
Matheus de Sousa Suknaic

Approximate Born Again tree ensembles

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor : Prof. Marco Serpa Molinaro
Co-advisor: Prof. Thibaut Victor Gaston Vidal

Rio de Janeiro
August 2021

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Matheus de Sousa Suknaic

Approximate Born Again tree ensembles

Dissertation presented to the Programa de Pós-graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee:

Prof. Marco Serpa Molinaro
Advisor

Departamento de Informática – PUC-Rio

Prof. Thibaut Victor Gaston Vidal
Co-advisor

Departamento de Informática – PUC-Rio

Prof. Eduardo Sany Laber
Departamento de Informática – PUC-Rio

Prof. Maximilian Schiffer
TUM

Rio de Janeiro, August 13th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

All rights reserved.

Matheus de Sousa Suknaic

Obtained a bachelor in Computer Engineering (2019) at the
Pontifical Catholic University of Rio de Janeiro (PUC-Rio).

Bibliographic data
Suknaic, Matheus de Sousa

Approximate Born Again tree ensembles / Matheus de
Sousa Suknaic; advisor: Marco Serpa Molinaro; co-advisor:
Thibaut Victor Gaston Vidal. – 2021.

63 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2021.

Inclui bibliografia

1. Conjuntos de árvores. 2. Árvores de decisão. 3.
Machine Learning interpretável. 4. Modelos de compressão de
dados. I. Molinaro, Marco. II. Vidal, Thibaut. III. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Acknowledgments

I would like to first thank my advisor, Marco Molinaro, my co-advisor, Thibaut
Vidal, and Maximiliam Schiffer for all the insightful discussions and time/work
dedicated.

I also would like to thank my parents for always encouraging me and being in
every step with me.

Lastly, I would like to thank my boyfriend and my friends, you always have
raised my spirits, even when I thought I could not do it.

This study was financed in part by the Coordenação de Aperfeiçoamento
Pessoal de Nível Superior (CAPES) – Finance Code 001, and I am very
grateful for this scholarship.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Abstract

Suknaic, Matheus de Sousa; Molinaro, Marco (Advisor); Vidal,
Thibaut (Co-Advisor). Approximate Born Again tree ensem-
bles. Rio de Janeiro, 2021. 63p. Dissertação de Mestrado – Depar-
tamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

Ensemble methods in machine learning such as random forest, boosting,
and bagging have been thoroughly studied and proven to have better accuracy
than using a single predictor. However, their drawback is that they give models
that can be much harder to interpret than those given by, for example, decision
trees. In this work, we approach in a principled way the problem of constructing
a decision tree that approximately reproduces a tree ensemble, exploring the
tradeoff between accuracy and interpretability that can be obtained once exact
reproduction is relaxed.

First, we formally define the problem of obtaining the decision tree of a
given depth that is most adherent to a tree ensemble and give a Dynamic
Programming algorithm for solving this problem. We also prove that the
decision trees obtained by this procedure satisfy generalization guarantees
related to the generalization of the original tree ensembles, a crucial element
for their effectiveness in practice. Since the computational complexity of the
Dynamic Programming algorithm is exponential in the number of features, we
also design heuristics to compute trees of a given depth with good adherence
to a tree ensemble.

Finally, we conduct a comprehensive computational evaluation of the
algorithms proposed. The results indicate that in many situations, there is little
or no loss in accuracy in working more interpretable classifiers: even restricting
to only depth-6 decision trees, our algorithms produce trees with average
accuracies that are within 1% (for the Dynamic Programming algorithm) or
2% (heuristics) of the original random forest.

Keywords
Tree ensembles; Decision Tree; Interpretable machine learning; Model

compression.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Resumo

Suknaic, Matheus de Sousa; Molinaro, Marco; Vidal, Thibaut. Ár-
vores BA aproximadas. Rio de Janeiro, 2021. 63p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Métodos ensemble como random forest, boosting e bagging foram exten-
sivamente estudados e provaram ter uma acurácia melhor do que usar apenas
um preditor. Entretanto, a desvantagem é que os modelos obtidos utilizando
esses métodos podem ser muito mais difíceis de serem interpretados do que por
exemplo, uma árvore de decisão. Neste trabalho, nós abordamos o problema de
construir uma árvore de decisão que aproximadamente reproduza um conjunto
de árvores, explorando o tradeoff entre acurácia e interpretabilidade, que pode
ser alcançado quando a reprodução exata do conjunto de árvores é relaxada.

Primeiramente, nós formalizamos o problem de obter uma árvore de de-
cisão de uma determinada profundidade que seja a mais aderente ao conjunto
de árvores e propomos um algoritmo de programação dinâmica para resolver
esse problema. Nós também provamos que a árvore de decisão obtida por esse
procedimento satisfaz garantias de generalização relacionadas a generalização
do modelo original de conjuntos de árvores, um elemento crucial para a efe-
tividade dessa árvore de decisão em prática. Visto que a complexidade com-
putacional do algoritmo de programação dinâmica é exponencial no número
de features, nós propomos duas heurísticas para gerar árvores de uma deter-
minada profundidade com boa aderência em relação ao conjunto de árvores.

Por fim, nós conduzimos experimentos computacionais para avaliar os
algoritmos propostos. Quando utilizados classificadores mais interpretáveis, os
resultados indicam que em diversas situações a perda em acurácia é pequena
ou inexistente: restrigindo a árvores de decisão de profundidade 6, nossos
algoritmos produzem árvores que em média possuem acurácias que estão a
1% (considerando o algoritmo de programção dinâmica) ou 2% (considerando
os algoritmos heurísticos) do conjunto original de árvores.

Palavras-chave
Conjuntos de árvores; Árvores de decisão; Machine Learning inter-

pretável; Modelos de compressão de dados.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Table of contents

1 Introduction 12
1.1 Our contributions 12
1.2 Organization 14

2 Literature Review 15
2.1 Tree ensemble pruning methods 15
2.2 Rule Extraction methods 16
2.3 Ensemble representation using a single decision tree 17
2.3.1 General methods 17
2.3.2 Methods specific to tree ensembles 18

3 Problem definition 20
3.1 Problem MaxAdherence 20

4 Exact and heuristic methods 23
4.1 Dynamic Programming Algorithm 23
4.2 Heuristic methods 25
4.2.1 Beam search and greedy heuristics 25

5 Statistical guarantees 27
5.1 Guarantee for empirical measure 27
5.2 Guarantee for learnable distributions 30

6 Experimental Results 32
6.1 Datasets and experimental setup 32
6.2 Algorithms tested 33
6.3 Dynamic Programming algorithm 34
6.3.1 Adherence and computational time 34
6.3.2 Classification accuracy 36
6.4 Heuristic methods 39
6.4.1 Adherence and computational time 39
6.4.2 Classification accuracy 40

7 Conclusions 44

A Appendix 51
A.1 Filtering cell-breakpoints 51
A.2 Adherence and computational time for the Dynamic Programming

algorithm 51
A.3 Adherence and computational time for the heuristics 55
A.4 F1-score for the DP and heuristics 61

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

List of figures

Figure 3.1 Representation of the random forest, the resulting fea-
ture space with two features (f1 and f2), two classes (represented
by the black and white circles), the labeled examples (repre-
sented as x’s) and a cell. Actually the cells on the first and last
rows and columns extend to infinity to cover the remainder of
the space. 21

Figure 4.1 Representation of a feature space with two features and
the division of the region (zL, zR) into two subregions with the
selected feature j = 1 and cell-breakpoint `. 24

Figure 6.1 Average adherence obtained by the Dynamic Program-
ming algorithm. 35

Figure 6.2 Average runtime of the Dynamic Programming algorithm. 35
Figure 6.3 Dynamic Programming average accuracy over all in-

stances. RF denotes the average accuracy of the random forests
reproduced, and DT the average accuracy of the decision trees
computed directly from the data. 36

Figure 6.4 Average adherence obtained by the heuristic algorithms. 39
Figure 6.5 Average runtime obtained by the heuristic algorithms. 40
Figure 6.6 Average accuracy obtained by the heuristic algorithms.

RF denotes the average accuracy of the random forests repro-
duced, and DT the average accuracy of the decision trees com-
puted directly from the data. 41

Figure A.1 Representation of two cell break-points ` and `′, ` can
be discarded, while `′ cannot. 51

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

List of tables

Table 6.1 Dataset characteristics, and number of trees and maxi-
mum tree depth for the computed random forests for each dataset. 33

Table 6.2 Accuracy for the dynamic programming method with
volume and empirical measure cell-importance functions and
depth set as 4. The results in bold represent the instances where
the BA tree has a higher accuracy than the decision tree. 37

Table 6.3 Accuracy for the dynamic programming method with
volume and empirical measure cell-importance functions and
depth set as 5. The results in bold represent the instances where
the BA tree has a higher accuracy than the decision tree. 38

Table 6.4 Accuracy for the dynamic programming method with
volume and empirical measure cell-importance functions and
depth set as 6. The results in bold represent the instances where
the BA tree has a higher accuracy than the decision tree. 38

Table 6.5 Accuracy for the greedy and the beam search heuristics
with volume and empirical measure cell-importance functions
and depth set as 4. The results in bold represent the instances
where the BA tree has a higher accuracy than the decision tree. 42

Table 6.6 Accuracy for the greedy and beam heuristics with volume
and empirical measure cell-importance functions and depth set
as 5. The results in bold represent the instances where the BA
tree has a higher accuracy than the decision tree. 42

Table 6.7 Accuracy for the greedy and beam search heuristics with
volume and empirical measure cell-importance functions and
depth set as 6. The results in bold represent the instances where
the BA tree has a higher accuracy than the decision tree. 43

Table A.1 Adherence and runtime for the dynamic programming
method with volume and empirical measure cell-importance
functions and depth set as 4. 52

Table A.2 Adherence and runtime for the dynamic programming
method with volume and empirical measure cell-importance
functions and depth set as 5. 53

Table A.3 Adherence and runtime for the dynamic programming
method with volume and empirical measure cell-importance
functions and depth set as 6. 54

Table A.4 Adherence and runtime for the greedy heuristic with
volume and empirical measure cell-importance functions and
depth set as 4. 55

Table A.5 Adherence and runtime for the greedy heuristic with
volume and empirical measure cell-importance functions and
depth set as 5. 56

Table A.6 Adherence and runtime for the greedy heuristic with
volume and empirical measure cell-importance functions and
depth set as 6. 57

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Table A.7 Adherence and runtime for the beam search heuristic with
volume and empirical measure cell-importance functions and
depth set as 4. 58

Table A.8 Adherence and runtime for the beam search heuristic with
volume and empirical measure cell-importance functions and
depth set as 5. 59

Table A.9 Adherence and runtime for the beam search heuristic with
volume and empirical measure cell-importance functions and
depth set as 6. 60

Table A.10 F1-score for the dynamic programming method with
volume and empirical measure cell-importance functions and
depth set as 4. 61

Table A.11 F1-score for the dynamic programming method with
volume and empirical measure cell-importance functions and
depth set as 5. 61

Table A.12 F1-score for the dynamic programming method with
volume and empirical measure cell-importance functions and
depth set as 6. 62

Table A.13 F1-score for the greedy and the beam search heuristics
with volume and empirical measure cell-importance functions
and depth set as 4. 62

Table A.14 F1-score for the greedy and the beam search heuristics
with volume and empirical measure cell-importance functions
and depth set as 5. 63

Table A.15 F1-score for the greedy and the beam search heuristics
with volume and empirical measure cell-importance functions
and depth set as 6. 63

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

List of Abreviations

DP - Dynamic Programming
BA - Born Again
DT - Decision Tree

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

1
Introduction

Ensemble methods such as random forest [Breiman, 2001], boosting
[Freund and Schapire, 1997, Schapire and Freund, 2012, Breiman, 1997], and
bagging [Breiman, 1996] have been thoroughly studied and proven to have
better accuracy than using a single predictor. For this reason, they are well-
known and widespread, being present in many different machine learning
applications. However, the main drawback of ensemble methods is that as the
size of the ensemble grows, its complexity makes it harder to understand how
and why the model made a specific decision. Indeed, many applications must
fulfill safety, privacy, and ethical guidelines. For these cases, interpretability
and explainability are as crucial as having a model with strong predictive
performance. The area of interpretable and explainable machine learning has
attracted much attention recently [Guidotti et al., 2018, Rudin et al., 2021,
Carvalho et al., 2019].

A specific case that illustrates the tradeoff between accuracy and inter-
pretability is that of decision trees (ensembles). Single decision trees (e.g., those
produced by CART) are well-known for their interpretability, whereas tree en-
sembles and gradient boosting approaches allow for high prediction quality but
are generally more opaque and redundant.

