução seja mais simples. Após selecionar o vetor inicial $x^{(0)}$, uma sequência de vetores solução é gerada (para k = 1,2,3,...) computando:

$$\mathbf{x}^{(k)} = \mathbf{T}\mathbf{x}^{(k-1)} + \mathbf{c} \tag{2.11}$$

Onde T é uma matriz $n x n e \vec{c}$ é um vetor. Um possível critério de parada para a Equação (2.11) seria continuar o processo iterativo até que o resultado obtido pela Equação (2.12) seja menor que uma dada tolerância (ϵ). Normalmente para este propósito, normas adequadas são usadas. Portanto, o termo "método iterativo" se refere a uma ampla faixa de técnicas que usam aproximações sucessivas para obter soluções mais precisas para um sistema linear.

$$\frac{\left\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\right\|}{\left\|\mathbf{x}^{(k)}\right\|} \le \varepsilon, \text{ para } \varepsilon > 0$$
(2.12)

Se \tilde{x} for uma aproximação para a solução do sistema linear, existe um vetor residual para \tilde{x} com relação a este sistema definido pela Equação (2.13). O objetivo é gerar uma sequência de aproximações que irão levar os vetores residuais associados a convergir rapidamente à zero. Entretanto, se \tilde{x} for uma aproximação para a solução x e o vetor residual possuir uma propriedade a qual a norma ||r|| seja pequena, então $||x - \tilde{x}||$ também seria pequeno. Isto ocorre com frequência, mas sistemas com certas características, não muito observadas na prática, falham em relação a esta propriedade. Um Exemplo ilustrativo descreve melhor esta situação.

$$r = b - A\tilde{x}$$
 (2.13)

Exemplo. Considere o sistema linear Ax = b dado por:

$$\begin{bmatrix} 1 & 2 \\ 1,0001 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3,0001 \end{bmatrix}$$

Possui única solução $x = (1,1)^T$. Uma aproximação não adequada $\tilde{x} = (3,0)^T$ possui o vetor residual:

r = b- A
$$\tilde{x} = \begin{bmatrix} 3 \\ 3,0001 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1,0001 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0,0002 \end{bmatrix}$$

Então $||\mathbf{r}||_{\infty}=0,0002^{1}$. Embora a norma do vetor residual seja pequena, a aproximação $\tilde{\mathbf{x}} = (3,0)^{T}$ é obviamente inadequada, de fato $||\mathbf{x} - \tilde{\mathbf{x}}||_{\infty} = 2$. Este exemplo é um alerta caso o método iterativo se baseie apenas na norma residual para interromper o processo, na esperança de que uma solução precisa tenha sido obtida. Informações sobre a possibilidade de ocorrer situação deste tipo podem ser obtidas considerandose as normas da matriz A e de sua inversa. Neste caso, se $\tilde{\mathbf{x}}$ for uma aproximação para a solução do sistema linear e A for uma matriz não singular, então para qualquer norma natural (Burden, 1989):

$$\|\mathbf{x} - \tilde{\mathbf{x}}\| \le \|\mathbf{r}\| \| \mathbf{A}^{-1} \|$$
 (2.14)

е

$$\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \text{ para } \mathbf{x} \ne 0 \text{ e } \mathbf{b} \ne 0$$
(2.15)

O número condição K(A) da matriz não singular A relativo à norma natural ||*|| é dado por:

$$K(A) = \|A\| \|A^{-1}\|$$
(2.16)

A matriz A é bem comportada (bem condicionada) se K(A) é próximo de 1, e não é bem comportada (mal condicionada) quando K(A) é significativamente maior/menor que 1. Comportamento neste caso se refere à relativa segurança que um pequeno vetor residual implica numa solução aproximada. Uma estimativa inicial apropriada para o processo iterativo pode levar o vetor da solução aproximada a convergir rapidamente uma vez satisfeito o critério de parada. Se este não for o caso, então b é o único vetor associado com o problema e assumindo algum múltiplo de b como uma primeira aproximação parece um procedimento adequado. As próximas aproximações estão baseadas em alguma combinação linear de b e Ab e o processo continua até que o critério de parada seja satisfeito; isto é, a precisão da solução aproximada é boa o bastante para interromper o processo. O espaço que representa esta combinação linear é conhecido com subespaço Krylov (K) da matriz A e vetor inicial b, como mostra o lado direito da Equação (2.17) (Greenbaum, 1997).

$$x_k \in \text{span}\{b, Ab, ..., A^{k-1}b\}, k = 1, 2, ...$$
 (2.17)

¹ Norma $||r||_{\infty} = \max \{x_i\} \text{ para } 1 \le i \le n$

Assumindo que um método iterativo baseado no subespaço Krylov não contenha uma boa aproximação para a solução em um número razoável (k) de iterações, ou que uma solução aproximada não possa ser computada facilmente, o método falha em fornecer soluções aproximadas aceitáveis com um razoável esforço computacional, se comparado a outros métodos de solução. Existem restrições associadas e efeitos indesejáveis, tais como estagnação e parada forçada, particularmente para certas classes de problemas. Os problemas de convergência estão associados à propriedades espectrais (distribuição de autovalores, valores de campo, condição dos autovetores), e tais informações não estão disponíveis em circunstâncias práticas (Van der Vorst, 2003).

A fim de fazer uso dos métodos iterativos numa forma racional, as desvantagens apresentadas devem ser mitigadas. Isto pode ser feito encontrando-se algum operador M tal que $M^{-1}A$ possua melhores (mas ainda não identificáveis) propriedades espectrais. O mais próximo que M estiver de A (idealmente M = A), menor será o número de iterações para se alcançar uma solução aproximada confiável. O operador M associado a este processo é chamado de pré-condicionador (também chamado de matriz de transformação) da matriz A. O fator chave é modificar o problema original para se obter um melhor subespaço Krylov usando um pré-condicionador M (geralmente M apresenta a mesma dimensão da matriz original) e resolver eficientemente o problema modificado, onde uma melhor solução aproximada x_{k+1} pode ser obtida, como segue (Greenbaum, 1997; Van der Vorst, 2003):

$$x_{k+1} = x_k + M^{-1}(b - Ax_k)$$
 (2.18)

A combinação do pré-condicionador com o subespaço Krylov resulta em procedimentos eficientes e não complexos que podem competir com métodos diretos (Saad, 2003). Entretanto, encontrar um pré-condicionador para acelerar a convergência do processo iterativo não é uma tarefa fácil, uma vez que (Van der Vorst, 2003):

- M deve ser uma boa aproximação para A.
- O custo para construir M não pode ser abusivo.
- O sistema resultante equivalente deve ser mais fácil de resolver em comparação ao original.

27

Uma vez que a taxa de convergência do método iterativo depende fortemente do espectro da matriz A, um bom pré-condicionador irá melhorar esta taxa o bastante para superar o custo adicional associado a sua construção e aplicação. Se um pré-condicionador não for considerado, o método iterativo poderá falhar e não convergir para uma solução aproximada de qualidade num razoável esforço computacional.

Os métodos iterativos são divididos basicamente em duas categorias; os estacionários e os não-estacionários. Os estacionários são os precursores dos métodos iterativos, são mais simples de se entender e implementar, mas são menos eficientes. Já os métodos não-estacionários são relativamente mais recentes, suas análises são mais complexas, entretanto são mais eficientes. Os métodos não-estacionários diferem dos estacionários não apenas nesses aspectos, mas também no fato do processo iterativo envolver informações que variam a cada iteração, justificando a sua característica nãoestacionária. Informações fundamentais sobre os principais métodos de cada uma dessas classes são apresentadas a seguir.

a) Métodos Iterativos Estacionários

Tanto os métodos iterativos estacionários quanto os não-estacionários podem ser expressos na forma simplificada e geral da Equação (2.11). Os estacionários são classificados com tal pelo fato de tanto a matriz T como o vetor c não dependerem de k. Nesta categoria os mais mencionados na literatura (Barrett et al., 2006) são o Jacobi, Gauss-Seidel, SOR (Sucessive Overrelaxation) e o SSOR (Symmetric Sucessive Overrelaxation).

<u>Método Jacobi</u> – é simples de ser entendido e implementado, porém seu processo de convergência é lento. Este método examina cada uma das n equações do sistema linear de forma isolada. Se na i –ésima equação:

$$\sum_{j=1}^{n} a_{i,j}, x_j = b_i$$
 (2.19)

a solução for encontrada para o valor de x_i fixando as outras entradas de x, tem-se:

$$\mathbf{x}_{i} = \begin{pmatrix} \mathbf{b}_{i} - \sum_{j \neq 1} \mathbf{a}_{i,j} \mathbf{x}_{j} \\ \mathbf{a}_{i,i} \end{pmatrix} \mathbf{a}_{i,i}$$
(2.20)

A Equação (2.20) sugere um método iterativo, conhecido como Método Jacobi, definido por:

$$\mathbf{x}_{i}^{(k)} = \begin{pmatrix} \mathbf{b}_{i} - \sum_{j \neq 1} \mathbf{a}_{i,j} \mathbf{x}_{j}^{(k-1)} \\ \mathbf{a}_{i,i} \end{pmatrix}$$
(2.21)

Na forma matricial, o método Jacobi pode ser expresso como:

$$\mathbf{x}^{(k)} = \mathbf{D}^{-1} (\mathbf{L} + \mathbf{U}) \mathbf{x}^{(k-1)} + \mathbf{D}^{-1} \mathbf{b}$$
 (2.22)

Onde as matrizes D, L e U representam a diagonal, estritamente triangular inferior, e estritamente triangular superior, ambas as partes da matriz A, respectivamente.

<u>Método Gauss-Seidel</u> – está baseado no método Jacobi, sendo que se assume agora que as equações são examinadas uma de cada vez, mas em sequência, e os resultados previamente computados são usados, resultando em:

$$mm x_{i}^{(k)} = \begin{pmatrix} b_{i} - \sum_{j < i} a_{i,j} x_{j}^{(k)} - \sum_{j > 1} a_{i,j} x_{j}^{(k-1)} \\ a_{i,i} \end{pmatrix} (2.23)$$

Duas observações importantes com relação a este método devem ser mencionadas. Primeiro, a Equação (2.23) sugere um processo serial uma vez que cada componente da nova iteração depende dos componentes computados previamente, e, portanto as atualizações não podem ser feitas simultaneamente como no método Jacobi. Segundo, a nova iteração x^(k) depende da ordem a qual as equações são examinadas.

Estes dois pontos são importantes porque se A for esparsa, a dependência de cada componente da nova iteração com os componentes prévios não é absoluta. A presença de zeros na matriz pode remover a influência de alguns dos componentes prévios. Usando um ordenamento adequado das equações, pode ser possível reduzir tal dependência, recuperando a habilidade de fazer atualizações de grupos de componentes em paralelo. Entretanto, o reordenamento das equações pode afetar a taxa de convergência do método. Uma escolha inadequada de ordenamento pode

degradar a taxa de convergência; uma boa escolha pode melhorá-la (Barrett et al., 2006).

Em termos de representação matricial, este método pode ser representado como:

$$\mathbf{x}^{(k)} = (\mathbf{D} - \mathbf{L})^{-1} \left(\mathbf{U} \mathbf{x}^{(k-1)} + \mathbf{b} \right)$$
(2.24)

Da mesma forma que o Jacobi, as matrizes D, L e U representam a diagonal, estritamente triangular inferior, e estritamente triangular superior, ambas as partes da matriz A, respectivamente.

<u>Método SOR (Successive Overrelaxation)</u> - deriva da aplicação de um processo de extrapolação sobre o método Gauss-Seidel. Esta extrapolação assume a forma de um peso médio entre a iteração prévia e a iteração computada com sucesso pelo Gauss-Seidel, para cada componente:

$$x_{i}^{(k)} = \omega \overline{x}_{i}^{(k)} + (1 - \omega) x_{i}^{(k-1)}$$
(2.25)

Onde $\overline{x_1}^{(k)}$ representa a iteração Gauss-Seidel e ω o fator de extrapolação. A ideia é escolher um valor para este fator para acelerar o processo de convergência. Em termos de representação matricial, este método apresenta a seguinte forma:

$$x^{(k)} = (D - wL)^{-1} (wU + (1 - w)D) x^{(k-1)} + w (D - wL)^{-1} b$$
 (2.26)

Em geral, não é possível computar previamente o valor ótimo de ω com relação à taxa de convergência. Mesmo quando for possível calcular este valor ótimo, o esytforço computacional gasto é geralmente proibitivo. Frequentemente, uma estimativa heurística é usada (Barrett et al., 2006).

Se a matriz de coeficiente A for simétrica e definida positiva, o processo iterativo SOR converge para qualquer valor de ω entre 0 e 2. Algoritmos SOR sofisticados aplicam esquemas de estimação adaptativa de parâmetros para tentar obter um valor apropriado de ω estimando a taxa a qual a iteração está convergindo.

<u>Método SSOR (Symmetric Sucessive Overrelaxation)</u> – assumindo a matriz A como simétrica, então o SSOR combina simultaneamente duas varreduras do SOR de forma que a matriz resultante da iteração seja similar a uma matriz simétrica. A similaridade da matriz iteração SSOR com uma matriz simétrica permite a aplicação deste método como um pré-condicionador para outros esquemas iterativos para matrizes simétricas. De fato, esta é a motivação principal para se usar o SSOR uma vez que sua taxa de convergência, com um valor ótimo para ω , geralmente, é mais lenta que a do SOR com um valor ótimo de ω .

Em termos matriciais, o método SSOR é expresso na seguinte forma:

$$x^{(k)} = B_{1}B_{2}x^{(k-1)} + \omega(2-\omega)(D-\omega U)^{-1}D(D-\omega L)^{-1}b$$

$$B_{1} = (D-\omega U)^{-1}(\omega L + (1-\omega)D)$$

$$B_{2} = (D-\omega L)^{-1}(\omega U + (1-\omega)D)$$
(2.27)

A matriz B_2 é simplesmente a matriz iteração para SOR (Equação (2.27)), idem B_1 , mas com L e U invertidas.

b) Métodos Iterativos Não-Estacionários

Como já mencionado os métodos não-estacionários diferem dos estacionários no fato do processo envolver informações que variam a cada iteração. Normalmente, são computadas constantes calculando os produtos internos dos resíduos (Equação (2.13)) ou outros vetores associados ao respectivo método iterativo. Nem todos os métodos disponíveis na literatura são abordados aqui, apenas aqueles que direta, ou indiretamente, são relevantes para o trabalho, sendo estes o Gradiente Conjugado (GC), Resíduo Mínimo (MINRES) e Resíduo Mínimo Generalizado (GMRES).

<u>Método Gradiente Conjugado (GC)</u> – é eficiente para matrizes simétricas definidas positivas sendo um dos mais antigos e mais conhecidos métodos não-estacionários. O método gera uma sequência de vetores das iterações (sucessivas aproximações para a solução), resíduos correspondentes às iterações, e direção de busca para atualizar as iterações e os resíduos. Embora o comprimento dessas sequências possa se tornar extenso, apenas um pequeno número de vetores precisa ser armazenado na memória. Em cada iteração, dois produtos internos são efetuados a fim de computar escalares atualizados que são definidos para fazer com que as sequências satisfaçam certas

condições de ortogonalidade. Em sistemas lineares definidos positivos isso implica que a distância para a solução verdadeira é minimizada em alguma norma (Barrett et al., 2006).

O método gradiente conjugado não pré-condicionado constrói a i-ésima iteração $x^{(i)}$ como um elemento $x^{(0)} + \text{span}\{r^{(0)}, ..., A^{i-1}r^{(0)}\}$ de forma que $(x^{(i)} - \hat{x})^T A(x^{(i)} - \hat{x})$ seja minimizada, onde \hat{x} é a solução exata de Ax = b. Em geral, a existência deste mínimo é garantida apenas se A for simétrica definida positiva. A versão pré-condicionada do método usa um subespaço diferente para construir as iterações, mas satisfaz a mesma propriedade de minimização; embora sobre um subespaço diferente. Isto requer ainda que o pré-condicionador M (matriz) seja simétrica e definida positiva. A minimização dos erros é equivalente aos resíduos $r^{(i)} = b - Ax^{(i)}$ sendo M^{-1} ortogonal.

O método Gradiente Conjugado utiliza dois termos de recorrência acoplados; um que atualiza os resíduos usando um vetor de direção de busca, e um que atualiza a direção de busca com um novo resíduo computado. Esta característica torna este método extremamente atraente computacionalmente (Barrett et al., 2006).

<u>Método Resíduo Mínimo (MINRES)</u> – O método GC pode ser visto como uma variante especial do método Lanczos para sistemas simétricos definidos positivos. O método MINRES é uma variante que poder ser aplicado em sistemas simétricos indefinidos.

A sequência de vetores do método GC corresponde à fatoração de uma matriz tridiagonal similar a matriz de coeficientes. Portanto, uma interrupção no processo pode ocorrer correspondendo a um elemento pivô nulo (zero) se a matriz for indefinida. Além do mais, para matrizes indefinidas a propriedade de minimização do método GC não é mais bem-definida. O MINRES é uma variante do GC com a propriedade da fatoração LU não estar sujeita a esse problema, minimizando o resíduo na norma-2.

<u>Resíduo Mínimo Generalizado (GMRES)</u> – é um método de projeção (Saad, 1986) possuindo a propriedade de minimizar a cada passo a norma do vetor residual (Equação (2.13)) sobre o m-ésimo subespaço Krylov ($\zeta = AK_m$).

Aplicado com sucesso em sistemas simétricos, este método é uma extensão do método de Resíduo Mínimo (MINRES). A maior desvantagem associada ao GMRES é que o esforço e a armazenagem por iteração crescem linearmente com processo iterativo e o custo associado se torna rapidamente excessivo. A forma usual de superar esta condição indesejada é reiniciando a iteração. Após selecionar um número m de iterações, as informações acumuladas são eliminadas e os resultados mais imediatos são usados como dados iniciais para as próximas m iterações. Este procedimento é repetido até que a convergência seja obtida. Entretanto, a escolha de um valor apropriado para m não é uma tarefa fácil porque se o valor for muito pequeno, o processo associado ao GMRES(m) pode ser lento para convergir, ou falhar completamente e não convergir. Por outro lado se o valor de m for grande, acima do necessário, um considerável espaço de memória será usado. Não existem regras específicas para a escolha de m, portanto a escolha apropriada do instante de reinicialização é uma questão de prática. Portanto, o fator chave para se aplicar com sucesso o GMRES(m) recai sobre a decisão de guando reinicializar. Se estratégias de reinicialização não forem consideradas, o GMRES irá convergir em não mais do que n passos e isto não é prático para elevados n; além do mais os requisitos de memória e tempo de CPU na ausência estratégias de reinicialização são excessivos. Existem casos onde o método declina e a convergência é atingida apenas na n-ésima iteração, e qualquer escolha para m inferior a ${
m n}$ resultará em falha de convergência (Barrett et al., 2006).

2.2.5 Técnicas de Projeção e Estratégias de Pré-Condicionamento

É importante trazer neste ponto o conceito de técnicas de projeção cujo principal objetivo é obter uma solução aproximada para o sistema linear a partir do subespaço \Re^n . Para um espaço m-dimensional, é apropriado considerar, em geral, m condições de ortogonalidade (restrições) para se obter tal aproximação. Especificamente, o vetor residual dado pela Equação (2.13) é forçado a ser ortogonal a m vetores linearmente independentes. Isto define outro subespaço m-dimensional ζ , identificado como um subespaço de restrições (ou espaço esquerdo). Portanto, uma técnica de projeção sobre o subespaço K e ortogonal a ζ encontra uma solução aproximada \tilde{x} impondo condições para que \tilde{x} pertença a K e que o novo vetor residual seja ortogonal a ζ (encontrar $\tilde{x} \in K$ impondo a condição de Petrov-Galerkin $b - A\tilde{x} \perp \zeta$). Para tirar vantagem do conhecimento de uma estimativa inicial (x_0) para a solução, esta deve ser procurada em um espaço $x_0 + K$ ao invés do vetor espaço uniforme (encontrar

 $\tilde{x} \in x_0 + K$ impondo a condição de Petrov-Galerkin $b - A\tilde{x} \perp \zeta$). Note que se \tilde{x} for escrito na forma $\tilde{x} = x_0 + \delta$, e o vetor residual inicial r_0 como:

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0 \tag{2.28}$$

Então, a condição Petrov-Galerkin se torna:

b- A(
$$x_0 + \delta$$
) $\perp \zeta$; ou $r_0 - A\delta \perp \zeta$ (2.29)

E a solução aproximada pode ser definida como:

$$\tilde{\mathbf{x}} = \mathbf{x}_0 + \delta, \ \delta \in \mathbf{K} \tag{2.30}$$

$$(\mathbf{r}_0 - \mathbf{A}\delta, \omega) = 0, \forall \omega \in \zeta$$
 (2.31)

As Equações (2.30) e (2.31) representam a forma genérica de um método de projeção. Em geral, um novo passo de projeção usa um novo par de subespaços K e ζ e assume x_0 como uma estimativa inicial igual à última aproximação obtida do passo de projeção imediatamente anterior.

Estratégias de Pré-condicionamento

Uma vez que a taxa de convergência dos métodos iterativos depende das propriedades espectrais da matriz de coeficientes, parece adequado trabalhar sobre essas propriedades a fim de melhorá-las e consequentemente também a taxa de convergência. Como mencionado numa seção anterior, isto pode ser alcançado convertendo-se o sistema linear original em um equivalente apresentando condições espectrais mais favoráveis, observando-se que o sistema convertido deve apresentar a mesma solução do sistema original. O pré-condicionador é a matriz responsável por tal transformação, o custo extra, associado a sua construção e pela sua aplicação por iteração, pode ser compensado pelo ganho resultante observado na velocidade de convergência.

Quando se formula um pré-condicionador, existe opção de escolher entre encontrar uma matriz M que aproxima A, e para qual a solução do sistema equivalente é mais fácil do que do sistema original; ou encontrar uma matriz M que aproxima A^{-1} , de

forma que apenas multiplicação por M é necessária. Aproximadamente todos os précondicionadores estão na primeira opção de escolha e gastam nas suas aplicações um esforço proporcional a quantidade de variáveis existentes. Inversamente, o número de iterações, função da dimensão da matriz, é geralmente apenas melhorado por uma constante. Alguns pré-condicionadores são capazes de melhorar esta condição, destacando-se a Fatoração Incompleta LU (ILU), e pré-condicionadores baseados em técnicas multigrid (Barrett et al., 2006).

2.2.6 Desempenho dos Métodos Iterativos

Este item apresenta exemplos computacionais simples, ainda não envolvendo sistemas de energia elétrica, realizados com métodos não-estacionários descritos no item anterior, usando para tal fim a plataforma computacional MATLAB. A principal diferença entre os testes está nas características das matrizes como dimensão, arranjo e amplitude dos seus elementos. Os métodos usados aqui são Gradiente-Conjugado, Resíduo Mínimo Generalizado (GMRES) e Resíduo Mínimo (MINRES). O objetivo é de apenas fornecer informações ilustrativas sobre certas características desses métodos e de suas variantes, como por exemplo, número de iterações, resíduo, tempo de CPU e a relação dessas grandezas com estratégias de précondicionamento e com a estratégia de reinicialização. As matrizes usadas nos testes fazem parte de uma biblioteca de matrizes disponíveis no MATLAB apresentando características não "amigáveis". Ao fim, agregando o desempenho individual de cada método, é possível destacar aquele que apresenta as melhores características. A Tabela 2.1 mostra o desempenho desses métodos através de gráficos de barras, ilustrando também as matrizes A, os vetores b, e o número de condicionamento K(A)da matriz associado a cada teste. Lembrando que a matriz é bem condicionada se este número for próximo de um (1), e mal condicionada quanto mais distante. Nota-se pelos valores correspondentes de K(A) que as matrizes são mal condicionadas. A sigla RET corresponde a situações onde o método só convergiu após implementação de estratégia de reinicialização. Também:

→Sem pré-condicionador

[→]Pré-condicionado (Fatoração LU Incompleta – ILU)

Tabela 2.1 – Desempenho dos métodos iterativos PCG, GMRES e MINRES

Comentários Gerais

Os resultados das simulações indicam alguns aspectos interessantes, embora ainda não envolvam sistemas de energia elétrica, destacando:

• Matriz triangular inferior extremamente mal condicionada

- Não se conseguiu gerar a matriz de transformação M para o précondicionamento com relação aos três métodos, ou seja, a solução foi obtida sem essa estratégia.
- Tanto o PGC (Gradiente Conjugado) quanto o MINRES só resolveram o sistema com estratégia de reinicialização.
- Os resíduos relativos são elevados se comparado aos demais testes, comprometendo a precisão da solução.
- Se for considerado o fato da matriz ser de dimensão 4 x 4, ou seja, de pequeno porte, o tempo de CPU gasto para solucionar o problema pode ser considerado elevado.

• Matriz triangular superior mal condicionada

- O Gradiente Conjugado só obteve sucesso pré-condicionado. Já o GMRES e MINRES solucionaram o problema sem e com pré-condicionamento, sendo possível verificar a melhoria de desempenho.
- O resíduo relativo do MINRES sem pré-condicionamento é muito elevado, comprometendo a precisão dos resultados.
- O tempo de CPU do GMRES sem pré-condicionamento é o maior dentre todos, sendo reduzido com o pré-condicionador, porém, ainda superior aos demais.

• Matriz de Hilbert

- Também não se conseguiu gerar a matriz de transformação M para o précondicionamento com relação aos três métodos. A solução foi obtida sem essa estratégia.
- É notável a superioridade do GMRES em relação aos demais métodos, principalmente nos aspectos número de iterações e tempo de CPU.
- O resíduo relativo do GMRES apesar de superior ao do GC é muito pequeno, não comprometendo a precisão dos resultados.

Este último teste comprova a eficiência do GMRES para sistemas de grande porte, mesmo não estando pré-condicionado. Devido a sua importância para esta pesquisa, este método volta a ser abordado no Capítulo 3.

2.3 Conceitos Associados ás Técnicas de Solução das EDAs

2.3.1 Aspectos Básicos

Os modelos de equipamentos e dispositivos de controle necessários para simulação computacional de fenômenos de estabilidade podem ser representados por um sistema de equações diferenciais e algébricas, cuja formulação geral é descrita por:

$$F(t, y, y') = 0 \quad y(t_0) = y_0 \quad y'(t_0) = y'_0$$
(2.32)

F, y e y' são vetores n-dimensionais, com y representando as variáveis de estado associadas às máquinas síncronas, controles e outros dispositivos dinâmicos da rede; variáveis algébricas do estator da máquina e da rede. Já o vetor y' representa as derivadas dessas variáveis, sendo t (tempo) a variável independente. Sujeito às condições iniciais y_0 e y'_0 no instante de tempo igual t_0 .

O processo de solução aproxima a derivada de (2.32) a cada iteração k por diferenças e o sistema algébrico não-lineal resultante (2.33) é solucionado por um método de Newton a cada intervalo de tempo para encontrar y_n de acordo com (2.34) (Brown et al., 1994).

$$F\left(t_{n}, y_{n}, \frac{y_{n} - y_{n-1}}{h_{n}}\right) = 0; \ h_{n} = t_{n} - t_{n-1}$$
(2.33)

$$\underbrace{y_{n}^{k+1} - y_{n}^{k}}_{X} = -\underbrace{\left(\frac{1}{h_{n}}\frac{\partial F}{\partial y'} + \frac{\partial F}{\partial y}\right)^{-1}}_{A} \cdot \underbrace{F\left(t_{n}, y_{n}^{k}, \frac{y_{n}^{k} - y_{n-1}}{h_{n}}\right)}_{b}$$
(2.34)

O processo de aproximação de (2.32) é feito através do método BDF com um mecanismo de variação e seleção do tamanho do passo de integração h_n e da ordem k (1 a 5) do método através de uma estratégia conhecida como coeficiente-fixo direcionado. Esta seleção se baseia no cálculo dos erros de truncamento e

interpolação polinomial, fixando-se o comprimento do passo de integração e da ordem dos últimos intervalos, até satisfazer a condição de convergência para iniciar outro processo de seleção (Brenan et. al., 1996).

Se a simulação envolver um sistema de energia elétrica de grande porte com centenas de máquinas e dispositivos de controle, os custos para computar e fatorar a matriz A de (2.34) dominam o custo da integração. Na presente tese este subproblema linear, representado por (2.35), é solucionado a cada iteração Newton através do método iterativo GMRES, onde A é a matriz Jacobiana do sistema (também conhecida como matriz de iteração) de ordem $n \times n$; x e b são vetores n-dimensionais. O parâmetro α está associado ao passo ou a ordem do método (Apêndice A); e β é um vetor que depende da solução de intervalos anteriores.

$$\begin{aligned} A.x &= b \\ x &= y^{k+1} - y^k \\ b &= -F\left(t, y^k, \alpha y^k + \beta\right) \end{aligned} \tag{2.35}$$

2.3.2 O Método Backward Differentiation Formulae – BDF

Uma característica comumente encontrada na maioria dos métodos numéricos desenvolvidos para problemas de valor inicial de índice menor que dois, é a implementação de métodos BDF da classe multi-passo. O método considerado aqui aproxima a derivada na Equação (2.32) usando um método BDF de ordem k ($1 \le k \le 5$), mas está em análise à possibilidade de limitar esta faixa entre $1 \le k \le 2$ (Jardim 1999). A escolha da ordem do método e do passo de integração em cada intervalo de tempo depende do comportamento da solução, determinado pela avaliação de dois tipos de erros. O primeiro é conhecido como erro de truncamento local do método, que mede quanto o operador diferença se aproxima do operador diferencial. O outro tipo de erro está associado com o processo de integração polinomial (Brenan, 1996).

O método BDF considerado aplica o coeficiente-fixo direcionado, já mencionado anteriormente, para melhorar a eficiência do processo de variação da ordem do método e do tamanho do passo de integração (Jackson, 1980). Normalmente, os métodos multi-passo da família BDF de k-passos (passo de integração fixo) assume conhecidos os valores passados $(y_{n-j}, f_{n-j}), j = 1, ..., k$ numa sequência de pontos igualmente espaçados pelo comprimento de passo (h). Supondo que em t_{n-1} tem-se

um passo de comprimento h_n , tal que $h_n \neq h$, sendo h comprimento de passo correspondente aos intervalos de integração imediatamente anteriores ao ponto n, é necessário atualizar as soluções nos intervalos passados $t_{n-1} - jh_n$, onde $1 \le j \le k - 1$.

A Figura 2.1 ilustra a aplicação e o desenvolvimento do método BDF realçando o mecanismo de correção e predição com coeficiente-fixo direcionado, sendo uma forma genérica do método de Gear (Gear, 1971) incluindo a capacidade de flexibilizar a ordem e o passo de integração (Jackson, 1980).

Figura 2.1 – Conceito básico dos métodos BDFs de ordem/passo variável

A equação previsor (ou polinômio previsor) é uma fórmula de extrapolação explícita que interpola y_{n-i} nos últimos i = 1, ..., k + 1 (k é a ordem das fórmulas BDF – Apêndice A), fornecendo os valores iniciais do vetor aproximado da solução no intervalo de tempo a integrar t_{n+1} para serem usados nas iterações da equação corretor (procedimento de integração implícita), com o sistema não-linear resultante. O previsor é responsável pela primeira aproximação $y_{(n+1)}^P$ ao vetor solução $y_{(n+1)}$ no intervalo de tempo t_{n+1} através de uma formulação polinomial composta de diferenças divididas, dada por:

$$y_{n+1}^{P} = y_{n} + (t - t_{n})[y_{n}, y_{n-1}] + (t - t_{n})(t - t_{n-1})[y_{n}, y_{n-1}, y_{n-2} + ... + (t - t_{n})(t - t_{n-1})\cdots(t - t_{n-k+1})[y_{n}, y_{n-1}, ..., y_{n-k}]$$
(2.36)

A avaliação em t_{n+1} determina a primeira aproximação de valores y_{n+1}^0 , que serão usados na iteração-corretor para a determinação explícita da aproximação final no

intervalo t_{n+1} . Da mesma forma, o vetor $y_{n+1}^{\prime 0}$ é obtido diferenciando-se o polinômio previsor (Equação (2.36)) no instante t_{n+1} .

Na etapa de correção, algumas hipóteses apresentadas por (Byrne, 1975; Jackson, 1980) permitem o conhecimento implícito do vetor solução y_{n+1} no instante t_{n+1} através da relação com os valores aproximados na etapa de previsão. O polinômio corretor interpolará o polinômio previsor em k pontos igualmente espaçados anteriores a t_{n+1} , resultando na seguinte equação:

$$y_{n+1}^{C}(t) = y_{n+1}^{P}(t) + b(t) \left(y_{n+1}^{C} - y_{n+1}^{(0)}\right)$$
(2.37)

onde a constante numérica b é dada por:

$$b(t_{n+1} - ih_{n+1}) = 0, \forall i = 1,..,k$$

 $b(t_{n+1}) = 1$

Diferenciando-se a Equação (2.37) e fazendo uma avaliação em t_{n+1} , tem-se:

$$\alpha_{s}\left(y_{n+1}+y_{n+1}^{(0)}\right)+h_{n+1}\left(y_{n+1}'-y_{n+1}'^{(0)}\right)=0 \qquad \alpha_{s}=-\sum_{j=1}^{k}\frac{1}{j}$$
(2.38)

Resolvendo a Equação (2.38) para y'_{n+1} , a iteração correção deve resolver:

$$\mathsf{F}\left(\mathsf{t}_{\mathsf{n+1}},\mathsf{y}_{\mathsf{n+1}},\mathsf{y}_{\mathsf{n+1}}^{\prime(0)} - \frac{\alpha_{\mathsf{s}}}{\mathsf{h}_{\mathsf{n+1}}}\left(\mathsf{y}_{\mathsf{n+1}} - \mathsf{y}_{\mathsf{n+1}}^{(0)}\right)\right) = 0 \tag{2.39}$$

2.3.3 Estratégias de Seleção de Ordem e Passo de Integração

Os métodos BDF com coeficiente-fixo direcionado permitem escolher a ordem do método e o tamanho do passo para a aproximação do próximo intervalo. Este processo é feito através de estratégias de seleção baseadas no cálculo dos erros, fixando-se o tamanho dos passos de integração dos últimos intervalos t_n e ordens k_{n-2} , k_{n-1} , k_{n+1} . Após atender à condição de convergência, inicia-se outro processo de avaliação correspondente à aceitação do passo $t_{n+1} - t_n$ através de uma estratégia de cálculos de erro. Esta etapa corresponde a um dos aspectos mais relevantes do

processo de solução, ou seja, a confiabilidade em resolver de forma eficiente o sistema de EDAs.

Os dois tipos de erros envolvidos no processo de aceitação ou rejeição do passo estão relacionados ao erro de truncamento local do método e ao processo de interpolação polinomial, sendo este último composto de duas partes (Brenan et al., 1996). Considerando-se estes erros, é elaborada a seguinte condição de decisão:

$$\max\left(\alpha_{k+1}(n+1), \left|\alpha_{k+1}(n+1) + \alpha_{s} - \alpha^{0}(n+1)\right|\right) \times \left\|y_{n+1} - y_{n+1}^{(0)}\right\| \le 1.0$$
(2.40)

onde

O passo é rejeitado se a condição acima não for satisfeita e o cálculo da ordem do método independe da aceitação do passo de integração.

Após o teste de verificação do tamanho do passo e do cálculo da ordem do método, é feita nova tentativa, se rejeitado, para encontrar um tamanho de passo que satisfaça as condições estabelecidas, ou seguirá em frente calculando novos passos (Shampine & Gordon, 1975). O erro na nova ordem k é estimado como se os últimos k + 1 intervalos fossem calculados com um novo passo, e este passo é escolhido de forma que o erro estimado satisfaça a (2.40). O novo passo de integração h_{n+1} é escolhido de forma conservadora (2.41) para que o erro seja a metade do valor da tolerância do erro de integração desejado.

$$h_{n+1} = rh_n$$

 $r = (2EST)^{-\frac{1}{(k+1)}}$
(2.41)

O parâmetro "EST" representa o erro estimado para o método de ordem k selecionado para o passo seguinte h_{n+1} . Quando se tem uma condição na qual o passo foi aceito, o seu tamanho aumenta apenas se for possível dobrá-lo. Se for necessária uma redução, o tamanho do passo é reduzido de pelo menos um fator r = 0.9, e no máximo de r = 0.5.

Por outro lado, quando se encontra numa condição na qual o passo foi rejeitado, sendo a primeira tentativa desde a última aceitação, o fator r é dado por (2.41) e multiplicado por 0.9. O passo de integração é reduzido no mínimo pelo fator 0.9 e no máximo por 0.25. Após a segunda tentativa sem êxito, o passo de integração é reduzido por um fator de 0.25. Depois de três tentativas sem sucesso, a ordem é reduzida para 1 (um) e o tamanho do passo é reduzido por um fator de 0.25 sempre que o teste falhar. Atingindo-se um tamanho de passo tal que $t_n \approx t_{n+h}$, gera-se uma mensagem de erro e o processo é interrompido. Este tamanho de passo h_{min}, representando o cumprimento da condição de $t_n \approx t_{n+h}$, é calculado através seguinte equação:

$$h_{min} = 4 \times \overline{\epsilon} \times max(|t_n|, |T_{Fin}|)$$
(2.42)

onde $\tilde{\epsilon}$ representa o erro da unidade de arredondamento e T_{Fin} é o instante de tempo final da simulação estabelecido pelo usuário.

2.3.4 Controle do Passo de Integração Através de Filtro Digital

O item anterior apresentou as principais etapas associadas ao controle do erro e, consequentemente, do comprimento do passo de integração a ser aceito, ou não, durante o processo de solução das equações diferenciais ordinárias. As estratégias adaptativas associadas ao processo de solução estão baseadas em heurísticas com muitas lógicas e constantes tomadas de decisão. Por causa destes fatores, a capacidade em termos de solucionar eficientemente o problema pode ser bastante degradada. Portanto, é necessário desenvolver estratégias para amenizar as consequências indesejáveis resultantes e obter um comportamento bem suave da solução.

A referência (Soderlind & Wang, 2003) enfoca as deficiências associadas às estratégias de variação do passo apresentadas anteriormente e sugere formas de amenizá-las através de um controle adaptativo do comprimento do passo (2.43), incluindo filtros digitais. O algoritmo está baseado na teoria de controle e tem como objetivo manter o erro estimado igual à tolerância, e para consegui-lo é necessário computar a diferença entre o erro e a tolerância desejada e usar esta diferença em um laço de controle retroalimentado para ajustar o comprimento do passo de forma contínua.

$$\mathbf{h}_{n+1} = \left(\frac{\varepsilon}{\hat{\mathbf{r}}_n}\right)^{k\beta_1} \left(\frac{\varepsilon}{\hat{\mathbf{r}}_{n-1}}\right)^{k\beta_2} \left(\frac{\mathbf{h}_n}{\mathbf{h}_{n-1}}\right)^{-\alpha_2} \mathbf{h}_n$$
(2.43)

O parâmetro ε corresponde a uma parcela de uma determinada tolerância do erro local e k é p ou p + 1 (dependendo do objetivo do controle), onde p é a ordem do estimador do erro local $\hat{r_n}$. Os parâmetros β_1 , β_2 e, α_2 são selecionados de acordo com ordem das condições para adaptação e filtro passa-baixa (Soderlind, 2003).

De acordo com (Valli et al., 2004) técnicas adaptativas para seleção automática do passo de integração são provavelmente os meios mais importantes para melhorar a eficiência de certo método de integração. Os autores aplicaram duas técnicas em problemas envolvendo elementos finitos obtendo-se bons resultados. Nesta tese, um controlador é disponibilizado para determinar o comprimento do passo de integração na simulação de cenários de estabilidade de curta e de longa-duração, sendo possivelmente uma contribuição já que nada relacionado foi encontrado na literatura consultada.

