

Ferry Sabel Belisario Benique

Carburização do DRI nas Zonas de Transição e Resfriamento de Reatores Tipo Midrex

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos da Puc-Rio como requisito parcial para obtenção do título de Doutor em Engenharia de Materiais e de Processos Químicos e Metalúrgicos.

Orientador: Prof. José Carlos D'Abreu

Rio de Janeiro Abril de 2011

Ferry Sabel Belisario Benique

Carburização do DRI nas Zonas de Transição e Resfriamento de Reatores Tipo Midrex

Tese apresentada ao Programa de Pós-graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos da Puc-Rio como requisito parcial para obtenção do título de Doutor em Engenharia de Materiais e de Processos Químicos e Metalúrgicos. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Carlos D'Abreu

Orientador Departamento de Engenharia de Materiais e de Processos Químicos e Metalúrgicos, PUC – Rio

Prof. Francisco José Moura

Departamento de Engenharia de Materiais e de Processos Químicos e Metalúrgicos, PUC – Rio

Prof. Roberto José de Carvalho

Departamento de Engenharia de Materiais e de Processos Químicos e Metalúrgicos, PUC – Rio

> Prof. Cyro Takano USP - SP

Prof. Hélio Marques Kohler Techn'os

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 26 de Abril de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ferry Sabel Belisario Benique

Graduou-se em Engenharia Metalúrgica pela Universidade Nacional de San Agustín, Arequipa - Perú. Obteve o grau de Mestre em Engenharia Metalúrgica e de Materiais pela PUC-Rio em 2008.

Ficha Catalográfica

Benique, Ferry Sabel Belisario

Carburização do DRI nas zonas de transição e resfriamento de reatores tipo midrex / Ferry Sabel Belisario Benique ; orientador: José Carlos D'Abreu. – 2011.

183 f. : il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2011.

Inclui bibliografia

 Engenharia de materiais – Teses. 2. Ferro esponja. 3. Redução direta. 4. Carburização. 5. Cinética.
Midrex. I. D'Abreu, José Carlos. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. III. Título.

CDD: 620.11

Agradeço a minha família, de forma especial, a minha querida Mãe por ter sido a minha grande incentivadora.

Agradeço a Deus por ser meu suporte em todos os momentos.

Agradecimentos

Ao Prof. Dr. José Carlos D'Abreu pelo estímulo e orientação, fundamentais na realização deste trabalho, também, pela amizade, conversas e ensinamentos.

Ao Prof. Dr. Hélio Marques Kohler pelo apoio e orientações, pela sua amizade e companheirismo de sempre.

Agradeço à Samarco Mineração S/A por estimular a cooperação tecnológica e científica e pela oportunidade oferecida para participar das atividades industriais.

Agradeço a todos os profissionais da Samarco Mineração S/A, em especial aos das Gerencias Gerais de Marketing e Vendas, de Assistência Técnica e de Automação e Processo por ter viabilizado os ensaios metalúrgicos na usina e especialmente pela amizade oferecida.

Agradeço de forma especial ao meu caro amigo o Eng. Maurício Marcos Otaviano da Gerencia de Assistência Técnica da Samarco Mineração S/A por incentivar este trabalho, pelo valioso suporte técnico e pelas contribuições nas discussões sobre processos industriais. Agradeço também pela grande amizade construída, pelos conselhos oferecidos, pelo seu otimismo e bom humor. Grande abraço para toda a sua família, a sua esposa Ana, para a Marina e o Vitor !!!!.

Agradeço a toda a equipe dos laboratórios metalúrgico, químico, microscópico e físico da Samarco Mineração S/A pelo suporte técnico, prontidão e amizade oferecida ao longo do desenvolvimento experimental.

Ao Eng. Raimundo Nonato Rodrigues pelo companheirismo e amizade.

Ao CNPq e a PUC-Rio pelos auxílios concedidos no desenvolvimento deste trabalho.

A todos os professores do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio pelos ensinamentos e aos funcionários do DEMa que contribuíram direta ou indiretamente para a realização deste trabalho.

A minha família pelo apoio, incentivo e carinho em todo momento, de forma muito especial, a minha querida Mãe.

Aos meus amigos pela colaboração, amizade e sugestões dadas ao longo do trabalho.