Motivated by the idea to understand the behavior of a complex ensemble
classifier through a simpler model, [Breiman and Shang, 1996] proposed the
construction of a single decision tree to reproduce the behavior of a tree
ensemble. Recently, [Vidal and Schiffer, 2020] revisited this idea and formally
defined the problem of finding the shortest decision tree that reproduces the
decisions of a tree ensemble exactly over the whole space Rd. However, requiring
exact reproduction is a strong requirement that forces the use of large decision
trees, undermining its interpretability.

1.1
Our contributions

In this work, using [Vidal and Schiffer, 2020] as the starting point, we
approach in a principled way the problem of constructing a decision tree that
only approximately reproduces a tree ensemble, exploring the tradeoff between

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 1. Introduction 13

accuracy and interpretability that can be obtained once exact reproduction
is relaxed. We call these approximate born-again trees. More precisely, our
contributions are the following:

1. First, we formally define the problem of obtaining the decision tree of a
given depth that is most adherent to a tree ensemble. The depth is used
to enforce interpretability of the resulting BA tree. In order to preserve
the generalization properties of tree ensembles, adherence is not defined
based on samples but actually over the continuous space Rd, based on the
cells induced by the ensemble (see Section 3.1). The general formulation
allows the use of any measure of cell-importance. Moreover, we give a
Dynamic Programming algorithm for solving this general problem.

2. We prove that for several measures of cell-importance, the approximate
BA trees obtained by this procedure satisfy generalization guarantees
related to the generalization of the original tree ensembles. The inter-
pretable trees constructed (approximately) inherit the strong generaliza-
tion properties of tree ensembles, a crucial element for their effectiveness
in practice.

3. Since the computational complexity of the Dynamic Programming algo-
rithm is exponential in the number of features and hence not applicable
to larger datasets, we design two heuristics to compute approximate BA
trees of a given depth with good adherence to a tree ensemble.

4. We conduct a comprehensive computational evaluation of the model and
algorithms proposed to better understand the accuracy/interpretability
tradeoffs obtained, using random forests as the tree ensemble. Consid-
ering the concept of transparency proposed in [Lipton, 2018], we only
consider trees ranging from depth one to six since we assume deeper
trees to no longer be easily interpretable. The results indicate that in
many situations, there is little or no loss in accuracy in working with
more interpretable classifiers: even restricting to only depth 6 decision
trees, our algorithms produce BA trees with average accuracies that are
within 1% (for the Dynamic Programming algorithm) or 2% (heuristics)
of the original random forest.

.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 1. Introduction 14

1.2
Organization

This work is organized as follows: Chapter 2 focuses on the related work,
divided into tree ensemble pruning methods, rule extraction methods, and
ensemble representation using a decision tree. Chapter 3 formally defines
the problem of obtaining the decision tree of a given depth that is most
adherent to a tree ensemble and the cell-importance functions. Chapter 4
describes the dynamic programming and heuristic methods. Chapter 5 proves
the statistical guarantees for BA trees created using different cell-importance
functions. Chapter 6 discusses the conducted experiments, their results, and
our observations. Finally, Chapter 7 expresses our concluding remarks about
our findings and discusses possible trajectories for future work.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

2
Literature Review

In this section, we review studies related to our work, conducting a
systematic literature review. In total, we have retrieved 37 papers related to
our study. They can be divided into three main categories: pruning methods
for tree ensembles, rule extraction methods, and ensemble representation using
a decision tree.

2.1
Tree ensemble pruning methods

Pruning methods were one of the first approaches studied to cre-
ate more interpretable classifiers (in addition to helping their generaliza-
tion properties). One of the first works in pruning of tree ensembles was
[Margineantu and Dietterich, 1997], which proposed different pruning algo-
rithms for an ensemble produced using AdaBoost.

Following this work, many studies focused on creating a selection strat-
egy to extract a set of the best decision trees to represent the tree en-
semble. [Bernard et al., 2009] selected subsets of trees using SFS (Sequen-
tial Forward Selection) and SBS (Sequential Backward Selection) that out-
perform the original tree ensemble. [Latinne et al., 2001] created a procedure
based on the McNemar non-parametric test of significance that chooses a
combination of a minimal number of classifiers, obtaining a prediction ac-
curacy level similar to the one obtained with the combination of larger en-
sembles. [Hernández-Lobato et al., 2009] have developed a statistical method
on how many classifiers need to be queried in an ensemble to determine the
prediction of the complete ensemble with a specified confidence level and,
[Meinshausen, 2009] proposed a pruning method for tree ensembles, where
nodes are gathered in groups and afterwards is decided which groups should
remain and which should be discarded.

Succeeding these works, [Joly et al., 2012] reformulated the tree
ensemble-based model as a linear model in terms of node indicator functions
and used a L1-norm regularization approach to select a minimal subset of these
indicator functions while maintaining predictive accuracy. [Nan et al., 2016]
have formulated the pruning problem as a 0-1 integer linear program that in-

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 2. Literature Review 16

corporates feature-reuse constraints, whereas [Ren et al., 2015] have proposed
a global pruning method that merges insignificant leaves through the creation
of a mathematical programming model. [Painsky and Rosset, 2018] have cre-
ated a method to compress a random forest based on probabilistic modeling
of the ensemble’s trees, followed by model clustering via Bregman divergence.
The outcome is a simpler model that is able to retain the completeness and
accuracy of the forest.

There have also been tree sub-selection procedures taking diversity into
account. For example, [Adnan and Islam, 2016] simultaneously selected a set
of accurate and diverse trees through a genetic algorithm, which produces
an effective sub-forest. [Zhou and Tang, 2003] also developed a genetic al-
gorithm to decide which of the trees from the original ensemble should re-
main and which should be discarded, based on their validation error, and
[Zouggar and Adla, 2019] created a diversity-based heuristic measure that is
used to simplify a random forest ensemble.

Lastly, several other works defined new tree ensemble metrics to be
used for pruning. [Yang et al., 2012] proposed four margin metrics and a
pruning method for random forests that is formulated as a margin optimization
problem, and [Jiang et al., 2017] selected which branches to prune based on
a new metric called branch importance, which indicates the importance of a
branch (or a node) concerning the whole ensemble.

2.2
Rule Extraction methods

Even though rule-based methods are not the goal of our study, they have
a similar approach to decision trees: their decisions are based on a set of rules.
Therefore, we decide to mention some of the works in this domain, where the
main goal is also to provide interpretability to an ensemble classifier.

One of the earliest works was proposed by [Friedman and Popescu, 2008]
and focused on extracting rules from an ensemble while retaining an approx-
imate accuracy through reformulating the original model using a regularized
linear model. Following this work, [Sirikulviriya and Sinthupinyo, 2011] con-
centrated on integrating a pair of rules from a random forest incrementally and
then have these newly integrated rules replace the original rules. [Deng, 2014]
created a framework to extract, measure, prune and select rules from a tree
ensemble to compose into a simple learner.

In recent years, [Hara and Hayashi, 2018] have extracted a simple model
from a tree ensemble by adopting a probabilistic model representation of the
tree ensemble, then reducing it to a bayesian model selection problem, whereas

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 2. Literature Review 17

[Mollas et al., 2020] developed a framework to make a local explanation to a
random forest, through the extraction of its rules. This framework reduces the
number of features and paths, having as output a set of rules interpreted in
natural language.

However, note that unlike our main goal, these previous works do not
provide a way of represent tree ensembles using a single decision tree.

2.3
Ensemble representation using a single decision tree

The existing works in this direction can be divided into two categories:
methods tailored explicitly for tree ensembles and methods used on any
ensemble learner.

2.3.1
General methods

Initial studies were proposed by [Craven and Shavlik, 1995] and
[Krishnan et al., 1999]. [Craven and Shavlik, 1995] have created a method
for extracting comprehensible, symbolic representations from trained neu-
ral networks into a decision tree using an oracle. During the same period,
[Krishnan et al., 1999] extracted decision trees from input data generated
from trained neural networks instead of doing it directly from the data, using
a genetic algorithm and prototype selection procedure.

Following these studies, [Prodromidis and Stolfo, 2001] focused on creat-
ing a method based on decision tree pruning to prune an ensemble of meta-
classifiers and map the ensemble to a decision tree classifier. In contrast,
[Boz, 2002] extracted decision trees from trained neural networks by defin-
ing a new evaluation for splitting and pruning of the resulting tree in a way to
maximize the fidelity between this simpler classifier and the Neural Network.

In recent years, [Frosst and Hinton, 2017] used a neural network to
train a decision tree with lower accuracy, however higher interpretability, and
[Bai et al., 2020] have proposed a knowledge distillation method to create rec-
tified decision trees that use hard and soft labels from a more complex model.
[Yang et al., 2018] developed a method that recursively partitions the input
variable space by maximizing the difference in the contribution of input vari-
ables averaged from local explanations between these spaces, generating a
binary decision tree, whereas [Bastani et al., 2019] have built a tree from a
black-box model fitting a mixture of Gaussians for the underlying distribution,
actively sampling new samples from it and then proposing a greedy algorithm
to construct the classifier. Lastly, [Zhou and Hooker, 2016] proposed a proce-

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 2. Literature Review 18

dure to build a decision tree that approximates the performance of complex
machine learning models. They have introduced an improved splitting method
designed to stabilize tree structure.

2.3.2
Methods specific to tree ensembles

The three initial studies were conducted by [Breiman and Shang, 1996],
[Shannon and Banks, 1999], and [Quinlan, 1999]. [Breiman and Shang, 1996]
created more training samples using a tree ensemble, and this new data was
used to create a decision tree to represent the ensemble, while [Quinlan, 1999]
was interested in first applying boosting on small tree ensembles and after-
wards combining all decision trees into one. [Shannon and Banks, 1999] have
proposed a distribution on tree structures and a distance metric between two
trees of the ensemble. A numerical search is performed using this distance
metric to find the maximum likelihood estimate of the central tree parame-
ter. This maximum likelihood estimate of the central tree is proposed as the
representation of the tree structure.

Succeeding these initial studies, [Van Assche and Blockeel, 2007] have
created a procedure to learn a first-order decision tree that approximates the
decisions made by an ensemble of first-order decision trees through candidate
tests and heuristics. [Schetinin et al., 2007] used a probabilistic interpretation
of Bayesian decision tree ensembles based on the quantitative evaluation of
uncertainty of each decision tree, allowing experts to find the tree that provides
high predictive accuracy and confident outcomes.

In the last decade, there were many different research directions proposed.
[Tan et al., 2020] have used prototypes, representative points of the dataset,
that are selected for each class and used to provide a better interpretation of
the tree ensemble classifier. [Johansson et al., 2011] have proposed a method
to approximate a random forest to a single decision tree, using an oracle coach
(a strong classifier), whereas [Vandewiele et al., 2017] constructed a decision
tree from a tree ensemble through a genetic algorithm.

From all these previous studies, the only two that have considered the
ensemble behavior over the entire feature space were [Quinlan, 1999] and
[Vandewiele et al., 2017]. The main drawback in [Quinlan, 1999] is in the fact
that only small ensembles of trees (three decision trees) were considered, and
the resulting decision tree was already large (a considerable number of leaves),
not being interpretable. As for [Vandewiele et al., 2017], the authors do not
mention the fidelity nor the depth of the resulting decision trees. Thus, it is

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 2. Literature Review 19

not easy to assess how well the resulting model reproduces the ensemble and
if it is interpretable.

The most important paper for our work, indeed its starting point, is that
of [Vidal and Schiffer, 2020]. There, the authors have considered the task of
reproducing the behavior of a tree ensemble exactly over the whole feature
space using a decision tree, i.e., a decision tree that for all possible data points
makes the same classification as the original tree ensemble. They have called
these Born-Again (BA) trees. They have proposed a dynamic programming
algorithm to build the smallest BA tree (in terms of depth or number of leaves).
In addition, they have proposed a heuristic that still produces Born-Again trees
(i.e., completely faithful to the tree ensemble) that aim to minimize the tree’s
size. The main disadvantage of these methods is that since they require exact
reproduction of the tree ensemble, even the smallest BA tree can be quite large
and undermine the desired interpretability.

After considering all proposed works, we have decided to leverage the
notion of exact BA trees used in [Vidal and Schiffer, 2020] to obtain in a
principled way a more practical decision tree representation of tree ensembles.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

3
Problem definition

Broadly speaking, we are interested in supervised classification: There
is a p-dimensional feature space Rp and a set of possible classes Y . Given
labeled examples (x1, y1), . . . (xn, yn) ∈ Rp × Y sampled from an unknown
distribution µ, the overall goal is to learn a (interpretable) classifier F :
Rp → Y with small classification error over the whole distribution, i.e.
Pr(X,Y)∼µ(F (X) 6= Y).