3 Métodos Iterativos e Suas Estratégias

3.1 Introdução

O Capítulo anterior apresentou conceitos fundamentais sobre técnicas numéricas, destacando alguns métodos (diretos e os iterativos) na solução de sistemas algébricos lineares, e o BDF para a solução de Equações Diferenciais e Algébricas (EDAs). O presente Capítulo aborda com mais detalhes os métodos iterativos, précondicionadores e estratégias numéricas, oferecendo também uma abordagem da história da arte (evolução) desses métodos, enfocando os que mais se destacam entre os especialistas, bem como suas principais características, vantagens e desvantagens associadas.

Destaca-se neste Capítulo a abordagem do método numérico iterativo de interesse, o GMRES, e as estratégias numéricas adotadas, incluindo a técnica de précondicionamento. Essas combinações são: GMRES Sem Pré-Condicionamento e com Estratégias de Reinicialização; GMRES Sem Pré-Condicionamento e com Estratégias de Reinicialização e Diferenças de Quocientes; GMRES com Pré-Condicionamento ILUT com Estratégias de Reinicialização. Em conjunto com a exposição da teoria, simulações computacionais envolvendo sistemas de energia elétrica também são apresentadas, apesar do Capítulo 4 ser dedicado exclusivamente aos experimentos numéricos. Como no Capítulo 2, o objetivo de mostrar simulações já neste Capítulo é simplesmente didático, mas desta vez envolvendo sistemas elétricos.

Será notado que algumas informações presentes já foram vistas anteriormente, mas aqui são abordadas com mais detalhes, e também porque dependendo da importância do assunto é imperativo trazê-las de volta.

3.2 Historia da Arte

Métodos de projeção surgiram na primeira metade do século passado, e tentavam solucionar um conjunto de equações resolvendo cada equação separadamente baseado numa pequena correção sobre certa norma. Esses métodos poderiam ser aplicados em sistema lineares sobre determinados (mais equações que funções incógnitas) ou subdeterminados (menos equações que funções incógnitas). Surgiram

em seguida os métodos de Cimmino (Cimmino, 1939) e Kaczmarz (Kaczmarz, 1939), que foram mais tarde identificados como variantes do Gauss-Jacobi e/ou Gauss-Seidel para sistemas A^TA ou AA^T. Já a segunda metade do século passado foi marcada pelo desenvolvimento do método Gradiente Conjugado (1952) por Hestenes e Stiefel (Hestenes et al., 1952) e do algoritmo de Lanczos para sistemas lineares (Lanczos, 1950), iniciando a partir daí a era dos métodos iterativos no subespaço Krylov. Estes não foram tratados inicialmente como técnicas iterativas, mas como algoritmos de solução direta uma vez que encontravam a solução em menos que n passos, sendo n a ordem da matriz. Após algum tempo, Lanczos (Lanczos, 1950) e Arnoldi (Arnoldi, 1951) levantaram a hipótese de transformar a matriz para uma forma mais simples com o propósito de facilitar a diagonalização. Estas quatro referências juntas formaram a base para o desenvolvimento de muitos métodos que surgiriam em seguida.

Uma importante publicação de Engeli et al (Engeli et al., 1959) considerou o método Gradiente Conjugado como um processo iterativo e mostrou que numa aritmética precisa de arredondamento, este método não terminava no número de passos (iterações) esperado, ou seja, igual, pelo menos, a ordem da matriz. Neste caso em particular, a ordem da matriz era igual a 64, e a convergência ocorria apenas após algumas centenas de iterações. Se não bastasse essa aparente deficiência, o método apareceu em outra publicação (Wilkinson et al., 1971) como um tipo de técnica direta cujo destaque era a qualidade amigável do uso de espaço de memória. Foi mencionado que a convergência poderia ocorrer apenas após m iterações, onde m poderia ser de três a cinco vezes a ordem da matriz. Devido a não compreensão deste comportamento na aritmética de arredondamento, o método não foi incluído no primeiro programa computacional universal de álgebra linear, conhecido com LINPACK, isso em meados da década de setenta. No início da década de sessenta ficou claro que a convergência do Gradiente Conjugado dependia da distribuição dos autovalores da matriz, e não muito da sua ordem. Reid (Reid 1971) sugeriu o uso do Método Gradiente Conjugado como uma técnica iterativa, mas agora para sistemas esparsos de grande-porte referentes à discretização de Equações Diferenciais Parciais. Logo após, o pré-condicionamento (já proposto em (Hestenes et al., 1952)) tornou-se bem popular. Demorou aproximadamente vinte e cinco anos para o Método Gradiente Conjugado se tornar o método escolhido para matrizes simétricas definidas positivas.

As variantes não-simétricas dos métodos de Krylov levaram aproximadamente esses mesmos vinte e cinco anos para amadurecerem, sendo o final da década de sessenta

e o início da de setenta o auge dessa descoberta. Técnicas conhecidas como ORTHODIR, ORTHOMIN, FOM, entre outras, foram introduzidas nas suas formulações originais; esses métodos apresentaram limitações como interrupções (tentativa de divisão por elemento nulo - pivô) e instabilidade numérica. A variante GMRES, introduzida por Saad e Schultz (Saad, 1986), foi desenvolvida para evitar esses problemas indesejáveis tornando-se muito popular. Entretanto, O GMRES apresentava a desvantagem de necessitar de grandes esforços computacionais à medida que aumentava o número de iterações. O método Gradiente Bi-Conjugado, uma variante do original, não apresentava esses problemas, e estava baseado no método não-simétrico de Lanczos (1952), introduzido por Fletcher (Fletcher, 1975). Entretanto, o Bi-GC estava sujeito a problemas conhecidos como interrupções de primeiro e segundo tipo. Apesar disso, o método se tornou muito popular, principalmente a variante conhecida como CGS (Sonneveld, 1989), o qual podia ser aplicado duas vezes, em sequência, dobrando a velocidade de convergência. Por outro lado, os problemas associados ao BI-GC também eram amplificados. Na década de oitenta, Parlett (Parlett et al., 1985) e mais tarde Freund e Nachtigal (Freund, 1990) mostraram como corrigir as deficiências do Bi-GC permitindo o desenvolvimento de programas computacionais confiáveis. Mais recentemente, variantes híbridas do Bi-GC e do GMRES têm sido desenvolvidas, sendo o Bi-GCSTAB (Van der Vorst, 1992) um dos mais populares.

Em 1989, Simon (Simon, 1989) apresentou resultados de matrizes da ordem de 55.000 para técnicas diretas de solução, e em supercomputadores estes cálculos consumiriam alguns minutos de tempo de CPU. O autor atestou que algoritmos diretos com esparsidade ainda era a melhor opção para problemas com estruturas matriciais irregulares. Embora isso seja verdade caso a estrutura da matriz permita o uso de um processo de eliminação eficiente, tornou-se claro que para muitos problemas relacionados a Equações Diferenciais Parciais, a complexidade do processo de eliminação aumentava bastante. Problemas com estruturas irregulares da ordem de 1.000.000, como vistos por Simon, podem ser resolvidos por métodos diretos em computadores de grande capacidade, principalmente de memória, mas a um custo proibitivo. Entretanto, alguns desses problemas poderiam ser resolvidos através de técnicas iterativas, certificando-se da existência de um pré-condicionador adequado. Na última década do século passado, esforços consideráveis foram feitos para a identificação de pré-condicionadores eficientes para classes de matrizes. Em 1992, Pommerell (Pommerell, 1992) reportou aplicações bem sucedidas de métodos de

Krylov pré-condicionados para sistemas extremamente mal-condicionados, cuja ordem era de 210.000.

Pré-Condicionamento

A convergência dos métodos iterativos depende das condições espectrais da matriz do sistema linear. A fim de melhorar essas propriedades, é possível transformar o sistema linear original por um equivalente, cuja solução ofereça menos barreiras aritméticas, mas cuja solução seja idêntica a do sistema original. Este processo, abordado neste trabalho em várias oportunidades, e que continuará sendo abordado, é conhecido com pré-condicionamento da matriz original. O conceito de pré-condicionador surgiu por volta de 1952 num artigo de Lanczos (Lanczos, 1952), atestando que o objetivo do procedimento era reduzir as imperfeições iniciais do sistema, onde não se conseguia a solução exata.

Métodos modernos de pré-condicionamento começaram a surgir no final da década de 60 e no início da de 70. Evans (Evans, 1968) sugeriu para pré-condicionar uma matriz aproximada triangular e esparsa, em conjunto com o método Gradiente Conjugado. Em 1972, Alexsson (Axelsson 1972) propôs o uso do método SSOR como um pré-condicionador. Decomposições incompletas de Choleski (Meijerink & Van Der Vorst, 1977), tornaram-se muito populares e levaram ao processo ICCG (Meijerink, 1977). Concus, Golub e O'Leary (Concus et al., 1976) escreveram um artigo relevante sobre o uso e o efeito do pré-condicionador no método Gradiente Conjugado.

Fatoração Incompleta

A estratégia de pré-condicionar, de acordo com uma interpretação moderna, se refere a aproximar, ou aplicar o processo de fatoração incompleta á matriz *A*. Algumas das primeiras publicações sobre esses processos de fatoração citadas com frequência incluem, Buleev (Buleev, 1960), Varga (Varga 1960), e Oliphant (Oliphant 1962). No final dos anos 60 outros poucos procedimentos foram desenvolvidos, especificamente para matrizes associadas a aproximações por diferenças finitas. Em 1977 Meijerink e Van der Vorst introduziram a mais importante técnica de fatoração incompleta LU- ILU (Meijerink, 1977). Este artigo sugere que a o uso conjunto desta técnica e o método gradiente conjugado poderia resultar numa combinação muito rápida e robusta, sendo, portanto um grande estímulo para a ampla área de métodos iterativos. Várias contribuições foram surgindo, destacando-se duas diferentes formas de se desenvolver pré-condicionadores ILU com precisão melhorada. A primeira forma está baseada numa fatoração simbólica, isto é, requer apenas informações sobre a estrutura não-zero da matriz para se determinar quais elementos não-nulos devem ser desprezados. A segunda forma é modificar uma técnica direta incluindo uma regra de desconsideração, baseada no tamanho numérico dos preenchimentos introduzidos (Gallivan et al., 1990; Osterby, 1983; D'Azevedo et al., 1992a; D'Azevedo et al., 1992b; Zlatev, 1982; Young et al., 1989).

Embora a relação entre o tamanho dos elementos desprezados e o número de iterações necessário para atingir a convergência é de difícil compreensão, desprezar elementos pequenos parece ser mais adequado para se produzir um précondicionador de melhor qualidade, do que desprezar elementos grandes. Entretanto, a prática tem revelado que isto nem sempre é verdade. Outra dificuldade da estratégia baseada no nível de preenchimento está associada à previsão do montante de preenchimentos que serão gerados.

O número de variantes associadas à pré-condicionadores ILU é muito grande, sendo, portanto suficiente atestar que foram desenvolvidas para arquiteturas específicas de matrizes, ou para aplicações específicas, ou para explorar características específicas de equações, entre outras. A referência (Dongarra et al., 1998) oferece informações importantes sobre pré-condicionadores.

Saad (Saad, 1988) propôs algumas variantes da técnica ILU para a matriz A, sendo uma delas de fato uma decomposição LQ incompleta. Nesta estratégia não é necessário formar a matriz Q explicitamente, sendo que a matriz triangular inferior, L, pode ser vista como o fator de uma fatoração incompleta Choleski da matriz A^TA. Isto pode ser explorado na etapa de pré-condicionamento, evitando o uso de Q. A segunda estratégia foi introduzir pivotamento parcial no ILU, que aparentemente apresenta algumas vantagens para problemas dominados por convecção. Esta estratégia foi posteriormente melhorada devido à inclusão de uma técnica com limite (*threshold* em inglês) para os preenchimentos, como considerado no algoritmo ILUT (Saad, 1986).

A técnica é conhecida como fatoração incompleta porque durante o processo de fatoração, certos elementos não-nulos que aparecem no lugar de elementos inicialmente nulos, são ignorados. Tal pré-condicionador é então expresso na forma fatorada M = LU com as matrizes triangular inferior L e triangular superior U. A eficácia

do pré-condicionador depende da capacidade de M⁻¹ aproximar A⁻¹. O método ILU está sujeito a condições de interrupções, ou resultam em matrizes indefinidas (pivôs negativos), mesmo se a fatoração completa da mesma matriz estiver garantida e levar a uma matriz definida positiva. Em casos onde elementos pivô são nulos ou negativos, estratégias têm sido propostas, tais como a substituição por um número positivo arbitrário (Reich, 1949), ou reinicializando a fatoração.

3.2.1 Métodos e Estratégias no Subespaço Krylov – O Estado da Arte

No início dos anos 50, um bom número de métodos novos surgiu influenciando positivamente o perfil dos métodos iterativos. Em contribuições separadas, Lanczos (Lanczos, 1952) e Hestenes/Stiefel (Hestenes, 1952) propuseram diferentes versões do conhecido método Gradiente Conjugado. Coincidentemente, Hestenes e Stiefel desenvolveram o mesmo método, mas de forma independente. O método proposto por Lanczos é, para matrizes simétricas definidas positivas, equivalente matematicamente ao método Gradiente Conjugado, mas foi desenvolvido também para matrizes não-simétricas. Não há dúvidas que a origem desta classe de métodos estava fortemente enraizada na teoria da aproximação e, particularmente em polinômios ortogonais.

A ideia principal dos métodos Gradientes está baseada em alguma forma de minimização. Por exemplo, para uma matriz simétrica definida positiva A, o GC minimiza a norma-A: $||x_i - x||_A^2 (x_i - x, A(x_i - x))$, para os x_i que estão no subespaço Krylov $K_i(A, r_0)\{r_0, \dots, A^{i-1}r_0\}$. Outra interpretação dos métodos gradiente é que o resíduo é ortogonal ao espaço de resíduos previamente gerados, ou a algum outro espaço relacionado. Ambas as interpretações são úteis para a formulação de métodos, bem como para análise. Uma consequência muito útil da base do subespaço Krylov é que x_i pode ser expresso como um polinômio de A de grau i - 1, agindo sobre r_0 (resíduo inicial). A Expressão (3.1) indica o limite superior para matrizes simétricas definidas positivas, onde $k = \lambda_{max}(A) \cdot \lambda_{min}(A)^{-1}$ (Kaniel, 1966; Daniel, 1967; Concus et al., 1976; Axelsson, 1976). Este limite superior descreve bem o comportamento da convergência para matrizes A, onde os autovalores estão distribuídos de forma homogênea.

$$\|\mathbf{x}_{i}-\mathbf{x}\|_{A} \sqrt{2} \left(\frac{\sqrt{k}-1}{\sqrt{k}+1}\right)^{I} \|\mathbf{x}_{i}-\mathbf{x}\|_{A}$$
 (3.1)

Para distribuições menos homogêneas, os limites podem ser obtidos através de escolhas mais adequadas dos polinômios de aproximação, por exemplo, polinômios de Chebyshev (Axelsson, 1976). Essas escolhas não revelam a convergência super linear geralmente observada no GC, e também em métodos no subespaço Krylov. A noção de convergência super linear se refere à observação de que o processo de convergência do GC é acelerado ao longo do processo. Provas de convergência super linear foram apresentadas pela primeira vez no início dos anos 50 (Karush, 1952; Hayes, 1954), mas não revelaram que o comportamento super linear poderia se manifestar nas etapas iniciais do processo de iteração. Concus (Concus et al., 1976) relacionou este comportamento às aproximações no subespaço Krylov, afirmando que:

"Os autovalores extremos são bem aproximados especialmente (pelos valores de Ritz correspondentes ao subespaço Krylov) à medida que o GC evolui, a iteração então se comporta como se os correspondentes autovetores não estivessem presentes."

Isto leva a um menor número efetivo de condição da matriz em (2.34), o que pode explicar o aumento na velocidade de convergência. Em 1986, provou-se este fato numa forma quantitativa (Van der Sluis, 1986) onde foi mostrado que, para que a aceleração ocorresse, os autovalores relevantes precisavam ser aproximados apenas por um modesto valor de Ritz.

Passou algum tempo antes que as idéias do GC fossem generalizadas para outras classes de matrizes. No MINRES, a norma residual $||Ax_i - b||_2$ é minimizada, e isto requer cautela a fim de evitar interrupções. O método Gradiente Conjugado pode ser interpretado como um processo no qual a matriz A é projetada no subespaço Krylov, resultando numa matriz tri-diagonal T de dimensão pequena. A aproximação atual x_i é determinada solucionando-se um pequeno sistema linear com T, sendo feito com fatoração LU sem pivotamento. Para matrizes indefinidas, a fatoração LU pode resultar em problemas numéricos, mas Paige e Saunders aplicaram decomposição QR sobre T, levando à recorrências curtas e regulares, fazendo do MINRES um método atrativo principalmente devido a economia de armazenamento. Paige e Saunders também conseguiram minimizar $||x_i - x||_2$ sem conhecer a solução x, restringindo x_i a $AK_i(A, r_0)$, sendo este método conhecido como SYMMLQ (SYMMetric LQ). A vantagem deste método sobre o MINRES parece estar na menor sensibilidade ao mau condicionamento de A, por outro lado número de iterações é, geralmente, maior.

Com relação o Gradiente Bi-Conjugado-GBC (Fletcher, 1975), inicialmente não foi muito bem aceito pelos especialistas devido às várias condições de interrupção que podiam ocorrer. Também, este método não minimizava nenhuma norma de interesse e o comportamento da convergência podia ser irregular. Entretanto, ao longo dos anos, aprendeu-se a usar o GBC e o método de Lanczos de forma eficiente na solução de sistemas lineares esparsos de grande-porte, graças ao melhor entendimento desses processos, bem como as melhorias introduzidas ao longo dos anos.

As excelentes perspectivas associadas aos métodos baseados no subespaço Krylov inspirou os especialistas na construção de métodos similares, só que para matrizes não-simétricas. O método clássico de Lanczos levou a um sistema tri-diagonal, a projeção de A com relação ao subespaço Krylov. A fatoração desta matriz tri-diagonal como um produto de matrizes bi-diagonais superior e inferior conduz à dois termos de recorrência acoplados, como no Gradiente Bi-Conjugado. Como já mencionado, este método sofre de várias condições de interrupção, uma associada a indefinição com o sistema tri-diagonal implicitamente gerado, e a outra é mais séria, surgindo quando o processo de bi-ortogonalização conduz a um produto interno nulo (zero) dos dois novos vetores no subespaço Krylov. Existem soluções para essas condições de interrupção (apenas a proximidade para esta condição é suficiente para gerar imprecisões na solução aproximada) (Bank, 1993; Parlett et al., 1985).

Solucionar essas condições de interrupção no Gradiente Bi-Conjugado foi um passo importante para o reconhecimento dos aspectos promissores das técnicas iterativas, particularmente dois deles motivaram bastante os pesquisadores. O mas comportamento da convergência do Bi-Conjugado era muito irregular, onde as normas dos sucessivos resíduos poderiam se comportar de forma irregular. Este fato motivou Freund e Nachtigal (Freund, 1990) a proporem um algoritmo no qual o sistema tridiagonal sobredeterminado resultante era resolvido na base dos mínimos quadrados. Uma vez que os vetores base do subespaço Krylov (gerados pelo método de Lanczos de dois lados) em geral são não-ortogonais, esta técnica não conduz a uma solução aproximada de resíduos mínimos (como o MINRES), justificando a sua identificação como Resíduo Quase-Mínimo (QMR - Quasi Minimum Residual). O método QMR completo inclui uma estratégia identificada como "olhar para frente" (look-ahead), mas também se tornou popular sem a inclusão desta estratégia, uma vez que a primeira condição de interrupção é corrigida através da solução dos mínimos quadrados do sistema tri-diagonal (Barrett et al., 1994).

Outra clara desvantagem no método Lanczos (two-sided Lanczos method) está na necessidade de se construir dois subespaços Krylov: $K_i(A, r_0) \in K_i(A, s_0)$. Dos dois vetores base gerados, apenas um é explorado para a solução, o outro pode ser visto como um conjunto auxiliar usado para gerar produtos internos necessários para gerar a base bi-ortogonal. Sonneveld (Sonneveld, 1989) fez a importante observação de que operações com A^T poderiam ser reformuladas para operações com A, e que essas operações poderiam ser usadas para uma futura redução da norma residual. Apesar desses avanços, a velocidade da convergência ainda era um problema. Entretanto, Sonneveld propôs uma solução interessante para aumentar a velocidade de convergência, a praticamente o mesmo custo por iteração. A ideia está baseada na observação de que o resíduo r_i pode ser expresso formalmente como $r_i = p_i(A)r_0$, com um polinômio pi de grau i. Similarmente, o resíduo equivalente no espaço adjacente pode ser expresso como $s_i = p_i(A^T)s_0$. Os coeficientes de iteração do Bi-Conjugado são computados dos produtos internos como (r_i, s_i), e tal produto interno pode ser reescrito formalmente como $(p_i(A)r_0, p_i(A^T)s_0) = (p_i^2(A)r_0, s_0)$. Esta observação leva a um algoritmo que gera $\tilde{x}_i \in K^{2i}(A; r_0)$, para o qual o correspondente resíduo \tilde{r}_i pode ser expresso como $\tilde{r}_i = p_i^2(A)r_0$. Na situação onde o Bi-Conjugado fornece um resíduo $r_i = (p_i(A)r_0)$ que seja menor comparado a r_0 , se pode concluir que $p_i(A)$ transformou r_0 em um vetor menor, e se $p_i(A)$ for aplicado duas vezes, a redução é dobrada. De fato, a convergência do método resultante, Conjugado Gradiente Quadrado (CGS – Conjugate Gradients Squared), é obtida geralmente duas vezes mais rápida quando comparada ao Bi-Conjugado. Entretanto, a convergência do CGS é muito mais irregular do que a do Bi-GC, resultando possivelmente em sérios problemas de precisão quando se está num ambiente de aritmética de precisão finita. Este algoritmo também é conhecido como Bi-CGS.

Logo após o desenvolvimento do método CGS, foi reconhecido que operações com A^T também poderiam ser transformadas em outros polinômios em A. A primeira ideia neste sentido foi o Bi-CGSTAB (Van der Vorst, 1992), onde o Bi-Conjugado era combinado com passos de mínimos resíduos. O resultado foi uma convergência mais suave e mais rápida em comparação ao Bi-Conjugado, servindo também para outras combinações, como o Bi-CGSTAB(I) (Sleijpen, 1993), TFQMR (Freund, 1993, QMRSTAB (Chan et al., 1994).

Outro caminho a ser seguido era tentar minimizar a norma residual sobre todos os vetores no subespaço Krylov, similarmente ao MINRES. Um bom número de métodos

foi proposto baseado nesta minimização, como o ORTHODIR (Jea, 1980) GCR (Eisenstat, 1983) e o ORTHOMIN (Vinsome, 1976). O problema foi que muitos desses métodos sofriam de algum tipo de instabilidade numérica. O método do Resíduo Mínimo Generalizado (GMRES) (Saad, 1986), desenvolvido em 1986, equivale matematicamente a essas técnicas, mas se tornou o preferido entre os especialistas e usuários devido ao seu melhor comportamento numérico e a sua economia, ambos em termos de espaço de memória e processo aritmético. Uma vantagem do GMRES é a sua garantia em computar a solução aproximada com uma mínima norma residual, mas os custos por iteração associados a computação da solução, além do produto matriz-vetor, aumentam linearmente com a evolução do processo iterativo. Além disso, todos os vetores base do subespaço Krylov precisam ser armazenados.

Como já mencionado no Capítulo 2, a forma de superar esta condição indesejada é introduzindo uma estratégia de reinicialização do processo iterativo, identificados como GMRES reinicializado ou simplesmente GMRES(m). Por outro lado, a tarefa de se escolher o número de iterações (m) mais adequado para reinicializar o processo iterativo não é trivial, exigindo experiência e prática. Uma escolha inadequada pode comprometer o processo de convergência de forma significativa; e o método pode até falhar. Por esta razão, pesquisadores têm tentando encontrar formas para reduzir o número de passos associados ao processo iterativo através de estratégias de précondicionamento. Uma sugestão feita primeiramente por Eirola e Nevanlinna (Eirola, 1989) é tentar aprimorar o pré-condicionador com atualizações do subespaço Krylov.

Também foi visto no Capítulo 2 que a estratégia de pré-condicionar corresponde a encontrar um sistema algébrico linear equivalente ao original através de uma matriz de transformação M, cujo processo de solução seja mais simples, e a solução final seja idêntica a do sistema original, obviamente. O interessante é notar que existem também estratégias para a montagem dessas matrizes de transformação. Por exemplo, uma das estratégias corresponde a montar uma nova matriz a cada iteração, aproveitando informações prévias, sendo esta estratégia conhecida como pré-condicionamento atualizado. Por outro lado, está estratégia não pode ser aplicada diretamente ao GMRES, uma vez que a matriz de transformação irá variar dentro do processo iterativo, prejudicando a formação de um subespaço Krylov regular. Apesar disso, pode-se ainda minimizar o resíduo, Equação (2.13), sobre os novos subespaços. A ideia da estratégia do pré-condicionador atualizado tem sido abordada nesse sentido, por diferentes autores; Axelsson e Vassilevski (Axelsson, 1991) propõem um método gradiente generalizado com pré-condicionador atualizado; Saad (Saad, 1993) propõe

um esquema muito similar ao GMRES, conhecido como GMRES flexível (FGMRES) e Van der Vorst e Vuik (Van der Vorst, 1994) propõem um esquema chamado GMRESR.

3.3 Conceitos Associados ao Subespaço Krylov

O item anterior apresentou numa forma sintetizada a evolução dos métodos iterativos no subespaço Krylov, muitos baseados nos processos de projeção, tanto ortogonais como oblíquas, aplicadas na solução de sistemas de equações lineares da forma:

$$Ax = b$$

$$x = A^{-1}b$$
 (3.2)

O sistema (3.2) é aproximado por (3.3) onde p representa um polinômio adequado:

$$p(A)v \tag{3.3}$$

A matriz A é quadrada, de grande porte, altamente esparsa, real simétrica e definida positiva. Também pode ser real assimétrica, ou complexa. A variável x_0 corresponde à valores iniciais para os métodos iterativos, $r_0 = b - Ax_0$ é o resíduo inicial e o vetor z deve satisfazer a Equação (3.4).

$$Az = r_0 \tag{3.4}$$

Através do teorema de Cayley-Hamilton, a inversa da matriz não-singular A_{nxn} pode ser representada como um polinômio de grau n - 1, na seguinte forma (Watkins, 1991):

$$z = p_{n-1}(A)r_0$$
 (3.5)

Uma propriedade interessante dos algoritmos no subespaço Krylov é a convergência em um número finito de passos de iteração. Pode-se conseguir a solução exata do sistema linear em até n iterações, onde n é a dimensão da matriz A. O método de projeção extrai uma solução aproximada x_m de um subespaço $x_0 + K_m$ de dimensão m, resultante da aplicação de certas condições, como por exemplo, de Petrov-Galerkin (já mencionada no Capítulo 2), de acordo com (3.6) (Saad, 2003).

$$b - Ax_m \perp \zeta_m$$
 (3.6)

Onde ζ_m representa outro subespaço de dimensão m. O parâmetro K_m representa o subespaço Krylov, sendo expresso na seguinte forma:

$$K_{m}(A,r_{0}) = span(r_{0},Ar_{0},A^{2}r_{0},L,A^{m-1}r_{0})$$
(3.7)

As variantes dos métodos de Krylov resultam das diferentes escolhas dos subespaços ζ_m , bem como da forma que o sistema é pré-condicionado.

3.3.1 Algoritmos no Subespaço Krylov

Métodos que fornecem melhores aproximações no subespaço Krylov são conhecidos como métodos de projeção de Krylov devido às classes de projeções usadas. Esses métodos podem ser classificados de acordo com quatro diferentes condições:

- <u>Condição de Ritz-Galerkin</u>: constrói x_k e o resíduo é ortogonal com relação ao mais recente subespaço construído: b − Ax_k ⊥ K^k(A; r₀).
- 2. <u>Condição da norma mínima residual</u>: identifica x_k cuja a norma Euclidiana $\|b Ax_k\|_2$ é mínima sobre $K^k(A; r_0)$.
- 3. <u>Condição de Petrok-Galerkin</u>: encontra um x_k de forma que o resíduo $b Ax_k$ seja ortogonal a algum subespaço k-dimensional aceitável.
- 4. **<u>Condição da norma mínima do erro</u>**: determina $x_k \text{ em } A^T K_k(A^T; r_0)$ pelo qual a norma Euclidiana $||x_k x||_2$ é mínima.

A ideia básica é separar A em duas parcelas, uma identificada por P, e a outra por Q, de forma que A = P - Q. Então, o processo iterativo para solucionar o sistema algébrico (3.2) apresenta a seguinte estrutura:

$$Px_{k+1} = Qx_k + b$$

$$x_{k+1} = P^{-1}(Qx_k + b)$$

$$= x_k + P^{-1}(b - Ax_k)$$
(3.8)

Com o resíduo $r_0 = b - Ax_0$, tem-se:

$$x_{k+1} = x_0 + \beta_0 (P^{-1}r_0) + \beta_1 (P^{-1}AP^{-1})r_0 + \dots + \beta_k (P^{-1}A)^{k-1}P^{-1}r_0$$
(3.9)

sendo $\beta_0, \beta_1, ..., \beta_k$ constantes. Somou-se no lado direito de (3.9) um vetor que corresponde a uma combinação linear $M^{-1}r_0, (M^{-1}AM^{-1})r_0, ... (M^{-1}A)^{k-1}M^{-1}$, tem-se um vetor no subespaço k-dimensional (M é o precondicionador). O espaço $\{f, Bf, B^2f, ..., B^{(k-1)}r_0\}$ é denominado como o k-ésimo subespaço dimensional Krylov correspondente a f, e B é denotado como $K^k(B; f)$. Se P = I, então o subespaço Krylov é $K^k(A; r_0)$. Portanto, em geral, tem-se:

$$x_{k+1} = x_0 + z \text{ onde, } z \in K_k(P^{-1}A;P^{-1}r_0)$$
 (3.10)

Note que numa simples iteração os parâmetros $\beta_0, \beta_1, \dots, \beta_k$ são números e existe uma liberdade em escolher esses parâmetros de forma que possam ser geradas muitas variantes no subespaço Krylov, sendo as mais conhecidas (Saad, 2003; Van der Vorst, 2003):

- Método do Gradiente Conjugado (CG); Lanczos, Método de Ortogonalização Completo (FOM) e Gradiente-Conjugado Generalizado.
- Método das Equações Normalizadas (GCN).
- Método do Gradiente Bi-Conjugado (GBC).
- Resíduo Mínimo Generalizado (GMRES), Resíduo Mínimo (MINRES) e ORTHODIR.

Qualquer método sobre o subespaço Krylov necessita de um procedimento para: gerar vetores base adequados (processo de Arnoldi, Lanczos entre os mais relevantes). Além disso, processos de ortogonalização são necessários (procedimento de Gram-Schmidt) e gerar iterações (Galerkin).

3.4 O Método Resíduo Mínimo Generalizado (GMRES)

Como já informado, o GMRES é um método de projeção que minimiza a norma residual sobre todos os vetores em $x_0 + K_m$. Existem duas formas de se desenvolver o algoritmo do GMRES. A primeira aproveita a vantagem da propriedade de otimização e a seguinte equação (Saad, 2003):

$$AV_{m} = V_{m}H_{m} + u'_{m}e_{m}^{T} = V_{m+1}\hat{H}_{m}$$
 (3.11)

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{V}_{\mathsf{m}}\mathbf{y} \tag{3.12}$$

Onde y é um vetor m-dimensional. Definindo

$$J(y) = \|b - Ax\|_{2} = \|b - A(x_{0} + V_{m}y)\|_{2}$$
(3.13)

A Equação (3.11) resulta em:

b-Ax=b-A(x₀+V_my)=V_{m+1}(
$$\beta e_1 - \hat{H}_m y$$
) (3.14)

Uma vez que os vetores coluna de V_{m+1} são ortonormais, então:

$$J(y) \equiv \left\| b - A(x_0 + V_m y) \right\|_2 = \left\| \beta e_1 - \hat{H}_m y \right\|_2$$
(3.15)

A aproximação do GMRES é através de um vetor único $x_0 + K_m$ que minimiza a Equação (3.15). Pelas Equações (3.13) e (3.15), esta aproximação pode ser obtida simplesmente como $x_m = x_0 + V_m y_m$, onde y_m minimiza a função $J(y) = \|\beta e_1 - \hat{H}_m y\|_2$; isto é:

$$x_{m} = x_{0} + V_{m}y_{m}$$
, onde $y_{m} = \operatorname{argmin}_{y} \left\|\beta e_{1} - \hat{H}_{m}y\right\|_{2}$ (3.16)

A computação de y_m não é uma tarefa difícil uma vez que requer a solução de um problema de mínimos quadrados de dimensão $(m + 1) \times m$, onde m é normalmente pequeno. Este conjunto de Equações (3.11)-(3.16) resulta no algoritmo GMRES na sua forma básica, como ilustrado na Figura 3.1 – .

Definir o primeiro vetor $\mathbf{x}_0 = \begin{bmatrix} 0 \end{bmatrix}^T$; 1. 2. **Computar** $r_0 = (b - Ax_0)$; 3. Computar a norma Euclidiana $\beta = \|\mathbf{r}_0\|_2$; 4. Computar o primeiro vetor ortogonal e normalizado do subespaço **Krylov** $v_1 = r_0/\beta$; Construção de uma base ortonormal para $K^{j}(A;r_{0})$ 5. Para j = 1, ..., m Faça: 6. Computar $\omega_i = A \upsilon_i$; 7. Tornar o vetor ω ortogonal ao vetor precedente Para i = 1,..., j Faça: 8. $\mathbf{h}_{i,i} = (\omega_i, \upsilon_i);$ 9. $\omega_i = \omega_i - h_{i,i} v_i;$ 10. 11. Fim-Faça Computar a Norma Euclidiana. $h_{i+1,i} = \|\omega_i\|_2$ 12. 13. Se h_{j+1,j} = 0 ajustar m=j e ir para o passo 16 Normalizar o novo vetor $v_{i+1} = \omega_i / h_{i+1,i}$ 14. 15. Fim-Faça Definir a matriz Hessenberg $V_m := [v_1, ..., v_m], H_m = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le m}$ 16. 17. Encontrar a mínima norma do problema de mínimos quadrados 18. Computar a través de rotações de Givens $y_m = \operatorname{argmin}_{y} \|\beta e_1 - H_m y\|_2$ 19. $x_m = x_0 + V_m y_m$ Critério de Parada 20. Se $\rho = ||b - Ax_m||_2$ for o suficientemente pequeno Pare ou Então 21. 22. Ajustar $x_0 = x_m e$ voltar para o passo 2.

Figura 3.1 – O Algoritmo Básico do GMRES

3.4.1 O Pré-Condicionamento

O Pré-Condicionamento é uma estratégia comumente considerada nos métodos iterativos do subespaço Krylov, necessária na maioria dos casos envolvendo problemas práticos, e se resume a transformação do sistema original, conforme ilustra a Equação (3.17).

$$\hat{A}\hat{x} = \hat{b} \tag{3.17}$$

Onde $\widehat{A} = SAS^{T}$, e S representa uma matriz não-singular, escolhida de forma que:

$$k(A) < k(A)$$

$$\hat{x} = S^{-T}x$$

$$\hat{b} = S^{-1}b$$
(3.18)

Lembrando que $k(\hat{A})$ representa a condição espectral (distribuição de valores próprios, raio espectral, condição dos sistemas de autovalores, etc.) de A. Essa transformação linear é o pré-condicionamento e a matriz $M = (SS^T)^{-1}$ é o pré-condicionador, sendo que este último não é calculado de forma explícita.

A apresentação destes algoritmos de projeção Krylov na sua forma básica, isto é, sem pré-condicionadores, é caracterizada pela baixa robustez no sentido de garantir uma aceitável aproximação da solução com tempo de CPU e requisitos de armazenagem adequados. Para alguns métodos, como o GMRES sem pré-condicionador, esses conduzem na aritmética exata à solução precisa em no máximo n iterações, no entanto, sob o ponto de vista computacional deixam a desejar (vide teste no Capítulo 2). Outros métodos são restritos a classes específicas de problemas (GC, MINRES) ou sofrem de efeitos de interrupção (GBC) (Saad, 2003; Van der Vorst, 2003). Esta fraca convergência depende, basicamente, das suas propriedades espectrais e essa informação não está disponível em situações práticas.

A dificuldade está em procurar um operador M tal que $M^{-1}A$ apresente melhores propriedades espectrais. Isto se baseia na observação que para M = A, tem-se o sistema ideal da Equação (3.19), encontrando a solução em uma simples iteração.

$$\underbrace{\left(\mathbf{M}^{-1}\mathbf{A}\right)}_{\widehat{\mathbf{A}}}\mathbf{x} = \mathbf{I}\mathbf{x} = \underbrace{\mathbf{M}^{-1}\mathbf{b}}_{\widehat{\mathbf{b}}}$$
(3.19)

Portanto, a parte mais relevante do processo está em estabelecer um précondicionador apropriado, responsável por acelerar o processo de convergência em função da sua qualidade. Dentre as principais propriedades deste pré-condicionador M, destacam-se:

M deve ser uma boa aproximação para A; M não precisa ser determinado explicitamente.

- A construção de M não deve ser proibitiva; isto e, o custo computacional não deverá ser muito alto;
- O sistema My = z deve ser bem mais fácil de resolver do que o sistema original
 Ax = b.

3.4.2 Reordenamento e Diferenças de Quocientes

O objetivo primário das técnicas de reordenamento é reduzir os elementos não-nulos que surgem durante o processo de eliminação gaussiana. A dificuldade relacionada com tais estratégias, seja no contexto iterativo e/ou direto, está no fato de, um bom reordenamento para reduzir esses elementos pode resultar em fatores com baixa qualidade numérica (Saad, 2003). Por exemplo, durante o processo de ordenamento pode-se observar valores muito pequenos na diagonal, comprometendo o raio espectral de A (ρ (A)), que por sua vez influencia a taxa de convergência do método iterativo.

Dois tipos de permutações são frequentemente usadas para melhorar o processo de fatoração: uma primeira categoria consiste em permutações simétricas e uma segunda consiste em permutar só as linhas da matriz (ou colunas). Essas permutações nãosimétricas consideram outros aspectos, principalmente, evitando pivotamentos ineficientes na eliminação gaussiana.

Com relação à técnica conhecida como Diferenças de Quocientes (3.20), esta pode ser associada ao GMRES em duas situações. A primeira quando se tem multiplicação entre uma matriz A e um vetor v_j , ou seja, quando a matriz de coeficientes é multiplicada por um vetor base contendo os resíduos (Passo 6 do Algoritmo GMRES). Dependendo da dimensão da matriz, essa operação pode ser crítica em função do tempo computacional gasto para efetuá-la. A estratégia em questão visa tornar o cálculo do vetor resultante mais eficiente, aproximando-o a partir de um aproveitamento das avaliações das funções não-lineares (2.33) já efetuadas, as quais demandam um baixo custo computacional. Uma vez que os métodos iterativos operam sobre mecanismos de aproximação, a diferença de quocientes se encaixa perfeitamente neste propósito, e melhor, também podem ser usadas em GMRES précondicionado.