A Deus pela minha saúde.

Resumo

Belisario, Ferry Sabel Benique; D'Abreu, José Carlos. **Carburização de DRI nas Zonas de Transição e Resfriamento de Reatores Tipo Midrex.** Rio de Janeiro, 2011. 183p. Tese de Doutorado - Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Nos últimos anos, esforços vêm sendo empreendidos no sentido de aumentar o conteúdo de carbono no ferro-esponja, com o intuito de utilizá-lo como fonte energética e como agente redutor dos óxidos residuais na operação dos fornos elétricos a arco - FEA. O presente trabalho, fruto de um projeto cooperativo da Samarco Mineração SA com o Grupo de Siderurgia da PUC-Rio, apresenta os resultados de experimentos realizados, nos laboratórios de ambas as Instituições simulando as condições operacionais de um forno Midrex. Para a simulação o reator foi dividido em três zonas: Redução, Transição e Resfriamento. Para cada uma delas foi concebido um conjunto de experimentos, estatisticamente planejados, de forma a permitir a mensuração cinética da carburização. Os experimentos envolvendo a redução e a carburização das pelotas de minério de ferro utilizaram similaridades fluidodinâmicas das escalas. Adicionalmente, um método para análise química dos teores de carbono grafítico e livre foi empregado com sucesso. Em seguida foram realizados os testes de carburização das zonas de transição e resfriamento e levantadas as curvas e equações cinéticas. Na zona de transição o agente carburizante foi o gás metano sendo a sua injeção feita nas temperaturas de 300, 600, 700 e 850°C. O modelo cinético utilizado foi uma equação linear de fluxo mássico. O valor da energia de ativação aparente encontrada para a carburização do DRI na zona de transição foi de 12,31 kJ/mol indicando um controle cinético difusional. A carburização do DRI para esta região situou-se na faixa de 0.1%C (300°C) a 3%C (850°C), para um tempo de residência típico de 0,7 horas. Na zona de resfriamento o principal agente carburizante depende da temperatura: acima de 400°C, foi o gás metano, enquanto nas temperaturas abaixo de 500°C foi o gás CO. Nesta zona a carburização do DRI, nas temperaturas de 250 a 600°C, foi suposta ser uma reação de primeira ordem em relação ao carbono. O resultado obtido para a energia de ativação aparente na zona de resfriamento foi 5,31 kJ/mol, consistente com um mecanismo controlado por difusão. Considerando os resultados experimentais obtidos, a carburização final do DRI nesta zona, tomando-se um tempo médio de residência de (2,15h) esteve na faixa de 2,0%C (periferia / 600° C) a 3,0%C (centro / 250° C).

Palavras-chave

Ferro Esponja; Redução Direta; Carburização; Cinética; Midrex.

Abstract

Belisario, Ferry Sabel Benique; D'Abreu, José Carlos (Advisor). **DRI** carburization in the Transition and Cooling Zones of Midrex Type Reactors. Rio de Janeiro, 2011. 183p, Doctoral Thesis – Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

In later years efforts are being made aiming at the increase in the carbon content in the DRI, this to enable it to act as energy source and reducing agent for the residual oxides in the operation of the electric arc furnaces - EAFs. The present work, product of a cooperative project between the Samarco Mining Co. and the Iron and Steelmaking Group from the University PUC-Rio, presents the obtained results for the experiments on DRI carburization, made at the laboratories of both institutions, under simulated conditions occurring in MIDREX reactors. To mimic the reactor operation, it was divided in three zones, quoting: Reduction, Transition and Cooling. For each of these zones a set of experiments were conceived and statistically planned to permit the carburization kinetic determination. It must be also added that fluidynamic scale similarity were respected in those same experiments. Further, a special chemical method was successfully employed to access the graphitic and free carbon DRI contents for the carburization tests performed for the Transition and Cooling zones. Based on the obtained results, sets of curves for carburization versus time were composed and kinetic equations, for various temperatures and gaseous atmospheres, were proposed. For the Transition zone the carburizing agent was the methane gas, being its injection made under the temperatures of 300, 600, 700 e 850°C. The kinetic model utilized for the carburization in this zone was that of a mass flux linear equation. From this formalism, an apparent activation energy of 12.3 kJ/mol was calculated indicating a difusional control. The total DRI carburization in this zone ranged from 0.1%C (300°C) to 3%C (850°C) for a typical residence time of 0.7 hours. In the Cooling Zone there was a temperature dependency ruling the carburizing agent role, above 400°C the gas methane is the main carburizing gas, but below 500°C the CO act as such. In this zone, the DRI

