

Rodrigo Gonçalves Lopes Silva

Estudo dos Mecanismos de Formação e de Inibição da Incrustação por Sulfato de Cálcio em Processos de Nanofiltração

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais da PUC-Rio.

Orientador: Prof. Francisco José Moura Co-orientador: Prof. Roberto Bentes de Carvalho Co-orientadora: Prof. Thais de Lima Alves

Rio de Janeiro Julho de 2012

Rodrigo Gonçalves Lopes Silva

Estudo dos Mecanismos de Formação e de Inibição da Incrustação por Sulfato de Cálcio em Processos de Nanofiltração

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pósgraduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Francisco José Moura

Orientador e Presidente Departamento de Engenharia de Materiais- PUC-Rio

> **Prof. Thais de Lima Alves** Centro de Tecnologia Mineral – CETEM-MCT

> > Prof. Roberto Bentes de Carvalho

Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio

Prof. Roberto José de Carvalho

Departamento de Engenharia de Materiais - PUC-Rio

Prof. Cecília Vilani Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio

> Prof. Cláudio Marcos Ziglio Petrobras

Prof. Helen Conceição Ferraz Universidade Federal do Rio de Janeiro – UFRJ

Prof. José Eugênio Leal Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 06 de Julho de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem a autorização da universidade, do autor e do orientador.

Rodrigo Gonçalves Lopes Silva

Graduação em Química Industrial na Universidade Federal do Rio de Janeiro-UFRJ em 1996. Especialização em Engenharia Sanitária e Ambiental na Escola Nacional de Saúde Pública-ENSP/FIOCRUZ em 2000. Mestrado em Geoquímica Ambiental na Universidade Federal Fluminense-UFF/ National Research Council of Canada-NRCC em 1999. Ouímico de Petróleo da Petróleo Brasileiro S.A.-PETROBRAS desde 2002.

Ficha Catalográfica

Silva, Rodrigo Gonçalves Lopes

Estudo dos mecanismos de formação e de inibição da incrustação por sulfato de cálcio em processos de nanofiltração / Rodrigo Gonçalves Lopes Silva ; orientadores: Francisco José Moura, Roberto Bentes de Carvalho, Thais de Lima Alves Pinheiro Fernandes. – 2012.

206 f. : il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2012. Inclui bibliografia

1. Engenharia de materiais – Teses. 2. Membranas. 3. Nanofiltração. 4. Colmatação. 5. Colmatação inorgânica. 6. Incrustação. I. Moura, Francisco José. II. Carvalho, Roberto Bentes de. III. Fernandes, Thais de Lima Alves Pinheiro. IV. Pontifícia Universidade Católica do Rio de Janeiro.

CDD: 620.11

PUC-Rio - Certificação Digital Nº 0922105/CA

Para minha filha, a princesa Carolina, pela presença carinhosa.

Agradecimentos

Aos meus pais e familiares, pelo carinho, mesmo estando longe.

Aos meus orientadores Chico, Thais e Bentes, pelo estímulo, seriedade, lucidez e parceria durante a realização deste trabalho.

Aos mentores primordiais Olavo Barbosa Filho e Ronaldo Nóbrega.

À CAPES e à PUC-Rio, pelos auxílios concedidos, indispensáveis para este trabalho.

Ao PAM/PEQ/COPPE/UFRJ, por todo apoio, fundamental para este trabalho ser realizado.

À PETROBRAS, pela compreensão e apoio.

Aos professores, funcionários e colegas do DEMa e do PAM, pela ajuda e estímulo.

Aos amigos Roberto Bob e Ronaldo, pelos ensinamentos e apoio profissional.

Ao amigo Otávio do CETEM, pela ajuda e dedicação em momentos fundamentais.

Às amigas Maria Luiza e Sueli do CENPES, pelo apoio profissional.

Aos membros da Comissão Examinadora.

Aos amigos Carlos Gomes, Ronald, Abelha, Guadalupe, Jesuz e Marco, pelo estímulo.

Aos Gerentes Paiva, Viotto, Larissa e Francisco e colegas da AB-LO/PN pelo apoio.

A todos os amigos e familiares, que me estimularam.