Uma segunda aplicação está relacionada ao pré-condicionamento do sistema original, caso o pré-condicionador de interesse seja do tipo banda, isto é, uma matriz com elementos formando diagonais na parte superior e inferior da diagonal principal, a partir das avaliações das funções não-lineares. A aplicabilidade deste tipo de pré-condicionamento usando a estratégia de diferença de quociente torna-se viável quando a matriz Jacobiana no regime permanente (3.21) ou a matriz de iteração J_{SD} na simulação dinâmica (3.22) tem uma estrutura caracterizada por diagonais na parte superior e inferior da diagonal principal.

$$Av = F'(y)v \approx \frac{F(t, y + \sigma v, \alpha(y + \sigma v) + \beta) - F(t, y, \alpha y + \beta)}{\sigma}$$
(3.20)

Onde σ representa a perturbação que será submetida ao conjunto de variáveis do sistema não-lineal.

$$J_{FC} = \begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \end{bmatrix}$$
(3.21)
$$J_{SD} = \begin{bmatrix} \frac{1}{h} [I] + \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} \end{bmatrix}$$
(3.22)

Onde h representa o tamanho do passo de integração. Identificando esse tipo de estrutura pode-se obter um tempo de processamento muito pequeno quando comparado, por exemplo, a técnicas de fatoração incompleta. Entretanto, a aproximação da matriz Jacobiana e/ou de iteração não terá tão boa qualidade numérica se comparado com uma aproximação via fatoração incompleta com estratégias de eliminação por valor e/ou por posição.

3.4.3 Estratégias de Pré-condicionamento Baseadas em Fatoração Incompleta

Quando uma matriz esparsa é fatorada por eliminação Gaussiana, elementos nãonulos geralmente aparecem. Isto significa que fatores triangulares L (inferior) e U (superior) da matriz de coeficientes A são consideravelmente menos esparsos que A. Mesmo estando disponíveis técnicas de pivotação para preservação da esparsidade e redução desses novos elementos não-nulos, métodos diretos não são considerados adequados para resolver sistemas lineares muito grandes, devido ao esforço computacional associado (Benzi, 2002). Entretanto, descartando parte desses elementos ao longo do processo de fatoração, pré-condicionadores simples e eficientes podem ser obtidos na forma $M = \overline{LU}$, onde \overline{L} e \overline{U} são os fatores triangulares LU incompletos (aproximados). Os algoritmos de fatoração incompleta (ILU) diferem entre si com base na regra de eliminação dos elementos não-nulos, existindo diferentes critérios, tais como posição, valor, ou uma combinação de ambas, reduzindo o esforço computacional em termos de espaço e processamento.

Sendo $n = \{1, 2, \dots\}$, pode-se estabelecer um subconjunto $S \subseteq A_{n \times n}$ de posições da matriz A, geralmente incluindo-se a diagonal principal e todos os (i, j) tal que $a_{ij} \neq 0$ e permitir elementos não-nulos nos fatores LU apenas em posições de S. Formalmente, uma etapa da fatoração incompleta pode ser descrita por (3.23), para cada k e para i, j > k.

$$\mathbf{a}_{i,j} \leftarrow \begin{cases} \mathbf{a}_{i,j} - \mathbf{a}_{i,k} \mathbf{a}_{k,k}^{-1} \mathbf{a}_{k,j}, \text{ se } (i,j) \in \mathsf{S} \\ \mathbf{a}_{i,j} \quad \text{caso contrário} \end{cases}$$
(3.23)

Se S coincidir com o conjunto de posições de elementos não-nulos de A, é obtida a fatoração ILU sem elementos não-nulos, conhecido como ILU(0). A implementação deste tipo de pré-condicionador é simples, bem como a sua computação, e são eficientes para uma ampla faixa de problemas (Benzi, 2002). Entretanto, para problemas mais complexos e realísticos, este tipo de pré-condicionador resulta numa aproximação de A de baixa qualidade, sendo, portanto necessário optar por pré-condicionadores mais sofisticados, permitindo certo número de elementos não-nulos nos fatores incompletos.

Uma hierarquia de pré-condicionadores ILU pode ser obtida baseada no conceito de níveis de preenchimento ILU(l), atribuído a cada entrada que ocorre no processo de fatoração incompleta. Elementos não-nulos são eliminados baseados nos níveis de preenchimento l, e o nível inicial de um elemento a_{ij} de uma matriz esparsa A será definido como:

$$\mathsf{lev}_{i,j} = \begin{cases} 0, \text{ se } \mathsf{a}_{i,j} \neq 0 \text{ ou } i = j \\ \infty, \quad \mathsf{caso \ contrário} \end{cases}$$
(3.24)

Sempre que o elemento a_{ij} for modificado pelo processo de fatoração ILU, seu nível de preenchimento deve ser atualizado de acordo com:

$$Level_{i,j} = \min_{1 \le k \le min(i,j)} \left\{ Level_{i,k} + Level_{k,j} + 1 \right\}$$
(3.25)

Com *l* sendo um número inteiro positivo, em ILU(*l*) todos os novos elementos nãonulos com nível superior a *l* são descartados. Este método, entretanto, pode não ser robusto o bastante para certas classes de problemas. Para matrizes que não apresentem característica de diagonal dominante, ILU(*l*) pode ter que armazenar muitos elementos não-nulos de valores muito pequenos, que pouco contribuem para a qualidade do pré-condicionador, além de apresentar um custo computacional alto. Um pré-condicionador mais eficiente pode ser obtido com elementos não-nulos sendo aceitos, ou não, em função de seus valores. Desta forma, apenas elementos nãonulos e que contribuem para a melhoria da qualidade do pré-condicionador são armazenados e usados.

A fatoração incompleta que necessita de níveis de controle do preenchimento de valores não-nulos durante a fatoração, é insensível aos valores numéricos uma vez que os elementos que são substituídos no processo de eliminação dependem da estrutura da matriz Jacobiana. Em problemas reais, este fato pode causar algumas dificuldades. Como já mencionado, alguns métodos se baseiam no esquema de eliminação Gaussiana em função da magnitude ao invés da sua localização. Nestes casos, o padrão de zeros *S* é determinado dinamicamente (Saad, 2003).

Uma tolerância para descartar o elemento não-nulo é um número positivo τ que é usado como critério. Uma estratégia absoluta pode ser usada onde elementos nãonulos são aceitos apenas se maiores que τ . Este critério pode não surtir o efeito esperado se a matriz estiver mal escalonada, sendo aconselhável neste caso usar uma estratégia relativa. Uma das dificuldades desta estratégia é a escolha do valor adequado de τ , que pode ser feita através de tentativa e erro para algumas matrizes associadas ao problema. Em muitos casos, bons resultados são obtidos na faixa de 10^{-4} a 10^{-2} , mas o valor ótimo é muito dependente do problema (Benzi, 2002).

Outra dificuldade é estimar o espaço de memória necessário para armazenar os fatores incompletos LU. Uma estratégia eficiente consiste em limitar a quantidade de elementos não-nulos em cada linha dos fatores triangulares. A referência (Saad, 2003)

propôs uma estratégia que fixa uma tolerância τ e um número ρ de elementos nãonulos que serão permitidos nas linhas dos fatores incompletos; a cada etapa do processo de eliminação, todos os elementos não-nulos inferiores a τ multiplicado pela norma-2 da linha correspondente são descartados; e os restantes pelo menos os ρ maiores em magnitude são mantidos. Este pré-condicionador é conhecido como ILUT(ρ , τ) e seu algoritmo está ilustrado na Figura 3.2 – .

A alternativa ILU(0) pode ser considerada como um caso particular do algoritmo ILU(p,τ). A regra de eliminação para o caso ILU(0) é permutar elementos por zero que estão em posições não pertencentes à estrutura original da matriz de constantes.

1.	Para j = 1,,	n Faça:
2.		$\omega := a_{i^*}$
З.		Para k = 1,,i-1 e quando $\omega_k \neq 0$ Faça:
4.		$\omega := \omega_k / a_{kk}$
5.		Aplicar uma regra para desprezar $^{m \omega_k}$
6.		Se $\omega_k \neq 0$ Então
7.		$\omega := \omega - \omega_k \times u_k$
8.		Fim Se
9.		Fim – Faça
10.		Aplicar uma regra para desprezar a coluna $^{ m \omega}$
11.		<i>I_{i,j}:=ω_j</i> para <i>j</i> =1,, <i>i</i> -1
12		u _{i,j} :=ω _j para j=i,,n
13.		ω:=0
14.	Fim – Faça	

Figura 3.2 - Algoritmo básico do ILUT

Quando qualquer regra de eliminação não for usada, os fatores triangulares são calculados completamente. Neste caso, o pré-condicionador é igual à matriz de coeficientes, o que resulta na convergência do método iterativo em uma única iteração.

3.4.4 Pré-Condicionando o GMRES

Existem três formas de utilizar um pré-condicionador M, sendo estas: précondicionamento pelo lado esquerdo, pré-condicionamento pelo lado direito e précondicionamento por ambos os lados. As três formas produzem o mesmo sistema equivalente, com as mesmas propriedades espectrais e normalmente desempenhos similares do método iterativo. Porém, o pré-condicionamento pelo lado esquerdo é a forma mais simples e de fácil implementação computacional. Abaixo são apresentadas as três formas de se realizar o pré-condicionamento, para ambos os tipos: aproximação esparsa da matriz inversa e matriz descomposta.

A. Pré-condicionadores de aproximação esparsa da matriz inversa: $M \approx A^{-1}$

١.	(Lado esquerdo)	MAx = Mb
II.	(Lado direito)	$AMy = b \therefore x = My$
III.	(Ambos os lados)	$M_2AM_1y = M_2b \therefore x = M_1y$

B. Pré-condicionadores de matriz descomposta: M \approx A

I.	(Lado esquerdo)	$M^{-1}Ax = M^{-1}b$
II.	(Lado direito)	$AM^{-1}y = b \therefore x = M^{-1}y$
III.	(Ambos os lados)	$M_2^{-1}AM_1^{-1}y = M_2^{-1}b \ \dot{\cdot} \ x = \ M_1^{-1}y$

A estratégia considerada nesta pesquisa é o pré-condicionamento à esquerda. As outras não serão abordadas em detalhes, apenas em termos de comparação com o pré-condicionamento à esquerda para justificar a opção por esta estratégia. O pré-condicionamento à esquerda é aplicado da seguinte forma:

$$M^{-1}Ax = M^{-1}b$$
 (3.26)

É gerada uma base ortogonal do subespaço Krylov pré-condicionado a esquerda:

span
$$\left\{ r_{0}, M^{-1}Ar_{0}, ..., (M^{-1}A)^{m-1}r_{0} \right\}$$
 (3.27)

Usando o processo modificado de Gram-Schmidt, onde o novo vetor a ser ortogonalizado é obtido do vetor resultante previamente no processo. Todos os vetores residuais e suas normas computadas pelo algoritmo correspondem a resíduos pré-condicionados ($Z_m = M^{-1}(b - Ax_m)$) ao invés dos resíduos originais não pré-condicionados ($b - Ax_m$). Além do mais, não existe um fácil acesso a esses resíduos não pré-condicionados, a menos que sejam computados explicitamente, isto é, multiplicando os resíduos pré-condicionados por M. Isto pode ocasionar alguns

Numa etapa j do algoritmo GMRES pré-condicionado, o v_j prévio é multiplicado por A a fim de se obter um vetor:

$$\omega_{j} = Av_{j} \tag{3.28}$$

Então esse vetor é pré-condicionado para se obter:

$$z_j = M^{-1}\omega_j \tag{3.29}$$

Este vetor deve ser M-ortogonalizado contra todos os v_i 's prévios. Se o processo padrão de Gram-Schmidt for usado, primeiro se deve computar os produtos internos:

$$h_{i,j} = (z_j, v_i)_M = (Mz_j, v_i) = (\omega_j, v_i), i = 1, ..., j$$
 (3.30)

e então transformar o vetor z_i em um novo vetor:

$$\hat{z}_j \coloneqq z_j - \sum_{i=1}^{j} h_{i,j} v_i$$
(3.31)

Para completar a etapa de ortonormalização, o \hat{z}_j final deve ser normalizado. Devido à ortogonalidade de \hat{z}_j versus todos os v_i 's prévios, observe que:

$$\left(\hat{z}_{j},\hat{z}_{j}\right)_{\mathsf{M}}=\left(z_{j},\hat{z}_{j}\right)_{\mathsf{M}}=\left(\mathsf{M}^{-1}\omega_{j},\hat{z}_{j}\right)_{\mathsf{M}}=\left(\omega_{j},\hat{z}_{j}\right)$$
(3.32)

Então, a norma-M desejada pode ser obtida da Equação (3.30), através dos seguintes ajustes:

$$h_{j+1,j} = (\hat{z}_j, \omega_j)^{1/2} e v_{j+1} = \hat{z}_j / h_{j+1,j}$$
 (3.33)

Uma dificuldade severa associada ao procedimento acima é que o produto interno $(\hat{z}_j, z_j)_M$ computado pela Equação (3.32) pode ser negativo na presença de arredondamento. Existem duas alternativas para contornar esta situação. A norma-M

pode ser computada explicitamente ao custo de uma multiplicação adicional matrizvetor com M, ou o conjunto de vetores Mv_i pode ser armazenado a fim de acumular a um baixo custo ambos os vetores \hat{z}_j e $M\hat{z}_j$, através da equação:

$$M\hat{z}_{j} = \omega_{j} - \sum_{i=1}^{j} h_{i,j} Mv_{i}$$
(3.34)

A aplicação direta do GMRES na Equação (3.26) resulta na versão pré-condicionada à esquerda, como ilustra a Figura 3.3 –

1.	Assumir o primeiro vetor $x_0 = [0]^T$;
2.	Computar $r_0 = M\Gamma^1(b - Ax_0)$;
3.	Computar a norma Euclidiana $\beta = \ \mathbf{r}_0\ _2$;
4.	Computar o primeiro vetor ortogonal e normalizado do subespaço Krylov υ_{1} = r $_{0}/\beta$;
5.	Construção de uma base ortonormal para ${\sf K}^{\sf j}({\sf A};{\sf r}_{\sf 0})$
	Para j = 1,, m Faça:
6.	Computar $\omega_j = M^1 A \upsilon_j$;
7. 8.	Tornar o vetor ω ortogonal ao vetor precedente Para <i>i</i> = 1,, <i>j</i> Faça:
9.	$h_{i,j} = \left(\omega_{j},\upsilon_{i}\right);$
10.	$\omega_{j} = \omega_{j} - h_{i,j} \upsilon_{i};$
11.	Fim-Faça
12.	Computar a Norma Euclidiana $h_{j+1,j} = \left\ \omega_j \right\ _2$
13.	Normalizar o novo vetor $v_{j+1} = \omega_j / h_{j+1,j}$
14.	Fim-Faça
15.	<i>Definir</i> $V_m := [v_1,, v_m], H_m = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le m}$
16.	Encontrar a mínima norma do problema de mínimos quadrados
17.	Computar a través de rotações de Givens $y_m = \operatorname{argmin}_y \ \beta e_1 - H_m y\ _2$
18.	$x_{m} = x_{0} + V_{m}y_{m}$
19.	Critério de Parada
20.	Se $\rho = \ b - Ax_m\ _2$ for o suficientemente pequeno Pare ou Então
21.	Ajustar $x_0 = x_m e$ voltar para o passo 2.

Figura 3.3 – Algoritmo do GMRES Pré-condicionado a esquerda

C. Comparação entre as opções

Quando se compara as três opções de pré-condicionamento, nota-se primeiramente que os espectros dos três operadores associados M⁻¹A, AM⁻¹ e, M⁻¹AM⁻¹ são idênticos. Portanto, a princípio é esperado que os comportamentos da convergência fossem similares, embora nem sempre os autovalores ditem as regras de convergência (Saad, 2003). No caso do pré-condicionamento à esquerda, o GMRES minimiza a norma residual:

$$M^{-1}b - M^{-1}Ax$$
 (3.35)

Entre todos os vetores do espaço:

$$x_0 + K_m^L = x_0 + \text{span}\left\{z_0, M^{-1}Az_0, \dots, \left(M^{-1}A\right)^{m-1}z_0\right\}$$
 (3.36)

Onde z_0 é o resíduo inicial pré-condicionado $Z_0 = M^{-1}r_0$. Então, a solução aproximada pode ser expressa como:

$$x_{m} = x_{0} + M^{-1}s_{m-1}(M^{-1}A)z_{0}$$
(3.37)

Onde S_{m-1} é o polinômio de grau m-1 que minimiza a norma:

$$\left\|z_0 - M^1 A s \left(M^1 A\right) z_0\right\|_2 \tag{3.38}$$

Entre todos os polinômios s de grau $\leq m - 1$. Também é possível expressar esta condição de otimização com relação ao vetor residual original r_{0} , de fato:

$$z_{0} - M^{-1}As(M^{-1}A)z_{0} = M^{-1}\left[r_{0} - As(M^{-1}A)M^{-1}r_{0}\right]$$
(3.39)

Uma simples manipulação algébrica mostra que para qualquer polinômio s:

$$s(M^{-1}A)M^{-1}r = M^{-1}s(AM^{-1})r$$
 (3.40)

Obtendo-se a relação:

$$z_{0} - M^{-1}As(M^{-1}A)z_{0} = M^{-1}\left[r_{0} - AM^{-1}s(AM^{-1})r_{0}\right]$$
(3.41)

Considere agora a situação com o GMRES pré-condicionado à direita. Aqui, é necessário distinguir entre a variável original x e a variável transformada u relacionada à x por $x = M^{-1}u$. Para a variável u, o GMRES pré-condicionado a direita minimiza a norma-2 de $r = b - AM^{-1}u$, onde u pertence a:

$$u_0 + K_m^R = u_0 + \text{span}\left\{r_0, AM^{-1}r_0, ..., (AM^{-1})^{m-1}r_0\right\}$$
 (3.42)

No qual r_0 é o resíduo $r_0 = b - AM^{-1}u_0$. Este resíduo é idêntico ao resíduo associado com a variável x original uma vez que $M^{-1}u_0 = x_0$. Multiplicando (3.42) por M^{-1} e explorando (3.40), observe que a variável genérica x associada com um vetor do subespaço (3.42) pertence ao espaço:

$$M^{-1}u_{0} + M^{-1}K_{m}^{R} = x_{0} + span\left\{z_{0}, M^{-1}Az_{0}, \dots, \left(M^{-1}A\right)^{m-1}z_{0}\right\}$$
(3.43)

Esta última equação é idêntica ao espaço (3.36) visto no pré-condicionamento à esquerda. Em outras palavras, para o GMRES pré-condicionado a direita, a solução aproximada x também pode ser expressa como:

$$x_{m} = x_{0} + s_{m-1} (AM^{-1}) r_{0}$$
(3.44)

Entretanto, agora s_{m-1} é um polinômio que minimiza a norma:

$$\left\|\mathbf{r}_{0} - \mathbf{A}\mathbf{M}^{-1}\mathbf{s}\left(\mathbf{A}\mathbf{M}^{-1}\right)\mathbf{r}_{0}\right\|_{2}$$
(3.45)

Entre todos os polinômios s de grau menor ou igual a m - 1. O interessante é notar que as duas quantidades minimizadas, (3.41) e (3.45), diferem apenas por uma multiplicação por M^{-1} . Especificamente, o GMRES pré-condicionado a esquerda minimiza $M^{-1}r$, enquanto o pré-condicionamento a esquerda minimiza r, onde r é tomado sobre o mesmo subespaço em ambos os casos.

A solução aproximada obtida pelo GMRES pré-condicionado a esquerda, ou direita, tem a forma:

$$x_{m} = x_{0} + s_{m-1} (M^{-1}A) z_{0} = x_{0} + M^{-1} s_{m-1} (AM^{-1}) r_{0}$$
(3.46)

Onde $z_0 = M^{-1}r_0 e s_{m-1}$ é um polinômio de grau . O polinômio s_{m-1} minimiza a norma residual $||b - Ax_m||_2$ no caso do pré-condicionamento à direita, e a norma residual pré-condicionada $||M^{-1}(b - Ax_m)||_2$ no caso do pré-condicionamento a esquerda.

Na maioria das situações práticas, a diferença no comportamento da convergência entre as duas formas de pré-condicionamento não é significante. A única exceção é que, quando M for mal-condicionada, pode levar a diferenças substanciais.

3.4.5 Experimentos Numéricos

Este item apresenta resultados de experimentos numéricos envolvendo o GMRES e suas estratégias, incluindo pré-condicionamento, aplicado em sistemas de energia elétrica, envolvendo estudos de fluxo de carga enfatizando a solução do sistema algébrico resultante (Ax = b). O objetivo principal é avaliar isoladamente o desempenho do GMRES sem/com estratégias numéricas conforme descriminadas na oportunidade, sem incluir a solução das EDAs, ou seja, estão excluídas aqui simulações no domínio do tempo. Portanto, os resultados obtidos (número de iterações, norma residual e tempo de CPU) são "cristalinos" permitindo uma avaliação sem interferências. Os sistemas-teste usados são o IEEE30 e IEEE118 (Power, 2007) e a Tabela 3.1 apresenta informações com relação às combinações usadas envolvendo o GMRES. Essas combinações estão divididas em três grupos, assim distribuídos:

- Grupo 1 GMRES sem pré-condicionamento, sem/com estratégias.
- Grupo 2 GMRES com pré-condicionamento ILU(0), sem/com estratégias.
- Suppose Grupo 3 GMRES com pré-condicionamento ILUT(ρ , τ), sem/com estratégias.

As simulações do Grupo I se caracterizam pela falta do pré-condicionamento do sistema, incluindo em seguida estratégias de reinicialização e diferenças de quocientes. O uso dessas estratégias objetiva diminuir os requisitos de armazenagem de memória e de tempo computacional restringindo o número de iterações lineares quando o processo de reinicialização é considerado. Já as simulações do Grupo II contêm o pré-condicionamento do sistema original usando a fatoração incompleta LU (ILU(0)), além das estratégias de reinicialização e diferenças de quocientes; o pré-

condicionamento, teoricamente, torna a solução do novo sistema mais "amigável" à medida que o pré-condicionador se aproximar da matriz Jacobiana $f(x_k)^{-1}$. As simulações do Grupo III utilizam um pré-condicionamento baseado em fatoração incompleta LU com estratégias de eliminação de elementos não-nulos por magnitude ou por posição (ILUT(ρ , τ)). Também são utilizadas as estratégias de reinicialização e diferenças de quocientes.

Grupo	Estratégia	Descrição			
	1	GMRES simples			
	2	GMRES sem pré-condicionamento; apenas com reinicialização			
I	3	GMRES sem pré-condicionamento; apenas com diferença de quocientes			
	4	GMRES sem pré-condicionamento com reinicialização e diferença de quocientes			
	5	GMRES com apenas pré-condicionamento ILU(0)			
	6	GMRES com pré-condicionamento ILU(0) com reinicialização			
II	7	GMRES com pré-condicionamento ILU(0) com diferença de quocientes			
	8	GMRES com pré-condicionamento ILU(0) com reinicialização e diferença de quocientes			
Ξ	9	GMRES com apenas pré-condicionamento ILUT(ρ , τ)			
	10	GMRES com pré-condicionamento ILUT(ρ, τ) com reinicialização			
	11	GMRES com pré-condicionamento ILUT(ρ , τ) com diferença de quocientes			
	12	GMRES com pré-condicionamento ILUT(ρ , τ) com reinicialização e diferença de quocientes			

	Tabela 3.1 – Descrie	cão dos ex	perimentos	numéricos do	GMRES e	suas estratégias
--	----------------------	------------	------------	--------------	---------	------------------

3.4.6 Sistema-Teste de 30 barras (IEEE30)

A Tabela 3.2 apresenta os parâmetros selecionados para o algoritmo GMRES. Os critérios de seleção de seus respectivos valores estão baseados em estratégias associadas com o algoritmo (reinicialização, diferença de quocientes e précondicionamento), e também a partir de informações da literatura especializada (Saad, 2003; Van der Vorst, 2003). Entretanto, estes critérios de escolha ainda estão sob investigação. Não se pode afirmar que estes correspondem aos valores ótimos para os propósitos aqui estabelecidos, ou seja, os melhores em termos de eficiência computacional. A Tabela 3.3 ilustra através de gráficos os parâmetros de interesse referentes aos testes envolvendo o sistema IEEE30. Note que o eixo z corresponde
Grupos de	Grupo I			Grupo II			Grupo III					
Experimento	1	2	3	4	5	6	7	8	9	10	11	12
ITKR	60	60	60	60	60	5	60	5	60	5	60	5
VORT	60	60	60	60	60	5	60	5	60	5	60	5
TITL	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
М	0	20	0	20	0	20	0	20	0	20	0	20
ρ									3	3	3	3
τ									0.01	0.01	0.01	0.01
ITVD	NL/	a da tran	I'									

Tabela 3.2 – Definição de parâmetros para o algoritmo GMRES – IEEE30

ITKR

Número de iterações lineares. Vetores usados na ortogonalização de novos vetores bases. VORT

Tolerância utilizada no critério de parada do processo GMRES.

TITL m Número de reinicializações.

Número de elementos não-nulos permitidos.

Valor referência para cancelar valores pequenos.

Figura 3.4 - Diagrama unifilar do sistema-teste IEEE30 (Power, 2007)

ρ

τ

Tabela 3.3 – Resultados das simulações – Sistema IEEE30

A. Análise dos Resultados – Grupo I (sem pré-condicionamento)

Resíduos

✓ Todas as estratégias atingiram seus objetivos com relação a norma residual mínima, como esperado.

> Número de Iterações Lineares e Tempo de CPU

- ✓ Entre todas as estratégias consideradas nesse grupo, a 2 (apenas técnica de reinicialização) é a que apresenta o maior número de iterações lineares, inclusive se comparada ao GMRES sem qualquer tipo de estratégia (1). Esse é um dos riscos associados a reinicialização, como comentado anteriormente.
- ✓ Já a estratégia 3 usando apenas a técnica de diferença de quocientes apresenta o menor número de iterações lineares, como também o menor tempo de CPU. A estratégia 4 considera as técnicas de reinicialização e diferença de quocientes, mantendo inalterado o número de iterações lineares em relação a estratégia 3.

B. Análise dos Resultados – Grupo 2 (com pré-condicionamento ILU(0))

Resíduos

✓ Todas as estratégias atingiram seus objetivos com relação a norma residual mínima, como esperado.

> Número de Iterações Lineares e Tempo de CPU

- ✓ Dentro do mesmo grupo, nota-se uma ligeira diferença entre o número de iterações lineares, quase que imperceptível.
- ✓ O tempo de CPU gasto pelas estratégias 5, 7 e 8 é muito pequeno. O tempo gasto pela estratégia 6 foi elevado em comparação aos demais, mostrando mais uma vez a influência inadequada da reinicialização.

C. Análise dos Resultados – Grupo 3 (com pré-condicionamento ILUT(ρ , τ))

Resíduos

✓ Todas as estratégias atingiram seus objetivos com relação à norma residual mínima, como esperado.

Número de Iterações Lineares e Tempo de CPU

 Nota-se uma pequena diferença entre o número de iterações lineares, diferença essa que não se reflete no tempo de CPU, onde todos são muito pequenos.

D. Análise Comparativa

A Figura 3.5 e Figura 3.6 ilustram o desempenho dos melhores métodos de cada grupo em função do número de iterações e do tempo de CPU, respectivamente. Notase que é difícil apontar qual o melhor. Entretanto, pode-se descartar a estratégia 3 uma vez que o número de iterações e o tempo de CPU são elevados em comparação aos demais. Como os tempos de CPU são iguais, o número de iterações passa a ser a opção de escolha, e neste caso as estratégias 5 e 7 apresentaram melhor desempenho.

3.4.7 Sistema-Teste de 118 barras (IEEE118)

A Tabela 3.4 apresenta os parâmetros selecionados para o algoritmo GMRES. Os critérios de seleção de seus respectivos valores são os mesmos do sistema-teste IEEE30. A Figura 3.7 apresenta o diagrama unifilar do sistema-teste IEEE30

Embora os objetivos aqui sejam os mesmos que os associados ao sistema de 30 barras, este de 118 apresenta algumas características pouco amigáveis (abordadas no Capítulo 4) podendo dificultar a processo de solução, independentemente se o estudo

é em regime permanente ou dinâmico. Isto é um bom sinal uma vez se deseja também avaliar a robustez da técnica iterativa.

Grupos de		Gru	po l			Gru	po II			Grup	oo III	
Experimento	1	2	3	4	5	6	7	8	9	10	11	12
ITKR	236	236	236	50	236	8	236	8	236	8	236	8
VORT	236	236	236	50	236	8	236	8	236	8	236	8
TITL	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
m	0	20	0	20	0	20	0	20	0	20	0	20
ρ									4	4	4	4
τ									0.01	0.01	0.01	0.01
	Niúmoor	a da itara	مقمم انمر									

Tabela 3.4 – Definição de parâmetros para o algoritmo GMRES – IEEE118

ITKR VORT TITL

m

ρ

τ

Número de iterações lineares.

Vetores usados na ortogonalização de novos vetores bases.

Tolerância utilizada no critério de parada do processo GMRES.

Número de reinicializações.

Número de elementos não-nulos permitidos.

Valor referência para cancelar valores pequenos.

A Tabela 3.5 ilustra através de gráficos os parâmetros de interesse referentes aos testes envolvendo o sistema IEEE118. Note que o eixo z corresponde aos métodos considerados.

Figura 3.7 – Diagrama unifilar do sistema-teste IEEE118 (Power, 2007)

Tabela 3.5 – Resultados das simulações – Sistema IEEE118

A. Análise dos Resultados – Grupo 1 (sem pré-condicionamento)

> Resíduos

✓ Todas as estratégias atingiram seus objetivos com relação a norma residual mínima, como esperado.

> Número de Iterações Lineares e Não-Lineares

- A estratégia 1 explora ao máximo o número de iterações lineares na tentativa de atingir o critério de convergência estabelecido, resultando em resíduos muito próximos da tolerância especificada. Como consequência tem-se um maior número de iterações não-lineares, conforme é visualizado no gráfico de Resíduos.
- ✓ Já a estratégia 3 com diferenças de quocientes gera boas aproximações quando a operação matriz-vetor é solicitada, resultando em poucas iterações lineares, se comparada a estratégia 1, onde a matriz Jacobiana é construída e operada explicitamente. Embora ambas as estratégias forneçam resíduos muitos próximos dos estabelecidos no critério de convergência linear, a estratégia 3 economiza 70% aproximadamente das iterações disponíveis para tal fim.
- ✓ As estratégias 2 e 4 usam reinicialização e satisfazem a tolerância estabelecida com um número maior de iterações lineares em comparação as estratégias 1 e 3.

> Tempo de CPU

✓ Como esperado, os menores tempos de CPU estão associados às estratégias 3 e 4 em função do menor número de iterações lineares, embora a estratégia 3 não tenha atingido estritamente o critério de convergência linear especificado.

B. Análise dos Resultados – Grupo 2 (com pré-condicionamento ILU(0))

Resíduos

✓ Todas as estratégias atingiram seus objetivos com relação a norma residual mínima, como esperado.

Número de Iterações Lineares e Não-Lineares

- Observa-se, como no caso do sistema-teste IEEE30, a influência positiva do pré-condicionamento reduzindo drasticamente o número de iterações lineares exigidas. Destacam-se aqui as estratégias 5 e 7 com um número total de 68 iterações cada. A estratégia 7 aplica satisfatoriamente a técnica de diferença de quocientes.
- ✓ Mais uma vez a técnica de reinicialização empregada nas estratégias 6 e 8 aumenta o número de iterações lineares. Embora seja pequeno o número extra de iterações lineares correspondente a cada iteração não-linear, observa-se uma diferença de aproximadamente 300% quando a 2a iteração não-linear é executada, esse pode ser um problema clássico de estagnação resultante da reinicialização.

> Tempo de CPU

✓ Como esperado, os menores tempos de CPU estão associados às estratégias 5 e 7 em função do menor número de iterações lineares.

C. Análise dos Resultados – Grupo 3 (com pré-condicionamento ILUT(ρ , τ))

Resíduos

✓ Todas as estratégias atingiram seus objetivos com relação a norma residual mínima, como esperado.

Número de Iterações Lineares e Não-Lineares.

✓ Observa-se a redução no número de iterações lineares quando o précondicionamento é considerado e quando comparado aos casos do Grupo II usando o pré-condicionador ILUO. Mais uma vez as simulações sem reinicialização apresentam os melhores resultados, como no caso das estratégias 9 e 11 com 54 iterações lineares associadas, sendo que a estratégia 11 aplica a técnica de diferença de quocientes. O fenômeno da estagnação também está associado as estratégias 10 e 12, resultado da reinicialização.

> Tempo de CPU

✓ Embora a diferença entre os tempos de CPU seja muito pequena, resultado da pequena quantidade de iterações lineares executadas, a estratégia 9 é a que apresenta o menor tempo.

D. Análise Comparativa

As Figura 3.8 e Figura 3.9 ilustram o desempenho dos melhores métodos de cada grupo em função do número de iterações e do tempo de CPU, respectivamente. A estratégia 9 parece ser superior as demais, embora a diferença seja muito pequena, tanto no número global de iterações quanto no tempo de CPU (exceto a estratégia 3).

Figura 3.8 – Melhores desempenhos em termos de número de iterações – IEEE118

Figura 3.9 – Melhores tempos de CPU – IEEE118

3.4.8 Comentários Finais

Destacam-se alguns pontos interessantes associados aos resultados dos testes computacionais (apenas em regime-permanente - fluxo de carga) envolvendo os sistemas de energia elétrica IEEE30 e IEEE118. Estes são:

- Fécnicas de pré-condicionamento são primordiais para aumentar a eficiência da solução, principalmente no aspecto computacional;
- Diferença de quocientes é uma estratégia que por si só melhora a eficiência da solução, devendo, portanto, ser considerada sempre que possível;

- Estratégias que fazem uso da técnica de re-inicialização estão sujeitas ao fenômeno conhecido como estagnação, associado ao aumento no número de iterações lineares. Embora nos testes realizados este fenômeno não tenha comprometido o tempo de CPU, pelo menos aparentemente, não se pode afirmar a priori que isto sempre ocorrerá. Não se pode garantir esta "imparcialidade" para sistemas de grande-porte.
- Vários parâmetros matemáticos (Tabela 3.2 e Tabela 3.4) estão associados à estratégia considerada e o critério de seleção desses parâmetros foi baseado em informações da literatura. A bibliografia consultada foi unânime em afirmar que escolhas adequadas estão associadas a experiência do usuário e a classe do problema sob investigação.

4 Experimentos Numéricos

4.1 Introdução

Este capítulo apresenta experimentos numéricos que verificam a robustez e a eficiência do BDF-GMRES em estudos de estabilidade de sistemas de energia elétrica, utilizando-se dois sistemas-teste, um hipotético (IEEE-118 Barras) e outro real (Norte-Nordeste Brasileiro). Todos os experimentos foram realizados num computador pessoal (Notebook Intel core 2 - 2.00 GHz; 1 GB - RAM). O FORTRAN (Digital Visual FORTRAN) foi a linguagem computacional usada com compilador Compaq otimizado e fez-se uso parcial de recursos do solucionador DASPK2.0 de domínio público (http://www.cs.ucsb.edu/~cse/) em todos os experimentos.

O solucionador foi implementado em um programa computacional desenvolvido para sistemas multi-máquinas cobrindo desde simples configurações, até sistemas mais complexos incluindo diversos dispositivos de controle. A fim de capturar os efeitos relevantes aos fenômenos de estabilidade de curta e de longa duração, são considerados os seguintes modelos, cujos diagramas de blocos estão presentes no Apêndice B: Máquina Síncrona – Modelos Clássico e IV (representa os efeitos transitórios, sub-transitórios, de campo, amortecimento e saturação), Regulador Automático de Tensão, Sinais Estabilizadores, Limitador de Sobre-excitação, Transformador de Tape Variável (contínuo), Acréscimo linear de carga, Carga estática polinomial (parcela de potência, corrente e impedância constante), Carga dinâmica tipo potência constante.

É necessária uma forma de comunicação a fim de enviar e receber informações relevantes para o solucionador sobre o problema a ser resolvido. Para este fim, foi desenvolvido um sistema-gerenciador para entrada/saída de informações para análise de fenômenos de estabilidade, ilustrado na Figura 4.1

Figura 4.1 - Fluxograma do Gerenciador do protótipo computacional

Com relação aos dados de entrada/saída para/do solucionador, as seguintes informações são pertinentes:

- O usuário define o sistema de equações diferenciais e algébricas através de uma sub-rotina externa, bem como o número de equações a serem resolvidas.
- Informações com relação às descontinuidades podem ser fornecidas pelo usuário, ou geradas internamente.
- Tolerâncias relativas e absolutas também são fornecidas pelo usuário para indicar a precisão desejada para a solução (diferencial e algébrica). Podem ser tanto escalares ou vetores e devem ser definidas como variáveis porque podem ser trocadas pelo solver. As tolerâncias são usadas pelo solver para teste local de erro em cada intervalo.
- O código disponibiliza a opção para o usuário de fornecer a matriz de derivadas parciais do sistema de equações diferenciais através de uma sub-rotina externa.

 Se a matriz não for fornecida, o solucionador aproxima a solução através de uma diferença numérica, que, algumas vezes, é menos trabalhoso do que avaliar as derivadas na matriz correspondente, e algumas vezes não é. Isto depende do problema sendo resolvido.

4.2 Considerações Gerais

Antes de apresentar os experimentos numéricos, é necessário determinar os parâmetros ótimos dos pré-condicionadores e do GMRES(m). A estratégia considerada aqui está baseada em várias simulações com os sistemas-teste de interesse (10-Barras (Kundur, 1994), IEEE 118 barras e Norte-Nordeste Brasileiro) e usou-se o tempo de CPU como critério de seleção, ou seja, quanto menor, melhor. Laços de programação tornaram a procura inexpressiva em termos de esforço computacional e os resultados estão informados a cada experimento. Os dados de simulação associados aos métodos numéricos estão presentes no Apêndice C e aos sistemas-teste no Apêndice D. Com relação aos sistemas de EDAs, tem se que:

- O sistema de EDAs é formulado na forma semiexplícita.
- O índice do sistema de EDAs é igual a 1.
- O problema é descrito como sendo rígido: as constantes de tempo dos diferentes processos variam em um amplo intervalo - desde dezenas de milissegundos associados aos fenômenos de curta-duração até centenas de segundos associados aos de longa-duração.

Com relação à matriz Jacobiana: quando atualizá-la e/ou o pré-condicionador?

- Baixa taxa de convergência.
- Ocorre grande mudança de passo de integração.
- Não se obtém convergência em 4 iterações.
- Ocorrem grandes descontinuidades nas equações do sistema.

4.3 Experimentos

4.3.1 Experimento Numérico I

O objetivo deste primeiro conjunto de experimentos é fazer uma avaliação inicial do desempenho do método GMRES em análises no domínio do tempo, além de se verificar a necessidade de considerar estratégias para melhorar seu desempenho. Para tal, foi considerado um sistema hipotético de energia elétrica de 10 Barras (Figura 4.2) retirado da referência (Kundur, 1994), contendo 3 geradores, diversos dispositivos de controle (Reguladores de tensão, Limitador de sobreexcitação e transformador de tape variável). Esses experimentos foram realizados de acordo com as informações da Tabela 4.1 e comparados com os resultados obtidos pelo programa computacional ANATEM, versão V09-12/05 (Anatem, 2000), para fins de validação da solução do problema via GMRES(m) e das estratégias de pré-processamento da matriz Jacobiana, visto que o pré-condicionador é construído a partir desta. Este programa utiliza o trapezoidal implícito com passo fixo para algebrização das equações diferenciais e soluciona as equações lineares através do método direto fatoração LU. Já a Tabela 4.2 informa os dados numéricos associados às equações diferenciais ordinárias (EDO) e algébricas (EA) do problema. A Tabela 4.3 descreve o evento simulado.