carburization was fitted with a kinetic equation of the first order with respect to carbon. The obtained result for the apparent activation energy for this equation rated 5.31 kJ/mol, consistent with a difusional mechanism. Considering the experimental results for a residence time of 2.15 hours, the final carburization for the DRI in the Cooling Zone ranged from 2.0%C (furnace peripheral conditions / 600° C) to 3.0%C (core conditions / 250° C).

Keywords

Sponge Iron; Direct Reduction; Carburization; Kinetics; Midrex Process.

Sumário

1 Introdução	25
2 Objetivos e relevância do trabalho	27
3 Considerações	28
3.1. Considerações gerais	28
3.1.1. A cadeia produtiva da Siderurgia	30
3.1.2. Matérias primas empregadas na produção de aço líquido	32
3.1.3. Produção mundial de ferro esponja	32
3.1.4. Interesse na utilização de ferro esponja na fabricação de aço via	
FEA	35
3.1.5. Tecnologias de produção de DRI	40
3.1.6. Características físicas, químicas e metalúrgicas do DRI e HBI	44
3.1.7. Descrição do processo de redução direta Midrex	47
3.1.7.1. Zona de redução (ZR)	49
3.1.7.2. Zona de transição (ZT)	49
3.1.7.3. Zona de resfriamento ou arrefecimento (ZA)	49
3.1.8. Reformador do gás	51
3.1.9. Recuperação de calor	52
3.2. Considerações termodinâmicas da redução dos óxidos de ferro	54
3.2.1. Diagrama de equilíbrio Fe – O	55
3.2.2. Diagrama de equilíbrio ferro - carbono (Fe-C)	57
3.2.3. Redução dos óxidos de ferro pelo monóxido de carbono	58
3.2.3.1. Diagrama de oxi-redução -Diagrama de predominância Fe-O-C	; 58
3.2.3.2. Diagrama de Boudouard - A gaseificação do carbono	59
3.2.4. Redução dos óxidos de ferro pelo hidrogênio	60
3.2.4.1. Diagrama de predominância Fe-O-H	61
3.2.5. Redução dos óxidos de ferro pela mistura CO e H_2	62
3.2.6. Termodinâmica da carburização	63

3.2.6.1. Termodinâmica da carburização na fabricação de carbeto de

ferro	64
3.2.6.2. Termodinâmica da carburização na fabricação de DRI	66
3.2.6.3. Termodinâmica da deposição de carbono (carbono Pick Up) e	
a reação de Boudouard	69
3.3. Considerações cinéticas e fenomenológicas da redução dos óxido	S
de ferro	73
3.3.1. Cinética da redução de óxidos de ferro com CO puro	73
3.3.2. Cinética da redução de óxidos de ferro com a mistura CO - H_2	76
3.3.3. Cinética da redução de óxidos de ferro com a mistura CO - H_2	
contendo traços de enxofre	83
3.3.4. Cinética da redução de óxidos de ferro com a mistura H_2 - CH_4	87
3.3.5. Mecanismos de reações de carburização e deposição de	
carbono	92
3.3.5.1. Cinética de reações de carburização e deposição de carbono	
em presença de ferro metálico	93
3.3.6. Mecanismos da redução de óxidos de ferro e da carburização de	Э
ferro esponja	95
3.3.6.1. Cinética da redução de óxidos de ferro e da carburização do	
ferro esponja nos processos de redução direta baseados em carvão	96
3.3.6.2. Cinética da redução de óxidos de ferro e da carburização do	
ferro esponja nos processos de redução direta baseados em gás :	
Midrex e HyL	100
3.3.7. Principais fatores que influenciam a carburização e a deposição	
de carbono no ferro esponja	106
3.3.7.1. Influência da temperatura e do tempo na carburização na	
deposição de carbono	106
3.3.7.2. Influência do ferro metálico e suas fases na carburização e na	
deposição de carbono	108
3.3.7.3. Influência da composição da mistura gasosa na carburização	
e na deposição de carbono	112
3.3.7.4. Influência da vazão da mistura gasosa na carburização e na	
deposição do carbono	117
3.3.7.5. Influência dos óxidos de ferro e da matéria prima na	