Resumo

Silva, Rodrigo Gonçalves Lopes; Moura, Francisco José; Alves, Thais de Lima; Carvalho, Roberto Bentes. **Estudo dos Mecanismos de Formação e de Inibição da Incrustação por Sulfato de Cálcio em Processos de Nanofiltração**. Rio de Janeiro, 2012. 206p. Tese de Doutorado – Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

A queda do fluxo permeado através da membrana com o tempo de operação causada pelo fenômeno de colmatação é o principal fator limitante do uso de processos de separação por membranas, como a nanofiltração (NF). O sulfato de cálcio é um dos principais agentes do tipo mais severo de colmatação, a incrustação, em sistemas de dessulfatação de águas marinhas para injeção em poços produtores de petróleos e abrandamento de águas subterrâneas salobras e duras para uso industrial por NF. Apesar do vasto número de estudos que têm sido publicados sobre a incrustação por sulfato de cálcio em NF, ainda não foram esclarecidos os mecanismos de formação e inibição química do fenômeno. O objetivo do presente trabalho foi estudar experimentalmente e conceitualmente os mecanismos envolvidos na geração e no tratamento por inibição e remoção química da incrustação de sulfato de cálcio em membrana de NF. Para tal, foram utilizados modelos matemáticos de interpretação de mecanismos e técnicas de inibição e caracterização dos depósitos formados, correlacionando-os com indicadores de desempenho do processo. As análises de comportamento de queda de fluxo mostraram uma alternância na predominância entre os mecanismos de bloqueio de poros e por formação de torta. O estudo de inibição mostrou que os mecanismos de ação do antiincrustante SHMP o tornaram mais eficiente que o EDTA na manutenção do desempenho em permeabilidade e seletividade. A autópsia da membrana com MEV/EDS e DRX revelou majoritariamente cristais de gipsita. A metodologia de cálculo e análise integrada dos parâmetros de desempenho mostraram-se ferramentas de grande importância para se buscar as medidas mais eficientes e convenientes de controle e redução da incrustação.

Palavras-chave

Membranas; nanofiltração; colmatação; colmatação inorgânica; incrustação.

Abstract

Silva, Rodrigo Gonçalves Lopes; Moura, Francisco José (Advisor); Fernandes, Thais de Lima Alves Pineiro; Carvalho, Roberto Bentes. **Analysis of Gypsum Scale Formation and Inhibition Mechanisms in Nanofiltration Processes**. Rio de Janeiro, 2012. 206 p. D.Sc. Thesis – Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Membrane fouling is a major limitation in efficient operation of nanofiltration (NF) plants. Calcium sulfate is a major player in the most severe type of fouling - scaling - in sulfate removal systems for oil fields seawater injection operations and brackish water softener for industrial use by NF. Despite the vast number of studies that have been published on the scaling by calcium sulfate NF, have not yet been elucidated the mechanisms of formation and chemical inhibition of the phenomenon. The aim of this work was to study experimentally and conceptually the mechanisms involved in the generation and treatment by inhibition and chemical removal of fouling of calcium sulfate in NF membrane. Mathematical models of interpretation techniques and mechanisms of inhibition and characterization of deposits formed were used, trying to correlate them with performance indicators of process. The supersaturated solutions in a laboratory scale system confirmed the severity of fouling by calcium sulfate. The analysis of behavior showed a decrease of flow in alternating dominance between the mechanisms of pore blocking and cake formation. The study showed that inhibition of the mechanisms of action of the anti-fouling SHMP become more efficient than EDTA in maintaining performance in permeability and selectivity. The autopsy of the membrane with SEM / EDS and XRD revealed mostly gypsum crystals. The calculation methodology and integrated analysis of performance parameters proved to be an important tool to seek the most efficient and convenient measures to control and reduce fouling.

Keywords

Membrane processes; nanofiltration; fouling; inorganic fouling; scaling.

Sumário

1. Introdução	17
 Nanofiltração Processos de separação por membranas Características estruturais das membranas de nanofiltração Modos de operação Módulos de permeação Configurações industriais 	19 19 22 25 26 29
 Parâmetros de desempenho da NF Seletividade Permeabilidade Transporte de massa em PSM 	32 32 36 38
 4. Colmatação 4.1. Tipos de colmatação 4.2. Mecanismos de colmatação 4.3. Mecanismos de incrustação 4.4. Modelos matemáticos de identificação dos mecanismos 	39 41 45 47 55
 5. Controle da colmatação 5.1. Qualidade da alimentação 5.2. Propriedades da membrana 5.3. Fluidodinâmica do processo 5.4. Indicadores do potencial de colmatação 5.5. Autópsia da membrana 	64 65 72 77 80
6. Inibição da colmatação 6.1. Inibição 6.2. Tratamentos de limpeza 6.3. Desempenho do controle da colmatação	82 82 88 94
7. Objetivos	97
 8. Materiais e métodos 8.1. Equipamentos 8.2. Seleção da membrana 8.3. Reagentes 8.4. Procedimento experimental 	98 98 100 101 102
 9. Resultados e discussão 9.1. Caracterização da permeabilidade e seletividade da membrana 9.2. Formação da incrustação 9.3. Inibição e limpeza da incrustação 10. Conclusões 	110 110 112 132 153
11. Referências bibliográficas	158