A tree ensemble τ is a collection of decision trees T with weights wT . The
ensemble τ classifies a point x ∈ Rp by taking weighted majority vote over the
classifications T (x) given by its trees.1 We use τ(x) to denote the classification
it assigns to point x ∈ Rp.

3.1
Problem MaxAdherence

Our main goal in this work is to obtain a decision tree T with at most a
given depth2 d that has the closest behavior possible to a given tree ensemble τ .
This similarity of behavior should hold over the whole space Rp, and not only
labeled examples available in order for T to obtain performance comparable
to that of τ on unseen data.

To formally define the notion “closest behavior over the whole Rp”, we
need the concept of a cell of τ . Recall that each node of a decision tree is
associated with a hyperplane of the form {x ∈ Rp : xj = c}, that is, it defines
the split of the feature j at value c. Given a tree ensemble τ , let Hj be the set
of all hyperplanes for feature j over all nodes of all trees in τ . The union of
all these hyperplanes ⋃pj=1 Hj partitions Rp into cells, that is, a set of disjoint
(up to measure 0) hypercubes in Rp (see Figure 3.1). We use C(τ) to denote
the set of all cells of τ .

The problem MaxAdherence is then that of finding a decision tree of
bounded depth that exactly reproduces “most” of the cells of τ . More precisely:
Given a tree ensemble τ , a cell-importance function v : C(τ)→ R, and a depth

1In case of tie, when Y is a subset of R we assume the ensemble returns the class that is
the smallest number.

2By depth of a tree, we mean the number of edges on the longest root-to-leaf path. In
particular, a tree consisting of a single leaf is said to have depth 0.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 3. Problem definition 21

Figure 3.1: Representation of the random forest, the resulting feature space
with two features (f1 and f2), two classes (represented by the black and white
circles), the labeled examples (represented as x’s) and a cell. Actually the cells
on the first and last rows and columns extend to infinity to cover the remainder
of the space.

upper bound d ∈ N, find the decision tree T that solves

max
T

∑
C∈C(τ)

v(C) · 1(T (C) = τ(C))

depth(T) ≤ d,

(MaxAdherence)

where 1(T (C) = τ(C)) is the indicator that T ’s and τ ’s classifications agree
on all points in the cell C. The objective value ∑C∈C(τ) v(C) ·1(T (C) = τ(C))
is called the adherence of T (w.r.t. τ).

Since the cells of τ may have different importance for the classification
task at hand (e.g. there may be a large/small probability µ(C) of encountering
a data point in cell C), MaxAdherence allows this to be taken into account
via the function v(·). Even though the true distribution µ of the data is not
known, there are several natural ways of assigning importance to these cells.

Example 1 (Volume) If no sample data is available, one can also set v(C)
to be the Lebesgue volume of the cell C. Since cells are hypercubes ∏j[aj, bj],
this volume can be computed very efficiently.

Example 2 (Empirical measure) If sample data (x1, y1), . . . , (xn, yn) is
available, one can set v(C) to be the empirical measure of the cell C, namely
the fraction of point xi’s that lie inside C. This provides an unbiased estimation
of the probability Pr(X,Y)∼µ(X ∈ C) that a (new) example falls in this cell. (In

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 3. Problem definition 22

fact, one can replace the empirical measure with more robust estimates, such
as kernel estimates.)

Example 3 (Parametric distributions) If one further assumes that the
marginal µ|Rp of the distribution µ over the features belongs (or is close to)
to a specific family F of distributions, one can use the available data to obtain
an estimate µ̂|Rp ∈ F of µ|Rp and use v(C) = µ̂|Rp(C). The advantage is that
one can typically obtain stronger statistical guarantees about these estimates
µ̂|Rp(C) ≈ µ|Rp(C) over all cells C simultaneously. A canonical choice of family
F is that of a mixture of Gaussians.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

4
Exact and heuristic methods

In this chapter, we first introduce a dynamic programming algorithm
used to solve to optimality the problem proposed in Chapter 3. Afterwards,
we describe heuristic methods that approximately solve the proposed problem
and mitigate the DP algorithm’s exponential nature.

4.1
Dynamic Programming Algorithm

Throughout this and the following Section 4.2, fix a tree ensemble τ input
for the MaxAdherence Problem. The main observation is that the optimal tree
for MaxAdherence only uses the hyperplanes in the tree ensemble τ since one
error in a cell makes it lose all its value. Recall that we use Hj = {h1

j , . . . , h
|Hj |
j }

to denote the set of all hyperplanes for feature j over all nodes of all trees in
τ , and that C(τ) is the set of cells of τ . For each element hj in a set Hj, we
consider that hij < hi+1

j , where i ∈ {1, . . . , |Hj| − 1}. To simplify the notation,
let Selem := ∏

j{1, 2, . . . , |Hj|} denote the set of all vectors that index the
hyperplanes of τ .

Consider two vectors zL ≤ zR in Selem, where the first can be thought as
the “lower-left corner” and the second as the “top-right corner”. These vectors
define a hypercube in Rp, a region of cells denoted by (zL, zR), see Figure 4.1.
More formally, if a cell C is the region enclosed within the parallel hyperplanes
(hi11 , hi1+1

1), . . . , (hipp , hip+1
p), then this cell belongs to the region (zL, zR) if and

only if the indices satisfy zLj ≤ ij ≤ zRj for all coordinates j.
Given a region (zL, zR) and depth limit d, we define the following as the

sub-problem of the dynamic programming procedure:

OPT(zL, zR, d) = maximum adherence to τ obtainable on region (zL, zR)

with a decision tree of depth at most d

= max
T

{ ∑
C∈(zL,zR)

v(C) · 1(T (C) = τ(C)) : depth(T) ≤ d

}

When the depth limit is d = 0, that is, only decision trees consisting of
a single leaf are allowed, OPT(zL, zR, 0) is obtained by classifying all points in

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 4. Exact and heuristic methods 24

the region (zL, zR) as with the class that has highest total importance in the
region, namely

OPT(zL, zR, 0) = max
y∈Y

∑
C∈(zL,zR):τ(C)=y

v(C).

When d > 0, i.e., can consider decision trees that branch at the root node,
the optimal value adherence is obtained by testing all features j and cell-
breakpoints ` that yield a non-trivial branching and computing the value on
the left and right branches recursively (see Figure 4.1):

OPT(zL, zR, d) =

 v(zL, zR) , if zL = zR

max
j

max
zL

j
≤`<zR

j

(
OPT

(
zL, (zR)j→`, d− 1

)
+ OPT

(
(zL)j→`, zR, d− 1

))
, if zL 6= zR

where for a vector u ∈ Rp we use uj→` to denote the vector obtained by
changing the j-th coordinate of u to value `. Then using zfirst = (1, . . . , 1) and
zlast = (|H1|, . . . , |Hp|) to denote the “first” and “last” cells of the ensemble τ ,
we see that OPT(zfirst, zlast, d) is the solution to the MaxAdherence problem,
namely the decision tree of depth at most d with maximum adherence to τ .

Given the above recurrence relations between the subproblems, the
optimal adherence OPT(zfirst, zlast, d) can then be computed recursively using
standard Dynamic Programming techniques.

Figure 4.1: Representation of a feature space with two features and the division
of the region (zL, zR) into two subregions with the selected feature j = 1 and
cell-breakpoint `.

Notice that the number of regions (zL, zR) is ∏j∈[p]

(
|Hj |

2

)
= Ω(∏j |Hj|2),

and so we have at least these many potential subproblems OPT(zL, zR, d).
Hence the worst-case complexity of the algorithm is exponential in the num-
ber of features p and deteriorates as the number of hyperplanes present in the
ensemble τ increases. We remark, however, that by using a recursive imple-
mentation of Dynamic Programming, not necessarily all subproblems will be

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 4. Exact and heuristic methods 25

evaluated, which leads to less extreme running times in practice. Nonetheless,
this exact algorithm is prohibitively slow on larger datasets. For this reason,
in the next section we propose heuristics for approximating the optimal value
OPT(zL, zR, d).

4.2
Heuristic methods

We propose two heuristic methods in this section: beam search and
greedy. These two heuristics significantly reduce the number of evaluated
recursions by approximately evaluating each region, selecting the best cell
break-points, and only branching on them, thus mitigating the DP exponential
nature.

4.2.1
Beam search and greedy heuristics

Similarly as we have done in the previous section 4.1, given a region
(zL, zR) and a depth limit d, we define the following as the sub-problem of the
beam search heuristic procedure:

Proxy(zL, zR, d) = maximum approximate adherence to τ obtainable on region (zL, zR)

with a decision tree of depth at most d

However, instead of branching in all possible cell break-points as de-
scribed in 4.1, the beam search heuristic only does for a set of K cell break-
points. Therefore, this heuristic calculates an approximate adherence instead of
the optimal adherence for the region (zL, zR) and depth d. The greedy heuristic
is a particular case of the beam search, where we set K = 1.

For d = 0, we have that Proxy(zL, zR, 0) is obtained by classifying all
points in the region (zL, zR) as with the class that has highest total importance
in the region, thus

Proxy(zL, zR, 0) = max
y∈Y

∑
C∈(zL,zR):τ(C)=y

v(C),

which is the same definition proposed for OPT(zL, zR, 0).
When d > 0, for each feature j, it is selected the cell-break point ` that

maximizes the sum of the values of the two sub-regions: (zL, (zR)j→`) and

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 4. Exact and heuristic methods 26

((zL)j→`, zR); assuming that all points in these sub-regions are classified with
the class that has highest total importance in the region, namely:

max
zLj ≤`<z

R
j

(
Proxy

(
zL, (zR)j→`, 0

)
+ Proxy

(
(zL)j→`, zR, 0

))
, for j ∈ [p]

From these best j cell-break points, the K which yield the highest values
are chosen and the optimal value is computed on the left and right branches
recursively:

Proxy(zL, zR, d) =

 v(zL, zR) , if zL = zR

max`∈B
(
Proxy

(
zL, (zR)j→`, d− 1

)
+ Proxy

(
(zL)j→`, zR, d− 1

))
, if zL 6= zR

where B represents the set with the best K cell-break points. Formally, the
algorithm that implements this procedure is the following:

Algorithm 1 Beam Search
1: Input: Region (zL, zR) and depth d.

2: Output: Maximum approximate adherence to τ obtainable on region (zL, zR) with a decision
tree of depth at most d.

3: if zL = zR then
4: return zL value
5: end if
6: if (zL, zR, d) exists in memory then
7: return Proxy(zL, zR, d)
8: end if
9: if d = 0 then
10: Proxy(zL, zR, 0)← Value of the class that has highest total importance in (zL, zR)
11: Store (zL, zR, 0) and Proxy(zL, zR, 0) in memory
12: end if
13: for j ∈ {1, ..., p} do
14: for ` ∈ {zLj ≤ ` < zRj } do
15: valuesj` ← Proxy(zL, (zR)j→`, 0) + Proxy((zL)j→`, zR, 0)
16: end for
17: end for
18: B ← The K hyperplanes that have the highest values in values

19: for ` ∈ B do
20: best` ← Proxy

(
zL, (zR)j→`, d− 1

)
+ Proxy

(
(zL)j→`, zR, d− 1

)
21: end for
22: Proxy(zL, zR, d) ← Highest value from best

23: Store (zL, zR, d) and Proxy(zL, zR, d) in memory
24: return Proxy(zL, zR, d)

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

5
Statistical guarantees

In this chapter, we prove the statistical guarantees for BA trees created
using different cell-importance functions.

For that, we use the standard statistical learning setup: There is an un-
known distribution µ over Rd × Y (labeled examples), and there are indepen-
dent samples (X1, Y1), . . . , (Xm, Ym) ∼ µ available for building a classification
model M : Rd → Y . We are interested in models that have small population
error, namely

err(M) := Pr
(X,Y)∼µ

(M(X) 6= Y).

To make precise the idea of “tree T constructed based on a tree ensem-
ble τ , we say that T is subordinated to τ if for every cell C ∈ C(τ) the T (·) is
the constant function, i.e., it gives the same classification to all points in C.
Notice that all trees produced by the DP procedure from Chapter 4 satisfy
this property. Given such trees, define its adherence error with respect to the
cell-importance function v as:

diffv(T, τ) :=
∑

C∈C(τ):T (C)6=τ(C)
v(C).

Notice that our problem MaxAdherence is precisely that of finding a tree of
depth at most d that minimizes diffv(T, τ).