carburização e na deposição de carbono	119
4 Modelamento cinético da zona de redução de reatores de cuba	121
4.1. Materiais utilizados na zona de redução (ZR)	121
4.2. Condições experimentais na zona de redução (ZR)	122
4.3. Resultados obtidos na zona de redução (ZR)	123
5 Desenvolvimento experimental	129
5.1. Experiências realizadas para o estudo da carburização na zona d	е
transição (ZT)	130
5.1.1. Materiais utilizados na ZT	130
5.1.2. Equipamentos utilizados na ZT	131
5.1.3. Descrição do ciclo experimental na ZT	133
5.1.4. Planejamento experimental na ZT	134
5.1.5. Condições experimentais na ZT	134
5.1.6. Desenho esquemático planejado para as experiências de	
carburização na ZT	135
5.2. Experiências realizadas para o estudo da carburização na zona	
de resfriamento (ZA)	135
5.2.1. Materiais utilizados na ZA	135
5.2.2. Equipamentos utilizados na ZA	136
5.2.3. Descrição do ciclo experimental na ZA	136
5.2.4. Planejamento experimental na ZA	136
5.2.4.1. Ensaios preliminares para a determinação da vazão crítica na	l
ZT e ZA	137
5.2.5. Condições experimentais na ZA	139
5.2.6. Estratégia experimental para a carburização na ZA	141
6 Apresentação e discussão de resultados	143
6.1. Apresentação e discussão dos resultados obtidos na carburização	С
na zona de transição (ZT)	143
6.1.1. Análise cinética na ZT	144
6.2. Apresentação e discussão de resultados obtidos na carburização	
do DRI na zona de arrefecimento (ZA)	149

6.2.1. Análise termodinâmica na ZA	149
6.2.2. Determinação da vazão crítica para as experiências de	
carburização do DRI na ZA	151
6.2.3. Análise química das experiências de carburização do DRI na ZA	152
6.2.4. Análise cinética das experiências de carburização do DRI na ZA	155
6.2.4.1. Modelamento cinético do teor de carbono total do DRI na ZA	156
6.2.4.2. Modelamento cinético do carbono cementítico do DRI na ZA	160
6.2.4.3. Carbono livre do DRI na ZA	164
6.2.4.4. Ferro metálico e o grau de metalização do DRI na ZA	166
6.2.4.5. Esquema da simulação global da carburização do DRI no forno	C
de cuba	169
7 Conclusões	171
8 Sugestões para trabalhos futuros	173
0 009631063 para itabalilos luturos	175
9 Referências Bibliográficas	174

Lista de figuras

Figura 1 – Produção mundial de aço (em milhões de toneladas) ao	
longo dos anos. ⁽³⁾	28
Figura 2 – Produção mundial de aço por países em 2009 e 2010. $^{(3)}$	29
Figura 3 – Rotas tradicionais de produção de aço. (34,52)	31
Figura 4 – Evolução da produção de ferro esponja no mundo. ⁽⁴⁾	32
Figura 5 – Produção mundial de DRI por região, em milhões de	
toneladas, ano 2008 e 2009. ⁽⁴⁾	33
Figura 6 – Produção mundial de ferro esponja por processo, baseados	
em carvão e baseados em gás, em 2009. ⁽⁴⁾	34
Figura 7 – Distribuição de custos variáveis na produção de aço líquido,	
1999. ⁽¹²⁾	36
Figura 8 – Consumo de energia de um FEA em função do grau de	
metalização do ferro esponja, para distintos percentuais de	
carregamento. (34)	37
Figura 9 – Efeito da temperatura do DRI e do teor de carbono do DRI no)
consumo de energia no FEA. ⁽¹⁵⁾	37
Figura 10 – Influência do teor de carbono contido no pré-reduzido sobre	
os teores de ferro total e ferro metálico. ⁽³⁴⁾	39
Figura 11 – Evolução da produção de aço bruto via as rotas	
convencionais ⁽¹⁹⁾ .	40
Figura 12 – Áreas de operação, no diagrama Fe-C, dos processos de	
fabricação de ferro primário ⁽¹⁹⁾ .	42
Figura 13 – Fluxograma geral de produção de DRI / HBI mediante os	
processos de redução direta baseados em gás e em carvão. ⁽¹⁷⁾	43
Figura 14 – Fluxograma de produção de ferro esponja no processo de	
redução direta baseado em gás, HYL III. ⁽³⁴⁾	44
Figura 15 – Fluxograma geral do processo de redução direta Midrex. ⁽¹³⁾	48
Figura 16 – Fluxograma do processo Midrex sem recirculação gasosa	