Figura 4.2 - Sistema-teste do Experimento I (Kundur, 1994)

Caso	Método	Pré-condicionador	Pré-processamento
(a)	GMRES-(0)	-	-
(b)	GMRES-(5)*	-	-
(c)	GMRES-(5)	ILUT (0,02; 5)	Reordenamento - RCM
(d)	GMRES-(5)	ILUT (0,02; 5)	Escalonamento Normalização - Euclidiana Reordenamento - RCM

Tabela 4.1 – Dados sobre as simulações do Experimento I

*10% do total aproximado do número de equações diferenciais e algébricas (40)

Tabela 4.2 - Dados sobre as equações diferenciais ordinárias (EDO) e algébricas (EA) do Experimento I

EDO	EA	Total (EDAs)
16	22	38

Tabela 4.3 - Lista de contingências do Experimento I

Evento	Barra De – Para	Circuito	Instante do distúrbio (s)	
Desconexão de linha	6-7	1	1,0	
Final da Simulação	100,0			

A Figura 4.3(a) e Figura 4.3(b) ilustram, respectivamente, a estrutura original da matriz Jacobiana e após a fatoração incompleta (ILU) e reordenada (RCM), este último com os elementos não-nulos confinados numa determinada região. Já a Tabela 4.4 informa os resultados dos experimentos numéricos.

Figura 4.3 - Estrutura da Matriz Jacobiana - Sistema-teste de 10 Barras

Casos	Passos de integração	Avaliação das EDAs	lterações não- lineares	Avaliação da Jacobiana ¹	Tempo CPU	Tempo Relógio ²			
ANATEM	60000		60000	60000	1.05s	1.48s			
Caso (a)		FALHOU							
Caso (b)		FALHOU							
Caso (c)	FALHOU								
Caso (d)	513	2109	1016	51	5.13s	4.96s			

Tabela 4.4 - Dados associados aos resultados do Experimento I

¹Número de avaliações da matriz Jacobiana (método direto) e do pré-condicionador (método iterativo) ²Tempo determinado pela sub-rotina GETTIM no programa (hora, minuto, segundo e milisegundos)

As informações da Tabela 4.4 mostram a superioridade do método direto (ANATEM) em relação ao GMRES, neste experimento, em termos de robustez e eficiência computacional, já que solucionou o problema em um menor tempo de CPU. O método iterativo foi capaz de solucionar apenas quando o GMRES foi pré-condicionado e todas as etapas de pré-processamento da matriz Jacobiana foram executadas (Caso d). A melhoria das características da matriz Jacobiana pode ser comprovada através da Tabela 4.5 que informa o seu número de condicionamento antes e após cada etapa de pré-processamento, bem como os correspondentes autovalores máximo é mínimo. Outro fato interessante é que o programa ANATEM usa um algoritmo de integração de passo fixo (método trapezoidal), enquanto que o ILUT-GMRES é parte integrante de um algoritmo de integração de passo variável (método BDF).

A Figura 4.4 ilustra o efeito positivo das estratégias de pré-processamento através da distribuição espectral dos autovalores da matriz Jacobiana original (J_{SD}), reduzidos e agrupados próximos da origem após cada etapa de pré-processamento, melhorando a sua qualidade, fato comprovado também pelo menor número de condicionamento. Um número de condicionamento grande, como se observa neste experimento, pode indicar proximidade à singularidade e consequentemente dificuldades na solução do subproblema linear, justificando as falhas observadas. Portanto, o pré-processamento resulta num pré-condicionador de melhor qualidade uma vez que este é construído a partir da matriz Jacobiana pré-processada, aumentando a robustez e eficiência do processo iterativo pré-condicionado.

	Número de	Autovalores		
Matriz Jacobiana	Condicionamento	Máximo	Mínimo	
Original	C 570a · 0	+1.282e+3	-0.006	
Onginal	6.5790+3	+j1.786e+3	-j0.363	
Feedlande	0.000 + 4	+1.417	-5.020e-6	
Escalonada	8.602e+4	+j1.956	-j3.431e-4	
Facelanada Normalizada e Deardonada	1 111012	0.6829	0.0126	
Escalonada, Normalizada e Reordenada	1.4440+3	+j1.321	-0.0136	

Tabela 4.5 - Número de condicionamento e autovalores da matriz Jacobiana do Experimento I

b) Escalonada (8.602e+4)

c)

Escalonada, Normalizada e Reordenada

(1.444e+3)

Por fim, as curvas da Figura 4.5 comparam os resultados obtidos pelo programa computacional ANATEM (LU-Trapezoidal) e o BDF-GMRES, a fim de validar a solução iterativa do problema. Note que o programa ANATEM usa um modelo discreto de transformador de tape variável, enquanto que o BDF-GMRES um modelo contínuo. Este fato não compromete a validação, uma vez que em ambos os casos os equipamentos foram ajustados para a mesma tensão de referência e apresentam boa concordância, como pode ser visto pelas curvas.

Figura 4.5 - Curvas obtidas pelo ILUT-GMRES e pelo programa ANATEM - Experimento I

4.3.2 Experimento Numérico II

O objetivo deste conjunto de experimentos é fazer uma avaliação do desempenho do método GMRES para um sistema de maior dimensão que o anterior, usando-se para tal fim o sistema hipotético de energia elétrica IEEE-118 barras com 54 geradores, e verificar a necessidade de considerar estratégias de pré-processamento para melhorar seu desempenho. Esses experimentos foram realizados de acordo com as

informações da Tabela 4.6 seguindo a sequência de eventos da Tabela 4.7, simulados em ordem de severidade. Os resultados das simulações também foram validados através de comparação com os resultados obtidos pelo programa ANATEM, também apresentando boa concordância.

Caso	Método	Pré-condicionador	Pré-processamento
(a)	GMRES	-	-
(b)	GMRES-(100)*	-	-
(c)	GMRES-(100)	ILUT (0,001; 100)	Reordenamento - RCM
(d)	GMRES-(100)	ILUT (0,001; 100)	Escalonamento Normalização Reordenamento - RCM

Гabela 4.6 – Dados sot	re as simulações	s do Experimento II
------------------------	------------------	---------------------

*10% do total do número de equações diferenciais e algébricas (976)

Barra De – Para	Número do Circuito	Instante do distúrbio (s)		
82 – 83	1	0,005		
89 – 92	1	60,0		
26 – 30	1	200,0		
94 – 96	1	300,0		
65 – 68	1	370,0		
Final da	550,0			

Tabela 4.7 – Lista de contingências do Experimento II

A Figura 4.6 ilustra a estrutura da matriz Jacobiana do sistema elétrico antes e depois do reordenamento, este último também com os elementos não-nulos confinados numa determinada região. Já a Figura 4.7, como no experimento anterior, ilustra o efeito das estratégias de pré-processamento na robustez do processo iterativo através da distribuição espectral dos autovalores da matriz Jacobiana (J_{SD}) para cada caso simulado.

Figura 4.6 – Estrutura da Matriz Jacobiana IEEE118 – 118 Barras

Figura 4.7 – Distribuição espectral da matriz Jacobiana para os Casos (a) - (d) do sistema IEEE118 – 118 barras

A Tabela 4.8 ilustra os dados estatísticos relativos aos Casos (a)-(d) simulados, onde para (a) e (b) o tempo de CPU ultrapassou seis (6) horas, forçando, portanto a interrupção antes do cenário atingir 60 segundos, instante no qual a segunda

contingência, abertura do circuito 89-92, seria efetuada. Diferentemente do experimento anterior, neste, apenas duas falhas foram observadas para a solução iterativa. A Tabela 4.9 informa os dados numéricos associados às equações diferenciais ordinárias (EDO) e algébricas (EA) do problema.

Casos	Passos de integração	Avaliação das EDAs	lterações não-lineares	Avaliação da Jacobiana ¹	Tempo CPU	Tempo Relógio ²		
ANATEM	15188	7512	7512	186	1m27s	27s 82ms		
Caso (a)	FALHOU							
Caso (b)	FALHOU							
Caso (c)	14535	65922	29133	36789	57,8 s	30s 13ms		
Caso (d)	14392	68888	28844	39944	56,0 s	28 s		

Tabala / 8 - Dados	e acenciados ac	enhetlugar a	do Evi	narimanta l
Tabela 4.0 - Dau03	associaciós ac	is resultations	ᇿᇧ	penniento i

¹Número de avaliações da matriz Jacobiana (método direto) e do pré-condicionador (método iterativo)
²Tempo determinado pela sub-rotina GETTIM no programa (hora, minuto, segundo e milisegundos)

Tabel	a 4.9 –	Dados s	obre as	equações	diferenciais	ordinárias	(EDO)	e algébricas	(EA)	do Ex	perimento	II
-------	---------	---------	---------	----------	--------------	------------	-------	--------------	------	-------	-----------	----

EDO	EA	Total (EDAs)
636	340	976

Escalonando a matriz Jacobiana e o vetor b antes da construção do pré-condicionador ILUT, como feito em (c), as dificuldades encontradas foram eliminadas e não foram registradas falhas de convergência no processo iterativo GMRES. Os resultados foram bem melhores que os conseguidos anteriormente e o método direto ainda é superior ao iterativo em termos de eficiência computacional (tempos de CPU e de relógio). No Caso (d) os resultados foram superiores aos conseguidos em (c), com o método iterativo superior ao direto em termos de eficiência computacional (tempo de CPU).

A Tabela 4.10 também informa o número de condicionamento da matriz Jacobiana antes e após cada etapa de pré-processamento, bem como os correspondentes autovalores máximo é mínimo. Por outro lado, a Figura 4.8 apresenta uma comparação entre o programa ANATEM e o BDF-GMRES, através de curvas. O objetivo aqui também é validar a solução iterativa do problema no domínio do tempo através do BDF-GMRES.

Matrin Jacobiana	Número de	Autova	alores
Matriz Jacobiana	Condicionamento	Máximo	Mínimo
Original	0.000 + 0	+2.247e+2	-0.007
Onginal	8.0300+0	+j5.564e+2	-j0.224
Feederede	0.4.40 - + 0	-1.174	-2.632e-5
Escalonada	2.1480+6	+j2.843	-j7.679e-4
Feederede Nermelizede e Deerderede	0.0746.0	-1.296	0.004.0
Escalonada, Normalizada e Reordenada	2.3740+3	+i0.891	-0.0016

b) Perfil de tensão na barra 82 (pu) (ANATEM)

c) Perfil de tensão na barra 89 (pu) (BDF-GMRES)

550

Figura 4.8 - Curvas obtidas pelo BDF-GMRES e pelo programa ANATEM - Experimento II

1.084

1.076

1.068

1.060

1.052

1.044 L

4.3.3 Experimento Numérico III

O sistema-teste usado aqui é real e corresponde aos subsistemas Norte-Nordeste do Sistema Interligado Nacional (Figura 4.9) e a modelagem completa destes subsistemas também é parte integrante deste trabalho. Esse sistema é constituído por 564 barras, 831 linhas e 56 geradores, considerando a configuração da operação do mês Abril do ano 2005 e perfil de carga pesada (ONS, 2005).

Uma série de contingências é simulada consistindo na remoção sequencial (Tabela 4.11) de várias unidades geradoras das principais usinas (Tabela 4.12) e respectivos sistemas de controle presentes nos subsistemas Norte-Nordeste. Com isto, fenômenos de curta- e de longa-duração se manifestam não apenas em função dos impactos causados por esta sequência de distúrbios, mas também pela ação dos dispositivos de controle de respostas rápidas e lentas com a finalidade de estabilizar os perfis de tensão. A perda total de geração ativa foi de 3.692 MW, e a reativa foi de 788,4 MVAr (449,65 capacitivo e 338,78 indutivo), principalmente, pelos compensadores síncronos localizados na subestação de Presidente Dutra, operada pelas Centrais Elétricas do Norte do Brasil S.A – Eletronorte, regional do estado do Maranhão.

Para os experimentos numéricos foi estabelecida a ordem máxima das Fórmulas BDF como sendo cinco (5), exceto para o experimento que analisa os efeitos resultantes da restrição dessa ordem para dois (2). A reinicialização do GMRES não está sendo considerada, pois se pretende verificar se o GMRES apenas pré-condicionado é capaz de solucionar o problema.

Remoção de Unidades	Unidades Retiradas	Instante do distúrbio (seg)
Tucurui1-5GR	4	0,005
Tucurui3-4GR	3	20,0
Presidente Dutra-2CS	1	30,0
Paulo Alfonso-4G1-5GR	4	60,0
Final da Simulação		200,0

Tabela 4.11 - Sec	uência de eventos	do Experimento III
-------------------	-------------------	--------------------

Figura 4.9 – Diagrama unifilar do sistema Norte-Nordeste Brasileiro

A Tabela 4.13 informa os dados numéricos associados às equações diferenciais ordinárias (EDO) e algébricas (EA) do problema e a Tabela 4.14 o número de condicionamento da matriz Jacobiana antes e após cada etapa de pré-processamento, bem como os correspondentes autovalores máximo é mínimo.

					Faixa O	perativa	
Usina	Тіро	Barra Terminal	No	М	w	M١	/Ar
				Mín	Máx	-	+
Tuouruí	GER	6419	5	250.0	340.0	105.0	105.0
Tucurui	GER	6420	3	250.0	340.0	105.0	105.0
Tuouruí	CS	6421	2	-	-	350.0	161.0
Tucurui	GER	6422	4	250.0	340.0	105.0	105.0
Tucuruí	CS	6423	2	-	-	350.0	210.0
Tuouruí	GER	6424	2		340.0	168.0	168.0
Tucurui	GER	6425	5		182.7	118.0	118.0
Vila do Conde	CS	6465	2	-	-	90.0	150.0
Marabá	CS	6405	1	-	-	90.0	150.0
Presidente Dutra	CS	5586	2	-	-	70.0	100.0
São Luís	CS	5556	1	-	-	25.0	25.0
Imperatriz	CS	5596	3	-	-	70.0	100.0
GER Unidade	e de gera	cão (MW e MVAr)					

Tabela 4.12 - Informações das máquinas síncronas do sistema N-NE Brasileiro

GER CS

Compensador sincrono (MVAr)

Tabela 4.13 – Dados sobre as equações diferenciais ordinárias (EDO) e algébricas (EA) do Experimento III

EDO	EA	Total (EDAs)
415	1186	1601

Tabela 4.14 - Número de condicionamento e autovalores da matriz Jacobiana do Experimento III

Metric Josephiene	Número de	Autova	alores
Matriz Jacobiana	Condicionamento	Máximo	Mínimo
Original	2.000.116	6 0270 111	+0.063
Onginal	2,000+10	-0.9270+11	-j0.151
Facelanada	4.05	0.770	+1e-4
Escalonada	1,850+14	-2.7720+08	- j0.012
Escalonada, Normalizada e Reordenada	3,61e+07	+1.103 +j1.381	-2.043e-04

A estrutura da matriz Jacobiana do sistema N-NE é apresentada na Figura 4.10 onde se pode notar que as equações diferenciais e algébricas formam blocos na diagonal principal tornando a matriz altamente esparsa e não simétrica numericamente; o número de elementos não-nulos é de 9468. Pode-se observar que não existe um padrão de não-zeros das submatrizes pertencentes aos geradores do sistema, por essa razão, no processo de aproximação da matriz Jacobiana se utiliza a maior banda para todos os geradores, mesmo que alguns deles não tenham nenhum tipo de dispositivo de controle.

A distribuição espectral dos autovalores da matriz Jacobiana original como mostra a Figura 4.11(a), conjuntamente com seu número de condicionamento entre parênteses, caracterizam o seu mau condicionamento, este melhorado após o pré-processamento da matriz Jacobiana, como mostram as Figura 4.11 (b) e (c). Embora o processo de escalonamento aprimore a característica de diagonal dominante através da permutação de seus valores, ainda existem valores próprios que dominam o mau condicionamento, conforme pode ser observado no espectro da Figura 4.11 (b) e o número de condicionamento da matriz continua bastante alto. Entretanto, quando o escalonamento é realizado junto com a normalização euclidiana, a distribuição de alguns valores próprios no lado direito do espectro pode justificar o número de condicionamento de a matriz continuar elevado.

Figura 4.10 - Estrutura da matriz Jacobiana do sistema N/NE - 564 Barras

No experimento anterior foram usados os métodos BDF-GMRES e o Trapezoidal-LU, este último com passo de integração fixo e, portanto, uma comparação em termos de eficiência computacional seria injusta. Agora, o BDF-LU é usado, possibilitando uma análise comparativa mais justa para fenômenos de longa duração.

Figura 4.11 – Distribuição espectral da matriz Jacobiana do sistema N/NE

O tempo de CPU obtido por cada método é informado na Figura 4.12 atestando uma melhor eficiência deste último sobre os demais, inclusive sobre o GMRES.

Figura 4.12 – Tempo de CPU para diferentes métodos

A Figura 4.13 apresenta curvas obtidas pelo ANATEM e pelo BDF-GMRES para fins de validação.

Figura 4.13 – Curvas obtidas pelo BDF-GMRES e pelo programa ANATEM – Experimento III

4.3.4 Comentários Gerais sobre os Experimentos I, II e III

Para oferecer uma melhor visão em termos comparativos, os principais resultados obtidos nos experimentos anteriores estão resumidos nas Tabela 4.15 e Tabela 4.16. A primeira apresenta o número de condicionamento da matriz Jacobiana de cada

experimento, antes, durante e após o pré-processamento. Já a segunda informa o tempo de CPU para diferentes métodos. O reordenamento não está mostrado na Tabela 4.15 por não alterar esta grandeza, já que esta estratégia não influencia a magnitude dos elementos da matriz. Um número de condicionamento grande, como se observa para todas as matrizes originais com destaque para o do Experimento III, pode indicar proximidade à singularidade e consequentemente dificuldades na solução do subproblema linear. Estes indicadores justificam a necessidade do pré-processamento para os sistemas considerados, notando que o efeito da normalização Euclidiana fica mais evidente em III.

Experimento	Original	Escalonada	Normalizada
l (a)	6,579e+3	-	-
l (d)	6,579e+3	8,602e+4	1,444e+3
Ш	8,636e+6	2,148e+6	2,374e+3
ш	2,00e+16	1,85e+14	3,61e+07

Tabela 4.15 - Número de condicionamento das matrizes Jacobianas

Tabela 4.16 - Tempo CPU

Experimento	BDF-GMRES	Trapezoidal-LU
I (a)	Falhou	1,05s
l (d)	5,13s	1,05s
II	56,0s	1min 27s
II	28,6s	38,4s

A decisão sobre qual método usar (iterativo ou direto) depende de diversos fatores relacionados ao problema e infelizmente esta decisão não é fácil. Entretanto, com base nos experimentos numéricos I, II e III, tem-se que:

 A velocidade de convergência do método iterativo, bem como a sua taxa de convergência, é muito dependente da qualidade do pré-condicionador que, quanto mais simples, maior será o número de operações realizadas pelo método, resultando em um elevado número de iterações para convergir, podendo até falhar.

- Um pré-condicionador de melhor qualidade necessita de um maior número de operações para a sua construção, mas o método iterativo tende a convergir rapidamente para a solução desejada.
- Sob o ponto de vista de aplicação, o usuário deve ter alguma experiência com métodos iterativos, principalmente com relação aos pré-condicionadores.
- 4. Geralmente, métodos iterativos pré-condicionados precisam de uma maior quantidade de parâmetros em comparação aos diretos.
- Métodos iterativos usam menos espaço de memória em relação aos diretos. Por outro lado, esta vantagem é perdida quando for necessário armazenar duas matrizes, a de coeficientes e a de pré-condicionamento.
- 6. Ambos os métodos são eficientes para matrizes esparsas.
- O método BDF-GMRES foi superior ao Trapezoidal-LU, porém, ligeiramente inferior ao BDF-LU no experimento com sistema real e nível de carga pesada (ver Figura 4.12)

As informações apresentadas acima podem ajudar no processo de escolha, mas a decisão final deve ficar a critério do usuário, o qual deve ter pleno conhecimento do problema e das características da matriz de coeficientes do sistema linear. Nesta tese, o problema enfoca estudos de estabilidade de sistemas elétricos, sendo a solução do sistema linear apenas parte dele.

4.3.5 Experimento Numérico IV

Tem sido observado através de experimentos numéricos que, geralmente, o GMRES pré-condicionado apresenta os menores tempos de CPU quando comparado com métodos diretos, tanto em análises em regime-permanente quanto no domínio do tempo. Uma desvantagem está na procura por valores ótimos para τ com base em tentativa e erro, mas a literatura (Benzi, 2002) indica uma faixa de valores $(10e^{-2} - 10e^{-4})$ que pode ser usada. Para verificar a solução usando um valor desta faixa $(10e^{-3})$, o Experimento III foi repetido mantendo-se o mesmo valor para ρ . Os resultados estão mostrados na Tabela 4.17 e indicam um aumento no tempo de CPU de 12,75% em relação ao experimento com τ ótimo $(10e^{-5})$. Esse comportamento se justifica pela maior quantidade de elementos não-nulos eliminados durante a construção do pré-condicionador, reduzindo a sua qualidade bem como a taxa de convergência do GMRES refletindo no tempo de CPU. Apesar disso, o experimento mostra que o problema sublinear pode ser solucionado sem uma busca exaustiva por

um valor ótimo para τ . Se o ILUT falhasse, a solução poderia ser obtida reduzindo o valor de τ e/ou aumentando-se o de ρ (Benzi, 2002), mas neste experimento tais procedimentos não foram necessários.

Tabela 4.17 – Resultados para valor sugerido de τ

τ	10e-03	10e-05	BDF-LU
CPU	32,28s	28,63 s	27,98 s

4.3.6 Experimento Numérico V

Aqui, é repetido o Experimento III fazendo uso de filtros digitais a fim de analisar o comportamento dos métodos numéricos de integração na seleção do comprimento do passo. Os filtros (Tabela 4.18) considerados aqui foram retirados da literatura (Meeker, 2004) e foram implementados na versão do solucionador DASPK usada nas simulações. A Tabela 4.19 e Tabela 4.20 informam os parâmetros e o desempenho computacional para cada filtro considerado.

· · · · · · · · · · · · · · · ·

Filtro	B1	B2	A2		
H211B4	$0,25/T_k$	$0,25/T_k$	0,25		
PI42	$0,60/T_k$	-0,20/ T_k			

		BDF	FILTRO			GMRES			ILUT		CPU	PASSOS DE		NEWTON		GMRES	
H211B4	СР	к	PARCELA	B1	B2	A2	NIL	TOL	m	ρ	τ	Seg	INTEGRAÇÃO	REJEIÇÜES	NCONV	CONV	CONV
H211B4(1)	0,033	5	10E-04	0,25	0,25	0,25	20	5,0E-02	5	150	10E-05	1.843	10.944	21.651	32	65.272	34.348
H211B4(2)	0,033	5	10E-04	0,75	0,75	0,75	20	5,0E-02	5	150	10E-05	1.660	10.389	16.566	40	54.027	33.277
H211B4(3)	0,33	5	10E-04	0,25	0,25	0,25	20	5,0E-02	5	150	10E-05	3.528	10.941	21.660	25	65.262	33.245
H211B4(4)	0,033	5	10E-08	0,25	0,25	0,25	20	5.0E-02	5	150	10E-05	614	4.139	7.160	33	22.730	16.704
H211B4(5)	0,033	5	10E-04	0,25	0,25	0,25	20	5,0E-02	5	150	10E-05	291	3.665	3.321	14	14.036	12.254
H211B4(6)	0,033	5	10E-04	0,001	0,25	0,25	20	5,0E-02	5	150	10E-05	1.201	7.073	13.795	29	41.831	24.720
H211B4(7)	0,033	5	10E-04	0,25	0,001	0,25	20	5,0E-02	5	150	10E-05	65,5	7.479	60	15	15.121	22.595
H211B4(8)	0,33	5	10E-04	0,25	0	0,25	20	5,0E-02	5	150	10E-05	69,3	7.465	60	15	15.079	16.063
H211B4(9)	0,033	5	10E-04	0,25	0,25	0	20	5,0E-02	5	150	10E-05	936,4	5.595	10.915	31	33.126	21.408
CP K PARCELA B1,B1,A2 NIL		Critério de parada Ordem das fórmulas BDF Valor residual utilizada na fórmula do filtro Expoente da fórmula do filtro digital Número de iterações lineares						al .									

Tabela 4.19 - Simulações envolvendo o Filtro H211B4

 m
 Número de reinicializações

 ρ
 Número de elementos não-nulos permitidos no processo de fatoração ILU

τ Tolerância estabelecida para o processo de eliminação em ILU.

Tolerância de convergência no processo iterativo linear GMRES

NCONV Número de não-convergência do processo iterativo Newton.

CONV Convergência do processo iterativo Newton.

TOL

	СР	BDF	F	ILTRO	S			GMRES		ILUT		CPU	PASSOS DE		NEWTON		GMRES
PI42		к	PARCELA	B1	B2	A2	NIL	TOL	m	ρ	τ	Seg	INTEGRACAO	REJEICOES	NCONV	CONV	CONV
PI42(1)	0,033	5	10E-04	0,6	-0.2	0	20	5,0E-02	5	150	10E-05	302,5	49.129	25	18	98.341	86.691
PI42(2)	0,33	5	10E-04	0,6	-0.2	0	20	5,0E-02	5	150	10E-05	275,7	50.037	29	15	100.135	52.627
PI42(3)	0,033	5	10E-08	0,6	-0.2	0	20	5,0E-02	5	150	10E-05	113,2	12.835	32	28	25.477	16.021
PI42(4)	0,033	5	10E-04	0,6	-0.2	0	20	5,0E-02	5	150	10E-05	34,4	3.932	36	8	7.956	8.970
PI42(5)	0,033	5	10E-04	0,25	0	0	20	5,0E-02	5	150	10E-05	66,1	7.452	57	18	15.061	22.518
PI42(6)	0,033	5	10E-04	0,6	0.2	0	20	5,0E-02	5	150	10E-05	3.130	11.833	21.054	23	65.832	38.463
PI42(7)	0,033	5	10E-04	0,6	0.1	0	20	5,0E-02	5	150	10E-05	1.835	11.481	11.108	27	45.237	29.635
PI42(8)	0,033	5	10E-04	0,6	0.001	0	20	5,0E-02	5	150	10E-05	165,3	7.325	53	19	14.618	22.113
PI42(9)	0,033	5	10E-04	0,6	0	0	20	5,0E-02	5	150	10E-05	71,8	7.315	52	18	14.780	22.361
PI42(10)	0,033	5	10E-04	0,6	-0.001	0	20	5,0E-02	5	150	10E-05	281,0	7.383	47	22	14.917	22.544
PI42(11)	0,033	5	10E-04	0,6	-0.1	0	20	5,0E-02	5	150	10E-05	138,3	19.250	28	20	38.608	46.184
CP	Critério de parada																

Tabela 4.20 – Simulações envolvendo o Filtro PI42

СР	Critério de parada
К	Ordem das fórmulas BDF
PARCELA	Valor residual utilizada na fórmula do filtro digital
B1,B1,A2	Expoente da fórmula do filtro digital
NIL	Número de iterações lineares
TOL	Tolerância de convergência no processo iterativo linear GMRES
m	Número de reinicializações
ρ	Número de elementos não-nulos permitidos no processo de fatoração ILU
τ	Tolerância estabelecida para o processo de eliminação em ILU.
NCONV	Número de não-convergência do processo iterativo Newton.
CONV	Convergência do processo iterativo Newton.

Os resultados mostrados na Tabela 4.19 e Tabela 4.20 indicam que a inclusão dos filtros digitais na simulação em questão pode degenerar a eficiência computacional das simulações, caracterizada pelos elevados tempos de CPU. A Figura 4.14 e Figura 4.15 ilustram o comportamento do passo de integração e do erro de truncamento ao longo das simulações com os filtros (H211B4(6) e PI42(4)) comparado com simulações sem os filtros digitais.

b) Comportamento do erro de truncamento ao longo da simulação
 Figura 4.14 – Efeitos do filtro H211B4(6)

Da Tabela 4.20 observa-se que o tempo de CPU de 34,4 s associado ao filtro PI42(4) foi o menor obtido em todas as configurações com filtros, mas ainda superior ao tempo de CPU registrado para a simulação sem o filtro (28,6 s). Já os gráficos da Figura 4.14 e Figura 4.15 mostram uma variação mais suave do passo de integração (a) e um melhor controle do erro (b), comportamentos conseguidos com a presença dos filtros. A referência (Soderling & Wang, 2003) atesta que, em geral, esses filtros atuam positivamente na estabilidade computacional do processo, ou seja, se ocorrer uma

pequena variação em qualquer parâmetro envolvido na simulação, deve-se observar um pequeno efeito nos resultados (neste caso, diz-se que o processo computacional é bem condicionado). Entretanto, os filtros considerados foram desenvolvidos para aplicações que fazem uso de equações diferenciais e algébricas para análise de sensibilidade e otimização. Os resultados obtidos não mostram vantagens em se usar esses filtros para o problema em questão.

Comportamento do erro de truncamento ao longo da simulação

Figura 4.15 - Efeitos do filtro PI42(4)
5 Conclusões e Trabalhos Futuros

5.1 Introdução

O uso de métodos iterativos requer conhecimento, habilidade e experiência, e um grande esforço tem sido feito para uma melhor aproximação desses métodos com problemas reais. Ainda, a solução de sistemas lineares relacionados a problemas complexos e práticos, como no caso de sistemas de energia elétrica, através de métodos iterativos é um desafio devido à complexidade matemática inerente aos métodos e as suas estratégias. Ao longo desta pesquisa, notou-se um reduzido número de artigos encontrados na literatura abordando aplicações em problemas de sistemas elétricos de potência em ambiente serial, embora haja um consenso com relação ao aspecto promissor desses métodos. Outros fatores que ajudam em justificar esse reduzido número de publicações são:

- De uma forma geral os métodos diretos baseados em eliminação Gaussiana ou fatoração LU, por exemplo, atenderam/atendem de forma eficiente, confiável e satisfatória os requisitos de solução.
- Os primeiros métodos iterativos apresentavam deficiências que poderiam comprometer a solução do problema. Muitas vezes tinha que se recorrer a algum método direto em substituição ao iterativo.
- Os sistemas elétricos de potência eram menores em termos de dimensão, menos complexos em termos de configuração, continham menos dispositivos de controle, e as características das cargas eram mais amigáveis. Tudo isso refletia no modelo matemático final, independente do cenário sob investigação, ou seja, comparado aos sistemas atuais ofereciam menos barreiras à solução dos sistemas de equações matemáticas, fossem algébricas ou diferenciais. Por outro lado, os recursos computacionais eram bem inferiores aos atuais, mas mesmo assim os métodos diretos atenderam de forma satisfatória as necessidades.

Por outro lado, também existem justificativas para explorar os métodos iterativos, e de outros métodos numéricos em geral, sendo estas:

- Atualmente, os sistemas de energia elétrica são muito maiores em termos de dimensão, muito mais complexos em termos de configuração, contêm muito mais dispositivos de controle, e as características das cargas podem não ser amigáveis. Tudo isso reflete no modelo matemático final, agora dependendo do cenário sob investigação. Devido à variedade de fenômenos presentes nos sistemas de energia elétrica, houve a necessidade de classificá-los em função, por exemplo, dos objetivos/parâmetros de interesse e da velocidade do fenômeno (intervalo de duração). Em alguns casos a modelagem matemática é específica para certo tipo de fenômeno. Os sistemas atuais se comparados aos passados oferecem muito mais barreiras à solução dos sistemas de equações, sejam algébricas ou diferenciais. Em contra partida, os recursos computacionais atuais são bem superiores, mas mesmo assim os métodos convencionais podem não atender de forma satisfatória as necessidades, influenciando negativamente no desempenho computacional sob o ponto de vista de tempo de CPU, memória e estabilidade numérica. Portanto, há uma clara necessidade de se procurar por novas estratégias numéricas, e este é um dos pontos a se destacar nesta pesquisa.
- Houve uma clara evolução dos métodos numéricos cobrindo uma variedade de problemas, acompanhada pela evolução dos computadores. Pelo histórico apresentado e pelos artigos mais recentes abordados, os métodos iterativos evoluíram bastante desde as duas últimas décadas do século passado até os tempos atuais.
- Recentes estratégias numéricas referentes à construção do pré-condicionador, como também estratégias de reinicialização e de diferenças de quocientes, influenciam positivamente no desempenho dos métodos iterativos. Essas estratégias numéricas, e outras encontradas na literatura especializada, tornaram esses métodos promissores e atrativos.
- A robustez de alguns métodos iterativos, como por exemplo, do GMRES em conjunto com estratégias eficientes, pode ser um fator importante e diferencial sob o ponto de vista matemático. Alguns algoritmos numéricos falham quando o cenário investigado envolver condições críticas de operação, como por exemplo,

uma condição de extremo carregamento e com déficit de potência reativa, próxima de um colapso de tensão.

Com relação à aplicação de método iterativo ou direto para solucionar um determinado problema, este é um dilema que tem merecido bastante atenção já que a decisão sobre qual é o mais adequado depende de diversos fatores relacionados ao problema pode não ser fácil. Entretanto, verificou-se que:

- A velocidade de convergência do método iterativo, bem como a sua taxa de convergência, é muito dependente da qualidade do pré-condicionador que, quanto mais simples, maior será o número de operações realizadas pelo método, resultando em um elevado número de iterações para convergir, podendo até falhar.
- Um pré-condicionador de melhor qualidade necessita de um maior número de operações para a sua construção, mas o método iterativo tende a convergir rapidamente para a solução desejada.
- Sob o ponto de vista de aplicação, o usuário deve ter alguma experiência com métodos iterativos, principalmente com relação aos pré-condicionadores.
- Geralmente, métodos iterativos pré-condicionados precisam de uma maior quantidade de parâmetros em comparação aos diretos.
- Métodos iterativos usam menos espaço de memória em relação aos diretos. Por outro lado, esta vantagem é perdida quando for necessário armazenar duas matrizes, a de coeficientes e a de pré-condicionamento.
- Ambos os métodos são eficientes para matrizes esparsas.
- A situação ótima para a solução iterativa foi a com o ponto de operação próximo do máximo carregamento, com 173,6% de ganho em comparação ao direto no tempo de CPU.
- Nos experimentos, o método direto usado com o BDF faz uso de fatoração LU, ordenamento mínimo grau e pivotação parcial.
- O método direto foi ligeiramente superior ao iterativo no experimento com sistema real e nível de carga pesada (distante do máximo carregamento).

As informações apresentadas acima podem ajudar no processo de escolha, mas a decisão final deve ficar a critério do usuário, o qual deve ter pleno conhecimento do problema e das características da matriz de coeficientes do sistema linear. Na presente tese, o problema enfoca estudos de estabilidade de sistemas elétricos de potencia, sendo a solução do sistema linear apenas parte dele.

5.2 A Proposta e as Contribuições

O problema investigado nesta tese enfoca a solução das EDAs inerentes aos estudos de estabilidade de curta e de longa-duração, com particular interesse na solução dos sistemas lineares através do GMRES pré-condicionado. Propostas com métodos iterativos para este tipo de problema têm sido apresentadas fazendo uso do trapezoidal implícito com passo fixo, restritas aos fenômenos de curta-duração. Nesta tese o BDF de ordem e passo variável foi considerado para a solução das equações diferenciais, resultando no BDF-GMRES. Investigações mostraram que o método GMRES mesmo pré-condicionado pode apresentar dificuldades de convergência. Procurou-se amenizar essas dificuldades enfocando a qualidade do pré-condicionador e uma vez que este é construído a partir da matriz Jacobiana do sistema elétrico (incluindo dispositivos de controle), optou-se por pré-processar esta matriz antes da sua construção. O pré-processamento consistiu em escalonar, normalizar e ordenar a matriz Jacobiana e análises envolvendo a distribuição espectral dos seus autovalores bem como seu número de condicionamento corroboraram as melhorias nas suas características e o pré-condicionador construído a partir desta matriz passou a apresentar qualidade muito superior ao construído sem pré-processamento, melhorando consequentemente o desempenho do GMRES. Estas estratégias se mostram muito eficientes quando o cenário envolver uma matriz Jacobiana malcondicionada, indefinida e próxima da singularidade, normalmente associada a uma condição de operação adversa (elevado carregamento, p.ex.).

Um pré-condicionador de qualidade não apenas possibilita ao GMRES solucionar sistemas lineares com matrizes Jacobianas mal-condicionadas como também pode solucionar o problema sem uma busca exaustiva por valores ótimos para seus parâmetros, além de evitar a estratégia de reinicialização já que a convergência pode ser obtida em poucas iterações como mostrado em um dos experimentos (exceto no instante do distúrbio).

Por fim, foram implementados filtros digitais (opcional) disponíveis na literatura para o controle do erro resultante da variação do passo de integração e para a maioria das configurações testadas não foram observadas melhorias em termos de eficiência (redução no tempo de CPU) na solução do problema, e sim uma piora. As configurações testadas não foram desenvolvidas para o problema de interesse, pois esta tarefa não fazia parte dos objetivos da tese. Por outro lado, esta investigação fezse necessária por se tratar de uma sugestão feita por um membro da banca da defesa de proposta de tese.

5.3 Trabalhos Publicados

Como resultado do presente trabalho de pesquisa têm sido submetido e aprovado para publicação em revistas de âmbito nacional e internacional os seguintes:

- Pessanha, J.E.O; Paz, A.R.A; Poma, C.P.; Prada, R.B. *Making Use of BDF-GMRES Methods for Solving Short and Long-Term Dynamics In Power Systems*. International Journal of Electrical Power & Energy Systems, Volume 45, Issue 1, Pages 293–302, February 2013.
- Pessanha, J.E.O; Paz, A.R.A; Poma, C.P.; Prada, R.B. Solucionadores Iterativos para Simulação de Sistemas Elétricos de Potencia. XII Simpósio de Especialistas em Planejamento da Operação e Expansão Elétrica – Rio de Janeiro, SEPOPE 2012. Maio, 2012.
- Pessanha, J.E.O.; Paz, A.R.A.; Prada R.B. Aplicação do Método GMRES em Estudos de Estabilidade de Sistemas de Energia Elétrica. SBA - Sociedade Brasileira Automática. Julho, 2011.

5.4 Trabalhos Futuros

Como sugestões para futuros trabalhos, propõem-se:

- Avaliar o desempenho do GMRES usando o pré-condicionador baseado no erro (Portugal, 2010).
- Avaliar a eficiência do solucionador iterativo para sistemas de energia elétrica de maior-porte (Sistema Interligado Nacional completo - SIN) sob condições adversas de operação (níveis elevados de carga).

- Usar ordenamento mínimo grau (Tinney 2) em substituição ao RCM e comparar desempenho.
- Implementação do algoritmo de pré-condicionamento utilizando técnicas de processamento paralelo.
- Averiguar adequação de um solucionador baseado nos métodos de Jacobianalivre e Newton-Krylov com pré-condicionador baseado no erro resultante, visando descartar o ajuste das tolerâncias relativa e absoluta do método GMRES.
- Desenvolver filtros digitais para o problema de interesse a fim de melhorar a variação do passo de integração sem comprometimento da eficiência computacional.

Referências Bibliográficas

ALVARADO, F.L. **Computational Complexity in Power Systems**. IEEE Transactions on Power Apparatus and Systems, vol.1-95, n⁴, pp.1 028-1037, 1976.

ALVARADO, F.L.; DAG, H.; BRUGGENCATE, M.T. **Block-Bordered Diagonalization and Parallel Iterative Solvers.** In Proceedings of Colorado Mountain Conference on Iterative Methods, April 5-9, 1994.

AMESTOY, P.; DAVIS, T.A.; DUFF, I.S. **An Approximate Minimum Degree Ordering Algorithm**. SIAM J. Matrix Anal. Appl. 17, 4, 886-905, 1996.

ANAREDE. Manual de Treinamento do Programa de Análise de Redes -ANAREDE/CEPEL. versão 9.1.3, 2007.

ANATEM. Manual de Treinamento do Programa de Análise de Transitórios Eletromecânicos ANATEM/CEPEL. versão V07-08/99. Maio 2000.

ARNOLDI, W.E. The Principle of Minimized Iteration in the Solution of the Matrix Eigenvalue Problem. Quart. Appl. Math., 9: 17-29, 1951.