5.1
Guarantee for empirical measure

Given samples (X1, Y1), . . . , (Xm, Ym) from the true distribution µ, let
µ̂(A) := 1

m

∑
i 1(Xi ∈ A) for all A ⊆ Rd denote its empirical measure. As

indicated in Example 2, we can use the empirical measure to compute a “good”
decision tree T from a tree ensemble τ as follows:

1. Obtain samples (X1, Y1), . . . , (Xm, Ym) from µ.

2. Use the empirical measure µ̂ as the cell-importance function, namely set
v(C) = µ̂(C) for every cell C ∈ C(τ), and solve the MaxAdherence to

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 5. Statistical guarantees 28

obtain the tree T with largest adherence to τ w.r.t. µ̂ (or equivalently,
with minimum diffµ̂(T, τ)).

The next result shows that the tree T constructed in this way has
generalization error that can be compared to that of τ , the bound depending
on how “far” (in terms of diffµ̂) τ is from trees of depth d.

Theorem 5.1 Consider a tree ensemble τ ,m samples (X1, Y1), . . . , (Xm, Ym) ∼ µ,
and the empirical importance function µ̂ : C(τ)→ R defined above. Let T be a
(random) decision tree subordinated to τ constructed using τ and the samples
(Xi, Yi). Then with probability at least 1− δ1

err(T) ≤ err(τ) + diffµ̂(T, τ) +
∑

C

√
µ(C)(1−µ(C))√

m
+
√

2 log 1/δ
m

,

where the expectations is with respect to the samples Y1, . . . , Ym defining µ̂.

As we show in our computational experiments, in practice the adherence
error diffµ̂(T, τ) is not large for tree T of reasonable depth, see Section 6.3.1.

To prove Theorem 5.1 we need McDiarmid’s inequality.

Lemma 1 (Theorem 6.2 of [Boucheron et al., 2013]) Let f : Z → R be
a function such that

f(z1, . . . , zm)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm) ≤ 1

for all i and all zi, z′i ∈ Z. Then, if Z1, . . . , Zm are independent random
variables taking values in Z, we have

Pr
(
f(Z1, . . . , Zm) > Ef(Z1, . . . , Zm) + λ

)
≤ e

λ2
2m ∀λ ≥ 0.

Proof. Let ∆(T, τ) := Pr(X,Y)∼µ(T (X) 6= τ(X)) be the probability that T and τ
have different classifications. The population error of T can be upper bounded
using the error of τ plus this probability: for every scenario of the samples
X1, . . . , Xm,

err(T) = Pr
(X,Y)∼µ

(T (X) 6= Y) ≤ Pr
(X,Y)∼µ

(τ(X) 6= Y) + Pr
(X,Y)∼µ

(T (X) 6= τ(X)) = err(τ) + ∆(T, τ).

(5-1)

To simplify the notation let C = C(τ). It will also be convenient to see
the discrete distributions (µ(C))C and (µ̂(C))C as vectors in RC, namely the

1The quantity
∑

C

√
µ(C)(1− µ(C)) is known as the Bhattacharyya coefficient be-

tween the distributions (µ(C))C and (1 − µ(C))C , which (by Cauchy-Schwarz) is at most√
|C(τ)| − 1.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 5. Statistical guarantees 29

vectors p := (µ(C))C∈C and p̂ := 1
m

∑
i u(Xi) where u(x) := (1(x ∈ C))C∈C.

Then ∆(T, τ) can be upper bounded

∆(T, τ) =
∑

C∈C:T (C)6=τ(C)
µ(C) ≤

∑
C∈C:T (C) 6=τ(C)

µ̂(C)
︸ ︷︷ ︸

diffµ̂(T,τ)

+ ‖p− p̂‖1. (5-2)

Finally, we upper bound the last term with high probability. Its expec-
tation is

E ‖p− p̂‖1 =
∑
C∈C

E|pC − p̂C | ≤
∑
C∈C

√
E(pC − p̂C)2 =

∑
C∈C

√
pC(1−pC)

m
, (5-3)

where the inequality follows from concavity of the function
√
x and Jensen’s in-

equality, and the last equation is because m · p̂C follows a binomial distribution
with m trials and success probability pC and so its variance m2 · E(pC − p̂C)2

equals m · pC · (1− pC).
Moreover, define the function f given by

f(x1, . . . , xm) := ‖p− 1
m

∑
i u(xi)‖1,

so that f(X1, . . . , Xm) = ‖p − p̂‖1. The function f satisfies the bounded-
difference condition: by triangle inequality

f(x1, . . . , xm) ≤ ‖p− 1
m

∑
j 6=i u(xj)‖1 + ‖ 1

m
u(xi)‖1 and

f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm) ≥ ‖p− 1

m

∑
j 6=i u(xj)‖1 − ‖ 1

m
u(x′i)‖1

and hence

f(x1, . . . , xm)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm) ≤ 2

m
∀i, xi, x′i.

Then applying McDiarmid’s Inequality (Lemma 1) to f(X1, . . . , Xm) gives

Pr
(
‖p− p̂‖1 ≥ E ‖p− p̂‖1 +

√
2 log 1/δ

m

)
≤ δ.

Combining this inequality with inequalities (5-1), (5-2), and (5-3) concludes
the proof of the Theorem 5.1 �

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 5. Statistical guarantees 30

5.2
Guarantee for learnable distributions

Given two continuous distributions ν, ν ′ recall that their L1-distance is

‖ν − ν ′‖L1 :=
∫
|pdfν(x)− pdfν′(x)| dx.

Definition 5.2 ((α, ε, δ)-learnability) A family D of continuous distribu-
tions is (α, ε, δ)-learnable with m samples if there is a procedure that does
the following: for any continuous distribution ν (possibly outside of D), given
m samples X1, X2, ..., Xm from ν it outputs a distribution ν̂ ∈ D such that with
probability at least 1− δ

‖ν̂ − ν‖L1 ≤ α ·min
ν′∈D
‖ν ′ − ν‖L1 + ε.

We call such a procedure an (α, ε, δ)-learner for D.

As an example of learnable distributions we have the family of mixtures
of k Gaussians in Rd, which has been recently proved to be (12, ε, δ)-learned
with O(kd2

ε2
· polylog(kd

εδ
)) samples [Ashtiani et al., 2020].

This notion suggests the following way of computing a “good” decision
tree T from a tree ensemble τ :

1. Obtain samples (X1, Y1), . . . , (Xm, Ym) from the true distribution µ

2. Choose a learnable distribution D and use the samples to obtain a
distribution µ̂ ∈ D that is approximately closest µ

3. Use µ̂ as the cell-importance function, namely set v(C) = µ̂(C) for every
cell C ∈ C(τ), solve the MaxAdherence to obtain the tree T with largest
adherence to τ w.r.t. µ̂ (or equivalently, with minimum diffµ̂(T, τ)).

The next bound shows that the generalization power of the tree T

computed in this way can be compared to that τ , depending on how far the
true distribution µ is to the set D.

Theorem 5.3 Consider m samples (X1, Y1), . . . , (Xm, Ym) ∼ µ. Consider a
(random) tree ensemble τ that may depend on the samples (Xi, Yi)’s.

Let D be a family of distributions (α, ε, δ)-learnable with m samples, and
let µ̂ be the distribution returned by an (α, ε, δ)-learner. Let T be any (random)
decision tree subordinated to τ constructed using τ , the samples (Xi, Yi), and
µ̂. Then with probability at least 1− δ

err(T) ≤ err(τ) + α · ‖µ− µ∗‖L1 + ε,

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 5. Statistical guarantees 31

where µ∗ = argminµ′∈D ‖µ′ − µ‖L1 is the closest distribution to µ in D.

Proof. Again, from (5-1) we have for every scenario of the samples

err(T) ≤ err(τ) + Pr
(X,Y)∼µ

(T (X) 6= τ(X)).

Moreover,

Pr
(X,Y)∼µ

(T (X) 6= τ(X))− diffµ̂(T, τ) =
∑

C∈C(τ):T (C)6=τ(C)
(µ(C)− µ̂(C))

≤
∑

C∈C(τ)

∫
C
|pdfµ(x)− pdfµ̂(x)| dx

= ‖µ− µ̂‖L1

Finally, since µ̂ is constructed by an (α, ε, δ)-learner we have that with
probability at least 1− δ

‖µ− µ̂‖L1 ≤ α · ‖µ− µ∗‖L1 + ε

The theorem then follows by chaining the previous three inequalities. �

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

6
Experimental Results

In this chapter we conduct computational experiments to evaluate the
quality of the BA tree obtained with the different methods proposed. The
experiments use random forests as the tree ensembles considered.

6.1
Datasets and experimental setup

For the datasets considered, we use all datasets from the latest
work on BA trees [Vidal and Schiffer, 2020], with additional datasets from
the work of [Fernández-Delgado et al., 2014] where a range of classifiers
are compared over 121 datasets. Given the computational complexity of
the Dynamic Programming algorithm, the only datasets considered from
[Fernández-Delgado et al., 2014] are those with at most 20 features. In total,
we consider 62 datasets.

For each data set, we used one-hot encoding on categorical data, binned
continuous features into ten ordinal scales to obtain discrete numerical fea-
tures, and performed a ten-fold cross-validation to generate the training
(train1, ..., train10) and test (test1, ..., test10) sets. Each of the training in-
stances was used to compute a random forest to be reproduced by the BA-tree
algorithms. We selected the parameters (number of trees and maximum tree
depth) of the random forest for each instance to maximize accuracy via five-
fold cross-validation, where the number of trees ranged from 10 to 50, and the
depth from 3 to 10.

We then constructed the random forests for each instance using these
optimal parameters. We ran the BA-tree algorithms with a 30-minute time
limit to reproduce these random forests. If any of the algorithms reached
the time limit, the entire data set (i.e., its 10 instances) was discarded.
After applying this procedure, 21 datasets remained: Acute Inflammations
(Acute Inflammation and Acute Nephritis), Balance Scale, Car, Vertebral
Column1, COMPAS-ProPublica, Fertility, FICO, Haberman, Hayes Roth, Iris,
Led Display, Lenses, Monks-1, Monks-2, Monks-3, Nursery, Post Operative,

1There are two classification tasks in this dataset. We consider the classification task
with 3 classes.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 33

Tic-Tac-Toe, Titanic and Zoo. All these datasets can be found in the UCI
machine learning repository, aside from COMPAS-ProPublica and FICO,
found in [Hu et al., 2020]. Further details for each data set, such as the number
of samples, features, and number of classes, are displayed in Table 6.1.

We have also computed decision trees directly from each of the training
instances. The decision trees were used as the baseline to compare against our
approximate born again trees. Similarly as it was done for the random forests,
we selected the pruning parameter of the decision tree for each instance to
maximize accuracy via five-fold cross-validation, where the considered pruning
values were {0, 0.01, 0.02, 0.05, 0.1, 0.2}.

Datasets Characteristics Random forest params.
Samples Features Classes Number of trees Max depth

Acute Inf. 120 6 2 10 3
Acute Neph. 120 6 2 10 3
Balance scale 625 4 3 50 5

Car 1728 6 4 34 10
Column 310 6 3 21 5
COMPAS 6907 12 2 10 6
Fertility 100 9 2 28 7
FICO 10459 17 2 12 6

Haberman 306 3 2 17 4
Hayes Roth 160 3 3 24 6

Iris 150 4 3 10 4
Led display 1000 7 10 12 5

Lenses 24 4 3 11 3
Monks-1 556 6 2 31 9
Monks-2 601 6 2 50 10
Monks-3 554 6 2 11 6
Nursery 12960 8 3 49 10

Post operative 87 8 3 41 3
Tic-Tac-Toe 958 9 2 33 9

Titanic 2201 3 2 10 4
Zoo 101 16 7 11 6

Table 6.1: Dataset characteristics, and number of trees and maximum tree
depth for the computed random forests for each dataset.

The proposed algorithms were implemented in C++ and compiled with
GCC 9.2 using flag -O regarding our computational setup. The original random
forests and decision trees (baseline) were obtained in python using the library
Scikit-learn v0.24. All our experiments were run on a single thread on an
Intel(R)Core(TM) i7-10750H CPU @2.60GHz, with 64GB of RAM available
and running Ubuntu 20.04.

6.2
Algorithms tested

We compared the Dynamic Programming, the greedy and beam search
heuristics described in Chapter 4. The beam search heuristic was computed
using K = 3. For each algorithm we considered the cell-importance functions:

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 34

– Volume. This is the function used in Example 1, where the importance
v(C) of a cell C ∈ C(τ) is just its (Lebesgue) volume.

– Empirical measure. This is the function used in Example 2, where
the importance v(C) of a cell C ∈ C(τ) is the fraction of points in the
training set of the instance that lie on C.

We have decided not to evaluate the Parametric distributions cell-
importance function as in Example 3, since the results for many datasets led
to infeasible computational time.