na zona de resfriamento. ⁽¹³⁾	50
Figura 17 – Reformador de gás natural utilizada pela tecnologia Midrex.	52
Figura 18 – Catalisadores utilizados no processo de reforma do gás na	
tecnologia Midrex. ⁽¹⁹⁾	52
Figura 19 – Diminuição de energia elétrica como função da temperatura	3
de HDRI em diferentes relações de carga no FEA ⁽²²⁾ .	53
Figura 20 – Diferentes opcões de carregamento de HDRI para o	
FEA ⁽²²⁾ .	53
Figura 21 – Diagrama de equilíbrio ferro – oxigênio, (Fe-O). (38)	55
Figura 22 – Diagrama de equilíbrio Fe – C. $^{(38)}$	57
Figura 23 – Diagrama de Chaudron (Oxi-Redução). ⁽³⁸⁾	59
Figura 24 – Efeito da pressão sobre o equilíbrio da reação de	
Boudouard. ⁽⁴⁰⁾	60
Figura 25 – Diagrama de predominância operacional Fe-O-H. (38,52,54)	61
Figura 26 – Diagrama de predominância operacional para o sistema	
Fe-O-C-H. ⁽³⁸⁾	62
Figura 27 – Diagrama de estabilidade de fases para o sistema	
Fe-C-H-O a 900K e 1 atm de pressão total. Configuração da fase	
condensada metaestável. ⁽⁵⁵⁾	65
Figura 28 – Relação entre o conteúdo de carbono e a temperatura da	
carga no interior do forno de cuba. ⁽⁵⁸⁾	67
Figura 29 – Análise de raios X em aglomerado de carbono. ⁽⁵⁸⁾	68
Figura 30 – Atividade calculada do carbono para o completo equilíbrio	
gasoso a 4 atm e temperaturas indicadas para o gás natural reformado	
contendo 73% H ₂ , 18% CO, 8% CO ₂ e 1% CH ₄ para os quais uma	
quantidade indicada de H ₂ O é adicionada. $^{(56)}$	71
Figura 31 – Curvas experimentais de TGA obtidas da redução de	
amostras grosseiras de óxido de ferro com CO puro a 800, 850 e 900°C).
(37)	74
Figura 32 – Fração aparente de perda de peso de pelotas hematíticas	
comerciais de baixa sílica reduzidas com uma mistura gasosa contendo)
75% H ₂ e 25% CO em função do tempo. $^{(75)}$	80