ASTIC, J.Y.; BIHAIN, A.; JEROSOLIMSKI, M. The Mixed Adams-BDF Variable Step Size Algorithm to Simulate Transient and Long-Term Phenomena in Power Systems. IEEE Transactions on Power Systems, vol.9, n^o, M ay 1994.

AXELSSON, O. A Generalized SSOR Method. BIT, 12: 443-467, 1972.

AXELSSON, O. Solution of Linear Systems of Equations: Iterative Methods. In V. A. Barker. Editor, Sparse Matrix Techniques, pages 1-51. Copenhagen 1976, Springer Verlag. Berlin, 1977.

AXELSSON, O.; VASSILEVSKI, P.S. A Black Box Generalized Conjugate Gradient Solver with Inner Iterations and Variable Step Preconditioning. SIAM, J. Matrix. Anal. Applic. 12(4): 625-644, 1991.

AXELSSON, O. Iterative Solution Methods. Cambridge Univ. Press, 1994.

BANK, R.E.; CHAN, T.F. An Analysis of the Composite Step Biconjugate Gradient Methods. Numer. Anal., 66: 295-319, 1993.

BACHER, R; BULLINGER, E. Application of Nonstationary Iterative Methods to an **Exact Newton-Raphson Solution Process for Power Flow Equations**. Proc. PSCC Conference, August 19-23, Dresden, Germany, pp. 453-459. 1996.

BARRETT, R.; BERRY, M.; CHAN, T.F.; DEMMEL, J.; DONATO, I.J.; DONGARRA, J.; EIJKHOUT, V.; POZO, R.; ROMINE, C.; VAN DER VORST, H. **Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods**. SIAM, Philadelphia, 2006.

BENZI, M.; TUMA, M. Orderings for Factorized Approximate Inverse Preconditioners. SIAM J. Sci. Comput. 21, p. 1851, 2000.

BENZI, M.B.; HAWS, J.C.; TUMA, M. Preconditioning Highly Indefinite and Nonsymmetric Matrices. SIAM, J. Sci. Comput. 22, p. 1333, 2000.

BENZI, M. **Preconditioning Techniques for Large Linear Systems: A Survey**. Journal of Computational Physics, 182(2): pp. 418-477, 2002.

BENZI, M.; JOUBERT, W.D.; MATEESCU, G. Numerical Experiments with Parallel Orderings for ILU Preconditioners. Electronic Transactions on Numerical Analysis 8, pp. 88-114, 1999a.

BENZI, M.; SZYLD, D.B.; VAN DUIN, A. Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems. SIAM J. Sci. Comput. 20, p. 1652, 1999b.

BISSELING, R.H. **Parallel Iterative Solution of Sparse Linear Systems on a Transputer Network**, in Parallel Computation, eds. A. E. Fincham and B. Ford, Oxford University Press, Oxford, pp. 253-271, 1993.

BORGES, C.L.; COUTINHO, A.L.G.A.; FALCÃO, D.M. Solução de Fluxo de Potência em Ambiente Vetorial usando o Método do Gradiente Bi-Conjugado Estabilizado. XI Congresso Brasileiro de Automática, São Paulo. Anais do 11º, 1996.

BORGES, C.L.; FALCÃO, D.M.; COUTINHO, A.L.G.A. Utilização de Método Tipo Gradiente Conjugado na Aceleração do Fluxo de Potência em Computação Vetorial. XIV Seminário Nacional de Produção e Transmissão de Energia Elétrica, Belém, 1997.

BRAND, C.W. An Incomplete Factorization Preconditioning Using Repeated Red/Black Ordering. Numer. Math. 61, p. 433, 1992.

BRENAN, K.; CAMPBELL, S.; PETZOLD, L. Numerical Solution of Initial-Value **Problems in Differential-Algebraic Equations**. SIAM, Philadelphia, 1996.

BROWN, P.N.; HINDMARSH, A.C.; PETZOLD, L.R. Using Krylov Methods in the Solution of Large-Scale Differential-Algebraic Systems. SIAM J. Sci. Comp., 15, pp. 1467-1488, 1994.

BULEEV, N. I. A Numerical Method for the Solution of Two-Dimensional and Three-Dimensional Equations of Diffusion. Math. Sb, 51:227-238 (in Russian), 1960.

BURDEN, R.L.; FAIRES, J.D. **Numerical Analysis**. PWS-KENT Publishing Company, Boston, 1989.

BUZAR, J.C. Análise em Regime Permanente e no Domínio do Tempo para Detecção e Visualização de Problemas de Controle de Tensão. Dissertação submetida à coordenação do Programa de Pós-Graduação da UFMA, 2003.

BYRNE, G.D.; HINDMARCH, A.C. **A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations**. ACM, Transactions on Mathematical Software, vol. 1, nº 1, pp. 71-96, 1975.

CANIZARES, C. Voltage **Stability Assessment: Concepts, Practices and Tools**. IEEE/PES, Product Number SP101PSS (ISBN 0780378695), May 2003.

CARVALHO MENDES, P. P. Aplicação de Redes Neurais Artificiais na Análise em Tempo Real da Estabilidade de Tensão de Regime-Permanente de Sistemas Elétricos de Potência. Proposta de Tese de Doutorado, COPPE-UFRJ, Dezembro 1997.

CHANIOTIS, D.; PAI, M.A. Iterative Solver Techniques in the Dynamic Simulation of Power System. Power Engineering Society Summer Meeting, 2000. IEEE vol.1, 16-20 Page(s):609 - 613, July 2000.

CHAN, T.F.; GALLOPOULOS, E.; SIMONCINI, V.; SZETO, T; TONG, C.H. A Quasi Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric systems. SIAM J.Sci.Comput., 15: 338-347, 1994.

CHEN, K. Matrix Preconditioning Techniques and Applications. Cambridge Monographs on Applied and Computational Mathematics, 2005.

CHEN, Y.; SHEN, C. A Jacobian-Free Newton-GMRES(m) Method with Adaptive **Preconditioner and Its Application for Power Flow Calculations**. IEEE Trans. on Power Systems, vol.21, n³, pp.1096-1103, August 20 06.

CHEN, Y.; SHEN, C.; WANG, J. **Distributed Transient Stability Simulation of Power Systems Based on a Jacobian-Free Newton-GMRES Method**. IEEE Trans. on Power Systems, vol.24, n^ol, pp. 146-156, February 2 009.

CHRISTIE, R.D. **Power System Test Case Archive**. The archive is available at http://www.ee.washington.edu/research/pstca, 1999.

CHOWDHURY, B.H.; TAYLOR, C.W. Voltage Stability Analysis: V-Q Power Flow Simulation versus Dynamic Simulation. Power Systems IEEE Transactions on, vol.15 Issue:4, pp. 1354 –1359, 2000.

CHOW, E.; SAAD, Y. Experimental Study of ILU Preconditioners for Indefinite Matrices. J. Comput. Appl. Math. 86, p. 387, 1997.

CIGRÉ Task Force 38-02-10. Modeling of Voltage Collapse Including Dynamic Phenomena. CIGRÉ Brochure No. 75 Summary in Electra, pp. 71-77, April 1993.

CIMMINO, G. Calcolo Approssimato per le Soluzioni dei Sistemi di Equazioni Lineari. Ric. Sci. Progr. Tecn. Econom. Naz., 9:326-333, 1939.

CONCORDIA, C.; DAVIDSON, D.R.; EWART, D.N.; KIRCHMAYER, L.K.; SCHULZ, R. P. Long-Term Power System Dynamics - A New Planning Dimension. CIGRÉ Paper 32-13, 1976.

CONCUS, P.; GOLUB, G.H.; O' LEARY, D.P. A Generalized Conjugate Gradient Method for the Numerical Solution of Elliptic Partial Differential Equations. In James R.Bunch and Donald J.Rose, Editors, Sparse Matrix Computations, pages 309-332, Academic Press, New York, 1976.

CUTHILL, E. Several Strategies for Reducing the Bandwidth of Matrices. D. J. Rose and R. A. Willoughby, Plenum, New York, 1972.

CUTSEN, T.V. Voltage Stability: Fast Simulation and Decision Tree Approaches. NERC/EPRI Forum on Operational and Planning Aspects of Voltage Stability, Breckenridge, Colorado, September 14-15, 1992.

CUTSEN, T.V. An Approach to Corrective Control of Voltage Instability Using Simulation and Sensitivity. Athens Power Tech Conference, Athens, Greece, September 5-8, 1993a.

CUTSEN, T.V. **Analysis of Emergency Voltage Situations**. Proc. 11th Power Systems Computation Conference, Avignon, France, vol.1, pp. 323-330, 1993b.

CUTSEN, T.V.; JACQUEMART, Y.; MARQUET, J.N.; PRUVOT, P.A. **Comprehensive Analysis of Mid-term Voltage Stability**. IEEE Trans. on Power Systems, SM 511-6, Summer Meeting, 1994.

CUTSEN, T.V.; JACQUEMART, Y.; MARQUET, J.N.; PRUVOT, P. **Extensions and Applications of a Mid-Term Voltage Stability Analysis Method.** Proceedings of the 3rd International Workshop on Bulk Power System Voltage Phenomena - Voltage Stability and Security, Davos Switzerland, pp. 251-270, August 1994. CUTSEN, T.V.; MAILHOT, R. Validation of a Fast Voltage Stability Analysis Method on the Hydro-Québec Systems. IEEE/PES Winter Meeting, Baltimore, MD, January 21-25, 1996.

DAG, H.; ALVARADO, F.L. **Direct Methods versus GMRES and PCG for Power Flow Problems**. In the proceedings of NAPS, pp.274-278, October 5-9, 1993.

D'AZEVEDO, E.F.; FORSYTH, P.A.; TANG, P. Ordering Methods for Preconditioned Conjugate Gradient Methods Applied to Unstructured Grid Problems. SIAM J. Matrix Anal. Appl. 13, p. 944, 1992a.

D'AZEVEDO, E.F.; FORSYTH, P.A.; TANG, P. Towards a Cost Effective ILU Preconditioner With High Level Fill. BIT, 31:442-463, 1992b.

DANIEL, J.W. The Conjugate Gradient Method for Linear and Nonlinear Operator Equations. SIAM J. Numer. Anal., 4:10-26, 1967.

DAVIDSON, D.R.; EWART, D.N.; KIRCHMAYER, L.K. Long-Term Dynamic Response of Power System Disturbance: An Analysis of Major Disturbances. IEEE Trans., vol. PAS-94, n³, pp. 819-826, May/Jun e 1975.

DA CUNHA, R.D.; HOPKINS, T. A Parallel Implementation of the Restarted GMRES Iterative Algorithm for Nonsymmetric Systems of Linear Equations. Adv. Comp. Math., 2 (1994), pp. 261-277, 1994.

DECKER, I.C.; FALCÃO, D.M.; KASZKUREWICZ, E. Parallel Implementation of Power System Dynamic Simulation Methodology Using The Conjugate Gradient Method. IEEE Transactions on Power Systems, USA, vol.7, pp. 458-465, 1992.

DECKER, I.C.; FALCAO, D.M.; KASZKUREWICZ, E. Conjugate Gradient Methods for Power Systems Dynamic on Parallel Computers. IEEE Transactions on Power Systems, vol. 11, no. 3, pp. 1218-1227, 1996.

DE STURLER, E. Incomplete Block LU Preconditioners on Slightly Overlapping Subdomains for a Massively Parallel Computer. Appl. Num. Math. 19, pp. 129–146, 1995.

DEUSE, J.; STUBBE, M. Dynamic Simulation of Voltage Collapse, paper 92 SM 396-2 PWRS, IEEE/PES Summer Meeting, July 12-16, 1992.

DI BROZOLO, G.R.; ROBERT, Y. Parallel Conjugate Gradient-like Algorithms for Solving Sparse Nonsymmetric Linear Systems on a Vector Multiprocessor. Parallel Comput., 11, pp. 223-239, 1989.

DOI, S.; WASHIO, T. Ordering Strategies and Related Techniques to Overcome The Trade-Off between Parallelism and Convergence in Incomplete Factorizations. Parallel Comput. 25, p. 1995, 1999.

DONGORRA, J.J.; DUFF, I.S.; SORENSEN, D.C.; VAN DER VORST, H.A. Numerical Linear Algebra for High-Performance Computers. SIAM, Philadelphia, PA, 1998.

DUFF, I.S. MA28. Duff (Harwell Report 8730), 1977.

DUFF, I.S.; ERISMAN, A.M.; REID, J.K. Direct Methods for Sparse Matrices. Clarendon, Oxford, 1986.

DUFF, I.S.; MEURANT, G. The Effect of Ordering on Preconditioned Conjugate Gradients. BIT 29, p. 635, 1989.

DUFF, I.S.; KOSTER, J. The Design and Use of Algorithms for Permuting Large Entries to The Diagonal of Sparse Matrices. SIAM J. Matrix Anal. Appl. 20, p. 889, 1999.

DUFF, I.S.; VAN DER VORST, H.A. Developments and Trends in the Parallel Solution of Linear Systems, 1999.

DUFF, I.S.; KOSTER, J.K. On Algorithms for Permuting Large Entries to the Diagonal of a Sparse Matrix. SIAM, J. Matrix Anal. Appl. 22, p. 973, 2001.

DUTTO, L.C. The Effect of Ordering on Preconditioned GMRES Algorithm, for Solving the Compressible Navier-Stokes Equations. Int. J. Numer. Methods Eng. 36, p. 457, 1993.

EIJKHOUT, V. **Overview of Iterative Linear System Solver Packages**. http://www.netlib.org/lapack/lawnspdf/lawn141.pdf.

EISENSTAT, S.C.; ELMAN, H.C.; SCHULTZ, M.H. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations. SIAM Journal on Numerical Analysis, 20:345-357, 1983.

ENGELI, M.; GINSBURG, T.; RUTISHAUSER, H.; STIEFEL, E. Rened Iterative Methods for Computation of the Solution and the Eigenvalues of Self_Adjoint Boundary Value Problems. Birkhauser, Basel/Stuttgart, 1959.

EPRI. Report EL-6627. Long-Term Power System Dynamics. Final Report of Project 90-7, General Electric Company, April 1974.

EPRI Report EL-596. Midterm Simulation of Electric Power Systems. Project RP745, June 1975.

EPRI Report EL-983. Long-Term Power System Dynamics, Phase III. Research Project 764-2, May 1982.

EPRI EL 4610: Extended Transient Midterm Stability Program, January 1987.

EPRI. User's Manual-Extended Transient/Midterm Stability Program Package (ETMSP Version 3.0), prepared by Ontario Hydro, June 1992.

EPRI. Operator **Training Simulator. Final Report EL-7244**, May 1991, prepared by EMPROS Systems International, 1991.

ERHEL, A.J. **Parallel GMRES Version for General Sparse Matrices**. Electronic Transactions on Numerical Analysis. vol³, pp. 160- 176, December 1995.

EIROLA, T.; NEVANLINNA, O. Accelerating with Rank-One Updates. Linear Alg. Appl. 121:511-520, 1989.

EVANS, D.J. The Use of Pre-Conditioning in Iterative Methods for Solving Linear Equations with Symmetric Positive Definite Matrices. J. Inst. Maths. Applics., 4: 295-314, 1968.

FALCAO, D.M.; MANZONI, A.; TARANTO, G. **Combined Full and Fast Time-Domain Simulation**. Proceedings of IX Symposium of Specialists in Electric Operational and Expansion Planning, SEPOPE, Rio de Janeiro, 2004.

FENG, T.; FLUECK, A.J.A. Message-passing Distributed-Memory Newton-GMRES Parallel Power Flow Algorithm. Power Engineering Society Summer Meeting, 2002. IEEE, pp.1477-1482 vol³, 25-25 July 2002a.

FENG, T.; FLUECK, A.J.A. Message-passing Distributed-Memory Parallel Power Flow Algorithm. Power Engineering Society Winter Meeting, 2002. IEEE, vol⁹¹, pp. 211-216, 2002b.

FLETCHER, R. Conjugate Gradient Methods for Indefinite Systems. In G.A Watson, Editor, Proceedings of the Dundee Biennal Conference on Numerical Analysis 1974, pages 73-89, Springer Verlag, New York, 1975.

FLUECK, A.; CHIANG, H.D. Solving the Nonlinear Power Flow Equations with an Newton Process and GMRES. In Proceedings of the IEEE International Symposium on Circuits and Systems, Atlanta, Georgia, 1996.

FLUECK, A.; CHIANG, H.D. Solving the Nonlinear Power Flow Equations with an Inexact Newton Method Using GMRES. Power Systems, IEEE Transactions on, vol.13, Issue 2, pp. 267 – 273, May 1998.

FREUND, R.W.; NACHTIGAL, N.M. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices, Part 2. Technical Report 90.46, RIACS NASA Ames Research Center, 1990.

FREUND, R.W.A. **Transpose Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems**. SIAM Journal on Scientific Computing, 14(2): 470-482, 1993.

FROWD, R.J.; GIRI, J.C.; PODMORE, R. Transient Stability and Long-Term Dynamics Unified. IEEE Transactions on Power Apparatus and Systems, vol. PAS-101, N^o10, pp. 3841-3849, October 1982.

GALIANA, F.D.; JAVIDI, H.; McFEE, S. On the Application of a Preconditioned Conjugate Gradient Algorithm to Power Network Analysis. IEEE Transactions on Power Systems, vol. 9, no. 2, pp. 629-636, 1994.

GALLIVAN, K.; SAMEH, A.; ZLATEV, Z. **A Parallel Hybrid Sparse Linear System Solver**. Computing Systems in Engineering 1(2-4): 183-195, 1990.

GEAR, C.W. Simultaneous Numerical Solution of Differential-Algebraic Equations. IEEE Transactions on Circuits Theory, vol. 18, n° 1, pp. 90-95, 1971.

GEORGE, A. Nested Dissection of a Regular Finite Element Mesh. SIAM J. Numer. Anal. 10, pp. 345, 1973.

GEORGE, A.; LIU, J.W. Computer Solution of Large Sparse Positive Definite Systems. Prentice–Hall, Englewood Cliffs, NJ, 1981.

GEORGE, A.; LIU, J.W. The Evolution of the Minimum Degree Algorithm. SIAM Rev. 31, p. 1, 1989.

GIBBS, N.E.; POOLE, W.G.; STOCKMEYER, P.K. An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix. SIAM J. Numer. Anal. 13, p. 236, 1976.

GOLUB, G.H.; VAN LOAB, C. **Matrix Computations**, 3 Edition. The Johns Hopkins University Press, 1996.

GREENBAUM, A. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, PA, 1997.

HALMOS, P.R. Finite-Dimensional Vector Spaces. Springer Verlag New York Inc, 1987.

HAYES, R.M. Iterative Methods of Solving Linear Systems on Hilbert Space. National Bureau of standards, Appl math Ser., 39:71-103, 1954. HEMMAPLARDH, K.; MANKE, J.W.; PAULY, W.R.; LAMONT, J.W. **Considerations for Long-Term Dynamic Simulation Program**. IEEE Trans., vol. PAS-95, No. 1, pp. 96-104, January/February 1976.

HESTENES, M.R.; STIEFEL, E.L. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Natl. Bur. Stand. 49, p. 409, 1952.

HILL, D.J.; LOF, PER-ANDERS.; ANDERSSON, G. Analysis of Long-Term Voltage Stability. Tenth Power System Computing Conference, pp. 1252-1259, Graz, Austria, 1990.

HISKENS, I. Analysis Tools For Power Systems Contending with Nonlinearities. IEEE Proceedings, vol.83, n°1, pp. 1573-1587, Nove mber 1995.

HONG, C.; SHEN, C.M. Implementation of Parallel Algorithms for Transient Stability Analysis on a Message Passing Multicomputer. Power Engineering Society Winter Meeting, 2000. IEEE, pp.1410-1415 vol.2, 2000.

IEEE PES **Power Syst. Eng. Comm Parallel Processing in Power Systems Computation**. Power Systems, IEEE Transactions on, vol.7, no.2, pp.629-638, May 1992.

JACKSON, K.R.; SACKS-DAVIS, R. An Alternative Implementation of Variable Step Size Multistep Formulas for Stiff ODEs. ACM Trans. Math. Software, 295-318, 1980.

JARDIM, J.L.; FERNANDES, M.A.; DA SILVA NETO, C.A. **Uma Ferramenta para Simulação de Fenômenos Dinâmicos de Longa Duração**. XV SNPTEE, Foz do Iguaçu-PA, Brasil, 1999.

JARDIM J.L.; NETO C.; SANTOS M.G. Brazilian System Operator Online Security Assessment System. In Proceeding of IEEE Power System Conference and Exhibition, Atlanta, GA, Oct 30-Nov2 , 2006.

JEA, K.C.; YOUNG, D.M. Generalized **Conjugate-Gradient Acceleration of Nonsymmetrizable Iterative Methods**. Linear Alg Appl., 34:159-194, 1980.

KACZMARZ, S. Angenaherte Auflosung von Systemen Linearer Gleichungen. Bulletin International de l'Academie Polonaise des Sciences et Letters, pages 355-357, 1939.

KANIEL, S. Estimates for Some Computational Techniques in Linear Algebra. Math. Comp., 20:369-378, 1966.

KARUSH, W. **Convergence of a Method of Solving Linear Problems**. Proc. Amer. Math Soc., 3:839-851, 1952.

KULKANI, A.W; PAI, M.A; SAUER, P. Iterative Solver Techniques in Fast Dynamic Calculations of Power Systems. Energy Power & Electric Systems, 23, 237-244, 2001.

KUNDUR, P. Power System Stability and Control, McGraw-Hill, 1994.

KUNDUR, P.; MORISON, G.K. A Review of Definitions and Classification of Stability Problems in Today's Power Systems. Panel Session on Stability Terms and Definitions, IEEE PES Meeting, February 2-6, New York, N.Y, 1997.

KURITA, A.; OKUBO, H.; OKI, K.; AGEMATSU, S.; KLAPPER, D. B.; MILLER, N. W.; PRICE, W.W.; SANCHEZ-GASCA, J.J.; WIRAGAU, K.A.; YOUNKINS, T.D. Multiple **Time-Scale Power System Dynamic Simulation**. paper 92 WM 128-9 PWRS, 1992 IEEE/PES Winter Meeting, New York, January 1992.

LACHS, W.R. **Dynamic Study of an Extreme System Reactive Deficit**. IEEE Transactions on Power Apparatus and Systems. vol. PAS-104, N⁹, pp. 2420-2426, September 1985.

LANCZOS, C. An Iteration Method for The Solution of The Eigenvalue Problem of Linear Differential and Integral Operators. Journal of Research of the National Bureau of Standards, 45: pp. 255–282, 1950.

LANCZOS, C. Solution of Systems of Linear Equations by Minimized Iterations. Journal of Research of the National Bureau of Standards 49:33-53, 1952.

LE BORNE, S. Ordering Techniques for Two- and Three-Dimensional Convection-Dominated Elliptic Boundary Value Problems. Computing 64, p. 123, 2000.

LOF, P.A. On Static Analysis of Long-Term Voltage Stability in Electric Power Systems. Ph.D. Thesis, Kungl Tekniska Hogskolan - Royal Institute of Technology, Stockholm, Sweden, 1995.

LOUD, L.; ROUSSEAUX, P; LEFEBVRE, D.; VAN CUTSEM, T.A. **Time-Scale Decomposition-Based Simulation Tool for Voltage Stability Analysis**. Power Tech Proceedings, 2001. IEEE Porto, vol.2, pp.6, 2001.

MAYER, C.D. Matrix Analysis and Applied Linear Algebra. SIAM, 2004.

MEEKER, K. Digital Filter Stepsize Control of DASPK and its Effect on Control Optimization Performance. Master of Science Thesis in Computer Science in the Graduate Division of the University of California, Santa Barbara, 2004.

MEIJERINK, J.A.; VAN DER VORST, H.A. An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix. Mathematics of Computations, 31(137): 148-162, 1977.

MILLER, R.K.; MICHEL, A.N. Ordinary Differential Equations. Academic Press, 1982.

MORGAN, R.B. **A Restarted GMRES Method Augmented by Eigenvectros**. SIAM J. Matrix Analysis Appl., vol.16, n⁹4, pp.1154-1171, 1 995.

OLIPHANT, T.A. **An Extrapolation Process for Solving Linear Systems**. Quart. Appl. Math., 20:257-267, 1962.

ONS. Operador Nacional do Sistema Brasileiro. Arquivo Anatem correspondente ao mês Abril do ano 2005 e perfil de carga pesada (http://www.ons.org.br), 2005.

OSTERBY, O.; ZLATEV, Z. **Direct Methods for Sparse Matrices**. Springer Verlag, New York, 1983.

PAIGE, C.C.; SAUNDERS, M.A. Solution of Sparse Indefinite Systems of Linear Equations. SIAM J. Numer. Anal., 12:617-629, 1975.

PAI, M.A.; SAUER, P.W.; KULKARNI, A.Y. **A Preconditioned Iterative Solver for Dynamic Simulation of Power Systems**. Circuits and Systems, ISCAS '95, 1995 IEEE International Symposium, vol.2, pp. 1279-1282, Seattle, WA, USA, 1995.

PAI, M.; DAG, H. Iterative Solver Techniques in Large Scale Power System Computation. Decision and Control Proceedings of the 36th IEEE Conference on, pp. 3861 – 3866, 1997.

PAL, M.K. Voltage Stability Conditions Considering Load Characteristics. IEEE Transactions on Power System, vol.7, n^o1, pp. 243-249, February 1992.

PARLETT, B.N.; TAYLOR, D.R.; LIU, Z.S. A Look-Ahead Lanczos Algorithm for Nonsymmetric Matrices. Mathematics of Computation, 44:105-124, 1985.

PESSANHA, J.E.O. Análise do Fenômeno da Estabilidade de Tensão no Domínio do Tempo: Simulação dos Períodos Transitório e de Longo-Termo. Tese de Doutorado, PUC-RJ, Departamento de Engenharia Elétrica, 1997.

PESSANHA, J.E.O.; PRADA, R.B. **Avaliação de Condições de Instabilidade Transitória de Tensão**. XIV Congresso Chileno de Ingenieria Elétrica, vol.1, pp. 162-166, Antofogasta, Chile, 2001.

POMMERELL, C. Solution of Large Unsymmetric Systems of Linear Equations. PhD thesis, Swiss Federal Institute of Technology, Zurich, 1992. PORTUGAL, C.E. Um Solucionador Iterativo Para Sistemas-Lineares: Aplicação no Problema do Fluxo de Carga. Tese de Doutorado PUC-RJ, 2010.

POWER SYSTEM TEST CASE. www.ee.washington.edu/research/pstca. 2007.

PRAIS, M.; ZHANG, G.; BOSE, A.; CURTICE, D. **Operator Training Simulator: Algorithms and Test Results**. IEEE Transactions on Power Systems, vol.4, n³, p p. 1154-1159, August 1989a.

PRAIS, M.; JOHNSON, C.; BOSE, A.; CURTICE, D. **Operator Training Simulator: Components Models**. IEEE Transactions on Power Systems, vol.4, n³, pp. 1160-1166, August 1989b.

PRESS, W.H.; FLANNERY, B.P.; TEUKOLSKY, S.A. VETTERLING, W.T. **Numerical Recipes**. Cambridge University Press, 1988.

QUINTANA, V.H.; VARGAS, L. Voltage Stability as Affected by Discrete Changes in the Topology of Power Networks. IEE Proceedings Generation, Transmission and Distribution, vol.141, n⁴, pp. 346-352, July 1994.

REID, J.K. On the Method of Conjugate Gradients for the Solution of Large Sparse Systems of Linear Equations. In. J. K. Reid, Editor, Large Sparse Sets of Linear Equations, pages 231-254. Academic Press, 1971.

REICH, E. On the Convergence of the Classical Iterative Method of Solving Linear Simultaneous Equations. Ann. Math. Statist., 20:448-451, 1949.

SAAD, Y.; SCHULTZ, M. H. Parallel Implementations of Preconditioned: Conjugate Gradient Methods. Research Report YALEU/DCS/RR—425. October 1985.

SAAD, Y.; SCHULTZ, M.H. **GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems**. SIAM J. Sci. Stat. Comput. 7, p. 856, 1986.

SAAD, Y. **Preconditioning Techniques for Indefinite and Nonsymmetric Linear Systems**. Journal of Computational and Applied Mathematics 24: 89-105, 1988.

SAAD, Y. Iterative Methods for Sparse Linear Systems, 2nd ed. Society for Industrial and Applied Mathematics, Philadelpha, 2003.

SAUER, P.W.; Pai, M.A. A Comparison of Discrete vs Continuos Dynamic Model of Tap-Changing-Under-Load Transformers. III Seminar on Voltage Stability, Security & Control, 22-26 August 1994. Davos, Switzerland, 1994. SEMLYEN, A. Fundamental Concepts of a Krylov Subspace Power Flow Methodology. Power Systems, IEEE Transactions on, vol.11, Issue 3, Page(s):1528 – 1537, 1996.

SCHULZ, R.P. Capabilities of System Simulation Tools for Analyzing Severe Upsets. Proceedings of International Symposium on Power System Stability, Ames, Iwoa, pp. 209-215, May 13-15, 1985.

SHAMPINE, L.F.; GORDON, M.K. Computer Solution of Ordinary Diferential Equations. W.H. Freeman and Co. San Francisco, CA, 1975.

SHADID J.N.; TUMINARO R.S. Sparse Iterative Algorithm Software for Large-Scale MIMD Machine: An Initial Discussion and Implementation. Tech. Rep., DOE's Massively Parallel Computing Research Laboratory, Sandia National Laboratories, Albuquerque, 1991.

SEAGER, M. K. **Parallelizing Conjugate Gradient for the CRAY X-MP**. Parallel Computing, vol.3, Issue 1, pp. 35-47, March 1986.

SIMON, H. D. **Direct Sparse Matrix Methods**. In James C. Almond and David M. Young, Editors, Modern Numerical Algorithms for Supercomputers, pages 325-444, Austin. The University of Texas at Austin, Center of High Performance Computing, 1989.

SLEIJPEN, G. L. G.; FOKKEMA, D. R. BICGSTAB(I) for Linear Equations Involving Unsymmetric Matrices with Complex Spectrum. ETNA, 1:11-32, 1993.

SLOAN, S.W. An Algorithm for Profile and Wavefront Reduction of Sparse Matrices. Int. J. Numer. Methods Eng. 23, p. 239, 1986.

SODERLING, G. **Digital Filters in Adaptive Time–Stepping.** ACM Trans. Math. Software, 29:1–26, 2003.

SODERLING, G.; WANG, L. Adaptive Time-Stepping and Computational Stability. Journal of Computational Methods in Sciences and Engineering, vol.2, n³, 2, pp. 1-3, 2003.

SONNEVELD, P. CGS: A Fast Lanczos-type Solver for Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput., 10:36-52, 1989.

STOER, J. Introduction to Numerical Analysis. 2 Edition. Springer-Verlag, 1993.

STURLER, E.; VAN DER VORST, H.A. Reducing the Effect of Global Communication in GMRES(m) and CG on Parallel Distributed Memory

Computers. Journal Applied Numerical Mathematics archive, vol.18. Issue 4, Oct. 1995.

STUBBE, M.; BIHAIN, A.; DEUSE, J.; BAADER, J.C. **STAG - A New Unified Software Program for the Study of the Dynamic Behavior of Electrical Power Systems**. IEEE Trans., Vol. PWRS-4, No. 1, pp. 129-138, February 1989.

TAYLOR C.W. Modeling of Voltage Collapse Including Dynamic Phenomena. Task Force 38.02.10, Cigré, March, 1993.

TAYLOR C.W. Power System Voltage Stability. McGraw-Hill, NewYork, USA, 1994.

TAYLOR C.W. **Maybe I Can't Define Stability but I Know It When I See It**, IEEE/PES panel on Stability Terms and Definitions, New York, February, 1997.

WATKINS, D.S. Fundamentals of Matrix Computations. John Wiley and Sons, New York, 1991.

WILKINSON, J.H.; REINSCH, C. Handbook for Automatic Computation. vol. II, Linear Algebra. Springer Verlag, New York, 1971.

VAN DER VORST, H.A. **Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Non-symmetric Linear Systems**. SIAM J.Sci.Statist.Comput., 13:631-644, 1992.

VAN DER VORST, H.A. Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge: vol. 13 of Cambridge Monographs on Applied and Computational Mathematics, 2003.

VAN DER SLUIS, A.; VAN DER VORST, H.A. **The Rate of Convergence of Conjugate Gradients**. Numericshe Mathematik, 48: 543-560, 1986.

VARGA, R.S. Factorization and Normalized Iterative Methods. In R.E. Langer, editor, Boundary Problems in Differential Equations, pages 121-142. Univ. of Wisconsin Press, Madison, 1960.

VALLI, A.M.P.; CAREY, G.F.; COUTINHO, A.L.G.A. Control Strategies for Timestep Selection in Infinite Element Simulation of Incompressible Flows and Coupled Reaction-Convection-Difusion Processes. Int. J. Numer. Meth. Fluids, 47: 201-231, 2004.

VINSOME, P.K.W. **ORTHOMIN: An Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations**. In Proc. Fourth Symposium on Reservoir Simulation, pages 149-159. Society of Petroleum Engineers of AIME, 1976. VOURNAS, C.D.; CUTSEM, T.V. Voltage Oscillations with Cascade Load Restoration. IEEE /KTH Stockholm Power Tech Conference, Stockholm, Sweden, June 18-22, 1995.

YOUNG, D.P.; MELVIN, R.G. JOHNSON, F.T.; BUSSOLETTI, J.E., WIGTON, L. B.; SAMANT, S.S. **Application of Sparse Matrix Solvers as Effective Preconditioners**. SIAM Journal on Scientic and Statistical Computing 10: 1186-1199, 1989.

ZHANG, J.A. Multilevel Dual Reordering Strategy For Robust Incomplete LU Factorization of Indefinite Matrices. SIAM J. Matrix Anal. Appl. 22, 925, 2001.

ZLATEV, Z. Use of Iterative Refinement in the Solution of Sparse Linear Systems. SIAM Journal on Numerical Analysis, 19: 381-399, 1982.

Apêndice A – Fórmulas de Diferenciação Regressiva (BDF)

Esta é uma importante classe de métodos multipasso e de particular de interesse para o presente trabalho, em particular pelo seu desempenho nas aplicações a sistemas rígidos de equações diferenciais. Está baseado na interpolação nos pontos de solução x_{n+1-i} ao invés das derivadas.

$$\dot{\mathbf{x}}_{n+1-i} = \mathbf{f}(\mathbf{t}_{n+1}, \mathbf{x}_{n+1-i})$$
 (A.1)

Considera-se Π^p_k um polinômio de grau k-1, que interpola os k pontos

$$x_{n+1-i}$$
 $i = 1, \dots, k$ (A.2)

Então, usando a formulação polinomial de Lagrange, (A.2) pode ser expressa por:

$$\pi_{k}^{p}(t) = \sum_{i=1}^{k} L_{i}^{k-1}(t) x_{n+1-i}$$

$$L_{i}^{k} = \frac{(x - x_{0})(x - x_{1})L(x - x_{k-1})(x - x_{k+1})L(x - x_{i})}{(x_{k} - x_{0})(x_{k} - x_{1})L(x_{k} - x_{k-1})(x_{k} - x_{k+1})L(x_{k} - x_{i})}$$
(A.3)

Extrapolando este polinômio, um novo ponto de solução x_{n+1}^p pode ser previsto como:

$$\mathbf{x}_{n+1}^{p} = \pi_{k}^{p} \left(\mathbf{t}_{n+1} \right) = \sum_{i=1}^{k} L_{i}^{k-1} \left(\mathbf{t}_{n+1} \right) \mathbf{x}_{n+1-i}$$
(A.4)

Introduzindo os coeficientes $\alpha_{k-i}^p = -L_i^{k-1}(t_{n+1})$ em (A.4), resulta em:

$$\mathbf{x}_{n+1}^{p} = -\sum_{i=1}^{k} \alpha_{k-i}^{p} \mathbf{x}_{n+1-i}$$
(A.5)

Nesta fórmula, a informação referente à função f da Equação (A.1) não é incorporada, sendo útil num esquema de predição (superíndice p) - correção (superíndice c). A fórmula corretor BDF é obtida considerando o polinômio π_{k+1}^c de grado k satisfazendo as condições:

$$\pi_{k+1}^{c}(t_{n+1-i}) = x_{n+1-i}, \quad i = 0,....,k$$
 (A.6)

$$\dot{\pi}_{k+1}^{C}(t_{n+1-i}) = f(t_{n+1-i}, x_{n+1-i}) \quad i = 0, \dots, k$$
 (A.7)

As primeiras são condições de interpolação usando valores desconhecidos x_{n+1} , definido implicitamente por (A.7). Com os coeficientes

$$\alpha_{k-i}^{c} = \frac{\dot{L}_{i}^{k}(t_{n+1})}{\dot{L}_{0}^{k}(t_{n+1})} \qquad \beta_{k}^{c} = \frac{1}{h_{n}\dot{L}_{0}^{k}(t_{n+1})}$$
(A.8)

Onde L_i^k agora corresponde aos pontos de interpolação x_{n+1-i} , $i = 0, \cdots, k$. A Equação (A.7) pode ser representada por:

$$x_{n+1} = -\sum_{i=1}^{k} \alpha_{k-i}^{c} x_{n+1-i} + h_{n} \beta_{k}^{c} f(t_{n+1}, x_{n+1})$$
(A.9)

Este é o esquema corretor das fórmulas de diferenciação regressiva (BDF). O esquema predição-correção para o método BDF tem a seguinte forma:

io (P)
$$x_{n+1}^{P} = -\sum_{i=1}^{k} \alpha_{k-i}^{p} x_{n+1-i}$$
(A.10)

Predição (F

Avaliação (E)

Correção (C)

$$\dot{x}_{n+1} = f(t_{n+1}, x_{n+1}^p)$$
 (A.11)

$$x_{n+1} = x_{n+1}^{p} - \sum_{i=1}^{k} \overline{\alpha}_{k-i}^{c} x_{n+1-i} + h_{n} \overline{\beta}_{k}^{c} \dot{x}_{n+1}$$
(A.12)

Avaliação (E)
$$\dot{x}_{n+1} = f(t_{n+1}, x_{n+1})$$
 (A.13)

com $\overline{\alpha}^c = \alpha^c - \alpha^p$. A fórmula implícita pode ser resolvida iterativamente pela aplicação de um dos esquemas já mencionado, P(EC)^mE com m ≥ 1 , embora, na prática, geralmente os métodos BDF sejam implementados com método Newton.

Apêndice B – Diagramas de Blocos dos Principais Controles Dinâmicos Implementados no Programa Computacional

B.1 Modelos implementados no programa computacional

Em virtude a grande quantidade de informação dos diferentes dispositivos de controle associado aos sistemas de energia elétrica se considera por conveniente apresentar unicamente os diagramas de blocos dos controles mais representativos do sistema interligado norte-nordeste brasileiro e dos sistemas-testes utilizados nos experimentos numéricos do Capítulo 4. Na sequência são listadas as empresas elétricas do setor Brasileiro com seus correspondentes controles definidos pelo usuário - CDU (Anatem, 2000):

Centrais Elétricas do Norte do Brasil S.A - ELETRONORTE

•	CS Vila do conde	CDU 1306
•	CS Marabá	CDU 1307
•	CS Presidente Dutra	CDU 1308
•	CS Imperatriz	CDU 1310
•	UHE Tucurui 2 Grupo 5	CDU 1305
•	UHE Tucurui 2 Grupo 5	CDU 1343
•	UHE Tucurui 2 Grupo 5	CDU 1373
•	UHE Tucurui 2 Grupo 6	CDU 1311
•	UHE Tucurui 2 Grupo 6	CDU 1344
•	UHE Tucurui 2 Grupo 6	CDU 1374

Companhia de Energia Elétrica do estado do Tocantins - CELTINS

•	UHE Lajeado	CDU 1500
•	UHE Lajeado	CDU 1540
•	UHE Lajeado	CDU 1570

Centrais Hidrelétricas São Francisco - CHESF

CS Camaçari CDU 1234

•	CS Teresina	CDU 1233
•	CS Bom Jesus da Lapa	CDU 1237
•	CS Irecê	CDU 1238

ITAPEBI Geração de Energia S/A - ITAPEBI

•	UHE Itapebi	CDU 2100
•	UHE Itapebi	CDU 2140
•	UHE Itapebi	CDU 2270

Empresa de Geração e Transmissão de Energia - FURNAS

CS Serra da Mesa
 CDU 117 (RAT- UNITROL-P-ABB)

Os valores dos parâmetros de cada CDU podem ser encontrados no site oficial do Operador Nacional do Sistema correspondente ao patamar carga pesada do mês de Abril do ano 2005 (ONS, 2005).