6.3
Dynamic Programming algorithm

6.3.1
Adherence and computational time

In order to evaluate how well the random forests can be reproduced
using decision trees with limited depth, we computed the adherence of the BA
trees returned by our Dynamic Programming algorithm. Recall that adherence
is precisely what is maximized by the Dynamic Program: the adherence of
a decision tree T to a random forest τ with respect to the cell-importance
function v is the total importance of the cells where the classifiers agree:∑
C∈C(τ) v(C) · 1(T (C) = τ(C)). For each instance (and its associated random

forest), cell-importance function {Volume, Emp. Measure}, and depth limit
d ∈ {1, 2, . . . , 6}, we have computed the max adherence decision tree using the
Dynamic Programming algorithm, and observed the adherence value obtained.
Figure 6.1 reports the average adherence for each configuration.

We notice that shallow decision trees are able to reproduce random forests
with a high adherence: with both cell-importance functions, even depth 4 BA
trees achieve on average at least approximately 90% of perfect reproduction
of the random forests over the whole space. Moreover, the averages steadily
increase and become closer to the 95% mark at depth 6. Appendix A.2 presents
detailed adherence information for depth limits 4, 5, 6. In particular, these show
that even with only depth 6, on 5 out of the 21 datasets the BA constructed
obtained perfect adherence with both cell-importance functions.

Regarding the computational complexity of the procedure, Figure 6.2
reports average running time. The algorithm has shown to be quite practical for
the datasets considered. Moreover, in the additional information presented in
Appendix A.2, even at depth 6 the algorithm runs in under 2 seconds for all but
7 of the datasets, and the maximum running time is 440.70 seconds. However,

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 35

Figure 6.1: Average adherence obtained by the Dynamic Programming algo-
rithm.

when compared against the average runtime for the decision tree constructed
directly from data (< 0.01s for all datasets), it is considered significantly slower.

Figure 6.2: Average runtime of the Dynamic Programming algorithm.

We clearly see that the computational complexity quickly increases as a
function of the depth limit. Also, note that running times do not seem directly
correlated to the number of features in the instance of the parameters of the
random forest to be reproduced (see Table 6.1). The explanation for both of
these phenomena is that since the DP algorithm was implemented recursively,
it may not visit all sub-problems, and the number of sub-problems visited
depends on the number of distinct values (after binning) on the features.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 36

6.3.2
Classification accuracy

Next, we analyze the accuracy of the BA trees computed by the Dynamic
Programming algorithm. We compare this accuracy against that of the original
random forests to be reproduced and also against the accuracy of decision trees
of given depth build directly on the instances. Figure 6.3 plots the average
accuracies. Tables 6.2-6.4 present detailed results for each dataset for depth
limits 4, 5, 6.

Figure 6.3: Dynamic Programming average accuracy over all instances. RF
denotes the average accuracy of the random forests reproduced, and DT the
average accuracy of the decision trees computed directly from the data.

Once more, we observe how well shallow BA trees (especially with
depth 5, 6) can obtain accuracy comparable to that of the random forest.
In particular, with depth 6 the BA trees stayed on average within 1% of the
accuracy of random forests. Looking at Table 6.4 we see that in 11 out of 21
datasets, the BA trees with depth 6 had accuracy at least as good as that
of the random forest and even surpassed it in some datasets. Thus, these
results indicate that there is little or no loss in accuracy in working with more
interpretable classifiers in many situations.

It is also interesting to see how these BA trees compare against decision
trees of the same depth computed directly over the data. At depth limit set
to 5 and 6, BA trees have an advantage over the decision trees. In particular,
with depth 6 BA trees present a huge gain of 16,6% in accuracy on the dataset
Monks-1, as well as very significant gains of 8.8%, 4.9%, and 4.2% on the
datasets Balance-scale, Column and Tic-Tac-Toe, respectively. Finally, we note

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 37

(Acc, depth = 4)
Cell-importance functions Decision

Tree
Random
ForestVolume Emp Meas

Acute Inf. 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0
Balance scale 0.774 0.768 0.785 0.851

Car 0.835 0.868 0.845 0.975
Column 0.709 0.716 0.767 0.787
COMPAS 0.654 0.664 0.659 0.667
Fertility 0.86 0.86 0.88 0.850
FICO 0.688 0.699 0.695 0.702

Haberman 0.732 0.71 0.71 0.726
Hayes Roth 0.806 0.787 0.656 0.850

Iris 0.96 0.953 0.966 0.946
Led display 0.584 0.67 0.699 0.688

Lenses 0.783 0.783 0.833 0.783
Monks-1 0.969 0.974 0.836 0.992
Monks-2 0.632 0.665 0.657 0.948
Monks-3 0.983 0.981 0.989 0.976
Nursery 0.889 0.89 0.858 0.979

Post operative 0.713 0.713 0.713 0.713
Tic-Tac-Toe 0.745 0.732 0.767 0.936

Titanic 0.786 0.786 0.787 0.786
Zoo 0.79 0.82 0.78 0.960

Average 0.804 0.811 0.803 0.862

Table 6.2: Accuracy for the dynamic programming method with volume and
empirical measure cell-importance functions and depth set as 4. The results
in bold represent the instances where the BA tree has a higher accuracy than
the decision tree.

that both cell-importance functions considered had very similar behavior, with
the Empirical Measure performing slightly better.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 38

(Acc, depth = 5)
Cell-importance functions Decision

Tree
Random
ForestVolume Emp Meas

Acute Inf. 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0
Balance scale 0.798 0.811 0.763 0.851

Car 0.903 0.913 0.872 0.975
Column 0.722 0.732 0.764 0.787
COMPAS 0.66 0.665 0.667 0.667
Fertility 0.85 0.869 0.88 0.85
FICO 0.696 0.696 0.699 0.702

Haberman 0.729 0.71 0.71 0.726
Hayes Roth 0.843 0.825 0.693 0.85

Iris 0.953 0.953 0.966 0.946
Led display 0.675 0.689 0.699 0.688

Lenses 0.783 0.783 0.833 0.783
Monks-1 0.996 1.0 0.836 0.992
Monks-2 0.747 0.805 0.745 0.948
Monks-3 0.978 0.98 0.989 0.976
Nursery 0.909 0.915 0.885 0.979

Post operative 0.713 0.713 0.713 0.713
Tic-Tac-Toe 0.826 0.823 0.816 0.936

Titanic 0.786 0.786 0.787 0.786
Zoo 0.89 0.89 0.91 0.960

Average 0.831 0.836 0.82 0.862

Table 6.3: Accuracy for the dynamic programming method with volume and
empirical measure cell-importance functions and depth set as 5. The results
in bold represent the instances where the BA tree has a higher accuracy than
the decision tree.

(Acc, depth = 6)
Cell-importance functions Decision

Tree
Random
ForestVolume Emp Meas

Acute Inf. 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0
Balance scale 0.833 0.836 0.748 0.851

Car 0.929 0.942 0.931 0.975
Column 0.735 0.787 0.738 0.787
COMPAS 0.662 0.667 0.669 0.667
Fertility 0.86 0.86 0.88 0.850
FICO 0.698 0.7 0.7 0.702

Haberman 0.723 0.719 0.71 0.726
Hayes Roth 0.85 0.85 0.843 0.850

Iris 0.946 0.946 0.966 0.946
Led display 0.675 0.69 0.7 0.688

Lenses 0.783 0.783 0.833 0.783
Monks-1 0.996 1.0 0.834 0.992
Monks-2 0.981 0.981 0.953 0.948
Monks-3 0.976 0.976 0.989 0.976
Nursery 0.933 0.937 0.909 0.979

Post operative 0.713 0.713 0.713 0.713
Tic-Tac-Toe 0.862 0.86 0.82 0.936

Titanic 0.786 0.786 0.787 0.786
Zoo 0.909 0.92 0.93 0.960

Average 0.85 0.854 0.841 0.862

Table 6.4: Accuracy for the dynamic programming method with volume and
empirical measure cell-importance functions and depth set as 6. The results
in bold represent the instances where the BA tree has a higher accuracy than
the decision tree.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 39

6.4
Heuristic methods

We now focus our attention to the more computational efficient heuristic
constructions of BA trees given by the greedy and the beam search algorithms.

6.4.1
Adherence and computational time

The average adherence of the BA trees computed by the heuristic
methods is presented in Figure 6.4, with additional information presented
in Appendix A.3. Again, we can see that they do a fairly good job in
obtaining shallow trees that approximate the behavior of the input random
forests over the whole space. As expected, the beam search heuristic obtains
better adherence, especially for deeper trees. In addition, we do not observe
a significant loss of adherence between the beam search and the (optimal)
Dynamic Programming algorithm (for example, for depth 6, the beam search
with Volume cell-importance function obtained average adherence of 0.952,
versus an optimal adherence of 0.969).

Figure 6.4: Average adherence obtained by the heuristic algorithms.

However, in terms of running time, the heuristics are at least an order
of magnitude faster than the Dynamic Programming algorithms, as shown in
Figure 6.5 (with details in Appendix A.3). Interestingly, the choice of cell-
importance function had the most significant impact on the running time of
the different heuristics, using Empirical Measure adding significant overhead.
We note that the average running time was below 3 seconds on all datasets
for the Volume function. On the other hand, there was little difference in
running time between greedy and beam search, although Figure 6.5 indicates

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 40

that the cost of beam search becomes increasingly steeper as the depth limit
increases. Nonetheless, up to the depth limit 6 considered, both heuristics
exhibited behavior almost linear in this parameter.

Figure 6.5: Average runtime obtained by the heuristic algorithms.

6.4.2
Classification accuracy

Finally, we evaluate the classification accuracy of these efficient heuris-
tics. Average accuracies are presented in Figure 6.6 and detailed information
for depths 4, 5, 6 are presented in Tables 6.5-6.7. Once more, we can see that
these heuristics are able to compute shallow BA trees (especially with depth
5, 6) with accuracy comparable to that of the random forest. The beam search
with the Empirical Measure function obtained the best result on average across
all depth limits, and for depth 6 obtained accuracy within 2% of the original
random forests. This represents a loss of only about 1% compared to the ac-
curacy of the Dynamic Programming algorithm, however, with a much larger
computational advantage. In more than half of the datasets (11 out of 21), this
heuristic with depth 6 had accuracy at least as good as that of the random
forest, even surpassing it in some datasets.

As expected, the beam search performs consistently better than the
greedy heuristic. Moreover, while computationally more expensive, using the
Empirical Measure as cell-importance function also presented better results. It
is intuitively clear that the empirical measure is more relevant for the problem,
given that it approximates the true distribution of the data and also the
statistical guarantee from Theorem 5.1.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 41

Figure 6.6: Average accuracy obtained by the heuristic algorithms. RF denotes
the average accuracy of the random forests reproduced, and DT the average
accuracy of the decision trees computed directly from the data.

Comparing against the accuracy of decision trees of the same depth
computed directly over the data, we see that the BA trees computed by the
beam search procedure are better on average only for the depth set as 5,
although this advantage is less marked than of the Dynamic Programming
algorithm. On average the heuristic methods produce BA trees that have
similar accuracies to the decision trees. Nonetheless, for some of the datasets,
these BA trees still provide significant gains: for depth 6 and the Empirical
Measure function, there is still a gain of 16.6% in accuracy on the dataset
Monks-1, and a gain of 5.1% on the dataset Balance scale.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 42

(Acc, depth = 4)
Greedy Beam heuristic Decision

Tree
Random
ForestVolume Emp Meas Volume Emp Meas

Acute Inf 0.916 1.0 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0 1.0 1.0
Balance scale 0.71 0.72 0.736 0.766 0.785 0.851

Car 0.779 0.733 0.803 0.765 0.845 0.975
Column 0.561 0.696 0.638 0.693 0.767 0.787
COMPAS 0.654 0.657 0.653 0.663 0.659 0.667
Fertility 0.88 0.88 0.88 0.88 0.88 0.850
FICO 0.671 0.69 0.652 0.668 0.695 0.702

Haberman 0.707 0.726 0.723 0.729 0.71 0.726
Hayes Roth 0.743 0.681 0.737 0.706 0.656 0.850

Iris 0.893 0.893 0.893 0.913 0.966 0.946
Led display 0.576 0.605 0.587 0.639 0.699 0.688

Lenses 0.783 0.783 0.783 0.783 0.833 0.783
Monks-1 0.926 0.841 0.926 0.956 0.836 0.992
Monks-2 0.658 0.614 0.648 0.663 0.657 0.948
Monks-3 0.799 0.86 0.983 0.989 0.989 0.976
Nursery 0.806 0.836 0.824 0.855 0.858 0.979

Post operative 0.713 0.713 0.713 0.713 0.713 0.713
Tic-Tac-Toe 0.708 0.716 0.767 0.753 0.767 0.936

Titanic 0.786 0.786 0.786 0.786 0.787 0.786
Zoo 0.77 0.75 0.79 0.79 0.78 0.960

Average 0.763 0.77 0.786 0.795 0.803 0.862

Table 6.5: Accuracy for the greedy and the beam search heuristics with volume
and empirical measure cell-importance functions and depth set as 4. The results
in bold represent the instances where the BA tree has a higher accuracy than
the decision tree.