Figura 33 – Fração aparente de perda de peso de pelotas hematiticas	
comerciais de baixa sílica reduzidas com uma mistura gasosa contendo)
25% H_2 e 75% CO em função do tempo. ⁽⁷⁵⁾	81
Figura 34 – Gráfico mostrando a variação do peso das pelotas com o	
tempo para várias condições. (R_{red} : taxa de redução, R_c : taxa de	
deposição de carbono). ⁽⁷⁵⁾	82
Figura 35 – Padrões de difração de raios X das amostras reduzidas. a)	
1073 K, b) 873 K. ⁽⁷⁷⁾ .	84
Figura 36 – Variação dos produtos da redução em função do tempo na	
temperatura de 1073 K ⁽⁷⁷⁾ .	84
Figura 37 – Efeito da temperatura na redução de minério de ferro pela	
mistura gasosa contendo 25% H2-75% Ar. Vazão gasosa de 1	
L/min. ⁽⁹⁴⁾	88
Figura 38 – Fração de cementita obtida em função da temperatura e do	
tempo de reação numa mistura gasosa contendo 35% CH_4 – 55% H_2 –	
10% Ar. ^(94,95,96)	90
Figura 39 – Conteúdo de carbono total e carbono livre em amostra	
reduzida a 835ºC em função do tempo de redução. ⁽⁸²⁾	92
Figura 40 – Variação do grau de metalização com o incremento do	
consumo na relação de carbono, em temperatura constante de 900°C ⁽⁸⁵⁾	⁾ .97
Figura 41 – Redução de pelotas de hematita com H_2 , CO e gás Midrex	
a 850°C com uma vazão gasosa total de 2L/min ⁽⁸⁹⁾ .	101
Figura 42 – Desenho esquemático do reator de redução de minério de	
ferro mostrando as zonas de redução, de transição e resfriamento. ⁽¹⁰³⁾ 1	103
Figura 43 – Geometria do forno de cuba. (104)	104
Figura 44 – Efeito da temperatura sobre a taxa de deposição de	
carbono em presença de ferro metálico obtido previamente pela	
redução de minério hematítico granulado com H_2 em diferentes	
temperaturas (400, 600 e 1000°C). As condições para deposição de	
carbono foram; a) 400, b) 600 e c) 1000°C, 0.4 atm CO (resto He) e	
com $W_{Fe} = 660$ mg. ⁽⁸³⁾	107
Figura 45 – Efeito da temperatura relacionando a redução e a vazão	
gasosa para 30 minutos de redução. Símbolos fechados e símbolos	

abertos representam que houve ou não houve deposição de carbono, respectivamente.⁽⁸⁷⁾ 108 Figura 46 – Efeito da quantidade do catalisador na deposição de carbono numa mistura gasosa contendo 50% H₂ e 50% CO a 600°C. O ferro foi previamente obtido pela redução de minério hematítico granulado. (83) 109 Figura 47 – Efeito da temperatura na taxa de deposição de carbono na presença de ferro poroso catalítico, pressões de 0.4 e 1 atm de CO.⁽⁸³⁾110 Figura 48 – Faixas de atividade catalítica do ferro com o teor de H₂ na mistura gasosa. (98) 111 Figura 49 – Efeito da composição da mistura gasosa na deposição de carbono com misturas H₂-CO a pressão atmosférica e 600°C na presença de 600mg de Fe (o Fe foi obtido previamente pela redução de minério hematítico granulado de 1mm de diâmetro com H₂). ⁽⁸³⁾. Línea tracejada representa resultados modelados. 114 Figura 50 – Efeito da composição gasosa H₂-CO na taxa de deposição de carbono em 600mg de ferro poroso catalítico para as reações (55) e (56).⁽⁹⁷⁾ 116 Figura 51 – Efeito do H₂O na taxa de deposição de carbono em 600mg de ferro poroso numa mistura de CO-H₂-H₂O a pressão atmosférica.⁽⁹⁷⁾117 Figura 52 – Efeito da vazão gasosa na redução em várias temperaturas, para 30 minutos de redução. Símbolos fechados e símbolos abertos representam que houve e não houve deposição de carbono, respectivamente.⁽⁸⁷⁾ 118 Figura 53 - Influencia típica da vazão gasosa na taxa de deposição de carbono em função da temperatura.⁽⁸⁷⁾ 119 Figura 54 – Variação da deposição de carbono em 1 atm de CO a 600°C com 600mg de Fe (o Fe foi obtido previamente pela redução de hematita com H₂) e com 600mg Fe eletrolítico.⁽⁸³⁾ 120 Figura 55 – Influência da temperatura no grau de redução de pelotas de minério de ferro sob condições de entrada na zona de redução do forno de cuba.⁽⁵⁴⁾ 124 Figura 56 – Influência da temperatura no grau de redução de pelotas