: Variação da velocidade angular	: Posição angular do rotor da máquina	: Tensão sub-transitória do eixo de quadratura
Δω	Q	E"q

B.2 Máquina síncrona de polos salientes - MS

EQUAÇÃO DO EIXO DIRETO

: Tensão transitória do eixo de quadratura : Tensão sub-transitória do eixo de quadratura

E"q

Ц́

B.3 Regulador automático de tensão – RAT

PUC-Rio - Certificação Digital Nº 0410311/CA

B.4 Estabilizadores de potencia - PSS

B.5 Reguladores de velocidade - RV

PUC-Rio - Certificação Digital Nº 0410311/CA

Pmec Pbmaq Pbtur <u>/</u> REGULADOR DE VELOCIDADE CDU 1243 : PAULO ALFONSO-G2 Reta – Lmax 1.0+sTr sTr1.0#At Rp Reta \rightarrow $\frac{1.0}{\#Tw}$ x17 1.0S ۲¹⁵ 1.0+sTfReta Div 1.0Lvs Ľ. 1.0 Tg DW Wref ₩Å #At -1.0 Lmax Lmin Pbmaq Pbtur ſmo ▶

B.6 Regulador automático de tensão – TYPE G (Kundur, 1994)

Parâmetro	Descrição
Ka	Ganho do regulador (em contínua atuação do regulador p.u)
Ta1	Constante 1 de tempo do regulador (s)
Kf	Ganho do circuito estabilizante do regulador (p.u)
Tf	Constante de tempo do circuito estabilizante do regulador (s)
Vrmax,Vrmin	Limites máximo e mínimo da tensão de campo - EFD

B.7 Limitador de sobre-excitação – OXL (Kundur, 1994)

B.8 Transformador de potência com tape variável - ULTC

Também conhecido como *Under Load Tap Changer* (em inglês) é representado no protótipo computacional a través de um modelo dinâmico contínuo, de acordo às seguintes equações de estado (Sauer, 1994):

$$T_{d}^{'}=T_{dI}^{'}+T_{d0}^{'}\frac{\frac{DB'}{2}}{\left\|V_{k}\right\|-V_{ref}}$$
(B.1)

$$T_{C3}^{'} \frac{da}{dt} = -|V_{k}| - V_{ref}, \ a_{min} \le a \le a_{max}$$
$$T_{C3}^{'} = \frac{T_{d0}^{'} \frac{DB'}{2} + (T_{m}^{'} + T_{d1}^{'}) ||V_{k}| - V_{ref}|}{\Delta n'}$$
(B.2)

Parâmetro	Descrição
а	Valor do tape
T'do	Tempo fixo de retardo na decisão da mudança do tape
T'dl	Tempo variável de retardo na decisão da mudança do tape
T'm	Tempo fixo utilizado na troca mecânica do tape
DB	Banda morta

B.9 Carga dinâmica

Parâmetro	Descrição
GC	Condutância da carga em p.u
BC	Suceptância da carga em p.u
Тс	Constante de tempo em segundos
Ρό,Qo	Potência ativa e reativa da carga em p.u

Apêndice C Dados de Simulação Associados aos Métodos Numéricos

C.1 Parâmetros do experimento I

Tabela C.1a Parâmetros usados no Experimento I - Fluxo de carga

		GMR	ILUT(ρ,τ)		
Sistema-Teste r		Tol	Reini	τ	ρ
Kundur 10 barras (Nivel de carga la)	4	1.E-3	5	1.E-4	4
Kundur 10 barras (Nivel de carga lb)	4	1.E-3	5	1.E-4	4

Tabela C.1bParâmetros usados na Simulação no Domínio do Tempo do
Experimento I

Sistema-Teste	BDF				GMRE	S	ILUT		
	к	T.abs	T.rel	m	Tol	Reini	NZJC	FLJC	Tdrop
Kundur 10 barras (la)	5	1.0E-6	1.0E-4	10	5.0E-2	5	37	37	1.0E-2
Kundur 10 barras (lb)	5	1.0E-6	1.0E-4	10	5.0E-2	5	37	37	1.0E-2

C.2 Parâmetros do experimento II

Tabela C.2a Parâmetros usados no Experimento II - Fluxo de carga

		GMRE	ILUT(ρ,τ)		
Sistema-Teste	m	Tol	Reini	τ	ρ
IEEE118 barras	8	1.E-2	20	0.01	4

Tabela C.2bParâmetros usados na Simulação no Domínio do Tempo do
Experimento II

Sistoma-Tosta	BDF				GMRES			ILUT		
Sistema-Teste	к	T.abs	T.rel	m	Tol	Reini	NZJC	FLJC	Tdrop	
IEEE118 barras	5	1.0E-6	1.0E-6	10	5.0E-2	10	100	100	1.0E-5	

C.3 Parâmetros do experimento III

Tabela C 3a	Parâmetros usados no Experimento III - Eluxo de carga

Sistema Tasta		GMR	ES	ILUT(ρ	,τ)
Sistema-reste	m	Tol	Reini	τ	ρ
Sistema Norte-Nordeste Brasileiro 564 barras (NNE 564)	300	1.E-2	20	1.0E-4	12

Tabela C.3bParâmetros usados na Simulação no Domínio do Tempo do
Experimento III

Sistema-Teste		BDF		GMRES			ILUT		
	к	T.abs	T.rel	m	Tol	Reini	NZJC	FLJC	Tdrop
N-NE Brasileiro-564	5	1.E-5	1.E-5	20	5.E-2	10	150	150	1.E-5

Apêndice D Dados de Simulação Associados aos Sistemas -Testes

D.1 Sistema-Teste Kundur - 10 barras

D.1.1 Regime-Permanente

Parâmetros de barras

	-	TENSÃO	ANGULO	INJEÇÃO F	OTENCIA	CAI	RGA	SHUNT
DARRA	1	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
1	2	980	0.00	3987.2	602.7	0.0	0.0	0.0
2	1	965	-7.63	1736.0	-83.6	0.0	0.0	0.0
3	1	1040	-20.64	1154.0	504.9	0.0	0.0	0.0
5	0	1097	-3.76	0.0	0.0	0.0	0.0	0.0
6	0	1095	-11.38	0.0	0.0	0.0	0.0	0.0
7	0	1104	-27.14	0.0	0.0	0.0	0.0	0.0
8	0	1019	-32.48	0.0	0.0	3276	1015	0.0
9	0	1026	-32.15	0.0	0.0	0.0	0.0	0.0
10	0	951	-37.47	0.0	0.0	0.0	0.0	0.0
11	0	964	-39.53	0.0	0.0	3384	971	0.0

Parâmetros de linhas de transmissão e transformadores de potencia

DE		NÚM	RESIS	REAT	SUCEP	POS	IÇÃO DO T	APE	DC	N°
DE	PARA	СТО	0%	o ¹⁰	MVAR	TAPNOM	TAPMIN	TAPMAX	BC	TAPS
1	5	1	0.0	0.2	0.0	0.8857				
2	6	1	0.0	0.45	0.0	0.8857				
3	7	1	0.0	1.25	0.0	0.9024	-			
5	6	1	0.0	0.4	0.0					
6	7	1	0.15	2.88	234.6					
6	7	2	0.15	2.88	234.6		-			
6	7	3	0.15	2.88	234.6		-			
6	7	4	0.15	2.88	234.6					-
6	7	5	0.15	2.88	234.6		-			
7	8	1	0.0	0.3	0.0	1.067				-
7	9	1	0.0	0.26	0.0	1.080				-
9	10	1	0.1	0.3	0.0					
10	11	1	0.0	0.1	0.0	0.975	0.9	1.1	-11	32

Níveis de carga

BARRA	P (MW)	Q (MVAR)	NIVEL DE CARGA
0	3271	1015	1
0	3320	1030	2
11	3384	971	1
11	3435	985	2

Posição do tape do transformador de potencia T6 (ULTC)

TRANSFORMADOR	NÍVEL DE CARGA	POSIÇÃO DO TAPE
10 11 (TTC)	1	0.9750
10-11 (10)	2	0.9938

D.1.2 Parâmetros associados aos modelos dinâmicos no sistema-teste Kundur - 10 barras

Máquina Síncrona de pólos salientes (Anatem, 2000)

	······································								
Mode	CS	Ld (%	Lq(%)	L'd(%)	L"d(%)	Ll(%)	T'd0(%)	T"d0(%)	T"q0(%)
		Ra(%)	H (seg)	D	MVA	Hz			
2	0	207.0	199.0	28.0	21.5	15.5	4.1	0.033	0.62
2		.46	2.09		2200	60			
3	0	207.0	199.0	28.0	21.5	15.5	4.1	0.033	0.62
3		.46	2.09		2200	60			

O modelo 0001 está associado ao tipo MD01; tensão e ângulo fixo.

Regulador Automático de Tensão (AVR)

Modelo	Modelo T1		т3	Vmin	Vmax	
0001	400	0.3575	0.02	-3.0	5.73	
0002	400	0.3575	0.02	-3.0	5.73	

Limitador Sobre-Excitação (OXL)

Modelo	odelo K11		T11	If1	If2	
0001	0.45	6.0	1.0	1.45	2.22	

Transformador de Tape Variável (ULTC)

Modelo	T'd0	T'dl	T'mO	DB	
0001	30.0	1.0	5.0	0.01	

D.2 Sistema-Teste IEEE118 – 118 barras

D.2.1 Regime-Permanente

Parâmetros de barras

	_	TENSÃO	ANGULO	INJEÇÃO	POTENCIA	CAF	RGA	SHUNT
BARRA	т	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
1	2	1051	0.00	0.00	0.00	51.00	27.00	0.00
2	0	1000	0.00	0.00	0.00	20.00	9.00	0.00
3	0	1000	0.00	0.00	0.00	39.00	10.00	0.00
4	1	1100	0.00	100.00	14.00	39.00	12.00	0.00
5	0	1000	0.00	0.00	0.00	0.00	0.00	-40.00
6	1	1085	0.00	5.00	18.00	52.00	22.00	0.00
7	0	1000	0.00	0.00	0.00	19.00	2.00	0.00
8	1	1055	0.00	100.00	-8.00	28.00	0.00	0.00
9	0	1000	0.00	0.00	0.00	0.00	0.00	0.00
10	1	1100	0.00	100.00	-71.00	0.00	0.00	0.00
11	0	1000	0.00	0.00	0.00	70.00	23.00	0.00
12	1	1080	0.00	30.00	75.00	47.00	10.00	0.00
13	0	1000	0.00	0.00	0.00	34.00	16.00	0.00
14	0	1000	0.00	0.00	0.00	14.00	1.00	0.00
15	1	1063	0.00	5.00	5.00	90.00	30.00	0.00
16	0	1000	0.00	0.00	0.00	25.00	10.00	0.00
17	0	1000	0.00	0.00	0.00	11.00	3.00	0.00
18	1	1068	0.00	5.00	23.00	60.00	34.00	0.00
19	1	1060	0.00	5.00	14.00	45.00	25.00	0.00
20	0	1000	0.00	0.00	0.00	18.00	3.00	0.00
21	0	1000	0.00	0.00	0.00	14.00	8.00	0.00
22	0	1000	0.00	0.00	0.00	10.00	5.00	0.00
23	0	1000	0.00	0.00	0.00	7.00	3.00	0.00
24	1	1080	0.00	100.00	91.00	13.00	0.00	0.00
25	1	1100	0.00	100.00	33.00	0.00	0.00	0.00
26	1	976	0.00	300.00	-118.00	0.00	0.00	0.00
27	1	1095	0.00	100.00	9.00	71.00	13.00	0.00
28	0	1000	0.00	0.00	0.00	17.00	7.00	0.00
29	0	1000	0.00	0.00	0.00	24.00	4.00	0.00
30	0	1000	0.00	0.00	0.00	0.00	0.00	0.00
31	1	1100	0.00	100.00	37.00	43.00	27.00	0.00
32	1	1089	0.00	5.00	12.00	59.00	23.00	0.00
33	0	1000	0.00	0.00	0.00	23.00	9.00	0.00
34	1	1049	0.00	5.00	15.00	59.00	26.00	14.00
35	0	1000	0.00	0.00	0.00	33.00	9.00	0.00
36	1	1041	0.00	5.00	-5.00	31.00	17.00	0.00
37	0	1000	0.00	0.00	0.00	0.00	0.00	-25.00
38	0	1000	0.00	0.00	0.00	0.00	0.00	0.00
39	0	1000	0.00	0.00	0.00	27.00	11.00	0.00
40	1	965	0.00	101.70	-100.00	66.00	23.00	0.00
41	0	1000	0.00	0.00	0.00	37.00	10.00	0.00
42	1	1005	0.00	106.60	9.00	96.00	23.00	0.00

	I	TENSÃO	ANGULO	INJEÇÃO	POTENCIA	CARGA		SHUNT
BARRA	т	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
43	0	1000	0.00	0.00	0.00	18.00	7.00	0.00
44	0	1000	0.00	0.00	0.00	16.00	8.00	10.00
45	0	1000	0.00	0.00	0.00	53.00	22.00	10.00
46	1	1077	0.00	101.10	-6.00	28.00	10.00	10.00
47	0	1000	0.00	0.00	0.00	34.00	0.00	0.00
48	0	1000	0.00	0.00	0.00	20.00	11.00	15.00
49	1	1077	0.00	100.00	139.00	87.00	30.00	0.00
50	0	1000	0.00	0.00	0.00	17.00	4.00	0.00
51	0	1000	0.00	0.00	0.00	17.00	8.00	0.00
52	0	1000	0.00	0.00	0.00	18.00	5.00	0.00
53	0	1000	0.00	0.00	0.00	23.00	11.00	0.00
54	1	1100	0.00	109.40	148.00	113.00	32.00	0.00
55	1	1091	0.00	15.00	5.00	63.00	22.00	0.00
56	1	1093	0.00	7.20	-5.00	84.00	18.00	0.00
57	0	1000	0.00	0.00	0.00	12.00	3.00	0.00
58	0	1000	0.00	0.00	0.00	12.00	3.00	0.00
59	1	1090	0.00	120.10	74.00	277.00	113.00	0.00
60	0	1000	0.00	0.00	0.00	78.00	3.00	0.00
61	1	998	0.00	205.00	-46.00	0.00	0.00	0.00
62	1	1006	0.00	10.00	2.00	77.00	14.00	0.00
63	0	1000	0.00	0.00	0.00	0.00	0.00	0.00
64	0	1000	0.00	0.00	0.00	0.00	0.00	0.00
65	1	1068	0.00	100.00	114.00	0.00	0.00	0.00
66	1	1064	0.00	100.00	-28.00	39.00	18.00	0.00
67	0	1000	0.00	0.00	0.00	28.00	7.00	0.00
68	0	1000	0.00	0.00	0.00	0.00	0.00	0.00
69	1	950	0.00	200.00	0.00	0.00	0.00	0.00
70	1	915	0.00	10.00	0.00	66.00	20.00	0.00
71	0	1000	0.00	0.00	0.00	0.00	0.00	0.00
72	1	900	0.00	100.00	-100.00	12.00	0.00	0.00
73	1	900	0.00	100.00	-27.00	6.00	0.00	0.00
74	1	900	0.00	5.00	0.00	68.00	27.00	12.00
75	0	1000	0.00	0.00	0.00	47.00	11.00	0.00
76	1	900	0.00	0.00	8.00	68.00	36.00	0.00
77	1	978	0.00	30.70	38.00	61.00	28.00	0.00
78	0	1000	0.00	0.00	0.00	71.00	26.00	0.00
79	0	1000	0.00	0.00	0.00	39.00	32.00	20.00
80	1	1021	0.00	100.00	-31.00	130.00	26.00	0.00
81	0	1000	0.00	0.00	0.00	0.00	0.00	0.00
82	0	1000	0.00	0.00	0.00	54.00	27.00	20.00
83	0	1000	0.00	0.00	0.00	20.00	10.00	10.00
84	0	1000	0.00	0.00	0.00	11.00	7.00	0.00
85	1	1013	0.00	10.00	3.00	24.00	15.00	0.00
86	0	1000	0.00	0.00	0.00	21.00	10.00	0.00
87	1	1100	0.00	124.20	32.00	0.00	0.00	0.00
88	0	1000	0.00	0.00	0.00	48.00	10.00	0.00
89	1	1059	0.00	400.00	-5.00	0.00	0.00	0.00
90	1	1074	0.00	150.70	60.00	163.00	42.00	0.00
91	1	1074	0.00	125.60	-19.00	10.00	0.00	0.00
92	1	1049	0.00	10.00	0.00	65.00	10.00	0.00

	E	TENSÃO	ANGULO	INJEÇÃO	POTENCIA	CAI	RGA	SHUNT
BARRA	т	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
93	0	1000	0.00	0.00	0.00	12.00	7.00	0.00
94	0	1000	0.00	0.00	0.00	30.00	16.00	0.00
95	0	1000	0.00	0.00	0.00	42.00	31.00	0.00
96	0	1000	0.00	0.00	0.00	38.00	15.00	0.00
97	0	1000	0.00	0.00	0.00	15.00	9.00	0.00
98	0	1000	0.00	0.00	0.00	34.00	8.00	0.00
99	1	1071	0.00	124.90	-23.00	42.00	0.00	0.00
100	1	1100	0.00	100.00	300.00	37.00	18.00	0.00
101	0	1000	0.00	0.00	0.00	22.00	15.00	0.00
102	0	1000	0.00	0.00	0.00	5.00	3.00	0.00
103	1	1091	0.00	18.70	11.00	23.00	16.00	0.00
104	1	1079	0.00	20.00	5.00	38.00	25.00	0.00
105	1	1079	0.00	20.00	-5.00	31.00	26.00	20.00
106	0	1000	0.00	0.00	0.00	43.00	16.00	0.00
107	1	1100	0.00	120.10	0.00	50.00	12.00	6.00
108	0	1000	0.00	0.00	0.00	2.00	1.00	0.00
109	0	1000	0.00	0.00	0.00	8.00	3.00	0.00
110	1	1083	0.00	0.00	0.00	39.00	30.00	6.00
111	1	1100	0.00	100.00	-8.00	0.00	0.00	0.00
112	1	1100	0.00	118.10	13.00	68.00	13.00	0.00
113	1	1100	0.00	100.00	6.00	6.00	0.00	0.00
114	0	1000	0.00	0.00	0.00	8.00	3.00	0.00
115	0	1000	0.00	0.00	0.00	22.00	7.00	0.00
116	1	1062	0.00	250.00	115.00	184.00	0.00	0.00
117	0	1000	0.00	0.00	0.00	20.00	8.00	0.00
118	0	1000	0.00	0.00	0.00	33.00	15.00	0.00

Parâmetros de Linhas de Transmissão e Transformadores de potencia

ਸਵ	סעע	DECTC %	релт %	CUCED %	POS	SIÇÃO DE T.	APE	вС	N°
DE	PARA	KEDID 0	KEAI 0	SUCEP %	TAPNOM	TAPMIN	TAPMAX		TAPS
1	2	3.03	9.99	2.54					144
1	3	1.29	4.24	1.08					144
2	12	1.87	6.16	1.566					144
3	5	2.41	10.8	2.84					350
3	12	4.84	16	4.06					144
4	5	0.18	0.8	0.2					310
4	11	2.09	6.88	1.74					144
5	6	1.19	5.4	1.42					175
8	5	. 0	2.67	0	0.937	0.9	1.1	8	9999
5	11	2.03	6.82	1.74					144
6	7	0.45	2.08	0.54					175
7	12	0.86	3.4	0.86					160
8	9	0.24	3.05	116.2					1550
8	30	0.43	5.04	51.4					776
9	10	0.26	3.22	123					1550
11	12	0.59	1.96	0.5					144

שת	גםגם	PESTS %	ספאים א	CUCED %	POS	SIÇÃO DE TA	APE	BC	N°
DE	PARA	KEDID 0	KEAI %	SUCEP %	TAPNOM	TAPMIN	TAPMAX		TAPS
11	13	2.22	7.31	0.88					144
12	14	2.15	7.07	1.82					144
12	16	2.12	8.34	2.14					160
12	117	3.29	14	3.588					160
13	15	7.44	24.44	6.26					144
14	15	5.95	19.5	5.02					144
15	17	1.32	4.37	4.44					288
15	19	1.2	3.94	1					144
15	33	3.8	12.44	3.2					144
16	17	4.54	18.01	4.66					160
17	18	1.23	5.05	1.28					350
30	17	0	3.88	0	0.9	0.9	1.1	17	9999
17	31	4.74	15.63	4					144
17	113	0.91	3.01	0.76					311
18	19	1.11	4.93	1.14					292
19	20	2.52	11.7	2.98					175
19	34	7.52	24.7	6.32					144
20	21	1.83	8.49	2.16					175
21	22	2.09	9.7	2.46					175
22	23	3.42	15.9	4.04					175
23	24	1.35	4.92	4.98					320
23	25	1.56	8	8.64					187
23	32	3.17	11.53	11.72					288
24	70	10.22	41.15	10.2					160
24	72	4.88	19.6	4.88					160
26	25	. 0	3.82	0	0.9	0.9	1.1	25	9999
25	27	3.18	16.3	17.64					374
26	30	0.79	8.6	90.8					717
27	28	1.91	8.55	2.16					175
27	32	2.29	7.55	1.92					144
27	115	1.64	7.41	1.98					144
28	29	2.37	9.43	2.38					175
29	31	1.08	3.31	0.82					144
30	38	0.46	5.4	42.2					717
31	32	2.98	9.85	2.5					144
32	113	6.15	20.3	5.18					311
32	114	1.35	6.12	1.62					175
33	37	4.15	14.2	3.66					144
34	36	0.87	2.68	0.56					175
34	37	0.26	0.94	0.98					316
34	43	4.13	16.81	4.22					160
35	36	0.22	1.02	0.26					160
35	37	1.1	4.97	1.32					175
38	37	. 0	3.75	0	0.9	0.9	1.1	37	9999
37	39	3.21	10.6	2.7					144
37	40	5.93	16.8	4.2					316
38	65	0.9	9.86	104.6					717
39	40	1.84	6.05	1.54					144
40	41	1.45	4.87	1.22					144
40	42	5.55	18.3	4.66					144

DE	D 1D1	PESTS &			POS	SIÇÃO DE TA	APE	BC	N°
DE	PARA	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	DC	TAPS
41	42	4.1	13.5	3.44					144
42	49	3.58	16.1	17.2					330
43	44	6.08	24.54	6.06					160
44	45	2.24	9.01	2.24					160
45	46	4	13.56	3.32					144
45	49	6.84	18.6	4.44					175
46	47	3.8	12.7	3.16					144
46	48	6.01	18.9	4.72					144
47	49	1.91	6.25	1.6					144
47	69	8.44	27.78	7.1					144
48	49	1.79	5.05	1.26					144
49	50	2.67	7.52	1.86					316
49	51	4.86	13.7	3.42					316
49	54	3.98	14.5	14.68					320
49	66	0.9	4.59	4.96					932
49	69	9.85	32.4	8.28					144
50	57	4.74	13.4	3.32					316
51	52	2.03	5.88	1.4					316
51	58	2.55	7.19	1.78					316
52	53	4.05	16.35	4.04					160
53	54	2.63	12.2	3.1					175
54	55	1.69	7.07	2.02					350
54	56	0.27	0.95	0.72					260
54	59	5.03	22.93	5.98					514
55	56	0.48	1.51	0.38					144
55	59	4.73	21.58	5.64					175
56	57	3.43	9.66	2.42					316
56	58	3.43	9.66	2.42					316
56	59	4.07	12	11.04					230
59	60	3.17	14.5	3.76					175
59	61	3.28	15	3.88					175
63	59	0	3.86	0	0.9	0.9	1.1	59	9999
60	61	0.26	1.35	1.46					187
60	62	1.23	5.61	1.46					175
61	62	0.82	3.76	0.98					175
64	61	0	2.68	0	1.1	0.9	1.1	61	9999
62	66	4.82	21.8	5.78					175
62	67	2.58	11.7	3.1					175
63	64	0.17	2	21.6					776
64	65	0.27	3.02	38					776
65	66	0	3.7	0	0.99	0.9	1.1	66	9999
65	68	0.14	1.6	63.8					1493
66	67	2.24	10.15	2.68					175
68	69	0	3.7	0	1.1	0.9	1.1	69	9999
68	81	0.17	2.02	80.8					717
68	116	0.03	0.4	16.4					776
69	70	3	12.7	12.2					160
69	75	4.05	12.2	12.4					144
69	77	3.09	10.1	10.38					144
70	71	0.88	3.55	0.86					160

DE	גתגת				POS	SIÇÃO DE TA	APE	вC	N°	
DE	PARA	RESIS %	REAT 8	SUCEP %	TAPNOM	TAPMIN	TAPMAX	20	TAPS	
70	74	4.01	13.23	3.36					144	
70	75	4.28	14.1	3.6					144	
71	72	4.46	18	4.44					160	
71	73	0.87	4.54	1.18					187	
74	75	1.23	4.06	1.02					144	
75	77	6.01	19.99	4.98					144	
75	118	1.45	4.81	1.18					144	
76	77	4.44	14.8	3.68					144	
76	118	1.64	5.44	1.36					144	
77	78	0.37	1.24	1.26					144	
77	80	1.08	3.31	7					254	
77	82	2.98	8.53	8.18					127	
78	79	0.54	2.44	0.64					175	
79	80	1.56	7.04	1.86					175	
81	80	. 0	3.7	0	0.9	0.9	1.1	80	9999	
80	96	3.56	18.2	4.94					187	
80	97	1.83	9.34	2.54					187	
80	98	2.38	10.8	2.86					175	
80	99	4.54	20.6	5.46					175	
82	83	1.12	3.66	3.8					288	
82	96	1.62	5.3	5.44					144	
83	84	6.25	13.2	2.58					203	
83	85	4.3	14.8	3.48					144	
84	85	3.02	6.41	1.22					187	
85	86	3.5	12.3	2.76					144	
85	88	2	10.2	2.76					187	
85	89	2.39	17.3	4.7					187	
86	87	2.82	20.74	4.44					201	
88	89	1.39	7.12	1.92					187	
89	90	1.63	6.52	15.88					748	
89	92	0.79	3.8	9.62					374	
90	91	2.54	8.36	2.14					144	
91	92	3.87	12.72	3.26					144	
92	93	2.58	8.48	2.18					144	
92	94	4.81	15.8	4.06					144	
92	100	6.48	29.5	7.72					175	
92	102	1.23	5.59	1.46					175	
93	94	2.23	7.32	1.88					144	
94	95	1.32	4.34	1.1					144	
94	96	2.69	8.69	2.3					144	
94	100	1.78	5.8	6.04					288	
95	96	1.71	5.47	1.48					144	
96	97	1.73	8.85	2.4					187	
98	100	3.97	17.9	4.76					175	
99	100	1.8	8.13	2.16					175	
100	101	2.77	12.62	3.28					175	
100	103	1.6	5.25	5.36					144	
100	104	4.51	20.4	5.4					175	
100	106	6.05	22.9	6.2					175	
101	102	2.46	11.2	2.94					175	

DE	D3D3				POS	SIÇÃO DE T.	APE	BC	N°
DE	PARA	RESIS %	REAT 8	SUCEP %	TAPNOM	TAPMIN	TAPMAX	20	TAPS
103	104	4.66	15.84	4.06					144
103	105	5.35	16.25	4.08					144
103	110	3.91	18.13	4.6					175
104	105	0.99	3.78	0.98					144
105	106	1.4	5.47	1.44					144
105	107	5.3	18.3	4.72					144
105	108	2.61	7.03	1.84					127
106	107	5.3	18.3	4.72					144
108	109	1.05	2.88	0.76					127
109	110	2.78	7.62	2.02					127
110	111	2.2	7.55	2					144
110	112	2.47	6.4	6.2					127
114	115	0.23	1.04	0.28					175

D.2.2 Parâmetros associados aos modelos dinâmicos no sistema-teste IEEE118

Máquina Síncrona de pólos salientes (Anatem, 2000)

O modelo 0001 está associado ao tipo MD01; tensão e ângulo fixo.

Mode	CS	Ld (%	Lq(%)	L'd(%)	L"d(%)	Ll(%)	T'd0(%)	T"d0(%)	T″q0(%)
		Ra(%)	H (seg)	D	MVA	Hz			
2	0	180	172	28.5	22	16	3.7	0.032	0.06
2		0	1.311	0	483	60			
3	0	190	180	27	17	15	8.3	0.04	0.15
3		0	4.98	0	208	60			
4	0	93.4	61.1	28.9	27.2	22	5.303	0.091	0.205
4		0	5.5	0	472.6	60			
5	0	73	52	26	20	19	8.3	0.06	0.03
5		0	4.31	0	365	60			
6	0	180	172	28.5	22	16	3.7	0.032	0.06
6		0	1.311	0	483	60			
7	0	186.7	177.3	22.6	16.7	13	9.22	0.041	0.15
7		0	4.98	0	216	60			
8	0	214	200	21	16	14	9.79	0.021	0.032
8		0	1.76	0	208	60			
9	0	217	205	22.3	16.9	15	9.48	0.023	0.035
9		0	б.4	0	300	60			
10	0	73	52	26	20	19	8.3	0.06	0.03
10		0	4.31	0	365	60			
11	0	170	100	37	25	17.5	9	0.06	0.2
11		0	1.6	0	300	60			
12	0	72.01	67.94	8.8	3.7	26.6	5.62	480	0.0066
12		0	2.731	0	760	60			
13	0	92.89	68.99	31.99	25.59	13.99	5	0.065	0.085
13		0	4.722	0	313.6	60			
14	0	94.81	64.5	24.99	18.96	14.01	7	0.066	0.14
14		0	6.228	0	283	60			

Mode	CS	Ld (%	Lq(%)	L'd(%)	L"d(%)	Ll(%)	T'd0(%)	T"d0(%)	T″q0(%)
		Ra(%)	H (seg)	D	MVA	Hz			
15	0	91	57	26	20	15	6.2	0.043	0.074
15		0	4.42	0	250	60			
16	0	158.9	149.4	24.15	18.55	15.4	6.66	0.018	0.03
16		0	3.229	0	350	60			
17	0	186.7	177.3	22.6	16.7	13	9.22	0.041	0.15
17		0	4.98	0	216	60			
18	0	214	200	21	16	14	9.79	0.021	0.032
18		0	1.76	0	208	60			
19	0	217	205	22.3	16.9	15	9.48	0.023	0.035
19		0	б.4	0	300	60			
20	0	73	52	26	20	19	8.3	0.06	0.03
20		0	4.31	0	365	60			
21	0	186.7	177.3	22.6	16.7	13	9.22	0.041	0.15
21		0	4.98	0	216	60			
22	0	158.9	149.4	24.15	18.55	15.4	6.66	0.018	0.03
22		0	3.229	0	350	60			
23	0	217	205	22.3	16.9	15	9.48	0.023	0.035
23		0	6.4	0	300	60			
24	0	73	52	26	20	19	8.3	0.06	0.03
24		0	4.31	0	365	60			
25	0	170	100	37	25	17.5	9	0.06	0.2
25	0	170	167.0	10 0	300	60	F (0	0.040	0.000
26	0	172	167.9	48.8	33.7	26.6	5.62	0.048	0.066
20	0	04 01	2.751	24.00	19.06	14 01	7	0.066	0.14
27	0	94.01	6 228	24.99	10.90	14.01	1	0.000	0.14
27	0	91	57	26	203	15	6.2	0 043	0 074
28	Ŭ	0	4 4 2	0	250	60	0.2	0.015	0.071
29	0	158.9	149.4	24.15	18.55	15.4	6,66	0.018	0.03
29		0	3.229	0	350	60		01010	
30	0	172	167.9	48.8	33.7	26.6	5.62	0.048	0.066
30		0	2.731	0	760	60			
31	0	170	100	37	25	17.5	9	0.06	0.2
31		0	1.6	0	300	60			
32	0	92.89	68.99	31.99	25.59	13.99	5	0.065	0.085
32		0	4.722	0	313.6	60			
33	0	94.81	64.5	24.99	18.96	14.01	7	0.066	0.14
33		0	6.228	0	283	60			
34	0	91	57	26	20	15	6.2	0.043	0.074
34		0	4.42	0	250	60			
35	0	158.9	149.4	24.15	18.55	15.4	6.66	0.018	0.03
35		0	3.229	0	350	60			
36	0	186.7	177.3	22.6	16.7	13	9.22	0.041	0.15
36		0	4.98	0	216	60			
37	0	91	57	26	20	15	6.2	0.043	0.074
37		0	4.42	0	250	60			
38	0	158.9	149.4	24.15	18.55	15.4	6.66	0.018	0.03
38		0	3.229	0	350	60			
39	0	91	57	26	20	15	6.2	0.043	0.074
39		0	4.42	0	250	60			

Mode	CS	Ld (%	Lq(%)	L'd(%)	L"d(%)	Ll(%)	T'd0(%)	T"d0(%)	T"q0(%)
		Ra(%)	H (seg)	D	MVA	Hz			
40	0	172	167.9	48.8	33.7	26.6	5.62	0.048	0.066
40		0	2.731	0	760	60			
41	0	158.9	149.4	24.15	18.55	15.4	6.66	0.018	0.03
41		0	3.229	0	350	60			
42	0	217	205	22.3	16.9	15	9.48	0.023	0.035
42		0	6.4	0	300	60			
43	0	217	205	22.3	16.9	15	9.48	0.023	0.035
43		0	6.4	0	300	60			
44	0	73	52	26	20	19	8.3	0.06	0.03
44		0	4.31	0	365	60			
45	0	186.7	177.3	22.6	16.7	13	9.22	0.041	0.15
45		0	4.98	0	216	60			
46	0	214	200	21	16	14	9.79	0.021	0.032
46		0	1.76	0	208	60			
47	0	217	205	22.3	16.9	15	9.48	0.023	0.035
47		0	6.4	0	300	60			
48	0	73	52	26	20	19	8.3	0.06	0.03
48		0	4.31	0	365	60			
49	0	170	100	37	25	17.5	9	0.06	0.2
49		0	1.6	0	300	60			
50	0	92.89	68.99	31.99	25.59	13.99	5	0.065	0.085
50		0	4.722	0	313.6	60			
51	0	94.81	64.5	24.99	18.96	14.01	7	0.066	0.14
51		0	6.228	0	283	60			
52	0	172	167.9	48.8	33.7	26.6	5.62	0.048	0.066
52		0	2.731	0	760	60			
53	0	186.3	183.3	34.3	28.7	20.9	5.36	0.042	0.253
53		0	3.02	0	256	60			
54	0	172	167.9	48.8	33.7	26.6	5.62	0.048	0.066
54		0	2.731	0	760	60			

Regulador Automático de Tensão (AVR)

Os valores do modelo 01 serão considerados como padrão para o restante dos reguladores de tensão (modelo 01,..., modelo 53) associado às máquinas síncronas do sistema teste IEEE118; o tipo de regulador de tensão usado é o DRGT MD20 (Anatem, 2000)

Modelo	Tm	Ka	T1	т2	Т3	т4	Lmin	Lmax
0001	0.02	190.8	3	12	0.07	0.0133	-3.87	5.87

Estabilizadores de Potência (PSS)

Os valores do modelo 01 serão considerados como padrão para o restante dos estabilizadores (modelo 01,..., modelo 53) associado às máquinas síncronas do sistema teste IEEE118; o tipo de estabilizador usado é o DEST MD01 (Anatem, 2000).