(Acc, depth = 5)
Greedy Beam heuristic Decision

Tree
Random
ForestVolume Emp Meas Volume Emp Meas

Acute Inf. 0.966 1.0 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0 1.0 1.0
Balance scale 0.737 0.768 0.772 0.76 0.763 0.851

Car 0.793 0.789 0.844 0.858 0.872 0.975
Column 0.590 0.712 0.674 0.735 0.764 0.787
COMPAS 0.655 0.66 0.658 0.665 0.667 0.667
Fertility 0.88 0.88 0.869 0.879 0.88 0.85
FICO 0.711 0.712 0.694 0.703 0.699 0.702

Haberman 0.713 0.726 0.729 0.72 0.71 0.726
Hayes Roth 0.793 0.806 0.825 0.793 0.693 0.85

Iris 0.86 0.9 0.92 0.913 0.966 0.946
Led display 0.611 0.676 0.675 0.681 0.699 0.688

Lenses 0.783 0.783 0.783 0.783 0.833 0.783
Monks-1 1.0 0.982 1.0 1.0 0.836 0.992
Monks-2 0.657 0.623 0.747 0.805 0.745 0.948
Monks-3 0.799 0.862 0.978 0.985 0.989 0.976
Nursery 0.849 0.865 0.858 0.881 0.885 0.979

Post operative 0.713 0.713 0.713 0.702 0.713 0.713
Tic-Tac-Toe 0.730 0.746 0.796 0.8 0.816 0.936

Titanic 0.786 0.786 0.786 0.786 0.787 0.786
Zoo 0.88 0.91 0.87 0.9 0.91 0.960

Average 0.786 0.804 0.818 0.826 0.82 0.862

Table 6.6: Accuracy for the greedy and beam heuristics with volume and
empirical measure cell-importance functions and depth set as 5. The results
in bold represent the instances where the BA tree has a higher accuracy than
the decision tree.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 6. Experimental Results 43

(Acc, depth = 6)
Greedy Beam heuristic Decision

Tree
Random
ForestVolume Emp Meas Volume Emp Meas

Acute Inf. 0.991 1.0 0.991 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0 1.0 1.0
Balance scale 0.758 0.779 0.784 0.795 0.748 0.851

Car 0.805 0.834 0.859 0.894 0.931 0.975
Column 0.590 0.719 0.69 0.716 0.738 0.787
COMPAS 0.658 0.666 0.659 0.667 0.669 0.667
Fertility 0.88 0.88 0.87 0.87 0.88 0.850
FICO 0.71 0.71 0.687 0.695 0.7 0.702

Haberman 0.703 0.72 0.732 0.729 0.71 0.726
Hayes Roth 0.818 0.818 0.831 0.8 0.843 0.850

Iris 0.873 0.9 0.94 0.953 0.966 0.946
Led display 0.651 0.688 0.677 0.687 0.7 0.688

Lenses 0.783 0.783 0.783 0.783 0.816 0.783
Monks-1 1.0 1.0 1.0 1.0 0.834 0.992
Monks-2 0.715 0.707 0.993 1.0 0.953 0.948
Monks-3 0.906 0.926 0.976 0.976 0.989 0.976
Nursery 0.863 0.886 0.869 0.899 0.909 0.979

Post operative 0.713 0.713 0.702 0.702 0.713 0.713
Tic-Tac-Toe 0.748 0.759 0.818 0.817 0.82 0.936

Titanic 0.786 0.786 0.786 0.786 0.787 0.786
Zoo 0.909 0.909 0.91 0.909 0.93 0.960

Average 0.802 0.818 0.836 0.841 0.841 0.862

Table 6.7: Accuracy for the greedy and beam search heuristics with volume and
empirical measure cell-importance functions and depth set as 6. The results
in bold represent the instances where the BA tree has a higher accuracy than
the decision tree.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

7
Conclusions

In this work, we have proposed in a principled way the problem of
constructing a decision tree that approximately reproduces a tree ensemble,
exploring the tradeoff between accuracy and interpretability. First, we have
defined the problem of obtaining the most adherent tree to the ensemble and
proposed distinctive cell-importance functions. After that, we have proposed
a dynamic programming algorithm to solve the problem and have proved that
the decision trees obtained by this procedure satisfy generalization guarantees
related to the generalization of the original tree ensembles. Afterwards, to
mitigate the dynamic programming algorithm’s exponential nature in the
number of features, we have presented heuristic algorithms (greedy and beam
search) that significantly reduce the number of recursions needed to compute
the approximate BA tree.

The computational results on 21 datasets have shown that for approx-
imate BA trees constructed using the DP, even depth-4 BA trees achieve on
average at least approximately 90% of perfect reproduction of the random
forests over the whole space. Moreover, the averages steadily increase and be-
come closer to the 95% mark at depth 6. When considering accuracy, BA
trees stayed on average within 1% of the accuracy of random forests. Com-
pared against decision trees of the same depth computed directly from data,
at depth limit set to 5, BA trees have an advantage over the decision trees,
which is seen also seen at trees of depth 6.

Considering the heuristic methods, we have observed that these heuristics
are able to compute shallow BA trees (especially with depth 5, 6) with accuracy
comparable to that of the random forest. The beam search with the Empirical
Measure function obtained the best result on average across all depth limits,
and for depth 6 obtained accuracy within 2% of the original random forests.
This represents a loss of only 1% compared to the accuracy of the Dynamic
Programming algorithm, however, with a much more significant computational
advantage. Comparing against the accuracy of decision trees of same depth
computed directly over the data, we see that the BA trees computed by the
beam search procedure are better on average for depth set as 5, although
this advantage is less marked than of the Dynamic Programming algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Chapter 7. Conclusions 45

However, on average the heuristic results produce BA trees that have similar
accuracies to the decision trees constructed directly from data.

Overall, the results indicate that there is little or no loss in accuracy
in the computed approximate BA trees in many situations, meaning that it
is possible to work with more interpretable classifiers. For future works, we
suggest focusing on approaches that lead to scalability, such as: finding tighter
bounds to the exact and heuristic methods and maybe even using another
parameter aside from cells to evaluate the feature space. Another direction
might be to create a decision tree with at least chosen adherence instead of at
most a depth limit. This seems to be an even more complicated problem to
solve. Nevertheless, it remains an interesting research question.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Bibliography

[Adnan and Islam, 2016] Adnan, M. N. and Islam, M. (2016). Optimizing the
number of trees in a decision forest to discover a subforest with high ensemble
accuracy using a genetic algorithm. Knowledge-Based Systems, 110:86–97.

[Ashtiani et al., 2020] Ashtiani, H., Ben-David, S., Harvey, N., Liaw, C., Mehra-
bian, A., and Plan, Y. (2020). Near-optimal sample complexity bounds for
robust learning of gaussian mixtures via compression schemes. Journal of the
ACM, 67:1–42.

[Bai et al., 2020] Bai, J., Li, Y., Li, J., Jiang, Y., and Xia, S. (2020). Rectified
decision trees: Towards interpretability, compression and empirical soundness.

[Bastani et al., 2019] Bastani, O., Kim, C., and Bastani, H. (2019). Interpreting
blackbox models via model extraction.

[Bernard et al., 2009] Bernard, S., Heutte, L., and Adam, S. (2009). On the
selection of decision trees in random forests.

[Boucheron et al., 2013] Boucheron, S., Lugosi, G., and Massart, P. (2013). Con-
centration Inequalities - A Nonasymptotic Theory of Independence. Oxford
University Press.

[Boz, 2002] Boz, O. (2002). Extracting decision trees from trained neural net-
works. In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’02, page 456–461, New York,
NY, USA. Association for Computing Machinery.

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Mach. Learn.,
24(2):123–140.

[Breiman, 1997] Breiman, L. (1997). Arcing the edge.

[Breiman, 2001] Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

[Breiman and Shang, 1996] Breiman, L. and Shang, N. (1996). Born again trees.

[Carvalho et al., 2019] Carvalho, D. V., Pereira, E. M., and Cardoso, J. S. (2019).
Machine learning interpretability: A survey on methods and metrics. Electronics,
8(8).

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Bibliography 47

[Craven and Shavlik, 1995] Craven, M. W. and Shavlik, J. (1995). Extracting
thee-structured representations of thained networks.

[Deng, 2014] Deng, H. (2014). Interpreting tree ensembles with intrees.

[Fernández-Delgado et al., 2014] Fernández-Delgado, M., Cernadas, E., Barro, S.,
and Amorim, D. (2014). Do we need hundreds of classifiers to solve real world
classification problems? Journal of Machine Learning Research, 15(90):3133–
3181.

[Freund and Schapire, 1997] Freund, Y. and Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119–139.

[Friedman and Popescu, 2008] Friedman, J. H. and Popescu, B. E. (2008). Pre-
dictive learning via rule ensembles. The Annals of Applied Statistics, 2(3).

[Frosst and Hinton, 2017] Frosst, N. and Hinton, G. (2017). Distilling a neural
network into a soft decision tree.

[Guidotti et al., 2018] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Gian-
notti, F., and Pedreschi, D. (2018). A survey of methods for explaining black
box models. ACM Comput. Surv., 51(5).

[Hara and Hayashi, 2018] Hara, S. and Hayashi, K. (2018). Making tree ensembles
interpretable: A bayesian model selection approach. In Storkey, A. and Perez-
Cruz, F., editors, Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine
Learning Research, pages 77–85. PMLR.

[Hernández-Lobato et al., 2009] Hernández-Lobato, D., Martínez-Muñoz, G., and
Suárez, A. (2009). Statistical instance-based pruning in ensembles of indepen-
dent classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(2):364–369.

[Hu et al., 2020] Hu, X., Rudin, C., and Seltzer, M. (2020). Optimal sparse
decision trees.

[Jiang et al., 2017] Jiang, X., Wu, C.-a., and Guo, H. (2017). Forest pruning based
on branch importance. Computational Intelligence and Neuroscience, 2017:1–
11.

[Johansson et al., 2011] Johansson, U., Sönströd, C., and Löfström, T. (2011).
One tree to explain them all. In 2011 IEEE Congress of Evolutionary Computa-
tion (CEC), pages 1444–1451.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Bibliography 48

[Joly et al., 2012] Joly, A., Schnitzler, F., Geurts, P., and Wehenkel, L. (2012).
L1-based compression of random forest models. 20th European Symposium on
Artificial Neural Networks.

[Krishnan et al., 1999] Krishnan, R., Sivakumar, G., and Bhattacharya, P. (1999).
Extracting decision trees from trained neural networks. Pattern Recognition,
32(12):1999–2009.

[Latinne et al., 2001] Latinne, P., Debeir, O., and Decaestecker, C. (2001). Lim-
iting the number of trees in random forests. volume 2096, pages 178–187.

[Lipton, 2018] Lipton, Z. C. (2018). The mythos of model interpretability: In
machine learning, the concept of interpretability is both important and slippery.
Queue, 16(3):31–57.

[Margineantu and Dietterich, 1997] Margineantu, D. D. and Dietterich, T. G.
(1997). Pruning adaptive boosting. In Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning, ICML ’97, page 211–218, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

[Meinshausen, 2009] Meinshausen, N. (2009). Forest garrote.

[Mollas et al., 2020] Mollas, I., Bassiliades, N., Vlahavas, I., and Tsoumakas, G.
(2020). Lionforests: Local interpretation of random forests.

[Nan et al., 2016] Nan, F., Wang, J., and Saligrama, V. (2016). Pruning random
forests for prediction on a budget.

[Painsky and Rosset, 2018] Painsky, A. and Rosset, S. (2018). Lossless (and lossy)
compression of random forests.

[Prodromidis and Stolfo, 2001] Prodromidis, A. L. and Stolfo, S. (2001). Cost
complexity-based pruning of ensemble classifiers. Knowledge and Information
Systems, 3:449–469.

[Quinlan, 1999] Quinlan, J. R. (1999). Miniboosting decision trees.

[Ren et al., 2015] Ren, S., Cao, X., Wei, Y., and Sun, J. (2015). Global refinement
of random forest. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 723–730.

[Rudin et al., 2021] Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., and
Zhong, C. (2021). Interpretable machine learning: Fundamental principles and
10 grand challenges.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Bibliography 49

[Schapire and Freund, 2012] Schapire, R. E. and Freund, Y. (2012). Boosting:
Foundations and Algorithms. The MIT Press.