de minério de ferro sob condições de gás de topo na zona de redução	
do forno de cuba. ⁽⁵⁴⁾	124
Figura 57 – Grau de redução em função do tempo para 900ºC e um	
poder redutor de 0,85. ⁽⁵⁴⁾	125
Figura 58 – Grau de redução em função do tempo para 700ºC e um	
poder redutor de 0,85. ⁽⁵⁴⁾ . A linha pontilhada representa a remoção de	•
oxigênio, a reta continua a carburização e a linha que se ajusta aos	
pontos experimentais a diferença.	126
Figura 59 – Deposição de carbono em função da temperatura e da	
vazão gasosa. ⁽⁵²⁾	127
Figura 60 – Etapas de pesquisa do programa cooperativo entre a PUC	-
Rio e a Samarco Mineração S/A sobre a carburização do DRI no forno	
de cuba tipo Midrex.	129
Figura 61 – Amostra de pelotas comerciais de minério de ferro tipo	
PDR-MX.	131
Figura 62 – Forno elétrico vertical.	131
Figura 63 - Retortas cilíndricas, externa e interna, utilizadas nas	
experiências de redução e carburização.	132
Figura 64 - Painel com rotâmetros controladores da vazão dos gases	
utilizados nas experiências de carburização.	132
Figura 65 – Desenho esquemático da aparelhagem montada para os	
experimentos de redução e carburização.	133
Figura 66 – Desenho esquemático com as condições experimentais	
para a carburização do DRI na zona de transição (ZT).	135
Figura 67 – Ciclos térmicos e temporais das experiências de	
carburização que simulam a periferia e o centro, nas três zonas do	
forno.	141
Figura 68 - Desenho esquemático planejado com as condições	
experimentais para a carburização do DRI nas três zonas do reator	
Midrex.	142
Figura 69 – Variação do carbono total no DRI em função da	
temperatura e do tempo para as condições experimentais na zona de	
transição.	146

Figura 70 – Variação do coeficiente Co com o inverso da temperatura	
para as condições experimentais na zona de transição.	148
Figura 71 – Variação de energia livre de Gibb's com a temperatura das	3
reações formadoras de carbono livre, considerando a composição do	
gás misturado na ZA.	150
P _T = 2.5 atm.	150
Figura 72 – Variação de energia livre de Gibb's com a temperatura das	3
reações formadoras de cementita, considerando a composição do gás	
misturado na ZA. $P_T = 2.5$ atm.	150
Figura 73 – Vazão crítica na zona de transição (condições: periferia do)
forno).	151
Figura 74 – Vazão crítica na zona de arrefecimento (condições: centro	
do forno).	152
Figura 75 – Variação do teor de carbono total no DRI com o tempo	
para as condições de periferia da zona de resfriamento nas	
temperaturas de 250, 500 e 600ºC.	157
Figura 76 – Variação do teor de carbono total no DRI com o tempo	
para as condições de centro da zona de resfriamento nas	
temperaturas de 250, 500 e 600°C.	158
Figura 77 – Variação de k com o inverso da temperatura, na	
modelagem cinética do teor de carbono total no DRI, para as condiçõe	S
de periferia e centro na zona de resfriamento do reator de cuba.	160
Figura 78 - Variação do teor de carbono cementítico no DRI com o	
tempo, para as condições de periferia da zona de resfriamento, nas	
temperaturas de 250, 500 e 600ºC.	161
Figura 79 - Variação do teor de carbono cementítico no DRI com o	
tempo, para as condições de centro da zona de resfriamento, nas	
temperaturas de 250 a 600ºC.	161
Figura 80 - Variação de k com o inverso da temperatura, na	
modelagem cinética do teor de carbono cementítico no DRI, para as	
condições de periferia e centro na zona de resfriamento do reator de	
cuba.	163
Figura 81 - Variação do teor de carbono livre no DRI com o tempo,	

para as condições de periferia da zona de resfriamento nas	
temperaturas de 250, 500 e 600°C.	165
Figura 82 - Variação do teor de carbono livre no DRI com o tempo,	
para as condições de centro da zona de resfriamento, nas	
temperaturas de 250, 500 e 600ºC.	166
Figura 83 – Variação do ferro metálico em função do tempo, para as	
condições de periferia, na zona de resfriamento do reator de cuba.	167
Figura 84 – Variação do ferro metálico em função do tempo, para as	
condições de centro, na zona de resfriamento do reator de cuba.	168
Figura 85 - Distribuição de freqüência em quartis do percentual de	
ferro metálico obtido na zona de arrefecimento do reator	169
Figura 86 – Perfil de carburização modelada para as três zonas do	
forno de cuba.	170