Modelo	K	Т	T1	Т2	Т3	т4	Lmin	Lmax
0001	22.78	1	1.5	0.02	0.2927	12	-0.05	0.05

D.3 Sistema Interligado Norte-Nordeste Brasileiro – 564 barras

D.3.1 Estado Estacionário

Parâmetros de barra

DAD	-	NOME DA BARDA	TENSAO	ANGULO	INJEÇÃO I	DE POTENCIA	CAI	RGA	SHUNT
DAR	1	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
36	1	S.MESA3GR	1030	35.8	900.0	146.20			
235		CS.MESA500	1072	31.7			2372	-404	
5001		CP.AFONSO-500	1070	16.9					
5003		FPAF-BP-1-230	996	14.4					
5004		FPAF-BP-2-230	1003	15.6					
5005		QUSU-01G1-0MQ	1003	15.6					
5006	1	QPAFO-1G1-000	1000	15.6	0.0	19.94			
5007		QUSU-01G3-0MQ	1003	15.6					
5009	1	QPAFO-2G1-000	1000	14.4	0.0	-8.19			
5010	1	QPAFO-2G2-1GR	1000	21.8	70.0	-3.18			
5011	1	QPAFO-2G3-000	1007	14.4	0.0	-4.82			
5012	1	QPAFO-2G4-000	1007	14.4	0.0	-5.65			
5013	1	QPAFO-2G5-000	1007	14.4	0.0	-6.08			
5014	1	QPAFO-2G6-000	1007	14.4	0.0	-6.18			
5015	1	QPAFO-3G1-000	971	14.4	0.0	3.46			
5016	1	QPAFO-3G2-1GR	993	21.3	160.0	34.41			
5017		QUST-01G3-0MQ	970	14.4					
5018		QUST-01G4-0MQ	977	15.6					
5022	1	QPAFO-4G1-5GR	1017	21.6	1640.0	-453.00			
5023		QUSQ-01G2-0MQ	1010	16.9					
5024		QUSQ-01G3-0MQ	1010	16.9					
5025		QUSQ-01G4-0MQ	1010	16.9					
5026		QUSQ-01G5-0MQ	1010	16.9					
5027		QUSQ-01G6-0MQ	1010	16.9					
5028		FMXT-BP-2-230	1005	15.8					
5029		FMXT-BP-1-230	996	14.4					
5030	1	QASALESG1-000	971	14.4	0.0	1.45			
5031		QUAS-01G2-0MQ	970	14.4					
5032	1	QASALESG2-1GR	993	21.0	75.0	15.83			

	_		TENSAO	ANGULO	INJEÇÃO I	DE POTENCIA	CAI	RGA	SHUNT
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
5033		QUAS-01G4-0MQ	978	15.8					
5050		CL.GONZAG-500	1069	17.7					
5051	1	QLGONZAG1-3GR	1019	21.5	510.0	-158.00			
5052		QULG-01G2-0MQ	1037	17.7					
5053		QULG-01G3-0MQ	1037	17.7					
5054	1	QLGONZAG2-2GR	1019	21.5	340.0	-105.00			
5055		QULG-01G5-0MQ	1037	17.7					
5056		QULG-01G6-0MQ	1037	17.7					
5060		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1060	15.7					
5061	1	OXINGO3GR	989	22.7	1500.0	-448.00			
5062		OUXG-01G2-0MO	1010	15.7					
5063		OUXG-01G3-0M0	1010	15.7					
5064			1010	15 7					
5065		QUXG-01G1-0MQ	1010	15 7					
5066		QUXG-01G5-0MQ	1010	15 7					
5000		QUXG-UIGO-UMQ	1054	0 1					
5100		CANGELIM500	1004	8.1 F 0					
5101		FANGELIM230	1028	5.2					
5102		TANGELIM000	1040	0.7			104 5	20.00	
5103		IANGELIM069	1041	0.8			124.7	32.82	
5104		MANGELIM013	1040	0.7					
5106		MAGL-TIP013	1029	-0.6			3.83	1.855	
5110		FSALGEMA230	1001	1.1					
5111		FR.LARGO230	1021	3.1					
5113		IR.LARGO069	1028	0.4			76	27.6	85.2
5114		MR.LARGO013	1028	0.4					
5115		MSGMA-013	998	-5.9			56	21.68	
5116		MSGMB-013	998	-5.9			56	21.68	
5117		MSGMC-013	998	-4.6			56	21.68	
5118		MSGMA1-013	1038	-5.9					5.1
5119		MSGMB1-013	1038	-5.9					5.1
5120		MSGMC1-013	1045	-4.б					20
5121		FTACAIMBO-230	1020	1.3					
5123		ITACAIMBO-069	1012	-2.8			114.1	28.09	
5125		MTACAIMBO-013	1038	-2.8					
5131		FPIRAPAMA-230	1019	-2.4			9.9	1.481	
5133		IPIRAPAMA-069	1003	-7.7			214.7	38.87	20.4
5140		CRECIFEII-500	1065	1.7					
5141		FRCD-BP-1-230	1025	-0.9					
5142		FRCD-BP-2-230	1025	-0.7					
5144		QRCD-CS-1-000	1004	-0.9					
5145	1	QRCD-SIE1CS	1025	-0.9	0.0	65.94			
5146		QRCD-CS-2-000	1004	-0.9					
5147	1	QRCD-ALS1CS	1025	-0.9	0.0	65.94			
5150		FTERMOPE230	1020	-2.4					
5151	1	OTERMOPEG-000	1026	-2.4	0.0	35.93			
5152	-	FBONGT230	1019	-1.6			6.3	1.5	
5152		OGERTERMO-0MO	1020	-2.4					
5154	1		1015	-2.4	0.0	-10 50			
5156	-	TRONGT060	1000	-6 1	0.0	10.50	230 9	48 09	40.8
5150		MRGI-DITE 012	1010	_4 0			230.9	10.09	10.0
5121	1	10-013	1012	-4.0				I	I

BAR T	NOME DA BARRA	TENSAO	ANGULO	INJEÇÃO I	E POTENCIA	CARGA		SHUNT	
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
5158		MBONGI-T6-013	1000	-5.5			17.36	11.76	
5159		MBGI-RLT7-013	972	-5.8					
5160		MBGI-T7K1-013	953	-8.5			27.16	19.31	
5161		MBONGI-T9-013	1015	-6.1					
5163		MBONGI-T8-013	1001	-7.2			3	0.987	
5171		MBONGI-G1-013	994	-1.6					
5172		MBONGI-G2-013	994	-1.6					
5175		MBONGI-G4-013	994	-1.6					
5181		FP.FERRO230	1016	-3.2					
5183		IP.FERRO069	1000	-8.3			145	35.7	
5191		FMIRUEIRA-230	1011	-3.5					
5193		IMIRUEIRA-069	1014	-8.5			262.7	84.48	40.8
5194		MMIRUEIR2-013	1014	-8.5					
5195		MMIRUEIRA-013	1014	-8.5					
5196		MMIRUEIR3-013	1014	-8.5					
5197		MMIRUEIRA-013	1014	-8.5					
5201		FGOIANINH-230	1000	-5.8					
5203		IGOIANINH-069	1014	-9.5			100.4	33.51	21.3
5203		TGNN-RLT1-000	1019	-9.5			10011	55.51	1110
5201	1	OGNNT11CS	1030	-9.5	0 0	4 21			
5205	-	MGNNT2013	1014	_9 5	0.0	1.21			
5211		FMUSSURE230	982	-8.3					
5213		TMUSSURE069	1028	-13 0			266 1	87 5	42 6
5213		MMUSSURE2-013	1028	_13.0			200.1	07.5	12.0
5215		MMUSSURF1-013	1028	_13.0					
5222		FC CRANDE-230	1023	-6 5					-10
5222		ICATOLE-D-069	1041	-11 0					10
5225		ICATOLE069	1041	_11_0					
5224		MCATOLE 013	1041	_11_0					
5225		ICCD069	1041	_11 0			158 7	52 1	
5220		ICGU069	1041	_11_0			130.7	52.1	
5227		ICG0069	1041	_11_0					
5220		MB VISTA-012	10/1	_11_0					
5220		MCCD013	1021	_14_0			22 5	74	
5230		MCGD=2====013	1021	_7 5			22.5	7.1	
5231	1	MCCD 2 013	1040	-7.6	0.0	-2 69			
5232	1	MCGU013	1041	_11_0	0.0	-2.00			
5233		MB VISTA 2-012	1041	_11_0					
5234		MB.VISIAZ-013	1041	-11.0					
5235		GC.GRANDE-138	1026	-0.4					
5230		TCGD2000	1046	-7.5					
5237		ICGD1-000	1040	-7.0					
5238		MCGD-KD-1-013	1022	-7.0			l		1
5239			1023	12 0					
5241	7	FINALAL-11-230	1014	-13.0	0.0	25 42	200.0	45 61	10 6
5243	1	INATAL-II-069	1041	10.0	0.0	20.42	302.2	43.0L	42.0
5252		GS.CRUZ138	1011	-10.0			10.04	1 01 7	
5253		IS.CRUZU69	1022	-13.0			18.84	1.017	
5254		rPARAISU230	1033	-11.0					
5255		GPARAISO138	999	-13.0			4 555	0.765	
5256		MSTD-TIP013	974	-17.0			4.686	2.708	

BART	NOME DA BARRA	TENSAO AL	ANGULO	INJEÇÃO I	DE POTENCIA	CARGA		SHUNT	
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
5262		GC.NOVOS138	980	-16.0					
5263		IC.NOVOS069	1012	-24.0			28.28	9.498	
5265		MC.NOVOS013	1048	-22.0					7.2
5266		MCRD-TIP013	1038	-24.0					
5268		TCRD000	1048	-22.0					
5281		FRIBEIRAO-230	1016	-0.7					
5283		IRIBEIRAO-069	1000	-3.9			89.18	16.15	
5291		FPENEDO230	981	-2.3					
5293		IPENEDO069	998	-5.2			81.06	19.71	
5300		CMESSIAS500	1053	5.2					
5301		FMESSIAS230	1024	3.7					
5311		FMACEIO230	1014	2.9					
5313		IMACEIO069	999	-2.2			209.8	76.2	
5331		FVARZEA230	1022	-1.2					
5333		IVARZEA069	1000	-6.1			135	28.12	
5401		FB.NOME230	1023	11.0					
5402		GB.NOME138	997	9.8			45.87	5.456	
5403		IB.NOME069	1040	6.1			50.89	18.13	
5406		MBNO-TIP013	1060	4.7			4.4	1,103	
5408		CMILAGRES-500	1077	12.4				11100	-100
5409		MMLGT3013	1026	7 1					100
5410		OCE MLG	1013	10.3					-9.6
5411		FMILAGRES-230	1027	10.3					5.0
5412		MMLG-RLT3-013	1026	7 1					
5413		IMILAGRES-069	1026	7 2			79 6	11 34	
5414		MMLG-RLT4-013	1026	7 1			12.0	11.51	
5415		MMLGT4013	1026	7 1					
5416		MMLC_TIP _013	007	5.6			73	3 997	
5417		MMILACPES-013	1011	5.7			7.5	3.997	
5418		TMLGT3000	1026	7 1					
5410		TMLGT3000	1026	7.1					
5419		FRANARITIL 220	1020	/.1					
5422		MI TRRA012	1020	1.7			0.2	0 099	
5422		TRANADUTU_060	1027	-0 5			50 F	0.099	
5423		MBNBBS012	1010	_1 1			50.5	0	
5426		MENE TID _012	000	_1 1			0 0	0 654	
5420		MBNB-11P013	1005	-1.1 11 4			0.0	0.054	
5420		EDUISADA 300	1015	2.0					
5431		TRUSSAS230	1013	-2.9			12 C	14 22	
5435		IRUSSAS009	1010	-5.4			43.0	14.33	
5441	1	FMOSSORO230	1018	-0.3	0.0	10.00	0.0 1	14 20	
5443	1	IMOSSORO069	1014	-9.8	0.0	10.98	98.1	14.38	
5445		MMOSSOR01-013	984	-9.8					
5446		MINUSSURUZ-UI3	984	-9.8					24.2
5450		QUE FIZ	99U	0.0					-34.3
5451		CFTZ-II500	1079	11.0					F.0. 7
5452		FFORTALEZ-230	1014	8.6			054.5	00.55	50.5
5453		IFORTALEZ-069	1028	3.8			276.3	90.79	8⊥.4
5454		MFTZ-RLT3-013	1028	3.8					
5455		MFTZ-1-T3-013	1028	3.8					
5456		MFTZ-RLT4-013	1028	3.8					

	-		TENSAO	ANGULO	INJEÇÃO I	E POTENCIA	CAI	RGA	SHUNT
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
5457		MFTZ-2-T4-013	1028	3.8					
5458		FFTZ-II230	1014	8.6					
5461		FACU-II230	1027	-10.0					
5463		IACU-II069	1013	-12.0			23.33	-3.64	
5464		MACUT5013	1013	-12.0					
5465		MACUT4013	1013	-12.0					
5468		GACU-II138	1026	-14.0			56.11	2.511	
5471		FD.GOUVEI-230	1015	8.3					50.5
5473		ID.GOUVEI-069	1028	3.9			255.4	83.92	97.2
5474		GS.MATOS138	979	-16.0					
5475		IS.MATOS069	999	-24.0			4.926	-1.63	
5476		MS.MATOS013	986	-21.0			1.637	0.651	
5477		SMD-ABERT138	1028	-14.0					
5478		TS.MATOS000	986	-21.0					
5480		CSOBRALIII500	1071	18.8					
5481		ESOBRALIT-230	1021	17 2			8 9	3 791	
5482		TSBDT1000	1022	12 3			0.5	5.751	
5483		ISOBRALIT-069	1015	14 0			135 7	10 34	50
5405		TSDBRALII-009	1022	12.2			135.7	19.34	50
5464		13BD12000	1022	10.2					
5465		MSBD11013	1022	12.3					
5487		MSBD12013	1022	12.3					
5488		FSOBRALIII230	1021	17.7					
5491		FPIRIPIRI-230	1011	21.2			26.02	15 50	
5492		GPIRIPIRI-138	1002	18.9			36.83	15.78	
5493		IPIRIPIRI-069	1045	18.9			23.15	7.442	
5494		MPRI-RL-T1013	1049	18.8					
5495		MPRIT2013	1045	18.7					
5496		MPRI013	1026	17.3			7.063	4.5	
5497		MPRIT1013	1064	18.8					4.2
5498		TPRIT2000	1045	18.7					
5499		TPRIT1000	1044	18.8					
5500		CTERES-II-500	1053	34.9					
5501		FTERESINA-230	1033	30.5					50.5
5502		FTERES-II-230	1043	32.2					
5503		ITERESINA-069	1047	25.9			206	108.5	42.6
5504		TTSAT1000	1012	26.6					
5505		MTSAT1013	1003	24.8			21.91	12.9	7.2
5506		MTSAT2013	1004	26.6			14.61	8.602	10.8
5507		TTSAT2000	1001	27.8					
5508		MTSAR-013	999	30.5					
5509	1	QTERESINA-1CS	1040	32.2	0.0	-4.09			
5510		CB.ESPER500	1065	33.0					-100
5511		FB.ESPER230	1020	33.8					
5512		TUBET5000	1035	30.8					
5513		IB.ESPER069	1037	30.9			49.21	19.91	
5514		TUBET6000	1036	30.7					
5515		MUBET5013	1035	30.8					
5516		MUBET6013	1033	30.4			0.77	0.301	
5517		MUBE013	1036	30.7					
5518		TUBET8000	1037	30.8					

BAR T		TENSAO	ANGULO INJEÇÃO DE		E POTENCIA	CARGA		SHUNT	
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
5519		MUBET8013	1037	30.8					
5520	1	QBOAESP-1-2GR	1025	38.9	98.0	10.03			
5521		QUBE-01G2-0MQ	1020	33.8					
5522	1	QBOAESP-2-1GR	1025	40.0	59.0	6.01			
5523	1	QBOAESP-2-000	1025	33.8	0.0	3.02			
5524		FC.NETO-P-TAP	1034	30.6					
5525		FC.NETO230	1034	29.7					
5526		IC.NETO069	1006	27.2			20.53	2.926	
5528		SCHIN-MA 230	1032	30.9					
5531		FPERITORO-230	1005	33.1			4	1.315	
5533		IPERITORO-069	1061	29.8			49.42	19.72	
5535		MPERITORO-013	1059	29.4			1.263	0.504	
5538		TPERITORO-000	1059	29.5					
5541		FMIRANDA230	1009	32.7					
5542		GMIRANDA138	1043	29.8			62.62	25.94	
5543		TMTRANDA069	1072	31.5			32.59	8.14	
5544		MIRANDA13-2	1071	31 4			52.55	0.11	
5545		MMIRANDA-1013	1071	31 3			3 0.8	0 769	
5546		MMIRANDA-1013	0.85	29.6			5.00	0.705	
5540		TMIRANDA 2013	1071	21.0					
5547		TMIRANDA-2000	1071	21 4					
5548		IMIRANDA-1000	1071	31.4					
5549		IMIRANDA000	1047	29.0					120
5550		CS.LUISII-500	1047	38.2			0.2.6 5	007.4	-136
2221	1	FS.LUISII-230	1059	37.5	0.0	24.00	830.5	297.4	281.0
5556	T	QSAOLUIZ000	990	37.5	0.0	-24.90			
5557	1	QUIS-UIG2-UMQ	1033	37.5	0.0	266.00			
5558	1	QS.LUISII-ICE	1020	37.5	0.0	-266.00			
5561		FS.LUIS-1-230	1049	36.9					
5562		MS.LUIS-I-UI3	1071	33.6			150 1	00.10	
5563		IS.LUIS-1-069	1071	33.6			158.1	92.18	
5565		MS.LUIS-I-013	1037	36.9					
5568		TS.LUIS-I-000	1037	36.9					
5570		CS.J.PIAUI500	1061	29.7					
5571		FS.J.PIAUI230	1010	28.6					
5572		CBCSSJIUSB500	1055	32.7					
5573		IS.J.PIAUI069	1023	25.4			26.69	2.544	
5574		CBCSBEASJI500	1072	26.1					
5576		CBCSBEASJI500	1052	36.6					
5578		CBCSSJIUSB500	1058	24.1					
5580		CP.DUTRA500	1062	41.6					
5581		FP.DUTRA230	988	39.7					
5582		QPDD-CS12-000	966	39.7					
5583		IP.DUTRA069	1035	33.8			24.57	10.89	
5584		MP.DUTRA-2013	1051	35.8					
5585		MP.DUTRA013	1012	40.0					
5586	1	QPDUTRA2CS	960	39.7	0.0	-17.30			
5588		TPDD-ATR000	1012	40.0					
5589		TP.DUTRA000	1051	35.8					
5590		CIMPERATR-500	1071	48.6					-272
5591		FIMPERATR-230	1036	47.8					

	_		TENSAO	ANGULO	INJEÇÃO I	DE POTENCIA	CAI	RGA	SHUNT
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
5593		IIMPERATR-069	1033	45.0			83.07	43.85	
5596	1	QIMPERATR-3CS	1020	47.8	0.0	25.11			
5601		FP.FRANCO-230	1027	44.8					
5602		GP.FRANCO-138	1019	43.6			31	-3.3	
5603		IP.FRANCO-069	1033	42.9			19.96	9.777	
5605		MP.FRANCO-013	1029	43.5					
5608		TP.FRANCO-000	1029	43.5					
5621		FCOREMAS230	958	3.7					
5623		ICOREMAS-1069	1040	0.2			103.7	34.1	
5624		MCOREMAS013	1040	0.2					
5631		FICO230	1030	6.6					
5633		IICO069	1012	2.9			52.1	7.257	
5641		FPICI 230	1003	7.8					
5643		IPICI 69	999	0.9			193.2	63.49	
5651		FCAUIPE230	1019	9.6					
5652		FUTE_FORT.230	1019	9.7					
5653		ICAUIPE069	999	6.4			43.7	0	
5654	1	OTERMFTZG-1GR	1000	14.6	100.0	11.00			
5655	1	~ OTERMFTZV-000	995	9.7	0.0	0.80			
5656		~ OUTE FORTAMO3	994	9.7					
5660	1	OTERMOCEG-000	1017	9.6	0.0	-3.24			
5661		OUTE CEARAMO2	1019	9.6					
5662		OUTE CEARAMO3	1019	9.6					
5663		OUTE CEARAMO4	1019	9.6					
5664		OUTE CEARAMO5	1019	9.6					
5667		OUCE-M012-000	1019	9.6					
5668		QUCE-MQ34-000	1019	9.6					
5671		FPICOS230	994	25.5					
5673		IPICOS069	995	20.3			33.88	12.4	
5701		FC.DANTAS-230	1023	10.2					
5703		IC.DANTAS-069	1012	3.2			20.52	1.627	
5704		MC.DANTAS-013	1012	3.2					
5711		FITABAIANA230	1014	8.4					
5713		IITABAIANA069	1027	4.3			92.04	5.295	
5715		MITBT1013	1027	4.1					
5716		MITB-TIP013	1010	1.6			14.35	4.712	
5717		MITBT2013	1027	4.0					
5718		TITBT1000	1027	4.1					
5719		TITBT2000	1027	4.0					
5720		CJARDIM500	1074	10.3					
5721		FJARDIM230	1018	8.4					
5722		FFAFEN230	1017	8.3			24.7	9	
5723		IJARDIM069	1028	2.3			251.5	15.93	61.9
5724		FCIMESA230	1018	8.4			16.46	5.976	
5730		FDER.OLD-1230	1027	8.0					
5731		FSCH230	1023	5.7					
5735		MOLD013	1014	6.4			5.23	2.286	
5736		MSCH013	1020	4.6			3	0.5	
5740		COLINDINA-500	1071	10.9					
5750		CCAMACARI-500	1059	6.8					

			TENSAO	ANGULO	INJEÇÃO I	E POTENCIA	CAI	RGA	SHUNT
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
5751		FCMD-BP-1-230	1018	5.0			86	35.99	
5753		FCOPENE230	1016	4.8			130	42.77	
5754		FCQR230	1016	4.8			42	13.82	
5757		ICAMACARI-069	998	3.2			48.48	1.434	
5770	1	QCAMACARI-1GR	1020	10.5	70.0	5.07			
5771	1	QCAMACARI-000	994	5.0	0.0	0.69			
5778	1	QCAMACARI-2CS	1010	5.0	0.0	109.20			
5782		FCATU230	1020	5.1			3	0.987	
5786		ICATU069	998	-2.0			98.4	16.34	
5788		TCATU-T1000	1007	-0.2					
5789		TCATU-T2000	1006	0.8					
5790		TCATU-T3000	998	-2.3					
5791		MCTU-RL-T1013	1007	-0.2					
5792		MCTU-RL-T2013	1006	0.8					
5793		MCATU-T1013	1019	-2.4			14.52	2.416	7.2
5794		MCATU-T2013	1016	0.8					3.6
5795		MCATU-T3013	998	-2.3					
5802		FCOTEGIPE-230	1007	3.8			18	3.632	
5803		ICOTEGIPE-069	1028	0.1			28.88	5.095	
5804		ID.PITUACU230	1001	2.5					
5806		COTEGIPE-069	999	-4.0			115.5	20.38	
5807		TCTGT2000	1027	0.0					
5808		TCTGT4000	997	-4.5					
5809		MCTG-RL-T2013	1027	0.0					
5810		QCTG-T2-130CS	1027	0.0					
5812		MCOTEG.T4-013	997	-4.5					
5817		L.FREITAS069	999	-3.7					
5821		FTERMOBAH-230	1003	4.9					
5822		FJACARAC230	1007	4.4			57	4.3	
5824		FDOW230	1004	4.2			125	47.76	
5826		IJACARAC069	999	2.0			63.5	1.712	27.1
5827	1	QT.BAH-G1-1GR	1020	9.7	187.4	-68.40			
5828	1	QT.BAH-G2-000	1056	4.9	0.0	-0.56			
5830		MJCR013	999	2.0					
5831		MJCR013	999	2.0					
5842		FPITUACU230	1001	2.5					
5843		IPITUACU069	999	-3.4			309	96.74	21.2
5846		MPTUB2013	999	-3.4					
5847		MPTUB3013	999	-3.4					
5848		TPTUT4000	997	-3.9					
5849		MPTUT4013	997	-3.9					
5852		FMATATU230	1000	2.0					
5856		IMATATU069	999	-3.5			225.5	18.53	27.1
5863	1	XMATATU-T4011	1020	-6.2	0.0	2.16	24.33	2.005	
5864		XMATATU-T5011	1004	-5.7			22.45	1.851	
5865	1	XMATATU-T3011	1020	-3.5	0.0	6.96			
5871		FTOMBA230	997	2.6					
5872		FEMBASA230	1011	4.6			0.65	0.277	
5873		ITOMBA069	999	-1.5			170.4	31.51	
5875		MTOMBA013	999	-1.5					

	_		TENSAO	ANGULO	INJEÇÃO I	DE POTENCIA	CAI	RGA	SHUNT
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
5881		FG.MANGAB.230	1016	5.3					
5883		IG.MANGAB.069	1014	2.2			44.56	15.42	
5886		MGVMT1013	1014	2.2					
5887		MGVM-RL-T1013	1014	2.2					
5891		FSA.JESUS-230	1016	4.9					
5893		ISA.JESUS-069	1014	-0.4			75.05	13.22	
5902		FFUNIL230	1019	4.4					
5904		GFUNIL138	1035	0.4			226.2	-0.12	
5905		CE FUNIL	1018	4.4					-0.9
5910		MFUNIL-T5-013	1039	1.3					
5911		MFUNIL-TR-013	1033	-0.7			5.61	0.594	
5915		XFUNIL115	1039	1.4					
5918		TFUNIL-T5-000	1039	1.3					
5920	1	QUFL-01G1-1MQ	1000	2.9	4.0	0.90			
5921	1	QUFL-01G2-1MQ	1000	2.8	4.0	0.90			
5922	1	QUFL-01G3-1MQ	1000	2.8	4.0	0.90			
5941		FBRUMADO230	1030	-2.8					
5944		IBRUMADO069	1028	-4.5			49.19	5.235	
5961		FITBNINHA-230	1017	6.6					
5963		IITBNINHA-069	1012	4.4			22.2	10.85	
5965		MITBNINHA-013	1012	4.4					
5970		FITAPEBI230	998	16.2					
5972		FEUNAPOLIS230	988	14.1					
5974		GEUNAPOLIS138	1027	12.0			137.7	-8.39	
5975	1	QITAPEBI3GR	983	22.3	381.0	-32.80	5970		
5976		QITAPEBIOMQ	998	16.2					
5977		QITAPEBIOMQ	998	16.2					
5978		TENPT2000	1028	11.5					
5979		MEUNAPOLIS013	1028	11.5					
6200		GUSDG1138	967	14.4					
6201		GUSDG2138	965	16.1					
6202		GP.AFONSO-138	969	14.4					
6203		IABAIXAD069	1025	10.9			67.57	17.77	
6250		GZEBU138	964	16.0					
6253		IZEBU-RS069	1034	11.2			3.78	-4.9	
6294	1	QSOBRADIN-4GR	1000	31.5	550.0	-108.00	6300		
6295	1	QSOBRADIN-000	1000	27.1	0.0	-32.20			
6296		QUSB-01G3-0MQ	1018	27.1					
6297		QUSB-01G4-0MQ	1018	27.1					
6298		QUSB-01G5-0MQ	1018	27.1					
6299		QUSB-01G6-0MQ	1018	27.1					
6300		CSOBRAD500	1044	27.1					
6301		FSOBRAD230	991	25.0					
6311		FJUAZEIRO-230	993	22.4					
6313		IJZB-2069	989	19.3			84.44	-0.21	
6321		FJAGUARARI230	999	19.4			11.3	3.053	
6331		FSBF230	1001	17.1					
6333		IS.BONFIM-069	992	13.9			62.26	7.738	
6339		MIRECE-T3-013	1009	8.2					
6340		QIRECE-T3-000	1009	8.2					

	_		TENSAO	ANGULO	INJEÇÃO I	DE POTENCIA	CAI	RGA	SHUNT
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
6341		FIRECE230	1010	10.3					
6342		GIRECE138	1005	8.1			35.4	1.445	
6343		IIRECE069	1020	6.5			45.49	2.241	
6344		QIRECE-T2-000	1009	8.2					
6345		MIRECE013	1005	6.5					-10
6346		MIRECE-T2-013	1009	8.2					
6347	1	QIRECE1CS	1025	10.3	0.0	-3.58			
6348		QBJ.LAPAII1CE	1079	15.8					41.7
6349		CBJLAPAII-500	1054	15.8					
6350	1	QBJLAPA1CS	1030	14.5	0.0	-7.62			
6351		FB.J.LAPA-230	1016	14.5					-10
6352		TBJS-04T3-000	1016	8.0					
6353		IB.J.LAPA-069	1016	8.4	6.0	0.00	78.04	-12.9	
6354		TBJS-04T2-000	1031	11.1					
6355		MB.J.LAPA-013	1016	8.0					
6356		MBJST2013	1028	11.1					-10
6358		TBJS-04T1-000	1037	14.5					
6359		CIBICOARA-500	1027	11.8					-100
6361		FBARREIRAS230	991	4.1					
6363		IBARREIRAS069	1016	1.2	9.8	0.00	50.69	-2.85	
6365		GBARREIRAS138	1007	1.7			38.69	-2.18	
6368		FSAPEACU230	1020	6.1					
6369		CSAPEACU500	1039	7.2					
6400		CMARABA500	1043	59.7					
6401		FMARABA230	1022	54.3			79.69	-1.5	
6402		TMAR-AUX000	1018	52.2					
6403		IMARABA069	1018	52.2			20.9	1.9	
6404		MMAR-AUX013	1018	52.2					
6405	1	OMARABA1CS	1025	54.3	0.0	85.60			
6406		MMARABA013	1018	53.1					
6407		FSE-09230	896	37.4			11.73	4.05	
6408		TMAR-ATR000	1044	53.1					
6409	1	FCVRD230	879	33.6	0.0	44.08	182	58.73	
6410	-	CTUCURUI 500	1032	71.3	0.0	11100	101	50175	
6411		MGA1-TUC013	998	70.7					
6412	1	MGA2-TUC013	1045	73.4	20.0	20.61			
6413	-	TTUCURUT069	1023	70.7	2010	10101			
6414		MTUC.OBRAS013	966	69.7			5,906	2.86	
6415		MTUCURUT013	1044	70.7					
6416		FTUC-ATR230	938	69.9			59	14.53	
6417		MTUCURUT013	974	70.7				11.00	
6418		TTUC-ATR000	1044	70 7					
6419	1	OTUCURUT 1-5CR	983	78.2	1700 0	109.90	6410		
6420	1	OTUCURIIT 2-3GP	986	78.2	1020.0	91.58	6410		
6421	1		986	71 3	0.0	19.80	6410		
6422	1		984	78.2	1360 0	99.31	6410		
6423	1		1023	67.9	0.0	163.00			
6424	1	OTUCURUT5-2GP	933	78.1	680.0	-78.70	6430		
6425	2	OTUCURUT6-5GP	894	73.6	913.6	-659.00	6430		
6428		OTUCURUI2-0MO	968	67.9					
	1	~	· · · ·		1		1	1	1

BAR T	NOME DA DADDA	TENSAO	ANGULO	INJEÇÃO I	DE POTENCIA	CARGA		SHUNT	
BAR	Т.	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
6430		CTUCURUI2-500	1017	67.9					
6444		CRIO EGUAS	1045	24.8					-100
6451		MCAMETA013	947	64.2			3.216	1.708	
6452		KTUC.VILA-034	1007	68.4			9.994	2.85	
6453		ITUC.VILA-069	1016	70.1					
6454		MTUC.ATR013	989	65.5			8.982	2.562	
6455		MTUC.VILA-013	955	69.5					
6456		MTUC.VILA-013	1006	68.2					
6457		ICAMETA069	975	65.2			0.8	0	
6458		TTUC-ATR-1000	955	69.5					
6459		TTUC.VILA-000	1006	68.2					
6460		CV.CONDE500	969	55.1					
6461		FV.CONDE230	969	50.8			778	271.8	111
6462		TV.CONDE-2000	963	47.6					
6463		IV.CONDE069	963	47.7			42.13	3.552	
6464		MV.CONDE013	963	47.6					
6465	1	QVCONDE2CS	970	50.8	0.0	150.10			
6467		TV.CONDE-1000	963	47.6					
6468		TV.CONDE-3000	963	47.6					
6471		FGUAMA230	950	46.5					
6472		IGUAMA069	952	42.4			141.3	37.07	
6481		FUTINGA230	948	45.3					111
6482		IUTINGA069	969	40.5			260	83.59	
6491		FSTA.MARIA230	950	44.0					
6492		GSTA.MARIA138	967	42.3			33.52	-9.25	
6493		ISTA.MARIA069	963	39.2			83.75	17.02	
6494		TSTA.MARIA000	962	38.9					
6495		MSTA.MARIA013	962	38.9					
6497		TSTA.MARIA000	958	42.2					
6498		MSTA.MARIA013	958	42.2					
6507		CMB-C4-BCS500	1058	56.4					
6509		CMB-C3-BCS500	1048	56.4					
6510		CMB-C1-BCS500	1051	54.9					
6511		CMB-C2-BCS500	1050	54.9					
6512		CPD-C1-BCS500	1042	37.4					
6513		CIZ-C1-BCS500	1034	52.9					
6514		CPD-C2-BCS500	1040	37.3					
6515		CIZ-C2-BCS500	1037	53.0					
6517		CPD-C3-BCS500	1079	35.4					
6521		FALTAMIRA-230	991	65.3					
6523		IALTAMIRA-069	944	63.8			13.31	0.439	
6525		MALTAMIRA-013	990	63.7					
6528		TALTAMIRA1000	990	63.7					
6531		FTRANSAM230	971	64.0					
6534		KTRANSAM034	935	63.0			3.707	1.28	
6541		FRUROP230	943	63.3					-30
6542		GRUROP1-138	935	63.0	30.0	0.00	35.28	3.528	
6543		MRUROP1-013	938	62.9			0.889	0.675	
6544		GRUROP2-138	930	62.7			12.62	-9.85	
6545		MRUROP2-013	951	62.6					

		NOVE DI DIDI	TENSAO	ANGULO	INJEÇÃO I	DE POTENCIA	CAI	RGA	SHUNT
BAR	т	NOME DA BARRA	P.U	RAD	MW	MVAR	MW	MVAR	MVAR
6548		TRUROP1-000	939	62.9					
6549		TRUROP2-000	951	62.6					
6561		FMB-CELPA-230	1023	54.3					
6562		GMB-CELPA-138	1004	54.3					
6564		QMB-CELPA-000	1023	54.3					
6565		MMB-CELPA-013	1004	54.3					
6700		CACAILAND.500	1063	50.9					-180
6701		CAC-MB-BCS500	1073	47.4					
6702		CAC-PD-BCS500	1045	57.5					
6703		CAC-MB-BCS500	1073	47.4					
7100		CGURUPI500	1064	37.7					
7101		CGUR-SMA500	1044	42.8					
7102		CGUR-MIR500	1092	32.9					
7103		CGUR-SMA2-500	1044	42.5					
7104		CGUR-MIR2-500	1091	33.1					
7200		CMIRACEM500	1059	42.0					-136
7201		CMIR-GUR500	1034	47.2					
7202		GMIRACEMA-138	1014	39.4	41.0	0.00	113.8	-7.4	
7203		CMIR-GUR2-500	1033	47.0					
7204		CLAJEADO500	1059	43.9					
7205		MMIRACEMA-013	1063	39.3					
7206	1	QLAJEADO5GR	1000	57.0	900.0	166.70			
7207		FLAJEADO230	1010	50.4					
7208		QMIRACEMA-000	1063	39.3					
7236		CSMA-GUR500	1087	28.5					
7237		CSMA-GUR2-500	1086	28.7					
7300		CCOLINAS500	1060	45.0					-136
7301		CCOL-MIR500	1030	48.1					
7302		CCOL-IPZ500	1087	42.1					
7303		CCOL-MIR2-500	1029	48.1					
7304		CCOL-IPZ2-500	1086	42.2					
7591		CIPZ-COL500	1019	53.9					
7592		CIPZ-COL500	1049	50.7					
7593		CIPZ-COL2-500	1018	53.7					
7594		CIPZ-COL2-500	1048	50.6					

Parâmetros de Linhas de Transmissão e Transformadores de Potencia

שת	DE PARA C RE	DECTC %		AT % SUCEP %	POS	APE	POT.		
DE	PARA	C	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
235	36	1		0.83567		1.05			
235	6444	1	0.188	2.736	389.72				2249
235	7236	1		-0.637					
235	7237	1		-0.637					
5001	5022	1		0.5342		1.025			2250
5001	5023	1		2.6711		1.06			450
5001	5024	1		2.6711		1.06			450
5001	5025	1		2.6711		1.06			450
5001	5026	1		2.6711		1.06			450
5001	5027	1		2.6711		1.06			450

		ā		0		POS	SIÇÃO DE T.	APE	POT.
DE	PARA	C	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5001	5050	1	0.04	0.47	46.42				2730
5001	5060	1	0.05	0.68	67.4				2937
5001	5100	1	0.22	2.79	284.68				1559
5001	5740	1	0.21	2.68	272.76				1299
5003	5001	1		1.414		0.909			600
5003	5011	1		19.91		0.98			75
5003	5013	1		15.78		0.98			90
5003	5014	1		15.52		0.98			90
5003	5015	1		2.775		1.027			480
5003	5017	1		5.943		1.027			240
5003	5029	1	0.11	0.58	1.011				2730
5003	5101	1	3.98	21.85	36.78				263
5003	5101	2	3.97	20.88	38.52				263
5003	5401	1	3.09	16.25	29.49				287
5003	5401	2	2.31	9.19	53.16				509
5003	5701	1	2.45	13.1	22.68				311
5003	5711	1	2.96	15.23	28.9				312
5003	6200	1		6.24		1.025			
5003	6201	1		5.33		1.025			
5003	6202	1		4.35		1.025			
5003	6203	1		12.56		0.9557	0.726	1.118	100
5004	5001	1		1.414		0.909			600
5004	5005	1		21.185		1			67
5004	5006	1		10.592		1.025			134
5004	5007	1		20.854		1			67
5004	5016	1		6.017		1.027			240
5004	5018	1		6.005		1.027			240
5004	5028	1	0.11	0.58	1.011				
5004	5101	1	3.97	20.88	38.5				263
5004	5101	2	2	16.25	49.46				414
5004	5401	1	2.31	9.19	53.16				509
5004	5701	1	2.46	13.15	22.74				263
5004	5711	1	2.96	15.23	28.9				312
5028	5032	1		11.77		1.027			120
5028	5033	1		11.75		1.027			120
5029	5030	1		5.885		1.027			240
5029	5031	1		11.75		1.027			120
5050	5051	1		1.37		1.025			1100
5050	5052	1		4.111		1.03			275
5050	5053	1		4.11		1.03			275
5050	5054	1		2.055		1.025			550
5050	5055	1		4.11		1.03			275
5050	5056	1		4.11		1.03			275
5050	5100	1	0.31	3.1	326.72				1884
5050	5408	1	0.21	2.57	343.26				2039
5050	5740	1	0.31	3.1	324.34				1299
5050	6300	1	0.27	3.64	372.48				2020
5050	6300	2	0.29	3.99	411.44				2040
5060	5061	1		0.83333		1.025			2220
5060	5062	1		2.504		1.05			555

DE						PO	SIÇÃO DE T	APE	POT.
DE	PARA	C	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5060	5063	1		2.574		1.05			555
5060	5064	1		2.549		1.05			555
5060	5065	1		2.585		1.05			555
5060	5066	1		2.512		1.05			555
5060	5100	1	0.206	2.525	261.95				2039
5060	5300	1	0.21	2.78	279.86				2733
5060	5720	1	0.15	2.03	204.54				2733
5100	5140	1	0.22	2.13	220.7				1559
5100	5140	2	0.17	2.15	218.68				1559
5101	5100	1		1.777		0.9654	0.867	1.038	600
5101	5100	2		1.777		0.9654	0.867	1.038	600
5101	5102	1		13.56		0.962	0.728	1.117	100
5101	5103	1		13		0.9671	0.85	1.117	100
5101	5121	1	1.14	5.97	10.64				319
5101	5121	2	1.15	6.14	10.64				314
5101	5121	3	1.19	6.11	11.42				314
5101	5141	1	3.09	16.15	29.48				263
5101	5142	1	3.1	16.14	29.6				263
5101	5281	1	2.1	11.44	18.96				196
5101	5301	1	1.44	7.35	13.74				272
5101	5301	2	1.44	7.35	13.74				272
5101	5301	3	1.46	7.7	13.42				312
5102	5103	1		-0.51		1			100
5102	5104	1		27		1			30
5103	5106	1		135		1			
5103	5106	2		143		1			
5110	5111	1	0.42	2.26	3.86				311
5110	5115	1		22.652		0.9599	0.696	1.043	
5110	5116	1		22.652		0.9599	0.696	1.043	
5110	5117	1		17.857		0.9966	0.696	1.043	
5111	5113	1		12.75		1.031	0.785	1.118	100
5111	5113	2		12.73		1.031	0.785	1.118	100
5111	5291	1	2.29	11.9	21.62				311
5111	5301	1	0.21	1.12	1.94				312
5111	5301	2	0.21	1.09	2.02				258
5111	5301	3	0.21	1.09	2.02				258
5113	5114	1		8.491		1			2
5115	5118	1		75		1			
5116	5119	1		75		1			
5117	5120	1		22.475		1			
5121	5123	1		13.5		0.9871	0.824	1.118	100
5121	5123	2		12.87		0.9871	0.824	1.118	100
5121	5222	1	2.26	11.85	21.3				314
5121	5222	2	2.25	12.04	20.8				232
5123	5125	1		419		0.975			1
5131	5133	1		12.71		1.003	0.804	1.118	100
5131	5133	2		13.43		1.003	0.804	1.118	100
5131	5133	3		12.89		1.003	0.804	1.118	100
5131	5141	1	0.53	2.69	5				408
5131	5142	1	0.53	2.69	5				408

		ã				POS	SIÇÃO DE T	APE	POT.
DE	PARA	С	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5131	5150	1	0.16	1.14	4.076				
5131	5150	2	0.16	1.14	4.076				
5140	5300	1	0.17	2.25	235.6				1559
5141	5140	1		1.404		0.9631	0.774	1.169	600
5141	5140	2		1.404		0.9631	0.774	1.169	600
5141	5144	1		4.844		1.054			150
5141	5146	1		4.844		1.054			150
5141	5181	1	0.39	2.8	10.42				629
5141	5191	1	0.58	3.1	5.34				311
5141	5201	1	1.29	6.69	12.12				332
5141	5281	1	1.05	5.71	9.42				263
5141	5331	1	0.105	0.56	1.02				311
5141	5331	2	0.105	0.56	1.03				311
5142	5140	1		1.404		0.9663	0.774	1.169	600
5142	5140	2		1.22		0.9663	0.774	1.169	600
5142	5181	1	0.39	2.8	10.42				464
5142	5191	1	0.58	2.96	5.54				260
5142	5201	1	1.29	6.69	12.12				332
5142	5331	1	0.1	0.56	1.02				310
5144	5145	1		3.333					150
5146	5147	1		3.333					150
5150	5151	1		1.67		1			
5150	5153	1		5		1			
5150	5154	1		5		1			
5152	5156	1		13.2		1.013	0.848	1.048	100
5152	5156	2		13.2		1.013	0.848	1.048	100
5152	5156	3		14.71		1.013	0.848	1.048	100
5152	5156	4		12.73		1.013	0.848	1.048	100
5152	5157	1		25.425		0.9689	0.856	1.056	40
5152	5159	1		27.07		0.985			40
5152	5171	1		15.45		1.025			80
5152	5172	1		15.45		1.025			80
5152	5175	1		15.45		1.025			80
5156	5161	1		6.76		0.985			33
5156	5163	1		130.4		0.985			5
5156	5163	2		124.8		1			5
5157	5158	1		16.28		1			
5159	5160	1		16.28		0.985			
5181	5183	1		12.44		0.9907	0.726	1.117	100
5181	5183	2		12.47		0.9907	0.726	1.117	100
5181	5222	1	1.16	8.47	31.5				629
5181	5222	2	1.16	8.47	31.3				629
5191	5181	1	0.15	1.07	8.72				
5191	5193	1		14.5		0.9796	0.848	1.048	100
5191	5193	2		14.41		0.9796	0.848	1.048	100
5191	5193	3		14.35		0.9796	0.848	1.048	100
5191	5193	4		13.19		0.9796	0.848	1.048	100
5191	5201	1	0.79	4	13.2				314
5193	5194	1		7.05		1			30
5193	5195	1		6.99		1			30