Lista de figuras

Figura 2.1 - Representação esquemática de separação de sistema bifásico por uma membrana.	19
Figura 2.2 - Representação esquemática e fotomicrografias ilustrativas das principais morfologias encontradas nas seções transversais de membranas sintéticas.	24
Figura 2.3 - Fotomicrografias representativas das diferentes camadas das membranas de NF.	24
Figura 2.4 - Representação das correntes do processo de NF.	25
Figura 2.5 - Representação esquemática dos diferentes modos de operação do processo de NF: (a) filtração frontal; (b) filtração tangencial.	25
Figura 2.6 - Esquema de fluxo de alimentação e correntes geradas no processo de dessulfatação da água do mar por NF.	26
Figura 2.7- (a) Seção transversal de um módulo de permeação; (b) Vaso de pressão contendo sistema de três cartuchos.	27
Figura 2.8- (a) Elemento de membranas em espiral; (b) seção Transversal do módulo; (c) detalhe da disposição de canais de alimentação e permeado; (d) esquema com envelopes abertos.	28
Figura 2.9- (a) Elemento ou cartucho comercial de membranas utilizado em módulos em espiral no processo de dessulfatação da água do mar; (b) Desenho do cartucho.	29
Figura 2.10- Configurações industriais típicas de membranas de NF: (a) 2 estágios em arranjo 2:1; (b) 3 estágios em arranjo 3:2:1. F: alimentação; P: permeado; C: concentrado.	30
Figura 2.11- Diagrama simplificado de NF da unidade removedora de sulfato.	30
Figura 2.12- (a) Arranjo típico de dois estágios para módulos de permeação em URS de plataformas marítimas; (b) Fotos de URS.	31
Figura 3.1- Transição esquemática entre membranas de NF, OI e UF.	36
Figura 3.2- Representação esquemática do transporte de massa através de membranas porosas e densas.	38
Figura 3.3- Representação esquemática do fenômeno da polarização de concentração.	42
Figura 3.4- Representação gráfica dos fluxos crítico, limite e em função da pressão para diferentes concentrações do seio da alimentação. e coeficientes de transferência de massa.	44

Figura 3.5- Representação esquemática das resistências à	45
transferencia de massa.	45
Figura 4.1- Fluxo permeado em função do tempo.	51
Figura 4.2- Mecanismos de formação do colmatação.	57
Figura 4.3- Mecanismos de formação do colmatação: (a) bloqueio completo dos poros; (b)bloqueio interno, padrão ou estreitamento dos poros; (c) bloqueio intermediário, parcial ou incompleto dos poros; (d) formação de torta.	59
Figura 4.4- Estágios da cristalização.	60
Figura 4.5- Efeito do índice de SS nas taxas de nucleação e crescimento.	. 62
Figura 4.6- Diagrama de solubilidade ou de fase de sal.	63
Figura 4.7- Mecanismos de formação de incrustação por cristalização homogênea (seio da solução) e heterogênea ou superficial (superfície da membrana) em sistemas de NF.	64
Figura 4.8- Mecanismos de formação de colmatação em NF.	69
Figura 4.9- Mecanismos de colmatação por bloqueio de torta e por bloqueio interno do modelo de Hermia para MF de solução de leveduras.	71
Figura 4.10 Mecanismos de colmatação do modelo de Field para NF de elevada concentração de NaCI (5%) + 20 mg/L de surfactante.	72
Figura 4.11 Mecanismos de colmatação do modelo de Koltuniewicz para MF de emulsão óleo-água nos modos de filtração.	73
Figura 4.12 Avaliação do modelo de Koyuncu para NF de solução de CaSO4.	75
Figura 5.1 Diagrama de fases do CaSO ₄ .	78
Figura 5.2- Unidade removedora de sulfato com desaeração à Montante da nanofiltração.	81
Figura 5.3 Efeito da pressão e da velocidade na colmatação.	86
Figura 5.4 Micrografias de MEV de superficies de membranas de NF colmatadas com CaSO ₄ .	93
Figura 6.1- Mecanismos de inibição de cristalização.	96
Figura 6.2- Estruturas do EDTA antes e após a complexação de metal.	103
Figura 8.1- Esquema do sistema usado nos experimentos de NF, Dotado de módulo de membrana (célula de permeação)	440
piana com alimentação por fluxo tangencial.	110
Figura 8.2 Sistema de nanofiltração.	111