[Schetinin et al., 2007] Schetinin, V., Fieldsend, J., Partridge, D., Coats, T.,
Krzanowski, W., Everson, R., Bailey, T., and Hernandez, A. (2007). Confident
interpretation of bayesian decision tree ensembles for clinical applications. IEEE
transactions on information technology in biomedicine : a publication of the
IEEE Engineering in Medicine and Biology Society, 11:312–9.

[Shannon and Banks, 1999] Shannon, W. and Banks, D. (1999). Combining
classification trees using mle. Statistics in medicine, 18(6):727—740.

[Sirikulviriya and Sinthupinyo, 2011] Sirikulviriya, N. and Sinthupinyo, S. (2011).
Integration of rules from a random forest.

[Tan et al., 2020] Tan, S., Soloviev, M., Hooker, G., and Wells, M. T. (2020).
Tree space prototypes: Another look at making tree ensembles interpretable.

[Van Assche and Blockeel, 2007] Van Assche, A. and Blockeel, H. (2007). Seeing
the forest through the trees: Learning a comprehensible model from an ensemble.
In Kok, J. N., Koronacki, J., Mantaras, R. L. d., Matwin, S., Mladenič, D., and
Skowron, A., editors, Machine Learning: ECML 2007, pages 418–429, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[Vandewiele et al., 2017] Vandewiele, G., Lannoye, K., Janssens, O., Ongenae, F.,
De Turck, F., and Hoecke, S. (2017). A genetic algorithm for interpretable model
extraction from decision tree ensembles. pages 104–115.

[Vidal and Schiffer, 2020] Vidal, T. and Schiffer, M. (2020). Born-again tree
ensembles. In III, H. D. and Singh, A., editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 9743–9753. PMLR.

[Yang et al., 2018] Yang, C., Rangarajan, A., and Ranka, S. (2018). Global model
interpretation via recursive partitioning.

[Yang et al., 2012] Yang, F., Lu, W.-h., Luo, L.-k., and Li, T. (2012). Margin
optimization based pruning for random forest. Neurocomputing, 94:54–63.

[Zhou and Hooker, 2016] Zhou, Y. and Hooker, G. (2016). Interpreting models
via single tree approximation.

[Zhou and Tang, 2003] Zhou, Z. and Tang, W. (2003). Selective ensemble of
decision trees. In RSFDGrC.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Bibliography 50

[Zouggar and Adla, 2019] Zouggar, S. T. and Adla, A. (2019). A Pruning of
Random Forests: a diversity-based heuristic measure to simplify a random forest
ensemble. INFOCOMP Journal of Computer Science, 18(1):01–08.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

A
Appendix

A.1
Filtering cell-breakpoints

In order to reduce the number of recursive calls, before applying the
Dynamic Programming algorithm, we apply a simple process of filtering out
cell-breakpoints ` described in [Vidal and Schiffer, 2020]. The idea is that we
can merge two adjacent “rows” of cells of the ensemble τ if both cells on each
“column” have the same class (see Figure A.1). More precisely, we can filter out
for each feature j any cell-breakpoint ` ∈ {1, . . . , |Hj|} where τ(z) = τ(z+ ej)
for all cells z with zj = ` (ej is the j-th canonical basis vector).

Figure A.1: Representation of two cell break-points ` and `′, ` can be discarded,
while `′ cannot.

A.2
Adherence and computational time for the Dynamic Programming algo-
rithm

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 52

(Depth = 4) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 0.974 0.01> 0.986 0.01>

Acute Neph. 0.933 0.01> 0.966 0.01>
Balance scale 0.911 0.04 0.907 0.04

Car 0.913 0.129 0.870 0.228
Column 0.988 15.31 0.901 15.96
COMPAS 0.834 0.05 0.911 0.616
Fertility 0.961 32.69 0.96 33.19
FICO 0.831 2.55 0.835 63.92

Haberman 0.983 1.93 0.91 1.4
Hayes Roth 0.889 0.01> 0.934 0.01>

Iris 0.974 0.03 0.957 0.02
Led display 0.724 0.01> 0.894 0.01>

Lenses 1.0 0.01> 1.0 0.01>
Monks-1 0.977 0.01> 0.973 0.01>
Monks-2 0.851 0.01 0.715 0.01
Monks-3 0.996 0.01> 0.994 0.01>
Nursery 0.897 1.47 0.9 6.02

Post operative 0.988 0.08 0.971 0.06
Tic-Tac-Toe 0.885 18.35 0.874 18.95

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.823 8.42 0.826 7.22

Average 0.920 3.86 0.918 7.03

Table A.1: Adherence and runtime for the dynamic programming method with
volume and empirical measure cell-importance functions and depth set as 4.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 53

(Depth = 5) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 0.998 0.01> 0.997 0.01>

Acute Neph. 0.960 0.01> 0.976 0.01>
Balance scale 0.95 0.12 0.949 0.14

Car 0.937 0.39 0.914 0.47
Column 0.992 67.29 0.934 69.19
COMPAS 0.870 0.12 0.937 0.66
Fertility 0.965 135.37 0.964 128.28
FICO 0.854 6.23 0.859 62.83

Haberman 0.991 8.57 0.94 6.58
Hayes Roth 0.98 0.01> 0.989 0.01>

Iris 0.992 0.12 0.981 0.09
Led display 0.856 0.01> 0.96 0.01>

Lenses 1.0 0.01> 1.0 0.01>
Monks-1 0.998 0.01> 0.998 0.01>
Monks-2 0.915 0.03 0.844 0.03
Monks-3 0.998 0.01> 0.996 0.01>
Nursery 0.919 3.47 0.924 7.48

Post operative 0.991 0.22 0.978 0.171
Tic-Tac-Toe 0.906 63.1 0.896 56.42

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.852 23.75 0.854 19.78

Average 0.948 14.7 0.947 16.77

Table A.2: Adherence and runtime for the dynamic programming method with
volume and empirical measure cell-importance functions and depth set as 5.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 54

(Depth = 6) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 1.0 0.01> 1.0 0.01>

Acute Neph. 1.0 0.01> 1.0 0.01>
Balance scale 0.983 0.29 0.979 0.3

Car 0.961 1.06 0.947 1.09
Column 0.994 237.14 0.955 230.49
COMPAS 0.898 0.3 0.953 0.81
Fertility 0.97 440.70 0.969 420.28
FICO 0.873 15.09 0.878 70.36

Haberman 0.996 25.45 0.963 20.03
Hayes Roth 1.0 0.01> 1.0 0.01>

Iris 0.998 0.31 0.995 0.22
Led display 0.942 0.01> 0.99 0.01>

Lenses 1.0 0.01> 1.0 0.01>
Monks-1 0.998 0.01 0.998 0.01
Monks-2 0.998 0.07 0.994 0.05
Monks-3 0.999 0.01> 0.999 0.01>
Nursery 0.95 8.77 0.952 11.58

Post operative 0.994 0.57 0.985 0.45
Tic-Tac-Toe 0.925 197.97 0.916 167.28

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.878 61.36 0.88 50.64

Average 0.969 47.1 0.969 46.36

Table A.3: Adherence and runtime for the dynamic programming method with
volume and empirical measure cell-importance functions and depth set as 6.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 55

A.3
Adherence and computational time for the heuristics

(Depth = 4) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 0.926 0.01> 0.976 0.01>

Acute Neph. 0.927 0.01> 0.962 0.01>
Balance scale 0.824 0.01> 0.803 0.01

Car 0.867 0.01> 0.732 0.1
Column 0.976 0.43 0.818 0.76
COMPAS 0.817 0.01 0.886 0.5
Fertility 0.959 1.64 0.959 2.07
FICO 0.819 0.66 0.823 56.18

Haberman 0.948 0.01 0.827 0.02
Hayes Roth 0.78 0.01> 0.843 0.01>

Iris 0.878 0.01> 0.859 0.01>
Led display 0.645 0.01> 0.807 0.01>

Lenses 0.999 0.01> 0.996 0.01>
Monks-1 0.964 0.01> 0.854 0.01>
Monks-2 0.829 0.01> 0.665 0.01
Monks-3 0.881 0.01> 0.887 0.01>
Nursery 0.806 0.58 0.84 5.31

Post operative 0.966 0.01 0.932 0.02
Tic-Tac-Toe 0.867 1.57 0.856 6.03

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.82 1.02 0.82 1.62

Average 0.88 0.288 0.864 3.46

Table A.4: Adherence and runtime for the greedy heuristic with volume and
empirical measure cell-importance functions and depth set as 4.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 56

(Depth = 5) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 0.975 0.01> 0.984 0.01>

Acute Neph. 0.947 0.01> 0.974 0.01>
Balance scale 0.868 0.01> 0.836 0.01

Car 0.882 0.01> 0.793 0.1
Column 0.978 0.44 0.836 0.76
COMPAS 0.842 0.01 0.906 0.49
Fertility 0.959 1.6 0.959 2.07
FICO 0.84 0.66 0.846 56.4

Haberman 0.954 0.01 0.838 0.02
Hayes Roth 0.858 0.01> 0.908 0.01>

Iris 0.886 0.01> 0.869 0.01>
Led display 0.765 0.01> 0.922 0.01>

Lenses 1.0 0.01> 1.0 0.01>
Monks-1 0.998 0.01> 0.977 0.01>
Monks-2 0.84 0.01> 0.692 0.01
Monks-3 0.881 0.01> 0.908 0.01>
Nursery 0.863 0.58 0.873 5.33

Post operative 0.966 0.01 0.932 0.02
Tic-Tac-Toe 0.878 1.58 0.869 6.03

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.841 1.03 0.841 1.63

Average 0.905 0.287 0.893 3.47

Table A.5: Adherence and runtime for the greedy heuristic with volume and
empirical measure cell-importance functions and depth set as 5.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 57

(Depth = 6) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 0.994 0.01> 0.995 0.01>

Acute Neph. 0.994 0.01> 0.997 0.01>
Balance scale 0.896 0.01> 0.866 0.01

Car 0.887 0.01> 0.840 0.1
Column 0.979 0.44 0.848 0.77
COMPAS 0.867 0.01 0.924 0.498
Fertility 0.959 1.67 0.959 2.08
FICO 0.852 0.67 0.857 56.48

Haberman 0.961 0.01 0.848 0.03
Hayes Roth 0.937 0.01> 0.959 0.01>

Iris 0.898 0.01> 0.883 0.01>
Led display 0.882 0.01> 0.976 0.01>

Lenses 1.0 0.01> 1.0 0.01>
Monks-1 0.998 0.01> 0.998 0.01>
Monks-2 0.876 0.01> 0.756 0.01
Monks-3 0.963 0.01> 0.962 0.01>
Nursery 0.873 0.58 0.892 5.33

Post operative 0.966 0.01 0.932 0.02
Tic-Tac-Toe 0.885 1.58 0.876 6.04

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.858 1.04 0.858 1.64

Average 0.929 0.291 0.915 3.48

Table A.6: Adherence and runtime for the greedy heuristic with volume and
empirical measure cell-importance functions and depth set as 6.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 58

(Depth = 4) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 0.965 0.01> 0.978 0.01>

Acute Neph. 0.933 0.01> 0.965 0.01>
Balance scale 0.851 0.01> 0.844 0.01

Car 0.887 0.03 0.763 0.11
Column 0.978 0.69 0.83 1.02
COMPAS 0.828 0.02 0.906 0.51
Fertility 0.959 2.75 0.959 3.13
FICO 0.814 1.13 0.815 56.61

Haberman 0.959 0.02 0.845 0.03
Hayes Roth 0.8 0.01> 0.877 0.01>

Iris 0.9 0.01> 0.883 0.01>
Led display 0.71 0.01> 0.867 0.01>

Lenses 0.999 0.01> 0.996 0.01>
Monks-1 0.964 0.01> 0.949 0.01>
Monks-2 0.851 0.01> 0.711 0.01
Monks-3 0.994 0.01> 0.992 0.01>
Nursery 0.823 0.626 0.857 5.37

Post operative 0.966 0.01 0.932 0.02
Tic-Tac-Toe 0.874 2.42 0.863 6.89

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.823 1.52 0.826 2.11

Average 0.898 0.44 0.888 3.61

Table A.7: Adherence and runtime for the beam search heuristic with volume
and empirical measure cell-importance functions and depth set as 4.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 59

(Depth = 5) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 0.995 0.01> 0.994 0.01>

Acute Neph. 0.96 0.01> 0.976 0.01>
Balance scale 0.898 0.01> 0.882 0.01

Car 0.905 0.04 0.857 0.11
Column 0.981 0.733 0.857 1.09
COMPAS 0.862 0.03 0.931 0.52
Fertility 0.96 2.85 0.959 3.24
FICO 0.837 1.71 0.844 57.05