55					' % SUCEP %	POSIÇÃO DE TAPE			POT.
DE	PARA	С	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5193	5196	1		7.3		1			30
5193	5197	1		7.53		1			30
5201	5203	1		13.15		0.9803	0.848	1.098	100
5201	5203	2		13.3		0.9803	0.848	1.098	100
5201	5211	1	0.95	4.95	8.74				314
5201	5211	2	0.95	4.95	8.74				314
5201	5211	3	0.925	4.858	8.922				260
5201	5222	1	1.81	9.69	16.8				263
5203	5204	1		14.08		1			
5203	5206	1		14.1		1			
5204	5205	1		26.25		1			
5211	5213	1		13.19		0.94	0.726	1.118	100
5211	5213	2		12.976		0.94	0.726	1.118	100
5211	5213	3		13.03		0.94	0.726	1.118	100
5211	5213	4		12.53		0.94	0.726	1.117	100
5213	5214	1		14.01		1			30
5213	5215	1		8.424		1			
5222	5101	1	1.795	12.507	45.62				200
5222	5226	1		13.3		0.9563	0.85	1.037	100
5222	5226	2		14.34		0.9563	0.85	1.037	100
5222	5226	3		12.63		0.9563	0.726	1.117	100
5222	5236	1		14.883		1			55
5222	5237	1		16.47		0.975			55
5222	5239	1		6.8925		1			
5222	5241	1	3.86	19.94	38.02				311
5222	5241	2	1.65	11.03	55.54				
5222	5241	3	1.65	11.03	55.54				
5222	5254	1	2.11	10.88	20.74				314
5223	5224	1	0.21	0.95	0.016				
5223	5226	1	1.705	5.476	0.088				
5223	5227	1	1.385	4.444	0.072				
5224	5225	1		80.5		1			
5226	5228	1	1.63	6.4	0.12				
5226	5230	1		82.9		1			10
5226	5230	2		82		1			10
5226	5230	3		65.9		1			10
5227	5228	1	2.21	8.68	0.18				
5227	5233	1		125.2		1			
5227	5233	2		131.2		1			
5227	5233	3		135.4		1			
5227	5233	4		84		1			
5227	5233	5		82.5		1			
5228	5229	1		82.9		1			
5228	5229	2		82.9		1			
5228	5234	1		134		1			
5232	5238	1		16.28		1			
5235	5252	1	9.5	29.63	7.7				68
5235	5252	2	9.5	29.63	7.7				68
5236	5231	1		7.183		1			22
5236	5235	1		14.147		1			50

DE	PARA	С	RESIS %	REAT %	SUCEP %	POSIÇÃO DE TAPE			POT.
						TAPNOM	TAPMIN	TAPMAX	NOMINAL
5237	5235	1		12.69		1			50
5237	5238	1		8.64		1			
5241	5243	1		12.89		1.02			100
5241	5243	2		12.78		1.02			100
5241	5243	3		13.02		1.02			100
5241	5243	4		12.54		1.02			100
5252	5253	1		24.2		1.018	0.945	1.129	45
5253	5256	1		127.4		1			
5254	5241	1	1.75	9.06	17.28				314
5254	5255	1		11.07		1.031	0.856	1.098	55
5254	5461	1	0.85	5.65	28.45				288
5255	5262	1	4.47	14.54	3.44				69
5262	5268	1		44.425		0.92			
5262	5474	1	3.13	10.19	2.41				69
5263	5266	1		126.4		0.975			5
5263	5266	2		124.8		0.975			
5263	5266	3		125.2		0.975			
5263	5268	1		9.784		0.9741	0.9	1.1	
5268	5265	1		0.225		1			
5281	5283	1		12.59		1.004	0.726	1.117	100
5281	5283	2		13.1		1.004	0.726	1.117	100
5291	5293	1		13.03		0.969	0.726	1.117	100
5291	5293	2		12.48		0.969	0.726	1.117	100
5301	5300	1		1.262		0.9766	0.837	1.153	600
5301	5300	2		1.2608		0.9766	0.837	1.153	600
5301	5311	1	0.231	1.63	5.85				524
5301	5311	2	0.231	1.63	5.85				524
5311	5313	1		13.33		0.9784	0.726	1.117	100
5311	5313	2		13.32		0.9784	0.726	1.117	100
5311	5313	3		12.84		0.9784	0.785	1.118	100
5331	5152	1	0.145	0.78	1.42				311
5331	5152	2	0.145	0.77	1.44				311
5331	5152	3	0.14	0.78	1.44				310
5331	5333	1		13		0.9997	0.851	1.117	150
5331	5333	2		13		0.9997	0.851	1.117	150
5401	5402	1		9.14		1.023	0.852	1.098	100
5401	5402	2		9.14		1.023	0.852	1.098	100
5401	5403	1		34.54		0.9501	0.878	1.078	33
5401	5403	2		34.63		0.9501	0.878	1.078	33
5401	5411	1	1.61	8.08	14.46				308
5401	5411	2	1.16	4.57	26.19				509
5401	5411	3	1.16	4.57	26.19				509
5403	5406	1		126.4		0.975			5
5403	5406	2		140.4		0.975			5
5411	5408	1		1.27		0.9537	0.774	1.169	600
5411	5410	1		14.97		1			
5411	5418	1		13.86		0.9897	0.878	1.078	100
5411	5419	1		13.865		0.9897	0.878	1.078	100
5411	5421	1	4.04	21.81	38.24				280
5411	5421	2	3.59	14.93	56.44				404

DE	PARA	С	RESIS %	REAT %	SUCEP %	POSIÇÃO DE TAPE			POT.
						TAPNOM	TAPMIN	TAPMAX	NOMINAL
5411	5621	1	2.18	11.68	20.24				239
5411	5631	1	1.66	6.84	25.44				404
5412	5409	1		26.25		1			30
5413	5417	1		140.4		1			
5413	5417	2		79.71		1			10
5413	5417	3		134.8		1			5
5414	5415	1		26.25		1			30
5416	5417	1		2.37		0.9871	0.9	1.1	
5418	5412	1		11.115		1			
5418	5413	1		-0.645		1			100
5419	5413	1		-0.635		1			100
5419	5414	1		11.035		1			
5421	5422	1		29.925		1			
5421	5431	1	2.01	10.77	18.6				275
5421	5441	1	3.26	16.8	31.84				314
5421	5452	1	3.21	17.26	30.4				308
5421	5452	2	2.82	11.87	43.52				404
5421	5452	3	2.82	11.86	43.52				300
5423	5421	1		36.61		1.002	0.918	1.122	33
5423	5421	2		36.84		1.002	0.918	1.122	33
5423	5424	1		346.5		1			2
5423	5424	2		260		1			2
5424	5426	1		2.33		1.019	0.9	1.1	
5428	5408	1	0.26	2.97	399.02				2039
5431	5433	1		146		0.9855	0.726	1.174	17
5431	5433	2		132					17
5431	5433	3		12.42		0.9855	0.726	1.174	100
5431	5441	1	1.38	7.36	12.72				314
5441	5443	1		12.97		1			100
5441	5443	2		12.95		1			100
5441	5461	1	1.3	6.93	12.02	_			300
5443	5445	1		28.57		1.03			33
5443	5446	1		28.61		1.03			33
5451	5428	1	0.14	1.55	203				2039
5452	5450	1		7.125		1			
5452	5453	1		13.27		0.9813	0.863	1,117	100
5452	5453	2		12 905		0 9813	0.863	1 117	100
5452	5453	2		12.98		0 9813	0.863	1 117	100
5452	5453	4		12.97		0.9813	0.863	1,117	100
5452	5651	1	1 02	5 41	9 4 2	0.9013	0.005	1.11/	304
5453	5454	1	1.02	8 459	5.12	1			30
5453	5456	1		8 457		1			30
5453	5472	1	1 30	Δ Q1	0 102	-			50
5452	5472	2	1 46	5 34	0.114				50
5455	5455	∠ 1	1.40	22 00	0.114	1			50
5454	5455	1		22 00		1			
5450	545/	1		33.U8 1 27		⊥ 0.027	0 774	1 160	600
5458	5451	1		1.27		0.93/	0.774	1.109	600
5458	5451	4	0.01	1.2/	0.00	0.93/	0.//4	т.тру	600
5458	5452		0.01	0.03	0.06				608
5458	5452	2	0.01	0.03	0.06				608
DE			DEGIG 0		SUCEP &	POS	APE	POT.	
------	------	---	---------	--------	---------	--------	--------	--------	---------
DE	PARA	C	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5458	5471	1	0.06	0.49	1.74				467
5458	5471	2	0.06	0.49	1.74				467
5458	5641	1	0.38	1.74	5.984				408
5458	5641	2	0.38	1.74	5.984				408
5458	5651	1	0.51	3.79	15.35				304
5458	5651	2	0.51	3.79	15.35				304
5461	5463	1		37.333		1.018	0.878	1.078	39
5461	5463	2		34.81		1.018	0.878	1.078	39
5461	5463	3		26.18		1.018	0.878	1.078	39
5461	5468	1		11.11		1			55
5463	5464	1		13.969		1			
5463	5465	1		17.03		1			
5468	5477	1	4.03	13.09	3.1				
5471	5473	1		12.49		0.9898	0.726	1.174	100
5471	5473	2		12.52		0.9898	0.726	1.174	100
5471	5473	3		12.47		0.9898	0.726	1.174	100
5471	5473	4		12.83		0.9898	0.726	1.117	100
5474	5478	1		131.16					
5475	5478	1		79.36		1.001	0.9	1.1	
5478	5476	1		-12.08					
5480	5451	1	0.144	2.31	339.08				3367
5481	5482	1		19		1.018	0.824	1.059	100
5481	5483	3		13.18		1.018	0.726	1.117	100
5481	5484	1		18.88		1.018	0.824	1.117	100
5481	5488	1	0.145	1.021	3.66				220
5481	5488	2	0.145	1.021	3.66				220
5481	5491	1	3.04	16.33	28.3				199
5481	5651	1	3.26	17.55	30.6				380
5482	5483	1		-6.63		1			100
5482	5485	1		23.9		1			30
5484	5483	1		-6.59		1			100
5484	5487	1		24.02		1			30
5488	5480	1		1.27		0.9488	0.774	1.169	600
5491	5492	1		11.07		0.9907	0.856	1.098	55
5491	5498	1		29.59		0.9567	0.825	1.088	33
5491	5499	1		32.09		0.9567	0.825	1.088	33
5491	5501	1	2.81	15.08	26.08				239
5493	5496	1		132.8		1			5
5493	5496	2		138		1			5
5493	5496	3		126.6		1			5
5493	5499	1		-1.27		_			33
5494	5497	1		33.08		1			
5498	5493	1		-2.19		1			33
5498	5495	1		14.04		1			11
5499	5494	1		10.78		1			11
5500	5480	1	0.214	3,55	536 58	-			3049
5501	5503	1	V.211	12 93	550.50	0 9606	0 825	1 098	100
5501	5503	2		13.45		0.9606	0.825	1,098	100
5501	5502	2		12 94		0 9606	0.825	1 098	100
5501	5504	1		32.4		0 9988	0 844	1 107	33
220T	2204	1		J4.7		0.0000	0.044	T.TO/	رر

		ā		0		POSIÇÃO DE TAPE			POT.
DE	PARA	С	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5501	5507	1		31.43		1.038	0.8	1.062	33
5501	5508	1		26.75		1.034	0.9	1.1	33
5501	5511	1	3.59	19.24	33.76				278
5501	5511	2	3.61	19.2	34.12				273
5501	5524	1	0.85	4.82	8.31				
5502	5500	1		3.5		0.9974	0.859	1.17	300
5502	5500	2		3.5		0.9974	0.859	1.17	300
5502	5501	1	0.46	2.35	4.4				314
5502	5501	2	0.46	2.35	4.4				314
5502	5509	1		8.25		1			150
5504	5505	1		14.08		1			
5507	5506	1		14.3		1			
5510	5576	1		-1.04					1299
5510	5580	1	0.2	2.61	263.28				1663
5511	5510	1		3.44		0.9465	0.859	1.144	300
5511	5512	1		36.92		0.9485	0.9	1.1	39
5511	5514	1		31.883		0.9672	0.85	1.15	39
5511	5518	1		36.96		0.9697	0.9	1.1	39
5511	5520	1		9 52		1	015		120
5511	5520	1		20.08		1			60
5511	5522	1		19 04		1			70
5511	5522	1		17.83		1			70
5512	5525	1		_2 12		1			22
5512	5515	1		15 10		1			33
5512	5515	1		125.19		1			
5513	5510	1		135		1			22
5514	5513	1		-2.43		1			33
5514	5517	1		14.277		1			
5518	5513	1		-2.12		1			
5518	5519	1		15.15	0.455				
5524	5528	1	0.324	1.829	3.157				
5525	5524	1	1.59	7.9	14.66				191
5525	5526	1		22		1.02	0.9	1.1	65
5528	5531	1	2.106	11.891	20.523				
5531	5538	1		14.2		0.9237	0.726	1.117	100
5533	5538	1		-0.94					100
5535	5538	1		13.5					100
5541	5531	1	1.81	9.28	15.934				
5541	5547	2		14.09		0.9364	0.73	1.12	100
5541	5548	1		14.24		0.9364	0.73	1.12	100
5541	5549	1		8.55					100
5541	5551	1	1.97	10.51	18.019				245
5542	5549	1		-0.65		1.057	0.9	1.1	100
5543	5547	2		-1.04					100
5543	5548	1		-0.98					100
5544	5547	1		9.06					30
5545	5548	1		8.9					30
5546	5549	1		14.65					30
5550	5551	1		1.15		0.9837	0.855	1.291	600
5550	5551	2		1.15		0.9837	0.855	1.291	600
5550	5551	3		1.15		0.9837	0.855	1.291	600

DE						POS	APE	POT.	
DE	PARA	C	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5550	5580	1	0.294	3.77	392.74				1319
5550	5580	2	0.195	3.125	463.66				1319
5551	5556	1		17.2		1.025			63
5551	5557	1		16.48		1.025			63
5551	5558	1		1.5					
5551	5561	1	0.31	1.67	2.863				350
5551	5561	2	0.31	1.67	2.863				350
5561	5563	1		13.27		0.945	0.726	1.117	100
5561	5563	2		12.85		0.945	0.726	1.117	100
5561	5563	3		12.85		0.945	0.726	1.117	100
5561	5568	1		33.29		1.011	0.775	1.075	33
5563	5562	1		36.66		1	0.9	1.1	20
5568	5565	1		13.2		1			33
5570	5572	1		-0.94					1299
5570	5574	1		-1.04					1299
5571	5570	1		3.48		0.95			300
5571	5573	1		32.599		1			33
5571	5573	2		65.93		0.942	0.932	1.139	30
5571	5671	1	3.02	16.15	28.24				120
5572	5578	1	0.2	2 68	271 3				1299
5576	5574	1	0.22	2.00	301 8				1299
5580	5500	1	0.14	2.27	329 3				3029
5580	5500	2	0.13	2.20	322.5				3029
5580	5588	1	0.13	2.21	522.00	1 05			300
5500	6512	1		_1 269		1.05			1959
5580	6514	1		-1.126					2101
5580	5521	1	2 1	11 70	20 5				2191
5561	5551	1	2.1	0.16	20.5	1 0 2 2			200
5501	5562	1		0.10		0.076			200
5581	5588	1		0.43		0.976	0.0	1 1	500
5501	5569	1		2.20		0.9001	0.9	1.1	200
5582	5586	1		3.30					200
5585	5588	1		11.23					15
5589	5583	1		1 26					50
5589	5584	1		-1.36		1 0 2 0			30
5590	5591	1	0.105	1.11	001 0	1.032			0050
5590	6400	1	0.185	2.35	231.8				2953
5590	6400	2	0.122	1.921	278.41				2952
5590	6513	1		-1.37					1858
5590	6515	1		-1.14					2191
5591	5593	1		13.02		0.9753	0.726	1.117	100
5591	5593	2		13.02		0.9753	0.9	1.1	100
5591	5596	1		2.72		1.022			
5591	5601	1	1.94	10.88	18.76				200
5601	5603	1		36.7		0.977	0.892	1.1	33
5601	5603	2		36.7		0.977	0.892	1.1	33
5601	5608	1		7.92					100
5602	5608	1		-0.49		0.9908	0.9	1.1	100
5605	5608	1		14.41					30
5621	5623	1		12.92		0.901	0.726	1.117	100
5621	5623	2		13		0.901	0.85	1.117	100

DE PARA	C RESIS %	REAT %		POSIÇÃO DE TAPE			POT.		
DE	PARA	C	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5623	5624	1		28.59					30
5631	5421	1	2	8.24	30.72				404
5631	5633	1		12.8		1.006	0.726	1.117	100
5641	5643	1		13		0.9572	0.863	1.117	100
5641	5643	2		13		0.9572	0.863	1.117	100
5651	5653	1		13		1.018	0.85	1.117	100
5651	5667	1		0.42		1			300
5651	5668	1		0.84		1			150
5652	5651	1	0.014	0.157	0.342				438
5652	5651	2	0.014	0.157	0.342				438
5652	5654	1		8.571		1.025			
5652	5655	1		9		1.025			
5652	5656	1		9		1.025			
5664	5651	1		7		1			
5667	5660	1		5.975					300
5667	5661	1		23.82					75
5668	5662	1		23.98					75
5668	5663	1		23.82					75
5671	5673	1		64.97		0.96			33
5673	5671	2		44.37		1.038			33
5701	5730	1	1.44	7.65	13.18				273
5701	5731	1	3.15	16.86	29.3				263
5703	5701	1		122.6		1.007	0.9	1.1	17
5703	5701	2		122.6		1.007	0.9	1.1	17
5703	5704	1		16.706		1			
5711	5718	1		15.095		0.9775	0.9	1.1	100
5711	5719	1		15.29		0.9775	0.9	1.1	100
5711	5721	1	0.79	4.04	7.58				311
5711	5721	2	0.79	4.04	7.58				311
5711	5961	1	1.42	7.71	12.74				262
5713	5716	1		136.6		1			5
5713	5716	2		134		1			5
5713	5716	3		136		1			5
5713	5716	4		136		1			5
5718	5713	1		-0.605		1			100
5718	5715	1		6.305		1			
5719	5713	1		-0.78		1			100
5719	5717	1		6.44		1			
5720	5750	1	0.23	3.15	321.92				2733
5721	5720	1		1.27		0.9487	0.774	1,169	600
5721	5722	1	0.22	1.22	2.12				314
5721	5723	1	0.22	13.95	5115	1.006	0.824	1,118	100
5721	5723	2		12,992		1.006	0.824	1.118	100
5721	5723	2		12.81		1.006	0.824	1,118	100
5721	5724	1	0.14	0.74	1.26	1.000	0.021		
5720	5725	1		55	1.20	1			40
5730	5782	1	2 23	11 94	20 62	-			273
5731	5736	1	2.23	64	20.02	1			2,3
5731	5782	1	0 5	2 65	4 58				263
5740	5750	1	0.2	1 88	195				1200
5/40	5750	1	∪.⊿	1.00	272	1			1417

		_				POSIÇÃO DE TAPE			POT.
DE	PARA	С	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5740	5750	2	0.15	1.9	192.54				1299
5751	5750	1		1.39		0.9681	0.774	1.169	600
5751	5750	2		1.39		0.9681	0.774	1.169	600
5751	5750	3		1.38		0.9681	0.774	1.169	600
5751	5750	4		1.22		0.9681	0.774	1.169	600
5751	5753	1	0.11	0.57	1.04				
5751	5753	2	0.11	0.57	1.04				
5751	5754	1	0.13	0.68	1.18				312
5751	5757	1		12.92		1.018	0.726	1.117	100
5751	5757	2		12.81		1.018	0.726	1.117	100
5751	5770	1		14.375		1			80
5751	5771	1		16.9		1.025			80
5751	5778	1		4.114		1.054			
5751	5782	1	0.46	2.46	4.26				263
5751	5782	2	0.45	2.45	4.06				263
5751	5802	1	0.21	1.64	4.92				314
5751	5802	2	0.42	2.21	3.82				314
5751	5822	1	0.35	1.79	3.34				314
5751	5822	2	0.35	1.79	3.34				314
5751	5842	1	0.36	2.64	9.48				478
5751	5842	2	0.36	2.64	9.48				478
5751	5852	1	0.87	4.71	7.78				318
5751	5871	1	2.17	11.07	20.82				312
5751	5881	1	1.54	7.84	14.7				314
5782	5788	1		29.33		1.007	0.9	1.064	62
5782	5789	1		26.9		1.007	0.9	1.064	62
5782	5790	1		37.44		1.007	0.9	1.1	39
5782	5881	1	1.41	7.5	12.92				292
5782	5961	1	2.61	14.31	23.74				262
5786	5790	1		-1.44					30
5786	5803	1	15.8	47.47	0.82				47
5786	5803	2	15.8	47.47	0.82				47
5788	5786	1		18		1			40
5788	5791	1		0.066		1			22
5789	5786	1		18.06		1			40
5789	5792	1		0.066		1			22
5790	5795	1		13.71		1			30
5791	5793	1		26.25		1			
5792	5794	1		26.25		1			
5802	5804	1	0.2	1.64	4.91				478
5802	5807	1		14.93		0.9632	0.848	1.048	100
5802	5808	1		14.14		0.9679	0.848	1.048	100
5802	5822	1	0.28	1.47	2.54				263
5804	5842	1	0.01	0.04	0.07				478
5804	5852	1	0.07	0.6	1.78				478
5806	5817	1	3.42	10.28	0.18	T			47
5806	5817	2	3.42	10.28	0.18				47
5807	5803	1		-0.57		1			100
5807	5809	1		6.34		1			
5808	5806	1		-0.7		1			100

		с	RESIS %	REAT %	SUCEP %	POSIÇÃO DE TAPE			POT.
DE	PARA	C	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5808	5812	1		6.61		1			
5809	5810	1		16.28		1			
5817	5843	1	3.42	10.28	0.18				47
5817	5843	2	3.42	10.28	0.18				47
5821	5827	1		4.848		0.95			300
5821	5828	1		4.82		0.95			300
5822	5821	1	0.0103	0.8332	3.1259				735
5822	5821	2	0.0103	0.8332	3.1259				735
5822	5824	1	0.15	0.79	1.36				260
5822	5824	2	0.15	0.79	1.36				260
5822	5826	1		13		1.024	0.843	1.098	100
5822	5826	2		12.93		1.024	0.843	1.098	100
5826	5830	1		8.44		1			
5826	5831	1		8.39		1			
5842	5843	1		12.92		0.9746	0.824	1.118	100
5842	5843	2		13.21		0.9746	0.824	1.118	100
5842	5843	3		13.04		0.9746	0.824	1.118	100
5842	5848	1		14.01		0.9746	0.726	1.118	100
5843	5846	1		11.86		1			
5843	5847	1		8.9					
5843	5856	1	2.44	7.35	0.12				47
5843	5856	2	2.44	7.35	0.12				47
5848	5843	1		-1.13		1			
5848	5849	1		7.77		1			
5852	5856	1		13.03		1.002	0.848	1.048	100
5852	5856	2		13.2		1.002	0.848	1.048	100
5852	5856	3		12.94		1.002	0.848	1.048	100
5852	5863	1		61.75		0.971			40
5852	5864	1		61.525		0.9762	0.81	1.1	40
5856	5865	1		36.8		1.004			
5871	5872	1	0.56	2.74	5.06				340
5871	5873	1		12.95		0.9819	0.883	1.052	100
5871	5873	2		12.95		0.9819	0.883	1.052	100
5871	5873	3		12.65		0.9819	0.883	1.052	100
5872	5881	1	0.21	1.05	1.92				340
5873	5875	1		37.92		1	0.861	1.052	26
5873	5875	2		38.87		1	0.861	1.052	26
5881	5883	1		12.99		0.9819	0.804	1.098	100
5881	6368	1	0.42	2.24	3.86				239
5881	6368	2	0.42	2.12	3.96				312
5881	6368	3	0.42	2.12	3.96				312
5883	5887	1		8.37		1			
5887	5886	1		16.28		1			
5891	5893	1		12.8		0.9814	0.726	1.117	100
5891	5902	1	2.93	15.03	28.4				312
5902	5904	1		11.8		0.9834	0.8	1.1	100
5902	5904	2		12.06		0.9834	0.8	1.1	100
5902	5904	3		11.8		0.9834	0.8	1.1	100
5902	5904	4		32.25		0.9834	0.8	1.1	66
5902	5905	1		7.5		1			
5704	5705	1 [±]	1		1	L -	I	1	1

DF		~		0. חוגיום	SUCEP %	POS	APE	POT.	
	FARA	Ċ	KESIS &	REAT 8	SUCEP 8	TAPNOM	TAPMIN	TAPMAX	NOMINAL
5902	5918	1		65.5		0.963			33
5902	5941	1	5.02	24.7	46.57				250
5902	5970	1	3.041	16.62	31.6				314
5902	5970	2	3.041	16.62	31.6				314
5904	5911	1		35.62		1			33
5904	5915	1		8.78		1			50
5915	5920	1		62.77		1.045			14
5915	5921	1		62.64		1.045			14
5915	5922	1		62.45		1.045			14
5918	5910	1		49.9		1			11
5918	5915	1		-2.23		1			33
5941	5944	1		13		0.9986	0.85	1.1	100
5941	5944	2		13		0.9986	0.888	1.038	100
5961	5963	1		36		0.9852	0.9	1.1	33
5961	5963	2		36		0.9852	0.9	1.1	33
5963	5965	1		15.15		1			
5970	5972	1	0.99	5.36	10.08				314
5970	5972	2	0.99	5.36	10.08	1			314
5970	5975	1		2.7187		1			480
5970	5976	1		7.81		1			160
5970	5977	1		0.21		1	0 726	1 117	100
5972	5974	⊥ 2		9.21		0.9000	0.726	1 117	100
5972	5974	1		9.52		0.9000	0.720	1.11/	150
5972	5974	1		_1 59		1			150
5978	5979	1		41 46		1			60
6200	5009	1		13.48		0.956			75
6201	5010	1		14.22		0.956			75
6201	6250	1	0.49	1.59	0.38	01980			, 0
6202	5012	1		12.4		0.956			90
6203	6253	1	4.08	6.22	0.1				
6250	6253	1		99.8		0.9278	0.9	1.1	
6250	6253	2		95		0.9278	0.9	1.1	
6300	5578	1		-0.94					1299
6300	6294	1		1.425		1.025			2000
6300	6295	1		5.7		1.025			100
6300	6296	1		5.7		1.025			100
6300	6297	1		5.7		1.025			100
6300	6298	1		5.7		1.025			100
6300	6299	1		5.7		1.025			100
6301	6300	1		3.56		0.9412	0.859	1.08	300
6301	6300	2		3.56		0.9412	0.859	1.08	300
6301	6311	1	0.78	4	7.5				314
6301	6311	2	0.78	4	7.5				314
6311	6313	1		12.87		1.002	0.726	1.173	100
6311	6313	2		12.43		1.002	0.726	1.173	100
6311	6321	1	1.42	7.28	13.68				314
6311	6331	1	2.7	13.9	26.26				314
6321	6331	1	1.3	6.67	12.52				314
6331	6333	1		13.11		0.9939	0.726	1.117	100

		A C	RESTS %	REAT %	SUCEP %	POS	APE	POT.	
DE	PARA	С	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
6333	6331	2		59.5		0.9843	0.918	1.12	33
6333	6331	3		59.54		0.9843	0.918	1.12	33
6331	6341	1	3.85	20.82	36.42				314
6339	6340	1		2.45					22
6341	6340	1		31.2		0.975			40
6341	6342	1		11.09		1.002	0.85	1.1	55
6341	6343	1		32.28		0.9978	0.825	1.1	39
6341	6344	1		31.2		0.975			40
6341	6351	1	5.06	27.48	49.1				239
6343	6340	1		25.05		1.032			33
6343	6344	1		25.05		1.032			33
6343	6345	1		15.15		1			
6344	6346	1		2.45					22
6347	6341	1		26.75		1.025			
6348	6349	1		5.6					
6349	6359	1	0.17	2.463	350.9				2249
6350	6351	1		15.25		1.025			
6351	6349	1		2.702		0.9625	0.792	1.195	300
6351	6349	2		2.702		0.9625	0.792	1.195	300
6351	6352	1		35.33		1			39
6351	6354	1		30.98		0.975			40
6351	6358	1		0.01		0.98			33
6351	6361	1	4.25	22.18	40.68				120
6352	6353	1		-2.26		1			39
6352	6355	1		14.23		1			
6353	6354	1		25.02		0.968			40
6353	6358	1		61.44		0.968			33
6354	6356	1		2.47		1			22
6359	6369	1	0.193	2.802	399.03				2249
6361	6363	1		12.81		0.9783	0.726	1.117	100
6361	6365	1		11.09		0.9863	0.85	1.1	100
6368	5891	1	0.54	2.73	5.1				239
6368	5902	1	3.53	19.02	33.1				312
6368	5902	2	3.51	18.07	34.28				312
6368	6369	1		1.351		0.9796	0.792	1.195	600
6368	6369	2		1.351		0.9796	0.792	1.195	600
6400	6408	1		4.07		1			300
6400	6510	1		-0.876					2191
6400	6511	1		-0.712					2191
6400	6701	1	0.17	2.63	387.1				2191
6401	6402	1		37.12		1			33
6401	6402	2		37.12		1			33
6401	6405	1		6.18		1.05			160
6401	6407	1	2.554	13.82	25.86				
6401	6408	1		-0.77		0.98			300
6401	6561	1	0.525	2.572	4.856				
6402	6403	1		-0.76					33
6402	6403	2		-0.76					33
6402	6404	1		9.85					6
6402	6404	2		9.85					6

		С	RESIS %	REAT %	SUCEP %	POS	APE	POT.	
DE	PARA	С	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
6406	6408	1		5.93		0.975			160
6407	6409	1	0.541	2.92	5.47				
6410	6418	1		11.92		1			100
6410	6419	1		0.688		1.05			2025
6410	6420	1		1.1467		1.05			1215
6410	6421	1		1.725		1.05			405
6410	6422	1		0.86		1.05			1620
6410	6430	1		0.8					1040
6410	6458	1		2.88		1.1			450
6410	6460	2	0.21	3.4	507.5				1539
6410	6510	1	0.225	2.872	284.81				2191
6410	6511	1	0.148	2.344	342.06				2191
6413	6411	1		24.35		1.025			
6413	6412	1		24.35		1.025			
6413	6414	1		28.2		1.05	0.85	1.05	
6413	6417	1		28.2		1.05	0.85	1.05	
6413	6453	1	1.999	4.837	0.092				
6416	6521	1	2.38	18.08	94.669				290
6418	6413	1		-0.11		1.02			100
6418	6415	1		5.38		1			34
6430	6423	1		3.44		1.05			405
6430	6424	1		2.355		1.05			810
6430	6425	1		0.942		1.05			810
6430	6428	1		4.94		1.05			405
6430	6460	1	0.321	4.161	422.6				1539
6430	6507	1	0.15	2.3	335.5				2191
6430	6509	1	0.15	2.3	335.5				2191
6444	6349	1	0.24	3.488	496.85				2249
6451	6457	1		106.67		0.9812	0.9	1.1	
6451	6457	2		106.67		0.9812	0.9	1.1	
6453	6454	1		90.13		1			
6453	6457	1	85.9	213.03	3.586				20
6453	6459	1		34		1			
6455	6458	1		3.889					94
6456	6459	1		40.34					
6458	6416	1		-0.56		1.015	0.9	1.1	450
6459	6452	1		-3.67		1			
6461	6460	1		1.54		1.006			750
6461	6460	2		1.54		1.006			750
6461	6460	3		1.54		1.006			750
6461	6462	1		37.12		1			33
6461	6465	1		3.05		1.05			320
6461	6467	1		37.12		1			33
6461	6468	1		37.12		1			33
6461	6471	1	0.475	3.33	12.12				613
6461	6471	2	0.475	3.33	12.12				613
6461	6491	1	1.852	11.578	47.31				
6462	6463	1		-0.77					33
6462	6464	1		9.85					6
6463	6467	1		-0.77					33

		AC	RESIS %	REAT %	SUCEP %	POS	APE	POT.	
DE	PARA	С	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
6464	6467	1		9.85					б
6468	6463	1		-0.77					33
6468	6464	3		9.85					
6471	6472	1		9.313		0.977	0.85	1.04	150
6471	6472	2		9.313		0.977	0.85	1.04	150
6471	6481	1	0.184	1.29	4.71				613
6471	6481	2	0.184	1.29	4.71				613
6481	6482	1		9.313		0.949	0.85	1.04	150
6481	6482	2		9.313		0.949	0.85	1.04	150
6481	6482	3		9.31		0.949	0.85	1.04	150
6481	6491	1	1.57	8.83	15.21				210
6491	6494	1		9.923		0.9665	0.855	1.045	137
6491	6497	1		8.55		1			100
6492	6497	1		-0.65		1.01	0.9	1.1	100
6493	6494	1		-0.61					150
6494	6495	1		8.01					10
6497	6498	1		14.65					15
6507	6400	1		-0.69					2191
6509	6400	1		-0.69					2191
6512	6513	1	0.366	4.777	510.29				1858
6514	6515	1	0.245	3.961	602.32				2191
6517	5580	1		-1.22					2191
6521	6528	1		20.7					60
6521	6531	1	1.4098	10.494	53.357				290
6525	6528	1		14.12					20
6528	6523	1		-1.22		1.049	0.9	1.1	60
6531	6534	1		44.13		1.032	0.85	1.15	30
6531	6541	1	1.1131	8.2543	41.475				290
6541	6548	1		7.9435					100
6541	6549	1		7.9435					100
6542	6548	1		-0.6		0.9955	0.9	1.1	100
6543	6548	1		14.54					33
6544	6549	1		-0.88		0.9788	0.9	1.1	100
6545	6549	1		14.38					33
6561	6564	1		7.33					
6562	6564	1		-0.665		0.982	0.875	1.125	
6565	6564	1		22.66		0.982	0.96	1.2	
6700	5590	1	0.04	0.61	87.19				2191
6700	6702	1		-1.22					2191
6701	6700	1		-0.79					2191
6702	6517	1	0.26	4.07	622.01				2191
6703	6400	1	0.17	2.63	387.1				2191
6703	6700	1		-0.79					2191
7100	7101	1		-0.952					1300
7100	7102	1		-0.95					1300
7100	7103	1		-0.952					
7100	7104	1		-0.952					
7101	7236	1	0.17	2.696	396.12				1299
7102	7201	1	0.17	2.66	396.87				1300
7103	7237	1	0.185	2.756	407.4				1300

DE		a		DEDE 0	aug 75 0	POS	APE	POT.	
DE	PARA	C	RESIS %	REAT %	SUCEP %	TAPNOM	TAPMIN	TAPMAX	NOMINAL
7104	7203	1	0.183	2.681	403.5				1300
7200	7201	1		-0.95					1300
7200	7203	1		-0.952					
7200	7208	1		7.42					180
7200	7301	1	0.12	1.843	265.83				1299
7200	7303	1	0.126	1.851	270.44				1429
7202	7208	1		-0.445		0.9541	0.916	1.178	180
7204	7200	1	0.023	0.396	38.695				1000
7204	7207	1		1.284		1.05			960
7205	7208	1		4.61		1			
7207	7206	1		1.264		1.025			900
7300	7301	1		-0.952					1429
7300	7302	1		-0.95					1429
7300	7303	1		-0.952					
7300	7304	1		-0.952					
7302	7591	1	0.22	3.53	529.69				1429
7304	7593	1	0.236	3.562	539.69				1429
7591	7592	1		-0.95					1429
7592	5590	1		-0.637					
7593	7594	2		-0.952					
7594	5590	1		-0.637					

D.3.2 Modelos CDU associado ás máquinas de geração do Sistema N-NE Brasileiro

No)	0 Mq	(P)	(Q)	Un	(Mg)	(Mt)	u	(Mv)	u	(Me)	u	BARRA DE GERAÇÃO
36	10	100	100	3	124	117	u	157		187	u	S.MESA3GR
5010	10	100	100	1	1201	1203	u	1243	u			PAFO-2G2-1GR
5016	10	100	100	1	1203	1210	u	1250	u			PAFO-3G2-1GR
5022	10	100	100	5	1204	1211	u			1271	u	PAFO-4G1-5GR
5032	10	100	100	1	1205	1215	u	1255	u			ASALESG2-1GR
5051	10	100	100	3	1206	1217	u	1257	u	1272	u	LGONZAG1-3GR
5054	10	100	100	2	1207	1219	u	1259	u	1273	u	LGONZAG2-2GR
5061	10	100	100	3	1208	1221	u			1274	u	XINGO3GR
5145	10	100	100	1	1212	1231	u					RCD-SIE1CS
5147	10	100	100	1	1213	1232	u					RCD-ALS1CS
5509	10	100	100	1	1218	1233	u					TERESINA-1CS
5520	10	100	100	2	1210	1226	u	1266	u			BOAESP-1-2GR
5522	10	100	100	1	1211	1228	u	1268	u	1277	u	BOAESP-2-1GR
5586	10	100	100	2	1308	1308	u					PDUTRA2CS
5596	10	100	100	3	1310	1310	u					IMPERATR-3CS
5654	10	100	100	1	2900							TERMFTZG-1GR
5770	10	100	100	1	1214							CAMACARI-1GR

5778	10	100	100	2	1217	1234	u					CAMACARI-2CS
No)	0 Mq	(P)	(Q)	Un	(Mg)	(Mt)	u	(Mv)	u	(Me)	u	BARRA DE GERAÇÃO
5827	10	100	100	1	2300							T.BAH-G1-1GR
5975	10	100	100	3	2100	2100	u	157		2170	u	ITAPEBI3GR
6294	10	100	100	4	1209							SOBRADIN-4GR
6347	10	100	100	1	1216	1237	u					IRECE1CS
6350	10	100	100	1	1215	1238	u					BJLAPA1CS
6405	10	100	100	1	1306	1307	u					MARABA1CS
6419	10	100	100	5	1300	1300	u	1340	u	1370	u	TUCURUI1-5GR
6420	10	100	100	3	1301	1301	u	1341	u	1371	u	TUCURUI2-3GR
6422	10	100	100	4	1303	1302	u	1342	u	1372	u	TUCURUI3-4GR
6424	10	100	100	2	1304	1311	u	1343	u	1374	u	TUCURUI5-2GR
6425	10	100	100	5	98							TUCURUI6-5GR
6465	10	100	100	2	1307	1306	u					VCONDE2CS
7206	10	100	100	5	1500	1500	u	1540	u			LAJEADO5GR