Figura 8.3 Célula de filtração em aço inoxidável.	111
Figura 8.4- Esquema da membrana e regiões analisadas.	118
Figura 9.1 Curva de permeabilidade de água limpa. Membrana TFC.	122
Figura 9.2 Curvas de permeabilidade de água limpa; NaCl 300-3000mg/L; CaSO₄ 4000mg/L; Membrana TFC-SR. 25ºC.	123
Figura 9.3- Queda do fluxo do ensaio até 360min. CaSO ₄ 4000 mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25° C.	125
Figura 9.4- Queda do fluxo do ensaio até 150min. CaSO ₄ 4000 mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	125
Figura 9.5- Indicadores de potencial de incrustação nos ensaios de curta duração. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	128
Figuras 9.6- Mecanismos de queda do fluxo até 150min de operação. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	129
Figuras 9.7- Mecanismos de queda do fluxo até 360min de operação. CaSO₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	129
Figura 9.8- Mecanismos de queda do fluxo até 360 min. CaSO₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	130
Figura 9.9- Mecanismos de queda do fluxo até 150 min. CaSO₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	131
Figura 9.10- Evolução da (a) resistência hidráulica e suas derivadas com tempo: (b) até 360 minutos; e (c) até 150 minutos. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	131
Figuras 9.11- Modelos de resistência de Koyuncu para o ensaio de curta duração. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	132
Figura 9.12- Queda do fluxo do ensaio de longa duração. CaSO₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	133
Figuras 9.13- Mecanismos de queda do fluxo do ensaio de longa duração- CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25ºC.	133
Figura 9.14- Mecanismos de queda do fluxo do ensaio até 1800 min. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C. Figura 9.15- Mecanismos de queda do fluxo do ensaio até 1500min. CaSO ₄ 4000mg/L : 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	134 135
Figura 9.16- Mecanismos de queda do fluxo do ensaio até 650 min. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25° C.	135
Figura 9.17- Evolução da resistência hidráulica total com o tempo. CaSO₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	136

Figura 9.18- Derivada da resistência hidráulica total com o tempo. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	136
Figura 9.19- Micrografia da superfície da membrana após 2h de operação dos ensaios de saturação com CaSO4, aumento de 5000x.	139
Figura 9.20- (a) Micrografia com aumento de 2000x após 6h operação CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C. (b) Morfologia de cristal monoclínico de gipsita.	140
Figura 9.21- Espectros da análise elementar da incrustação por EDS metalizado com Au.	142
Figura 9.22- Espectros da análise elementar da incrustação por EDS metalizado com C.	142
Figura 9.23- Espectros de DRX da incrustação de cristal monoclínico de gipsita (CaSO ₄ .2H ₂ O).	143
Figura 9.24- Influência do SHMP 5mg/L e EDTA 0,5%, adicionados no início em batelada única, na queda do fluxo permeado. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	144
Figura 9.25- Indicadores de incrustação em ensaios com SHMP 5mg/L. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	147
Figura 9.26- Indicadores de incrustação em ensaios com EDTA 0,5%. CaSO₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	149
Figuras 9.27- Mecanismos de Hermia dos ensaios com SHMP 5mg/L e EDTA 0,5%. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	150
Figura 9.28- Mecanismos de Hermia dos ensaios com antiincrustantes: (a) EDTA 0,5%; (b) SHMP 5mg/L. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	150
Figura 9.29- Mecanismos de Field do ensaio com antiincrustantes(a) EDTA 0,5%; (b) SHMP 5mg/L. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	151
Figura 9.30- modelo de resistências dos ensaios dos ensaios com SHMP 5-50mg/L e EDTA 0,5%. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s (Re=108); 30bar; 25°C.	152
Figura 9.31- Modelo de Koyuncu para os ensaios dos ensaios com SHMP 5-50mg/L e EDTA 0,5%. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s (Re=108); 30bar; 25°C; t(h).	152
Figura 9.32- Micrografia de operação de CaSO₄ 4000mg/L com SHMP 5mg/L 0h (500x). 7,5L/h; 0,03m/s(Re=108); 30bar; 25ºC.	155