Haberman 0.969 0.02 0.864 0.03
Hayes Roth 0.904 0.01> 0.941 0.01>

Iris 0.927 0.01> 0.911 0.01>
Led display 0.845 0.01> 0.955 0.01>

Lenses 1.0 0.01> 1.0 0.01>
Monks-1 0.998 0.01> 0.998 0.01>
Monks-2 0.914 0.01> 0.842 0.01
Monks-3 0.996 0.01> 0.994 0.01>
Nursery 0.867 0.654 0.89 5.4

Post operative 0.966 0.02 0.934 0.02
Tic-Tac-Toe 0.891 2.58 0.88 7.03

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.849 1.74 0.849 2.34

Average 0.929 0.49 0.921 3.66

Table A.8: Adherence and runtime for the beam search heuristic with volume
and empirical measure cell-importance functions and depth set as 5.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 60

(Depth = 6) Volume Empirical
Measure

adh(%) time(s) adh(%) time(s)
Acute Inf. 0.997 0.01> 0.996 0.01>

Acute Neph. 0.999 0.01> 0.999 0.01>
Balance scale 0.933 0.01 0.921 0.01

Car 0.919 0.05 0.894 0.12
Column 0.983 0.8 0.88 1.21
COMPAS 0.889 0.06 0.949 0.56
Fertility 0.96 3.02 0.96 3.42
FICO 0.859 2.81 0.863 58.53

Haberman 0.976 0.03 0.878 0.04
Hayes Roth 0.971 0.01> 0.982 0.01>

Iris 0.952 0.01> 0.939 0.01>
Led display 0.939 0.01> 0.989 0.01>

Lenses 1.0 0.01> 1.0 0.01>
Monks-1 0.998 0.01> 0.998 0.01>
Monks-2 0.997 0.01 0.993 0.01
Monks-3 0.998 0.01> 0.997 0.01>
Nursery 0.887 0.71 0.907 5.46

Post operative 0.973 0.02 0.95 0.03
Tic-Tac-Toe 0.905 2.83 0.895 7.27

Titanic 1.0 0.01> 1.0 0.01>
Zoo 0.872 2.1 0.873 2.7

Average 0.952 0.59 0.945 3.78

Table A.9: Adherence and runtime for the beam search heuristic with volume
and empirical measure cell-importance functions and depth set as 6.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 61

A.4
F1-score for the DP and heuristics

(F1, depth = 4)
Cell-importance functions Decision

Tree
Random
ForestVolume Emp Meas

Acute Inf. 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0
Balance scale 0.745 0.738 0.757 0.819

Car 0.825 0.858 0.841 0.974
Column 0.680 0.704 0.766 0.789
COMPAS 0.649 0.661 0.658 0.665
Fertility 0.817 0.817 0.79 0.836
FICO 0.675 0.69 0.695 0.702

Haberman 0.698 0.666 0.676 0.678
Hayes Roth 0.805 0.787 0.652 0.849

Iris 0.961 0.954 0.966 0.948
Led display 0.551 0.672 0.692 0.687

Lenses 0.841 0.841 0.83 0.841
Monks-1 0.969 0.974 0.810 0.992
Monks-2 0.633 0.669 0.616 0.947
Monks-3 0.983 0.981 0.989 0.976
Nursery 0.878 0.879 0.848 0.978

Post operative 0.605 0.605 0.648 0.605
Tic-Tac-Toe 0.749 0.736 0.744 0.934

Titanic 0.758 0.758 0.757 0.758
Zoo 0.771 0.806 0.764 0.963

Average 0.790 0.779 0.785 0.854

Table A.10: F1-score for the dynamic programming method with volume and
empirical measure cell-importance functions and depth set as 4.

(F1, depth = 5)
Cell-importance functions Decision

Tree
Random
ForestVolume Emp Meas

Acute Inf. 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0
Balance scale 0.769 0.781 0.743 0.819

Car 0.899 0.909 0.859 0.974
Column 0.708 0.727 0.765 0.789
COMPAS 0.657 0.662 0.665 0.665
Fertility 0.812 0.823 0.794 0.836
FICO 0.694 0.695 0.699 0.702

Haberman 0.682 0.657 0.694 0.678
Hayes Roth 0.842 0.823 0.68 0.849

Iris 0.954 0.954 0.959 0.948
Led display 0.671 0.688 0.682 0.687

Lenses 0.841 0.841 0.83 0.841
Monks-1 0.996 1.0 0.783 0.992
Monks-2 0.753 0.808 0.747 0.947
Monks-3 0.978 0.98 0.989 0.976
Nursery 0.907 0.913 0.874 0.978

Post operative 0.605 0.605 0.605 0.605
Tic-Tac-Toe 0.825 0.821 0.784 0.934

Titanic 0.758 0.758 0.757 0.758
Zoo 0.879 0.886 0.91 0.963

Average 0.82 0.825 0.8 0.854

Table A.11: F1-score for the dynamic programming method with volume and
empirical measure cell-importance functions and depth set as 5.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 62

(F1, depth = 6)
Cell-importance functions Decision

Tree
Random
ForestVolume Emp Meas

Acute Inf. 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0
Balance scale 0.802 0.805 0.755 0.819

Car 0.929 0.942 0.934 0.974
Column 0.723 0.787 0.787 0.789
COMPAS 0.66 0.665 0.669 0.665
Fertility 0.817 0.817 0.794 0.836
FICO 0.697 0.699 0.7 0.702

Haberman 0.671 0.673 0.669 0.678
Hayes Roth 0.849 0.849 0.838 0.849

Iris 0.948 0.948 0.959 0.948
Led display 0.672 0.688 0.702 0.687

Lenses 0.841 0.841 0.83 0.841
Monks-1 0.996 1.0 0.767 0.992
Monks-2 0.981 0.981 0.953 0.947
Monks-3 0.976 0.976 0.989 0.976
Nursery 0.93 0.934 0.898 0.978

Post operative 0.605 0.605 0.605 0.605
Tic-Tac-Toe 0.86 0.858 0.793 0.934

Titanic 0.758 0.758 0.757 0.758
Zoo 0.909 0.915 0.936 0.963

Average 0.839 0.844 0.825 0.854

Table A.12: F1-score for the dynamic programming method with volume and
empirical measure cell-importance functions and depth set as 6.

(F1, depth = 4)
Greedy Beam heuristic Decision

Tree
Random
ForestVolume Emp Meas Volume Emp Meas

Acute Inf. 0.914 1.0 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0 1.0 1.0
Balance scale 0.682 0.692 0.706 0.736 0.757 0.819

Car 0.75 0.697 0.777 0.742 0.841 0.974
Column 0.464 0.663 0.569 0.657 0.766 0.789
COMPAS 0.647 0.650 0.646 0.660 0.658 0.665
Fertility 0.828 0.828 0.828 0.828 0.79 0.836
FICO 0.646 0.679 0.625 0.650 0.695 0.702

Haberman 0.666 0.674 0.688 0.683 0.676 0.678
Hayes Roth 0.734 0.684 0.728 0.710 0.652 0.849

Iris 0.887 0.886 0.887 0.908 0.966 0.948
Led display 0.526 0.586 0.557 0.63 0.692 0.687

Lenses 0.841 0.841 0.841 0.841 0.83 0.841
Monks-1 0.925 0.837 0.925 0.956 0.810 0.992
Monks-2 0.53 0.525 0.649 0.667 0.616 0.947
Monks-3 0.794 0.859 0.983 0.989 0.989 0.976
Nursery 0.789 0.825 0.813 0.845 0.848 0.978

Post operative 0.605 0.605 0.605 0.605 0.648 0.605
Tic-Tac-Toe 0.713 0.72 0.767 0.751 0.744 0.934

Titanic 0.758 0.758 0.758 0.758 0.757 0.758
Zoo 0.753 0.733 0.771 0.771 0.764 0.963

Average 0.735 0.749 0.767 0.768 0.785 0.854

Table A.13: F1-score for the greedy and the beam search heuristics with volume
and empirical measure cell-importance functions and depth set as 4.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

Appendix A. Appendix 63

(F1, depth = 5)
Greedy Beam heuristic Decision

Tree
Random
ForestVolume Emp Meas Volume Emp Meas

Acute Inf. 0.965 1.0 1.0 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0 1.0 1.0
Balance scale 0.709 0.739 0.742 0.731 0.743 0.819

Car 0.758 0.765 0.818 0.838 0.859 0.974
Column 0.499 0.683 0.619 0.711 0.765 0.789
COMPAS 0.651 0.656 0.655 0.663 0.665 0.665
Fertility 0.828 0.828 0.823 0.828 0.794 0.836
FICO 0.705 0.708 0.686 0.699 0.699 0.702

Haberman 0.659 0.676 0.688 0.674 0.694 0.678
Hayes Roth 0.792 0.804 0.826 0.793 0.68 0.849

Iris 0.853 0.893 0.922 0.908 0.959 0.948
Led display 0.594 0.671 0.674 0.68 0.682 0.687

Lenses 0.841 0.841 0.841 0.841 0.83 0.841
Monks-1 1.0 0.982 1.0 1.0 0.783 0.992
Monks-2 0.614 0.592 0.753 0.808 0.747 0.947
Monks-3 0.794 0.861 0.978 0.985 0.989 0.976
Nursery 0.838 0.855 0.846 0.872 0.874 0.978

Post operative 0.605 0.605 0.605 0.599 0.605 0.605
Tic-Tac-Toe 0.736 0.75 0.798 0.801 0.784 0.934

Titanic 0.758 0.758 0.758 0.758 0.757 0.758
Zoo 0.873 0.91 0.859 0.889 0.91 0.963

Average 0.765 0.789 0.777 0.813 0.8 0.854

Table A.14: F1-score for the greedy and the beam search heuristics with volume
and empirical measure cell-importance functions and depth set as 5.

(F1, depth = 6)
Greedy Beam heuristic Decision

Tree
Random
ForestVolume Emp Meas Volume Emp Meas

Acute Inf. 0.991 1.0 0.991 1.0 1.0 1.0
Acute Neph. 1.0 1.0 1.0 1.0 1.0 1.0
Balance scale 0.730 0.750 0.754 0.766 0.755 0.819

Car 0.781 0.819 0.833 0.879 0.934 0.974
Column 0.506 0.690 0.648 0.704 0.787 0.789
COMPAS 0.654 0.662 0.654 0.665 0.669 0.665
Fertility 0.828 0.828 0.823 0.823 0.794 0.836
FICO 0.705 0.706 0.684 0.693 0.7 0.702

Haberman 0.655 0.672 0.683 0.684 0.669 0.678
Hayes Roth 0.816 0.817 0.83 0.798 0.838 0.849

Iris 0.871 0.893 0.941 0.954 0.959 0.948
Led display 0.641 0.686 0.675 0.685 0.702 0.687

Lenses 0.841 0.841 0.841 0.841 0.83 0.841
Monks-1 1.0 1.0 1.0 1.0 0.767 0.992
Monks-2 0.711 0.697 0.993 1.0 0.953 0.947
Monks-3 0.905 0.926 0.976 0.976 0.989 0.976
Nursery 0.852 0.877 0.861 0.894 0.898 0.978

Post operative 0.605 0.605 0.599 0.599 0.605 0.605
Tic-Tac-Toe 0.752 0.762 0.818 0.817 0.793 0.934

Titanic 0.758 0.758 0.758 0.758 0.757 0.758
Zoo 0.904 0.904 0.904 0.904 0.936 0.963

Average 0.786 0.804 0.793 0.83 0.825 0.854

Table A.15: F1-score for the greedy and the beam search heuristics with volume
and empirical measure cell-importance functions and depth set as 6.

DBD
PUC-Rio - Certificação Digital Nº 1921161/CA

	Approximate Born Again tree ensembles
	Resumo
	Table of contents
	Introduction
	Our contributions
	Organization

	Literature Review
	Tree ensemble pruning methods
	Rule Extraction methods
	Ensemble representation using a single decision tree
	General methods
	Methods specific to tree ensembles

	Problem definition
	Problem MaxAdherence

	Exact and heuristic methods
	Dynamic Programming Algorithm
	Heuristic methods
	Beam search and greedy heuristics

	Statistical guarantees
	Guarantee for empirical measure
	Guarantee for learnable distributions

	Experimental Results
	Datasets and experimental setup
	Algorithms tested
	Dynamic Programming algorithm
	Adherence and computational time
	Classification accuracy

	Heuristic methods
	Adherence and computational time
	Classification accuracy

	Conclusions
	Appendix
	Filtering cell-breakpoints
	Adherence and computational time for the Dynamic Programming algorithm
	Adherence and computational time for the heuristics
	F1-score for the DP and heuristics