Lista de tabelas

Tabela 1 – Países com maior produção de aço no mundo, em 2009 e	
2010 (em milhões de toneladas). ⁽³⁾	30
Tabela 2 – Evolução da produção mundial de DRI no mundo, em	
milhões de toneladas, (Mt), por processo. ⁽⁴⁾	34
Tabela 3 – Tipos e classificação dos processos de redução direta ⁽¹⁴⁾ .	41
Tabela 4 – Características químicas do DRI / HBI dos diferentes	
processos de redução direta baseados nos tipos de redutores. ⁽¹⁸⁾	41
Tabela 5 – Características físicas do DRI e HBI. ^(12,34)	45
Tabela 6 – Características químicas e metalúrgicas do DRI e HBI dos	
processos baseados em gás. ^(12,34)	45
Tabela 7 – Principais vantagens do HBI em comparação ao DRI. (12,34)	46
Tabela 8 – Relação H/C de algumas tecnologias de redução. ^(34,38)	63
Tabela 9 – Composição química da amostra utilizada nas experiências	;
de carburização na zona de redução.	121
Tabela 10 – Condições experimentais na zona de redução (ZR).	122
Tabela 11 – Parâmetros cinéticos encontrados na carburização de	
ferro esponja na zona de redução de um forno de cuba. ⁽⁵²⁾	128
Tabela 12 – Composição química da amostra para o estudo da	
carburização na zona de transição.	130
Tabela 13 – Condições experimentais para a carburização na zona de	
transição (ZT).	134
Tabela 14 – Composição química da amostra para o estudo da	
carburização na zona de resfriamento.	136
Tabela 15 – Condições experimentais para a determinação da vazão	
crítica na zona de transição (ZA).	138
Tabela 16 – Condições experimentais para a determinação da vazão	
crítica na zona de arrefecimento (ZA).	138
Tabela 17 – Condições experimentais para a carburização na zona de	
resfriamento (ZA).	139
Tabela 18 – Condições experimentais para determinar a carburização	

do DRI na periferia do forno Midrex.	140
Tabela 19 – Condições experimentais para determinar a carburização	
do DRI no centro do forno Midrex.	140
Tabela 20 – Análise química de carbono total nas pelotas após as	
experiências de carburização na zona de transição.	144
Tabela 21 – Resultados modelados para a carburização das pelotas	
após zona de transição.	147
Tabela 22 – Valores de Co observados e calculados para a zona de	
transição.	147
Tabela 23 – Parâmetros cinéticos obtidos no modelamento da	
carburização na zona de transição.	148
Tabela 24 – Energia livre de Gibb's das reações formadoras de carbo	าด
livre e cementita, considerando a composição do gás misturado na ZA	149
Tabela 25 – Energia livre de Gibb's das reações formadoras de carbo	າດ
livre e cementita, considerando a composição do gás off take (gás de	
exaustão) na ZA.	149
Tabela 26 – Análise química do DRI obtido da ZA através das	
experiências de carburização que simulam a periferia do forno.	153
Tabela 27 – Análise química do DRI obtido da ZA através das	
experiências de carburização que simulam o centro do forno.	154
Tabela 28 – Resultados modelados para o carbono total do DRI, na	
periferia e no centro do forno, após zona de resfriamento.	157
Tabela 29 – Parâmetros cinéticos do teor de carbono total na	
carburização do DRI obtidos pelo modelo na zona de resfriamento.	158
Tabela 30 – Valores de k observados e cálculos para o modelamento	
do carbono total na zona de resfriamento.	159
Tabela 31 - Resultados modelados para o carbono cementítico do DR	I,
na periferia e no centro do forno, após zona de resfriamento.	162
Tabela 32 - Parâmetros cinéticos do teor de carbono cementítico na	
carburização do DRI obtidos pelo modelo na zona de arrefecimento.	162
Tabela 33 – Valores k observados e cálculos para o modelamento do	
carbono cementítico na zona de resfriamento.	164
Tabela 34 – Resultados experimentais do ferro metálico e metalização),

para a periferia e para o centro do forno, na zona de resfriamento.167Tabela 35 – Resultados estatísticos da modelagem cinética dos167resultados experimentais do ferro metálico, obtidos nas experiências167de carburização na zona de arrefecimento do reator.169