Figura 9.33- espectros da análise elementar da incrustação CaSO ₄ +SHMP por EDS metalizado com C.	156
Figura 9.34- Influência dos antiincrustantes SHMP 20mg/L e EDTA 0,5% no fluxo permeado. CaSO ₄ 4000mg/L 7,5L/h; 0,03m/s (Re=108); 30bar; 25°C.	158
Figura 9.35- Indicadores de incrustação em ensaios de inibição com SHMP 20mg/L. CaSO₄ 4000mg/L 7,5L/h; 0,03m/s(Re=108); 30bar; 25ºC.	160
Figura 9.36- Indicadores de incrustação em ensaios com EDTA 0,5%. CaSO ₄ 4000mg/L 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	161
Fig. 9.37- Influência dos inibidores EDTA e SHMP na polarização de concentração. CaSO ₄ 4000mg/L 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	162
Figura 9.38- Mecanismos de Field do ensaio com EDTA 0,5%. CaSO₄ 4000mg/L 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	162
Figura 9.39- Modelo de resistências dos ensaios com antiincrustantes SHMP5-20mg/L e EDTA 0,5%. CaSO ₄ 4000mg/L 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	163

Lista de tabelas

Tabela 2.1- Características mais relevantes dos processos de Separação por membranas.	21
Tabela 3.1- valores de rejeição de membranas de OI, NF e UF para diferentes espécies.	34
Tabela 3.2- Rejeição de diversos solutos por membranas comerciais de NF e OI.	35
Tabela 4.1- Classificação dos tipos de colmatação e seus agentes.	53
Tabela 5.1- tipos de colmatação e seus pré-tratamentos.	80
Tabela 6.1- tipos de colmatação e seus tratamentos químicos.	102
Tabela 9.1- Parâmetros de avaliação da queda do fluxo em ensaios de soluções salinas com a membrana TFC. NaCl 1000mg/L; Na ₂ SO ₄ 1000 mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	124
Tabela 9.2- Rejeições aos sais em ensaios com CaSO ₄ 4000 mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	126
Tabela 9.3 Valores dos raios hidratados dos íons.	127
Tabela 9.4- Micrografias da superfície da membrana antes e após os ensaios. CaSO ₄ 4000mg/L; 7,5 L/h; 0,03m/s(Re=108); 30bar; 25°C.	138
Tabela 9.5- Rejeições aos sais em ensaios com SHMP 5mg/L. CaSO₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25ºC.	145
Tabela 9.6- Rejeições aos sais em ensaios com EDTA 0,5%. CaSO₄ 4000mg/L; 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	147
Tabela 9.7- Micrografias da membrana após ensaios dos ensaios com SHMP 5mg/L e EDTA 0,5%. CaSO ₄ 4000mg/L; 7,5L/h; 0,03m/s (Re=108); 30bar; 25°C.	154
Tabela 9.8 Rejeições aos sais em ensaios com SHMP 20mg/L. CaSO₄ 4000mg/L 7,5L/h; 0,03m/s(Re=108); 30bar; 25ºC.	159
Tabela 9.9- Rejeições aos sais em ensaios com EDTA 0,5%. CaSO₄ 4000mg/L 7,5L/h; 0,03m/s(Re=108); 30bar; 25ºC.	161
Tabela 9.10- Micrografias da membrana após ensaios de CaSO ₄ com antiincrustantes SHMP 20mg/L e EDTA 0,5%. CaSO ₄ 4000mg/L 7,5L/h; 0,03m/s(Re=108); 30bar; 25°C.	164

Lista de símbolos e abreviaturas

d- difusividade D- água destilada DI- água deionizada EDS- detector de energia dispersiva Jp- Fluxo permeado líquido (L.m⁻².h⁻¹) K- coeficiente de transferência de massa MEV- microscopia eletrônica de varredura MF- microfiltração NF- nanofiltração OI- osmose inversa P-pressão (bar) PC- polarização de concentração PSM- processo de separação por membranas Q- Vazão (L.h⁻¹) Re- número de Reynolds t - Tempo (s) T- Temperatura (°C) UF- ultrafiltração Vfc- velocidade de fluxo tangencial (m.s⁻¹)

Lista de anexos

Anexo I - Calibração da Bomba de Diafragma de Alta Pressão.	195
Anexo II - Calibração do Condutivímetro Quimis modelo Q-450 e Testes de Rejeição da membrana TFC-SR.	196
Anexo III – Determinação do Fluxo em Estado Estacionário ou Limite.	198
Anexo IV - Cálculos dos Estudos dos Mecanismos de Formação das Incrustações.	199
Anexo V - Cálculos dos Indicadores do Processo.	200